
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f O

ce
an

 O
pe

ra
tio

ns
 a

nd
 C

iv
il 

En
gi

ne
er

in
g

Rahul Nath Raghunathan

Development of a Deep Learning
based Thrust Allocator for Dynamic
Positioning of Fully Actuated Vessels

Master’s thesis in Ship Design
Supervisor: Guoyuan Li
Co-supervisor: Robert Skulstad, Houxiang Zhang

June 2021

M
as

te
r’s

 th
es

is





Rahul Nath Raghunathan

Development of a Deep Learning based
Thrust Allocator for Dynamic
Positioning of Fully Actuated Vessels

Master’s thesis in Ship Design
Supervisor: Guoyuan Li
Co-supervisor: Robert Skulstad, Houxiang Zhang
June 2021

Norwegian University of Science and Technology
Faculty of Engineering
Department of Ocean Operations and Civil Engineering





NTNU ÅLESUND 

Page 1 of 2 
 

 
       

 

 

MASTER’S THESIS 2021 

FOR 

RAHUL NATH RAGHUNATHAN 

 

Development of a Deep Learning based Thrust Allocator for  

Dynamic Positioning of Fully Actuated Vessels 
 

 
The Dynamic Position (DP) system of ships plays an important role in the modern maritime operations 

which are undertaken in territories farther and farther from the shore. Operations such as offshore 

windmill installation, offshore oil exploration, and construction require extensive use of vessels with DP 

capabilities. Thus, DP capabilities of vessels have always seen improvement by the constant demand in 

the market. A DP system has seen advances over its controller aspect as well as its thrust allocator from 

time to time. While the advancement of the controller aspect is out of the scope of this thesis, the 

advances in thrust allocation have been achieved through ingenious use of numerical optimisation 

techniques. These numerical optimisation-based allocators have been able to account for operational 

constraints such as reduced power consumption, avoid thruster-hull interaction, singularity avoidance, 

etc. In this thesis, the development of a novel thrust allocator based on Deep Learning (DL) is being 

investigated. Deep Learning which has revolutionized every aspect of the modern engineering field holds 

great prospect in being used in allocation problems. This aspect has already seen success in the 

aeronautic and aerospace industry and is being developed for Maritime applications. The research in the 

maritime field for DL thrust allocation is gaining traction with DL allocators being developed for DP 

operations in NTNU, Alesund. This thesis will try to utilize NTNU’s R/V Gunnerus in a co-simulation 

environment to develop a DL thrust allocator and contribute to this research field and hope to attract 

more research and pave the path to real-world applications in the future.  

 

Objective/Research Questions:  

• Develop a Deep Learning (DL) based thrust allocator for DP operation of NTNU’s Research 

Vessel R/V Gunnerus with a focus on operations in station-keeping mode and in low-speed 

maneuvering mode. The allocator shall have features of power minimisation, forbidden zone 

management for azimuth thrusters, force saturation constraints, and magnitude rate constraints. 

• The DL allocator is to be tested against a classic Sequential Quadratic Programming (SQP) based 

allocator to identify performance differences. 

• The implementation and verification of the DAE and SQP based allocator to be done in a co-

simulation environment. This means each allocator should be packaged into FMU for deployment 

in the co-simulation. 

 

 

 

 

 

 



NTNU ÅLESUND       
 

Work Tasks:  

• Carry out a literature review on the topic. 

• Develop a Deep Learning thrust allocator after referring to the current state-of-the-art methods and 

add features to the existing ones to increase robustness and performance. 

• An SQP allocator is to be created that meets the same constraint as the DL allocator. 

• Both allocators to be packaged as FMU and tested in co-simulation environment Vico. 

• Analyse the performance of the DL allocator compared to the SQP allocator and comment on 

performance and add suggestions for future work. 

 

 

 

 

The scope of work may prove to be larger than initially anticipated. Subject to approval from the advisor, 

topics from the list above may be deleted or reduced in extent. 

 

The thesis should be written as a research report with summary, conclusion, literature references, table of 

contents, etc. During preparation of the text, the candidate should make efforts to create a well arranged 

and well written report. To ease the evaluation of the thesis, it is important to cross-reference text, tables 

and figures. For evaluation of the work a thorough discussion of results is needed. Discussion of research 

method, validation and generalization of results is also appreciated.   

 

The thesis shall be submitted in electronic version according to standard procedures.  Instructions are 

found on the NTNU website (Inspera) and on Blackboard. In addition, one paper copy of the full thesis 

together with an electronic device carrying all relevant documents and files shall be submitted to your 

supervisor.  

 

 

 

Prof. Guoyuan Li 

Supervisor 

 

 

 

Robert Skulstad, PhD candidate  

Co-supervisor 

 

 

 

 

Delivery: 25.06.2021                                 Signature candidate:             

                 Rahul Nath Raghunathan  

 



Preface

This thesis presents the work done for the course work: IP501909 - Ship Design Master’s Thesis

at NTNU(30 ECTS), and represents the final delivery for a Master of Science in Ship Design. The

thesis was written in its entirety by Rahul Nath Raghunathan during the time period of January

to June 2021.

The work was motivated by the ongoing research at NTNU Ålesund, where Machine Learning

is applied to the various maritime application. There have been fewer works related to thrust

allocation using machine learning in the maritime field. Researchers at NTNU have been able to

use machine learning-based thrust allocation for marine vessels and the thesis builds upon this

foundation.

The thesis has contributed to producing a Deep Learning-based thrust allocator that can take

into account power minimisation, magnitude and angle saturation constraints, rate constraints,

and forbidden zone management for thrusters in a fully actuated vessel. The allocator has been

packaged into an FMU for testing in a co-simulation environment. To benchmark the performance,

a classic SQP thrust allocator has also been made and packaged into FMU for testing. The test

results show comparable performance for the Deep learning-based allocator against the classic

allocator by meeting the prescribed constraints.

In the thesis, sufficient information regarding background knowledge used for building up the thesis

has been provided. The reader is requested to refer to relevant literature prescribed in different

sections to be informed about more details. The reader is assumed to have some knowledge of

Machine Learning and thrust allocation to get a full picture of the thesis.
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Summary

Dynamic Position (DP) System is an important development in the history of marine vessels

and has contributed to the development of various fields such as offshore oil and gas, offshore

renewable energy, subsea pipelaying, offshore construction, and general marine research. The

ability of a marine vessel to hold its position or track a predefined path has helped humans to

tolerate ever-varying sea conditions and undertake marine operations with confidence.

A simple DP system consists of a motion controller that requests generalised forces and moments to

thrust allocator that distributes the request into various actuators in the vessel. It is the constraints

put on the thrust allocator that brings great improvement to the DP system. Constraints such as

power minimisation, saturation constraints, and rate constraints are crucial to prevent blackout

in the ship and to reduce wear and tear of the actuators. Classically this has been solved used

techniques such as pseudo-inverse and other optimisation theory-based schemes.

In this thesis, a notion of using Deep Learning(DL) for thrust allocation is put to use. It is

considered that a DL model, a subset of Machine Learning(ML) model that learns representation

from data through the principle of optimisation can learn features from data and perform the role

of a thrust allocator. The literature survey investigating this showed that fewer works have been

done in this direction and especially in the maritime field. Researchers at NTNU Ålesund have

been investigating this topic and this thesis builds on top of the foundation set by these researchers.

In the thesis, a thrust allocator based on Deep Autoencoder(DAE) network has been developed.

The allocator has been designed for NTNU’s R/V Gunnerus vessel-a fully actuated ship with two

azimuth thrusters and a tunnel thruster. Using a DAE network solved the problem of training data

for the ML model. By generating thruster commands for three actuators using pseudo-random

numbers for a sample size of 3 million, the forces in Surge and Sway and moment in Yaw that

would have been produced by the random combination of these commands were obtained using the

thrust configuration matrix. This Surge, Sway, and Yaw are the input values of the encoder part

of the network and the decoder part tries to reconstruct the input at the output. This network

has simplified the process of having a previous allocator generate training data by logging forces

and different command values.

In the DAE network, the commands for the thrusters are obtained in the latent code layer - a

representation of input data in a different form. This latent code layer brings in the possibility

to add power minimisation, saturation constraint for magnitude, rate constraint, and forbidden

zone management through different loss functions and a custom layer in the encoder part of the

network. Thus the developed DAE allocator has these features.

To compare the performance of the new allocator, a classic Sequential Quadratic programming(SQP)

iii



based allocator obeying the same constraints was made and put to test. The testing has been con-

ducted in a Co-simulation setting. Co-simulation employs FMU(functional mockup units) for

different components of the simulation and eases the process of data exchange. The decision to use

co-simulation is based on the research strategy at NTNU Ålesund to promote co-simulation. Both

the allocators have been made into FMU and simulated using the Vico co-simulation framework.

The allocators were put to test in three scenarios namely: a low-speed four corner test, station-

keeping test, and stationkeeping test with thruster failure. The DAE allocator has a comparable

performance similar to the SQP allocator in the 4-corner test and has better performance in the

Stationkeeping test. During a stationkeeping test with thruster failure, an azimuth thruster is

turned off to imitate a thruster failure and both allocators fail to meet the requested force by the

motion controller. Despite failing to meet the controller request, the SQP allocator returns the

vessel to its origin position quite quickly whereas the DAE allocator has a jitter motion when it

tries to return to the original position. Thus DAE allocator can be said to have inferior perfor-

mance only in this case which is considered a future scope of the thesis. In all cases, the DAE

allocator was seen to meet the constraints in a robust manner.

The future work of the thesis includes exploring a better data generation strategy different from

pseudo-random numbers, improving the performance in thruster fail cases, and exploring a solution

of fault - detection thrust allocation strategy. Extending the method to other actuators like rudders,

Voith-Schneider propeller, etc. remains a new territory to be explored and validated. The use of

hybrid allocation strategies combining DL and numerical approach or aiding numerical allocation

using machine learning model can also be considered as future work.

iv



Table of Contents

Preface i

Acknowledgement ii

Summary iv

List of Figures viii

List of Tables xi

1 Introduction and Motivation 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 7

2.1 Thrust Allocation in Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Numerical Optimisation Approaches . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Learning Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Basic Control Theory of Marine Vessels . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Control System Structure for DP . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1.1 High-level Motion Control . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1.2 Control Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1.3 Low-level Actuator Control . . . . . . . . . . . . . . . . . . . . . . 16

v



2.3 Numerical Optimisation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Constrained control allocation . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Machine Learning 19

3.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Machine Learning Building Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Neural Network Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.2 Forward Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.3 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Variants of Gradient Descent Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Data scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Methodology 28

4.1 Methodology Flowchart explanation . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Deep Learning based allocator development . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.3 Learning Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.4 Network Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Classic Thrust Allocator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Solving Using Quadratic Program Solvers in Python . . . . . . . . . . . . . 42

5 Simulation Environment 45

5.1 Vico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 PythonFMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Results and Discussion 49

6.1 4 Corner Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Stationkeeping Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Stationkeeping Test with Thruster Failure . . . . . . . . . . . . . . . . . . . . . . . 58

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vi



7 Conclusion and Future Works 63

7.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography 65

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A Vico scenario file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.1 Scenario file for 4-corner test . . . . . . . . . . . . . . . . . . . . . 68

A.2 Scenario file for Stationkeeping test . . . . . . . . . . . . . . . . . 69

A.3 Scenario file for Stationkeeping test with thruster fail . . . . . . . 72

B Vico shell script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

C Test outside co-simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

vii



List of Figures

1.1 DP System Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 DP Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Intuition of thrust allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Objective and contribution matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Neural Network Architecture for TA by Skulstad et al. . . . . . . . . . . . . . . . 9

2.2 Thrust Allocator Architecture from Original DAE Work . . . . . . . . . . . . . . . 10

2.3 Vessel motion and Body Coordinate System . . . . . . . . . . . . . . . . . . . . . 12

2.4 Control system structure including control allocation . . . . . . . . . . . . . . . . 13

2.5 Actuator location and forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Thruster layout of vessel used in the thesis . . . . . . . . . . . . . . . . . . . . . . 15

3.1 AI Venn Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Machine Learning Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Neural Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Perceptron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Forward Propagation Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Basic Autoencoder Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7 Undercomplete Autoencoder Structure . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.8 Overcomplete Autoencoder Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Goal Breakup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Methodology Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 NTNU’s R/V Gunnerus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

viii



4.4 Data Generation Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Custom layer visualised . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.6 Custom Allocation Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.7 Forbidden sectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.8 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.9 MSE Loss for Test Case 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 ECS Architecture in Vico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 FMUs used in Co-simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Co-simulation setup steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1 Vessel motion for DAE and SQP allocator for 4 corner test . . . . . . . . . . . . . 51

6.2 Comparison of heading angle for DAE and SQP Allocator for 4 corner test . . . . 51

6.3 Comparison of controller request and allocation from the allocators for 4 corner Test 52

6.4 Forces generated by the two allocators during 4 corner test . . . . . . . . . . . . . 52

6.5 Azimuth angle value from the two allocators for 4 corner test . . . . . . . . . . . . 53

6.6 Force rate change information from the two allocators for 4 corner test . . . . . . . 53

6.7 Angle rate change information from the two allocators for 4 corner test . . . . . . . 54

6.8 Vessel Response for SQP and DAE Allocators for stationkeeping test . . . . . . . . 55

6.9 Comparison of controller request and allocation from the allocators for stationkeep-

ing test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.10 Forces generated by the two allocators for stationkeeping test . . . . . . . . . . . . 56

6.11 Azimuth angle value from the two allocators for stationkeeping test . . . . . . . . . 57

6.12 Force rate change information from the two allocators for stationkeeping test . . . 57

6.13 Angle rate change information from the two allocators for stationkeeping test . . . 58

6.14 Vessel response for SQP and DAE allocators during stationkeeping thruster fail test 59

6.15 Comparison of controller request and allocation from the allocators during station-

keeping thruster fail test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.16 Forces generated by the two allocators during stationkeeping thruster fail test . . . 60

6.17 Azimuth angle value information from the two allocators for stationkeeping thruster

fail test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.18 Force rate change information from the two allocators for stationkeeping thruster

fail test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



6.19 Angle rate change information from the two allocators for stationkeeping thruster

fail test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1 Error estimate in 3DOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2 Thruster allocated values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3 Allocation values in 3DOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Allocation rate values in 3DOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

x



List of Tables

2.1 SNAME(1950) notation for marine vessels . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Control input for various actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 R/V Gunnerus Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Hyperparameter search for number of layers and nodes . . . . . . . . . . . . . . . . 39

5.1 FMU Providers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1 4 corner test setpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Average power consumption during 4 corner test . . . . . . . . . . . . . . . . . . . 54

6.3 Wind direction and speed for stationkeeping test . . . . . . . . . . . . . . . . . . . 55

6.4 Average power consumption during stationkeeping test . . . . . . . . . . . . . . . . 57

6.5 Wind direction and speed for stationkeeping with thruster failure . . . . . . . . . . 58

xi



Chapter 1

Introduction and Motivation

Dynamic Position (DP) maintains the position and heading of floating structure in reference to a

fixed position or pre-defined track for marine operations by only using active thrusters[1]. In the

modern-day, where marine operations are not only limited to cargo transport but extended to deep

offshore exploration, construction, and autonomous shipping, more and more marine vessels are

being fitted with DP systems to meet the required operational profiles of the maritime industry.

Many vessels such as Mobile Offshore Drilling Units, Offshore supply vessels, Offshore Wind Farm

Vessels, etc. extensively utilize the DP system without which it cannot meet its operational

requirement of station keeping. Special path tracking applications are done using the help of DP

System in cable and pipe laying vessels and in the case of ROV operations[1].

Figure 1.1: DP System Forces

Source: Adapted from [2]

Figure 1.1 shows the forces acting on a vessel and the three Degree of Freedom(DOF) that the DP

system tries to control using the thrusters. The DP system that is currently operational has seen
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more than 30 years of continuous research and development by many companies and thus each

company offers a slightly different implementation of the DP system in the market. But the basic

principle of the system design can be seen in Figure 1.2 where the author has presented the entire

system architecture.

THRUST

ALLOCATION

Figure 1.2: DP Architecture

Source: Adapted from [1]

In this thesis, the focus would only be on the Thrust Allocation module. A definition of Thrust

Allocation(TA) can be found in [1] which states: The high-level positioning controller produces a

commanded thrust vector τc ε R3 in surge, sway and yaw. The problem of finding the corresponding

force and direction of the thrusters that meets the high-level thrust commands is called thrust

allocation. According to Fossen [3], a fully actuated marine craft has equal or more actuators than

the DOF.

Most of the marine vessels have more actuators than their DOF under control for DP for the

sake of redundancy against failure. The thrust allocation module takes into consideration the

desired forces computed by the high-level controller and imposed constraints such as minimised

power consumption, avoid forbidden zones, avoid thruster-thruster interaction, and thruster-hull

interactions[4] and allocate commands to each actuator present in the ship to produce generalised

forces and moments in the surge, sway and yaw directions.

In Figure 1.3, it can be seen that for a vessel with a commanded force of 500kN, the thrust allocator

may decide to produce individual actuator forces in two ways: one with 1954 kW power and the

other with 1371 kW. If the allocator is optimised for power, then allocation with 1371 kW is

preferred. This can be considered as the basic intuition for a power optimised allocator.

In this thesis, the terms thrust allocation and control allocation will be used interchangeably.

Also, Machine Learning(ML) model, Deep Learning(DL) model, and Neural Network (NN) are

used interchangeably without loss of meaning.
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500 kN

CoG

Commanded Forces Different Thrust Allocations

Power : 1954 kW

Power : 1371 kW

Azimuth Thruster

Figure 1.3: Intuition of thrust allocation

Source: Adapted from [5]

1.1 Motivation

Machine Learning(ML) has become a driving force in the context of research and is showing better

performances than the existing methods in many domains. For example, one of the recent great

advancements in molecular biology came through the use of ML. Alphafold [6] - a DL model was

able to predict the structure of the protein in 3D when the input was a 1D sequence of amino

acids. The model was able to score more than 90% in Global Distance Test in the CASP (Critical

Assessment of protein Structure Prediction) challenge which is a breakthrough in recent times

where the model is able to predict the 3D protein structure on the same level of performance

as a complicated experimental method. Breakthroughs like this solidify the prospect of ML as a

suitable means to discoveries and findings in the context of research.

ML has found its way into maritime field with application to navigation, control, fault detection

etc. The transition and focus to a fully autonomous shipping concept is driving the adoption of

ML and its products into the maritime field.

The main motivation of this thesis lies in the research activities at NTNU Ålesund where ML is

applied to different aspects of marine operations to solve different challenges or to add support to

numerical methods. During the literature survey for thrust allocation using ML, very little work

has been done exploring this research path. Research publications were mainly in the Aircraft

domain and less in the maritime domain. To explore such a topic seemed very interesting and was

an added motivation. Fortunately, work was done by researchers at NTNU [7],[8] which introduced
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thrust allocation using Neural Networks for DP operations. This thesis is the continuation of this

research path.

The use of digital twin technology is increasing in all domains of engineering and the same trend is

seen in the maritime industry. This thesis also uses the digital twin technology to embrace the use

of such technology for realistic simulations. To test and verify the performance of the allocator,

the simulations are done on a co-simulation environment using a digital twin of NTNU’s R/V

Gunnerus[9]. The application of digital twin for testing and verification is part of the research

strategy at NTNU Ålesund to bolster the use of co-simulation as a maritime standard. A similar

trend can be seen in the industry [10] where multiple companies have partnered to develop and use

co-simulation and set it as the standard. As a result of this strategy, the deliverables of the thesis

will be the Functional Mockup Unit(FMU) of the allocator that can be used in co-simulation. It

is hoped that in the future more contributions can be made in form of FMUs that can be tested

and validated in co-simulation. The thesis hopes to motivate such efforts.

1.2 Objectives

In this thesis, the following would be considered as the objectives:

1. Objective 1: Develop a Deep Learning (DL) based thrust allocator for DP operation of

NTNU’s Research Vessel R/V Gunnerus[9] with a focus on operations in stationkeeping mode

and low-speed maneuvering mode. The allocator shall have features of power minimisation,

forbidden zone management for azimuth thrusters, force and angle magnitude constraints

and rate constraints.

2. Objective 2: The DL allocator is to be tested against a classic Sequential Quadratic Pro-

gramming(SQP) [11] based allocator to identify performance differences.

3. Objective 3: The implementation and verification of the DL and SQP based allocator to

be done in a co-simulation environment. This means each allocator should be packaged into

FMU for deployment in the co-simulation.

1.3 Contributions

The contributions of the thesis can be summarised as:

1. Contribution 1: The method prescribed in work [8] has been extended and robustness and

performance are added with respect to Power minimisation, forbidden zone management,

force and angle magnitude constraints and rate constraints.

2. Contribution 2: A robust hard constraint on rate change values has been added to the

allocator through the use of custom layers in the DL model which is considered a novel

approach.

3. Contribution 3: The DL allocator performance has been compared against an industry-

standard numerical approach to find the performance difference.

4



4. Contribution 4: The DL allocator and the industry-standard SQP allocator have been im-

plemented as an FMU that can be run in co-simulation environments aiding future research.

 

Figure 1.4: Objective and contribution matrix

A matrix for how the objectives of the thesis have been met through different contributions can

be seen in figure 1.4.

1.4 Scope

The scope of this thesis could be simplified as shown in Figure 1.5. This thesis tries to combine the

field of Deep Learning, Optimisation theory, and Thrust allocation. While the crux of the thesis

is to incorporate a DL model for thrust allocation, simple optimisation strategies are used inside

the DL model to incorporate desired features of thrust allocation.

The developed DL allocator will be tested for different cases against a benchmark numerical thrust

allocation method to find the difference between the two.

All testing will be done using the co-simulation environment Vico [12] for NTNU’s R/V Gunnerus.

The programming language for the thesis will be Python and the machine learning framework will

be Keras with Tensorflow backend.

Figure 1.5: Scope
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1.5 Thesis Outline

Chapter 1 introduces the topic of the thesis and motivation for pursuing the thesis. In this thesis,

relevant theory and basics of thrust allocation using DL and numerical scheme is presented in two

chapters. Literature Review in Chapter 2 explores relevant literature on thrust allocation whereas

Chapter 3 introduces the basic concept of Machine learning used in the thesis for developing the

DL allocator. Chapter 4 details the development approach followed in the thesis with details to

the development of DL allocator and SQP allocator. Before the two allocators are put to test in

simulation, a short introduction to the co-simulation environment is provided in Chapter 5. In

Chapter 6, the result of testing the two allocators in the different scenarios is presented along

with the discussion of the results. The thesis concludes with Chapter 7 summarising the thesis

and putting forward suggestions for improvement.
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Chapter 2

Literature Review

This chapter summarises various literature referred to get an understanding of the development of

thrust allocation for DP operation of ships. After this, a short section to introduce basic control

theory for the marine vessel is given followed by the method of classic control allocation strategy.

2.1 Thrust Allocation in Literature

2.1.1 Numerical Optimisation Approaches

In 2004, the authors of [11] have developed a single step constrained non-linear control allocator for

DP operation of a ship using Sequential Quadratic Programming. The scheme takes into account

singularity avoidance of azimuth thrusters in addition to power minimisation, constraints on force

and angle saturation, and constraints on force rate and angle rates. This work is considered as

a reference classical control allocation for benchmarking in this thesis. In the Master’s thesis

[4] published in 2009, the author introduces a thrust allocation for DP operation that employs

Quadratic programming with the Disjunctive programming technique. This method linearises the

constraints imposed on thrusters by polygon approximation[13]. The allocation scheme takes into

account saturation values of forces and angles of azimuth thrusters. The method is also applicable

for rudders.

The work titled “Control allocation-A survey” [14] published in 2013 is an excellent reference that

gives a broad overview of control allocation schemes applied in various domains. The work discusses

control allocation strategies for linear and non-linear effectors with and without constraints. The

works also discuss different linear, quadratic, and non-linear optimisation techniques used in these

schemes. In the work [13] published in 2013, the authors propose a fuel optimal thrust allocation

for DP operation. They include a term in the cost function which accounts for fuel consumption

of diesel generators in contrast to the usual power minimisation term in the cost function. The

scheme puts constraints on force saturation values, azimuth angles, force change rates, azimuth

angle change rates, and power constraints on the electrical bus. The optimisation scheme used

is a convex Quadratic programming scheme with linear constraints. In the Master’s thesis [15]

published in 2013, a thrust allocation scheme for DP operation with a feature of using azimuth

thruster for ice clearance is discussed. In the thesis, results are given for a vessel with 4 azimuth
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thrusters and two bow thrusters where two azimuth thrusters in the stem of the vessel are used

for ice clearance. To achieve this feature, the thrust allocation formulation in [11] is modified to

decouple the two azimuth thrusters and added as separate terms in the objective function to allow

the vessel operator to direct the azimuth thrusters. These decoupled thrusters are still included

in the singularity avoidance feature of allocation and constraints such as saturation of forces and

azimuth angles, rate values of forces, and angles are considered.

In 2015, authors of [5] have developed a thrust allocation method based on the Sequential Quadratic

Programming technique that takes into account hydrodynamic effects such as thruster-hull inter-

action and thruster-thruster interaction. The allocation scheme takes into account power minimi-

sation and saturation limits of the thrusters in addition to the above-mentioned hydrodynamic

interactions. In the work, they were able to demonstrate a performance improvement of 2-5 %

power consumption reduction and 5 % higher water current handling when compared to a normal

forbidden zone managing thrust allocation algorithm for the vessel tested. In 2016, authors of [16]

have developed a thrust allocation scheme that takes into account the load variation in the power

plant of a ship due to varying force requirements from thrusters owing to the unpredictable marine

environment. This scheme allows small deviation from the requested force value to improve load

variation on the powerplant. It uses a quadratic formulation for power optimisation with consid-

eration to thruster saturation values. In 2017, authors of [17] have developed a Model Predictive

Control(MPC) based thrust allocation scheme for DP operations. Their non-angular MPC scheme

has an optimisation horizon larger than the single-step method[11] and achieves an environmental

disturbance filtering feature. This filtering allows reducing the thrust and thruster rate commands

for azimuth and non-azimuth thrusters reducing power consumption and load variation on power

plants.

2.1.2 Learning Based Approaches

In the work [18] presented in 2010, the authors introduce an adaptive genetic algorithm(GA)

based thrust allocation. Their thrust allocation scheme takes into account power minimisation,

force and angle saturation and constraints on the rate of change of forces and angles of the azimuth

thrusters. Their scheme is tested on a semi-submersible offshore platform fitted with 8 azimuth

thrusters and demonstrates power minimisation while obeying all the prescribed constraints. In

the work published in 2015 [19], the authors present a hybrid thrust allocation scheme utilising GA

and SQP method. In the method, GA is used to find a global optimum which is then refined by

the SQP method to find a local optimum. They achieve this by providing the SQP with a starting

point for search from the values obtained with GA optimisation. The scheme is tested on a drilling

rig with 8 azimuth thrusters with features such as power minimisation, force and angle saturation

handling and constraint on the rate of change of forces and angles.

In the work [7] presented in 2018, Skulstad et al. employ a supervised neural network model for

control allocation for DP operation of a ship. The allocator is prescribed for a vessel with non-

rotatable thrusters. The work describes two allocators: Allocator 1 that takes in only force request

from a controller and Allocator 2 that takes in force request from current time step and previous

time step. Allocator 2 is able to meet force saturation constraint and force rate change constraints

while Allocator 1 is able to meet only force constraints.
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Figure 2.1: Neural Network Architecture for TA by Skulstad et al.

The learning method used in the work is the Extreme Learning Machine [20] method. The data

for the NN was generated for the vessel using a professional simulator from the company named

Offshore Simulator Centre (OSC) AS in Norway. The vessel in the simulator was pushed to its

saturation force level and subsequently, a negative saturation force command is issued to expose

the maximum change rate of thrusters. This data is recorded and fed to NN for training. The

NN structure has 3 input neurons, 20 hidden layer neurons and 6 output neurons. The six output

neurons correspond to the 6 control variable for the thrusters of the vessel. This neural network

architecture is provided in figure 2.1.

The work in 2018 by the authors of [21] is the motivational element in the thesis. Their method of

solving the control allocation problem of an aircraft using Deep learning is the foundation of this

thesis. In their work, the authors develop a Deep Autoencoder(DAE) based control allocator for

an aircraft solving the problem of any Machine learning-based model-generating the data to train

the model beforehand. In usual cases, a method is used to generate data that is then fed to the

network to learn the representation and features of the dataset. This lead to an awkward problem

of creating a numerical method beforehand to generate data. Using DAE, artificial data can be

generated and the network can be trained without labels in a supervised learning scheme. This

work is termed as Original DAE work in the thesis.

Their deep learning-based control allocator has features of saturation handling of the actuators and

power minimisation. They train their network in a specific way-they pre-train the decoder part

of the autoencoder that takes in actuator commands and outputs forces in a supervised learning

manner. Then they use a transfer learning approach of freezing the optimal decoder layers and

train the encoder part of autoencoder in an unsupervised learning manner. They use a custom

activation function at the end of encoder layers to obtain saturation handling functionality. The

neural network architecture for this work is given in figure 2.2.
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Figure 2.2: Thrust Allocator Architecture from Original DAE Work

In another work [22] by authors in 2019, they develop a control allocation formulation using

Reinforcement learning for another aircraft. The work uses a tabular Q-learning approach where

the agent is trained in offline simulation. In the simulation, the aircraft is initialised at an offset
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position from the target and learns to reach the target. They show that without prior knowledge

about the model, the RL based control allocation scheme can enable the aircraft to reach the

desired altitude by using up to four control effectors and optimised for reducing drag by avoiding

opposite deflection of control effectors.

In the Master’s thesis [23] presented in 2020, the author introduces a Deep Reinforcement Learn-

ing(DRL) based Dynamic positioning system for a small scale Autonomous Surface vessel. The

method incorporates both motion control and control allocation into the system once it obtains

signals from the guidance system. The learning method used for Reinforcement learning is Proxi-

mal policy optimisation. The method was tested in a simulation environment for the ASV as well

as in the real world. The ASV is configured to have a bow thruster and two azimuth thrusters

at the stern. In the thesis, a comparison of the proposed DRL method against classic control

allocation methods such as Quadratic programming(QP) and the Psuedoinverse(PI) method is

presented. The DRL method is shown to have improved performance than QP and PI method

when subjected to tests for large setpoint changes, four corner test, four corner test with ocean

current and stationkeeping tests with wind and currents.

The next approach of using Machine learning for control allocation is based on Reinforcement

Learning(RL). In the work [24], the authors present a novel approach to solving dynamic control

allocation problems using Reinforcement learning. The approach is tested of an F-16 airplane sim-

ulation. They use an H∞ controller to learn optimal control allocation online using the measured

data without the requirement of knowing the system dynamics.

2.2 Basic Control Theory of Marine Vessels

A marine vessel is subject to motion in 6 Degree of freedoms. Their notation in SNAME convention

is given in Table:2.1

DOF Forces and Linear and Positions and
moments angular velocities Euler angles

1:Motion in x-axis (Surge) X u x
2:Motion in y-axis (Sway) Y v y
3:Motion in z-axis (Heave) Z w z
4:Rotation about x-axis (Roll) K p φ
5:Rotation about y-axis (Pitch) M q θ
6:Rotation about z-axis (Yaw) N r ψ

Table 2.1: SNAME(1950) notation for marine vessels

Source: [3]

11



u (surge)

v (sway)

w (heave)

r (yaw)

p (roll)

q (pitch)

Z

X

Y

Figure 2.3: Vessel motion and Body Coordinate System

Different Coordinate system used for motion study are given below[3]:

1. Earth-Centered Inertial(ECI) Frame: This is a reference frame with origin at the centre

of Earth and is non-accelerating. It is denoted by frame i (xi, yi, zi)

2. Earth-centered Earth-fixed (ECEF) Frame : This frame has it’s origin at the center of

earth and rotates with the motion of Earth. Denoted by e = (xe, ye, ze)

3. North-East-Down Frame: This frame is defined relative to Earth’s reference ellipsoid.

It is defined as a tangent plane on the surface of the surface of the Earth moving with the

vessel. This frame is denoted by n = (xn, yn, zn) with x-axis pointing to true North, y-axis

pointing towards East and z-xis pointing downward perpendicular to the tangent plane.

4. Body Coordinate System: The body-fixed reference frame b = (xb, yb, zb) is a coordinate

system that is fixed to the vessel and moves with it. Its origin is usually set to the midship

in the waterline of the vessel. This frame is given in figure 2.3

While ships are subject to motion in 6 DOF’s, in DP operation of ships, the main concern is to

control motion in Surge,Sway and Yaw. For this a 3-DOF model can be represented. This model

is aimed at low speed operation of speed upto 2 m/s [3]. 3-DOF model can be represented as given

below:

η̇ = R(ψ)ν (2.1)

Mν̇ + C(ν)ν +D(ν)ν = τ + τwind + τwave + τcurrent (2.2)

where ν = [u, v, r]T and η = [x, y, ψ]T . The definition of notations used in equation 2.1 and 2.4

are given below:

1. M - Inertia matrix including added mass terms
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2. C - The matrix of coriolis and centripetal terms

3. D - Damping matrix

4. τ - the control force and moment acting on the body-fixed frame

5. τwind,τwave,τcurrent - environmental disturbances from wind,wave and current respectively.

6. η = [x, y, ψ]T - the position and heading in Earth-fixed coordinate system

7. ν = [u, v, r]T - Surge, sway and yaw velocities in body-fixed frame.

8. R(ψ) =

cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 - Rotation matrix transforming velocities from body-fixed

coordinate system to earth-fixed coordinate system.

2.2.1 Control System Structure for DP

The Control system used for DP system in ship can be viewed broadly through the flowchart

given in figure 2.4. The flowchart include a high-level motion control,followed by the Control

Allocation strategy and low-level controls for the actuators. Here the effectors and actuators can

be distinguished by their definition from [14]: Effectors are devices that generates force on the

mechanical system(Eg: Rudder,Fin) and actuators are electromechanical device that controls the

magnitude and direction of these forces.

High level 

motion control

Control 

Allocation

Low-level 

Actuator Control

Effectors 

and

Actuators

Mechanical

System

u x

Figure 2.4: Control system structure including control allocation

Source: Modified from [14]

In the thesis, the term actuator and effector refers to thrusters.The mechanical system in this case

refers to the vessel itself. The other blocks in figure 2.4 are discussed in subsequent sections.

2.2.1.1 High-level Motion Control

A high-level motion controller takes in a desired control signal and compares the current state of

the system to produce a virtual control input τc (forces and moments corresponding to the degree

of freedom ) to the control allocation scheme.

The high level motion controller could be a simple PID (Proportional-Integral-Derivative) controller

that takes in setpoints for position and heading in case of DP Stationkeeping operation. The

controller then compares its current state and outputs forces and moments to compensate for

deviation from the setpoint. The simple equation for control through PID is given in equation 2.3

x(t) = Kpe(t) +Ki

∫
e(t)dt+Kd

de

dt
(2.3)
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where the terms are

1. x(t) = Control variable for PID

2. Kp = Proportional gain

3. e(t) = Error value = Desired value- Current value

4. Ki = Integral gain

5. Kd = Derivative gain

6. de = Change in error

7. dt = Change in time

2.2.1.2 Control Allocation

Control Allocation or Thrust allocation in simple terms, is the process of distributing the gener-

alised control forces τc ε Rn to the actuators in terms of control inputs u ε Rr ,n = no. of DOF ,

r = no. of actuators [3]. There are different type of Control allocation method starting from

simple pseudo-inverse to complex quadratic programming based methods. This section have been

taken from [3]. Consequent section will give a discussion for control allocation using a Sequential

Quadratic Programming based approach for rotatable and non-rotatable thrusters.

The allocation is an optimisation problem, which in simple case is unconstrained. But when

limitations are set on to the output produced such as magnitude constraints, this allocation becomes

a constrained optimisation problem.

The force generated by a propeller, rudder or fin can be approximated linearly as F = ku, where k

is the force coefficient and u is the control input. The various control input u and corresponding

force vector from different actuator is given in Table 2.2.

Actuator u (control input) α(control input) fT (force vector)

Main propellers(longitudinal) Pitch and RPM - [F,0,0]
Tunnel thrusters(transverse) Pitch and RPM - [0,F,0]
Azimuth(rotatable)thruster Pitch and RPM Angle [Fcos(α),Fsin(α),0]
Aft rudders Angle - [0,F,0]
Stabilizing fins Angle - [0,0,F]

Table 2.2: Control input for various actuators

Source: [3]

The force(Surge,Sway) and moments(Yaw moment) for a 3DOF system corresponding to force

vector f = [Fx Fy]T can be written as equation 2.4 where

[
lx

ly

]
are the moment arms.

τ =

[
f

r × f

]
3DOF
=⇒

 Fx

Fy

Fylx − Fxly

 (2.4)
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The equation in 2.4 can be written in a general form as

τ = T (α)f = T (α)Ku (2.5)

where K ε Rr×r is the diagonal force coefficient matrix and u = [u1, ......, ur]
ᵀ is the vector of

control inputs. α = [α1, ...., αp]
ᵀ ε Rp is a vector of azimuth angles with p equal to number of

azimuth thrusters.

In equation 2.5, T (α) ε Rn×r is the thrust configuration matrix. This matrix relates to the locations

of the actuators. An example for force and moments in Surge,Sway and Yaw respectively for a

marine vessel is shown in Figure 2.5 with corresponding matrices in equation 2.6.

Main propeller

Main propeller

Azimuth

thrusters
Azimuth

thrusters

Figure 2.5: Actuator Location and Forces

Source: Adapted from [3]

XY
N

 =

 cos(α1) cos(α2) 1 1

sin(α1) sin(α2) 0 0

lx1sin(α1) lx2sin(α1) −ly3 −ly4

 .

K1 0 0 0

0 K2 0 0

0 0 K3 0

0 0 0 K4

 .

u1

u2

u3

u4

 (2.6)

= -14 m = 14.5 m 

= -2 m

=  2 m 

Figure 2.6: Thruster layout of vessel used in the thesis

In the thesis, the thruster arrangement of R/V Gunnerus can be visualised as in Figure 2.6. Its
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corresponding thrust configuration matrix is given by equation 2.7.

T (α) =

0 cos(α2) cos(α3)

1 sin(α2) sin(α3)

l2 l1sin(α2)− l3cos(α2) l1sin(α3)− l4cos(α3)

 (2.7)

An alternate way of writing the thrust configuration matrix is through extended-thrust configura-

tion. Its details can found in [3] and no further discussion is provided as this thesis use the thrust

configuration matrix discussed above.

2.2.1.3 Low-level Actuator Control

Low-level actuator control refers to a controller components that controls how the distributed

control signal reaching the actuator from the thrust allocation method is used to produce motor

commands that meets the request(force or torque)

For example, a low level controller could be simply a PID control that outputs a control sig-

nal(electrical current) based on reference signal to produce forces and moments.

2.3 Numerical Optimisation Scheme

From the section 2.2.1.2, it can be understood that thrust allocation refers to finding the control

input vector u such that it produces the forces and moment τ as commanded by the high level

controller.

This section introduces an advanced constrained allocation routine which is solved through used

of Sequential Quadratic Programming(SQP) technique.

2.3.1 Constrained control allocation

In this section, a method of constrained control allocation including the use of Azimuth thruster

is discussed. In real world scenario, it is important to put constraints on force saturation values,

rate of change of forces and angles and feature to reduce power consumed. This is important to

prevent situation of blackouts in vessel, reduce wear and tear of thrusters etc. This section has

been taken from [3] and details can be found in detail in reference [3],[11].

When the rotatable thrusters are considered, control allocation becomes a non-convex optimisation

problem. The primary constraint is

τ = T (α)f (2.8)

where α denote the azimuth angles, α ε Rp,T is the thrust configuration matrix and f is the control

vector to be found out. In this scheme, the azimuth angles are computed together at each sample

with control input being subjected to both amplitude and rate saturations. Constraint on azimuth

angles are as follows:

αi,min ≤ αi ≤ αi,max (2.9)
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˙αi,min ≤ α̇i ≤ ˙αi,max (2.10)

and α̇, the azimuth turning rate subject to a maximum value. For a control allocation scheme

involving only non-rotating thrusters utilising Least-Square optimisation given in [3], the control

force vector can be found out by using generalised inverse as given in equation 2.11.

f = W−1TT (TW−1TT )−1︸ ︷︷ ︸
Tw

†

τ (2.11)

The equation 2.11 is modified to add azimuth angles as given in equation 2.12.

Tw
† = W−1T (α)T (T (α)W−1T (α)T )−1 (2.12)

The equation 2.12 can become singlular for some α. During singularity occurrence, several thrusters

have equal azimuth angles and if sudden change of external force direction occurs, there is a possible

drift because the azimuth thrusters cannot change angles quickly to compensate it [15].

In this case, the problem is locally approximated as a convex Quadratic problem as shown below

[15],[3],[11].

J = min
∆f,∆α,s

{(f0 + ∆f)ᵀP (f0 + ∆f) + sTQs+ ∆αTΩ∆α+

∂

∂α

(
ρ

ε+ det(T (α)W−1TT (α))

)∣∣∣∣
α=α0

∆α}
(2.13)

subject to:

s+ T (α0)∆f +
∂

∂α
(T (α)f)

∣∣
α=α0,f=f0

∆α = τ − T (α0)f0 (2.14)

fmin − f0 ≤ ∆f ≤ fmax − f0 (2.15)

αmin − α0 ≤ ∆α ≤ αmax − α0 (2.16)

∆αmin ≤ ∆α ≤ ∆αmax (2.17)

the variable in above equations are as follows:

1. f0 and α0 are control force and azimuth angle from previous iteration.

2. ∆f and ∆α are change in control forces and azimuth angles

3. s ε Rn are slack variables

4. P ε Rr×r, Q ε Rn×n, Ω ε Rp×p

5. ρ > 0 is a scalar weight influencing manoeuvrability and power consumption

6. ε > 0 is a small number to avoid division by zero
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7. W ε Rr×r is a positive definite weighting matrix for the control force.

In order to obtain the optimisation problem, some simplifications are made from [11].They are:

1. Power proportional to f3/2 is approximated as f = f0 + ∆f

2. The singularity avoidance term locally approximated by a linear term around the last azimuth

angle, α0 such that α = α0 + ∆α

This formulation is used in the thesis with some modification for creating the benchmark SQP

allocator.
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Chapter 3

Machine Learning

In this chapter, an overview of Machine Learning(ML) and its associated building blocks are

presented. The basics of the Autoencoder network that is used in the thesis are also presented.

Deep Learning(DL) is a subset of ML and basic aspects remain the same for both.

3.1 Machine Learning

Machine learning(ML) is the study of computer algorithms that improve automatically through

experience [25]. Machine Learning has grown from a subset of Artificial Intelligence(figure 3.1)

and now encompasses mainly the three types of learning approach or algorithms as shown in figure

3.2.

Example:

MLPs

Deep Learning

Representation learning

Example:

Shallow Autoencoders

Machine Learning

Example:

Logistic 

Regression

Example:

Knowledge 

bases

AI

Figure 3.1: AI Venn Diagram

Source: Adapted from [26]

These algorithms are differentiated in terms of how the experience or data is provided to the

machine.
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Figure 3.2: Machine Learning Hierarchy

3.2 Supervised Learning

In Supervised learning, the algorithm learns from a dataset that contains features as well as its

associated label or target for each example. The aim of the algorithm is to learn a complex

function that can map features to the target data. Using this learned function, it should be able

to successfully predict the new target if features are provided to the function.

In the thesis, a Deep Autoencoder (DAE) network is used(Deep refers to multiple layers in the

network) which can be considered as supervised learning itself because its training regime is similar

to that of Supervised learning even though it does not need labeled inputs.

3.3 Machine Learning Building Block

An Artificial Neural Network(ANN) or simply Neural Network(NN) form the backbone of machine

learning and its general structure is given in figure 3.3.

Figure 3.3: Neural Network Structure
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1 or 0

Activation Function

Figure 3.4: Perceptron Model

The simplest form of ANN is a Perceptron model introduced by Frank Rosenblatt [27]. It is shown

in figure 3.4. A simple perceptron outputs a binary (0 or 1) when provided with weights and

bias(w′s are weights and w0 is bias in image 3.4). The transformation in perceptron is given by

equation 3.1.

f(x) =

1, if wTx+ b > 0

0, otherwise
(3.1)

A NN is termed deep or shallow based on the number of hidden layers it has. If the number of

hidden layers is more than one, then the NN is termed as Deep Neural Network(DNN). There

exists disagreement to this number, but in this thesis, a shallow neural network consists of only

one hidden layer. In each hidden layer, the data is transformed by the activation functions and at

the output layer, the transformed data is obtained. Each layer is composed of nodes or neurons.

Each node transforms information and passes it on to the next layer after passing it through an

activation function. Essentially, DL refers to an ML model with a large number of layers such that

it can learn more representations from the data.

A network in which the connection between neurons in a layer do not make loop is called Feed For-

ward Neural Network(FFNN). If it makes a loop it is termed as Recurrent Neural Network(RNN)

[28]. So in a FFNN, the neurons in a layer get information from only the layer before it and

transfers information to the next layer.

3.3.1 Neural Network Notations

While developing Neural Networks or to say when working with ML/DL models, it is suitable to

denote various terms by notations. Such notations are defined here.

• To denote different sizes we use the following notations:

1. nx = input size

2. ny = output size

3. m = number of examples in the dataset

4. nh
[l] = number of hidden units in the lth layer
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• To denote weights and bias, we use the following notations:

1. W [l] = weight matrix of the lth layer

2. b[l] = bias vector of lth layer

3. wjk
[l[ = weight from unit k of layer l − 1 for the unit j of layer l

4. bj
[l] = bias unit in layer l.

• To denote activation function and output of the neuron,the following notations are used:

1. aj
[l] = activation of jth neuron of layer l.

2. g[l] = activation function of layer l.

• In NN, the number of layers are counted from the first hidden layer to the output layer.(ie,to

count layers that have tunable parameters(weights and bias)).

There two basic step in Neural Network training is given below:

3.3.2 Forward Propagation

Forward Propagation or forward pass refers to the flow of information and thereby generation of

intermediate values of each layer from the input layer to the output layer. During the forward

pass, the information from the input layer is passed on to the first hidden layer. In the first

hidden layer, the information undergoes transformation using weights and bias of that layer and

then passes through an activation function to get the intermediate output of that layer. This

transformation for a neuron in the layer is depicted in figure 3.5. This intermediate value is then

used by the next layer and continues until the output layer.

In figure 3.5, for an arbitrary neuron j in layer l, its activated output depend on activation values

from previous layer ak
[l−1] and the corresponding weights wjk

[l[ connecting layer l and layer l− 1.

To this a bias unit is added and transformed through activation function to obtain aj
[l].

.

.

.

OutputActivation

Function

Figure 3.5: Forward Propagation Operations

To generalise the forward propagation operations, a weight matrix for layer l can be defined by

stacking up the weights. wl is a matrix containing weights that connect to the lth layer of neurons.
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Each entry in the weight matrix can be represented as wjk
[l] which is a entry in jth row and kth

column of layer l. The bias can be stacked as a vector bj
l. Thus the forward propagation can be

written in matrix form as equation 3.2

zl = wlal−1 + bl (3.2)

al = f(zl) (3.3)

where f in 3.3 denotes the activation function and zl is termed as the weighted input in layer l

[29].

Activation functions are special function that helps the neural network to learn non-linearity

from the data. The aim of a NN is to learn a non-linear function that maps input to output.

These functions also help keep the magnitude of the output values within a certain limit which is

desirable to avoid computational issues. Some of the commonly used activation functions and its

formula is provided below:

1. Sigmoid :

f(x) =
1

(1 + e−x)
(3.4)

2. Tanh :

f(x) =
ex − e−x

ex + e−x
(3.5)

3. ReLU (Rectified Linear Unit) :

f(x) =

0, if x < 0.

x, otherwise.
(3.6)

For more information on activation functions and their properties, the reader is encouraged to refer

[30].

At the end of forward propagation, a collection of weights and bias are obtained from the network.

The goal of the NN is to alter these weights and bias such that after computation through various

transformations through the layers, the network is able to approximate a function f(x) for its

inputs. To quantify the ability of the NN in generalising this function, a cost function is introduced

which measures the difference between predicted values ŷj and the truth values yj .

J(w, b) =

√√√√ 1

n

n∑
j=1

(yj − ŷj)2 (3.7)

In the equation 3.7, the cost function is the Root Mean Squared Error. Similarly other cost

function can be defined. For example, Mean Absolute Error can be defined as Equation 3.8 and

Mean Squared Error can be defined as Equation 3.9

MAE =
1

n

n∑
j=1

|yj − ŷj | (3.8)
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MSE =
1

n

n∑
j=1

(yj − ŷj)2 (3.9)

The cost function which is dependent on weights w and bias b can take on values starting from zero

when all predictions and actual values match and increase to large values when the prediction is

wrong. The aim is to reduce the cost as much as possible. The process to achieve this is explained

next.

3.3.3 Backpropagation

It is an algorithm used for training feed-forward neural networks by use of the Gradient Descent

method. The following contents have been derived from [29].

The aim of the backpropagation is to calculate partial derivatives of the cost function, ∂J
∂w and ∂J

∂b ,

with respect to weights and bias of the NN. This is to understand how a small perturbation in

values of weights and bias affects the cost function. Specifically for a neuron j in layer l, we compute
∂J

∂wjk
l and ∂J

∂bjl
. This is done to introduce a concept where a small perturbation in weighted input

of the layer l, ∆zj
l can cause a change in the change in cost function by propagation of the change

through the rest of the layers of the network. ∆zj
l cause a change of ∂J

∂zjl
∆zj

l in the cost function

of the network.

The term ∂J
∂zjl

is defined as error δj
l of neuron j in layer l. Generalising this for a layer, δl is the

vector of errors for layer l. Backpropagation will compute this error vector for each layer in the

NN. For output layer(l = L) this can be written as equation 3.10(for quadratic cost function)

δL =
∂J

∂ajL
� f

′
(zL) = ∇aJ � f

′
(zL) = (aL − y)� f

′
(zL) (3.10)

� denote Hadamard product.

Now, a formulation to find error for layers previous to output layer L needs to be found out.

δl = ((wl+1)T δl+1)� f
′
(zl) (3.11)

Using equation 3.10 and 3.11, we can find error vector starting from output layer(L) and moving

backwards.

To find the change in cost function with respect to change in bias, the following equation 3.12

which in turn is obtained from equation 3.11.

∂J

∂bj
l

= δj
l (3.12)

Similarly, the change in cost function with respect to weight can be written as equation 3.13

∂J

∂wjk
l

= ak
l−1δj

l (3.13)

These four equations sums up the process of backpropagation. Now the weights and bias are
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updated according to rules of gradient descent through equation

w = w − α∂J
∂w

(3.14)

and

b = b− α∂J
∂b

(3.15)

3.4 Variants of Gradient Descent Algorithms

In Machine Learning, mainly three types of Gradient Descent strategies are used.[31]They are :

1. Batch Gradient Descent : In Batch gradient descent, the gradient of the cost function for

the different parameters of the networks(weights, bias) are computed for the entire training

dataset. So a single update to the network parameters takes place only after the complete

calculation of gradients for the whole dataset and then averaging the gradients. This can be

quite slow and memory-consuming for the computer.

2. Stochastic Gradient Descent(SGD): In this method, the parameter update of the net-

work is performed after computing gradient for each sample in the training dataset. This

results in faster updates accompanied by large variations in the gradient size.

3. Mini-batch Gradient Descent: In this method, parameter update is performed after

computing gradients for a mini-batch (a batch size N which is less than the size of the whole

training dataset). Advantages of Mini-batch Gradient Descent is that they have less variance

issue of the parameters which is present in Stochastic Gradient Descent and at the same time

faster than Batch Gradient Descent

3.5 Data scaling

In ML models, the data is not fed directly as it is to the network. If fed directly, the different

scale of value may cause issue in computation such as gradient explosion. The two commonly used

Data-scaling methods are given below:

1. Min-max normalisation: In this method, the data is scaled to range of [a,b]. Usually this

range is [0,1] or [-1,1]

2. Standardisation: In this method, the data is scaled such that the mean of the sample is 0

and variance is 1. The scaling is done according to equation 3.16

Xscaled =
x− µ
σ

(3.16)

where µ is the average of the samples and σ is the standard deviation of the samples
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3.6 Autoencoder

An autoencoder is a neural network that is trained to attempt to copy its input to its output.[26]. An

autoencoder network has mainly three components: an encoder, a hidden layer h that describes

the input representation named latent code and a decoder. The function of the encoder is to

create a representation of the input in the code and the decoder’s function is to reconstruct or map

input from the code.

Input Layer ∈ ℝ� Hidden Layer ∈ ℝ³ Output Layer ∈ ℝ�

latent code

Figure 3.6: Basic Autoencoder Structure

The learning process of an autoencoder can be described simply as equtation 3.17:

L(x, g(f(x))) (3.17)

where L is a loss function penalising g(f(x)) for being dissimilar from x [26].

Autoencoders can be classified broadly into two based on the dimension of the code. When the

code dimension is smaller than the input dimension, the autoencoder network is termed as an

undercomplete autoencoder as can be seen in figure 3.7. When the code dimension is higher

than the input dimension, it is termed as overcomplete autoencoder as can be seen in figure

3.8.

Input Layer ∈ ℝ Hidden Layer ∈ ℝ Hidden Layer ∈ ℝ³ Hidden Layer ∈ ℝ Output Layer ∈ ℝ

Code

Figure 3.7: Undercomplete Autoencoder Structure

The autoencoders have been traditionally used for dimensionality reduction or feature learning[26].

The variants of autoencoders include:

1. Sparse Autoencoders: It is an autoencoder that has a sparsity penalty Ω(h) on the code
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layer during training in addition to reconstruction error[26]. This is typically used to learn

features for tasks such as classification.

2. Denoising Autoencoders: It is an autoencoder that tries to predict uncorrupted data

points at the output when provided with corrupted input data points [26]. These kinds of

the network have seen application in image filtering to remove noise from the image and

produce original denoised images.

Input Layer ∈ ℝ Hidden Layer ∈ ℝ Hidden Layer ∈ ℝ Hidden Layer ∈ ℝ Output Layer ∈ ℝ

 code

Figure 3.8: Overcomplete Autoencoder Structure

The layers of the Autoencoder could be simply fully connected dense layers or LSTM layers or

Convolution layers[32]. In the use case for TA, the work in[21] had fully connected dense layers

whereas, in [8], the layers are a combination of LSTM layers and fully connected layers. This thesis

utilises a fully connected network architecture as can be seen in subsequent chapters for thrust

allocation following the footsteps of the work in [21].
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Chapter 4

Methodology

In this chapter, the approach followed for meeting the objectives of the thesis is explained followed

by the details of the development of Deep learning TA and classic SQP TA.

Master Thesis

Goal 2
Previous TA Work

Familiarisation

Goal 3
Create New Neural

Network TA 

Goal 4
Create SQP Based 

TA

Goal 5
Comparison of 
two allocators

Goal 6
Documentation 

and Report

Goal 1
Co-Simulation
Familiarisation

Figure 4.1: Goal Breakup

In order to complete this thesis, it is envisioned to divide the work into 6 broad goals as seen in

figure 4.1. These goals have been set up such that the learning outcome or outcome from each goal

is required for the successful completion of the thesis.

These goals are subdivided into smaller sub-goals as explained in figure 4.2. The cyclic nature of

goal breakup is to indicate multiple traverses during thesis work to obtain fair results.
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Familiarisation

Yes

Create an FMU for
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Cosimulation

Framework [1.2]

Define scenario
for  4-corner

test[1.3]

Goal 3: Create new Neural
Network TA

Learning Machine Learning + Tensorflow-Keras Framework

Learning Optimisation Theory for Thrust allocation

Define values to
be logged[1.4]

Co-simulation
run,log and plot

results[1.5]

NO

YES

Success

Yes

Obtain ML TA
Framework from

co-supervisor[2.1]

Test the TA
outside co-

simulation using
logs from

 Goal 1[2.2]

Define 4-corner
and

Stationkeeping
scenario[2.3]

Create an
FMU[2.4]

Co-simulation run
and plot

results[2.5]

Identify
limitations[2.6]

NO

YES

Success

Define the goal of
new allocator

based on 2.6 [3.1]

Data generation
scheme test[3.2]

Activation
Function,loss
functions and
Custom Layer

Test[3.3]

Hyperparameter
Tuning[3.4]

Test the TA
outside co-

simulation using
logs from Goal

1[3.5]

Goal 4: Create SQP 
based TA

Co-simulation run
and plot

results[3.6]

YES

NO

Success

New SQP
allocator based on
constraints from

Goal 3 [4.1]

FMU Creation[4.2]

Co-simulation run
and plot

results[4.3]

Goal 5: Compare both 
allocators

Goal 6: Documentation 
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NO

YES
Success

Scenario for 4-
corner test[5.1]

Scenario for
stationkeeping

test[5.2]

Scenario for
stationkeeping
with thruster fail

test[5.3]
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results[5.4]

Documentation for
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meeting[6.1]

Documentation for
 final report[6.2]

Documentation for
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Documentation for
 bi-weekly
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Documentation for
 bi-weekly

meeting[6.1]

Documentation for
 bi-weekly

meeting[6.1]

Documentation for
 bi-weekly

meeting[6.1]

Figure 4.2: Methodology Flowchart

4.1 Methodology Flowchart explanation

1. Goal 1 : In the methodology flowchart, the aim of goal 1 is to get familiarised with the

co-simulation. In order to get familiarised with it, the first step done is to create a simple

pseudo-inverse(PI) allocator for TA. This is done through the use of PythonFMU[33]. Then

the framework Vico is accessed through [34] where basic steps are provided to set up co-

simulation. A scenario for the 4 corner test is made as shown in Appendix A.1. The variables

from FMU to be logged are specified in a separate log definition file(.xml file) and the

simulation is run using Vico. An example of the shell script that runs the simulation is

given in Appendix B. Defining FMU with the same variable name help to ease the process

of generating the log definition file and the subsequent data plotting. The data is plotted by

accessing the CSV log files at the end of the simulation. The values logged for desired forces

and moments and allocated forces and moments are used for evaluating the performance of

the DAE allocator outside the co-simulation environment in Goal 2.

2. Goal 2 : This Master’s thesis builds upon previous research work at NTNU [8]. The

researchers had set up a framework to develop a DL allocator that makes the process of setting
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up experiments easy. It is obtained from the co-supervisor in this goal. Using the framework,

the TA allocator from previous work [8] is tested outside the co-simulation platform to

understand the development procedure of the DL allocator. For this, the forces and moments

from the PI allocator in Goal 1 are utilised. The outside co-simulation provides plots such

as given in Appendix: C. The ML framework utilised in the thesis is Keras with Tensorflow

backend.

After testing the allocator, a scenario for stationkeeping and 4-corner(Goal 1 scenario) is

created for testing in co-simulation. The FMU for the allocator is made using PythonFMU

and tests are done. The results are plotted and the limitations of the current thrust allocator

from [8] is found out.

3. Goal 3: In this goal, the new DL allocator based on Deep Autoencoder is developed. Features

of robust handling of force and angle magnitude and a hard rate constraint are proposed to

be added in addition to power minimisation and forbidden zone handling.

Subsequently, tests on artificial data generation are conducted with the existing framework

to improve its force range and to test its performance. Data generation schemes to be tested

include pseudo-random number generation and random walk generation strategy.

Upon satisfactory data generation, the type of layers in the network is to be explored from

normal dense layers in [21] to LSTM layer combination in [8]. In addition, the use of different

activation functions and custom layers is tested to meet the constraints.

If the network performs satisfactorily outside the co-simulation, a manual hyperparameter

tuning is to be conducted to optimise the performance as in any ML model development.

Key indicators such as MSE Loss, Total allocation Error, and Total mean forces are taken

as metrics for the network performance. Each model is also run in co-simulation to test

for performance. If this is satisfactory, the major goal of the thesis is achieved and now a

benchmark allocator is created in the next goal.

4. Goal 4: Upon creation of a satisfactory DAE network, the benchmark classic allocator

based on SQP is created using reference [15],[11],[3]. For this allocator, the constraints

are features are exactly the same as the newly developed DAE allocator namely: Power

minimisation, force and angle magnitude saturation handling, rate handling of forces and

angles, and forbidden zone management.

The SQP allocator FMU is created and put to test in the co-simulation environment.

5. Goal 5: In the thesis, the newly developed DAE allocator is tested in three scenarios- a

standard 4 corner test, stationkeeping test, and a stationkeeping test with thruster failure

scenario. These are tests that can identify the performance and drawbacks of the devel-

oped DAE allocator. In each case, the benchmark performance is the classic SQP allocator

developed. The three scenarios are developed as seen in Appendix : A.1,A.2,A.3.

The co-simulation is conducted and the results are to be plotted.

6. Goal 6: This is the final goal of the thesis where the process of development of allocator and

various results are properly documented and submitted. During the thesis period, bi-weekly

meetings are scheduled to present the findings and problems for discussion. For this, in each

goal of the thesis, relevant sections are to be documented.

Finally, at the end of the thesis, all documentation is presented in the form of a Master thesis

report.
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For achieving the objectives of the thesis, the major learning required is in the form of learning

Machine learning and the framework to be used. This is a continuous process and starts from the

beginning and continues till the end of the thesis. Theory about optimisation for classic allocator

is also learned from the beginning and the process is finished at the end of the thesis.

4.2 Deep Learning based allocator development

In this section, the development of a Deep learning allocator using a Deep Autoencoder network

with its details is provided. The development of the DAE allocator follows a development frame-

work supplied by the co-supervisor based on his previous work on the subject [8] as mentioned

before.

In the thesis, the allocator is developed for NTNU’s R/V Gunnerus.(Figure 4.3)

Figure 4.3: NTNU’s R/V Gunnerus

Source: Fredrik Skoglund

The parameters for the vessel is given in Table 4.1

Parameter Value
Displacement(tonne) 580
LPP(m) 33.9
Beam(m) 9.6
Draught(m) 2.8
∆T1,∆T2,∆T3(N/s) 1000
∆T2,∆T3(◦/s) 10
T1 max (N) ±30000
T2/T3 max(N) -30000,60000
T2/T3 max (◦) -180,180

Table 4.1: R/V Gunnerus Specification

In the allocator developed, it is assumed that the thrusters can produce forces in both forward and

backward direction.

31



4.2.1 Data generation

The first step in any ML project is to obtain data that can be trained to find the mapping between

data and target. Since in the thesis, a DAE network is used, a method to create forces from

commands of thrusters is used. For demonstration purpose the maximum force range and angle

range of thrusters are restricted to the following limit:

u0 = [−8000, 8000] N

u1 = [−8000, 8000] N

u2 = [−80, 80] ◦

u3 = [−8000, 8000] N

u4 = [−80, 80] ◦

(4.1)

In equation 4.1, u0 corresponds to Tunnel thruster force, u1 corresponds to Azimuth thruster 1

force, u2 corresponds to Azimuth thruster 1 angle values, u3 corresponds to Azimuth thruster 2

force, u4 corresponds to Azimuth thruster 2 angle values. The angle values are limited to [-80,80]◦to

employ forbidden zone management considering forces can be created in both positive and negative

direction. The forbidden zone management will be discussed later.

1. For each thruster, a range of pseudo-random commands are generated from a lower limit to an

upper limit. As an example, for a tunnel thruster, a range of control commands from the lower

limit of -10000 N and upper limit of 10000 N are generated using pseudo-random numbers.

For azimuth thruster, forces from a lower limit of -10000 N to 10000 N and angles from a

lower limit of -80◦to an upper limit of 80◦are produced. The number of samples generated

is set by the user considering the training and allocation performance of the network. As

a guideline to data generation, the upper and lower limit of samples generated should be

above the constrained values. That is for 8000 N, a force range of 8000 N or above is to be

generated. Here it is taken as 10000 N. To generate these commands, Python library Numpy

and its function randint is used.

2. Once these commands for individual commands are generated, they are transformed to an

individual vector of 5 commands that can be used to generate forces in Surge, Sway, and

Yaw direction. The principle used to obtain the force in 3 DOF is to transform commands

using Thruster configuration matrix according to formula

τ = T (α)× u (4.2)

3. The forces in 3 DOF are the input to the DL network for training. Before the forces are fed

into the network, they are standardised using the theory in section 3.5. The data generation

method can be visualised as shown in figure 4.4
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Tunnel Thruster Force
Upper : 10000 N
Lower :-10000N

Samples: 3 Million

Azimuth Thruster 1 Force
Upper : 10000 N
Lower :-10000N

Samples: 3 Million

Azimuth Thruster 1 Angle
Upper : 80 deg
Lower :-80 deg

Samples: 3 Million

Azimuth Thruster 2 Force
Upper : 10000 N
Lower :-10000 N

Samples: 3 Million

Azimuth Thruster 2 Angle
Upper : 80 deg
Lower :-80 deg

Samples: 3 Million

Command array
Samples: 3 Million

[Tunnel[i],   Azimuth1 F[i],   Azimuth1 A[i],  Azimuth2 F[i],  Azimuth2 A[i]]

Thrust Configuration
Matrix

Forces Array
Samples: 3 Million

[Surge,  Sway,  Yaw]

Figure 4.4: Data Generation Step

4.2.2 Network Architecture

After data generation, the neural network structure is to be investigated. The investigation is

followed based on the literature [21].

Through experimentation, it is found that a Dense layer-based Deep Autoencoder(DAE) can re-

produce force provided at the encoder input at the output of the decoder. The latent code in the

DAE is where the control commands will be generated and taken for allocation.

For the network to learn and accommodate constraints in power, force, and angle magnitude and

constraint in the rate of change of forces and angles, a few strategies are adopted from the works

[21] and [8].

4.2.3 Learning Strategy

Similar to normal neural network learning features, the DAE network also learns by minimising

the losses. The strategy is to formulate different loss functions that can be minimised to learn that

functionality. Thus the network learning is simply a summation of different loss functions that is

minimised during training. The following losses are defined for the network:

1. Loss Function for generating force at the output(Lin−out):

• The function of this loss term is to ensure that the 3-DOF force and moment given to

the input of the encoder is reproduced at the output of the decoder. (ie, the force is

reproduced with minimal loss).

• To achieve this, the loss function is formulated as equation 4.3 - a Mean-square error
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between input forces and output forces

Lin−out =

3∑
j=1

(yij − ŷij)2 (4.3)

• In equation 4.3, j represents the forces in Surge and Sway and Moment in Yaw. i

represents the number of samples during training or a single sample during allocation.

ŷij is the predicted forces and yij is the input forces.

2. Loss function for generating commands that produce correct force given at the input (Llatent):

• The function of this loss term is to ensure that the forces given as input to the encoder

can be reproduced through the commands produced at the latent code.

• In order to establish this loss, first the commands obtained at the latent code is rescaled

back to original command scale. Then this commands are used to obtain forces and

moment in 3-DOF using thrust configuration matrix( τ = T (αrescaled)×urescale). Here

αrescaled is the two azimuth angles and urescale is the three forces obtained at the latent

code.

• Then these calculated forces and moment are scaled down again to input scale and a

Mean absolute error between input forces are calculated as in equation 4.4.

Llatent =
1

n

3∑
j=1

|f ij − f ilatent,j | (4.4)

• In equation 4.4, f ij is the input forces and moments, whereas f ilatent,j is the forces and

moments produced by the latent control commands.

3. Loss to reduce power(Lpower)

• In this custom loss function, the control commands obtained at the latent code are

rescaled back to their original form and an exponential term is used to penalise its

magnitude increase. An exponential value of 1.5 is taken considering the fact the power

from thruster can be estimated as u3/2 [35]. The power loss term is given in equation

4.5.

Lpower = |ui0|3/2 + |ui1|3/2 + |ui3|3/2 (4.5)

4. Loss to reduce rate changes (Lrate)

• In the control allocator, the maximum rate changes per Hertz prescribed for different

commands are given in equation 4.6

[∆u0,∆u1,∆u2,∆u3,∆u4] = [±50N,±50N,±0.5◦,±50N,±0.5◦] (4.6)

This is prescribed in such a way because the simulation runs at 20 Hz and the rates

when multiplied by 20 gives the proper rate change per second as given in equation 4.7.

[∆u0,∆u1,∆u2,∆u3,∆u4] = [±1000N,±1000N,±10◦,±1000N,±10◦] (4.7)

• To limit the rate change, the commands obtained at the latent code are rescaled and

then the command vector is shifted one step in time to compare the effect of magnitude
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change between time steps. The time shift implies moving the command vector in a

mini-batch by one index backward.

• The absolute difference in magnitude of commands between two time steps is found out

and compared to the prescribed rate limit. If the difference exceeds the limit, a penalty

is imposed on the magnitude above the change. An exponential penalty is used such

that more rate changes are penalised severely compared to a slight crossing of limits.

Lrate =

4∑
l=0

max(|ûli − shift(ûli)| −∆ul,max, 0)1.02 (4.8)

• The exponent 1.02 was found by trial and error during training and allocation test.

5. Total Loss(Ltotal)

• As the neural network is interested only in the total loss during training, the sum of

four losses discussed above are taken.

• The sum is taken such that each of the loss is prescaled.

Ltotal = (k1 ∗ Lin− out) + (k2 ∗ Llatent) + (k3 ∗ Lpower) + (k4 ∗ Lrate) (4.9)

• Based on prescaling of these individual loses, the performance of the allocator can be

tuned. For example, a larger positive scaling for power loss try to reduce the power

consumption by the allocator. The use of loss function to train the model was adopted

from work in [8].

6. Hard constraint on magnitude saturation and rate changes

• In the four learning strategies discussed above, all were soft constraints imposed on the

network. They could be exceeded based on the input forces values and their dynamic

change. In order to avoid this problem, hard constraints are imposed such that the

prescribed value will never be crossed even if the soft constraints are broken. This idea

was inspired by the work in [21].

• In the work [21], the magnitude constraints were imposed on the allocator using custom

activation function in the layer before the latent code in the encoder layer. Here also a

similar strategy is used in a slightly different way. This is considered a novel approach

for this use case.

• One of the new contributions of the thesis is the implementation of hard constraints

on rate change. This was considered as the future work in [21]. The implementation

of hard constraints follows a method of creating a custom layer that performs these

functions of robust saturation (a point discussed above) and rate handling.

• A custom layer is created with each node in the layer dedicated to 5 control commands.

The values from these 5 nodes are concatenated and passed to the latent code and

subsequently to the decoder. This can be visualised in figure 4.5
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Custom Layer Latent code

Figure 4.5: Custom layer visualised

• The custom layer is a normal dense layer with a linear activation function. The activated

values are clipped for saturation during training(hard constraint) and the soft constraint

for rate loss is imposed during training. During allocation, however, the hard constraint

for rate is active through a simple technique of using a condition in the layer that gets

evaluated based on the size of the input.

• To explain, this can be thought as during training, the network is fed in mini-batches

and the size of input corresponds to mini-batch size(> 1). In the thesis,mini-batch size

for training is taken as 1024 following [8]. But during allocation, at each time step, only

one force command vector is fed into the network. During this time, the commands

can be compared to the previous allocation using a memory feature in the layer(the

previous value stored in the variable) and compared to the current value to clip against

maximum or minimum increase in rate (hard constraint).

• The transformation during training when the input size is 1024 can be viewed as

Modif = (w ∗ inputs) + b (4.10)

where w and b are trainable parameters of the custom layer. First the input undergoes

a linear activation. Then they undergo a generalised form of hard tanh transformation

as shown in equation 4.11.

Modif = max(δ,min(δ,modif)) (4.11)

The modification in equation 4.11 control the magnitude and angle constraint of the

allocator.(δ and δ indicates the allowed lower and upper magnitude of 5 control com-

mands). After this the values are passed on to the latent code. Here soft-constraint on

rate is applicable through custom loss function mentioned previously.

• During allocation(input size =1), the difference in transformation is that the output

from one time step is saved in a variable

Previous = Modif (4.12)

Then at the next time instant, maximum allowable rate values are added to this previous

value and compared against the current input. They undergo a transformation similar
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to generalised hard-tanh function. While adding the allowable rate to the previous

value, the previous value is rescaled back to the original force range to avoid the issue

of scaling issue using standardisation. Then the rate is added and then the values are

standardised again for comparison against the incoming input values.

• This can be explained as: Let x be the Previous value.Then x is transformed according

to equation 4.13.

x =⇒ x′ = (x ∗ σ + µ) =⇒ x′′ = x′ + rate =⇒ x′′′ =
x′′ − µ
σ

(4.13)

In equation 4.13, σ and µ corresponds to the mean and standard deviation of the

command vector generated for individual thrusters.ie, there are 5 mean values and

5 standard deviations corresponding to the control vector obtained during the data

generation process. It is the x′′′ that is compared against the incoming new input and

undergoes a generalised hard -tanh transformation.

TRAINING

CUSTOM LAYER

TRAINING ALLOCATION

Linear Activation

Soft Rate Constraints

Hard magnitude Constraints

Network Learn the parameters

Linear Activation

INPUTS

OUTPUT

Allocated value

Memory Variable

OUTPUT

Hard Magnitude Constraints

Hard Rate Constraints

1024 1

Figure 4.6: Custom Allocation Layer

• The angles are clipped at −80◦ and 80◦ to create a forbidden zone (cut out portion of

the circle) similar to one shown in figure 4.7. This can be obtained by considering the

fact that forces can be produced in both positive and negative directions.

Figure 4.7: Forbidden sectors
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4.2.4 Network Hyperparameters

During the proposal of any Neural Network architecture, its hyperparameters are to be chosen

such that the network has an optimal performance for the task at hand. In reality, achieving

optimal performance is limited to the number of tests done during choosing hyperparameters.

During the hyperparameter search, there will be some combinations that may have more optimal

performance than the proposed one. In this thesis, hyperparameters were chosen manually with

some parameters fixed to limit the search space of the hyperparameters.

The hyperparameters to be chosen are given below:

1. Number of layers in encoder and decoder

2. Number of nodes in each of encoder layers

3. Number of nodes in each of the decoder layers

4. Activation function in the layers

5. Learning rate of optimiser(Adam[36] is used)

Since the thesis follows [21], the type of layer is taken as fully connected dense layers. Here few

tests using LSTM layers have been tried following the work[8]. But due to the complexity of LSTM

layers, the allocation time was high during the test in the simulator. Also, the dense layer could

exhibit similar performance with faster allocation. So dense layer was chosen as the type of layer.

The optimiser was fixed as using Adam optimiser with a learning rate of 0.001. The activation

function in each of the Encoder and Decoder layers was chosen to be Tanh activation function.

This was chosen after a test with activation functions such as ReLU and Sigmoid. A test for ReLU

activation provided inferior results compared to Tanh activation which may be explained by Tanh’s

symmetric nature of the function.

Now the manual search is done for finding the number of layers in the Encoder and Decoder of the

network. The training is done for 20 epochs for each configuration. In the table 4.2, each test case

is denoted by serial number and the corresponding number of the layer in encoder and decoder. For

example, for a test case in which E:64,64;D:32,32 is written, it implies it has two hidden layers in

the encoder side with 64 dense nodes in each. Similarly, the network has two layers on the decoder

side with 32 nodes in each layer. The encoder is denoted by “E” and the decoder is denoted by

“D”. The last layer in the Encoder layer always has 5 nodes which is the custom layer designed as

part of the thesis.
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Sl.No Test Case MSE Total Allocation Error Total Mean Force(N)

1 [E:64,64,64,64,32,5];[D:32,32,32,10] 0.0101 778 403
2 [E:64,64,64,64,5];[D:32,32,32,10] 0.0088 2192 448
3 [E:64,64,64,32,32,5];[D:32,32,32,10] 0.0094 1539 437
4 [E:32,32,32,32,32,5];[D:32,32,32] 0.0119 1308 453
5 [E:16,16,16,16,16,5];[D:16,16,16] 0.0256 949 384
6 [E:24,24,24,24,24,5];[D:24,24,24] 0.0140 811 472
7 [E:24,24,24,24,5];[D:24,24] 0.0136 1896 520
8 [E:24,24,24,5];[D:24,24] 0.0148 817 410
9 [E:24,24,24,24,5];[D:24,24,24,24] 0.0195 685 906
10 [E:64,64,64,64,5];[D:64,64] 0.0074 643 435

Table 4.2: Hyperparameter search for number of layers and nodes

In Table 4.2, columns MSE, Total Allocation Error, and Total forces(N) represents three metrics

used to select the layer configuration for the network. The layer is selected such that the selected

candidate would have minimum values in each of the three metrics in the right combination.

Column MSE represents the mean square error between the input forces and the forces produced

by the command vector in the latent code. If the value is minimum, it is considered that the

network is able to produce the input forces accurately using the produced command vectors.

After training is done, a simple test case is made by setting up a scenario where the allocator is

tested outside the co-simulation environment. For that, first, a four-corner test is conducted using

a Psuedo-Inverse allocator in the simulation environment and the requested forces are recorded

as a CSV file. Using the CSV file, the requested force at each time step is given as input to the

DAE allocator and forces generated using the latent command vector is compared against the

input. The absolute difference between the input forces and generated forces and Moments in each

DOF-Surge, Sway and Yaw is found out. Then the mean of the error is taken and this value is

given in the column “Total Allocator Error”. The optimal allocator should have minimal mean

allocation error.

Finally in column “Total Forces(N)”, the mean of the sum of the absolute magnitudes of forces

produced by the tunnel and two azimuth thrusters are found out for the requested forces. The

optimal allocator would have minimal forces which mean minimal power for requested forces.

From the table 4.2, test case:10 has an MSE value of 0.0074(figure 4.9), Total Allocation error of

643 and Total mean forces of 435 N. This case has an optimal value when considering each of the

three metrics. So it is taken as the DAE allocator layer structure.

The proposed network architecture is given in figure 4.8. After the Allocator layer was fixed, the

DAE allocator was put into test in the co-simulation environment to check for performance. During

the run, the time for allocation was around 3.5 ms per execution. This means that the allocator

can be run in real-time for use cases in real-world scenarios.
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Figure 4.8: Proposed Architecture
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Figure 4.9: MSE Loss for Test Case 10

4.3 Classic Thrust Allocator

In this thesis, an optimisation scheme based on Sequential Quadratic programming[11] is used to

create benchmark thrust allocator. Its details have been discussed before in Literature review.

Here its actual implementation properties are discussed following works of [15],[3].

The control allocation problem is locally approximated as a convex Quadratic problem(QP) as

shown below [15],[3],[11].

J = min
∆f,∆α,s

{(f0 + ∆f)TP (f0 + ∆f) + sTQs+ ∆αTΩ∆α} (4.14)

subject to:

s+ T (α0)∆f +
∂

∂α
(T (α)f)

∣∣
α=α0,f=f0

∆α = τ − T (α0)f0 (4.15)

fmin − f0 ≤ ∆f ≤ fmax − f0 (4.16)

αmin − α0 ≤ ∆α ≤ αmax − α0 (4.17)

∆αmin ≤ ∆α ≤ ∆αmax (4.18)

∆fmin ≤ ∆f ≤ ∆fmax (4.19)

the variable in above equations are as follows:

1. f0 and α0 are forces and azimuth angle from previous iteration respectively.

2. ∆f and ∆α are change in forces and azimuth angles respectively.
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3. s ε Rn are slack variables

4. P ε Rr×r, Q ε Rn×n, Ω ε Rp×p

5. r = Number of actuators, p = number of azimuth thrusters, n = number of DOF (3 in our

case)

6. T = Thrust configuration matrix

7. Power proportional to f3/2 in original formulation is approximated to f = f0 + ∆f [3].

4.3.1 Solving Using Quadratic Program Solvers in Python

The control allocation equations 4.14- 4.19 are written as an optimisation problem in matrix form

[15] as shown below in equations 4.20-4.23. Then the problem is solved using open source QP

solvers available in Python. In this thesis, the solver used is the “quadprog” package[37] . Other

QP solver in Python named CVXOPT [38] was also used. But the execution speed of quadprog

was better than CVXOPT and thus was chosen as the solver in the thesis.

min
x
{1

2
xTHx+ gTx}

subject to :

(4.20)

Ax ≤ b (4.21)

Aeqx = beq (4.22)

lb ≤ x ≤ ub (4.23)

The associated matrices to be used in the codes is shown below. Through the formulation, we

try to minimise power, avoid forbidden zone, consider rate constraints and handle both force and

angle saturation. The optimisation vector x is given as :

x =



∆f1

∆f2

∆f3

∆α1

∆α2

s1

s2

s3


8×1

(4.24)

where ∆f1 correspond to change in tunnel thruster force,∆f2 correspond to change in azimuth1

force , ∆f3 correspond to azimuth 2 force, ∆α1 correspond to change in azimuth 1 angle, ∆α2
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correspond to change in azimuth 2 angle. s1, s2, s3 are change in slack variables.

P =

10 0 0

0 10 0

0 0 10


3×3

(4.25)

Ω =

[
100 0

0 100

]
2×2

(4.26)

Q =

500 0 0

0 1000 0

0 0 1000


3×3

(4.27)

H =

2P3×3 03×2 03×3

02×3 2Ω2×2 02×3

03×3 03×2 2Q3×3


8×8

(4.28)

g =

2× P × f0

02×1

03×1


8×1

(4.29)

The first term in vector 4.29 come from expanding the terms in problem formulation(Equation

4.14).

A =


13×3 03×2 03×3

−13×3 03×2 03×3

02×3 12×2 03×3

02×3 −12×2 03×3


10×8

(4.30)

b =


fmax − fo
−fmin + fo

αmax − αo
−αmin + αo


10×1

(4.31)

fmax =

8

8

8


3×1

(4.32)

.

fmin =

−8

−8

−8


3×1

(4.33)
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αmax =

[
rad(80)

rad(80)

]
2×1

(4.34)

αmin =

[
−rad(80)

−rad(80)

]
2×1

(4.35)

Aeq =
[
T (αo)

∂
∂α (T (α)f)

∣∣
α=α0,f=f0

13×3

]
3×8

(4.36)

beq =
[
τ − T (αo)f0

]
3×1

(4.37)

lb =

∆fmin

∆αmin

−∞


8×1

(4.38)

ub =

∆fmax

∆αmax

∞


8×1

(4.39)

The vector 4.32 is the maximum forces in kN that can be produced by tunnel,azimuth 1 and

azimuth 2 thrusters(top to bottom order). Similar is the vector 4.33 which is the minimum or

negative forces in kN that the thrusters can produce.

The azimuth thruster can rotate 360◦. But due to forbidden zones, some areas are restricted.

Hence the maximum and minimum feasible angle region for thrusters are defined by vector 4.34

and 4.35(Angle in degrees converted to radians). The order corresponds to azimuth 1 and azimuth

2 thrusters. Since the azimuth thrusters are assumed to produce thrust in both direction in this

thesis, by defining such an angle region α ∈ [−80, 80], we obtain a double sided pac-man thrust

region(figure 4.7). In the simulation, the Azimuth 1 thruster is initialised at 45◦and Azimuth 2 at

-45◦.
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Chapter 5

Simulation Environment

This chapter describes the simulation environment used for co-simulation with details on different

FMU’s and their functionalities.

In this thesis, a co-simulation framework named Vico[12] is chosen for carrying out simulations.

Vico is high-level co-simulation framework developed by researchers at NTNU, Ålesund with a

motivation to introduce co-simulation in virtual prototyping of marine operations.

5.1 Vico

Vico is based on a software architecture named Entity-Component System(ECS) [12]. In this ar-

chitecture, each object(entity) contains data(components) that can be added, removed, or changed

during the run-time of co-simulation. This alteration of data alters the behavior of the object

suiting the requirement of the simulation. The higher-level architecture of ECS is given in Figure

5.1.

Engine

Entity System

Components

Component2Component1

ECS Architecture

Contains

Processes

Figure 5.1: ECS Architecture in Vico

Source: Adapted from [12]

In the architecture, each entity is a container for components which is a state without any behavior.

Each entity exhibits behavior when some process from the system acts on these entities. These
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processes come from a family which is a set of entities with a certain set of components attached

[12].

In this thesis, all the components of the digital twin model of R/V Gunnerus is used as an FMU.

This thesis produces two thrust allocation FMU that works in cooperation with other FMU’s.

Vessel
FMU

Thruster
Drive 
FMU

Thruster
Drive 
FMU

Thruster
Drive 
FMU

Power Plant
FMU

Position
Reference

FMU

Tunnel Thruster
FMU

Azimuth Thruster
FMU

Azimuth Thruster
FMU

Thrust Allocation
FMU

DP Controller 
FMU

Figure 5.2: FMUs used in Co-simulation

The overview of the different FMUs used for co-simulation in the thesis is given in figure 5.2. These

FMUs have been supplied by different companies or created by the researchers at NTNU Ålesund.

The name of the FMU is suggestive of the function the FMU performs in the co-simulation. The

connection shown in figure 5.2 is a higher level view of information transfer across the FMUs.

Providers of the FMUs used in the thesis is given in table 5.1. The information about the FMU’s

is given below as sourced from [39]:

1. Vessel FMU : This FMU outputs radiation force, mass force and restoring forces of the

vessel after using its solver.

2. Azimuth & Tunnel Thruster FMU : This is a hydrodynamic model of the thruster that

outputs forces in 3DOF when inputs are RPM,location on hull, vessel speed etc.

3. Thrusterdrive FMU : This FMU computes RPM for the Thruster FMUs when required
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forces are input to it.

4. DP Control FMU : This is a standard PID controller that computes desired forces in

Surge,Sway and moment in Yaw. These value are the input to the allocator.

5. Position Reference FMU: This FMU can be used to provide position reference during

simulation. For example, during the 4-corner test, this FMU gives the setpoint for heading

and position to the DP controller.

6. PowerPlant FMU: This is mathematical model of a generator set with auxiliary load and

circuit breakers.

7. Thrust Allocation FMU : Thesis developed FMU written in Python that distributes

commanded forces from controller to individual actuator controls

Name Provider

Vessel FMU Sintef Ocean
Tunnel Thruster FMU Kongsberg Maritime
Power Plant FMU Sintef Ocean
Azimuth thruster FMU Kongsberg Maritime
Thrust allocation FMU Thesis developed
DP Control FMU NTNU Alesund
Position Reference FMU NTNU Alesund
Thruster Drive FMU Sintef Ocean

Table 5.1: FMU Providers

The simulation for all scenario has been done in a Windows computer with a specification of Intel

i7-10875H CPU with 8 Core. The same simulation could also be done without much performance

degradation on a relatively less powerful computer. Only reason to use a powerful computer was

to use a dedicated GPU for training the deep learning model.

To setup a co-simulation using Vico framework, the following four steps are to be done. This is

shown in figure 5.3
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SSP FILE CREATION
System Structure and Parameterization (SSP) is a tool independent 

standard to define complete systems consisting of one or more FMUs.

Created using a Kotlin script where FMU's and its connections are defined.

SCENARIO CREATION

In this kotlin script, the required variables and it's value change along

with time instant is specified. This is done for example, to activate any FMU,

change wind speed, change position reference value etc.

LOG FILE CREATION

In the log file while is .xml file, the FMU along with it's variable to be logged 

into a CSV file is specified.

RUN FILE CREATION

In this shell script file,the vico commands which recognises the .ssp file,

scenario file,log file along with commands of time step,stop time and initial

values is given. 

Figure 5.3: Co-simulation setup steps

Once the 4 steps in the figure 5.3 is executed, the shell script obtained at the end is run in bash

environment. This executes the co-simulation and once the simulation is finished, the logged values

from FMUs can be used to assess the simulation.

5.2 PythonFMU

In the thesis, to build FMU, the framework used is “PythonFMU” [33][40]. By writing Python

3.x codes using the framework, an FMU can be created that is compliant with FMI 2.0 standards.

Other frameworks or tools that help in FMU creation can be found in [39].
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Chapter 6

Results and Discussion

In this chapter, the result for different scenarios where the DAE allocator has been tested is

presented. The allocator has been tested in three scenarios:

1. A standard 4 corner test

2. Stationkeeping test

3. Stationkeeping test with thruster failure

The assumptions are conditions for these simulations are provided here.

1. Each test is run by creating separate scenarios and running them in co-simulation. The

simulation time for each test is 1400 seconds with a fixed time step of 0.05 seconds for the

co-simulation master algorithm.

2. As mentioned before, after each test, a set of .csv files are obtained which contains the

variables logged from each FMU that was specified. It is these values that are plotted in this

chapter.

3. A comparison of the result of SQP based allocator is also presented to show performance

differences.

4. The average power consumed during each scenario is also an important metric considering

the fact that every allocator should try to reduce power consumption while meeting the

request force commands. In the thruster failure test, this is not provided as the metric to be

considered is whether the vessel can return to its original position.

5. In all the test, the allocators are tested on the basis of these metrics:

(a) The ability of allocator to restrict the force and angles to its saturation values.

(b) The ability of allocator to restrict rate changes for force and angle to its prescribed

limit.

(c) The ability of allocator to produce the intended result according to the mission of the

test.
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6. If the allocator is able to meet these requirements, then the test is considered to be a success

and deficiency in meeting the requirement is considered to be a point of improvement as

future work.

7. In each test, during the simulation the allocator and DP controller FMU is enabled or turned

on at a time equal to 50 seconds. The only different case is in the test of 4 corner test where

the SQP allocator is enabled at 0 seconds itself. But this does not affect the result in any

manner. Here a point to be considered is the realistic performance of different FMU. In

reality, when the allocator is turned on at 50 seconds and the allocator is suddenly allocating

a value of 1000 N, the thruster FMU cannot provide that value. But in simulation, due to

constraint of time of thesis, the FMUs could not be tuned properly such that they exhibit

an unrealistic behavior of producing large forces(same with angles) during turn-on time of

allocators. This can be generally seen in plots. Considering this, the plot for rate values are

shown from time 51 second. Realistic tuning of FMU is considered as future work of the

thesis.

8. Allowed force rates are

ḟ =

±50 N/Hz

±50 N/Hz

±50 N/Hz

 (6.1)

for each thrusters considering 20 Hz simulation rate.

9. Allowed angle rates are

α̇ =

[
±0.5 ◦/Hz

±0.5 ◦/Hz

]
(6.2)

10. Allowed force for each thrusters are ±8000 N and angle are ±80◦ as discussed previously.

6.1 4 Corner Test

A 4 corner test is a standard low-speed maneuver that is aimed at checking if the vessel can traverse

a square by following the track. Large deviations from the track are not a desirable feature of the

allocator and thus the performance from this test is a good indicator for a proper thrust allocation.

A four-corner test is conducted by giving the following set points in terms of position and heading

at these respective times. The setpoints are provided by the Position Reference FMU to the DP

controller which in turn commands the thrust allocator to produce forces and moments. The

setpoints provided for the test are given in Table 6.1. The values for setpoint persist in time after

it is set till further changes are made to the same variables.

Time(s) Setpoint
50 North : 10 m
300 East : -10 m
500 Yaw : -45◦

700 North : 0 m
900 East : 0 m
900 Yaw : 0 m

Table 6.1: 4 corner test setpoints
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The test is conducted with the same configuration for all values in different FMU’s except the

change of allocator to retain fairness in comparison. The result of the test is provided below.

In figure 6.1, the motion of the vessel in the North-East direction is recorded for comparing the

performance of both allocators. From the figure 6.1, it can be seen that the DAE allocator has

a very comparable performance relative to the SQP allocator. A reference square is drawn to

indicate the ideal track the vessel should follow. Both allocators only show slight deviation from

the ideal track.
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Figure 6.1: Vessel motion for DAE and SQP allocator for 4 corner test

In figure 6.2, the heading of the vessel for both allocator is recorded. Both allocators share almost

the same heading value during the 4-corner test.
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Figure 6.2: Comparison of heading angle for DAE and SQP Allocator for 4 corner test
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In figure 6.3, the response of the allocators against the force request from the controller for the

4-corner test is given. The DAE allocator is able to match the request with only some deviations.

The deviation is more pronounced in the Yaw torque request. Comparing this against the SQP

allocator in the same figure, the SQP allocator can follow the requests without any deviations.
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Figure 6.3: Comparison of controller request and allocation from the allocators for 4 corner Test

In figure 6.4, the forces generated by the three thrusters in the vessel are given for the two allocators.

The tunnel thruster is used more by both the allocators as it can produce the yaw moments which

is more important for the 4 corner test. The constraint for forces is met properly by both allocators.
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Figure 6.4: Forces generated by the two allocators during 4 corner test

In figure 6.5, the angle values for the two azimuth thrusters in the vessel during simulation are

given for both the allocators. In this figure 6.5, it can be seen that for a time from 0 to 50 seconds,

the angle value for the DAE allocator is zero because it has not been activated to process the force

requests. Similarly for the SQP allocator, for time 0 to 50 second, the angle value is 45◦and -45◦for
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Azimuth1 and Azimuth2 respectively. This means it was turned on from time 0 second itself. This

is the warm-start value of the allocator and the allocator only starts processing the forces requests

from time 50 seconds when the DP controller is activated.

The DAE allocator has a more reserved angle value for the azimuth thrusters whereas for the SQP

allocator, the angle value changes covering its full allowed range of [-80◦,80◦]. This could be the

SQP allocator’s way to reduce power consumption by effective use of azimuth angles.
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(a) Azimuth angles by DAE Allocator
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Figure 6.5: Azimuth angle value from the two allocators for 4 corner test
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Figure 6.6: Force rate change information from the two allocators for 4 corner test

In figure 6.6, the rate of change of forces by the three thrusters for both allocators is provided.

The plot is obtained by taking the difference of consecutive values in the simulation log to get the

change of value per cycle of simulation. So the y-axis of the plot is (N/Hz) as can be seen. The

force constraints are met properly by each allocator.

In figure 6.7, the rate of change of azimuth angle for the two allocators are provided. It can be seen

that both the allocators are able to limit its angle change value to the prescribed upper(0.5◦/Hz)

and lower(-0.5◦/Hz) limits.
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Figure 6.7: Angle rate change information from the two allocators for 4 corner test

The average power consumption by the two allocators during the 4-corner test is given in Table 6.2.

The SQP allocator has a better power consumption characteristic compared to the DAE allocator.

Since the DAE allocator has a tunable power loss factor in its design, a better value could be

obtained if thorough tuning is done. This applies to SQP as well to get a better result.

Allocator Power(kW)

DAE Allocator 3.43
SQP Allocator 3.28

Table 6.2: Average power consumption during 4 corner test

6.2 Stationkeeping Test

In the Stationkeeping Test, the vessel is supposed to hold its position while encountering wind that

changes in magnitude and direction. In this test, waves were not provided because a wave filter

was not present in the simulation to remove the first-order excitation from the wave frequency.

Wind conditions were provided as per table 6.3. The wind condition is stabilised to a speed of 10

m/s and angle of 45◦ after 440 seconds in the simulation and persists till the end of the simulation.

In the results provided for DAE and SQP allocator in the figure 6.8, it can be seen that the motion

characteristics of the vessel provided by both the allocators are the same. There is almost no

difference between their motion in North, East, or Heading. This is a favorable feature for DAE

compared against the SQP allocator. During the transition time when the wind direction change,

the vessel response is the same for both allocators. Interestingly, it can be seen that the wind

direction change has more effect on motion response than the wind speed change.
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Time (sec) Wind Speed (m/s) Wind Direction (degree)

50 1 90
60 1.5 90
70 2 90
80 3.5 90
90 4 90
100 3 90
110 5 90
120 6 90
130 8 90
160 10 90
410 10 70
420 10 60
430 10 50
440 10 45

Table 6.3: Wind direction and speed for stationkeeping test
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Figure 6.8: Vessel response for SQP and DAE allocators for stationkeeping test

In figure 6.9, the response of allocator in providing forces (Surge and Sway) and moment in Yaw

is given for both the allocators. It can be seen that the DAE allocator provides a better allocation

compared to the SQP allocator. The SQP allocator has a slight deviation from the requested torque

in Yaw and delivered torque after the wind condition stabilises. During the transition period where

wind speed and direction are changing, the requested forces and moments are properly met by each

allocator. For the DAE allocator, at time instant 50 seconds, an abrupt change in value is seen

owing to its turn-on situation as discussed before. This is not observed in the SQP allocator.
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Figure 6.9: Comparison of controller request and allocation from the allocators for stationkeeping
test

Comparing the force produced by each allocator for the three thrusters in figure 6.10, it can be

seen that it is the tunnel thruster that is more active for stationkeeping. This is natural since it

can produce the requested moment easily than the other two thrusters. Azimuth thrusters are put

to use mainly in the transition period up to 440 seconds after which the tunnel thruster maintains

a force value close to its saturation constraint magnitude. No constraints are broken in the test.
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Figure 6.10: Forces generated by the two allocators for stationkeeping test

In figure 6.11, the variation of the angle of the azimuth thrusters is given. Both allocators behave

in the opposite way for the stationkeeping allocation. Azimuth thruster 1 angle starts in opposite

direction for DAE allocator and SQP allocator and settle down to value close to each other.

Azimuth thruster angle 2 also behaves oppositely for each allocator. For the SQP allocator, the

Azimuth 2 angle can be seen to be at its magnitude saturation value.
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Figure 6.11: Azimuth angle value from the two allocators for stationkeeping test
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Figure 6.12: Force rate change information from the two allocators for stationkeeping test

In figure 6.12, the rate of change of forces for the three thruster by the two allocators are given.

They meet the rate constraints properly. In figure 6.13, the rate of change of angle of azimuth

thrusters are given. They also meet the prescribed angle rate constraints.

Allocator Power(kW)

DAE Allocator 48.3
SQP Allocator 48.6

Table 6.4: Average power consumption during stationkeeping test

For power comparison in Stationkeeping Test, the DAE has a small margin upper hand than the

SQP Allocator.
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Figure 6.13: Angle rate change information from the two allocators for stationkeeping test

6.3 Stationkeeping Test with Thruster Failure

This test is done to exhibit one of the worst-case scenarios during the DP operation of ships:

thruster failure. If during a station-keeping operation, one of the thrusters fails, the ship can lose

its position and potentially jeopardize the entire operation. So thruster failure tolerance is one of

the required features of the allocator. In the thesis, none of the developed allocators has a thruster

fault detection feature inbuilt and if one of the thrusters fails, the allocator would see a large force

and moment request from the motion controller and would have to allocate forces meeting this

requirement.

For this test, the vessel is put to stationkeeping mode with the following environment wind condi-

tion as given in Table 6.5. The wind speed is set to a small magnitude to have a realistic weather

condition. The simulation is run for 1400 seconds and at 700th second, the azimuth thruster 2 is

cut off imitating a thruster failure scenario. Only the force value is assigned a 0 Newton and the

thruster can continue to rotate.

Time (sec) Wind Speed (m/s) Wind Direction (degree)

50 1 90
60 1.5 90
70 2 90
80 3.5 90
90 4 90
110 5 90
120 6 90

Table 6.5: Wind direction and speed for stationkeeping with thruster failure

From the figure 6.14, the motion response of the vessel during the thruster failure scenario for both

allocators can be seen. It can be seen that up to time 700 seconds, both allocators provide the very

same motion characteristics to the vessel. This is similar to the stationkeeping result presented

before. But once the Azimuth thruster 2 is turned off, both allocators show deviation from the

stationkeeping setpoint. The motion is very high for the DAE allocator and results in a jitter
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motion that continues to dampen as the simulation proceeds. The SQP allocator can return to the

setpoint without much jitter motion. Its response characteristics are quite smooth compared to

the DAE allocator. Even though the DAE network has a high heading change of 10◦, the motion

in the North and East direction remains small because the DAE is a data-driven model and it has

not seen such a scenario during training.
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Figure 6.14: Vessel response for SQP and DAE allocators during stationkeeping thruster fail test
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Figure 6.15: Comparison of controller request and allocation from the allocators during station-
keeping thruster fail test

In figure 6.15,the response of the allocator against the controller request is provided.This figure

shows one of the significant characteristics of the DAE allocator in predicting the forces when

the requested commands are high and cannot meet them with the hard rate constraints getting

activated. Both allocators are not able to meet the requested force request from the controller

as can be seen in the figure 6.15. The DAE allocator has a hard time allocating forces properly

and results in large jitters for allocation. The SQP network does not exhibit this jitter allocation
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response. The removal of this jitter allocation response is considered as a future work of this

Master thesis.

An explanation to the jitter response is that the DAE allocator which is a data-driven model likes

fewer setpoint changes. This could be seen as an advantage in the Stationkeeping test against the

SQP allocator. Also, in the thruster failure scenario, the PID controller derivative value is quite

high providing large quick setpoints to DAE allocator that it return by allocating in jitter values.

Proper tuning of the controller is considered as future work.

Due to a large change in the controller request, the forces produced by the thrusters also exhibit

such a jitter response for the DAE allocator as can be seen in figure 6.16. The thruster cut of

Azimuth 2 can be seen at time instant 700 seconds for both allocators exhibited by a step decrease

to zero value in forces produced. For the DAE allocator, the jitter is present for both tunnel and

azimuth 1 thruster in force produced. On the other hand, the SQP allocator has a smooth force

delivery showing its superior allocation quality. In either case, forces remain within the prescribed

boundary.
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Figure 6.16: Forces generated by the two allocators during stationkeeping thruster fail test
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(a) Azimuth angle value by DAE allocator

0 200 400 600 800 1000 1200 1400
-100

-50

0

50

100

A
n
g
le

(d
e
g
re

e
s
)

Azimuth1 angle

0 200 400 600 800 1000 1200 1400

Time(s)

-100

-50

0

50

100

A
n
g
le

(d
e
g
re

e
s
)

Azimuth2 angle

(b) Azimuth angle value by SQP allocator

Figure 6.17: Azimuth angle value information from the two allocators for stationkeeping thruster
fail test
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The azimuth angle value for both allocators can be seen in figure 6.17. The jitter response of the

DAE allocator is reflected in both azimuth thrusters. Here both azimuth thrusters continue to

rotate within their prescribed constraint despite Azimuth 2 force being zero after thruster failure.

There is no jitter in the angle value for the SQP allocator.

The extend of jitter of the forces and angles can be seen in figure 6.18 and figure 6.19 respectively

where their rate change information is provided. A large spike in Azimuth 2 forces can be seen

around the middle of the figure for both DAE and SQP allocator. This is where the thruster is

turned off imitating a failure. After this instant, the rapid rate change for Azimuth1 and Tunnel

force can be seen for the DAE allocator. The robust hard rate constraint allows the allocator to

keep the rate within the prescribed limit of ±50N/Hz. The DAE allocator has very smooth force

rate characteristics.
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Figure 6.18: Force rate change information from the two allocators for stationkeeping thruster fail
test

The angle rate change information given in figure 6.19 for the allocator also shows the jitter for

DAE allocator.The SQP allocator also have a superior angle rate change characteristics.
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Figure 6.19: Angle rate change information from the two allocators for stationkeeping thruster fail
test

It is to be noted that one the drawback of DAE allocator is that, whenever the forces from DP
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controller exceeds the trained values for DAE allocator, it predicts very wrong values similar to

any ML model predicting wrong when data outside its trained regime is provided.

6.4 Summary

When this thesis was being developed, the existing DAE allocator [8] was proposed to small force

ranges, and through this thesis, it could be found that the method can be extended to high force

ranges with added robustness reassuring the validity of the existing method. The neural network

architecture has been changed with the increased speed of allocation during simulation runs.

One of the main challenges of the Deep learning allocator was its robustness to meet the constraints.

Without meeting the physical constraints of the thrusters, the method cannot be implemented in

real-world scenarios. This thesis has proven that it is possible to implement this by making a novel

custom layer that can take this into account. The approach has been tested for different scenarios

with the same fairness across each test

The developed DAE allocator can perform similar to a classic SQP allocator in the 4-corner test

despite having a higher power requirement. The power requirement is a tunable loss term in the

DAE allocator and changes to it can change the situation favorable to the DAE allocator.

The DAE allocator has a better performance characteristic for the Stationkeeping test than the

SQP allocator. From this test, it could be inferred that the DAE allocator can perform better

for scenarios where large setpoint changes are not present. The power consumption of the DAE

allocator is better than the SQP allocator.

The only scenario where the DAE allocator had an inferior performance was during the thruster

failure scenario. This could be partly explained by the fact that the data the DAE allocator has

been trained in does not have the force request regime as experienced during the thruster failure

test. An improperly tuned DP controller could also be considered as adding a problem to this

situation. The fixing of both these problems is considered as a future work of the thesis. Here the

reader is to note that the DAE allocator has an inherent disadvantage as any Machine Learning

Model: whenever the allocator sees force request above its trained regime, it allocates very poor

values for forces and angles. This is similar to a Machine Learning model predicting incorrectly

when inputs that are out of the trained regime are given.
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Chapter 7

Conclusion and Future Works

In this Master thesis, a Deep Learning based Thrust Allocator in form of a Deep Autoencoder

Network has been developed following the previous research streams([8],[21]). In this process,

several improvements to the existing method have been proposed and the robustness and validity

of the method have been checked through simulation.

The thesis has contributed to solving one of the future works considered in the original DAE-based

allocator [21] where adding rate constraints was a challenge. Through the thesis, a robust rate

handling for forces and angles has been found through the use of custom layers.

The thesis has met its objective of developing two FMUs-one is the classic control allocation FMU

based on the SQP approach and the DAE allocator. Both of the FMUs have been tested extensively

in the co-simulation environment and the results have been presented. These FMUs can be used

for further testing and modification. The thesis has tried to point out the merits and demerits of

the proposed DAE allocator based on the three tests done.

The thesis has used the Vico co-simulation environment that was developed by the researchers at

NTNU Ålesund and it can be found to be working well with respect to its desired functionality.

The use of co-simulation holds great prospects in plug-and-play simulation for various marine

components in a vessel.

The thesis can be concluded by stating that the Deep Learning-based DAE allocator has a future

once more people get involved in the development process and extensive tests are done to optimise

it. The testing and optimisation start right from the data generation part to where each component

FMU in co-simulation can be tuned properly to exhibit realistic behavior.

7.1 Future Works

At the end of the thesis, the following can be considered as future work of the thesis:

1. Experiment different data generation strategies to incorporate a training regime where ex-

treme cases can be learned by the network properly.

2. A study of the tradeoff between power loss factor and rate loss factor can be done to estimate
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the performance difference in different scenarios.

3. In the thesis, only thrusters with a constant pitch were considered for actuation. To use

the methodology followed in the thesis for other kinds of actuators such as Rudders, Vari-

able Pitch propellers, Voith Schneider propellers, etc. holds great possibility to explore and

research.

4. The current SQP approach in literature [11] can handle singularity avoidance. This feature

could be incorporated into the DAE allocator.

5. In terms of co-simulation, there are fine adjustments that can be made to each FMU in the

simulation that can make the simulation more realistic. This could not be explored in the

thesis due to time constraints. This could be a good path to explore.

6. Online retraining of the DAE model is considered a future work that can help alleviate the

problems in extreme cases such as thruster failure

7. Including fault tolerance to the DAE allocator is another desirable feature for the future.
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Appendix

A Vico scenario file

A.1 Scenario file for 4-corner test

{

@file:Repository("https://dl.bintray.com/ntnu-ihb/mvn")

@file:DependsOn("no.ntnu.ihb.vico:core:0.3.3")

import no.ntnu.ihb.vico.dsl.scenario

val tReset = 50.0

scenario {

invokeAt(49.0){

bool("vesselModel.reset_position").set(true)

}

invokeAt(tReset){

bool("vesselModel.reset_position").set(false)

}

invokeAt(tReset) {

bool("dpController.enable").set(true)

}

invokeAt(tReset) {

bool("allocator.enable").set(true)

}

invokeAt(tReset) {

real("vesselModel.input_global_wind_vel").set(0)

}

invokeAt(tReset) {

real("vesselModel.input_global_wind_dir").set(0)

}

invokeAt(tReset) {

real("posVelReference.north_wp").set(10)

}

invokeAt(300) {
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real("posVelReference.east_wp").set(-10)

}

invokeAt(500) {

real("posVelReference.psi_wp").set(-45)

}

invokeAt(700) {

real("posVelReference.north_wp").set(0)

}

invokeAt(900) {

real("posVelReference.east_wp").set(0)

}

invokeAt(900) {

real("posVelReference.psi_wp").set(0)

}

}

}

A.2 Scenario file for Stationkeeping test

{

@file:Repository("https://dl.bintray.com/ntnu-ihb/mvn")

@file:DependsOn("no.ntnu.ihb.vico:core:0.3.3")

import no.ntnu.ihb.vico.dsl.scenario

val tReset = 50.0

scenario {

invokeAt(49.0){

bool("vesselModel.reset_position").set(true)

}

invokeAt(tReset){

bool("vesselModel.reset_position").set(false)

}

invokeAt(tReset) {
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bool("dpController.enable").set(true)

}

invokeAt(tReset) {

bool("allocator.enable").set(true)

}

invokeAt(tReset) {

real("vesselModel.input_global_wind_vel").set(1)

}

invokeAt(tReset) {

real("vesselModel.input_global_wind_dir").set(90)

}

invokeAt(60) {

real("vesselModel.input_global_wind_vel").set(1.5)

}

invokeAt(70) {

real("vesselModel.input_global_wind_vel").set(2)

}

invokeAt(80) {

real("vesselModel.input_global_wind_vel").set(3.5)

}

invokeAt(90) {

real("vesselModel.input_global_wind_vel").set(4)

}

invokeAt(100) {

real("vesselModel.input_global_wind_vel").set(3)

}

invokeAt(110) {

real("vesselModel.input_global_wind_vel").set(5)

}

invokeAt(120) {

real("vesselModel.input_global_wind_vel").set(6)

}

invokeAt(130) {

real("vesselModel.input_global_wind_vel").set(8)

}
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invokeAt(150) {

real("vesselModel.input_global_wind_vel").set(8)

}

invokeAt(155) {

real("vesselModel.input_global_wind_vel").set(8)

}

invokeAt(160) {

real("vesselModel.input_global_wind_vel").set(10)

}

invokeAt(401) {

real("vesselModel.input_global_wind_dir").set(90)

}

invokeAt(402) {

real("vesselModel.input_global_wind_vel").set(10)

}

invokeAt(410) {

real("vesselModel.input_global_wind_dir").set(70)

}

invokeAt(420) {

real("vesselModel.input_global_wind_dir").set(60)

}

invokeAt(430) {

real("vesselModel.input_global_wind_dir").set(50)

}

invokeAt(440) {

real("vesselModel.input_global_wind_dir").set(45)

}

}
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A.3 Scenario file for Stationkeeping test with thruster fail

{

@file:Repository("https://dl.bintray.com/ntnu-ihb/mvn")

@file:DependsOn("no.ntnu.ihb.vico:core:0.3.3")

import no.ntnu.ihb.vico.dsl.scenario

val tReset = 50.0

scenario {

invokeAt(49.0){

bool("vesselModel.reset_position").set(true)

}

invokeAt(tReset){

bool("vesselModel.reset_position").set(false)

}

invokeAt(tReset) {

bool("dpController.enable").set(true)

}

invokeAt(tReset) {

bool("allocator.enable").set(true)

}

invokeAt(tReset) {

real("vesselModel.input_global_wind_vel").set(1)

}

invokeAt(tReset) {

real("vesselModel.input_global_wind_dir").set(90)

}

invokeAt(60) {

real("vesselModel.input_global_wind_vel").set(1.5)

}

invokeAt(70) {

real("vesselModel.input_global_wind_vel").set(2)

}

invokeAt(80) {

real("vesselModel.input_global_wind_vel").set(3.5)

}
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invokeAt(90) {

real("vesselModel.input_global_wind_vel").set(4)

}

invokeAt(100) {

real("vesselModel.input_global_wind_vel").set(4)

}

invokeAt(110) {

real("vesselModel.input_global_wind_vel").set(5)

}

invokeAt(120) {

real("vesselModel.input_global_wind_vel").set(6)

}

invokeAt(401) {

real("vesselModel.input_global_wind_dir").set(90)

}

invokeAt(402) {

real("vesselModel.input_global_wind_vel").set(6)

}

invokeAt(700) {

bool("allocator.thruster_failure").set(true)

}

}

}

B Vico shell script

The example for Vico shell script for running simulation is given below.

{

vico simulate-ssp \

-dt "0.05" \

--stopTime "1400" \

-log "logGIGRU.xml" \

-s "scenario_dp_four_corner.main.kts" \

-p "initialValues" \

-res "results4cornerSQP8000N" \

"gunnerus-SQPStationkeeping8000.ssp"

#read -p "Press enter to continue"

}
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C Test outside co-simulation
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Figure 1: Error estimate in 3DOF
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Figure 2: Thruster allocated values
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Figure 3: Allocation values in 3DOF
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Figure 4: Allocation rate values in 3DOF
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