
1

Bilateral Weighted Regression Ranking Model with
Spatial-Temporal Correlation Filter for Visual

Tracking
Hu Zhu, Member, IEEE, Hao Peng, Guoxia Xu, Member, IEEE, Lizhen Deng, Member, IEEE, Yueying

Cheng, and Aiguo Song Senior Member, IEEE

Abstract—Many discriminative correlation filter (DCF)-based
methods have successfully leveraged the guidance for solving
two problems (i.e., the boundary effect and temporal filtering
degradation) as a model prior to visual tracking. Regardless
of the specific content of the tracking algorithms, the intuitive
motivation of these methods is to control the degeneration of
the updating loss of the objective function with a structural
framework. While these methods rely mostly on various explicit
prior regularization items, they always ignore the loss from the
data fidelity term. Therefore, we propose a bilateral weighted
regression ranking model with a spatial-temporal correlation
filter, namely, BWRR. Here, we resort to two procedures for
solving the above problems. First, BWRR introduces a bilateral
constraint into the data fidelity term to control the loss of rows
and columns of the filter learning data term. The weighted
matrices could impose an adaptive penalty for large data loss
during the learning process to avoid the tracking offset problem
and model degradation problem. Second, the data of the updated
weighted matrices is not directly applied to the calculation of the
filter during each iteration. Instead, a new weighted product
matrix is obtained by ranking and numerical transformation
for updating the filter. We show that the proposed model
converts the original correlation filter regression problem into
a regression-with-ranking problem, thus avoiding the problem
of positive and negative sample imbalance. Overall, the BWRR
model is approximated as a linear equality constraint problem,
which is iteratively solved by the alternating direction method
of multipliers(ADMM). Qualitative and quantitative evaluations
demonstrate the effectiveness and superiority of our proposed
method by extensive and quantitative experiments on the OTB,
VOT, and UAV datasets.

Index Terms—Bilateral Weighted Regression, Spatial-
Temporal, Ranking, Visual Tracking

I. INTRODUCTION

V ISUAL tracking plays an important role in computer
vision, image recognition and classification. With the

rapid development of research, various tracking methods
have been proposed and have yielded very effective results
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[1], [2]. Visual tracking methods are generally divided into
two categories: generative model methods and discriminative
model methods. Thanks to their powerful feature learning and
computing capabilities, DCF-based trackers have become the
mainstream of research [3]–[6]. However, it is still difficult
for DCF trackers to maintain accurate and robust tracking in
unconstrained scenarios.

In DCF methods, there are two main problems that affect
the visual tracking: the boundary effect and temporal filtering
degradation. To solve the first issue, i.e., the boundary effect,
the spatially regularized DCF (SRDCF) [7] was proposed to
introduce a penalty for the background in training correlation
filters. On this basis, the spatial-temporal regularized DCF
(STRCF) in [8] introduces a spatial-temporal regularization to
obtain a joint solution between the two major problems and
achieve superior performance over the SRDCF [7]. However,
in a tracker based on spatial-temporal correlation, due to the
influence of noise or the background environment, the data in
the image is prone to sudden changes, namely,“outliers”, such
that the discriminant filter cannot accurately learn from the
object and instead learns from the background environment. In
addition, the data fidelity term of the loss function will produce
a large loss due to these “outliers”, which will accelerate
the degradation of the model in the model optimization and
updating and ultimately affect the target tracking performance.

In [9], the checking and discarding of “outliers” are
achieved by hypothesis testing, while the model refuses to
carry out measurement if the “outliers” exceed the given
confidence interval, which cannot fully alleviate the influence
of “outlier” points. Therefore, we propose a bilateral weighted
regression ranking (BWRR) model with a spatial-temporal
regularization term. Inspired by the trilateral weighted sparse
coding (TWSC) scheme in [10], the BWRR model embeds
two weighting matrices on both sides of the data fidelity term
and controls the loss of rows and columns of the data fidelity
term by adjusting the parameters of the weighting matrices
to improve the stability of the model. To be specific, the loss
function in the classification task is susceptible to the “outlier”
[11]. If the predicted value of a certain point has a large error
with respect to the true value, the model tends to produce a
large error. Therefore, this model uses adaptive adjustment of
the weighted matrices from the data fidelity term to avoid the
large loss caused by the “outliers”.

If bilateral weighting is used to alleviate the adverse effects
of a small amount of mutation point data, then the sparse term
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added in BWRR improves the performance of the model by
controlling the integrity of the image data. The image data are
often represented by high-dimensional feature vectors in image
processing and the class label of input data can be predicted by
a linear classification filter [12], [13]. Our BWRR algorithm
selects the most distinguishing feature subset from the entire
feature set by introducing a sparse term based on the `1 norm
to achieve dimensionality reduction of the feature data. In this
way, the BWRR model can be regarded as a linear equality
constraint problem that can simplify the data processing [10].
The selection of the channel data is realized by assigning
a weight matrix. In addition to the selection control of the
image data, the type of features extracted during the feature
learning has a certain degree of influence on the tracking
effect. To show the tracking performance of our model, we
mainly use HOG features to implement the data feature of
images, which have strong robustness to image geometric
deformation, lighting and shadow transformation. In addition,
we adopt the deep feature [14], [15] to verify the performance
of BWRR. It has been proved that the tracking effect based
on deep features is better than that based on HOG features.

Moreover, the sample imbalance problem over positive and
negative samples is an open problem that has always existed
in the one-stage target detection algorithm, which is unable
to converge to a good solution for data training and updating
[16]. Considering the constraint of weight matrices on channel
information, the bilateral weighted matrices always appear as
a constrained product over rows and columns of data. On this
basis, we take the ranking of the elements and convert the
values to update the product matrix inspired by [16]. In this
way, the BWRR can not only mitigate the impact of “outliers”
but also avoid the problem of positive and negative sample
imbalance during target detection. The advantage of this is
to convert the original tracking correlation filter regression
problem into a regression-with-ranking problem. Although the
learning adaptive discriminative correlation filters (LADCF)
[17] also uses the `1-norm and ranking, the actual spatial
domain of the LADCF is indeed fixed, which obviously cannot
meet the ever-changing requirements of spatial characteristics.
Furthermore, in the update of the LADCF, the ranking method
mainly performs numerical processing on the `1-norm. Unlike
the LADCF, our ranking is used to process the values of the
weight matrix during the update process. Thus, the values in
the weight matrix become a set of arithmetic progressions to
avoid abnormally large values (these abnormally large values
make the model appear to incur large loss during the updating
procedure).

Through the above analysis, the least squares regression
equation is used to solve the filter updating problem and the
whole iterative procession is achieved by the alternating direc-
tion method of multipliers (ADMM). To fully demonstrate and
analyze the superior performance of our tracking algorithm, we
compare BWRR and other state-of-the-art methods based on
the HOGCN feature and deep learning feature, respectively.
The experimental results prove that our BWRR has excellent
performance in terms of the robustness and accuracy of target
tracking.

The contributions of this work are as follows:

• A bilateral weighted regression ranking (BWRR) algo-
rithm with two weighted matrices in the data fidelity
term to control the loss of rows and columns and achieve
weighted constraints on multiple channels is proposed in
this paper.

• A sparse term based on the `1-norm is introduced into our
BWRR to select the channel data and utilize the multiple
channel prior statistical knowledge. The accuracy of
sparse selection is guaranteed by weight control.

• We update the bilateral weighted matrices during the
optimization process and introduce the ranking method to
realize the update process to better alleviate the problem
of sample imbalance.

• Since the BWRR can be treated as a linear equality
constraint problem, the iterative process is solved by
the ADMM algorithm, and a comprehensive experiment
proves the superiority of the BWRR.

II. RELATED WORK

A. DCF-based Trackers

DCF-based trackers have recently attracted wide attention.
Compared with the traditional trackers with object detection
and tracking algorithms [18], the DCFs simplify the mappings
with high computational efficiency and strong robustness. In
the frequency domain, DCFs utilize a circular structure to
solve a ridge regression problem, such as MOSSE [19], KCF
[20] and Staple [21], all of which improve the reliability
of visual tracking. In addition, SAMF [22] and DSST [23]
were proposed to handle scale variations, and the fDSST [24]
performs scale detection in the tracking stage and improves
the efficiency by a joint scale and location estimation. In
addition, to acquire fewer boundary effects, the BACF based
on HOG features was proposed in [25]. The SRDCF [7]
and STRCF tracker [8] employ spatial and spatial-temporal
information, respectively, to solve the boundary effect effi-
ciently. Subgrid tracking by learning continuous convolution
operators (CCOTs) was proposed in [26]. Efficient convolution
operators (ECOs) [27] were proposed to achieve a light-
weight version of the CCOT with a generative sample space
and dimension-reduction mechanism. Furthermore, a 3rd-order
tensor was used in [28] to represent the joint features of spatial
and temporal information to achieve better tracking results
with incremental N-mode SVD. Moreover, supervised tensor
learning-based methods [29] have been proved to perform
well when using a decomposition method to overcome the
tracking representation overfitting problem in the field of target
tracking. In addition, some trackers [30], [31] use neural
network models to process image data, which greatly improves
the tracking effect of a model in a responsible environment.
DCF-based tracking methods have also been exploited to sup-
port structural constraints [32], long-term memory [15], [33],
support vector machines(SVMs) [34], [35], the multikernel
method [36], [37], and sparse representation [38], [39]. In
addition to the handcrafted features used in [7], [20], [40], the
deep feature is applied in SiamFC [41], CF-Net [42] HDT [43],
and HCF [15] to achieve more precise and effective object
tracking performance.
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B. Deep-Learning-based Trackers

In the past, tracking algorithms mainly used histogram of
oriented gradient (HOG) or HOGCN features, which have
strong robustness to image geometric deformations, lighting
and shadow transformations. However, some experimental
results [44] showed that the tracking algorithms based on
low-level handcrafted features are less likely to work well
in some complex scenes; therefore, several trackers combine
deep feature and correlation filters into visual tracking and
have achieved robust performance [27], [42], [44]. In addition,
deep learning (DL) [14], [15] forms more abstract high-level
representation attribute categories or features by combining
low-level features to discover distributed feature representa-
tions of data. Furthermore, the top-down supervised learning
in deep learning trains labeled data and fine tunes the net-
work to improve the feature learning effect, thereby obtaining
better tracking results. For example, the Siamese network
was introduced in SINT [45] and SiamFC [41] to achieve
more simplicity and a competitive performance. By contrast,
CF-Net [42] regards the correlation filter as a differentiable
layer in the deep architecture to achieve good tracking results.
The hybrid neural network with high tracking performance
proposed in [46] can learn in a closed-loop system to achieve
second-order practical tracking, and the neural weight of the
network structure strengthens the model adaptability. Since
deep learning is mainly implemented using convolutional
networks, the experimental part later in this article discusses
the impact of deep learning on the performance of tracking on
convolutional networks with different layers.

C. Convolutional Sparse Coding Model

Visual tracking has been commonly formulated within the
Bayesian filtering framework. The optimal state is obtained by
the maximum a posteriori (MAP) estimation over a set of N
samples [13]:

x̂t = argxi
t
max p

(
zt|xit

)
p
(
xit|xt−1

)
where xit is the i-th sample at frame t. In the next section,
we present a tracking algorithm within the correlation filter
framework. The samples at frame t can be drawn by a
Gaussian function with mean xt−1 and variance δ2:

p
(
xit|xt−1

)
= G

(
xt−1, σ

2
)

(1)

More samples in multiple channels are used to improve the
tracking robustness at the expense of increasing the computa-
tional cost. At frame t, we denote the multichannel sample set
as X = {x1, x2, · · · , xD} which is obtained by the Gaussian
function using Eq. (1). The corresponding filters are denoted
as f = {f1, f2, · · · , fD}, where D is the number of channels.
For the Dth channel, xd = {x1, x2, · · ·xM×N} ∈ RM×N×1

with a feature map size of M × N . y is the predefined
Gaussian-shaped label at time t− 1. The convolutional sparse
coding model can be formulated as

min
f
‖y − x ∗ f‖22 + λ‖f‖q (2)

where ∗ indicates the convolution of x and f , λ is the penalty
factor of the sparse regularization term, and q = 0 or 1 to
enforce sparse regularization on filter f .

In our BWRR, the joint sparsity is achieved by an `1-norm
calculation, i.e., q = 1, and this group sparsity enables robust
feature selection by reflecting the joint contribution of feature
maps from all channels. The sparseness of the tracked target
can be obtained by solving an `1-regularized least squares
optimization problem. Moreover, this formulation is different
from the `1 tracking method [47], which requires solving D
`1-minimization problems. By contrast, the proposed method
requires solving m `1-minimization problems (m << D),
thereby reducing the computational complexity significantly.

D. Spatial-Temporal Correlation Filter Model
Before introducing the STRCF model, we briefly introduce

the DCF trackers. The classical DCF tracking method trains a
classifier from an image patch. First, given a circular matrix
X = [x1, x2, · · ·xD] in RM×N×D with a Gaussian function
label y trained by DCF-based trackers with a filter f which
also has D channels, the goal of each DCF-based tracker
is to learn a function f(xi; f) = fT · xi to distinguish the
target from the background. These trackers can utilize the
fast Fourier transform (FFT) and its inverse transform F−1 to
improve the efficiency of computation in the Fourier domain.

f(X; f) = fTX = f ⊗ x = F−1(f̂ � x̂∗)

Here, x̂ is the Fourier representation of x, x̂∗ is the complex
conjugate of x̂ in the frequency domain, ⊗ denotes the
circular convolution operator and � denotes the operator of
elementwise multiplication.

Second, DCF trackers find the best candidate to maximize
the discriminant function in the current filter based on the
model parameter f̄ from a previous estimation or prior knowl-
edge, which is formulated as the following tracking-learning-
updating framework:

x̃i = arg max
xi

f(xi; f̄)

where the candidate xi is a feature map extracted from the
image, which has a good correlation with the original image,
and the result calculated in the frequency domain is significant.
After obtaining the tracking feature target, the new model is
trained by minimizing the loss function.

f̃ = arg min
f

θ(f, ψ) + ϕ(f)

where θ(·) is the objective and ϕ(·) is the regularization
function. ψ = (X, f) indicates that the feature sample is
processed by the filter.

According to the online passive-aggressive (PA) algorithm
suggested in [48] , the STRCF [8] model combines a temporal
regularization and derives the bound on the cumulative of the
PA algorithm, which can be expressed as ‖f − ft−1‖22. The
objective function of the STRCF can then be expressed as:

arg min
f

1

2

∥∥∥∥∥
D∑
d=1

xdt ∗fd−y

∥∥∥∥∥
2

2

+
1

2

D∑
d=1

∥∥ω · fd∥∥2
2
+
µ

2
‖f−ft−1‖22

(3)
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where x denotes the images patches, f denotes the current
filter, and ft−1 denotes the previous filter, which are all in
RM×N×D. In addition, µ denotes the regularization parameter.
The structured space regularization term calculates the `2-
norm value of each filter channel.

III. THE PROPOSED METHOD FOR VISUAL TRACKING

A. The Proposed Bilateral Weighted Regression Ranking
Model

Motivated by the excellent success of sparse representation
in vision tasks [13], we introduce two weighting matrices on
the data fidelity term and sparse discriminative term into the
STRCF for object tracking, unifying the entire input during
feature selection adaptively. Then the loss function of visual
tracking can be formulated as follows.

argmin
f

1

2

∥∥∥∥∥
D∑
d=1

W1 ·
(
xdt ∗fd−y

)
·W2

∥∥∥∥∥
2

2︸ ︷︷ ︸
bilateral−data−fidelity−term

+
1

2

∥∥∥∥∥
D∑
d=1

W3 · fd
∥∥∥∥∥
1︸ ︷︷ ︸

sparse−term

+
1

2

D∑
d=1

∥∥ω · fd∥∥2
2︸ ︷︷ ︸

spatial−term

+
µ

2
‖f − ft−1‖22︸ ︷︷ ︸

temporal−term

(4)
Here, the first term of the formulation is a data fidelity term

with two weighting matrices on two sides to control the loss.
The second term is the sparse term, and the weighting matrix
W3 is introduced to multiply by the filter f to ensure the
accuracy of channel selection. The penalty factor λ in Eq.
(2) is already included in the matrix. The third item is a
spatial regularazition term, which adds a spatial regularization
weight matrix ω. The fourth item is a temporal regular term,
which is used to indicate the correlation between the current
output frame of the filter and the previous frame. It is worth
noting that w, y, xdt , x

d
t−1, f

d, fdt−1 in RM∗N are vectors with
length M ∗N , with d ∈ (1, D), and that W1,W2 are diagonal
matrices. Moreover, W1 is a block diagonal matrix with a total
of D blocks corresponding to D channels and each block uses
the same diagonal elements to describe the image features
within each channel. W2 weights the output features of the
predicted label y. Through the joint weighting of W1 and W2,
equalization constraints of multiple channels can be achieved
to reduce model degradation and achieve more robust tracking
effect.

In the BWRR model, the combination of sparse representa-
tion and spatial temporal regularity reduces the interference
of noise on target tracking. The overall model enhances
the correlation of target tracking with different frames and
improves the performance of target tracking. A schematic
diagram of the model is shown in Fig. 1. The whole process
of visual tracking includes the following: 1) Preprocessing the
input frame image to generate multiple candidate image blocks
(including target blocks and background blocks); 2) Select-
ing appropriate candidate target blocks as prediction targets
(prediction), where there are multiple prediction targets; 3)
Updating prediction targets into our model; 4) Obtaining the
tracking target. Since BWRR uses a discriminative model in
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Fig. 1. Schematic diagram of visual tracking of the proposed model.

the tracking process, a classifier is trained to distinguish the
target from the background. With consideration of the temporal
regularization term of the model, the final tracking result data
of the previous frame are also added to the model update for
iterative operation.

B. Model Optimization by the ADMM

The optimization of Eq. (4) is carried out by introducing the
auxiliary variable g and Lagrange multiplier s. The auxiliary
variable g is introduced by requiring fd = gd. Then, we obtain
the Lagrangian augmentation function.

L (W, f, g, h) = 1
2

∥∥∥∥ D∑
d=1

W1 ·
(
xdt ∗ fd − y

)
·W2

∥∥∥∥2
2

+1
2

∥∥∥∥ D∑
d=1

W3 ·fd
∥∥∥∥
1

+ 1
2

D∑
d=1

∥∥ω · gd∥∥2
2
+

D∑
d=1

(
fd − gd

)
· sd

+γ
2

∥∥fd − gd∥∥2
2
+ µ

2 ‖f − ft−1‖22
(5)

Let h = 1
γ s, where γ is a step-size parameter. Then, the above

formulation is converted to:

L (W, f, g, h)=

∥∥∥∥ D∑
d=1

W1 ·
(
xdt ∗fd−y

)
·W2

∥∥∥∥2
2

+

∥∥∥∥ D∑
d=1

W3 ·fd
∥∥∥∥
1

+
D∑
d=1

∥∥ω · gd∥∥2
2
+γ
∥∥fd−gd+hd

∥∥2
2
+µ ‖f−ft−1‖22

(6)
where gd, hd in RM∗N have the same size as that of xd.
The Lagrangian augmentation function of the above formula
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is divided into three subproblems by the ADMM algorithm.

f (i+1) = arg min
f

∥∥∥∥ D∑
d=1

W1 ·
(
xdt ∗ fd − y

)
·W2

∥∥∥∥2
2

+

∥∥∥∥ D∑
d=1

W3 ·fd
∥∥∥∥
1

+γ ‖f − g + h‖22+µ ‖f − ft−1‖22

g(i+1) = arg min
g

D∑
d=1

∥∥ω · gd∥∥2
2

+ γ ‖f − g + h‖22
h(i+1) = h(i) + f (i+1) − g(i+1)

(7)

We detail the solution to each subproblem for the update as
follows.

Update of f :
Using Parseval’s theorem, the first row of Eq. (7) can be

rewritten in the Fourier domain as:

argmin
f̂

∥∥∥∥∥
D∑
d=1

W1 ·
(
x̂dt · f̂d − ŷ

)
·W2

∥∥∥∥∥
2

2

+
∥∥∥W3 · f̂d

∥∥∥
1

+ γ‖f̂ − ĝ + ĥ‖22 + µ
∥∥∥f̂ − f̂t−1

∥∥∥2
2

(8)

where f̂ denotes the discrete Fourier transform (DFT) of the
filter f . Eq. (8) can be decomposed into M ∗N subproblems,
with the j − th subproblem related to the j − th element of
f along all D channels. Let vj(f̂) ∈ RD denote the output of
the j-th channel of the filter in D channels. Then, we obtain:

argmin
f̂

1
2

∥∥∥W1 ·
(
vj (x̂t)

T · vj(f̂)−ŷj
)
W2

∥∥∥2
2
+
∥∥∥W3 · vj(f̂)

∥∥∥
1

+γ
∥∥∥vj(f̂)−vj(ĝ) + vj(ĥ)

∥∥∥2
2
+µ

∥∥∥vj(f̂)− vj
(
f̂t−1

)∥∥∥2
2
(9)

To solve vj(f̂), we use the bilateral least squares regression
equation, which is expressed as follows:

ACk+1 + Ck+1Bk = Ek (10)

where Ck+1 is the solution required by the formulation,
corresponding to the filter f (i+1) in our BWRR.

Since the fourth term in Eq. (9) does not conform to the
formulation for the bilateral least squares regression solution,
we do not include the fourth term in the calculation to make
Eq. (9) satisfy the expression of Eq. (10). At the same time,
we make vj(f̂∗) = W3 ·vj(f̂). Then, Eq. (9) can be simplified
to the following form:

min
f̂

∥∥∥W1 ·
(
ŷj − vj (x̂t)

T · vj(f̂∗)
)
·W2

∥∥∥2
2

+γ
∥∥∥vj(f̂)− vj(ĝ) + vj(ĥ)

∥∥∥2
2

(11)

Corresponding to the expression of Eq. (10), we obtain:


A = WT

3 · vj(x̂t)
T ·WT

1 ·W1 · vj (x̂t) ·W3

Bk = γ
(
W2 ·WT

2

)−1

Ek = WT
3 · vj(x̂t)

T ·WT
1 ·W1 · ŷj

+
(
γvj (ĝ)− γvj

(
ĥ
)) (

W2 ·WT
2

)−1

(12)

Substitute Eq. (12) into Eq. (10) to obtain the solution of
Ck+1 which is also the solution of filter f (i+1).

Ck+1 =
ŷj

vj(x̂t)·W3
+

vj(ĥ)−vj(ĝ)
2W2·WT

2 ·WT
3 ·vj(x̂t)T ·WT

1 ·W1·vj(x̂t)·W3

(13)
In practice, the method of bilateral least squares regression

is mainly applied to image denoising [10], and the method
of target tracking is different from image denoising, which
means that this method cannot be used directly. Therefore, we
have improved the previous solution process. In the process of
iterating f (i+1) with the ADMM, the weight matrix W1,W2

is regarded as a constant and then substituted into Eq. (9).
The weight matrix W1,W2 is updated after an iteration is
completed. According to a large number of experiments, the
weight matrix W3 is set as the identity matrix I to achieve
the best effect. Then, we derive Eq. (9) to obtain the following
formulation.



vj(f̂) = V1

(
f̂ |f̂t−1; x̂t

)
· V2

(
f̂ |x̂t

)
V1

(
f̂ |f̂t−1; x̂t

)
= vj (x̂t) · ŷj − 1

W1·W2·W3
+

2γ·vj(ĝ)
2W1·W2

− 2γ·vj(ĥ)
2W1·W2

+ 2µf̂t−1

2W1W2

V2

(
f̂ |x̂t

)
= W1·W2

(2γ+2µ)I

− WT
1 ·WT

2 ·vj(x̂t)
T vj(x̂t)·W2·W1

(2γ+2µ)I(W1·vj(x̂t)
T vj(x̂t)·W2+(2γ+2µ)I)

(14)
We use the Sherman-Morrision formula to obtain:

vj(f̂) = W1·W2

(2γ+2µ)I −
WT

1 ·WT
2 ·vj(x̂t)

T ·vj(x̂t)·W2·W1

(2γ+2µ)I(W1·W2+(2γ+2µ)I)
(15)

Update of W1,W2: When W1 and W2 are in the initial
state, they are uniformly set to an identity matrix with the same
size as that of the extracted feature matrix. When updating,
since W1 and W2 always appear in the update formulation in
the form of a product, let W = W1 ·W2. Update W by using
the following formulation:

W = exp

−
∥∥∥∑D

d=1

(
xdt ∗ fd − y

)∥∥∥2
2

2τ2

 (16)

In the experiment, the parameter τ is calculated as 0.6.
In the actual experimental operation, instead of directly

substituting the updated matrix W into the calculation in the
next iteration, the data replacement operation is performed on
W following [49].

• Step 1: Set all elements except the diagonal of the matrix
to 0, leaving only the elements on the diagonal.

• Step 2: Rank the elements on the diagonal from small
to large. Then each element gets an array number based
on its size. We replace the corresponding element in the
matrix with the permutation sequence number of each
element to obtain a new diagonal matrix.

• Step 3: Convert the elements of the new diagonal matrix.
Assume the value of the j-th element of the diagonal to
be W (j) = N ; then, use the following formulation to
obtain a j-th new element:

W (j) = 1 + (N − 1) · a (17)
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where a is the weight parameter. Finally, convert all the
elements on the diagonal to obtain a new matrix W .

The data processing of W is actually carried out to select
the features that can best maintain the data similarity of the
entire feature set and give a sufficient constraint. Most feature
selection algorithms evaluate the importance of each feature
individually and then select them one by one. However, the
existence of the imbalance problem between positive and
negative samples will cause the model to learn more from
negative samples, thus causing the target learning to shift.
The unsupervised feature selection algorithm proposed in [49]
uses a ranking method to update the discriminative W for
learning feature selection. In addition, the author in [16] uses
the ranking method to minimize the loss of each positive
and negative sample pair and then achieves the goal of target
detection. Motivated by these works, we also use a ranking
method to update the matrix W to avoid the impact of sample
imbalance.

Fig. 2. The process of the ranking mechanism.

The ranking mechanism is shown in Fig. 2. As shown, we
put forward the ranking mechanism to solve the problem of
unbalanced samples. If a certain frame of the tracking video
is extracted and the extracted feature map is N1×N1×M ,
then we have M feature maps. However, each of the M
features has a different effect on the results. Therefore, we
have to assign them a value first. The greater the impact on
the result, the higher the importance is, and accordingly, the
higher the score. Next, the M assigned feature maps are sorted
and screened to select the first M with the highest score, with
the redundant (n−m) ones with the least impact on the result
being discarded to obtain the final result.

Update of g: From the second subequation of Eq. (7), each
element of g can be computed independently, and thus the
closed-form solution of g can be computed by:

g =
(
ΣTΣ + γI

)−1
(γf + γh) (18)

where Σ represents the DMN ×DMN diagonal matrix.
Update of the step-size parameter γ: The stepsize param-

eter γ is updated by Eq. (19):

γ(i+1) = min
(
γmax, ργ(i)

)
(19)

where γmax denotes the maximum value of γ and the scale
factor ρ.

Algorithm 1 Solution of the BWRR model with the ADMM
algorithm

1: Input: y, W , µ, γ0, ρ, K
2: Initialization:

f (0) = g(0) = h(0) = 0; W = 0, i = 0;
3: Iteration:

While (i ≤ K) do
(1) Update vj(f̂) by solving Eq. (15), j = 1, 2, · · ·D;
(2) Update g by solving Eq. (18);
(3) Update h by solving the third subequation of Eq.

(7);
(4) Update W by solving Eq. (16);
(5) Update the step-size parameter γ by solving Eq.

(19);
(6) i = i+ 1;
end while

4: Output:
f (i+1)

C. Convergence Analysis and Computational Complexity

Based on the previous analysis and derivation, it can be
known that the proposed BWRR model has convex properties.
Moreover, since the optimization process is implemented using
the ADMM algorithm, the solution for each optimization
subproblem is closed. Therefore, the model guarantees con-
vergence to global optimality, which satisfies the Eckstein-
Bertsekas condition [50]. In addition, we set the number of
iterations to 2. The detailed procedure is given as Algorithm
1. The convergence of Algorithm 1 can be guaranteed since
the overall objective function in Eq. (4) is convex with a global
optimal solution.

In each iterative calculation of subproblem f , the FFT
and inverse FFT transformation are needed. Thus, the com-
putational complexity is O(DMN log(MN)). Moreover, the
computational complexity of subproblems W , g and h is
O(DMN). To this end, if the number of iterations is
K, the total computational complexity of the model is
O(KDMN(log(MN) + 3)). In view of this, the speed of
our algorithm is not very fast, i.e., 3.7373fps.

D. Tracking Framework

The tracking framework is summarised in Algorithm 2.
Position and scale detection: We follow fDSST [23] to
achieve target position and scale detection simultaneously. The
accurate scale estimation of targets is a challenging research
problem in visual target tracking. Most of the most advanced
methods use an exhaustive scale search to estimate the target
size, but they are computationally intensive and cannot cope
with major changes. Therefore, we refer to the scale adaptive
tracking method of fDSST [23] and learn the appearance
change caused by the change in the target scale by learning
the separate discrimination correlation filter for translation and
scale estimation. Then, we apply the learning scale filter at the
target position to obtain an accurate estimate of the target size.

Updating and initialisation: It should be noted that in the
learning stage, the multichannel input X in Eq. 7 forms the
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Algorithm 2 Tracking algorithm of BWRR
1: Input and Initialization:

the center of the target is represented by (p1, p2) in
the first frame image; set the scale of the search target as
m ∗ n, and initialize W1,W2,W3 and f, g, h.

2: Tracking:
While (video is not over) do
(1)Extract multichannel features in the corresponding

area.
(2)Perform K iterations of optimization according to

Algorithm 1, and update the filter template according to
Eq. 7.

(3)Update W by solving Eq. (16).
(4)Calculate and draw a new target area.
end while

3: Output:
The tracked video and the video tracking rate in fps.

feature representation of the padded image patch centered at
(p1, p2) with size m ∗n. Then we calculate the filter response
score ft according to Algorithm 1 and adopt the updating
strategy as the traditional DCF method:

fmodel = (1− α)fmodel + αf (20)

where α is the updating rate. More specifically, as fmodel is
not available in the learning stage for the first frame, we use
a predefined mask with only the target region activated to
optimise f as in BACF [25] and then initialise fmodel = f
after the learning stage of the first frame.

IV. EXPERIMENTS AND RESULTS

To demonstrate the superiority and effectiveness of our
proposed BWRR, we compare it with several state-of-the-art
trackers. To better explore the robust performance of BWRR,
we conduct comparative experiments on different datasets.
Our BWRR is implemented in MATLAB 2017a, and all the
experiments are run on a PC equipped with an Intel i7 7700
CPU, 32 GB RAM and a single NVIDIA GTX 1070 GPU.

A. Experimental Datasets

We evaluate the performance of our BWRR and other
trackers on six benchmark datasets in this section including
OTB50 [51], CVPR2013 [52], OTB100 [52], Temple-Color
128 [53], UAV123 [54] and VOT2016 [55]. OTB50 contains
50 video sequences, while OTB100 contains two times as
much, including 25% grayscale sequences. CVPR2013 has
one more video than OTB50 and is similar to OTB50. The
Temple-Color 128 dataset [53] contains all color sequences,
and UAV123 [54] consists of 123 challenging sequences.
VOT2016 [55] consists of 60 challenging videos. VOT datasets
contain color sequences dominated by short-term data, and it
is considered that tracking detection should not be separated
at the same time.

To evaluate the performance of our proposed BWRR, a
one-pass evaluation (OPE) is used as the evaluation index, as
proposed in the OTB benchmarks. Precision plots show the

accurate percentage of predicted positions and the ground-
truth under different thresholds, and the success plots are
measured by an average overlap, accounting for both size and
position accuracy [56]. The robustness of the experimental
results on OTB is judged by 11 attributes. Different from the
OTB datasets, the experimental effect on the VOT datasets is
reported against three metrics: Accuracy measures the average
overlap ratio between the ground-truth and predicted bounding
box achieved by the trackers. Robustness presents the failure
rate and expected average overlap(EAO), which is used to
estimate the accuracy of the estimated bounding box.

B. Comparison Methods

In this section, we mainly compare our BWRR
tracker against 14 state-of-the-art trackers, including the
STRCF(HOGCN) [8], ECO-HC [27], LADCF [17], BACF
[25], SRDCFdecon [57], Staple+CA [58], SRDCF [7],
Staple [21], SAMF+AT [59], SAMF [22], MEEM [60],
DSST [23] and KCF [20] with the HOGCN feature and the
STRCF(HOG), based on the OTB and CVPR2013 databases.
Then, we perform a comparison experiment with the STRCF
[8], LADCF [17], ECO [27], ECO-HC [27], CCOT [26]
and DSST [23] on the Temple-Color 128 database. Twelve
trackers are compared on the UAV123 dataset, including
the STRCF [8], LADCF [17], ECO-HC [27], DSST [23],
SRDCF [7], MEEM [60], MUSTER, SAMF [22], TLD [61],
DSST [23], MOSSE [19] and KCF [20]. Last, we conduct
experiments on the BWRR and 10 other trackers, including
the STRCF [8], DSST [23], SRDCF [7], SRDCFdecon [57],
MDNet-N [62], BACF [25], KCF [20], and so on, based
on the VOT datasets with the HOGCN feature. In addition,
BWRR underwent comparative experiments with 11 methods
based on deep features, including the GFSDCF [63], ECO
[27], MDNet [62], CCOT [26], ASRCF [64], HDT [43], HCF
[15], DeepSTRCF [8], DeepSRDCF [65], SiamFC [41] and
CF-Net [42].
C. Quantitative Analysis on Various Datasets

Results on the OTB50 and CVPR Datasets:
Since OTB50 and CVPR2013 are similar, we analyze the

experimental results on OTB50 and CVPR2013 together. Fig.
3 shows the precision and success plots of our BWRR tracker
and 14 other trackers with the HOGCN feature on OTB50
and CVPR2013. As can be seen in Fig. 3(a), our BWRR has
the best performance in both the precision and success plots,
with scores of 0.825 and 0.617 on OTB50. Compared with
the STRCF, our BWRR performs better, with a gain of 1.7%
and 2.8% in precision and success, respectively. From Fig.
3(b), our BWRR also achieves the best performance among
the trackers on the CVPR2013 dataset. The precision score is
0.903, which is 3.3% higher than that of the STRCF(HOGCN)
and the success score is 0.697, which is 3.57% higher than that
of the STRCF. Compared with the results in Fig. 3, the BWRR
performs better on CVPR2013 with the HOG feature.

Since our BWRR is improved by adding weight matrices
and a sparse term to the STRCF, we compare the scores of
BWRR and the STRCF in terms of different attributes to
better reflect the superiority of the BWRR. The comparison
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TABLE I
THE COMPARISON OF BWRR AND STRCF IN DIFFERENCE ATTRIBUTES ON OTB50

Attributes Success plots Precision plots
BWRR STRCF(HOGCN) STRCF(HOG) BWRR STRCF(HOGCN) STRCF(HOG)

OPE 0.617 0.600 0.580 0.825 0.811 0.762
baceground clutter 0.649 0.682 0.537 0.861 0.843 0.674

deformation 0.556 0.533 0.519 0.769 0.764 0.701
fast motion 0.581 0.559 0.571 0.757 0.726 0.738

illumination variation 0.616 0.573 0.536 0.820 0.763 0.667
in plane rotation 0.596 0.576 0.534 0.797 0.771 0.718
low resolution 0.576 0.563 0.560 0.822 0.830 0.826

motion blur 0.601 0.552 0.576 0.794 0.721 0.748
occlusion 0.602 0.571 0.558 0.815 0.784 0.733

out of plane rotation 0.600 0.569 0.532 0.804 0.775 0.698
out of view 0.570 0.537 0.537 0.771 0.725 0.742

scale variation 0.595 0.573 0.569 0.793 0.782 0.756
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Fig. 3. Precision and success plots of all trackers with HOGCN features on
(a) OTB50 dataset and (b) CVPR2013 dataset.

results are shown in Table I. The best results are marked in
bold, which indicate that the BWRR performs better than the
STRCF in terms of the corresponding attributes. As can be
seen from Table I, the OPE scores of BWRR are much higher
than those of the STRCF, and in terms of most of the attributes,
the BWRR performs better than the STRCF, indicating that
our BWRR does have a better tracking effect than that of the
STRCF.

Results on OTB100: The results of the BWRR and the
other trackers on the HOGCN feature are provided in Fig. 4.
Our proposed BWRR tracker achieves a precision score of
0.874 and a success score of 0.671, both of which both are
the best among all trackers. Compared with the STRCF, which
takes third place based on the success plots, with a precision
score of 0.857 and a success score of 0.652, our BWRR tracker
shows improvements of almost 2% and 2.9%, respectively.

Similar to the results based on OTB50, the BWRR results
based on the OTB100 dataset also show a very good the track-
ing effect on the attribute, as presented in Fig. 5. Combined
with the sparse regularization term and weighted matrices, the
proposed BWRR performs favorably against the state-of-the-
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Fig. 4. Precision and success plots of the OPE on the OTB100 dataset with
HOGCN features.

art trackers. We selected 8 different attributes to discuss the
tracking performance of BWRR in a complex environment.
The results prove that our BWRR achieves the best tracking
effect in different situations.

For clear visualization, we obtain the tracking results of
the BWRR (red wire frame), STRCF (green wire frame)
and LADCF (blue wire frame) on 3 challenging video se-
quences for comparison, as shown in Fig. 6. For these three
video sequences, the difficulty of tracking is mainly caused
by occlusion, fast movement and illumination changes. Our
method successfully tracks the object every time in all 3
video sequences. However, the STRCF and LADCF both have
different degrees of tracking deviation and even experience
tracking failure, such as in the bird video sequences. The
result shows the accuracy and robustness of BWRR for video
sequences with challenging factors.

Results on the Temple-Color Dataset: We also present the
results of our BWRR and other state-of-the-art trackers(i.e.
CCOT [26], ECO [27], ECO-HC [27], STRCF [8] LADCF
[17] and DSST [23]) on the Temple-Color dataset [53] in Fig.
7. The figure shows a comparison of the overlap success plots
for all trackers. Though the performance of the BWRR is not
as good as that of the ECO [27] and CCOT [26], the score of
the BWRR surpasses that of its counterpart LADCF by 1.3%
with the HOGCN feature.

Results on the UAV123 Dataset: We evaluate our tracker
on a dataset designed for low-altitude UAV tracking. Fig. 8
shows the precision and success plots of all trackers. Among
the existing methods (except ECO-HC), our BWRR achieves
the best performance, with a score of 0.635 and 0.468 in
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Fig. 5. The comparison of success plots on the OTB100 for the subset of challenging attributes: background clutter, deformation, fast motion, illumination
variation, in plane rotation, motion blur, occlusion and out of plane rotation.

Fig. 6. The comparison of tracking for BWRR, STRCF and LADCF on 3 video sequences.

TABLE II
A COMPARISON WITH THE STATE-OF-THE-ART TRACKERS ON VOT-2016 DATASET

KCF DSST STRCF MDNet-N BACF SRDCF SRDCFdecon DPT HCF SHCF BWRR

EAO↑ 0.153 0.1811 0.279 0.2572 0.223 0.2471 0.267 0.235 0.231 0.267 0.289
Accuracy↑ 0.412 0.537 0.53 0.5421 0.56 0.5364 0.513 0.483 0.467 0.54 0.5402

Robustness↓ 2.67 2.52 1.32 1.2 1.89 1.5 1.08 0.75 1.389 1.4 1.37
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Fig. 7. Precision and success plots of OPE on the Temple-Color dataset with
HOGCN features.

terms of the precision and success, respectively. Our BWRR
outperforms the STRCF, with an AUC of 2.41%.
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Fig. 8. Precision and success plots of the OPE on UAV123 with HOGCN
features.
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Results on VOT2016: The results on the VOT2016 bench-
mark are shown in Table II. The top three results are marked
in red, green and blue respectively. We evaluate the trackers,
including the BWRR, STRCF [8], DSST [23], SRDCF [7],
SRDCFdecon [7], MDNet-N [62], KCF [20], and so on, with
HOGCN features in terms of the accuracy, robustness and
expected average overlap (EAO) to show the effect of each
tracker. From Table II, the performance of our BWRR in terms
of the EAO and accuracy is second and third best, respectively,
among all trackers. Compared with the STRCF (HOGCN), the
BWRR performs better in both accuracy and EAO, with a gain
of 3.6% and 1.9%, respectively.

D. Ablation Analysis
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Fig. 9. The precision plots (left) and success plots (right) of the OPE for
BWRR variants on the OTB100 dataset with HOGCN features.
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Fig. 10. The robustness analysis for BWRR, and STRCF on video sequences.

TABLE III
THE REULTS OF BWRR VARIANTS BASED ON OTB100

a precision plot success plot

0.015(*) 0.874 0.671
0.02(*) 0.859 0.655

0.05 0.845 0.646
0.07 0.850 0.651
0.01 0.813 0.622
0.15 0.788 0.599

Parameter Analysis: The setting of the parameters also has
a great influence on the tracking effect of the experiment. The

updating of matrix W in Section IV involves the parameter
design. We analyze the different benefits of the different values
of a in Eq. (17). We conduct experiments on OTB100, with a
set to 0.15, 0.1, 0.07, 0.05, 0.02 and 0.015. As shown in Fig.
9, the results of the BWRR variants are compared with those
of the ECO-HC [27], STRCF [8], SRDCF [7] and LADCF
[17]. Note that the model becomes more stable and performs
better when the value of a is smaller. The detailed scores
of the success plots and precision plots of the trackers are
exhibited in Table III based on the HOGCN feature, where ∗
indicates that the results are better than those of the STRCF.
The different variants also perform better than the STRCF
when the parameter a is smaller than 0.015.

Robustness Analysis: To reflect the good robustness of
the BWRR model in target tracking, we compare the tracking
robustness of the BWRR and STRCF frame by frame. As
shown in Fig. 10, we use the overlap ratio between the
estimated and ground-truth bounding boxes of each frame to
reflect the robustness for each frame of the model, that is,
the ordinate in the figure. Due to continuous movement, the
posture of the target continues to change in the video sequence.
There are also complex situations, such as lighting changes and
background clutter, in the scene. As shown in Fig. 10, due to
the rotation of the target person in frame 75, the overlap rates
of the STRCF and BWRR fluctuate sharply, though the rate
decline of the STRCF is more serious. In addition, thanks to
the adjustment of the weighting matrix, the BWRR gradually
recovers to a higher overlap rate in subsequent frames and
remains relatively stable, a better behavior than that of the
STRCF. It can be concluded that although BWRR reduces
the tracking effect due to complex environments, it has the
ability to recover and maintain a high tracking overlap rate.
Therefore, BWRR is more robust.

E. Experimental Analysis with Deep Features

TABLE IV
THE RESULTS ON OTB100 UNDER DIFFERENT FEATURE CONFIGURATIONS

Features AUC score Threshold score

Handcrafted HOG 0.622 0.812
HOGCN 0.671 0.874

Handcrafted+CNN

HOGCN+Conv-1 0.673 0.877
HOGCN+Conv-2 0.677 0.881
HOGCN+Conv-3 0.682 0.891
HOGCN+Conv-4 0.691 0.905
HOGCN+Conv-5 0.687 0.900

Deep Feature Configuration Analysis: In the experiment,
we choose the 19-layer deep convolutional neural network
VGG19 (Visual Geometry Group). VGGNet [66] explors the
relationship between the depth of a convolutional neural net-
work and its performance. VGGNet is still often used to extract
image features. According to the size of the convolutional
layer, features of different contexts can be obtained. We
compare the specific convolutional layers through experiments.
To provide a deep analysis for our BWRR method, we
employ 7 feature configurations to perform experiments on
OTB100 using the AUC and threshold metrics. The AUC
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Fig. 11. The comparison of precision and success plots on the OTB100 with deep feature for the subset of challenging attributes: background clutter, motion
blur, out of plane rotation and illumination variation.
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Fig. 12. The results of the OPE on the OTB100 with different feature
configurations.

and threshold scores under different feature configurations
are shown in Table IV. The BWRR with the colour names
and HOG features achieves a 4.9% improvement in the AUC
and a 6.2% improvement in the threshold score. To better
analyze the influence of the CN features on visual tracking,
we set up different layers of neural networks in the learning
process of the CN features. It can be seen from Table IV that
the AUC and threshold scores for tracking also increase in
more deeper network representation. As shown in Fig. 12, the
middle convolutional layer (Conv-4) has the best performance.
The high layers (Conv-3, Conv-4 and Conv-5) significantly
improve the performance compared with the low layers(Conv-
1 and Conv-2).

Results on OTB100 with Deep Features: To show the
tracking performance of BWRR with deep features, we com-
pare it with other 11 trackers, including the GFSDCF, ECO,
MDNet, CCOT, ASRCF, HDT, HCF, DeepSTRCF, Deep-
SRDCF, SiamFC, and CF-Net. Among them, the deep network
used by the BWRR is the optimal network mentioned in the
previous section, that is, the deep network based on Conv-4.

As shown in Fig. 13, BWRR performs quiet well in terms
of tracking. On the one hand, the tracking performance of the
BWRR ranks first among all compared models, with a score of
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Fig. 13. Precision and success plots of the OPE on the OTB100 dataset with
deep features.

0.691, regarding the success plots, which is 0.29% higher than
that of the GFSDCF model (second best) and 0.73% higher
than that of the ECO (third best). On the other hand, BWRR
ranks second, with a score of 0.905, regarding the precision
plots, which is very similar to that of the top-ranked GFSDCF.
In addition, the precision score of the BWRR is 0.44% higher
than that of the ECO. Therefore, it is reasonable to believe
that BWRR still performs better than other trackers with deep
features.

To better discuss the tracking performance of BWRR in a
complex environment, we select four attributes for analysis,
the results of which are shown in Fig. 11. Except for the out-
of-plane rotation, our BWRR achieves the best performance
in terms of the success plots among all trackers, which
proves that BWRR can capture the target well in complex
environments without tracking drift or failure, especially with
regard to the background. BWRR has the highest precision and
success scores in the case of background clutter. As shown in
Fig. 11(a), the precision of our BWRR is 3.18% higher than
that of the ECO, achieving a score of 0.972. Although the rank
of the BWRR in the precision plot is not as good as that in the
success plot for the other three attributes, its score is still very
competitive compared to those of the other trackers. Except
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for the out-of-plane rotation, BWRR maintains the second-
best performance under motion blur and illumination variation,
with scores close to those of the GFSDCF, which ranks first.

V. CONCLUSIONS

In this paper, a bilateral weighted regression ranking
(BWRR) algorithm that introduces two weighted matrices into
the data fidelity term and a sparse term to achieve a more
stable model and more robust visual tracking is proposed in
this paper. The update of the weight matrix is obtained by
ranking and numerically transforming the matrix elements. In
the process of model optimization, the least squares regression
equation is used to solve the filter update problem, and the
ADMM algorithm is employed to solve the whole iterative
process to reduce the computational complexity. The experi-
ment results demonstrate the superiority of our model.
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