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Abstract

In this thesis we present results from simulations of a 2-dimensional (2D) active system of polar, self-
propelled particles with long-range hydrodynamic interactions. This models a system of swimming
micro-organisms in a confined fluid, which is an example of active matter. In physics active matter
is defined by systems where the constituents are able take some kind of energy from its environment
and transform it into systematical movements and thus self-propel. In this thesis we are specifically
interested in how turbulent-like behaviour in the collective motion, known as active turbulence,
arises in such systems.

We invoke central concepts from inertial turbulence in fluids with high Reynolds numbers, like
the k−β scaling of the energy spectrum from Kolmogorov theory, where β = 5/3. Active turbulence
describes fundamentally different physics as it occurs at very low Reynolds number, and more
importantly because energy is injected locally through the self-propulsion of the particles. As an
example Alert et. al. (2020) show that the scaling exponent is β = 1 for active nematic fluids.

The hydrodynamic interactions between the particles are motivated by the flow field of the
surrounding fluid induced by the self-propulsion of the particles. This takes a dipolar form in 2D
and the particles reorientate with respect to the field induced by each other. A short-range particle
alignment interaction is also introduced, and the system is simulated with periodic boundary
conditions using hydrodynamic image dipoles. We emphasize that this model contains no noise,
therefore the observed turbulent behaviour will be a result of deterministic chaos.

We present results from a system with given flow alignment coefficients and density. This
system displays power law scaling of the energy spectrum with an exponent β = 1.3 on large
scales. In addition it displays a non-Gaussian broadening of the probability density functions
for the velocity increments, with an increasing broadening at shorter scales. Thirdly, there is a
transition from a ballistic to a diffusive regime in the mean square displacement of the particles in
this system. Thus, the system meets the standard criteria of inertial and active turbulence. To the
author’s knowledge active turbulence has not been demonstrated earlier in a microscopical model
of polar swimmers with long-range hydrodynamic interactions. This can be a useful finding for
the general understanding of active turbulence. Comparisons with systems with other parameters
show that the scaling exponent of the energy spectra increases with density.

We conclude that active turbulence and scaling exponents β in this system results from the
balance between the long-range dipolar flow interaction that creates hydrodynamic instabilities
and breaks order in the system, and the short-range alignment interaction which favours order. At
higher densities the latter becomes more dominant and generates coherent flocks on short scales,
which in turn leads to amplified fluctuations on large scales.
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Sammendrag

I denne avhandlingen presenter vi simuleringer av et 2-dimensjonelt (2D) aktivt system best̊aende
av polare, selvdrevne partikler med langtrekkende hydrodynamiske vekselvirkninger. Dette er
en modell for mikroorganismer som svømmer i et fluid hvor bevegelse i en tredje dimensjon er
begrenset. Et slikt system er et eksempel p̊a aktiv materie, som i fysikk er definert som systemer
av partikler som tar energi fra omgivelsene og omdanner den til systematisk bevegelse og dermed
beveger seg p̊a egenh̊and. I denne avhandlingen er vi spesielt interesserte i hvordan kollektiv,
turbulentlignende oppførsel oppst̊ar i slike systemer. Dette er kjent som aktiv turbulens.

Vi anvender sentrale konsepter fra studier av inertiell turbulens i fluider med høye Reynoldstall,
som Kolmogorovs skaleringslov k−β for energispektra, hvor β = 5/3. Aktiv og inertiell turbulens
beskriver fundamentalt forskjellig fysikk siden førstnevnte oppst̊ar ved lave Reynoldstall, og enda
viktigere fordi energi tilføres lokalt i aktive systemer som følge av at partiklene er selvdrevne.
Eksempelvis viser Alert et. al. (2020) at i aktive nematiske fluider er skaleringseksponenten β = 1.

De hydrodynamiske vekselvirkningene er motivert gjennom at partiklenes svømming og egen-
bevegelse skaper et hastighetsfelt i fluidet de beveger seg i. I 2D tar dette feltet en dipolar form, og
partiklene innretter seg etter hverandres induserte hastighetsfelt. Vi legger ogs̊a til en kortrekkende
ordningsvekselvirkning mellom partiklene. Systemet blir simulert med periodiske grensebetingelser
ved bruk av hydrodynamiske speildipoler. Vi understreker at denne modellen er støyfri og dermed
vil observert turbulent oppførsel være et resultat av deterministisk støy.

Vi presenterer resultater fra et system med gitte innrettingskoeffisienter og tetthet. I dette
systemet finner vi at energispektrumet følger en skaleringslov med eksponenten β = 1.3 p̊a stor
skala. Vi observer ogs̊a en ikke-Gaussisk utvidelse av sannsynlighetstetthetsfunksjonene for hast-
ighetsforskjeller p̊a liten skala. En tredje observasjon fra systemet er en overgang fra ballistisk
til diffusiv oppførsel for det kvadratiske gjennomsnittet av partiklenes forflytning. Systemet op-
pfyller dermed tre standardkriterier for inertiell og aktiv turbulens. Forfatteren kjenner ikke til
at aktiv turbulens tidligere har blitt demonstrert i en mikroskopisk modell for polare svømmere
med langtrekkende hydrodynamiske vekselvirkninger, s̊a dette kan være en nyttig observasjon i
den generelle forst̊aelsen av aktiv turbulens. Gjennom sammenligninger med systemer med andre
parametre finner vi at spektra skalerer raskere med økt tetthet.

Vi konkluderer med at i dette systemet kommer aktiv turbulens og skaleringseksponenten
β som et resultat av balansen mellom den langtrekkende dipolare innrettingsvekselvirkningen
som skaper hydrodynamiske ustabiliteter og uorden i systemet, og den kortrekkende ordnings-
vekselvirkningen som ordner partiklene. Ved høyere tettheter blir sistnevnte mer dominant og
skaper koherente flokker p̊a liten skala, noe som igjen fører til forsterkede fluktuasjoner p̊a stor
skala.
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1 Introduction

In nature we observe a rich variety of phenomena where animals, bacteria and non-living creatures
behave in a collective manner. These ubiquitous collective behaviours occur on all scales, from
organisms on the sub-cellular scale in the cytoplasm to large mammals [2]. In Figure 1 we see
how flocks of birds, fish and sheep form patterns as a result of their collective behaviour. Typical
behaviours are chaotic swirling, vortex formations, orientational order, formation of traffic lanes
and more. Common for these phenomena is that they are systems of individuals who themselves
move freely, but by mutual interactions form patterns on a large scale compared to the size of the
individuals.

Figure 1: Examples of collective behaviour in nature. a: Swarming flock of birds (reused from
[3]). b: Illustration of fish forming a vortex-alike structure (reused from [4]) c: An orientationally
ordered herd of sheep (reused from [5]).

The emergence of such collective behaviours can be studied in many ways with different
models adapted to how one wants to characterize the system. In biology a common method is
to use agent-based modelling to try to reproduce some observed patterns. Then a certain set of
rules for the behaviour of the individual agents is defined and tuned to obtain the same collective
patterns that has been observed. In physics a more typical approach is to start by treating these
agents as particles and define some fundamental interactions which will determine the motion of
the particle. From these interactions the aim is to deduce a physical model in which one has limited
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the characteristics of the system down to a few, fundamental constants. Then the model can be
used to simulate the system in search for different regimes of collective behaviour, and from this
derive a general theory for such systems.

In physics we group systems that exert behaviour as described into the field of active matter.
The defining property of active matter systems is that the particles have the ability to transform
some kind of internal energy into mechanical motion and by this execute coherent movement [2, 6].
Living matter is regarded as the most important category of active matter, but non-living particles
may also have such properties [7, 8]. When studying active matter, it is natural apply techniques
from statistical physics. The main difference is however that the systems we study in active matter
are out of equilibrium because energy is always introduced into the system by the self-propulsion
of the particles. More specifically, these non-equilibrium systems are special because energy is
introduced locally, and not by some external fields or boundaries. Another property is that active
particles are often elongated or intrinsically polar. This means that their directed motion is a result
of their own anisotropy, as opposed to an external field which is typical for other many-particle
systems.

Active matter systems are typically divided into ”dry” and ”wet” systems [9, 10]. In dry
systems the active particles exchange moment with a rigid substrate to achieve movement, and their
interactions are typically short-range. Thus, the models that describe such systems may not take
momentum conservation into account. On the other hand, wet system models describe situations
where fluid flow is important and momentum is conserved. A typical example is suspensions of
swimmers, where long-range hydrodynamic interactions are important. Note that the distinction
between ”wet” and ”dry” applies to the models of the systems and not the systems themselves.
Thus, a model of active particles moving in a fluid may well be considered as a dry system if
friction forces and short-range interactions are dominant.

In this thesis we will study systems with pure hydrodynamic interactions. By hydrodynamic
interactions we mean that the movement of an active particle causes a change in the velocity field
of the surrounding fluid which is experienced by other particles. These interactions are interesting
because they can be derived on a purely physical basis, without having to introduce any form of
communication between the particles. Thus, it is easier to justify these models since such com-
munication mechanisms can be tricky to derive on physical grounds. Furthermore, hydrodynamic
interactions are typically long-range. This is an interesting attribute for any physical system, as it
is not completely understood how this shapes the resulting behaviour on large scales. We will see
later how this makes numerical simulations of bulk systems very challenging as one in principle
cannot disregard the influence of particles infinitely far away.

The system we will be studying in this thesis is a 2D microscopical particle model of polar
particles with pure hydrodynamic interactions. In particular, we will see if this model produces
systems which display active turbulence. In the following an introduction to central concepts of
inertial turbulence will be presented, before we look at how active turbulence is distinguished
from this. Before the equations of motion for the system are presented, we will motivate them
with hydrodynamic theory and present the Vicsek model. Finally, we will present and discuss the
results obtained from simulations of the system.
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2 Theory

2.1 Turbulence

Understanding turbulence is one of the oldest and greatest challenges in the field of physics. In
Figure 2 we see a drawing of turbulent flow by Leonardo da Vinci dating back to the beginning of
the 16th century [11]. The fact that this phenomenon was attracting scientific interest this early
gives us a sense of how compelling and ubiquitous turbulence is. The fact that it is still not fully
understood shows how complex it is. Since da Vinci, many great scientists have tried to understand
this phenomenon, and quite a few been quoted on its complexity. Richard Feynman referred to
turbulence as ”the most important unresolved problem of classical physics”, and Sir Horace Lamb
once said ”I am an old man now, and when I die and go to Heaven there are two matters on which
I hope enlightenment. One is quantum electro-dynamics and the other is turbulence of fluids.
About the former, I am really rather optimistic” [12–14].

Lo
g
 E
(k
)

Log k

Injection

Viscous
dissipation

Slope -5/3

Figure 2: Upper left: Schematic illustration of the energy cascade which is characteristic for
turbulence. Inspired by Ref. [15] Lower left: A sketch by Leonardo da Vinci illustrating turbulent-
like behaviour of a fluid. Adapted from Ref. [16] Right: Experimental results showing k−5/3

scaling of the energy spectrum. Adapted from [17].

Big whirls have little whirls that feed on their velocity,
and little whirls have lesser whirls and so on to viscosity.

- Lewis Fry Richardson [18]

This little poem by Lewis Fry Richardson paints a picture of the physical processes we call turbu-
lence. Richardson was an early pioneer on the subject. A simple definition states that turbulence
is the ”departure in a fluid from a smooth flow”. It is characterized by the appearance of volatile
vortices and eddying motions on a wide range of scales. This occurs in fluids with high Reynolds
numbers, Re, which defines a ratio of inertial forces to viscous forces. In contrast, smooth laminar
flows occur at low Reynolds numbers. A turbulent flow is the result of the kinetic energy being too
large to be damped by viscous forces. Thus energy is transported downwards across length scales
until it is dissipated by viscous forces. This energy cascade is illustrated in Figure 2 by a typical
energy spectrum E(k) of turbulent flows. The energy spectrum is a measure of how much energy
that is contained in motions on length scales corresponding to a wavenumber k. A turbulent flow
is a chaotic process, meaning that a small change in initial conditions will lead to a large change
in future conditions. Thus, we cannot study turbulence by deterministic means, like we e.g. study
the velocity of a falling rock. Instead, we are left with studying its statistical properties [19].
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A major breakthrough in the study of turbulence came when the mathematician Andrey
Kolmogorov published his theory in three papers in 1941 [20–23]. Kolmogorov based his theory
on the assumption that for all turbulent flows with high Reynolds number (high-Re flows), the
statistics at small scales are universal and uniquely determined by the viscosity ν and energy

dissipation rate ε. From this a characteristic length scale η =
(
ν3/ε

)1/4
can be found. If energy

is injected on a scale L � η, Kolmogorovs hypothesis was then that the statistics in the inertial
range η � r � L are universal and uniquely determined by the scale r and ε. From this he derived
that the energy spectrum of a fully developed turbulent high-Re flow is given by

E(k) = K0ε
2
3 k−

5
3 (1)

as a function of the wavenumber k. K0 would then be a universal constant. This applies to
wavenumbers corresponding to scales r so that η � r � L, and is arguably the most famous result
on inertial turbulence.

Kolmogorovs results have later been both confirmed experimentally, as the energy spectrum
in Figure 2 from Ref. [17], and re-derived by others [24]. Unbeknownst of Kolmogorovs theory,
Lars Onsager in 1945 also predicted a −5/3 power law scaling of the energy spectrum [25–27].
Onsager also reproduced Kolmogorovs 4/5 law,

〈(δuL(t, r,R))3〉 = −4

5
εR (2)

for the third moment of the longitudinal velocity increment δuL(t, r,R). δuL is the difference
in velocity along the direction R between point r and point r +R. In addition to this, Onsager
connected the phenomenon of intermittency, highly irregular dissipation of energy at small scales, to
the short-distance scaling of these velocity increments. Inertial turbulence is namely characterized
by an increasing exponential broadening of the probability distribution function of the velocity
increments δu(R) as the separation distance R decreases [28, 29]. The moments of the velocity
increments 〈(δu(R))n〉 for n = 1, 2, ... are known as structure functions. Kolmogorovs theory
predicts that in general these structure functions scale as

〈(δu(R))n〉 = Cn(εR)n/3 (3)

where Cn are some universal constants [30]. This has proven to be accurate for low orders only
[29]. In particular the theory predicts that if E(k) ∼ k−β , then the second structure function
should scale as

〈(δu(R))2〉 ∼ Rβ−1 (4)

if 1 < β < 3. Onsager was also concerned with turbulence in two dimensional flows [25]. This is
different from three dimensional turbulence because the reduced dimensionality generates different
conservation laws, which leads to an inverse energy cascade from small scales to large scales [31,
32].

As the interest of inertial turbulence has grown and tools to characterize it has been developed,
the possibility of studying turbulence in other systems has also been explored. One example of this
is the discovery of turbulent-like behaviour in a flow of an elastic polymer solution by A. Groisman
and V. Steinberg [33]. This phenomenon has later become known as elastic turbulence, and in
contrast to inertial turbulence it is observed on low Reynolds numbers [34]. Another example is
the investigation of turbulence in simulations of a quasistatic flow of granular media by F. Radjai
and S. Roux [35], whose results are shown in Figure 5. Their characterization of the flow as
turbulent-like is justified by three key observations. The first is that they observe a non-Gaussian
broadening of the probability distribution function of the velocity increments at short time-scales,
which in principle is equivalent to observing the same at short length-scales. Secondly, they find a
power-law shape of the energy spectrum, but with an exponent β ≈ 5/4, E(k) ∼ k−β , in contrast
to Kolmogorovs 5/3 law. The third key observation is super-diffusion of the particles with respect
to the mean background flow. This is expressed by the scaling of the relative root mean square
displacement of the particles, which as a function of time evolves with an exponent > 1/2.
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Figure 3: To the left we have an experimental snapshot of a quasi-2D bacterial suspension. We also
see a vorticity map with flow streamlines of the same system. In addition we see vorticity maps
obtained from simulations of a self-propelled rod (SPR) model and a hydrodynamic continuum
model of an incompressible, active flow. To the right we see velocity correlation functions and
energy spectra for the different cases. Both quasi-2D experimental results and the continuum
model suggest power law behaviour of the energy spectrum. Figures adapted from [41].

2.2 Active Turbulence

The discovery of elastic turbulence [33] and study of turbulent-like behaviour in granular media
[35] show that the characterizations of inertial turbulence can also be applied to other systems
with entirely different underlying physical mechanisms. Since the turn of the millennium a number
of experiments on active fluids have shown indications of mesoscale turbulence [36–43]. This has
initiated studies on turbulent-like behaviours in such microbial suspensions and active systems in
general, where an objective is to find generic descriptions for these dynamics, from now on termed
active turbulence. The motion of swimming microorganisms occurs at practically zero Reynolds
number, so inertia has no significance in such systems. This gives them an entirely different
physical character than the high-Re fluid flows to which the Kolmogorov theory is applied. Inertial
turbulence in high-Re flows is a result of energy injection at a scale where viscous dissipation is
negligible. The inertial effects then generate energy transport across scales until viscous effects
causes dissipation at a much smaller scale. In active systems however, the energy input takes place
locally from its constituents and therefore at the scale of the flows. This means that the peaks of
energy injection and dissipation are on the same scale. One still may have energy transport across
scales in active systems, but there are examples where this is not possible [44]. These systems can
however still produce non-trivial energy spectra because they self-organize and produce long-range
correlations, leading to energy injection on different scales in the system [45]. Figure 3 shows
active turbulence observed in experiments and obtained from simulations of a particle model and
a continuum model, reused from Ref. [41]. The particle model is a self-propelled rod model which
is a nematic model for dry active matter systems.

In Figure 4 we see another energy spectrum obtained from simulations of a continuum model.
This figure is adapted from Ref. [44], which was published in 2020. The energy spectra show uni-
versal power law forms at both short and long wavelengths. We also see that there is characteristic
length scale at which energy is injected into the system, represented by a local peak in the energy
spectra. These properties are independent of system size and a given activity parameter. Based
on these results it is concluded that active nematic fluids represents a distinct, low-Re universality
class of turbulence. The plot of the stream function to the left shows that large scale flows form
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Figure 4: Stream function Ψ and energy spectra E(q) as a function of wavenumber q, obtained
from simulations of a continuum model for active nematic fluids. n represents the number of grid
points on each axis, so the system size increases with n and thereby an activity number A also
increases. The energy spectra show universal scaling laws q−1 for small q and q−4 for large q.
Figure adapted from [44].

in the system, in addition to vortices with a size corresponding to the mentioned characteristic
length.

2.2.1 Correlations and energy spectrum

As we have seen, it is common to use characterizations developed for inertial turbulence when
studying active turbulence. We will now motivate the use of the energy spectrum and see where
it originates. Most experimental results on active turbulence are obtained from 2D or quasi-2D
systems, and we will also study a 2D model. The following discussion therefore considers 2D
systems, but can easily be adapted to 3D.

The velocity field u(x, t) of a fluid usually consists of a laminar and a turbulent component.
The laminar component U = 〈u〉 is the spatial average of the flow and hence the turbulent
component is u′ = u − U , which contains the properties we are interested in. With this we can
define a velocity correlation tensor

Rij(r) ≡ 〈u′i(x)u′j(x+ r)〉, (5)

where the sub-indices i, j denote velocity components and the average may be both spatial and
temporal. Note that the the correlation tensor is not dependent on the position x in this definition,
which is only true if we assume the flow to be homogeneous. In addition, by assuming that the
flow is isotropic, Rij is only dependent of the distance r between the two points of the flow. The
trace of the correlation tensor we call the correlation function R(r) = Rii(r) . We observe that
in the limit r → 0, R(r) → 〈|u′|2〉. This correlation function can be used to define a correlation
length

λ ≡ 1

R(0)

∫ ∞
0

dr R(r), (6)

which is a rough measure of the largest eddy currents in the turbulent flow [19].

As discussed earlier, one of the characteristics of turbulence is energy transport over different
scales. To get information on how much kinetic energy that is contained on these scales it may be
preferable to look at the Fourier space rather than real space. The energy spectrum E(k) is a a
measure of the accumulation of energy at different wavenumbers k, and formally defined by

〈u′2〉
2

=

∫ ∞
0

dk E(k). (7)

The left hand side is recognized as the total kinetic energy, since mass has no significance in the
absence of inertia. Thus the energy spectrum shows how the kinetic energy is distributed on
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different length scales within a system. Having assumed that the turbulent flow is isotropic and
homogeneous, the Wiener-Khinchin theorem states that the energy spectrum can be found by

E(k) =
k

2π

∫
d2r e−ik·rR(r) (8)

in a 2D system [41, 46]. Note that E(k) contains the same amount of information about the system
as R(r), but displays it in a manner that can be more useful. We also note that multiplying the
Fourier transform of a function with k in Fourier space is the same as differentiating the function
with respect to r in real space. Thus, E(k) illustrates the length scales where there are fluctuations
in the velocity correlation function.

The definition of E(k) in Eq. (8) relies on the validity of the assumptions Wiener-Khinchin
theorem. As there are distinct phenomenological differences between active matter and systems
where this theorem is applied ordinarily, we seek a definition of E(k) with a more direct connection
to the raw data. Starting from the simple definition of the mean square velocity

〈u′2〉 =
1

L2

∫
d2x u′2(x) (9)

for a continuum system of size L, we use the Parseval relation stating that∫
d2x |u′(x)|2 =

∫
d2k |û′(k)|2, (10)

where û′(k) is the Fourier transform of u′(x) [47]. By assuming that |û′(k)|2 is isotropic we may
now write

〈u′2〉 =
2π

L2

∫
dk k|û′(k)|2. (11)

From the formal definition of E(k), 〈u′2〉 = 2
∫
E(k)dk, we thus get that

E(k) =
π

L2
k|û′(k)|2. (12)

We see how this definition allows us to use the Fourier transform of u, in contrast to Eq. (8) where
the velocity correlation function must be computed first. The Parseval relation is also applicable
if we have a discrete velocity field with N points in each direction, so that

〈u′2〉 =
1

N 2

∑
i,j

|u′(xi, xj)|2 =
∑
i,j

|û′(ki, kj)|2, (13)

where û′(ki, kj) in this case is a discrete Fourier transform. Thus, we formally write

E(k) =
π

L2
k〈|û′(k)|2〉k (14)

in this case, where the average 〈...〉k denotes the average over all wave-vectors k of length k = |k|.
Consequently, two different definitions of the energy spectrum have been obtained. In the literature
it appears that use of the definition in Eq. (8) from the Wiener-Khinchin theorem is predominant.
An example of this is the energy spectra in Figure 3 adapted from Ref. [41]. Figure 5 shows the
energy spectra for the two velocity components in a granular flow, adapted from [35]. These results
are obtained by interpolating the particle velocities on a grid and computing the Fourier transform
of the turbulent part of the resulting velocity field. Thus, a method involving the definition of
E(k) as in Eq. (14) was used. In this work both methods will be applied to obtain the energy
spectra.

As we saw in subsection 2.1, a common method in studies in inertial turbulence is to identify
probability distribution functions for various velocity parameters. These parameters can for ex-
ample be spatial derivatives of the velocities like ∂vx/∂x or the velocity increment δv(t, r,R) =
v(t, r + R) − v(t, r) [29]. Another possibility is to look at the probability distribution function

for the particle displacement velocity vy(τ) =
∫ t+τ
t

δsy(t′)dt′ over time, where δs is a fluctuation
from a mean background flow [35]. Figure 5 shows an example of this. What we observe here is a
non-Gaussian broadening of the probability distribution at a short time scale. The occurrence of
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Figure 5: Turbulent-like behaviour in a simulated flow of granular media. To the left we see an
instantaneous image of the particles displacements with respect to a mean background flow. The
upper right plot shows the probability distribution function for the velocity increment vy over two
different times. The lower right plot to the right shows the energy spectrum for the turbulent part
of the flow, showing a power law decay with β = 5/4. Figures are adapted from [35].

such broadening as time or spatial scales decrease is a hallmark of turbulence in inertia-dominated
systems. This illustrates how one can adapt parameters and characteristics of inertial turbulence
onto other systems to obtain similar descriptions of turbulent behaviour.

Another characteristic of turbulence is a non-zero vorticity ω = ∇ × u. For 2D systems we
can reduce the vorticity to a scalar ω = ∂xuy−∂yux. In Figure 3 we see examples of vorticity maps
for active systems. The vorticity highlights eddying motions at different scales and can also give
an impression of a typical vortex size in the system. Note that other behaviours and patterns than
vortices may also induce a non-zero vorticity, such as e.g. two antiparallel lanes. Furthermore, one
should be aware that a rich vorticity map is no concluding evidence of turbulence, but rather a
tool to characterize the motions within a flow.

2.3 Continuum models

There are two main modelling techniques used to theoretically describe active systems. The first
is a microscopical description where equations of motion are developed to describe the individual
particles positions, velocities, orientations, etc. as functions of time. These models typically consist
of a few inter-particle interactions that appear relatively simple on small scales, but can produce
rich collective behaviours of particles on large scales. In this thesis we will consider such a particle
model. The other alternative is to give a coarse-grained description of the systems by looking at
the evolution of ”slow”, macroscopic variables. These models do not describe the motions of the
individual particles, but instead considers the system as continuum. Typical such macroscopic
parameters are the velocity field u, the pressure p, a polarization field P and the density ρ. These
parameters will then be connected by a set of differential equations to describe the dynamics of
the system, normally on a form similar to the Navier-Stokes equation from fluid mechanics.

In continuum descriptions an ensemble of particles is often referred to as an active fluid. These
active fluids are in most cases assumed to be incompressible, meaning that ∇ · u = 0. Thus the
resulting models mainly apply to very dense suspensions [48]. With this assumption a general
hydrodynamic description of the mobility of dense active suspensions reading

∂tu+ λu · ∇u = −∇p− Γ0∇2u− Γ2∇4u−
(
α+ β|u|2

)
u, (15)

has been developed [41, 49]. We emphasize that u(r, t) here describes the velocity of an active
particle at position r and time t and not the surrounding, passive fluid. The left hand side and the
two first terms on the right we recognize from the conventional Navier-Stokes equation describing
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an incompressible fluid. Although these equations have similarities, they describe very different
physics. In addition the right hand side consists of a higher order gradient in form the Γ2 term and
lastly the α, β term which is similar to Toner-Tu drive [49–51]. The Γ0,2-terms induce instabilities
to the system which lead to quasi-chaotic patterns. With these terms only the equation provides the
simplest generic description of meso-scale turbulence in active flows [41]. The α, β term accounts
for the self-propulsion of the constituents. α is a parameter describing the activity of the system.
α < 0 describes high activity and then the α, β-terms describe an effective polar alignment, while
α > 0 describes friction dominated behaviour leading to damped, disordered states [52].

Continuum models like the one described in Eq. (15) has had great success in describing a
wide variety of behaviours in different systems, including active turbulence [2, 45]. We have already
shown one example in Figure 3 where this model shows very good agreement with experimental
results from a dense bacterial suspension in a quasi-2D system. With their similarity to the
Navier-Stokes equation, which is used to describe inertial turbulence, it is natural that continuum
models has been the main focus in studies of active turbulence. In contrast there is strikingly
little literature on active turbulence in microscopic particle models, especially in the case of wet,
polar systems. This is mainly because they are computationally heavy to simulate. These models
can account for features like compressibility, which indeed is relevant for many real-world systems,
which are not captured by most of the continuum descriptions. It is therefore of interest to see
whether these models can produce similar results.

2.4 Vicsek model

One of the most influential models in Active Matter is the Vicsek model [53]. It was initially
developed to study the collective motion of birds [7], but proved to describe many more phenomena.
The model has been further investigated and expanded to take into account other sorts of effects
like attraction/repulsion, a surrounding fluid etc. [54–59]. The Vicsek model is in the category of
dry active matter systems.

The original Vicsek model deals with point particles moving with a constant absolute velo-
city v0. At every time step, the orientation θi of each particle is decided by the average of the
orientations of the particles within a radius r from the particle. This is illustrated in Figure 6. In

Figure 6: Illustration of the interactions in the Vicsek model. The orientation of each particle is
decided by the average orientation of all particles within a distance r from the given particle.

addition there is a rotational diffusion term Ξ, which is a randomly chosen number from a uniform
distribution on a given interval (−η/2, η/2). Therefore, for a particle i in this model at position
xi(t) and with orientation θi(t) at time t, will at time t+ ∆t be at position

xi(t+ ∆t) = xi(t) + vi(t)∆t, (16)

9



with orientation
θi(t+ ∆t) = 〈θ(t)〉r + Ξ. (17)

vi(t) is the velocity of the particle, with absolute value v0 and direction θi(t), while 〈θ〉r denotes
the average velocity direction of particles within a distance r from particle i. This means that a
given system can be characterized by only three parameters v0, η and the density ρ.

A striking property of the Vicsek model is its simple form, and it has a strong analogy in
the classical Heisenberg model in statistical physics. The direction of the moving arrows can be
thought of as ’spins’, while the noise term Ξ induces much of the same effects as temperature does
in statistical physics. The two models yield qualitatively similar results with respect to global
order of their respective systems. This is far from granted, given that the Vicsek model deals with
non-equilibrium systems.

From a physicist’s perspective, the Vicsek model is attractive because it consists of few para-
meters and produces spontaneous symmetry breaking and critical exponents. This is why it has
played a central role in the development of the theory around collective motion since it was intro-
duced in the 1990’s [54]. However, the Vicsek model is not derived from any physical law but rather
from a notion of how the constituents of a flock behave. Thus, it is an example of agent-based
modelling that was touched upon in the Introduction.

2.5 Flying XY-model

The Vicsek model can be modified to construct a system in which the particles interact by a
pairwise aligning force. The motion of a self-propelled particle i in 2D moving with constant speed
v is described by

ẋi(t) = veθi(t), (18)

θ̇i(t) = γ
∑
j 6=i

F (θj(t)− θi(t),xj(t)− xi(t)) + Ξ(t), (19)

where γ is a coefficient describing the strength of the alignment interaction and Ξ is some white
noise term with zero mean [60]. By choosing an alignment force F on the form F (θ, r) =
sin(θ)f(|r|), where f(r) determines the range of the interaction, we see how this interaction in-
centivizes particles to orientate in parallel to each other. Both θi = θj and θi = −θj are ”equilib-

rium states” in the sense that these conditions yield 0 contribution to θ̇i, but in the anti-parallel
situation this equilibrium is not stable. This model thus describes a polar system, not a nematic
one. In the limit v = 0 this model is equivalent to the classical XY-model in statistical mechanics
[60]. This is a model for the 2D configuration of fixed spins on a lattice where a translation-
invariant interaction Jij analog to f(r) determines the coupling between the sites i and j. The
configuration energy H = −

∑
i 6=j Jij cos(θi − θj) determines the state of of the system. For the

spin at site i the minimal configuration energy is found by −∂H/∂θi =
∑
j 6=i Jij sin(θj − θi) which

we see is equivalent to the interaction in Eq. (19). Therefore, with a finite velocity v the model
above is termed the Flying XY-model.

As stated above f(r) controls the range of the aligning interaction. A straightforward choice is
to simply set a cutoff R so that f(r) = 1/πR2 if r < R and 0 otherwise as done in Ref. [60]. There
it is also claimed that the physics should not be dramatically affected by the exact shape of this
function. Another possibility, which we will investigate further, is to let the range be controlled by
an exponent α so that f(r) ∼ r−α. With this form we also incorporate that the particles are most
affected by their closest neighbours. One should however be aware that with α ≤ 2 the interaction
is long-range in 2D systems. Otherwise this is a short-range interaction.

In active systems there are several possible physical origins that can justify the aligning in-
teractions in both the conventional Vicsek model and the flying XY-model. It is easy to imagine
how an individual in a flock of birds or in a school of fish simply sees the other individuals and
thereby adjusts its own orientation. For microswimmers in 2D systems such an alignment inter-
action can arise from short-range hydrodynamic interactions [61]. It is also remarkable that an
effective Vicsek-like interaction can be present in systems composed of self-propelled particles with
only steric interactions. In combination with self-propulsion, the repulsive potential which models
the steric interaction induces a Motility-Induced Phase Separation (MIPS) between dense and di-
lute fluid phases [62]. In the dense phase of a MIPS an alignment of the velocities of the particles
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can arise, even though no explicit alignment interaction is present [63]. This is illustrates how the
Flying XY-model captures features and behaviours that may be present in a variety of systems.

We note that both the Vicsek model and the flying XY-model contain noise terms to incorpor-
ate angular diffusion. This is a common feature in microscopic and macroscopic models of active
matter to have an order-breaking mechanism in the models. We will however study a model with
pure hydrodynamic interactions and no such noise term.

2.6 Hydrodynamic theory

The Vicsek model is a minimal model to describe active systems. After it was introduced many
other theories and models have been developed to understand the behaviour of active systems [10,
64]. The focus in this project will be on active systems with hydrodynamic interactions. This is
fundamentally different from the Vicsek model in the sense that the interactions will be long-range
and the equations of motion will be deterministic. More specifically, we will look at swimming
microorganisms confined in a 2D fluid. In Figure 7 we see how such systems can exert different
kinds of behaviour.

Figure 7: Different collective behaviours of a dense suspension of the bacterium B. subtilis in a
drop

Source: Enkeleida Lushi, Hugo Wioland and Raymond E. Goldstein [65]

As opposed to for example fish, swimming microorganisms live their life in a world with very
low Reynolds number. This is simply caused by their size, which has been described in the famous
lecture ”Life at low Reynolds number” by E. M. Purcell [66]. In this world inertia does not play
any role in the motion of a particle, which is entirely dependent on the forces acting on it at this
point in time. Purcell also stated that because of time-reversibility, an animal (or anything else)
which exhibits reciprocal motion cannot swim at low Reynolds number. This is known as the
Scallop theorem.

To see how the low Reynolds number influences the hydrodynamic interactions, we start by
introducing the Navier-Stokes equation. It describes the flow u of an incompressible fluid by

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ η∇2u (20)

where p is the pressure, η is the viscosity and ρ is the density of the fluid. With low Reynolds
number, the two inertia terms on the left-hand side can be ignored. We thus get the Stokes
equations describing a Newtonian fluid,

η∇2u = ∇p
∇ · u = 0

(21)

where the second equation originates from the incompressibility. Hele-Shaw flow is an example of
a situation where inertia forces are negligible. It occurs when two parallel plates are arranged very
close together with the space between the plates occupied by fluid.
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We now look at a swimmer in a fluid confined by two rigid walls separated by a distance h
comparable to the size of the swimmer as illustrated in Figure 8. This is a relevant situation for
bacteria in nature and is also a common case in experiments [61, 67, 68]. When studying swimming
microorganisms in an experimental setup with e.g. a microscope, the swimmers will typically be
confined between two glass plates. In nature we can think of situations like bacteria moving along

Figure 8: A suspension of swimming microorganisms in a fluid confined between two parallel plates
separated by a distance h comparable to the size of the swimmers. The swimmers are modelled by
an asymmetric dumbbell moving with an absolute velocity vs and with orientaion p in the plane
parallel to the plates.

Source: Alan Cheng Hou Tsang and Eva Kanso [69] and Tommaso Brotto et. al. [9]

surfaces, in porous media or through narrow passages in the body. Thus, confinement between
two plates will at least be a minimal model for such situations. The swimmers we treat are polar,
meaning that they are asymmetric along the elongation axis and thus have a ”head” and a tail.

With no-slip condition on the walls, the flow field induced by a swimmer can then be reduced
to two dimensions (x, y) in the far-field [69–72]. From the Eqs. (21) one can then derive that the
flow will be parallel to the plates and the velocity field u is described by

u (r) = − h2

12η
∇p(r)

∇ · u (r) = −σ · ∇δ [r −R(t)]

(22)

where R is the position of the swimmer and σ = σ
[
Ṙ(t)− u(0)(R(t))

]
[9]. These equations

describe what is known as Hele-Shaw flow. σ is a measure of the ”dipole strength”, and for a
circular particle it is twice the particle area. u(0)(R(t)) would be the fluid flow at R(t) in absence
of the swimmer. The equations in (22) have a dipolar solution

ud(r|0,σ) =
1

2π|r|2
(r̂r̂ − I) · σ (23)

for a particle located at the origin R = 0 [72]. I is the unity tensor and r̂r̂ is the outer product
of r̂ = r/|r| with itself, i.e. (r̂r̂)i,j = r̂ir̂j . In fact, this far-field solution is independent of the
propulsion mechanism that drives the motion of the particle, because the physics of the surrounding
fluid is described by Hele-Shaw flow [69, 73]. Figure 9 illustrates the dipolar field in Eq. (23) when
the particle moves to the right and no other fluid flows are present. This source dipole that we
obtain for swimmers confined in 2 dimensions is qualitatively different from the resulting velocity
field that is obtained when the swimmers are free to move in 3 dimensions. In 3D one has to
distinguish between ”pushers” and ”pullers” and so the resulting fluid flow is no longer independent
of the swimming mechanism [69, 74].

Brotto et. al. [9] describes a model that treats the swimmer as a rigid dumbbell, illustrated in
Figure 8, and this has been adopted by Kanso and Tsang [69, 75] and Saintillan and Lefauve [71].
The dumbbell is composed of two discs with radii Rtail and Rhead connected by a rigid rod of length
a. Note that the dumbbell here moves with a velocity vs, so this is not a model for the swimming
mechanism of the swimmer, but for the velocity field created by the motion of the swimmer. A
dumbbell would by the Scallop theorem not be able to self-propel. It has however been showed that
collective motion of pulsating dumbbells also can occur purely due to hydrodynamic interactions
[76].

The ”tail disc” is a simple model to describe the effects the beating flagella has on the fluid flow.
Kanso and Tsang established that Rtail indeed depends on the flagellar activity of the swimmer [69].
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Figure 9: A stream plot of the dipolar velocity field described in Eq. (23). This demonstrates the
far-field fluid flow induced by a particle moving to the right with no other flows present.

This was done by prescribing the gap-averaged motion of the flagellum as y(x, t) = A cos (kx− t)
with x ∈ [−1, 1] and assuming that it induces a constant swimming velocity U . A and k are the
amplitude and wave number of the beating motion, respectively. By doing numerical simulations
and fitting the obtained time time-averaged flow field over one beating cycle to a dipolar field, they
found that Rtail increases with A and k.
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3 Equations of Motion for Confined Polar Swimmers

3.1 Hydrodynamic interactions

In this section we will mainly follow Brotto et. al. [9] and use the dipolar velocity field in Eq. (23)
to express the hydrodynamic interactions between the particles. The generic form of the equations
of motion for a polar swimmer with absolute velocity vs in a flow field u is

Ṙα = vspα + µ⊥ (δαβ − pαpβ)uβ + µ‖ (pαpβ)uβ (24a)

ṗα = ν1 (δαβ − pαpβ) (∂γuβ) pγ + ν2 (δαβ − pαpβ)uβ (24b)

to leading order of |∇u|, on component form with indices α, β ∈ (x, y) and with the Einstein
summation convention [9, 71]. The orientation vector p = (cosα, sinα) is given with respect to
the x-axis. (The angle α must not be confused with the index.) µ⊥ and µ‖ are the transverse
and longitudinal mobility coefficients, respectively, and ν1 and ν2 we will denote as flow alignment
coefficients. Note that the factor (δαβ − pαpβ) is a projection operator. By multiplying Eq. (24b)
with pα we get that pαṗα = 0. Therefore ṗ is always perpendicular to p and it depends only on
the components of (∇u) · p and u that are perpendicular to p.

To get a feeling for the interpretation of the coefficients ν1 and ν2, it is instructive to have
look at how the two terms in Eq. (24b) contribute to ṗ, or more specifically when they do not
contribute. The first term is hard to interpret, but can be shown to be zero if p ‖ ∇(u2). A special
case of this is if ∇ux = ∇uy = Cp, where C is a constant. Written out on vector form the gradient
term then is

C

(
1− p2

x −pxpy
−pxpy 1− p2

y

)(
px px
py py

)(
px
py

)
= C

(
(1− p2

x)(p2
x + pxpy)− pxpy(p2

y + pxpy)
(1− p2

y)(p2
y + pxpy)− pxpy(p2

x + pxpy)

)
(25)

which is zero by using that p2
x + p2

y = 1. This tells us that ν1 is a measure of how strong the
particle tends to reorient by the flow gradient [71]. In fact, if ν2 = 0 Eq. (24b) corresponds to
what is known as Jefferey’s equation which describes how passive, anisotropic particles respond to
fluid flow [9, 77]. This was introduced in 1922, and the resulting Jeffery orbits are well-studied.

The second term in Eq. (24b) is a bit more ”transparent”. By setting p = Cu it is quite
straightforward to see that this term becomes 0. This means that by the ν2-term, the particle
reorients in response to the flow field itself, not its gradient. This behaviour is not as well-studied
as the gradient response.

Now, we return to the dumbbell model described in the section Hydrodynamic theory and
Figure 8. We consider the two disks of radii {Rtail, Rhead} to be fixed together by a rod such that
the length of the dumbbell is a. We assume a� Rtail, Rhead. Because of the geometric confinement
of our system, the disks can experience a lubrication force from the walls at z = 0, h, and vice
versa. This will slow down the disk velocity Ṙi compared to the fluid velocity u(Ri). Following
Brotto et. al. [9] we therefore introduce a mobility coefficient µi ∈ [0, 1] so that Ṙi(t) = µiu(Ri),
to take this effect into account. µi = 0 means that a passive disk would be fixed, while for µi = 1 it
would be a passive tracer of the fluid. Here i = 1, 2 represents the tail and the head, respectively.
To account for the drag from the surrounding fluid they also introduce a drag coefficient αi. The
interpretation of this is that if a disk is pulled by an external force F in a quiescent fluid, i.e. a
fluid that is otherwise at rest, its velocity will be Ṙi(t) = αiF .

We are now in a position to look at the motion of this rigid dumbbell, assuming that both

disks move with a velocity v
(0)
s p. The equations of motion for the tail (1) and head disc (2) are

then

Ṙ1 = v(0)
s p+ µ1

[
u(0)(R1) + ud(R1|R2,σ2)

]
+ α1T ,

Ṙ2 = v(0)
s p+ µ2

[
u(0)(R2) + ud(R2|R1,σ1)

]
− α2T ,

(26)

respectively, where T is a tension that ensures that the distance between the disks is constant. We

see that there are four terms determining the motion of each disk. v
(0)
s p is the self-propulsion term

and moves both disks in the direction of p, which is parallel to the axis between the two disks.
The impact from the fluid is expressed by the term µi[...], with u(0) being the velocity field if the
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dumbbell was not present. ud(R1|R2,σ2) is the dipolar velocity field of the fluid at R1 given that
there is particle with dipole strength σ2 located at R2, and vice versa for ud(R2|R1,σ1), given by
Eq. (23). If the other forces leads to a extraction/contraction ∆a of the dumbbell, ±αiT will move
disk i directly towards/away from the other by a distance ∆aαi/(α1 + α2). Thus, for a discrete
time step δt we have T (t) ‖ p(t+ δt).

Again, following of Brotto et. al., we can now define the center of drag of the dumbbell as
R ≡ (α1R2 + α2R1)/(α1 + α2). Then the equations in (26) can be rewritten to the form of

Eqs. (24a) and (24b) with velocity vs = v
(0)
s +O

(
(Ri/a)2

)
, i = (tail, head). The transverse and

longitudinal mobility coefficient for this swimmer will then be

µ ≡ µ⊥ = µ‖ = α2µ1 + α1µ2 (27a)

and the flow alignment coefficients

ν1 ∼ (µ1 + µ2), and (27b)

ν2 =
1

a
(µ2 − µ1). (27c)

to leading order of Ri/a. With µ ≡ µ⊥ = µ‖ Eq. (24a) now becomes significantly simplified,

Ṙα = vspα + µuα.

From Eq. (27c) it is clear that ν2 6= 0 is a result of the geometrical confinement (µ1, µ2 6= 1)
and the polarity of the swimmer (µ1 6= µ2). A reasonable assumption is that µi decreases with
Ri, meaning that larger particles experience more friction from the walls than smaller ones. For
a specific swimmer we can take Rhead to be a constant. Rtail will however vary with the flagellar
activity, as mentioned earlier. This will then also be the case for the mobility coefficient µ1.
Swimmers with high flagellar activity will therefore align them-self along with the velocity field
due to the ν2 term in Eq. (24a) and ν2 > 0 in this case. On the other hand, swimmers with weakly
(or slowly) beating flagella can yield µ1 > µ2 and therefore ν2 < 0. In this case they will orient
against the flow and swim upstream.

To simplify the equations of motion we will assume that σ = σ
[
Ṙ(t)− u(0)(R(t))

]
≈ σvsp,

i.e. that the swimmers velocity is constant and large compared to the fluid velocity and that the
direction of its movement follows its swimming direction p. This is justified by the 1/r2 decay of
the dipolar flow field induced by the swimmer. It should however be noted that systems of this
kind may end up in a clustering state where the particles velocities are close to zero [69]. In such
an event one should take a closer look at the implications this assumption. We can now rewrite
the dipole velocity field in Eq. (23) as

ud(r|0,σ) =
vsσ

2π|r|2
(r̂r̂ − I) · p =

vsσ

2π|r|2

((
r̂2
x − r̂2

y

)
cosα+ 2r̂xr̂y sinα(

r̂2
y − r̂2

x

)
sinα+ 2r̂xr̂y cosα

)
(28)

where r̂x = x/|r|, r̂y = y/|r| and thus r̂2
x + r̂2

y = 1. Remember that p = (cosα, sinα) is the
orientation of the swimmer producing the flow field.

For the following discussion it is advantageous to look at the derivative of the angle α instead
of the orientation p as in Eq. (24b). They both contain the same amount of information, but the
notation changes slightly. By the use of a few trigonometric identities and that ṗ = α̇(− sinα, cosα)
we obtain that

α̇ = ν1p
⊥ · (∇u) · p+ ν2u · p⊥, (29)

where p⊥ = (− sinα, cosα) is a vector perpendicular to p.

3.2 Alignment interaction

We now want to incorporate the alignment interaction from the flying XY-model. As discussed
in subsection 2.5, this interaction has a generic form and may originate from several physical
phenomena, including hydrodynamic interactions [60, 61]. Another motivation for including this
interaction is that the model we are studying is unreservedly 2-dimensional. This is seldom the
case in real systems, who are rather quasi-2D in the sense that the both fluid flow and particle
movement in a third dimension is quite restricted. When these systems are modelled as 2D, it may
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be done by coarse-graining so that one simulated particle in reality represents a group of particles.
It has experimentally been discovered active fluids which exhibit coherent motion with global order
in 3D, but as one of the dimensions is diminished to be much smaller than the others, the active
flow turns turbulent [78]. One can thus envision a 2D model of such a system where an alignment
interaction as in the flying XY-model effectively compensates for the lack of a third dimension.
Inspired by Ref. [61], we introduce an effective angular potential Heff so that the rotation of a
self-propelled particle i in a system of N particles is given by

α̇i =

N∑
j 6=i

∂

∂αi
Heff(αi, αj , ri − rj). (30)

This effective potential takes the generic form

Heff(αi, αj , r) = A(r)pj · pi +B(r)r̂ · pi + C(r)pj · (2r̂r̂ − I) · pi (31)

which is expected whenever particles move with constant velocity and experience short-range polar
alignment. In systems with global rotational invariance, no other low-order moments are allowed
due to symmetry considerations [79]. We see that the only dependence of αi in Heff comes with
pi, whose derivative is p⊥i , so that

∂

∂αi
Heff(αi, αj , r) = A(r)pj · p⊥i +B(r)r̂ · p⊥i + C(r)pj · (2r̂r̂ − I) · p⊥i . (32)

We now see that the first term takes the form of the alignment interaction from the flying XY-
model in subsection 2.5. Such an interaction originating from hydrodynamic effects is short-range
in 2D flow [61, 72]. If rooted in other effects, like e.g. collisions, this term is also typically of short
range. We therefore choose A(r) = γr−ζ where ζ ≥ 3 when including this interaction in our model.
γ is a flow alignment parameter in line with ν1 and ν2, indicating the strength of the alignment.

The second term in Eq. (32) is a collision avoidance term which orientates the swimmers
towards the axis of separation r̂. This interaction is typically short-range as well, but it is not
included in our model. Finally, the third term is on the same form as the dipole term ν2u · p⊥
in Eq. (29). This is easily seen by inserting the definition of the velocity field ud(r,σj) from Eq.
(28) so that

ν2p
⊥
i · ud(r,pj) =

ν2vsσ

2π|r|2
p⊥i · (2r̂r̂ − I) · pj . (33)

p⊥i and pj can be interchanged since (2r̂r̂−I) is symmetric. Thus we get that C(r) = ν2vsσ/2π|r|2.

We note that the gradient term ν1p
⊥ ·(∇u) ·p in Eq. (29) does not fit with any of the terms in

Eq. (32). This is due to the fact that this term of a higher-order moment than what was included
in Eq. (31). By using that ∂ir̂j = ∂j r̂i it is however quite straightforward to see that ∇ud is
symmetrical. Consequently, we can write

∂

∂αi

[ν1

2
pi · (∇u(r,pj)) · pi

]
= ν1p

⊥
i · (∇u(r,pj)) · pi, (34)

meaning that the expression within the brackets [ ] can be added to Heff . We do not bother
writing out the expression for ∇u here, but it is clear that this term is of one order higher than
the dipole-term in Eq. (33).

3.3 Complex notation

With all alignment interactions included equations of motion now read

ṙi = vspi + µ
∑
j 6=i

ud(ri − rj ,pj), (35a)

α̇i =
∑
j 6=i

[
γ

|ri − rj |ζ
p⊥i · pj + ν1p

⊥
i · (∇ud) · pi + ν2p

⊥
i · ud

]
(35b)
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for a particle at position ri and with orientation pi, where ud(r,pj) is defined in Eq. (28). Inspired
by Tsang and Kanso [69] we will now rewrite these equations in complex notation, introducing
z = x+ iy with the imaginary unit i =

√
−1. We start by constructing the complex velocity field

wd(z|z0, α) = udx(r|r0,p)− iudy(r|r0,p) =
vsσ

2π

eiα

(z − z0)2
, (36)

with wd denoting the complex conjugate of wd. This is in accordance with the general complex
stream function φ(z) = meiα/(z − z0) for a dipole of strength m [80]. Thus, we see that żi =
vse
−iαi + µ

∑
ωd(zi − zj , αj).

Doing the alignment interactions in Eq. (35b) term by term, we first see that γ|ri−rj |−ζpi⊥·pj
is equal to γ|zi − zj |−ζRe[iei(αi−αj)]. Re[...] denotes the real part of the expression within the
brackets. The gradient term can be written out as

ν1
vsσ

2π|r|3
[
2r̂x

(
r̂2
x − 3r̂2

y

)
sin(2αi + αj) + 2r̂y

(
r̂2
y − 3r̂2

x

)
cos(2αi + αj)

]
(37)

which in complex notation becomes

ν1Re

[
dwd

dzi
(zi − zj , αj)ie2iαi

]
. (38)

Similar to this we can show that the dipole term gives a contribution ν2Re
[
wd(zi − zj , αj)ieiαi

]
to α̇i. We can now give the equations of motion as

żi =vse
−iαi + µw(zi) + Vi, (39a)

α̇i =Re

ν1
dw(zi)

dzi
ie2iαi + ν2w(zi)ie

iαi +

N∑
j 6=i

γiei(αi−αj)

|zi − zj |ζ

 , (39b)

where w(zi) =
∑N
j 6=i ω

d(zi − zj , αj) is the sum of the N − 1 dipolar fields created by the other
swimmers. Vi is a repulsive force that accounts for steric interactions and prevents overlapping of
particles.

3.4 Periodic boundary conditions

So far we have not considered the boundary conditions of our system, which naturally will influence
the collective behaviour of the swimmers. We know that a circular domain with the model described
exhibits some interesting collective behaviours [75], but we will focus on a system with doubly
periodic boundary conditions. However, in Appendix A the equations of motion for a circular
domain and a few resulting behaviours are presented. The periodic boundary conditions can
effectively be seen as particles moving on a torus, but this also leads to changes in the velocity field
of the fluid surrounding the particles. To account for this we introduce ”image particles”, copies
of the real particles with the same orientation but placed outside of the domain. To do this Kanso
and Tsang introduce the Weierstrass elliptic function ρ(z|ω1, ω2) into the expression for the fluid
velocity field so that w(zi) =

∑
j 6=i vsσeiαjρ(zi − zj |ω1, ω2)/2π. The elliptic Weierstrass function

reads

ρ(z;ω1, ω2) =
1

z2
+
∑
k,l

(
1

(z − Ωk,l)2
− 1

Ω2
k,l

)
(40)

for a domain of lengths ω1 and ω2, with Ωk,l ≡ ω1k + ilω2. In our case we choose a quadratic
domain of length L so that ω1 = ω2 = L. It can then be shown that if the sum is symmetric over
k and l, i.e. both k and l sum from −Nd to Nd for some integer Nd, the second term in the sum
will add up to 0. Thus we can write the velocity field experienced by a swimmer at zi as

w(zi) =

N∑
j 6=i

vsσeiαj

2π

∑
k,l

1

(zi − zj − Ωk,l)2
, (41)
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where the summing indices k, l ∈ Z in principle sum from −∞ to ∞. We can now explicitly write
the equations of motion for a swimmer i,

żi =vse
−iαi + µ

vsσ

2π

N∑
j 6=i

∑
k,l

eiαj

(zi − zj − Ωk,l)2
+ Vi, (42a)

α̇i =

N∑
j 6=i

∑
k,l

Re

[
ν1
vsσ

2π

−2ie2iαieiαj

(zi − zj − Ωk,l)3
+ ν2

vsσ

2π

ieiαieiαj

(zi − zj − Ωk,l)2
+

γiei(αi−αj)

|zi − zj − Ωk,l|ζ

]
(42b)

in a population of N identical swimmers in a Hele-Shaw cell with doubly periodic boundary con-
ditions.
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4 Simulation Methods

Before doing numerical simulations of any physical system, it is natural to express the relevant
variables in terms of some characteristic parameters of the system. On one hand this is done to
avoid very large or very small numbers during calculations, which can decrease the accuracy of the
results. On the other, it makes the results more general as there will be fewer parameters to vary
when investigating the properties of the system. This makes it easier to compare results obtained
by different methods.

To express Eqs. (42a) and (42b) in reduced units we want to find a characteristic length and
time. As we know, σ is twice the particle area for circular particles. r0 =

√
σ/2π therefore appears

as the logical characteristic length, with 2r0 describing the size of a swimmer. With this we can
now define τ = r0/vs, the time it takes an unaffected swimmer to swim half its body length, as
the characteristic time.

Now if we let z → z′ = z/r0 and t→ t′ = t/τ in Eqs. (42a) and (42b) we obtain

dz′i
dt′

=e−iαi + µ

N∑
j 6=i

∑
k,l

eiαj

(z′i − z′j − Ω′k,l)
2

+ V ′(z′i), (43a)

dαn
dt′

=

N∑
i6=n

∑
k,l

Re

[
ν1

−2ie2iαneiαi

(z′n − z′i − Ω′k,l)
3

+ ν2
ieiαneiαi

(z′n − z′i − Ω′k,l)
2

+ γ
iei(αi−αj)

|z′i − z′j − Ω′k,l|ζ

]
(43b)

with only non-dimensional variables and parameters. It should be pointed out that the flow
alignment coefficient ν2 is now modified by a factor r0 compared to what is used in Eq. (42b). It is
now unitless and defined as ν2 = (r0/a)(µ2−µ1) as opposed to Eq. (27c), and thus it also accounts

for the anisotropy of the swimmers. γ is also redefined, γ → r1+ζ
0 γ/vs, to keep the dimensions

straight. We now see that the parameters σ and vs have been normalized out of the equations of
motion.

Eqs. (43a) and (43b) leaves us with only 5 parameters to vary for a system of given size N ,
namely the mobility coefficient µ, the flow alignment coefficients ν1, ν2, the Lennard-Jones strength
ε/vs and the density ρ = N/L2.

4.1 Repulsive force

We are yet to describe the repulsive force V (zi) responsible for the collision mechanisms between
the particles. When introduced it gives the particles a finite 2D volume. A typical model for this
purpose is the Lennard-Jones potential

ULJ(r) = 4ε

[(
ξ

r

)12

−
(
ξ

r

)6
]
, (44)

where ε expresses the strength of the potential and ξ the distance where the potential is zero. For
our systems we are not interested in the attractive part of this potential. Thus, one possibility is
to simply construct a force from particle j on i

VLJ, rep = 4ε

(
ξ

|zi − zj |

)13
zi − zj
|zi − zj |

(45)

from the repulsive part of the potential. The second fraction in the sum is there to give the force
the appropriate direction, and it is conjugated since we are looking at żi in Eq. (39a). This is
the approach of Tsang and Kanso [69, 75]. We see that the range of this interaction is very short,
which ensures that the hydrodynamic interactions in far-field are not affected. Because of this
short range, it is natural to apply a cut off for this interaction, meaning that we truncate the
interactions above a certain distance ∆z. This is an effective way of reducing computation time.

The truncation of the Lennard-Jones force will lead to a discontinuity in the force. This is
unphysical and may create fortuitous effects, in addition to adding an instability to the numerics.
A common method to overcome this issue is by the Weeks-Chandler-Andersen potential and the
related force [81]. Here the attractive part of the potential is not removed, instead a cutoff the
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distance rc = 21/6ξ where the Lennard-Jones force is zero, i.e. dULJ(rc)/dr = 0, is applied. This
makes the force continuous, but its derivative is still discontinuous at r = rc. Following Ref. [82],
we therefore introduce a final linear term to the potential

Urep(r) =

 4ε

[(
ξ

r

)12

−
(
ξ

r

)6
]
− fsr + εs, r ≤ rc

0, r > rc

, (46)

where the force shift is fs = 252
16925/6(7/13)1/6ε/ξ ≈ 2.40ε/ξ and the potential shift is εs = 49/13ε.

We have now redefined rc = (26/7)1/6ξ so that d
drUrep(rc) = d2

dr2Urep(rc) = 0.

Having defined the repulsive potential, we can now write the complex force as

Vrep(zij) =

(
4ε

[
12

|zij |

(
ξ

|zij |

)12

− 6

|zij |

(
ξ

|zij |

)6
]

+ fs

)
zij
|zij |

(47)

for |zij | = |zi − zj | ≤ rc. To fit this force into Eq. (43a) it is natural to choose ε and ξ in
units of vs and r0 respectively. If we were using the repulsive Lennard-Jones force in Eq. (45) it
would be natural to choose ξ = 2r0 and ε = vs. This would give an effective particle diameter
of 2r0 and a force comparable to the velocity vs. However, this would give an effective diameter
larger than 2r0 with Vrep, due to the force shift fs. This is also illustrated in Figure 10. We
therefore want to choose ε and ξ so that Vrep(|zij | = 2, ε, ξ) = VLJ, rep(|zij | = 2, ε = 1, ξ = 2).
Two possible alternatives are ε = 1, ξ ≈ 1.871 and ε ≈ 0.303, ξ = 2.0. In Figure 10 we see the
force Vrep with these parameter sets as a function of the separation r = |zij | compared to the
conventional Lennard-Jones force VLJ = −dULJ/dr and the pure repulsive force VLJ,rep. At r = 2
we see that VLJ,rep equals Vrep with the parameter sets given above. However, we also see that
Vrep(r, ε ≈ 0.303, ξ ≈ 1.871) behaves quite similar to VLJ(r, ε = 1, ξ = 2) for r < 2.0. Thus we
choose ε = 0.303, ξ = 1.871 in our model. Thus, the force term in Eq. (43a) is given by

Figure 10: A comparison of the conventional Lennard-Jones force VLJ , the repulsive part part of
this force, VLJ,rep, and a modified Weeks-Chandler-Andersen force Vrep given in Eq. (47). Vrep is
plotted with different values for the potential strength ε and characteristic length ξ.

V ′(z′i) =

N∑
j 6=i

Vrep(zi − zj , ε = 0.303, ξ = 1.870), (48)

with Vrep defined in Eq. (47).

It should be noted that we used the term ”force” in this discussion, while physically this is
a velocity since we are looking at dz/dt and not d2z/dt2. However, including an equation for
d2z/dt2 would increase the numerical complexity and computation time. As the main purpose of
this interaction is to prevent overlapping of particles we are therefore satisfied with including the
term in dz/dt. Another possibility would be to introduce a parameter ε that scales with the size
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of the swimmer so that wd scales as (z − z0 + ε)−2 instead of (z − z0)−2 [71, 83]. While being a
computationally simpler and less demanding approach, this can also introduce a weak, artificial
”fluid compressibility” near the swimmers.

4.2 Numerical integrator

Initially the numerical simulations were done with the Euler method. Given a set of positions and
angles at time t, the positions and angles at time t+δt are approximated by z(t+δt) ≈ z(t)+z′(t)δt
and α(t+ δt) ≈ α(t) + α′(t)δt. The Euler method was chosen because it is easy to implement and
computationally fast in the sense that one only needs to calculate z′(t) once for each timestep.
The drawback of the Euler method is of course the errors it produces compared to more refined
methods. The local truncation error of the method is of order δt2. How this error proceeds over
time is hard to estimate, as our system is chaotic and we lack an analytical solution to compare
with.

To improve the numerical precision and stability, the Euler method was replaced by the Runge-
Kutta method of fourth order. We now define the derivatives as żi = fi({zj}Nj=1, {αj}Nj=1) and

α̇i = gi({zj}Nj=1, {αj}Nj=1). The Runge-Kutta approximation is then

zi(t+ δt) ≈ zi(t) +
1

6
δt(ki,1 + 2ki,2 + 2ki,3 + ki,4), (49)

αi(t+ δt) ≈ αi(t) +
1

6
δt(li,1 + 2li,2 + 2li,3 + li,4) (50)

where

kj,1 = fj ({zj(t)}, {αj(t)}) , lj,1 = gj ({zj(t)}, {αj(t)}) ,

kj,2 = fj

(
{zj(t) + δt

kj,1
2
}, {αj(t) + δt

lj,1
2
}
)
, lj,2 = gj

(
{zj(t) + δt

kj,1
2
}, {αj(t) + δt

lj,1
2
}
)
,

kj,3 = fj

(
{zj(t) + δt

kj,2
2
}, {αj(t) + δt

lj,2
2
}
)
, lj,3 = gj

(
{zj(t) + δt

kj,2
2
}, {αj(t) + δt

lj,2
2
}
)
,

kj,4 = fj ({zj(t) + δtkj,3}, {αj(t) + δtlj,3}) , lj,4 = gj ({zj(t) + δtkj,3}, {αj(t) + δtlj,3}) .

Thus this method takes four different slopes into account for each timestep. This gives a local
truncation error of order δt5, i.e. three orders higher than the Euler method. With the Euler
method we found that δt = 0.005τ gave a sufficient precision, but with the fourth order Runge-
Kutta method we can now increase this to δt = 0.02. This will give approximately the same
computational cost, but the local truncation error will be ∼ 10−4 smaller than what we had for
the Euler method.

4.3 Considerations on periodic boundary conditions

As one may see from Eqs. (43a) and (43b), the main computational challenge for this system is the
summation over k and l accounting for the periodic boundary conditions. In principle these sums
should run from −∞ to∞ to ensure that we are looking at a bulk system with no boundary effects.
This is obviously not possible when doing numerical calculations. Instead we have to choose a finite
integer Nimg so that k, l run from −Nimg to Nimg. In practice this means that when we compute
the force from particle j on particle i, we also need to compute the force from (2Nimg + 1)2 − 1
images of j. Since the hydrodynamic interactions in our model scale as ∼ 1/r2 we say that they
are weakly long ranged. We can approximate the sum of contributions from all swimmers within
a distance r as

∫
r−2dr2 ∼ log r meaning that the sum is not convergent. Because of this one

should avoid setting a cut-off distance and truncate contributions above this. It also means that
we should take good care when choosing Nimg.

So far the alignment interaction involving γ has also been integrated into the summation over
k, l. However, as this interaction will only be considered as short-range it will not be affected to any
significant degree by the periodic boundary conditions. The only modification it leads to is that
when computing the contribution from particle j to α̇i this will be done only with the Ωk,l that
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minimizes the distance |zi− zjΩk,l|. Thus, we find the image of particle j closest to i and compute
the interaction therefrom, as illustrated in Figure 12. Furthermore, a cutoff will be applied on this
interaction, truncating contributions from particles at a certain distance.

Figure 11 displays the relative change in amplitude and direction of the force on a particle as a
function of Nimg. The ”force” here is the second term in Eq. (43a). We see that the change decays
linearly in the log-log plot, and by comparison it can be showed that it goes as ∼ 0.01N−4

img. For

Nimg = 200 we get that both ∆|F |,∆θ < 10−10 which should be satisfactory, so this is used in all
simulations that follows. Since we know the decay in the relative change in this area we can estimate
the additional contributions that would come from Nimg > 200 as 0.01

∑∞
n=200 n

−4 ≈ 10−10. This
is close to the unavoidable error that occurs when doing calculations and storing data digitally
with finite memory. We therefore accept this truncation error of the hydrodynamic interactions.

Figure 11: Log-log plot of the relative change in force F on a swimmer in a system of 1000
swimmers with density ρ = 0.1, as a function of Nimg. The change in the absolute value of the
force is computed as ∆|F |(Nimg) = |F (Nimg)− F (Nimg + 1)| /|F (Nimg + 1)| and similarly for the
change in the direction ∆θ(Nimg) of the force. The plot is an average over 500 simulations where
positions and angles are randomly chosen from uniform distributions.

4.4 Accelerated algorithm

We have now seen how our model is computationally challenging compared to for example the
Vicsek model, which only considers interactions over a finite distance r. With periodic boundary
conditions a finite number of copies of the system is therefore enough to simulate the bulk system
without truncation error. In addition, the finite interactions make it easier to increase the system
size. Say that we have N particles in a system. Then the hydrodynamic interactions would
require ∼ N2 calculations, while the Vicsek model only would require ∼ N . Lastly, the actual
computation of the interaction forces is more requiring in our case, but this is of minor importance.
Consequently, a system with hydrodynamic interactions is more challenging to simulate on large
scales than what is the case for the Vicsek model.

Having shown that it is reasonable to set Nimg = 200, it is still a formidable task to sum
both k and l from -200 to 200, N(N − 1) times for each time step. To reduce the number of
computations needed an accelerated algorithm is introduced, inspired by Lefauve and Saintillan
[83]. The algorithm constructed here will describe the computation of the second term in Eq.
(43a), but is also used for the two terms in Eq. (43b). We start by observing that when we are to
compute the force from particle i and its images on particle n, there are 9 candidate images of i to
be closest to n. This this minimum distance is denoted Rmin

n,i , and illustrated in Figure 12. Observe

that Rmin
n,i must be within a square of length L centered at 0, Rmin

n,i ∈ ([−L/2, L/2]× [−L/2, L/2]).
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Thus, the force can be split as

N∑
i 6=n

eiαi

∑
k,l

(zn − zi − Ωk,l)
−2 =

N∑
i 6=n

eiαi

F (zmin
n,i ) +

Nimg∑
k=−Nimg

Nimg∑
l=−Nimg

(k,l)6=(0,0)

F (zmin
n,i + Ωk,l)


=

N∑
i 6=n

eiαi
[
F (zmin

n,i ) + F far(zmin
n,i )

]
(51)

with F (z) = z−2 and zmin
n,i being the complex analog of Rmin

n,i . F far(zmin
n,i ) is defined as the double

sum on the right hand side of the upper equation. Note that one should in principle calculate
F far(zmin

n,i ) for i = n as well, as particle n also interacts with its images, but these contributions
add up to 0.

Figure 12: When computing the force acting on particle i from particle j, one must also consider
the images of j due to periodic boundary conditions. The idea behind the accelerated algorithm
is to compute the force F (Rmin

ij ) from the image of j closest to i directly. Then the smaller force

F far(Rmin
ij ) from the other images of j is approximated by precalculated values on a discretized

domain. a) shows that there are 9 candidate images of j to be closest to i, and that the closest one
is positioned at Rmin

ij with respect to i. b) Rmin
ij will be in the domain ([−L/2, L/2]× [−L/2, L/2])

which can be discretized to compute F far(Rmin
ij ) on points separated by dx = dy. During simula-

tions F far(Rmin
ij ) will approximated by interpolation between these points.

Source: Adrien Lefauve and David Saintillan [83]

By the same calculations as in Figure 11 we find that adding contributions from the first 8
images, i.e. when Nimg = 1, gives a mean change of about 2.2% to the force computed with only
1 image (Nimg = 0). Then it is not even taken into consideration that this image may not be the
closest one. This illustrates the importance of getting accurate values for F (zmin

n,i ) compared to

F far(zmin
n,i ).

Since F (zmin
n,i )� F far(zmin

n,i ) we will approximate F far(zmin
n,i ) by values on a precalculated grid

rather than calculate it exactly at each timestep. Since Rmin
n,i ∈ ([−L/2, L/2]× [−L/2, L/2]) we

can set up a finite number of grid points within this square, as displayed in Figure 12. Having Ngrid

points in both x- and y direction, the points are separated by distance δr = L/Ngrid. F far(zmin
n,i )
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is thus calculated on these points before the simulation starts. Hence, to compute a term i in the
sum in Eq. (51) there are 4 steps to be made: (i) Find the image of i closest to n and thereby
zmin
n,i . (ii) Compute F (zmin

n,i ) directly. (iii) Approximate F far(zmin
n,i ) by bilinear interpolation of the

four grid points closest to zmin
n,i . (iv) Multiply with eiαi .

This algorithm reduces a sum over (2Nimg + 1)2 − 1 interactions to a simple bilinear in-
terpolation. With Nimg = 200 this implies that the computation time is reduced by a factor
1.6 · 105. The error induced by the bilinear approximation can be estimated as δr2|∂2F far/∂z2| ≤
δr2
∑∞
n (Ln)−4 ≈ (NgridL)−2 where L is given in units of r0 as discussed earlier. This is the

error in F far(zmin
n,i ), which only contributes a few percent to the total velocity induced by the other

particles. Thus, this approximation is considered to be good in the sense that it produces relatively
small errors and the time reduction is significant.

4.5 Steady state

When searching for general characteristics of the system, we want to ensure that we are looking at a
steady state. This applies to all studies of dynamical systems. In the steady state the system should
be independent of its initial configuration and not display any net development in its macroscopic
properties.

From the effective angular potential in Eq. (31) we may define an elastic potential

Hel = −
N∑
i=1

N∑
j 6=i

γpj · pi
|ri − rj |5

(52)

indicating how aligned the particles of a system are with its neighbors. Here we have set ζ = 5,
which is also the case for the results we will present. In Figure 13 we have plotted the time
development of this potential per particle for two systems which we will discuss in section 5. The
potential is computed by dimensionless variables and the time is given in units of the characteristic
time τ . We see that both curves quickly develops towards a mean value which they then fluctuate
around. By further inspection we find that at t = 100τ both curves have reached their mean values.

Figure 13: Left: Elastic potential Hel per particle for two systems with N = 5000 particles and
different flow alignment coefficients γ, ν2 and area fractions Φ. Plotted as functions of time t. Left:
Time development of the average orientation of line segments along the x and y axis respectively,
for the system represented by the orange curve in the left plot. The colors indicate the orientation
with respect to the x axis, as illustrated by the circle.

The plots to the right show the time development of the average orientation within line
segments at the x and y axis respectively. In contrast to the elastic potential which depends on
the microscopical behaviour, this gives an indication of the global development of the system. We
see that after 2000 time units the configuration is relatively stable. We also note that the system
appears to favor orientation in the x and y directions, or along the diagonals. This is confirmed
by multiple simulations and is a typical artifact of the periodic boundary conditions [84].

Finally, we inspect the development of the energy spectra E(k) for a system with N = 1500
particles and otherwise equivalent to that represented by the orange curve in Figure 13. In Figure 14
we show plots of E(k) at four different times for two different initial configurations. We will come
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back to the computation of these spectra in the next section. We see that the two configurations
initially display quite different spectra, but from t = 100τ they are very similar. We see that there
are some variations at small k, i.e. long length scales. Fluctuations on large scales are typically
more long-lived so we expect that averages over longer time-periods are needed for these to vanish.

Based on these results and numerous other simulations which we do not fit in here, we expect
all systems to be in a steady state after a couple of thousand time units. Unless stated otherwise,
the results we will present are based on simulations over 6000τ , where only the last 3000τ are used
to compute the relevant sizes.

Figure 14: The computed energy spectra E(k) of two systems with equal parameters but different
initial configurations. To see the time development the spectra are plotted at four different times
t.
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4.6 Computation of energy spectra

In subsection 2.2 we saw that we may define the energy spectrum E(k) by two different means.
One by use of the Wiener-Khinchin theorem in Eq. (8) where the Fourier transform of the 2D
velocity correlation function R(r) is computed, and the other by direct computation of the Fourier
transform the turbulent velocity field u′ = u− 〈u〉 in Eq. (14). In both cases we first interpolate
the particle velocities onto a fine grid to obtain the velocity field u. A comparison of the two
methods for two systems is shown in Figure 14. For small k we see that the behaviour of the is
very similar, but as k increases we see that the Wiener-Khinchin method collapses. Thus it fails to
capture the small-scale behaviours of the system. We know that this method is based on continuum
theory for infinite systems, and this may explain why it collapses in a discrete, finite system with
periodic boundary conditions. We will therefore use the direct Fourier transform method to present
results from the system. This is done by using a fast Fourier transform algorithm to find the 2D
functions û′x(kx, ky) and û′y(kx, ky). The square absolute values of these are then added. To obtain
the energy spectra we then compute the angular average of this 2D spectra for given wavenumbers
k = |k|, and multiply by k. This gives an energy spectrum as defined in Eq. (14).

Figure 15: Comparison of the two methods to calculate the energy spectra. One using a direct
Fourier transform F of the turbulent velocity field u′, and the other via the 2D velocity correlation
function R(r). The two plots indicate the two systems to the left in Figure 13.
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5 Results and Discussion

From the reduced equations of motion in Eq. (43) we see that there are 5 possible parameters that
can be varied: The mobility coefficient µ, the three flow alignment coefficients ν1, ν2 and γ and the
exponent ζ. In addition we have the density ρ and the number of particles N . Instead of using the
density ρ we will refer to the area fraction, which is Φ = πρ for circular particles of radius 1. Bear
in mind that all lengths in this section will be given in units of r0, all times in τ and all velocities
in vs.

We have not observed any distinct impact on the global dynamics from the mobility coefficient
µ. As in Ref. [69], we will therefore only operate with µ = 1/2. Unless stated otherwise, we
have also chosen the exponent ζ = 5. This value is somewhat arbitrary, but it ensures that the
alignment interaction without introducing numerical instabilities. We are mainly interested in the
competition between the deordering ν2-term and the ordering γ-term at different area fractions.
Thus we will present results where ν1 = 0, and vary γ, ν2 and the area fraction Φ. For clarity, we
restate the dimensionless equations of motion,

dz′i
dt

=e−iαi +
1

2
ω′(z′i) + V ′(z′i),

dαn
dt′

=Re

[
ν2ω

′(z′i) + γ
iei(αi−αj)

|z′i − z′j |5

]

which we will be studying. To give an intuition on the system we are looking at, Figure 16 shows
a snapshot of N = 5000 particles with flow alignment coefficients ν2 = 2.0, γ = 30.0 and area
fraction Φ = 0.3. The colors indicate the orientation α of the particles, while the arrows indicate
their velocity v. In most cases the velocity is almost parallel to the orientation vector. We see that
there are large-scale unicolored areas indicating a polar order. In the zoom-in we observe that in
the most dense areas the particles seem to form structures reminiscent of an hexagonal lattice.

In Figure 16 the stream function ψ of the system is also plotted. ψ is defined by ux = ∂ψ/∂y
and uy = −∂ψ/∂x. To compute ψ the particle velocities are first interpolated onto a fine grid and
averaged over 10 time steps τ to obtain a velocity field u. By approximating the derivatives by
finite differences we obtain an iteration scheme for ψ. While the snapshot in Figure 16 pleasingly
illustrates long-range order in the system, the stream function gives a more intuitive picture of the
particle motions. The system actually seems to consist of two large-scale, counter-rotating vortices.
One positioned near the center of the system and the other close to the upper left corner. We also
see that there are a few small-scale circulations. This pattern is very similar to the observations
of Alert et. al. for an active nematic system, as shown in Figure 4.

5.1 System displaying active turbulence, ν2 = 2.0, γ = 30.0, Φ = 0.3

The main result we can report from this work is the discovery of active turbulence in a system
of confined, self-propelled microswimmers with hydrodynamic interactions. This is legitimized
on the grounds of non-Gaussian broadening of the probability distribution functions for velocity
increments, power law behaviour of energy spectra and superdiffusive behaviour of the particles
within a given range of scales. We emphasize that our model contains no noise term, in contrast
to many microscopic models of active polar systems [53, 60, 63, 71, 85, 86]. This is of interest
because when a characteristic length scale takes place in a system it is due to a competition between
ordering and disordering mechanisms. In our case the disordering mechanism is the hydrodynamic
interactions that lead to non-linear effects. Similarly for high-Re flows the chaotic behaviour is
explained by the non-linear terms in the Navier-Stokes equation.

A typical example of a system displaying active turbulence is the one plotted in Figure 16
where ν2 = 2.0, γ = 30.0 and Φ = 0.3. In Figure 17 we see the trajectories of three representative
particles with respect to the background flow 〈v〉(t) from this system. From these trajectories it
is clear that we have a characteristic length scale in form of a vortex size in our system, which
we also recognize from the stream function ψ in Figure 16. These trajectories are reminiscent of
Lévy walks, which are characterized by short-range movement over time interrupted by irregular
long-range motions in some direction [87]. This behaviour is super-diffusive and thus in contrast
to for example Brownian motion. Lévy walks are observed in a wide range of biological systems
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Figure 16: Snapshot of a system with N = 5000 particles, flow alignement coefficients ν2 = 2.0
and γ = 30.0, and area fraction Φ = 0.3. In the upper plot both the positions of the particles and
their radii are plotted in units of r0, so that interparticle distances are comparable to the particle
size. The color of each particle represents its orientation α with respect to the horizontal axis. In
the zoomed area the arrows indicate the strength and direction of the velocities of the particles. In
the lower plot the stream function ψ is plotted. The lines with arrows indicate some of the large
scale streamlines of the system. The system size is L ≈ 229r0.

Figure 17: The trajectories of three particles with respect the background flow, in the system
with N = 5000 particles where γ = 30.0, ν2 = 2.0 and Φ = 0.3. This is found by subtracting
the average displacement 〈v〉δt at each timestep. The particles are tracked over 3000 time units
τ . If the particles leave the domain [0, L]× [0, L], the trajectories are plotted so that we see their
further movement instead of reappearing on the other side of the domain. We see that the particles
alternate between moving relatively straight and being caught in a vortex-like structure.
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[88–90]. The system is further presented in Figure 18. In the streamline plot of the system we can
spot the appearance of transient vortices and directional correlations on different length scales.
The center vortex we observed from the stream function is clearly visible here. We can also see
the formation of more or less unidirectional flocks of different sizes within the system. This is
also illustrated in the plot of the vorticity field ω = ∂xuy − ∂yux, where u is the velocity field.
We see sharp, unicolored areas of different sizes indicating spatial fluctuations in velocity strength
and direction. Furthermore the directional plot of u shows that there are global scale correlations
and fluctuations in the direction of the velocity field. Note that we use u when we talk about the
velocity field that is interpolated onto a grid, while vi are the velocities of the individual particles.

In Figure 18 we also find a plot of the velocity correlation function

Cv(R) =
〈vi · vjδ(|ri − rj | −R)〉

〈vi · vi〉

where δ(x) is the Dirac δ-function. Effectively the expression above the fraction line is the average
of vi · vj for particles i and j whose interparticle separation is R. In the plot we see that there
are two peaks in Cv at R ≈ 2.2 and R ≈ 4.4. From Figure 16 we recognize these separations as
typical nearest neighbor and next nearest neighbor distances, whose velocities are often aligned.
The particles that come this close and are aligned will also be accelerated by each others induced
velocity fields. Thus their velocity becomes higher than the average velocity of the system, which
is reflected by the peak at R ≈ 2.2 where Cv > 1.

Looking at the macroscopic details of Cv, we see that there is a global minimum at R ≈ 135,
where Cv ≈ −0.25. This can typically be a measure of a vortex size or the width of lanes in the
system. In the orientational snapshot in Figure 16 we see that there are areas of the same order
with quite distinct orientation. We also observe that the circular patterns in the trajectories in
Figure 17 are of the same order. We finally note when Cv takes values above 0 for R close to the
system size L, this is at least partially an effect of the periodic boundary conditions.

From subsection 2.2 we remember that the energy spectrum E(k) should contain the same
amount of information as the velocity correlation Cv(R). In Figure 18 d we compare the energy
spectra of the system described with N = 1500, N = 5000 and N = 15000 particles respectively.
Based on the discussion in subsection 4.6 they are computed by a discrete 2D Fourier transform of
the turbulent part of the velocity field u(r, t)− 〈u〉. To get the velocity field on a grid the system
is split into in N ×N boxes and the average velocity of the particles within each box is computed.
To avoid too many boxes being left empty, the field is averaged over 10τ . For the systems with
N = 1500 andN = 5000 particles we chooseN = 200 andN = 365 ≈ 200

√
5000/1500 respectively,

so the separation between the grid points are approximately equal for the two systems. Similarly,
we choose N = 632 in the case of N = 15000. For the two smallest systems the energy spectra
shown here are averaged over time in a steady state and of two different initial configurations. The
results with N = 15000 are obtained from one simulation and the averaging is done over a shorter
time period in this case.

The energy spectra peak at kL = 2π/L, where the system size L =
√
πN/Φ depends on the

number of particles. This is in line with the global oscillation we observe in the velocity correlation
Cv, which indeed is the major fluctuation of Cv. Again we also recognize this in Figure 16. Both in
the stream function and in the orientational snapshot we see that there are patterns corresponding
to wavelengths up to the system size. Remembering that the nearest neighbor distance is R ≈ 2.2,
there is little interest in E(k) for wavenumbers k > 2π/2.2 = kl which is marked in the plot. Above
this value finite size and numerical effects will dominate the results. By comparing 1500 and 5000
we see that they are very similar at all k except for the 2-3 smallest k-values. An explanation to
this is that the fluctuations on large length scales also are large in time. Thus it would be necessary
to either simulate the systems over longer times or over more initial configurations to see whether
the energy spectrum actually deviates from the power law form on these scales or if it is just due
to lack of data. We also note that there are very few data points in this region, making deviations
very visible. As the smallest k-values corresponds to wavelengths comparable to the system size L,
we cannot exclude the possibility that deviations in this area are artificial effects from the periodic
boundary conditions.

The energy spectrum for the system with N = 15000 particles deviates from the two others
as it takes lower values for all k < kl and higher values above kl. This could be caused by the
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Figure 18: An example of active turbulence in a system with N = 5000 self-propelled particles.
The flow alignment coefficients are γ = 30.0 and ν2 = 2.0 and the area fraction is Φ = 0.3. a:
A streamline plot of the system at time t = 6000τ , obtained by plotting each particles position
over 40 time units τ . b: The direction of the velocity field u at the same time and averaged
over 10τ on an 80 × 80 grid. The colors indicate the orientation relative to the x axis. c: The
vorticity field ω computed from the same velocity field u. Blue and red areas indicate clockwise
and counter-clockwise rotation respectively. The inset shows u in addition to ω for the region
[110, 140]× [10, 40], which is also marked in b. d: Log-log plots of the energy spectra E(k) in the
cases of N = 1500, 5000 and 15000 particles, respectively. For comparison straight lines indicating
∼ k−1.3-scaling are shown. The maxima of all graphs are located at k = 2π/L, where L is the
system size. e: The velocity correlation function Cv as a function of the distance r between the
particles. f: The probability distribution function for the longitudinal and transverse velocity
increments δv‖,⊥, normalized so that the expectation value is 0 and the standard deviation is 1.

The plot shows the case of four different separations R, compared with the Gaussian e−v
2/2/
√

2π.
Both e and f are obtained from the system with N = 5000.
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shorter averaging, but results indicate that the spectra are quite stable over a period of 2000τ . It
is also possible that some numerical artifact has affected the result, since it behaves so different
at large k. It should be noted that increasing the number of particles is a challenging exercise for
the given system. We know that due to the long-range interactions the computation time scales
as ∼ N2. In addition to this it is estimated that the time needed for the system to reach steady
state scales linearly with the system area L2 ∼ N . Thus, the computation time needed increases
with the number of particles as at least ∼ N3.

The most interesting property of the energy spectrum is the scaling in the region k ∈ [0.08, 2.8]
corresponding to wavelengths ∼ [2.2, 78.5] for the two smallest systems. For N = 15000 a similar
scaling occurs at larger k. The straight lines in the plot indicate scaling ∼ k−β with β = 1.3.
Thus the energy spectrum takes a clear power law shape over more than one decade on both the
x- and y-axis. By linear regression of log(E) as a function of log(k) in the region [0.08, 2.8] for
N = 5000, we confirm that the best fitting exponent is β = 1.3 ≈ 4/3 compared to Kolmogorovs
5/3-law in Eq. (1). The length scales at which we observe this behaviour are most visible in the
vorticity and streamline plots in Figure 18. We see how the streamlines are curved on wide range
of scales, which shows in the vorticity field by areas of different sizes with high vorticity. Further
investigations show that the scaling of the system with N = 15000 is very similar to the two others
in the region k ∈ [0.08, 1.0] and that it exhibits the same scaling for even smaller k.

Comparing with the energy spectrum obtained from simulations of an active nematic fluid by
Alert et. al. in Ref. [44] and Figure 4 we see that the form is quite similar to our the spectra we
observe. There is a difference in the exponent of the power law, with our system showing a more
rapid decay of kinetic energy as the length scales decrease. However, in both cases the spectra seem
to follow the power law behaviour up to the length scales of the respective systems, even though
there are some small-k deviations in our case. This indicates that the observed scaling properties
are universal, in the sense that one can coarse-grain and simulate bigger systems and observe the
same behaviour. In the active nematic fluid there is a distinct peak in the energy spectra which is
attributed to a characteristic wavelength at which there is maximal energy injection. The spectrum
produced by our model does not display any such definite peak, but we do see that there is a small
protuberance near the wavenumbers corresponding to the nearest neighbor distance. This would
at least be a natural wavelength for maximal energy injection. Finally, we observe that the k−1

scaling regime extends over a little more than one decade on both the horizontal and vertical axis
in Figure 4. Alert et. al. assert that this conclusively confirms this scaling regime [44], and the
regime where we observe E(k) ∼ k−1.3 is not inferior to this. The energy spectrum observed by
Radjai and Roux [35] in Figure 5 also show scaling over similar regime sizes.

The final plot in Figure 18 shows the probability distribution functions for the longitudinal
and transverse components of the velocity increment δv for different separation distances R. The
distributions are normalized so that the expectation value is 0 and the standard deviation is 1
and compared to the Gaussian distribution e−v

2/2/
√

2π (purple curve). The data for the distri-
butions are collected every 25th time unit τ over a time period of 1500τ . The velocity increment
δv(t, r,R) = v(t, r+R)−v(t, r) is defined by the positions of the particles. Following Ref. [41], we

divide its statistics into a longitudinal and a transverse projection δv‖ = R̂ · δv and δv⊥ = T̂ · δv,

respectively. R̂ = R/|R| is the unit vector along the separation axis, while (T̂ )i = εijR̂j is a

unit vector perpendicular to R̂. For R = 3, 5, 8 we observe a distinct non-Gaussian broadening of
the probability distribution functions for both the longitudinal and transverse components. These
exponential tails grow as R decreases, and for R = 80 there is no such broadening.

From the velocity increments δv‖,⊥ we may define the velocity structure functions Sn‖,⊥(R) ≡
〈(δv‖,⊥)n〉 for n = 1, 2, ... . 〈·〉 denotes a spatiotemporal average over r and t, but for isotropic
turbulence in a steady state the directional dependence vanishes and thus Sn‖,⊥ is simply a function

of the separation distance R = |R|. These structure functions are common features in studies of
turbulence in high-Re fluids [29, 91], as for example Kolmogorovs 4/5 law in Eq. (2).

In Figure 19 we see loglog plots of the normalized structure functions S2,3,4
‖,⊥ as functions of the

separation distance R. We remember from Eq. (4) that if E(k) ∼ k−β theory of inertial turbulence
predicts that S2(R) ∼ Rβ−1. We observed a power law form of E(k) with β ≈ 1.3 in the range of
k corresponding to wavelengths ∼ [2.2, 78.5]. Thus it is natural to check if S2

‖,⊥(R) ∼ R0.3 in this

range. This is clearly not the case. By comparison with the red, dashed lines we see that S2
‖,⊥

scale as Rp2 with an exponent p2 in the region p2 ∈ (0.75, 1.0). Similarly we find that S4
‖,⊥ scale
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with an exponent p4 ∈ (1.2, 1.45). For S3
⊥ we see that the data do not show any characteristic

behaviour, but we see no obvious explanation to this. However, S3
‖ seems to scale with an exponent

p3 ∈ [0.65, 0.8], i.e. p3 < p2.

~R1

~R0.75

~R0.8

~R0.65

~R1.45

~R1.20

Figure 19: Log-log plots of the structure functions S2,3,4
‖,⊥ as a function of separation distance R for

the system with N = 5000 particles, flow alignment coefficients ν2 = 2.0, γ = 30.0 and area fraction
Φ = 0.3. The structure functions are normalized by 〈v2〉n/2 for n = 2, 3 and 4 respectively. For
comparison the straight dotted lines show functions on the form ∼ Rα, where the exponents are
indicated in the plots. The blue stars without connected lines in the center plot indicate absolute
values of S3

⊥ when it takes negative values.

Comparing our observations on the structure functions with theory on inertial turbulence we
indeed find that Sn‖,⊥(R) ∼ Rpn in general, with an exception in S3

⊥. However, in our case pn is

not linear in n even at low orders, which is the case in inertial systems, ref Eq. (3). Kolmogorovs
5/4-law does not apply and we have p2 6= β − 1. Nevertheless, we do not expect these specifics to
be equivalent to turbulent high-Re flows, given the fundamental differences between the systems.
The main point is that the statistical parameters of the systems display comparable behaviours.

In Ref. [41] distinct maxima of S2
⊥ and S4

⊥ at distances smaller than the system size are
observed. These results are obtained from experimental observations of high-density bacterial
suspensions in quasi-2D and 3D, simulations of a continuum model assuming incompressibility and
simulations of an SPR-model. Vorticity maps and power spectra from this study are shown in
Figure 3. The SPR-model is a model for dry active matter systems, in contrast to ours which
models wet systems [92]. The peaks they observe in these structure functions are attributed to a
characteristic vortex size in the system. Comparing both velocity correlation functions and energy
spectra with our observations, it is clear that the corresponding vortex size in our case is at the
scale of the system size. Therefore it is also natural that we observe strictly increasing structure
functions S2,4

‖,⊥.

Following the study of turbulence in granular media in Ref. [35], we introduce a measure of
the ’flatness’ F‖,⊥(R) = S∗4‖,⊥/S

∗2
‖,⊥ − 3 of the probability distribution functions. To measure the

flatness of the distributions that are plotted in Figure 18, we compute the structure functions S∗2,4‖,⊥
from renormalized distributions where the standard deviation is 1 and the expectation value is 0. If
not we would see very sharp distributions for small R that broadens as R increases. This would not
be any new information as we can easily see from e.g. Figure 16 that particles close to each other
have similar velocities. We are interested in the fluctuations in the velocity differences relative
to the scale. The flatness F is zero for a Gaussian distribution and 3 for a purely exponential
distribution. Note that by ’flatness’ in this sense might as well be interpreted as the width of the
distributions. A simple example to illustrate this is that a uniform distribution with width 2b will
have a flatness F = 3b2/5− 3.

In Figure 20 we see the flatness of the distributions as functions of the separation distance R.
Here we show a comparison with another system where the area fraction is Φ = 0.1 and the flow
alignment coefficients are ν2 = 1.0 and γ = 30.0, which is further presented in Figure 23. For now,
we will however focus on the system we have studied so far where Φ = 0.3, ν2 = 2.0 and γ = 30.0.
Coherent with the observations from Figure 18, we see that F is large at small separation distances
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R, but decays quite rapidly as R increases. This is very similar to the observations in Ref. [35].
Both curves F‖,⊥ rise above 3, meaning that the distributions are ’flatter’ or broader than a purely
exponential distribution for small R. For large R the curves go below zero, i.e. these distributions
are sharper than a Gaussian. An interpretation of this is that at scales comparable to the system
size L ≈ 229 the velocities of the particles are more coherent than in a comparable ideal gas system,
whose distribution is Gaussian [93]. This is no surprise when we look at the snapshot of the system
in Figure 16, which clearly demonstrates the large scale coherence in the velocity directions. In
addition to this the self-propulsion of the particles make collisions and external forces relatively
less important to the absolute velocity, compared to an ideal gas.

Figure 20: The flatness F‖,⊥ of the probability distribution functions for the velocity increments
δv‖,⊥ as a function of the separation distance R. Two systems with different flow alignment coeffi-
cients γ, ν2 and area fraction Φ, further described in Figure 18 and 23 respectively, are compared.
A Gaussian distribution has flatness F = 0, while for a purely exponential distribution F = 3.

As mentioned earlier, an increasing broadening of exponential ”tails” at progressively smaller
scales is a hallmark of fully developed turbulence [29, 35]. An interpretation of this broadening
is that at small scales there are fluctuations in the velocities that vanish when you average over
larger scales. In studies of inertial turbulence, this behaviour is attributed to a phenomenon called
intermittency, which is basically a highly irregular dissipation of energy at small scales [28].

In Figure 21 the root mean square (RMS) displacements λi =
√

(ri(t)− r0,i − 〈v〉t)2
from a

starting point r0,i of the three trajectories in Figure 17 are plotted. At the starting point t = 0
the system is already in steady state. We also see a plot of the time derivatives

∂λi
∂t

= sgn [(ri,x − r0,i,x − 〈vx〉t)] (vi,x − 〈vx〉) + sgn [(ri,y − r0,i,y − 〈vy〉t)] (vi,y − 〈vy〉)

which effectively sums the particles deviation from the average velocity in x and y direction. sgn(x)
is the sign of x. We see that even though the RMS displacements seem to evolve quite smoothly
over global times (t ∼ L), there are constant fluctuations in velocity on short timescales. This
is typical behaviour for systems where Lévy walks occur. These short-scale fluctuations are also
evident in Figure 22 where see three probability distributions for

√
v2 averaged over the same

time interval. As the time ∆t over which we evaluate each particles velocity decreases, we observe
more noise on the distribution, even though it is averaged over 3000τ . This illustrates why there
is a broadening of the probability distribution functions at small scales in Figure 18 and why it
vanishes at larger scales.

To investigate the large-scale evolution of the RMS displacements further we have plotted
the average displacement 〈λ〉 of all particles as a function of time in Figure 22. The log-log plot
shows that there are two distinct time-domains with different behaviours. For t . 102 we see
superdiffusive behaviour where 〈λ〉 is almost linear in t, while for larger t the behaviour seems to
be less diffusive with 〈λ〉 ∼ tϑ where ϑ ≈ 0.5. This is confirmed by doing linear regression on
log(〈λ〉) as a function of log(t). For t ∈ [0, 70] we find that ϑ = 0.94, while for t ∈ [550, 3000] the
corresponding result is ϑ = 0.53. Such a cross-over from a ballistic regime to a diffusive regime is
consistent with other results in active turbulence [49, 94], and has been observed experimentally for
swimming bacteria in a quasi-2D system [95]. The particles can thus move more or less straight for
about 70τ on average before we observe any large scale alternations to travelling direction. With a
small-scale RMS velocity vRMS = 1.19 this means a local path length of about 80r0. We recognize

33



Figure 21: Top: The root mean square displacements λi =
√

(ri(t)− r0,i − 〈v〉t)2
from a starting

point r0,i of the three trajectories plotted in Figure 17 as a function of time t. Bottom: The time
derivatives of the root mean square displacements, effectively showing the deviation of the particle
velocity vi from the average velocity 〈v〉, summed over x and y components. Interpolating the
derivatives over 1, 2, 4 and 8 timesteps δt all produce equivalent results. The colors of the graphs
are consistent with Figure 17.

these scales as the inverse of the wavenumbers k at which we observe a power law form of the
energy spectrum E(k). We are aware that the self-propulsion of the particles make super-diffusive
behaviour more obtainable, but this is still no assurance for such rapid scaling [96].

We can now try to connect the picture given by the obtained results. On the scale from
a few particle sizes up to ∼ 50 − 80r0 we have seen (i) a power law behaviour of the energy
spectrum E(k), (ii) a non-Gaussian broadening of probability distribution functions of the velocity
increments δv and (iii) close to linear scaling 〈λ〉 with respect to t. From (iii) we deduce that at
lengths in this range the particles may move quite independently of the global dynamics, and with
fluctuations that become more and more independent of the global dynamics the smaller they are.
The occurrence of these fluctuations is confirmed by (ii). We know that by self-propulsion, each
particle injects energy into the system. When the particles exhibit the smallest scale fluctuations,
close to the particle size r0, the part of the injected energy responsible for these fluctuations leads
to no further larger scale movement. Thus there is no further accumulation of kinetic energy at
this scale, reflected by E(k) going to zero for large k. However, as the scale of these fluctuations
increases, more and more particles have coherent fluctuations. We see this by the decrease of the
flatness F with increasing R. Thus movements on larger scales appear and the injected kinetic
energy of responsible for these fluctuations from different particles add up more constructively.
This is consistent with (i) as k is the inverse of the length. As the length scale increases more and
more particles have coherent fluctuations and the kinetic energy increases with the scales. This
goes on up to lengths at which the aligning mechanisms no longer yield non-zero correlations. In
our cases these lengths seem to be limited by the system size.

The three statements (i-iii) above are equivalent to the three main arguments Radjai and Roux
base their conclusion on in the discovery of turbulence in granular media [35]. Based on these three
observations, the comparison with the results of Alert et. al. [44] and the further investigation
we have done above, we claim that the descried system exhibits active turbulence. To the authors
knowledge, this has not been reported in polar particle models with hydrodynamic interactions
before. The two active systems we have compared with, the dry active system by Wensink et.
al. in Figure 3 and the one by Alert et. al. in Figure 4, are both nematic systems. Carenza et.
al. [97] observe scaling regimes in a polar system from simulations of incompressible continuum
equations describing emulsion dynamics. Looking at Figure 16 and 18a we see that an assumption of
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~t1/2

Figure 22: Left: Log-log plot of the average root mean square displacement λ for all N = 5000
particles as a function of time t. The flow alignment coefficients of the system are ν2 = 2.0 and
γ = 30.0 and the area fraction is Φ = 0.3. Right: Probability density functions of the absolute value
of the velocity

√
v2 from the same system. The velocities are computed by (ri(t+nτ)− ri(t))/nτ

with n = 1, 5 and 20 respectively. The computed RMS velocities in the three cases are vRMS = 1.19,
vRMS = 1.18 and vRMS = 1.12. The distributions and RMS-velocities are computed over the same
time 3000 as the RMS displacement to the left.

incompressibility would be cruel to describe our system. A comparable particle model is presented
by Großmann et. al. in Ref. [85]. Their model contains no hydrodynamic interactions, but a
short-range alignment interaction similar to ours and an anti-alignment interaction over larger
scales. The latter is however not long-range like our hydrodynamic interactions in the sense that it
has a finite cutoff, thus this is also a dry active matter model. They have also included an angular
noise term. The energy spectrum is similar to the what we see in Figure 3 with a distinct peak.

In a very recent preprint of a review [45], Alert et. al. summarize the status of active
turbulence. In the section concerning polar, wet active systems it is clear that the main focus
in this field has been on macroscopic models with continuum theories. We find no examples of
microscopical particle models. To the authors knowledge, the results obtained from our simulations
represent novel findings within studies of polar, wet active matter.

During the introduction of the model in earlier sections we have taken inspiration of Tsang and
Kanso [69] and Lefauve and Saintillan [71] and it is therefore natural to compare with their results.
However, neither of those have incorporated the alignment term from the flying XY-model. Tsang
and Kanso observe a state with turbulent-like behaviour at high ν2, but as they simulated systems
with only N = 100 particles this is can only be regarded as an initial detection of interesting
behaviour. Lefauve and Saintillan on the other hand simulate N = 5000 particles. Their model
consists of the ν2 term as well as rotational diffusion by statistical noise. They observe a state
consisting of two large-scale vortices, which is reminiscent of what we have observed in our system.
However, no further investigation on whether the system is turbulent or not was performed.

5.2 Comparison with another system, ν2 = 1.0, γ = 30.0, Φ = 0.1

Having seen that a system with flow alignments coefficients ν2 = 2.0, γ = 30.0 and area fraction
Φ = 0.3 exhibits active turbulence, we will now compare it to a system where ν2 = 1.0, γ = 30.0 and
Φ = 0.1. These parameters are chosen because we want to investigate lower densities. However,
at lower densities we expect the γ-term to become less dominant, so we also reduce ν2 from 2
to 1. The area fraction is reduced by increasing the system size L so that we are still looking
at N = 5000 particles. In Figure 23 we see plots equivalent to Figure 18 for the new system.
Comparing the two streamline plots it is clear that we observe less global scale patterns in the new
system. As the interparticle distances increase we expect the short-range alignment interaction to
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become less dominant. Thus the large-scale flocks we observe in Figure 18 seems to be a result of
the particles being packed close enough to make the alignment interaction dominant over scales
larger than its own range. This can be viewed as inducing a form of elasticity to the system. The
alignment interaction creates large-scale coherent flocks while the hydrodynamic dipole interaction
curves them. When the area fraction is reduced to 0.1 we see that this effect largely disappears
and the streamlines appear more chaotic on the global scale.

Figure 23: Turbulent characteristics of a system with N = 5000 self-propelled particles, flow
alignment coefficients ν2 = 1.0, γ = 30. and area fraction Φ = 0.1. a shows a streamline plot of
the system, b the direction of the velocity field u and c the vorticity field ω computed from u
with the region [80, 130]× [18, 68] magnified. In d the power spectrum is plotted and compared to
the cases of N = 1500 and 15000 particles, and the dotted line indicates a scaling k−2. e shows
the velocity correlation function Cv and f the normalized probability distribution functions for the
velocity increments δv⊥,‖ at different separation distances R.

In subsection 4.5 we introduced a measure Hel =
∑
iHel,i of the total elasticity of the system,

based on the first term of the effective angular potential in Eq. (31). The elastic potential

Hel,i = −γ
N∑
j 6=i

pi · pj
|ri − rj |5

indicates how aligned the particle i is with its neighbors, weighted by the inverse interparticle
distances. If Hel,i > 0 the particle i is orientated opposed to its nearest neighbors, while a negative
value indicates that it is aligned with them. The more aligned neighbors the particle has, the more
negative will Hel,i be. As an example, with γ = 30.0 a completely aligned particle at a distance
2.2r0 from particle i will contribute about −0.58 to Hel,i.

In Figure 24 we have plotted all particles with colors indicating their elastic potential for the
high- and low density systems. These snapshots clearly illustrate the presence of coherent flocks up
to relative large scales in the high-density systems that are more or less absent the low-density case.
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Knowing that we have a higher flow alignment coefficient ν2 in the former system which should
contribute to breaking up order, the formation of these flocks is indeed a result of the alignment
interaction being more dominant at higher densities. We do take into account that the different
scales of the two plots can give a slightly misleading comparison of the systems, but a check of this
yielded no alternation of the impression of the two. If we compare this snapshot with the stream
function in Figure 16 it appears that the density of the flocks is lower near the extrema of the stream
function. Together with the directional snapshot in Figure 16 this gives a macroscopic picture of
a system where coherent flocks of different sizes travel around two large-scale, counter-rotating
vortices.

We also note that in the high-density system particles within the flocks take values of Hel,i .
−3. Knowing that an aligned particle at nearest neighbor distance contributes with about −0.58,
this supports the impression from Figure 16 that particles within the flocks form hexagonal struc-
tures.

Figure 24: Snapshots showing the elastic potential Hel,i of all particles. To the left we see the
system with flow alignment coefficients ν2 = 2.0 and γ = 30.0 and area fraction Φ = 0.3. On the
right side the corresponding parameters are ν2 = 1.0, γ = 30.0 and Φ = 0.1. The sizes of the
particles are proportional to the system sizes. The left plot shows large areas with low potential
indicating coherent flocks of particles. This is almost absent to the right.

To get an impression of how the average particle observes its surroundings, we have plotted
the pair polarization P (R) for the two systems in Figure 25. The pair polarization for a particle
i is defined as

P i(R) = 〈pj(αj − (αi − π/2))δ(R−Arot ·Ri,j)〉j , (53)

where Ri,j is the separation vector between the particles i and j and Arot is a rotation matrix
that rotates Ri,j an angle π − αi counterclockwise. The brackets 〈...〉j indicates the average over
all particles j 6= i. P i(R) then denotes the orientation of a particle positioned at R in a reference
system where particle i is positioned in origin and oriented along the y-axis. P is the average
P (R) = 〈P i〉i over all particles in the system.

We see that in both systems the pair polarization has the symmetry of a dipolar flow, as plotted
in Figure 9. This is clearly a result of the dipole alignment interaction, and the fact that we see
this symmetry even on global scale reflects its long range. The effect of the alignment interaction is
apparent by the fact that there is a strong polarization pointing upwards even when moving along
the horizontal axis from the center. This effect is clearer in the left plot and substantiates that the
alignment interaction becomes more dominant at higher density. In addition to the higher density
it is of course also a factor that the flow alignment coefficient ν2 is higher in the high-density case,
which we expect to make the dipole symmetry more pronounced.

As we see by the symmetry, the the dipole alignment interaction does not only break order.
By looking at the plot of the dipolar velocity flow in Figure 9, we see that for a particle positioned
straight ahead or behind another particle an orientation along this field contributes to order between
the two. Thus, along the elongation axis of the particles orientational order is favored on all scales.
It is also evident that even though the interaction appears to create chaos in the dynamics of the
system, Figure 25 shows that there are predictable patterns in these dynamics. This is an important

37



Figure 25: These plots show the pair polarizations P (R) for the two systems with parameters
ν2 = 2.0, γ = 30.0,Φ = 0.3 (left) and ν2 = 1.0, γ = 30.0,Φ = 0.1 (right) respectively. P (R)
shows the average polarization in the surroundings of a particle, shifted so that the given particle
is centred in origin and pointing in positive y-direction. The colors indicate the strength |P | of the
polarization, while the arrows indicate both strength and direction. The plots show the polarization
up to a distance |R| = L/2, where L is the size of the respective systems. Both systems exhibit a
distinct dipolar symmetry in P , which is most pronounced in the high-density case to the left.

distinction from models where noise is the order-breaking mechanism. From the comparison it can
also be argued that the increased local order caused by the alignment interaction leads to a more
effective dipole interaction on long scales. This is sensible because the dipolar fields induced by
the individuals within a coherent flock will be very similar and thus add up effectively on large
scales. As the a higher density leads to more order on short lengths it is expected that this leads
to relatively less small-scale fluctuations compared to other scales. With the local order leading
to a more effective dipole alignment interaction on large scales this could produce relatively more
long-range fluctuations. A comparison of the energy spectra in Figure 18 and 23 it is evident that
fluctuations on large scales are relatively more dominant at Φ = 0.3 than at Φ = 0.1.

A comparison of the velocity correlation functions in Figure 18 where Φ = 0.3 and 23 where
Φ = 0.1 supports the impression of increased flocking at higher densities. In the low-density
system we see that Cv(R) decays rapidly at small distances, and the relative correlations between
next-nearest neighbors are indeed smaller than what we see at high densities. We do however note
that the peaks in Cv indicating typical distances to the nearest and next-nearest neighbors are
quite similar, with 2.2r0 and 4.4r0 at Φ = 0.3 and 2.3r0 and 4.5r0 at Φ = 0.1 respectively. This
suggests that up to a certain area fraction the nearest neighbor distances is a microscopical detail
determined by the dipolar field, the steric interactions and perhaps also the mobility coefficient µ.
We see that the macroscopic shapes of the velocity correlations are similar, with minima at about
0.6L in both systems. As we discussed earlier this global shape is likely to be an artifact of the
periodic boundary conditions in combination with the dipole alignment interaction. However, as
we discussed the anti-correlation on large distances is also an implicit consequence of the short-
scale alignment because it leads to more aligned dipolar flows. Thus it makes sense that we
observe a stronger anti-alignment in the high-density system, where min(Cv) ≈ −0.25, than in the
low-density counterpart where min(Cv) ≈ −0.17.

As observed earlier the less pronounced global patterns in the streamline plot in Figure 23 also
manifest in the energy spectrum. First we note that E(k) takes lower values for all k in the low-
density system compared to the high-density system in Figure 18. From the definition in Eq. (14)
we remember that E(k) ∼ 1/L2, meaning that as the system becomes smaller the kinetic energy is
distributed over a shorter range of wavelengths. But even when we account for this by looking at
L2E(k) we observe higher values overall in the high-density system. A consequence of the flocking
is that the velocities of the particles increase, as each particle is accelerated by the velocity fields
induced by the neighboring particles. The RMS velocities of the high- and low-density systems
are
√
v2 ≈ 1.19 and

√
v2 ≈ 1.10 respectively. Thus, it is sensible that we observe higher kinetic

energies in general for the high-density system.
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More interesting than the exact values are the shapes of the energy spectra in the two systems.
In Figure 18 we saw a clear power law form over at least one decade when the area fraction is
Φ = 0.3. The energy spectrum in the lower density system in Figure 23 is qualitatively different.
For k corresponding to wavelengths comparable to the nearest neighbor distance and up to about
15r0 the spectrum is compared to a straight line indicating ∼ k−2. For the range as a whole this
comparison is not too far off, but there is indeed a curvature on E(k) in this area. It is however
interesting that below k ≈ 0.2 ≈ 2π/30 the spectrum is almost flat for all system sizes N = 1500,
N = 5000 and N = 15000, except for the peak corresponding to the system size. This is in line
with the lack of global patterns in the streamline plot. Looking at the vorticity plot in Figure 23
it is arguable that this scale is comparable to the most standout size of unicolored areas. This
vorticity field appears to display at least as much distinct areas and sharp contrasts as what we
saw in the other system, asserting that the activity on short scales is at least as high in this system.
We also recognize the behaviour of the system with N = 15000 from what we saw in Figure 18,
namely that it takes higher values than the two other at high k and lower values otherwise.

In Figure 20 we showed a comparison of the flatness of the probability distribution functions
for the velocity increments δv⊥,‖ of the two systems. This clearly shows the exponential tails of
the distributions at small scales are more distinct in the high-density system and that they are
more persistent as R increases. However, we observe that there is a non-Gaussian broadening at
small scales in the the low-density system as well, visualized in Figure 18. This is in line with the
findings we have made so far, indicating that on small scales the system exhibits turbulent-like
behaviour, but this behaviour does not seem to persist on larger scales.

The comparison of these two systems have shown that the relatively high density is a key
factor for the universal scaling of the active turbulence we observe in Figure 18. With Φ = 0.3 the
particles appear to be connected in a large-scale, coherent motion to a larger degree than the case
of Φ = 0.1. This is illustrated by the streamline plots and energy spectra in Figure 18 and 23, and
by the pair polarizations in Figure 25. At the higher density the angular alignment interaction
becomes more dominant and produces particle alignments on larger scales. This seems to induce
an effective elasticity in the system that facilitates large-scale fluctuations. At low density on the
other hand, there is less short-range correlation and the particle motions seem less connected. This
in turn make each particle move more freely but large scale fluctuations less feasible.

5.3 Relation between energy spectrum and system parameters

Having seen how the decrease in density changed the behaviour of the system, we now want to
investigate how the different parameters affect the energy spectra. In Figure 26 we have plotted
various energy spectra to see the effects of the flow alignment coefficients γ, ν2 and the area fraction
Φ. The overall picture is that the shapes of the energy spectra are mainly decided by the area
fraction Φ.

In the upper left plot of Figure 26 we take the system that we have seen to exhibit active
turbulence as a starting point by setting γ = 30.0, Φ = 0.3 and vary ν2 from 0.2 to 3.0. It is
clear that within this range the variation of ν2 does not lead to any significant change in the power
spectra. What we observe is that increasing ν2 leads more fluctuations on short scales and hence
less fluctuations on the largest scales. As ν2 is the strength of the dipolar alignment interaction
that breaks order in the system, this is not unexpected. The decreased order is an obstacle for the
energy cascade from particle scale up to the global scale as large-scale coherent fluctuations become
less frequent. Thus, the exponent β in the power-law k−β decreases somewhat as ν2 increases.

For the smallest values of ν2 we also see that a peak becomes visible for k ∈ [1.5, 2.5]. This
peak is not a local maxima but rather a protuberance from the otherwise flat spectrum. With
smaller ν2 we expect more local ordering, and as we have seen coherent flocks appear. Thus, up
to a characteristic flock size these particles fluctuate relatively more as group than as individuals
within the group. Thus, there is relatively more energy transfer up to the scale of the flock size
than in what would be the case without flocking, producing a steeper energy spectrum in this area.
Above this flocking scale however, the fluctuations will be less affected and the spectrum flattens
out. To further illustrate this we have plotted the derivatives of the velocity correlation functions
for the same systems in Figure 27. We see that at small separation distances R, dCv/dR take the
least negative values for small ν2, meaning that correlations are more persistent in these systems.
However, as R increases we see that these velocity correlations will decrease faster than the systems

39



Increasing ν2

~k-1.3

~k-1.4

Increasing γ

~k-2

~k0

~k-1.3

~k-1.4

Increasing γ

Increasing Φ
~k-2

~k0

Figure 26: Plots showing the parameter dependence of the energy spectra E(k) as a function of
the wavenumber k. Upper left: Systems of N = 5000 particles, area fraction Φ = 0.3 and flow
alignment coefficient γ = 30.0. The other flow alignment coefficient ν2 is varied in the range
[0.2, 3.0], where increasing ν2 is indicated by increasingly blue graphs. The lime-green graph shows
ν2 = 2.0. For comparison the dotted lines show ∼ k−1.3 and ∼ k−1.4 development. Upper right:
Systems with N = 5000, ν2 = 1.0 and Φ = 0.3. The three graphs taking the lowest values of
E(k) at low k represent γ = 0.5, γ = 1.0 and γ = 10.0, the others show γ ∈ [20, 100]. The lime-
green graph indicates γ = 30.0, and otherwise increasingly red graphs indicates increasing γ. For
comparison k−2 and k0 scaling is plotted. Lower left: Systems with N = 1500, ν2 = 1.0 and
Φ = 0.3. Here the two lowest graphs for small k show the cases of γ = 0.5 and γ = 1.0, while
the rest show γ ∈ [5, 100]. The lime-green graph indicates γ = 30.0 and the straight lines show
k−1.3 and k−1.4 developments, respectively. Lower right: Systems with N = 1500, ν2 = 1.0
and γ = 30.0. The area fraction Φ is evenly distributed in the range [0.05, 0.50] with increasingly
green colored graphs indicate higher area fractions. The lime-green line shows Φ = 0.3, and for
comparison the straight line show k0 and k−2 scaling. The spectra are plotted as a function of
k/kL in this case, where kL = 2π/L, and vertically staggered to make the individual graphs more
visible.

with higher ν2. At large R all these derivatives follow the same trend. These observations confirm
that the flocking mechanism makes correlations on a certain scale more dominant, relative to the
scales in its vicinity. Thus, the energy spectrum E(k) becomes steeper for k-values below this scale
and flatter above, compared to a case where the system does not have such a characteristic length
scale.

In the lower left plot of Figure 26 we see that the effect of an increasing γ when ν2 = 1.0 is
very similar to that of decreasing ν2 when γ = 30.0 at an area fraction Φ = 0.3. The exceptions
are when γ = 0.5 and γ = 1.0 where we see that large scale fluctuations are significantly smaller
than in the other cases. From the notation we used in Eqs. (30)-(32) we may define a critical
length rc by A(rc) = C(rc), where the strength of the aligning and dipolar interactions are equal.
Given the reduced units and the r−5 decay of the alignment interaction we find that rc = 3

√
γ/ν2.

Thus, with ν2 = 1.0 and γ ≤ 1 this length is shorter than the particle radius. With its rapid decay
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Figure 27: Right: Plot of derivatives of the velocity correlation functions Cv with respect to the
separation distance R. The graphs represent systems of N = 1500 particles with area fraction
Φ = 0.3 and flow alignment coefficients γ = 30.0 and ν2 as indicated in the plot. The energy
spectra of the same system are shown in the upper left plot of Figure 26. Left: Streamline plot
of system with N = 1500 particles, area fraction Φ = 0.5 and flow alignment coefficients γ = 30.0
and ν2 = 1.0.

the alignment interaction thus becomes as good as negligible with these γ. This is seen by the fact
the the power spectra of γ = 0.5 and γ = 1.0 are almost identical. However, already at γ = 5.0 we
see that E(k) rises significantly at small k, and further increment of γ does not seem to alter the
spectra to any large degree. With γ = 5.0 the critical distance rc = 1.7 is still less than a particle
diameter. At the characteristic nearest neighbor distance r = 2.2 we found in subsection 5.1 the
strength of the alignment interaction is about half of the dipolar interaction given ν2 = 1.0, γ = 5.0.
However, this is clearly enough to impact the global dynamics of the system.

The upper right plot in Figure 26 shows the same comparison as the lower left, but at an area
fraction Φ = 0.1. In this case the graphs representing γ = 0.5, γ = 1.0 and γ = 10.0 show distinct
lower values of E(k) than the rest for small k. Thus the lower density means a higher threshold
for γ to affect the large-scale fluctuations of the system. Again we see that above this threshold
the spectra show very similar behaviour. Compared to the higher density systems we see that the
spectra are steeper for large k and flatter for small k. Bearing the discussion on the protuberance in
the upper left plot in mind, we know that this indicates a scale at which fluctuations are relatively
more dominant than on the surrounding scales. From the flat spectra we observe at low k for the
smallest γ we interpret that the rate of change in correlation is the same at all scales which these
k represent.

Finally, the lower right plot shows a comparison of the energy spectra at different area fractions
Φ with flow alignment coefficients ν2 = 1.0 and γ = 30.0. To spectra are vertically staggered and
plotted as functions of k/kL to make the qualitative differences more visible. This plot clearly
illustrates that an increasing density leads to steeper energy spectra and therefore relatively more
large-scale correlations. From the comparison of the low- and high-density systems in the section
above we have seen that an increasing density makes the alignment interaction more dominant,
creating long-range correlations within the system. We again emphasize that a steeper spectrum
is interpreted as a slower decrease in correlation as the length scale increases. This will then
materialize in fluctuations with long wavelengths.

In Figure 27 we have plotted the streamlines of the system with area fraction Φ = 0.5 in the
same way that we did for the two systems with lower density in Figure 18 and 23. This clearly
illustrates how the increased density leads to long-ranged correlations and global patterns. Com-
pared even to the case of Φ = 0.3 in Figure 18 the global fluctuations are strikingly more dominant
in this case. This gives us a good perception on what the increasing steepness of the energy
spectra actually tells us about the behaviour of the system. Such fluctuations are reminiscent of
observations from ordered state in the Vicsek model [53]. As the alignment term we introduced
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from the flying XY-model has similar effect as the Vicsek model, one could argue that the same
mechanisms are responsible for the fluctuations we observe. However, there is no polar order in
the states we are looking at here, and the low density areas appear to be more like vortex centers
rather than in between flocks travelling along the same direction. Thus we expect that there are
more mechanisms responsible for these fluctuations than just the Vicsek-like interaction.

We have now seen that as long as the flow alignment coefficients γ and ν2 are within certain
ranges that depend on the area fraction Φ, the system appears to exhibit active turbulence with
universal scaling at large scales. In the case of ν2 = 2.0, γ = 30.0 and Φ = 0.3 we have checked
that this is the case. The scaling of the energy spectra E(k) does however also appear to be
density-dependent, with an increasing exponent at increasing densities. The question that then
rises is what physical mechanisms are responsible for this universal scaling.

The spectra observed by Wensink et. al. [41] in Figure 3 show a distinct peak and a decreasing
kinetic energy at large scales. This appears to be a typical result for dry, friction dominated systems
with short-range interactions only [45, 85, 98, 99]. This is contrast to the universal scaling observed
by Alert et. al. [44] in Figure 4, which is more reminiscent of our results. The fundamental
difference between these behaviours is that when you ”zoom out” an image of the system by
increasing the system size and particle number, you will see that the patterns in these dry systems
will become gradually smaller until they cannot be seen. On the contrary, in our system you will
see larger structures appear as the system size increases, and therefore an image of say a million
particles will display the same patterns as of a hundred thousand. This is of course given that the
observed scaling law is actually universal.

It then appears to be the long-range hydrodynamic interactions that are responsible for this
universal scaling, compared to dry systems whose interactions are solely short-range. In our model
we know that without the alignment interaction alone is capable of creating order on scales well
above its own range, and that the dipolar alignment interaction produces disorder on short scales
and long-range anti-correlation. Thus the combination of these two interactions evidently facilitates
large-scale patterns. As we have seen, if the dipolar alignment interaction dominates the dynamics
to much caused by either a small γ or a low density, the energy spectrum becomes flat at large
scales. This indicates that dipole interaction alone does not produce any characteristic scale in
form of a minima in the velocity correlation function, i.e. no characteristic vortex size. Thus a
characteristic length scale in our system indeed owes to the competition between the two alignment
interactions. This is also in line with results from Ref. [100]. There it is shown that adding an
alignment interaction transforms otherwise stationary patterns into spatiotemporal oscillatory or
chaotic ones.

The main difference separating our results from the ones obtained by Alert et. al. is the
exponent of the power law on large scales, which they find to be close to 1. We know that
a steeper power law implies that fluctuations on large scales become relatively more dominant.
Since their macroscopic continuum model is very different from our microscopic particle mode, it
is challenging to compare the mechanisms leading to this difference. Yet, we know their model
assumes the active fluid to be incompressible. This is clearly a fundamental difference from our
system, where we observe large density fluctuations at all densities as we see in e.g. Figure 27. To
see how this affects the energy spectra is by no means straightforward, but one can imagine that
it is energetically more favourable with long-range correlations if particles can form flocks within
the system. By drawing an analogy to statistical physics, we know that formation of domains
with different magnetization within a magnet requires energy to create domain walls. If these
domains instead are separated by a particle vacuum, such a domain wall energy is not required.
Nevertheless, the scale of the density fluctuations we observe in the streamline plots in Figure 18,
23 and 27 indeed appear to be correlated with scale of the correlated flocks in the respective
systems. It therefore seems reasonable that the compressibility of the system plays a role in the
energy spectra.

Another key difference between the systems is that Alert et. al. use a nematic model, in
contrast to our polar system. In nematic systems, chaotic flows appear as a result of active
stresses, and a characteristic length arises from competition between this active stress and elastic
nematic stress [101]. In our case such a characteristic length must arise from the balance between
the two alignment interactions. However, such a length scale appears to be far less distinct in
our system. It thus appears that the nematic system to a larger degree facilitates structures at
this intrinsic length than our system, but then making the large scale structures relatively less
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dominant. One could also argue that nematic order is a less strict criterion than polar order, and
therefore will produce relatively less correlated structures on large scales. Finally, we note that
Alert et. al. adds a local white noise term to their model to account for fluctuations. This might
also lead to more local fluctuations and less correlation on larger scales.

As we see, there are a few differences between the model of Alert et. al. and ours that can lead
different power law scaling. Most significantly, the assumption of incompressibility and the nematic
ordering are in contrast to our system and therefore rationalizes different behaviours. Nevertheless,
in both systems non-linear and long-range hydrodynamic interactions play a significant role. Thus,
in combination with an ordering mechanism, this appears to be a key factor for the observed scaling
of the turbulent behaviour.
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6 Conclusion and Outlook

The goal of this work has been to investigate the collective behaviour of a microscopical particle
model of an active, polar system with long-range hydrodynamic interactions and a short-ranged
alignment interaction. During the progress of the project, particular interest has been caught in
whether this model can produce systems that exhibit active turbulence or not, as there appears to
be little literature on this specific subject. To facilitate this examination, typical characterization
methods from studies of inertial turbulence are introduced and discussed. Most importantly, the
energy spectrum E(k). The hydrodynamic interactions between the particles are then introduced
on the basis of self-propelling swimmers in a Hele-Shaw cell, and from this the equations of motion
are motivated and discussed. Furthermore an alignment interaction from the flying XY-model is
presented and incorporated into the model. The studies of the resulting system are focused on the
balance between this alignment interaction with strength γ and the alignment along the induced
dipolar flows, with an alignment coefficient ν2.

The main result reported is the observation of active turbulence with universal scaling in the
presented model. To the author’s knowledge, this has not been demonstrated in particle models
of polar systems with long-range, hydrodynamic interactions. To give grounds for this assertion, a
system with area fraction Φ = 0.3 and flow alignment coefficients ν2 and γ is carefully examined.
The energy spectrum of this system shows a power law scaling ∼ k−β with an exponent β ≈ 1.3
on large scales, in contrast to the Kolmogorov scaling with β = 5/3 in inertial turbulence. The
universality of this scaling is verified by simulations of systems with N = 1500, 5000 and 15000
particles. From this spectrum we expect to see correlated behaviour of the particles on all scales of
the system. Large-scale patterns are confirmed by snapshots of the particle orientations, the stream
function ψ(r) and a plot of the vorticity field ω(r). Furthermore, we find a non-Gaussian broad-
ening of the normalized probability distribution functions for the velocity increments δv‖,⊥(R).
There is a distinct broadening of these exponential tails as the separation distance R decreases, a
hallmark of turbulent behaviour. Finally, we show that there is a transition from a ballistic to a
diffusive regime in the time development of the root mean square displacement 〈λ〉, in line with
results on other turbulent systems. Connecting these results we conclude that the system exhibits
active turbulence.

To illustrate the driving mechanisms of the turbulent behaviour in the system, we compare
it with another system with lower area fraction Φ = 0.1 and flow alignment coefficients γ = 30.0
and ν2 = 1.0. In this system there is clearly less large-scale patterns, which is supported by the
almost flat energy spectrum at large k. On small scales there is also here velocity fluctuations
yielding non-Gaussian probability distribution functions for δv‖,⊥, and the vorticity plot indicates
at least the same amount of activity. We attribute these differences to the fact higher density
appears to make the alignment interaction involving γ relatively more dominant. This leads to
highly correlated behaviour on lengths well above the range of this interaction which we observe
as flocking in the system. The flocking also appears to strengthen the dipole interaction on large
scales.

Finally, the impact from the three key parameters γ, ν2 and Φ is studied. Plots of the energy
spectra where these are varied show that as long as the alignment coefficients γ and ν2 are within
a certain range given by the density, they do not have any major impact on the scaling of E(k).
However, at Φ = 0.3 we see that large γ compared to ν2 leads to a protuberance at large k which
we relate to a characteristic flocking size. An increasing area fraction Φ indeed leads to a steeper
scaling of the energy spectra. At low area fractions the spectra are more or less flat, while for the
highest simulated case Φ = 0.5 the scaling is steeper than k−2 at low k. The interpretation of this
is that at high densities the large-scale fluctuations become relatively more dominant compared
to the ones at smaller scales. The alignment interaction causes correlations well beyond its own
range and the motion of the particles throughout the whole system becomes connected to a much
larger extent at high densities.

To put our results into context, we compare them with observations of active turbulence in
other systems with varying similarity to ours. In general we find that dry systems with short-range
interactions typically exhibit a peak of E(k) corresponding to a characteristic length and decaying
spectra at large scales. This is qualitatively different from our results, where the spectra increase
up to the largest scales. A specific comparison is performed with a continuum model of an active,
nematic system is showing universal k−1-scaling at small k. The difference in scaling shows that
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fluctuations on large scales are more dominant in the polar system studied here than in the nematic
one. A likely cause of this is the possibility of density fluctuations in the particle model we study,
which at relative high densities favours formation of large-scale coherent flocks compared to an
incompressible system. In addition the difference between polar and nematic alignment, and the
lack of a noise term in our system are factors that can influence the scaling.

To conclude we state that the active turbulence we observe in this model is a result of the
balance between the short-range alignment interaction and the long-range hydrodynamic dipole
interaction. The alignment interaction generates coherent flocks larger than its own range given
a high enough density. The non-linear dipolar flow interaction in itself causes chaos on all scales,
but with the flocking its long-range effect becomes amplified and more ordered. Thus, fluctuations
are present on all scales of the system leading to a universal scaling of the energy spectrum.

6.1 Outlook

The results of this work should contribute to a better understanding of active turbulence in general,
not only for the system studied here. The fact that density fluctuations appear to have an impact on
the scaling of the energy spectrum could be a generic property for active turbulence in microscopical
particle models. It would therefore be interesting to see if similar behaviour can arise in other
such models. For example could the model we have investigated here modified by replacing the
polar alignment interaction from the XY-model with a nematic alignment interaction. Another
modification could be to add a noise term. In these report we have focused on the effects of the
pure hydrodynamic interactions. With this clarified it is natural to investigate how statistical noise
affects this results, as fluctuations are indeed relevant in real life systems.

Within the given model, a natural continuation would be to seek more robust results for the
largest systems simulated here with N = 15000 particles. We have seen that systems with 1500 and
5000 particles display very similar behaviour, but a confirmation that this is also the case for larger
systems would be necessary to give a definitive conclusion on the scaling behaviour. Furthermore,
it would be interesting to investigate the phase space (ν1, ν2, γ,Φ) further, to find the boundaries
of the turbulent regime and gain more insight into its underlying mechanisms. For simplicity the
ν1-term has not been considered here, but this could naturally also affect the turbulent behaviour
as we know it is capable of producing global order. Finally, we know that the boundary conditions
have a strong impact on the behaviour of the system. Therefore, it would also be of interest to see
how e.g. circular confinement would affect the results we have found here.
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Yeomans, ‘Meso-scale turbulence in living fluids’, Proceedings of the National Academy of
Sciences of the United States of America 109, 10.1073/pnas.1202032109 (2012).

[42] A. Sokolov and I. S. Aranson, ‘Physical properties of collective motion in suspensions of
bacteria’, Physical Review Letters 109, 10.1103/PhysRevLett.109.248109 (2012).

[43] Y. Sumino, K. H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa, H. Chaté and K. Oiwa,
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distinguish active turbulence, 2021, https://arxiv.org/abs/2105.07872.

47

https://doi.org/10.1007/BF01065179
https://doi.org/10.1007/BF01065179
https://doi.org/10.1017/S0022112091001957
https://doi.org/10.1017/S0022112091001957
https://doi.org/10.1146/annurev-fluid-120710-101240
https://doi.org/10.1146/annurev-fluid-120710-101240
https://doi.org/10.1146/annurev-fluid-120710-101240
https://doi.org/10.1038/35011019
https://doi.org/10.1038/35011019
https://doi.org/10.1038/35011019
https://doi.org/10.1146/annurev-fluid-010719-060129
https://doi.org/10.1146/annurev-fluid-010719-060129
https://doi.org/10.1103/PhysRevLett.89.064302
https://doi.org/10.1103/PhysRevLett.89.064302
https://doi.org/10.1103/PhysRevLett.110.228102
https://doi.org/10.1103/PhysRevLett.110.228102
https://doi.org/10.1103/PhysRevLett.110.228102
https://doi.org/10.1103/PhysRevLett.110.228102
https://doi.org/10.1103/PhysRevLett.93.098103
https://doi.org/10.1103/PhysRevLett.93.098103
https://doi.org/10.1103/PhysRevLett.93.098103
https://doi.org/10.1103/PhysRevLett.93.098103
https://doi.org/10.1103/PhysRevLett.98.158102
https://doi.org/10.1103/PhysRevLett.98.158102
https://doi.org/10.1103/PhysRevLett.98.158102
https://doi.org/10.1103/PhysRevLett.98.158102
https://doi.org/10.1073/pnas.1001651107
https://doi.org/10.1073/pnas.1001651107
https://doi.org/10.1073/pnas.1001651107
https://doi.org/10.1038/nature09312
https://doi.org/10.1038/nature09312
https://doi.org/10.1073/pnas.1202032109
https://doi.org/10.1073/pnas.1202032109
https://doi.org/10.1073/pnas.1202032109
https://doi.org/10.1103/PhysRevLett.109.248109
https://doi.org/10.1103/PhysRevLett.109.248109
https://doi.org/10.1038/nature10874
https://doi.org/10.1038/nature10874
https://doi.org/10.1038/nature10874
https://doi.org/10.1038/s41567-020-0854-4
https://doi.org/10.1038/s41567-020-0854-4
https://arxiv.org/abs/2104.02122
https://arxiv.org/abs/2104.02122
https://www.sciencedirect.com/book/9780123846549/mathematical-methods-for-physicists
https://www.sciencedirect.com/book/9780123846549/mathematical-methods-for-physicists
https://doi.org/10.1007/978-981-32-9998-6_4
https://doi.org/10.1007/978-981-32-9998-6_4
https://doi.org/10.1007/978-981-32-9998-6_4
https://arxiv.org/abs/2105.07872


[50] J. Toner, Y. Tu and S. Ramaswamy, Hydrodynamics and phases of flocks, 2005.

[51] J. Toner and Y. Tu, ‘Flocks, herds, and schools: A quantitative theory of flocking’, Physical
Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 58,
10.1103/PhysRevE.58.4828 (1998).

[52] A. U. Oza, S. Heidenreich and J. Dunkel, ‘Generalized Swift-Hohenberg models for dense
active suspensions’, European Physical Journal E 39, 10.1140/epje/i2016-16097-2 (2016).

[53] T. Vicsek, A. Czirk, E. Ben-Jacob, I. Cohen and O. Shochet, ‘Novel type of phase transition
in a system of self-driven particles’, Physical Review Letters 75, 10.1103/PhysRevLett.75.
1226 (1995).
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Appendix

A Circular domain with hydrodynamic image dipoles

subsectionAppendix A The alternative to the periodic boundary conditions is to specify the
border of the domain with belonging boundary conditions. As Tsang and Kanso we will do this
for a circular domain [75]. Here to do not take the γ-term into account. First, we model the
interaction between the swimmers and the boundary walls by

Vbound(z′n) = − ε

vs

(
1

|d|

)13
z′n
|z′n|

(54)

similar to the Lennard-Jones interactions in Eq. (44). With a radius R of the circular domain,
d = (R/r0 − |z′|)eiθ is the shortest vector between a swimmer at z = |z|eiθ and the boundary.
This interaction is enough to confine the swimmers within the circular domain, but it does not
account for the hydrodynamic effects the confinement. Thus, if we only applied this, we would
describe a situation where the fluid flows unaffected through the boundary while the swimmers
would be confined by e.g. an electric potential or similar. To take the boundary into account for
the fluid flow as well, we will use the Milne-Thomson circle theorem [102]. This is an analog to
the method of image charges to model the electric potential in electrostatics. In effect we simply
add a swimmer outside the boundary for each swimmer inside to ensure no fluid flow across the
boundary. As we saw in relation to Eq. (36), the complex stream function induced by a swimmer
at z0 is φ(z) = vsσ

2π eiα/(z − z0). The Milne-Thomson circle theorem says that the modified stream

function φcirc(z) = φ(z) + φ(R2/z) while have zero imaginary part at |z| = R, which is equivalent
to circular boundary of radius R. The motion of a swimmer a swimmer n is then given by

dz′n
dt′

=e−iαn + µ

N∑
i6=n

eiαi

(z′n − z′i)2
− µ

N∑
i=1

e−iαi(R2/z′i
2)

(z′n −R2/z′i)
2

+ V ′(z′n) + Vbound(z′n), (55a)

dαn
dt′

=Re
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 N∑
i 6=n

− eiαi

(z′n − z′i)3
+
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2)

(z′n −R2/z′i)
3


+ Re

ν2ieiαn

 N∑
i 6=n

eiαi

(z′n − z′i)2
−

N∑
i=1

e−iαi(R2/z′i
2)

(z′n −R2/z′i)
2

 (55b)

in a circular confinement if we let R → R/r0. Again we emphasize that this is a reproduction
of the method of Tsang and Kanso [75]. Note that for each of the three coefficients µ, ν1, ν2 a
new term has been added compared to Eqs. (43a) and (43b). These terms effectively describe a
swimmer positioned at R2/z′i with orientation π − αi.

In Figure 28 we see three examples of collective behaviours in a system confined by a circular
border. To the left we have a clustering behaviour where ν2 = −1, in the middle a swirling
behaviour where ν2 = 3.0 and to the right an ordered circular motion where ν2 = 0.0. In all cases
ν1 = 0.3.

Figure 28: Collective behaviours of system in circular confinement.
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