
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Sigve Sjømæling Nordgaard

Program feature impact on the
treewidth of the RVSDG IR

Master’s thesis in Computer Science

Supervisor: Jan Christian Meyer

June 2020

Sigve Sjømæling Nordgaard

Program feature impact on the
treewidth of the RVSDG IR

Master’s thesis in Computer Science
Supervisor: Jan Christian Meyer
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Problem Description

This study will investigate the relationship between particular program properties and the
bounds of the treewidth metric of its representation as a Regionalized Value State Depen-
dence Graph.

Supervisor: Jan Christian Meyer

i

Abstract

In this thesis we investigate program feature impact on the treewidth of the Regionalized
Value State Dependency Graph (RVSDG) intermediate representation. We look at how
properties of programs translate to changes in the treewidth of their corresponding RVS-
DGs. This includes measurements of how different optimizations affect the structure of
the programs, including optimizations such as loop unrolling and function inlining. We
also create programs to induce features that change the treewidth, including different ways
of passing arguments to functions and liveness range of variables. Where we are able
to change the structure of a program without changing its semantics, we also look at the
runtime of the program with different treewidths to try to determine if any relationship
between the treewidth and the runtime of the program exists.

ii

Acknowledgements

I would like to express my gratitude towards my supervisor Jan Christian Meyer and Nico
Reissmann for their assistance with this project. Thanks to Jan Christian for guiding me
through the quirks of academic writing, and mentoring me in accomplishing the thesis.
Also many thanks to Nico for assisting me with my technical challenges, introducing and
helping me understand the RVSDG and compiler technology in general. Thank you both
again for all proofreading, correction and discussion done in the writing of this thesis.

I would also like to thank Magnus Hetland and Magnus Själander for fruitful discus-
sions about this project. Finally, credit is due to Nico, Magnus S. and Asbjørn Djupdal for
developing the RVSDG software which made this project possible.

iii

iv

Table of Contents

Problem Description i

Abstract ii

Acknowledgements iii

Table of Contents vi

1 Introduction 1

2 Background 3
2.1 Intermediate Representations . 3
2.2 Data-flow Centric IRs . 4
2.3 Tree Decomposition . 4
2.4 Heuristics . 5
2.5 Related work . 6

2.5.1 Finding the treewidth . 6
2.5.2 Creating the tree decomposition 6
2.5.3 Algorithms on graphs of bounded treewidth 7

3 Theory 9
3.1 The Regionalized Value State Dependency Graph 9
3.2 Tree decompositions . 11
3.3 Heuristics . 12

3.3.1 The min-fill heuristic . 12
3.3.2 The minor-min-width heuristic 14

3.4 Program Features . 16
3.4.1 Functions . 16
3.4.2 Liveness Analysis . 17

v

4 Method 19
4.1 Representing the RVSDG as a dotfile . 19
4.2 rvsdg-treedc framework . 20

4.2.1 Parser and data structures . 20
4.2.2 Heuristics . 22

4.3 Benchmarks . 22
4.4 Metrics . 22
4.5 Optimizations . 23
4.6 Function arguments . 25
4.7 Variable Liveness . 25

5 Results & Discussion 27
5.1 Results . 27

5.1.1 General treewidth results . 28
5.1.2 Optimizations . 29
5.1.3 Impact on program runtime . 38
5.1.4 Functions . 38
5.1.5 Variable liveness . 40

5.2 Discussion . 44
5.2.1 General treewidth results . 45
5.2.2 Analysis of dependencies in functions 46
5.2.3 Analysis of dependencies with respect to variable liveness 50

6 Conclusion 57
6.1 Conclusion . 57
6.2 Future work . 58

Bibliography 59

A Result Tables 63

vi

Chapter 1
Introduction

Compilers translate from a source to a target language and perform a set of optimizations,
creating faster and more efficient programs. An Intermediate Representation (IR) is an
abstract representation of a program, which the compiler uses to aid in both translation
and optimization. The IR is language independent and allows us to separate the language
parsing and code generation sections in the compiler.

Data flow based IRs have been developed due to the limitations of traditional control
flow based IRs, and attempt to raise the abstraction level of the representation by modeling
data flow explicitly rather than implicitly. This both simplifies optimizations and allows
the exposure of parallelism in programs. These methods have not been extensively eval-
uated in practical applications. For an IR to be practical, it has to implement a range of
optimization algorithms such as Constant Subexpression Elimination (CSE) and Register
Allocation (RA). Since most optimizations are computationally hard, real world compilers
apply algorithms that are not provably optimal, using a range of heuristics [21, 1].

In this thesis we investigate the tree decomposition properties of the RVSDG data
flow graph IR. The tree decomposition is a generalization on classes of tree-like graphs
which allows for solving problems efficiently. We know that if a control flow graph has a
low and bounded treewidth, we can find provably optimal, efficient algorithms for many
optimization problems.

We implement a framework for parsing and calculating the upper and lower treewidth
bounds for a RVSDG-based C compiler. We apply this to select benchmark programs, and
evaluate the feasibility of applying the results to compiler optimizations. We find that these
treewidths are low and bounded, opening several avenues of possible future research.

Further, we investigate how different program features impact the graph structure and
resulting treewidth. This is done by using either benchmarks, inducing structural changes
to the program by applying different optimizations, or by using custom programs that
manually induce these changes. We show how different optimization passes affect the
program treewidth, and find that while there is no correlation between the runtime changes
of these individual passes and the corresponding treewidth, there is a correlation between
the increased efficiency of the collection of optimizations and the reduced treewidth this

1

produces. We present a detailed analysis of this optimization process, and identify a small
subset of optimizations that affect the treewidth.

We also analyse different aspects of function program features, finding that both the
method of argument passing, and the function call order affects the resulting program
treewidth. We present an analysis of variable liveness and variable allocation, finding
that for an increasing amount of variables allocated or an increasing number of references
to these variables, the treewidth increases. While only one of the parameters increases
this growth is bounded. However, when both parameters increase, the treewidth grows
indefinitely.

Finally, we conduct a detailed analysis of the RVSDGs generated by these programs,
relating the changes in treewidth to structural changes in the corresponding graphs. This
breakdown focuses on how the program features affect the data flow and state dependen-
cies between the nodes in the graph, and how this results in different types of cycles that
scale with the number of nodes or operations.

In Chapter 2, we describe the difference between control- and data flow based IRs, the
RVSDG specifically, and review why the tree decomposition properties are useful in find-
ing optimal optimization algorithms. We also introduce the heuristic approach to finding
the treewidth of the tree decomposition, and give an overview of alternative approaches
and related work in the field. In Chapter 3, a theoretical background for the RVSDG
and tree decomposition is given, along with a description of the heuristic algorithms used
for the treewidth evaluation. Further, we define the function and liveness program fea-
tures we investigate in this thesis. Chapter 4 describes our experimental setup. This
includes the developed parser and treewidth framework, along with both implementation
and benchmarking of treewidth heuristics on the graphs produced. We also describe how
different optimizations are tested, which program features are induced, and how these are
implemented. We present and discuss the results from our benchmarks and program fea-
ture investigations in Chapter 5, and finally summarize our findings and discuss possible
future work in Chapter 6.

2

Chapter 2
Background

Compilers perform a set of optimizations on the source program to create a faster and more
efficient target. Examples of two important categories of optimizations are

1. Redundancy elimination: The abstraction level of high-level programming languages
results in overheads when compared to the efficiency of low-level languages. Re-
dundancy elimination is a set of optimizations that mitigates some of these effects,
such as pruning duplicate and unnecessary computations done in the program.

2. Register allocation: Processor architectures are becoming more complex, making
them harder to optimize programs for. This complexity also leads to more opportu-
nities to improve the way the code executes, such as when mapping program vari-
ables to a set of registers in the computer.

The compiler optimizer is rarely able to create optimal code. This is both because op-
timization is a CPU- and memory-intensive process, and because many of the problems
the compiler tries to solve are computationally hard. For practical use, the compiler has
to balance the need for correctness, efficiency, and compile time. Most optimizations are
therefore heuristic methods, used to improve performance and resource use in common
program patterns [1].

In this chapter we give an introduction to the concept of Intermediate Representations,
which lie at the heart of every optimizing compiler. We then present the intermediate
representation we are investigating in this thesis, the RVSDG. Finally, we introduce the
treewidth properties we are looking for, discuss how we find these properties, and alterna-
tive methods for doing this.

2.1 Intermediate Representations
The Intermediate Representation (IR) is an abstract representation of a source program,
often a graph, generated by the front end of the compiler. This representation is used as

3

a data structure for various optimization algorithms, simplifying the process by exposing
data- and control-flow.

The most common IR used in modern compilers is the Control Flow Graph (CFG),
which is a graph representation of the possible control flow between basic blocks in a
program. The CFG is simple to construct and destruct, but is restricted in several ways.
It has a low abstraction level, providing no structural information about procedures bod-
ies, and cannot explicitly represent constructs such as loops and functions. Data flow is
represented implicitly and in a specific execution order, making the CFG “an inherently
sequential IR” [32].

Because of the limitations of this approach, IRs have been developed based on the flow
of data rather than the flow of control. Many optimizations require data flow, and explic-
itly representing this raises the IRs abstraction level. These Data Flow Graphs represent
programs in demand-dependence form, modeling the flow of data and state, with only an
implicit and restricted form of control flow. This simplifies data flow optimizations, and
makes the representation and exposure of parallelism embedded in programs possible.

2.2 Data-flow Centric IRs
Compared to the CFGs, data-flow centric IRs have not been extensively evaluated for feasi-
bility and usability in practical implementations. This thesis will focus on the Regionalized
Value State Dependence Graph (RVSDG), presented in Bahmann et al. [4]. The RVSDG is
a data centric IR representing programs in demand-dependence form, modeling data flow
between operations as edges between nodes. This is opposed to the CFG, which needs
supporting data structures such as call graphs and loop trees to perform complex optimiza-
tions. It is also able to encode structured control flow, as the CFG does, and model the
entire program within a single IR.

The Value Dependence Graph (VDG) represents control flow as data flow and is an
early Data Flow Graph described by Weisse [41]. Johnson [19] notes that, “This rep-
resentation removes any specific ordering of instructions (nodes), but does not elegantly
handle loop and function termination dependencies”. As a solution, Johnson proposes the
Value State Dependence Graph (VSDG) as an extension of the VDG, introducing state
dependency edges to model sequentialised computing.

Mapping a language with possibly unstructured control flow requires efficient con-
struction algorithms from explicit control flow, and destruction algorithms to reestablish
control flow before generating the desired machine code. The RVSDG permits the com-
plete recovery of the original control flow from a procedure represented in a demand-
dependence graph. It has an advantage over earlier methods using the VSDG, which have
potential overhead in code size growth and/or sub-optimal control flow recovery.

2.3 Tree Decomposition
We will look at the tree decomposition and treewidth properties of the RVSDG. A de-
sirable property of trees is the restricted amount of interaction between the nodes. This
allows the separation of the tree into two disconnected components by removing a single

4

vertex. A tree decomposition is a mapping of a graph into a related tree that captures
the possibility of decomposing the graph into disconnected pieces by removing a small
number of the nodes. The treewidth is a measure of the tree decomposition of the graph,
and thus captures the graphs property of being tree-like [20]. A formal definition of these
concepts is given in Section 3.2.

As with trees, many NP-complete problems are tractable on graphs of bounded tree-
width [20]. One such application is in the implementation of efficient optimization al-
gorithms. Using tree decompositions for CFGs, significant improvements in compiler
optimizations have been found, such as providing algorithms in polynomial time for band
selection, redundancy elimination, and register allocation. The use of tree decompositions
allows efficient and provably optimal algorithms [21].

It is important that these tree decompisitions have small treewidths to achieve an effi-
cient run-time and result quality of these algorithms. This is because the treewidth denotes
how many nodes are needed to remove to separate the graph, which is the main prop-
erty of trees we want to capture. Specifically, many problems on graphs can be solved
in single-exponential time for the treewidth of the graph, and linear time for its number
of nodes [8]. Thorup found that all goto-free programs have exactly this, and Throups
heuristic has e.g. been used to obtain the tree decompositions of the CFGs in the SDCC C
compiler [38].

This work aims to investigate the tree decomposition properties of RVSDG IR by mea-
suring the treewidth of a set of benchmark programs. If these treewidths are shown to be
low and bounded, further work can be put into either determining an upper bound analyti-
cally, or finding the tree decomposition itself. This would also indicate that we could use
the tree decomposition in finding faster and more efficient optimization algorithms for the
RVSDG.

By surveying what program features affect the treewidth of the RVSDG, we also gain
insight into how to write programs with lower treewidths. If a correlation between the tree-
width of the program and its runtime efficiency is established, this further opens avenues
of research. Either by directly connecting the graph properties of programs features to
runtime efficiency, or by expanding the area of application beyond algorithmic efficiency
to properties of the programs themselves.

2.4 Heuristics
To find the tree decomposition of a graphG, most algorithms start by finding the treewidth,
k. Given k, the next step will then either report that the treewidth of G is more than k, or
it will construct the tree decomposition with maximum width ck for a constant c. These
algorithms also outputs the tree decomposition in time proportional to k [8]. Finding the
treewidth thus lets us know if we can find a small tree decomposition, what k to input to
the tree decomposition algorithm, and the runtime of the algorithm.

Finding a decomposition with low treewidth for a graph means that we can find effi-
cient solutions to computationally hard problems on the graph. Specifically, for a graph of
n vertices and a treewidth of k, we can find dynamic programming solutions that run in
time 2O(k)n. Determining the treewidth is also an important stepping-stone for most algo-
rithms that find the tree decomposition. This is because these algorithms either find a tree

5

decomposition for a given k, or reports that the treewidth is higher than k. Finally, having
a low treewidth tells us that the tree decompositions can be found in time f(k) · g(n) [8].

Deciding if the treewidth of a graph is at most k is an NP-complete problem. This
means we need alternative methods to obtain the treewidth. Bodlaender found that there
exists a linear time algorithm that solves this problem, but even with improvements found
by other authors, the algorithm is not practical. This is because of a large hidden constant
in the O-notation, which makes the runtime “useless from a practical point of view” [6].
An alternative approach is using heuristics that approximate the treewidth. These ap-
proaches are desirable, since they can be found for polynomial runtime in the size of the
graph. This work takes this approach. The specific heuristics implemented are presented
in Section 3.3.

2.5 Related work

2.5.1 Finding the treewidth
As shown in a survey by Bodlaender [6], in addition to the exact fixed parameter cases
and heuristics mentioned above, there exist several other methods for exactly finding the
treewidth of a graph. These approaches are usually either restricted to special graph cases,
or run in exponential time. They are therefore not relevant for our work since, as stated by
Bodlaender et al. in [8], for most applications these properties cannot be derived. Also,
as noted by Wersch & Kelk in [39], heuristic algorithms for finding the treewidth usually
have more accessible and comprehensible studies behind them, while exact solutions are
less widespread.

Techniques also exist for preprocessing the graphs, decreasing the size of the graph to
speed up runtime. This is not required, as the heuristics we implement run in polynomial
time on an efficient C++-implementation. Correspondingly, we can prostprocess the tree
decomposition after it is generated to reduce its treewidth. This is desirable because the
treewidth of the tree decomposition found by most algorithms is not minimal. As we only
look at the treewidth itself, this is out of the scope for this work.

2.5.2 Creating the tree decomposition
There are several approaches to creating the tree decomposition. Firstly, we can use an
approach from the class of algorithms mentioned in Section 2.4. These are the algorithms
that are able to either find the decomposition for a given treewidth, k, or report that the
treewidth is at least k. An overview of these methods can be found in Bodlaender et al. [8],
given as the constant factor approximation algorithms.

Another approach is using satisfiability (SAT) based approaches, encoding the tree
decomposition as a boolean satisfiability problem. An evaluation of this approach is given
in Berg & Järvisalo [5], where it is found that this SAT-solvers can in some cases be
competitive with dedicated algorithms. One can also set out to decide certain properties of
the graph, allowing the use of specialized algorithms for finding the tree decomposition.
An example of this approach is creating the perfect elimination ordering of a triangulated
graph, and is described in Section 3.3 for the min-fill heuristic.

6

We can also try to determine the exact treewidth to possibly reduce the size of the
generated tree decomposition. As we already have implemented the necessary heuristics
required for the branch-and-bound algorithm presented by Googate & Dechter [17], an
obvious approach would be to fully implement the given quickBB-algorithm. Otherwise,
we can set out to determine any of the graph properties for the RVSDG that allow special
case exact algorithms in polynomial time.

2.5.3 Algorithms on graphs of bounded treewidth
As mentioned in Section 2.4, we can use dynamic programming algorithms to solve com-
putationally hard problems efficiently with the use of the tree decomposition for a graph
of bounded treewidth. This is done by traversing the tree decomposition, computing par-
tial solutions to the problem along the way, only considering the vertices in the current
bag. Due to the properties of the tree decomposition, we know that these are the only
vertices that will interact at any point, and thus we are able take the whole instance into
account [10, 7].

To solve problems like register allocation or CSE on the RVSDG in polynomial time,
we first need to define algorithms such that they can be solved using these dynamic pro-
gramming techniques. If we can reduce these optimizations down to classic algorithms
like graph coloring or independent vertex sets, we have known solutions using the tree de-
composition [14]. However, the work done by Krause in [21] indicated that these problems
are most likely complex enough to require specialized approaches, such as first finding the
nice tree decomposition.

7

8

Chapter 3
Theory

In this chapter we give a brief introduction to the RVSDG IR. For a complete definition
of the RVSDG, the reader is referred to [32, 33]. Further, we give a short graph theoret-
ical background and define the tree decomposition and the treewidth parameter. We then
describe heuristic algorithms for finding the upper and lower bound treewidth of a graph.
Lastly, we define the program features investigated in the thesis. This includes function
parameters, ordering of function calls, and variable allocation and liveness.

3.1 The Regionalized Value State Dependency Graph
The Regionalized Value State Dependency Graph (RVSDG) is an acyclic multigraph con-
sisting of two different substructures. Nodes and Edges represent data flow in the graph,
with edges connecting one nodes output to exactly one corresponding input of another
node. Edges can also represent states, not transferring data but modeling a necessary or-
dering of operations. The nodes are one of two types: Simple – representing primitive
operations, represented by nodes with a corresponding operation, or Structural – contain-
ing more complex operations, represented as sub-RVSDGs named regions.

Each region consists of arguments and results, corresponding to node inputs and out-
puts, the set of edges that connect these, and a set of nodes. Structural nodes contain a set
of regions, used to model structural program constructs such as conditionals or loops. Six
different types are defined to capture the necessary higher-level programming constructs,
enabling the representation of the entire program in a single IR.

γ-nodes are decision points that model conditionals such as if and switch statements.

θ-nodes represent tail-controlled loops, which can be used in conjunction with γ-
nodes as a basic building block to represent any loop structure.

λ-nodes model functions. Inputs to the node are the external variables the function
depends on, and the output is a value representing the node itself. An apply node is
used to invoke a function, inputting arguments and computing the actual function body.

9

δ-nodes similarly model a global variable, inputting external variables the node is
dependent on, and outputs a single result representing the right-hand side value of the
variable.

φ-nodes are required to express mutually recursive functions without introducing cy-
cles. These are meta regions consisting of λ-nodes, containing all their definitions and
corresponding inputs, outputting them as a single result.

ω-nodes are top-level nodes modeling translation units (TU). This is required to im-
port and export data and functions between the different TUs in the program.

Using these structural nodes, we can represent all inter- and intra-procedural depen-
dencies in the IR. Also, with the use of simple nodes, the RVSDG is able to represent
both high- and low-level programming constructs. This normalization of programming
constructs simplifies optimizations by providing a canonical form of the representation of
loops, functions, and conditionals. Further benefits of using the RVSDG are that no order-
ing of independent expressions are added, and that the flow of data implicitly enforces the
Single State Assignment form [32].

λ

φ

ω

fib0

0

γ
ft 1

- -

21

apply apply

+

1

γ

t f

fib(n) {
if(n == 0)

return 0;
else if (n == 1)

return 1;
else

return fib(n-1)+fib(n-2);
}

ω

φ

λ

γ

γ
t

t f

f

Figure 3.1: Example RVSDG for the Fibonacci function shown on the right. The fib function is
modeled in the λ-node, which is contained in and exported by the ω-node. Since the function is
recursive, it also needs to be contained in a φ-node to be able to call itself. The control flow in the
function is handled by two nested γ-nodes.

10

3.2 Tree decompositions
Let G(V,E) be an undirected graph where V is the set of vertices and E is the set of
edges of the graph. Let n = |V | denote the number of vertices of the graph. For vertices
u, v ∈ V , u is a neighbor of v in G if {u, v} ∈ E. Two neighboring vertices are said to be
adjacent. The set of all neighbors of v is the neighborhood of v. A set of vertices C ⊆ V
is a clique of G if each distinct vertex in C is pairwise adjacent.

A graph H(V ′, E′) is the subgraph of G if V ′ ⊆ V and E′ ⊆ E. H is an induced
subgraph ofG if, for every vertex in both graphs, every adjacent vertex inG is also adjacent
in H . G[X] is the induced subgraph of G with the vertex set X ⊆ V .

a b

cd

e

f

g

b

cd

e

f

Figure 3.2: Graph G with the induced subgraph G[X] for X = {b, c, d, e, f}.

Definition A tree decomposition of the graphG(V,E) is a tree T (I, F) and a collection of
subsets χ = {χi, i ∈ I} of V , called the bags of the tree decomposition. The pair (T, χ)
must satisfy the following properties.

Vertex Coverage
⋃
i∈χi

χi = V

Edge Coverage For each {u, v} ∈ E there exists an i ∈ I such that u, v ∈ χi

Coherence If t2 is on the path from t1 to t3 in T , then χt1∩χt3 ⊆ χt2 for t1, t2, t3 ∈ I

The width of a tree decomposition is maxi∈I |χi| − 1. The treewidth of the graph G is the
minimum width over all tree decompoisitions of G. Due to the edge coverage property,
trees have two vertices in each bag. To define treewidth such that trees have a width of 1,
we therefore subtract one from the size of the largest bag in the definition of the treewidth.

fe g

c d

b

a

c d f

b c d

a b

c e f d f g

Figure 3.3: Graph with a possible decomposition of width 2.

11

3.3 Heuristics
Gogate & Dechter [17] describe an algorithm for calculating the treewidth based on a
branch and bound search. This approach relies on a set of heuristics to prune branches
in the solution state space tree. These heuristics provide either an upper or lower bound
on the solution, and thus an upper or lower bound on the treewidth of the graph we are
analyzing.

Gogate & Dechter present three existing heuristics for computing the upper bound,
and one novel approach to compute the lower bound on treewidth. We implement these
heuristics, and use them to evaluate the tree decomposition properties of the RVSDG. As
one upper bound heuristic consistently finds a tighter bound, we only report this when pre-
senting our results. In this section, we describe this best performing upper bound heuristic,
and the lower bound heuristic used in the evaluation.

3.3.1 The min-fill heuristic
To define a heuristic algorithm for finding the upper bound on treewidth, we first present
three lemmas from graph theory. A graph is triangulated if every cycle in the graph is not
chordless. A chord is en edge between two vertices in a cycle that is not part of the cycle
itself. A chordless cycle is a cycle of length k > 3 that has no chord.

a

b c

d e

Figure 3.4: Section of a graph, where the vertices shown forms a cycle. The red edges are chords
such that this section of the graph is triangulated. The graph containing all edges and vertices in the
section is the triangulation of the corresponding graph containing only the black edges.

Triangulated graphs are connected to the tree decomposition with the following prop-
erty [16]

Lemma 1. If G is a triangulated graph and the maximum size of a clique in G is denoted
by ω(G), the treewidth of G equals ω(G)− 1

The triangulation of G(V,E), is the triangulated graph H(V ′, E′) such that V = V ′ and
E ⊆ E′. From this definition, we get the following property [34].

Lemma 2. For every graph G there exists a triangulation H such that the treewidth of G
equals the treewidth of H

One approach to finding the treewidth of our input graph G is finding such a triangu-
lation. This class of heuristics is based on finding the triangulation H of G that minimizes

12

the size of the maximum clique. This is an upper bound on the treewidth ofG, as we know
from Lemma 2 that the treewidth of G is at most as large as the treewidth found for H .

This triangulation can be built by constructing a perfect elimination ordering of the
vertices in the graph. A vertex v of G is simplistical if its neighborhood induces a clique.
The perfect elimination ordering is an ordering {v1, v2 . . . , vn} where for every i ∈
{1, 2, . . . , n}, vi is a simplistical vertex in G[X] for X = {vi, . . . , vn}.

The triangulation can be constructed along the ordering as follows: make each vi
simplistical by connecting all its neighbors in G[X], and then delete the vertex. Using
Lemma 1 and 2 we then get our final lemma used to find the upper bound treewidth of
G [11].

Lemma 3. Given a perfect elimination ordering {v1, v2 . . . , vn} of the triangulation of
the graph G, the treewidth of G is given by

max(neighbors of vi which is in the ordering at position j, for j > i)

The min-fill heuristic creates the perfect elimination ordering by finding the vertex that
adds the least number of edges when eliminated from the graph. This vertex is eliminated
and placed in the ordering. Eliminating the vertex at each step lets us find the vi defined
in Lemma 3 for the current position in the ordering. The algorithm then repeats until all
vertices are placed in the ordering. We implement the algorithm as shown in Listing 3.1.

fe g

c d

b

a

{}
ub = 0

fe g

c d

b

{a}
ub = 1

f g

c d

b

{a, e}
ub = 2

f

c d

b

{a, e, g}
ub = 2

f

c d

{a, e, g, b}
ub = 2

Figure 3.5: First steps of the min-fill heuristic. Vertices are shown below the graphs as they are
added to the ordering, along with the current upper bound. The dotted edge denotes an edge added
when eliminating a vertex.

min-fill-heuristic(Graph G) {

ordering = [G.size]
upper_bound = 0

for i in 0 to G.size {
/* Vertex in G that adds the fewest amount of edges

when eliminated from the graph */
v = minClique(G)

13

/* Compares the current upper bound with the number of
neighbors for v. This way each v in the ordering is
compared against the degree of each element after it,
and we get the upper bound according to lemma 3 */

upper_bound = max(upper_bound, degree(v))

/* Make v simplistic by making its neighborhood
a clique, and then remove the vertex */

eliminate(v)

/* Add v to the ordering */
ordering[i] = v

}

return upper_bound
}

Listing 3.1: The min-fill heuristic

3.3.2 The minor-min-width heuristic
Contracting an edge is the replacement of both vertices of the edge with a single vertex,
such that the neighbors of the original vertices are neighbors of the new one. H is a minor
of G if H can be formed from G via repeated edge deletion and/or edge contraction.

a

b u

v c

G

a

b

c

w

H

Figure 3.6: Contracting the edges u, v to w in G results in a new graph H that is a minor of G.

Due to the edge coverage property of the tree decomposition, stating that both end-
points of an edge have to exist in at least one bag, the minimum degree of a vertex in
the graph is a lower bound for its treewidth. An improvement to this bound can be found
by using Lemma 2, constructing a perfect elimination ordering for the graph and finding
the minimum degree of the triangulation. This property can also be stated as the width of
the graph, finding an ordering such that each vertex vi is joined by an edge to at most w
preceding vertices. We then know that the treewidth is at least equal to w [6].

Gogate & Dechter names this the min-width ordering. In a min-width ordering, if some
vertex vi has en edge with lb vertices ordered below it, then the treewidth of the graph is
a least lb. They further improve on this by using the minor theorem, which states that
the treewidth of a graph is never less than the treewidth of its minor. This means that

14

we can contract edges for each vertex we find to create smaller and smaller minors of
the original graph. This approach, named the minor-min-width heuristic, has been found
empirically to create a better bound than the min-width heuristic [17]. Pseudocode for our
implementation of this heuristic is shown in Listing 3.2.

fe g

c d

b

a

{}
lb = 0

fe g

c d

b

{a}
lb = 1

fe g

c d

{a, b}
lb = 2

f g

c d

{a, b, e}
lb = 2

Figure 3.7: First steps of the minor-min-width heuristic. Vertices are shown below the graphs as
they are added to the ordering, along with the current lower bound. The dotted edges denotes edges
added by the edge contraction.

minor-min-width-heuristic(Graph G) {

lower_bound = 0

for i in 0 to G.size - 1 {
/* Vertex in G with the smallest degree */
v = minDegree(G)

/* Get the neighborhood of v */
neighbors = Neighbors(v)

/* Find vertex u in N(v) such that
the degree of u is minimum in N(v) */

u = min_vertex(neighbors)

/* Update lower bound according to the min-width ordering */
lower_bound = max(lower_bound, degree(v))

/* Contract the edge between u, v by:
removing v and adding all its neighbors to u.
The resulting graph from this is a minor of the existing graph */

removeVertex(v)
contractEdges(u,v)

}

return lower_bound
}

Listing 3.2: The minor-min-width heuristic

15

3.4 Program Features
In addition to using the benchmark programs of the PolyBench suite we introduce in Sec-
tion 4.3, we write additional programs to induce different program features, and show how
these affect the treewidth bounds of the resulting RVSDGs.

This section gives an overview of the program features we investigate in this thesis,
separated in the categories functions and liveness analysis. These features are chosen based
on our investigation of the benchmarks in the PolyBench suite. Comparing programs from
the benchmark suite with different treewidths, these are the programs features we find to
have a measurable impact on the resulting treewidth.

First, we clarify function terminology and enumerate three different methods of pass-
ing variables to functions. We also identify and define two different orderings of function
calls. We then introduce variable liveness with respect to the RVSDG.

3.4.1 Functions
As we base our work on the investigation and compilation of programs in the C pro-
gramming language, we use C-style terminology when discussing programs and program
features. Subroutines or procedures are referred to as functions with a number of formal
parameters. This is the number of actual parameters passed to the function, which is the
number of values or references passed to the function call [9]. The actual parameter is also
known as the function argument. In C, this number of parameters is set for each function,
and we refer to this number of values with respect to the function, as the function accepting
n arguments.

When a set of actual parameters is passed to the function, the function is called with
this set of parameters. We similarly define the call of a variable or reference, as the call
of a function accepting the variable or reference as an argument.

Three methods of passing arguments to functions

We identify three different methods of passing arguments to functions in the C language,
which in 5.1.4 is demonstrated to have an impact on the resulting RVSDG treewidth. These
methods are shown in Listing 3.3. Firstly, we can pass variables either as values i.e., call
by value. This includes copying each value, and using this local copy inside the function
body. Secondly there are two ways of passing the variable as a reference, i.e., call by
reference. This is done either by passing the variables as members of a struct, or as located
inside a contiguous array.

/* 1) Passing arguments as separate values */
int variable_sum(int v0, int v1, ...) {

return v0 + v1 + ...;
}

/* 2) Passing arguments as members of a struct */
int struct_sum(args_t s) {

return s.s0 + s.s1 + ...;
}

16

/* 3) Passing arguments as elements in an array */
int array_sum(int a[N]) {

return a[0] + a[1] + ...;
}

Listing 3.3: Three separate ways of passing arguments to a function in the C programming language.

Call orderings

We also find that when calling several functions, or the same function several times, the
ordering of these calls also impact the resulting RVSDG treewidth. We identify and define
two such orderings.

Firstly, we note the ordering of the function calls in an alternating order, as shown in
Listing 3.4. As each function is separated into separate blocks, we denote this ordering
of calls blockwise. An alternative ordering is calling the functions such that all calls ac-
cepting variable n1 are done before all calls to variable n2 etc. This ordering is shown
in Listing 3.5. As the different functions are called in a sequence, we denote this as the
sequential call order.

int n1 = a;
...
int n7 = g;

f1(n1);
...
f1(n7);

f2(n1);
...
f2(n7);

Listing 3.4: Blockwise call order.

int n1 = a;
...
int n7 = g;

f1(n1);
f2(n1);

...

f1(n7);
f2(n7);

Listing 3.5: Sequential call order.

3.4.2 Liveness Analysis
Liveness analysis, or live-variable analysis, is a data-flow analysis calculating what vari-
ables are live at a certain point in the program. Identifying live variables is simple in the
data-flow graph, as the edges already represent the flow of data. Thus a variable is live at
point p as long as there is some edge from p to the variable node [1].

Johnson [19] shows that that for two values connected by an edge in a data flow graph,
this edge may introduce constraints on the liveness of the variable. For the RVSDG specifi-
cally, the nodes interact when the values or instructions they represent reference each other,
either directly as a data edge or indirectly as a state edge. Since the RVSDG is ordered by
these references, variables that only reference and are referenced by a set of neighboring
nodes in the graph will have a shorter liveness range, while variables that do not will have
a longer liveness range.

17

18

Chapter 4
Method

The RVSDG is implemented using the jive [26] compiler back end. jive implements
the intermediate representation and provides interfaces and data structures to the jlm [31]
framework, which further provides the compiler front end and optimizer for the LLVM
IR. From jlm we can generate an XML representation of the RVSDG IR from a compiled
LLVM bytecode program.

This is used as the source of our investigations into the treewidth of the RVSDG IR.
Sections 4.1 and 4.2 describes the provided rvsdg-treedc framework which includes
a parser of the RVSDG XML output, transforming it into a corresponding graph represen-
tation in the dotfile format. Further, we show how this is used in our graph framework
to measure the graphs upper and lower bound treewidths. Section 4.3 describes the bench-
marks used to generate graphs for measuring the treewidth and the metrics used to evaluate
our results.

We then describe the methods used to induce the different program features presented
in Section 3.4. In Section 4.5 we introduce how different optimizations can be used to
change the structures of programs, and how these optimizations are applied. In Section 4.6
we show that different methods of passing function parameters affect the program tree-
width, and present how this is measured and tested. Finally, Section 4.7 demonstrates the
same with respect to variable liveness and variable allocation.

4.1 Representing the RVSDG as a dotfile
As described in Section 3.1, the RVSDG consists of a set of regions which contain one or
more nodes. The relationship X contains Y is represented in the XML by Y being a child
of X . These nodes may be simple, containing a tuple of inputs and outputs, or structured
in which case they also contain sub-regions. Nodes and regions contain corresponding
concepts: inputs/arguments and outputs/results, modeled as children of their correspond-
ing node or region. Finally, each region also contains a set of edges between the different
nodes and regions. Edges are modeled as unique XML-elements, containing an attribute
for the source regions argument and result, or source nodes input and output.

19

To be able to model this directly as a graph, we represent each region as a subgraph.
The XML parser is implemented in C++ using the pugixml XML processing library [2].
The parser reads one XML file produced by the jlm-print tool, loads it into an in
memory representation of the RVSDG1, and produces a corresponding graph in the dotfile
format [15].

To perform this translation, we map nodes and edges from the XML to the graph by
considering inputs to be edges into, and outputs edges out of their corresponding nodes.
Arguments and results of a region are modeled as the entry and exit nodes of the graph
respectively. An example graph representation for a very simple LLVM bytecode input
program is shown in Figure 4.1.

4.2 rvsdg-treedc framework
In this section we describe the provided rvsdg-treedc framework developed with this
thesis. The pipeline to generate a graph and determine its treewidth is outlined in Fig-
ure 4.2, where our framework consists of the last two steps.

C Clang jlm xml-
parser heuristics

source
program

LLVM-
bytecode XML dotfile

Figure 4.2: Compilation pipeline of the rvsdg-treedc framework.

4.2.1 Parser and data structures
The provided rvsdg-treedc framework contains a simple dotfile parser which loads
graphs into a C++ graph representation. The framework is made to be modular and ex-
tendible, supporting basic graph operations like Depth First Search and simplifying nodes.

The parsed graph is represented in memory as an adjacency list. This is the most space
efficient representation for a sparse graph, i.e., when the number of edges is less than n2

for n nodes. It is also an efficient representation for exploring graphs since looking up a
single vertex takes time proportional to its number of neighbors, but looking up subsequent
neighbors can be done in constant time [20]. This is a common operation in the heuristic
algorithms we implement.

The rows in the adjacency list are represented by a singly linked list, with each root
node of the list stored in a STL vector. Each vector is contained in a graph object, and each
element in the list is represented as a node object. These classes provide abstractions for
searching and manipulating the graph. We assume that the graph is undirected and simple
i.e., has no parallel edges, to simplify the representation. This is the same generalization
as in Diestel [13], where the tree decomposition is defined on such graphs.

1Inspired by Asbjørn Djupdals implementation in the rvsdg-viewer [3]

20

int main() {
int foo = 42;
return foo;

}

define i32 @main() {
%1 = alloca i32
store i32 42, i32* %1
%2 = load i32, i32* %1
ret i32 %2

}

<rvsdg>
<region id="r93865840026912">

<node id="n93865840083440" name="" type="lambda">
<output id="o93865840091600"/>
<region id="r93865840027200">

<argument id="o93865840078384"/>
...

</region>
</node>
<edge source="o93865840091600" target="i93865840079072"/>
<result id="i93865840079072"/>

</region>
</rvsdg>

BITS32(1)

n93865840085232

ALLOCA

n93865840085968

LOAD

n93865840084960

STORE

n93865840087968

lambda-result

i93865840090816

lambda-result

i93865840090896

BITS32(42)

n93865840087296

lambda-exit

exit_r93865840027200

lambda-argument

o93865840078384

lambda-argument

o93865840078576

lambda-result

i93865840091040

lambda-entry

entry_r93865840027200

Figure 4.1: Example conversion of a C program, via LLVM bytecode, to an RVSDG XML repre-
sentation and its corresponding dotfile.

21

These conditions are ensured by the dotfile-parser which ignores parallel edges and
the potential direction of nodes between the edges parsed. The parser is a simple C++
stringstreamwhich handles a small subset the dotfile format. Specifically, it accepts a
single graph of n nodes, with one edge per line and nodes numbered 0, 1, . . . , n. Otherwise
it ignores any line containing the node, label or rank keywords.

Our chosen implementation language for these tasks is C++. It allows us to provide a
level of abstraction above the simple adjacency list representation, while still maintaining
the efficiency needed to represent and analyse graphs with large amounts of nodes.

4.2.2 Heuristics
The heuristics implemented in the framework is described in Section 3.3. Implementa-
tion is based on versions presented in Googate & Dechter [17], and a reference python
implementation in the D-Wave-NetworkX-library [12].

4.3 Benchmarks
To generate a set of RVSDGs to measure the treewidth of, we use a set of programs found
in the PolyBench benchmark suite [29] as input. The suite consists of 30 numerical com-
putations from various domains such as linear algebra, statistics, physics simulations etc.
The computations performed include matrix multiplications, covariance computation and
LU decomposition. We chose PolyBench because of the small size and simple structure of
the benchmark programs it contains. Since each program in the benchmark is structurally
small, generation of XML representations of these programs are simplified. We use an
existing fork of PolyBench [27], which contains support for compiling the benchmarks
with the jlm compiler, and extend it to create the XML files required. The invocation of
the compilation pipeline is shown in Listing 4.1

LLVM bytecode is generated using clang 7.0.1
clang -S -emit-llvm -Xclang -disable-llvm-passes source.ll

generate RVSDG-XML of the program using jlm-print
jlm-print --j2rx --file source.ll > generated.xml

this output can then be parsed to a set of corresponding dotfiles
rvsdg-treedc/bin/xml_parser generated.xml

and finally the heuristics for the treewidth can be run
rvsdg-treedc/bin/rvsdg-treedc

Listing 4.1: Invocation of the compilation pipeline.

4.4 Metrics
The heuristics we implement provide an upper and lower bound for the treewidth of the
graphs they are applied to. We measure both, as the upper bound give a worst case indi-
cation of the actual treewidth, and the lower bound is used to measure the tightness of the

22

bound. Since we know that a lower bound will not be higher than the actual treewidth and
that the upper bound will not be lower than the actual treewidth, the gap between these
bounds measures how well the heuristic performs. The lower the gap is, the better the
performance.

To make sure that our implementation is correct and that this assumption holds, we
test the heuristics against a range of different graphs retrieved from the ToTo treewidth
database. ToTo is an open graph database from Maastricht University that computes and
stores tree computations of graphs. Graphs are represented in the graph6 format [23] and
stored along with the current best computation on its upper and lower bounds on treewidth,
where the treewidths are found using a range of heuristics. Reported bounds are aggregated
in the database such that users have access to the best reported bounds on graphs that are
already generated. Users can also send in reports on these bounds, and submit better tree
decompositions that improve on the heuristics results [39].

To test our heuristics with these graphs, we import the graph6 strings as a CSV file and
generate tests using a set of scripts. The tests themselves are run using the Unittest++
framework [24]. This process is pipelined, such that new graphs can easily be imported
and tested. Candidates were chosen of varying size and gap, based on the selection of
graphs with the most submitted results. All expected upper bounds were found, and no
lower bounds were reported too high. From a total of 150 graphs tested, 9 of the lower
bounds undershot the tightness bound by 1 for graphs with a small gap, and by 1–4 for
graphs with larger gaps.

4.5 Optimizations
Running a source program with a different set of optimizations is a simple way to generate
different versions of the program that are structurally different. These resulting targets
have potentially varying treewidths, while preserving the same semantics. Using the pro-
grams in the PolyBench benchmark suite as a source, we generate versions of the programs
for a set of different optimizations, and measure the treewidth of each result. In this section
we will look at which optimizations are suitable to apply, and the limitations in analyzing
the optimizations actual impact on the source code.

Deciding on which optimizations to apply, we first note the difference in the opti-
mizations levels of the LLVM backend and its corresponding C-language family frontend,
Clang. Clang also refers to the compiler driver that drives the phases of the compiler in-
vocation, and sets the appropriate flags for the current build and system. The Clang driver
thus invokes both the Clang frontend, also referred to as cc1, and the LLVM backend
including the optimizer and assembler [40].

An advantage of invoking optimizations through the driver is that we can enable op-
timization diagnostics though LLVM. This enables storing and analyzing optimization
remarks of the compilation process which can be used to further investigate which op-
timizations are enabled, their ordering, and other statistics. However, we identify three
limitations of driver. Firstly, the analysis tool is limited, as not all LLVM passes emit such
diagnostics [25]. The manual states:

“[. . .] do not expect a report from every transformation made by the compiler. Op-
timization remarks do not really make sense outside of the major transformations (e.g.,

23

inlining, vectorization, loop optimizations) and not every optimization pass supports this
feature.” [36]

Testing this on the programs of the PolyBench suite, we found that this feature is only
able to report on inlining, vectorization and global value numbering.

Secondly, invoking the optimizations through the driver adds a set of Clang specific
options in addition to the optimization level flags [28]. Lastly, the Clang driver interacts
with the front-end through an unstable developer only frontend [37], which does not allow
setting individual optimization flags.

As we use the optimizations to create controlled changes in a program to investigate
these changes effect on the RVSDG treewidth, we find it sufficient to invoke the optimiza-
tions though the modular LLVM optimizer and analyzer clang-opt, which does support
invoking separate optimization passes.

We have chosen the optimizations used by the LLVM compiler running at optimiza-
tion level O2. Level O2 generates a list of optimizations that will have an effect on the
code, while not including passes that might increase code size. This is the case of the
optimizations added at level O3 [35], which would make comparisons between the default
and optimized programs more difficult.

This list of optimization passes can be found by invoking the LLVM optimizer with the
Arguments specific debug pass. This is shown in Listing 4.2, inputting a random pro-
gram generated with the LLVM assembler. We verify that the optimization passes printed
by this command are the same, and are generated the same order as the optimizations ac-
tually applied when running the optimizer at level O2, by applying all 263 optimization
passes individually. We confirm that this generates a program with the same treewidth and
runtime.

llvm-as < /dev/null | opt -O2 -disable-output -debug-pass=Arguments

Listing 4.2: Finding the individual optimizations performed by LLVM at optimization level O2.

These optimizations, or transform-passes, are further documented in [30]. We also run
the optimization passes supported by the jlm-opt RVSDG optimizer, such as common and
dead node elimination.

The optimized LLVM bytecode and corresponding RVSDG XML representation is
generated via the steps shown in Listing 4.3. This is an implementation of the first four
steps shown in the pipeline in Figure 4.2. An optimization is either passed to the RVSDG
optimizer, jlm-opt, or to the clang optimizer, opt.

clang -S -emit-llvm -Xclang -disable-llvm-passes -o program.ll ${INPUT_PROGRAM}
jlm-opt --llvm ${JLM_OPT} program.ll > program-jlm.ll
opt -S ${LLVM_OPT} -o program-opt.ll program-jlm.ll
jlm-print --j2rx --file program-opt.ll > rvsdg-program.xml

Listing 4.3: Generating the RVSDG XML and optimizing it from an input program.

Then, for each program, the upper and lower bound treewidth of the largest region
in the program is calculated, and the program runtime is measured. These results are
presented in Section 5.1.2.

24

4.6 Function arguments
Investigating the unoptimized programs in the PolyBench suite and their corresponding
treewidths found in Section 5.1.1, we find that one source of the difference in treewidth
between the programs is the number of arguments given to the main computational kernel
of the program.

We inspect the lambda region modeling this computational kernel i.e., the function
which runs the numerical computation that is benchmarked. E.g., for the 3mm and
cholesky benchmarks, we find that these regions have an upper treewidth bound of
5 and 4 respectively. One difference between these two functions is their number of pa-
rameters.

The 3mm-kernel function accepts 13 arguments, while the cholesky-kernel function
accepts 2 arguments. Changing the contents of these programs, e.g., removing the com-
putational contents of the kernel, results in the same treewidth in the generated program
graph. We also find that changing the content of the 3mm-kernel while maintaining the
same number of accepted arguments, setting it to be equal to the cholesky-kernel, still
results in it having the same upper treewidth bound of 5.

Thus, the number of variables passed to a function directly affects the treewidth of the
resulting program graph, and this behavior can be isolated. We will further investigate how
function parameters affect the treewidth. This is done by creating a set of test programs,
each containing a single function summarizing all arguments passed to it. We then look at
the three different ways of passing arguments to this function defined in Section 3.4.1.

This results in three programs with the same semantics, but different program struc-
tures and different resulting RVSDGs. The programs we test and measure the treewidth
of, consists of a main function setting up the necessary variables and calling one of these
three functions respectively.

In Section 5.1.4 we present the treewidth bounds of these programs and overview how
these different methods of passing arguments to functions affects the structure of their
corresponding RVSDGs. This will be investigated in depth in Section 5.2.2, where we
discuss how the resulting dependencies between instructions in the LLVM IR affects the
graph structure and treewidth of the RVSDG.

4.7 Variable Liveness
In Section 3.4.2 we introduce variable liveness with respect to the data and state depen-
dencies in the RVSDG. Looking at how the allocation and liveness of variables can impact
the treewidth, we use the 3mm and cholesky benchmarks as examples. These bench-
marks are at opposite ends of the treewidth bounds found for the PolyBench benchmark
programs, Cholesky being comparatively high and 3mm being comparatively low.

Matrices in the PolyBench benchmark suite are represented as two dimensional C ar-
rays, i.e., an array containing pointers to arrays for each row in the matrix. An example
allocation is shown in Listing 4.4.

25

float (*mat)[N][M] = (float(*)[N][M])polybench_malloc(N*M, sizeof(float));

Listing 4.4: Allocation of a PolyBench style matrix of dimension N ×M .

The 3mm benchmark consists of three matrix-matrix multiplications, (A×B)× (C ×
D), which uses two temporary matrices for the calculation of (A×B) and (C×D) respec-
tively, and one matrix for storing the final result. This requires a total of 7 matrices that
needs to be allocated and deallocated, with 4 matrices being initialized in a separate func-
tion, and 5 integer variables to keep track of the dimensions. Comparably, the cholesky
benchmark performs a Cholesky Decomposition which involves the decomposition of a
single square matrix with computations happening in-place. This benchmark thus only
requires the allocation of a single matrix and a single integer variable to keep track of the
dimensions.

Inspired by the PolyBench benchmark programs, we write a set of custom programs
to induce the features that affect the RVSDG treewidth. These effects are then analyzed
with respect to liveness, specifically in regards to what kinds and how many variables are
allocated, and how they are referenced in the program. We present the results of these
investigations into the effects of the liveness, allocation, and the referencing of variables
in Section 5.1.5. A detailed discussion of these results follow in Section 5.2.3.

26

Chapter 5
Results & Discussion

In this chapter, we first present the general results of running the implemented heuristics
for the lower and upper bound treewidths on the benchmarks of the PolyBench suite. In
Section 5.1 we further present the treewidth results of the program feature investigations,
including optimization passes and their relation to program runtime, function parameters
and call orders, and finally variable liveness and allocation.

In Section 5.2 we discuss these results. First we look at the general treewidth results
and relate them to other findings in the field. We then present an analysis of the program
feature impact on the resulting treewidths. This is done by analyzing the function and
liveness analysis results impact on the generated graphs.

5.1 Results
In Section 5.1.1 we present the result of the maximum upper bound and treewidth gap of
the different benchmarks and compare this to the number of nodes in each region.

Next, we look at the results from our program feature investigations. Section 5.1.2
presents treewidth and timing results for different optimizations. We show all results for
two select benchmarks, and aggregated results for all. These results show that while there
is no one-to-one correlation between the lower runtime of an optimization in a benchmark
and its resulting treewidth, the collections of optimizations have a lower runtime and lower
treewidth for a majority of benchmarks. Section 5.1.3 further investigates this relationship
between runtime and treewidth, further demonstrating the lack of a clear-cut correlation
between them.

Finally we show the results from our custom programs, inducing different program
features. Section 5.1.4 presents the function analysis results and Section 5.1.5 presents the
variable liveness and allocation results.

27

5.1.1 General treewidth results
We present results from running our heuristic algorithms on the programs in the PolyBench
benchmark suite. Each program generates on average 54 RVSDG regions, for a total of
1620 regions. For each graph corresponding to these regions, we calculate the upper and
lower heuristic bound on the graphs treewidth.

In Figure 5.1, we show the maximum upper bound treewidth found using the min-
fill heuristic for all regions in the benchmark. We find that all benchmarks have an upper
bound treewidth between 6 and 15 with an average upper bound treewidth of 9. The largest
treewidth gap found, using the minor-min-width heuristic for lower bound, for all regions
in the benchmarks is shown in Figure 5.2. The numbers above each bar denote the upper
and lower treewidth bound respectively. From this figure we can see that the largest gap is
9 while 86% of the benchmarks, have a gap between 1 and 4. The tightness of these gaps
means that our upper bound heuristic is a close approximation of the actual treewidth of
the graphs measured.

 0

 2

 4

 6

 8

 10

 12

 14

 16

2m
m

3m
m ad

i
at

ax
bi

cg
ch

ol
es

ky
co

rr
el

at
io

n
co

va
ria

nc
e

de
ric

he
do

itg
en

du
rb

in
fd

td
-2

d
flo

yd
-w

ar
sh

al
l

ge
m

m
ge

m
ve

r
ge

su
m

m
v

gr
am

sc
hm

id
t

he
at

-3
d

ja
co

bi
-1

d
ja

co
bi

-2
d

lu
dc

m
p lu

m
vt

nu
ss

in
ov

se
id

el
-2

d
sy

m
m

sy
r2

k
sy

rk
tr

is
ol

v
tr

m
m

U
pp

er
 tr

ee
w

id
th

 b
ou

nd

Figure 5.1: Upper bound treewidth per benchmark.

Figure 5.3 show the relationship between the number of nodes and heuristic results for
graphs generated from all regions in the benchmark programs. Figure 5.3a shows that as
the upper treewidth bound grows, the amount of nodes in the graph increases on average.
We see the same trend for the treewidth gap in Figure 5.3b.

In Figure 5.4 we show how the average number of nodes relate to the upper treewidth
bound and treewidth gap respectively. We see that as the upper treewidth bound and tree-
width gap increases, the average number of nodes in the corresponding regions increases
approximately polynomially.

28

 0

 2

 4

 6

 8

 10

2m
m

3m
m ad

i
at

ax
bi

cg
ch

ol
es

ky
co

rr
el

at
io

n
co

va
ria

nc
e

de
ric

he
do

itg
en

du
rb

in
fd

td
-2

d
flo

yd
-w

ar
sh

al
l

ge
m

m
ge

m
ve

r
ge

su
m

m
v

gr
am

sc
hm

id
t

he
at

-3
d

ja
co

bi
-1

d
ja

co
bi

-2
d

lu
dc

m
p lu

m
vt

nu
ss

in
ov

se
id

el
-2

d
sy

m
m

sy
r2

k
sy

rk
tr

is
ol

v
tr

m
m

La
rg

es
t t

re
ew

id
th

 g
ap

11-6

15-6

10-6

9-6

10-6

7-4 9-6

8-6

10-6 10-6

5-4

11-6

6-4

10-6

13-6

9-6 9-6

8-6

5-4

7-5

7-4 7-4 9-6

6-5

7-5

7-4 7-4

6-4

5-4

6-4

Figure 5.2: Treewidth bound gap per benchmark.

This is demonstrated by fitting a polynomial curve to each figure. Figure 5.4a shows
that the number of nodes in the graph increases polynomially as a function of the upper
treewidth of the graph. This relationship is approximated by the function n = 20+1.3tw2

for the number of nodes n, and treewidth tw. Similarly, Figure 5.4b shows that the number
of nodes also increases polynomially as a function of the largest treewidth gap g, given by
n = 50 + g3.

We note that of all 1620 regions generated only 4 regions have a treewidth above 10,
marked as 11+ in Figure 5.4a. Similarly, 4 regions have a treewidth gap above 4, marked
as 5+ in Figure 5.4b.

5.1.2 Optimizations
In this section we present the results of the individual optimizations applied to the pro-
grams of the PolyBench benchmark suite as described in Section 4.5. We first show the
upper bound heuristic results, presenting plots from select benchmarks, demonstrating the
effects from the full suite of optimizations. We also include the O1 and O2 optimiza-
tion levels for all benchmarks, and compare the upper treewidth bound generated by these
collections of optimizations to the treewidths generated by the optimizations individually.

We then present findings for the lower bound treewidth heuristics in the same fashion,
and finally an in depth analysis of the O2 optimization level process with respect to its
effects on the treewidth.

29

 0

 2

 4

 6

 8

 10

 0 50 100 150 200

U
pp

er
 tr

ee
w

id
th

 b
ou

nd

Number of nodes in region

(a)

 0

 1

 2

 3

 4

 5

 0 50 100 150 200

Tr
ee

w
id

th
 g

ap

Number of nodes in region

(b)

Figure 5.3: Upper treewidth bound and treewidth gap per number of nodes in region.

30

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4 5 6 7 8 9 10 11+

A
ve

ra
ge

 n
um

be
r o

f n
od

es

Upper treewidth bound

 n = 20 + 1.3tw2

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4 5+

A
ve

ra
ge

 n
um

be
r o

f n
od

es

Treewidth gap

 n = 50 + g3

(b)

Figure 5.4: Average number of nodes per upper treewidth bound and treewidth gap.

31

Upper bound treewidth results

Results for the upper bound treewidth for the atax and seidel-2d benchmarks are
shown in figures 5.5 and 5.6 respectively. From these plots we see that firstly, there is no
clear correlation between the treewidth and runtime of the programs. Secondly, we see that
a small subset of the different optimizations have an effect on the treewidth of the program
itself. Although there is some relationship between which optimization passes lead to a
higher and/or lower treewidth, this correlation not one-to-one.

atax - Upper treewidth bound

O1
O2
iln

mem2reg
sroa

early-cse-memssa
gvn

inline
psh
red
aa

adce
alig-from-assumptions

assumption-cache-tracker
barrier
basicaa
basiccg

bdce
block-freq

branch-prob
called-value-propagation

cne
constmerge

correlated-propagation
deadargelim

default
demanded-bits

div-rem-pairs
dne

domtree
dse

early-cse
ee-instrument

elim-avail-extern
float2int

forceattrs
functionattrs

globaldce
globalopt

globals-aa
indvars

inferattrs
instcombine
instsimplify

inv
ipsccp

 0 0.01 0.02 0.03Runtime (s)

5
6

7
9

10

ivt
jump-threading
lazy-block-freq

lazy-branch-prob
lazy-value-info

lcssa
lcssa-verification

libcalls-shrinkwrap
licm

loop-accesses
loop-deletion

loop-distribute
loop-idiom

loop-load-elim
loop-rotate

loops
loop-simplify

loop-sink
loop-unroll

loop-unswitch
loop-vectorize

lower-expect
memcpyopt

memdep
memoryssa

mldst-motion
opt-remark-emitter

pgo-memop-opt
phi-values

pll
postdomtree

profile-summary-info
prune-eh

reassociate
rpo-functionattrs
scalar-evolution

sccp
scoped-noalias

simplifycfg
slp-vectorizer

speculative-execution
strip-dead-prototypes

tailcallelim
targetlibinfo

tbaa
tti

url
verify

 0 0.01 0.02 0.03

Figure 5.5: Relationship between the upper bound treewidth, as different colored bars, and runtime
for the atax benchmark for a set of optimizations.

We e.g., see that the early-cse optimization leads to a higher treewidth in both
benchmarks, but while the early-cse-memssa generates a higher treewidth relative
to the other optimizations for the seidel-2d benchmark, it generates a treewidth in the
intermediate range for the atax benchmark.

32

seidel-2d - Upper treewidth bound

psh
aa

adce
alig-from-assumptions

assumption-cache-tracker
barrier
basicaa
basiccg

bdce
block-freq

branch-prob
called-value-propagation

cne
constmerge

correlated-propagation
deadargelim

default
demanded-bits

div-rem-pairs
dne

domtree
dse

ee-instrument
elim-avail-extern

float2int
forceattrs

functionattrs
globaldce
globalopt

globals-aa
iln

indvars
inferattrs

inline
instcombine
instsimplify

inv
ipsccp

ivt
jump-threading
lazy-block-freq

lazy-branch-prob
lazy-value-info

lcssa
lcssa-verification

libcalls-shrinkwrap

 0 10 20 30Runtime (s)

6
7

8
9

10

licm
loop-accesses
loop-deletion

loop-distribute
loop-idiom

loop-load-elim
loop-rotate

loops
loop-simplify

loop-sink
loop-unroll

loop-unswitch
loop-vectorize

lower-expect
mem2reg

memcpyopt
memdep

memoryssa
mldst-motion

O2
opt-remark-emitter

pgo-memop-opt
phi-values

pll
postdomtree

profile-summary-info
prune-eh

reassociate
rpo-functionattrs
scalar-evolution

sccp
scoped-noalias

simplifycfg
slp-vectorizer

speculative-execution
sroa

strip-dead-prototypes
tailcallelim

targetlibinfo
tbaa

tti
url

verify
gvn

early-cse
early-cse-memssa

red
O1

 0 10 20 30

Figure 5.6: Relationship between the upper bound treewidth, as different colored bars, and runtime
for the seidel-2d benchmark for a set of optimizations.

In addition to the individual optimizations, we also measure the treewidth and timing
results of the programs compiled with the collection of optimizations found in level O1
and O2 respectively. As expected these programs have lower runtimes than the programs
compiled with only individual optimizations.

In the generated plots we see that for a large number of benchmarks, the optimization
levels also generates programs with smaller upper bound treewidths relative to the individ-
ual jlm or llvm optimizations. We see this in the atax benchmark in Figure 5.5 where
the O1 and O2 optimizations generate the lowest treewidths. The seidel-2d bench-
mark does however show that this is not true for all programs, with level O2 generating a
treewidth of average size relative to the individual optimizations, and level O1 generating
a relatively higher treewidth.

33

We find the upper bound treewidth for the benchmarks when optimized at level O1
or O2 and compare these to the treewidths generated from the optimizations individually.
These results are summarized in Table 5.1, showing that level O1 generates a minimum
upper bound treewidth for 73% of the programs, and level O2 generates a minimum upper
bound treewidth for 59% of the programs. When neither a relative upper or lower treewidth
bound is generated, the result is listed as intermediate. The full table of results is found in
Appendix A.1.

total lower upper intermediate

O1 30 22 (73%) 3 (10%) 5 (17%)
O2 29 17 (59%) 5 (17%) 7 (24%)

Table 5.1: Aggregated upper treewidth bound results for the O1 and O2 optimization levels. Shows
a summary of the number of benchmarks where the programs generate a minimum, maximum, or
intermediate treewidth compared to the other treewidths found when using individual optimizations.
Full table found in Appendix A.1.

Lower bound treewidth results

Measuring the lower bound treewidth compared to the benchmark runtime, we again show
these results for the atax and seidel-2d benchmarks. These results are presented in
figures 5.7 and 5.8 respectively.

The lower bound treewidth measurements give similar results to the upper bound tree-
width case. Some optimizations affect the resulting treewidth, but this is not necessarily
the same optimizations between benchmarks. E.g., early-cse-memssa does not affect
the treewidth of the atax benchmark, but it does generate lower treewidth bound for the
seidel-2d benchmark. We again note the lack of a relationship between the runtime of
the individual benchmarks runs and their corresponding lower treewidth bound.

We do however find a relationship between the lower treewidth bound and a lower
runtime of the program when optimized at levels O1 and O2, as with the upper bound
treewidth.

We compare the lower treewidth bound generated by the optimization levels to the
maximum and minimum lower treewidth bounds found for the program when compiled
with individual optimizations. In Table 5.2 we summarize these results, again splitting
the results into three categories for generating the relative lower, upper, or intermediate
treewidth bound.

total lower upper intermediate

O1 30 23 (76%) 3 (10%) 4 (13%)
O2 29 23 (80%) 3 (10%) 5 (17%)

Table 5.2: Aggregated lower treewidth bound results for the O1 and O2 optimization levels. Sum-
mary of Table A.2, in similar fashion to Table 5.1.

34

atax - Lower treewidth bound

iln
inline

instcombine
mem2reg

O1
O2

sroa
aa

adce
alig-from-assumptions

assumption-cache-tracker
barrier
basicaa
basiccg

bdce
block-freq

branch-prob
called-value-propagation

cne
constmerge

correlated-propagation
deadargelim

default
demanded-bits

div-rem-pairs
dne

domtree
dse

early-cse
early-cse-memssa

ee-instrument
elim-avail-extern

float2int
forceattrs

functionattrs
globaldce
globalopt

globals-aa
gvn

indvars
inferattrs

instsimplify
inv

ipsccp
ivt

jump-threading

 0 0.01 0.02 0.03Runtime (s)

5 6

lazy-block-freq
lazy-branch-prob

lazy-value-info
lcssa

lcssa-verification
libcalls-shrinkwrap

licm
loop-accesses
loop-deletion

loop-distribute
loop-idiom

loop-load-elim
loop-rotate

loops
loop-simplify

loop-sink
loop-unroll

loop-unswitch
loop-vectorize

lower-expect
memcpyopt

memdep
memoryssa

mldst-motion
opt-remark-emitter

pgo-memop-opt
phi-values

pll
postdomtree

profile-summary-info
prune-eh

psh
reassociate

red
rpo-functionattrs
scalar-evolution

sccp
scoped-noalias

simplifycfg
slp-vectorizer

speculative-execution
strip-dead-prototypes

tailcallelim
targetlibinfo

tbaa
tti

url
verify

 0 0.01 0.02 0.03

Figure 5.7: Relationship between the lower bound treewidth, as different colored bars, and runtime
for the atax benchmark for a set of optimizations.

We note that there is a smaller variety in the lower treewidth bound than in the upper
treewidth bound, with some benchmarks having the same lower bound for all optimiza-
tions. In these cases we have reported the optimization to have found a lower relative
treewidth. We find that a similar number of O1 optimized benchmarks, 76%, and that a
greater number of O2 optimized benchmarks, 80%, generate a lower treewidth bound. The
full table of results can be found in Appendix A.2.

Aggregating the treewidth results

Plots from other benchmark programs than atax and seidel-2d, as well as similar investiga-
tions measuring average treewidth of these programs also show the lack of correlation be-
tween the runtime of the program and the treewidth of the individual optimizations. Thus

35

seidel-2d - Lower treewidth bound

early-cse
early-cse-memssa

gvn
aa

adce
alig-from-assumptions

assumption-cache-tracker
barrier
basicaa
basiccg

bdce
block-freq

branch-prob
called-value-propagation

cne
constmerge

correlated-propagation
deadargelim

default
demanded-bits

div-rem-pairs
dne

domtree
dse

ee-instrument
elim-avail-extern

float2int
forceattrs

functionattrs
globaldce
globalopt

globals-aa
iln

indvars
inferattrs

inline
instcombine
instsimplify

inv
ipsccp

ivt
jump-threading
lazy-block-freq

lazy-branch-prob
lazy-value-info

lcssa
lcssa-verification

 0 10 20 30Runtime (s)

5 6 7

libcalls-shrinkwrap
licm

loop-accesses
loop-deletion

loop-distribute
loop-idiom

loop-load-elim
loop-rotate

loops
loop-simplify

loop-sink
loop-unroll

loop-unswitch
loop-vectorize

lower-expect
mem2reg

memcpyopt
memdep

memoryssa
mldst-motion

O2
opt-remark-emitter

pgo-memop-opt
phi-values

pll
postdomtree

profile-summary-info
prune-eh

psh
reassociate

red
rpo-functionattrs
scalar-evolution

sccp
scoped-noalias

simplifycfg
slp-vectorizer

speculative-execution
sroa

strip-dead-prototypes
tailcallelim

targetlibinfo
tbaa

tti
url

verify
O1

 0 10 20 30

Figure 5.8: Relationship between the lower bound treewidth, as different colored bars, and runtime
for the seidel-2d benchmark for a set of optimizations.

there is no general observable relationship between the RVSDG upper treewidth bound
and the efficiency of the programs itself. This is further investigated in Section 5.1.3. Here
where we create two semantically equivalent programs with different treewidths, still re-
sulting in a similar runtime of the programs.

In Figure 5.9 we compare the results of the lower and upper treewidth measurements.
For each benchmark we show the relative results of both optimization levels. We see that
for most benchmarks, the same or a similar treewidth is found for both upper and lower
bounds, and both optimization levels. Only for the durbin and jacobi-2d bench-
marks, is the lower treewidth bound relatively high while the upper treewidth bound is
relatively low for the same optimization level. We also find that the nussinov bench-
mark is the only program where the O1 and O2 levels generate the lowest and highest

36

relative treewidths respectively.
2m

m
3m

m ad
i

at
ax

bi
cg

ch
ol

es
ky

co
rr

el
at

io
n

co
va

ria
nc

e
de

ric
he

do
itg

en
du

rb
in

fd
td

-2
d

flo
yd

-w
ar

sh
al

l
ge

m
m

ge
m

ve
r

ge
su

m
m

v
gr

am
sc

hm
id

t
he

at
-3

d
ja

co
bi

-1
d

ja
co

bi
-2

d lu
lu

dc
m

p
m

vt
nu

ss
in

ov
se

id
el

-2
d

sy
m

m
sy

r2
k

sy
rk

tr
is

ol
v

tr
m

m

m
ax

m
in

upper O1
lower O1
upper O2
lower O2

Figure 5.9: Comparison of relative treewidths generated for the upper and lower treewidth bounds
at the O1 and O2 optimization levels. Treewidth results are listed as minimum, maximum, or inter-
mediate.

Optimization level O2

To investigate which optimizations affect the treewidth when running at level O2 we apply
each optimization pass individually, as discussed in 4.5, and measure the treewidth of the
program at each intermediate step. We find that most of the passes do not change the
treewidth of the program. In Figure 5.10 we summarize these results, showing only the
passes that have an effect on the treewidth. As the transform passes run in a particular
order, and some optimizations are applied several times, we also list at which step of the
total 263 passes the change occurs.

From this figure we see that of all passes, only 22 actually affect the treewidth of the
resulting program. These optimizations are run on 30 different programs, meaning that
only 10 of the passes changes the treewidth for approximately 50% or more of the pro-
grams. We note that the Scalar Replacement of Aggregates (SRA), -sroa optimization
pass changes the treewidth of 17 programs in the first pass and 28 in the second pass. SRA
introduces new variables for parts of non-aliased aggregates, potentially replacing mem-
ory load dependencies [18]. We note that for almost all of these changes, the treewidth
decreases.

37

 0

 5

 10

 15

 20

 25

 30

deadargelim(26)

simplifycfg(35)

loop-simplify(81)

loop-unswitch(89)

simplifycfg(90)

dse(138)

loop-load-elim(196)

gvn(115)

simplifycfg(8)

simplifycfg(203)

loop-rotate(87)

licm(229)

instcombine(34)

indvars(103)

loop-vectorize(191)

early-cse-memssa(46)

instcombine(202)

inline(39)

sroa(10)

licm(88)

early-cse(11)

sroa(42)

C
ha

ng
ed

 T
re

ew
id

th
s

Figure 5.10: Optimization passes that change the treewidth for the programs in the PolyBench
benchmark suite. For a total of 30 programs from the suite and all optimization passes applied in the
level O2 optimization process, the figure shown the number of optimization passes that results in a
changed treewidth (at step x).

5.1.3 Impact on program runtime
To investigate the treewidth impact on runtime, we create a custom benchmark performing
some arbitrary calculations found in the benchmarks of the PolyBench suite, such as matrix
transposition and vector addition on large matrices. We create two programs performing
the same calculations, only differing in the method that arguments are passed between the
functions of the programs such that the treewidth differs as expected between them.

These programs are benchmarked, and the results indicate no change in the runtime
between the program that passes the matrices as values to the program that passes the
matrices as members of a struct. This indicates the lack of a relationship between the
treewidth itself and the runtime efficiency of the generated program, further supporting
our findings about the lack of such a relation as discussed above.

5.1.4 Functions
This section presents the different treewidth bounds generated by running three semanti-
cally equivalent programs, each loading values using the different methods presented in
Section 3.4.1. These results are summarized in Table 5.3, run for functions with 10 pa-
rameters. We also give an overview of how these methods affects the structure of the

38

corresponding RVSDG.

type tw Graph structure Loading of values

variable 4–7 Sequential,
dependent on
loading of values
from memory

Sequential, each argument must be
allocated on the stack. Each such
allocation is dependent on the
allocation of the previous argument.

struct 4–4 Parallel Parallel, each argument is retrieved
via a pointer to the struct, which
happens independently of each other.

array 4–4 Partially parallel Similar to loading of the struct,
except that each pointer is dependent
on the previous being loaded.

Table 5.3: Summary of the treewidths correlating to the separate methods of passing arguments to
the functions in Listing 3.3, with notes about the structure of these graphs and how values are loaded.
The tw-column shows the lower and upper bound treewidth of the resulting lambda region generated
for the program.

A function accepting a single variable, performing the same summary ten times has
a treewidth of 4. Therefore, the struct and array methods of passing arguments does not
increase the treewidth. However, for a variable amount of arguments, increasing amount
of of arguments the function accepts results in a higher upper treewidth bound for the
corresponding lambda region. We note that this relationship is not one-to-one between the
number of arguments accepted by the function and the upper bound treewidth.

In Figure 5.11 we show the results of testing a function accepting n number of argu-
ments and returning their sum.

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10

U
pp

er
 tr

ee
w

id
th

 b
ou

nd

Variables allocated

Figure 5.11: Relationship between number of arguments passed and the upper bound
treewidth of region representing the variable_sum() function.

39

We see a gradual increase in the treewidth, although not exactly linear, with the increase
in the number of arguments accepted. We also note that this increase stops after a certain
number of arguments accepted is reached, in this case the upper bound is 7 variables
allocated.

From these experiments we also observe two other factors that affect the treewidth of
the function. Firstly, allocating other variables inside the function may increase the upper
bound treewidth. Secondly, changing the addition expression inside the function itself also
affects the upper bound treewidth. The results of investigating these factors are presented
in Section 5.1.5.

5.1.5 Variable liveness
Running the experiments for the type and number of arguments of the functions discussed
above, while we notice some changes in the treewidth of the lambda region representing
the functions themselves, we find a comparably larger variation in the treewidth of the
main function calling the various summary functions. This section presents our findings
for how the variable liveness, as introduced in Section 4.7, affects the treewidths of these
main functions.

We first present the treewidth results for a varying amount of variable allocations, then
the results for a varying number of references via function calls to each variable. We
further present results for different call orderings, and finally variable use in expressions
and its effect on the treewidth.

Single variable allocations

Again using the 3mm and cholesky benchmarks as examples, the main function in the
program calling the computational kernel of these two benchmarks has an upper bound
treewidth of 13 and 6 respectively. The only difference between these main functions is the
number of integer variables being allocated and matrices being allocated and deallocated.

We use the specifications of these programs as a basis for investigating the effect of
variable liveness on the RVSDG treewidth, inspecting the graphs generated by two pro-
grams created to induce these allocation differences discussed above. These programs
allocate the same number of variables with the same live range, one using standard integer
allocations and the other using PolyBench style matrix allocations as shown Listing 4.4.

In Figure 5.12 we show the RVSDGs generated from allocating a single integer vari-
able and a single matrix respectively. We notice that the matrix allocation in 5.12b results
in a similar graph structure to the integer variable-case allocation in 5.12a, except that an
additional call to the PolyBench allocation function is required, resulting in an additional
state edge from the lambda entry node to the function call.

Multiple variable allocation

We find that if the variable is not referenced later in the program, allocating it has no
effect on the treewidth of the program after the treewidth reaches certain limit. For the two
programs in Figure 5.12, this upper treewidth bound is 4 and the lower treewidth bound is

40

BITS32(1)

ALLOCA

STORE

lambda-result

BITS32(n)

lambda-exit

lambda-argument

lambda-argument

lambda-result

lambda-entry

(a) int var = n

BITS32(1)

ALLOCA

STORE

CALL

lambda-result

BITCAST[bit8* -> [N x [M x float]]*]

lambda-result

BITS64(size)

lambda-exit

lambda-argument

lambda-argument

lambda-argument

lambda-entry

(b) float (*mat)[N][M] = ...

Figure 5.12: Allocating and storing a single integer and matrix respectively.

3 for 5.12a and 4 for 5.12b. The number of allocations needed to reach this upper limit is
4 integer allocations or 3 matrix allocations.

Variable allocations with single call

Analyzing the allocated variables that are used or referenced once in the same function that
they are allocated, as shown in Listing 5.1, we find that this use of the variable increases
the treewidth beyond the maximum value discussed above. This growth in the treewidth
can be seen in Figure 5.13.

We note that the upper treewidth growth increases constantly as we add and use more
integer variables. The lower treewidth bound however, grows slower. As discussed, for
the case of only allocating the variables, allocating and calling the variables once also
tends towards an upper bound. This can be seen by the reduced growth of the treewidth
in Figure 5.13 from 7 and 6 integer and matrix variables allocated respectively. As above,
the end of this growth is verified using up to 100 allocations and calls.

Variable allocations with multiple calls

When calling the allocated matrices more than once, as shown in Listing 5.2 we find that
the treewidth increases further above the results shown in Figure 5.13. E.g., if the integer
variables are called twice by a function, the upper bound treewidth increases by 2 and the

41

int var_1 = 1;
int var_2 = 2;
...
int var_n = n;

f(var_1);
f(var_2);
...
f(var_n);

Listing 5.1: Called once.

int var_1 = 1;
int var_2 = 2;
...
int var_n = n;

f(var_1);
f(var_2);
...
f(var_n);

...

f(var_1);
f(var_2);
...
f(var_n);

Listing 5.2: Called several
times.

int var_1 = 1;
int var_2 = 2;
...
int var_n = n;

f_1(var_1);
f_2(var_2);
...
f_n(var_n);

...

f_1(var_1);
f_2(var_2);
...
f_n(var_n);

Listing 5.3: Called several
times by different functions.

n integer variables allocated and called in a blockwise order.

lower bound increases by 1. We also find that passing the variables to different functions,
as shown in Listing 5.3, increases the treewidth further. Passing the integer variables once
to two different functions, the upper bound further increases by 1. This new upper limit is
also verified on programs for allocating up to 100 variables in the same manner.

Figure 5.14 shows this continued growth in treewidth for a program allocating 7 vari-
ables for an increasing number of function calls referencing each variable. This figure also
shows the difference in the treewidth dependent on whether these function calls are made
to the same function, or to 7 different functions. If the variables are called by the same
function 3 times, the lower bound further increases by one, continuing almost correspond-
ingly until a new upper limit for the bounds is reached.

We see a slightly different growth in the treewidth if we instead call a different func-
tion each time the variable is referenced. In this case, the lower treewidth bound grows at
a similar rate while the upper treewidth bound increases in bigger increments. Calling dif-
ferent functions, the treewidth also continues to grow for an increasing amount of function
calls, resulting in a larger upper and lower treewidth bound.

We also note that when calling several different functions, the upper treewidth bound
in some cases decreases when adding more calls e.g., from 6 to 7 calls in 5.14a, or from 5
to 6 calls in 5.14b.

Variable allocations with multiple calls with different orderings

Further looking into the relationship between the treewidth and the number of times the
variables are called, we find that the ordering of these calls impact the resulting treewidth.
In Section 3.4.1 we define two different orderings, blockwise and sequential. The results

42

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2 4 6 8
Variables allocated

Tr
ee

w
id

th

Integers (a)

 0 2 4 6 8
Variables allocated

Matrices (b)

Figure 5.13: Relationship between the number of variables allocated and referenced once, and the
upper and lower treewidth bounds of their corresponding RVSDGs.

presented in the previous section call functions in a blockwise order, and in this section we
similarly present results for sequentially ordered function calls.

As above, we allocate 7 variables calling an increasing number of functions, testing
both the same and different function calls. We find that unlike the blockwise call order,
the sequential ordering results in no increase in treewidth as the number of function calls
increases. This holds true for both integer and matrix variables, and for calling both the
same and different functions.

In all cases, the resulting treewidth is the same as for one call in the blockwise call
order. These results are also verified for up to at least 100 calls.

Multiple variable allocations and multiple references and calls

Trying to combine the two approaches presented in this section, increasing both the amount
of variables allocated and the number of times they are called at the same time, does not
tend toward an upper bound as when increasing one of the parameters individually.

An excerpt from these results are shown in Figure 5.15a, where we increase both the
amount of variables called, and the number of times they are called. The complete ta-
ble of results can be found in Appendix A.3. We find that increasing either parameter,
the treewidth will grow to a certain limit, but when increasing both the treewidth grows
indefinitely.

43

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14
Function Calls

Tr
ee

w
id

th

Integers (a)

same function
different calls

 0 2 4 6 8 10 12 14
Function Calls

Matrices(b)

same function
different calls

Figure 5.14: Relationship between the number of variables allocated in a blockwise call order
referenced 7 times and the upper and lower treewidth bounds of their corresponding RVSDGs.

Variable allocations and use in expressions

Further investigating how the number of variables allocated and how many times they
are used in expressions affect the treewidth, we run a set of tests in the same manner as
above. These tests vary both the number of variables allocated and the number of times
they are using in an expression. The expression is an addition of all the allocated variables.
For several variables this is done in a blockwise call order. These results are presented in
Figure 5.15b, showing the lower and upper treewidth bounds generated for these programs.
Figure 5.15b shows the results when increasing both parameters, the complete table of
results can be found in Appendix A.4.

We find similar results to increasing the number function calls. When increasing both
parameters, the treewidth of the resulting graphs increases without approaching an upper
bound. Table 5.15b also shows that variables referenced in expressions results in smaller
treewidths than passing them to function calls.

5.2 Discussion
In this section we discuss and analyse the results of our experiments presented above.
Section 5.2.1 discusses the general results we find from calculating the upper and lower
treewidth bounds for the RVSDG regions generated by the programs in the PolyBench

44

 0

 10

 20

 30

 40

 50

 60

 1 2 4 8 16 32
Variables/References

Tr
ee

w
id

th

Functions (a)

 1 2 4 8 16 32
Variables/References

Expressions (b)

Figure 5.15: Lower and upper treewidth bounds for both an increasing amount of variables allo-
cated, and number of calls to each variable.

benchmark suite. Section 5.2.2 analyses how dependencies in functions affect the RVS-
DGs generated and their corresponding treewidths. Finally, Section 5.2.3 analyses the
liveness results in the same manner, discussing how the dependencies introduced by live-
ness restrictions affects the generated graphs.

5.2.1 General treewidth results
In Section 5.1.1 we present the results from running the heuristic algorithms on the pro-
grams of the PolyBench benchmark suite. This includes the upper bound treewidth and
treewidth bound gap per benchmark, along the with average number of nodes for the
graphs of these measurements.

From these results we find that the average upper bound treewidth is 9 for the graphs
corresponding to regions of the RVSDG IR for the programs tested. To claim that this is a
low treewidth, and to relate our findings to another work, we refer to Krausse et al. [22].
They find, in a correction of Thorup [38], that the treewidth of the CFGs of C programs is
7+g for g goto statements. Tree decompositions of this kind are successfully used in the
SDCC compiler, which shows that treewidth of this magnitude can be used to implement
practical and useful optimizations in a compiler. Examples of optimization algorithms
that have been solved in linear time with the help of tree decompositions are also from
Krausse [21]. Here it is proven that for programs with a CFG representation of bounded

45

treewidth, the register allocation problem can be solved in polynomial time, and that CSE
can be solved in linear time.

For the benchmarked programs, we show that the average number of nodes in the
RVSDG regions increase polynomially as a function of the treewidth of the graph. We
also see a similar relationship between the gap of the upper and lower treewidth bounds,
and the number of nodes in the region. As described in Section 4.4, a small gap between
these bounds means the heuristics perform well, closely approximating the actual tree-
width. Since both the upper bound treewidth, and the treewidth bound gap grows slower
as the number of nodes in the graph increases, this gives us reason to belive that both the
treewidth will be bounded, and that the performance of the heuristics will hold for even
larger graphs.

We conclude that the results from our benchmarking programs are promising, showing
low and bounded treewidths for a large set of RVSDG representations. We are able to find
these treewidths in polynomial time using the implemented heuristics, which we are also
able to show that perform well, closely modeling the accrual treewidth of the graphs. These
results indicate the tree decomposition as a viable path for finding better optimizations for
the RVSDG IR.

5.2.2 Analysis of dependencies in functions
In this section we analyse the results presented in Section 5.1.4. Figures 5.16, 5.17,
and 5.18 show the generated graphs for the three summary-functions presented in Sec-
tion 3.4.1. For all functions we see that while having more arguments in the function
results in more nodes being created, this will not necessarily increase the treewidth, as in
the struct and array cases.

To further understand how these graphs are generated, we have to consider the LLVM
bytecode that is generated from the input programs. For all three graphs, the relationship
between the allocation of the variable, and the necessary dependencies between this and
the load and store operations will be used to reason about the resulting graph structure and
its impact on the treewidth.

To create a program in SSA form directly from an AST, LLVM allocates function ar-
guments on the stack for further use. This is achieved in the LLVM bytecode purposing
the ALLOCA instruction. Since the RVSDG construction algorithm uses a single memory
state edge to sequentialise memory operations, each such allocation node in the RVSDG is
dependent on the previous allocation. This can be seen in Figure 5.16, generated from ar-
guments passed as variables function, in the section marked “Allocation of stack space for
variables”. The variables are then stored at this location before they can finally be loaded
and added together. This is expressed in the LLVM bytecode with the LOAD, STORE, and
BITADD32 instructions respectively. Since the RVSDGs current implementation serial-
izes I/O operations, loads and stores in the graph are also interdependent of each other.
In addition, each storage is dependent on its corresponding allocation, and each load is
dependent on both its corresponding allocation and the preceding stores.

46

Loading and
summation of
variables

Storage of
variables
on the stack

Allocation of
stack space
for variables

Figure 5.16: Lambda region for a function summarizing 10 arguments passed individually.

47

These three phases of the summary-function can be seen in the highlighted areas in
Figure 5.16. We also highlight three different types of cycles generated for each argument
summarized in the function. The green cycle is generated by the dependencies between
allocation calls, the dependency between the allocation and the corresponding load, and
the dependency between the set of stores and loads. Red cycles are generated by the de-
pendency between the first store and allocation nodes, and each lambda-argument i.e., the
function argument to its corresponding store node. We also find two kinds of cycles gen-
erated due to the dependencies the entry node has on the result node of the function. This
state edge at the right side of the figure forms cycles either with the chain of dependen-
cies through the allocation and load nodes, or though the load and store nodes. These are
represented as the magenta and yellow colored cycles respectively. The blue cycle is gen-
erated by the interdependence between stores and the dependency between the allocations
and stores. As opposed to the other cycles, this cycle is only generated between the last
allocation node and the first and last interdependent store nodes. This causes the blue kind
of cycle not to scale with the number of arguments received and used by the function.

Looking at Figure 5.17 generated from the struct summary function, we see that the
graph differs due to the alternative method of loading the values from memory. Instead of
allocating the variables locally on the stack, a pointer to the struct is passed to the func-
tion, and the LLVM bytecode instruction GETELEMENTPTR is issued to get a reference
to the individual elements in the struct. These elements are then loaded and added in the
same way as in Figure 5.16. Unlike ALLOCA calls, GETELEMENTPTR calls are not in-
terdependent and can be issued in parallel. The highlighted paths in the figure denotes the
same kind of cycles as in figure above. The yellow and magenta paths denote the cycles
generated by the state edge between the entry and exit nodes at the left side of the figure,
through the chain of loads, or through the lambda-entry node respectively.

Loading and
summation
of variables

Retrieving
references
to members
in struct

Figure 5.17: Lambda region for a function summarizing 10 arguments passed as a struct.

48

In the graph generated from the struct parameter, there is no chain of allocations and
stores before the loads. In the parameters as values case, this magenta type cycle scales
with the number of function parameters. This is not the case for the functions with the
struct parameter. The green cycles are generated by the dependencies between loads and
their respective GETELEMENTPTR call. We see that the blue and red type of cycles do
not occur in Figure 5.17, since they are generated by dependencies including the store and
allocation call chains, which does not occur in the struct case.

Figure 5.18 shows the program generated from the function with the array parameter.
We notice some differences between loading values from a C style array and how structs
are handled in the LLVM bytecode. We see that the program is able to predict that it needs
to store n elements, and issues one allocation call for all members of the argument array
passed to the function. The pointer to the array itself is also stored on the stack and has to
be loaded each time it is referenced. The chain of dependencies appearing on the left side
of the figure is therefore the sequence of loading the pointer, getting the element reference,
loading the element and finally adding it together with the next element.

Storing the input
array pointer on
the stack

Loading one
element from
input array

Cropped from
third array
element to last

...

Figure 5.18: Lambda region for a function summarizing 10 arguments passed as an array.

Even though this graph structure has some differences from the struct case, we detect
the same kinds of cycles in both graphs. Again, we see the yellow and magenta paths
going through the entry and exit nodes on the right of the figure and either the chains of

49

loads and allocations or through the store node respectively. As in the struct case, the
magenta cycles does not scale with the number of variables since this store only occurs
once. We also observe similar green cycles from the dependencies between the loads and
their allocations, as well as the lack of the red and blue types of cycles.

5.2.3 Analysis of dependencies with respect to variable liveness
This section presents an analysis of the results found in Section 5.1.5. As in the previous
section, we will use the LLVM bytecode compiled from the various programs presented in
the section, along with the graph structure of its corresponding RVSDGs to reason about
the resulting treewidths.

Multiple variable allocation

In Section 5.1.5, we identify the upper treewidth bounds for two programs allocating vari-
ables and matrices to be 3 and 4 respectively. In Figure 5.19 we show graphs representing
these cases. Marked in both figures, are the type of cycles that appear in the graphs which
increase as the number of variables allocated increases. For both types of allocations we
find the paths colored magenta, representing the dependencies between the allocation and
storage of the variables. In Figure 5.19b we also see cycles generated by the dependencies
between the set of allocations and the respective function calls, denoted in green.

Variable allocations

In Figure 5.20a we show the generated graph for an allocation of 4 integer variables where
each variable is passed once to the same function. Compared to the graph in Figure 5.19,
the function called is itself passed as an argument to the node where the call of the func-
tions occurs. This additional dependency to the lambda entry node, introduces a set of
cycles in the graph marked as green in the figure. Also, each allocation node introduces an
additional state edge to the load node that occurs before each call to the function, further
adding another set of cycles in the graph marked in blue.

Verifying that this extra load dependency has a observable effect on the treewidth, we
run a similar experiment with 4 integer variable allocations, where we instead of calling a
function, add the 4 variables together. We find that the graph generated by this program is
similar to the function call case discussed above, and that the treewidth is similar. When
the variables are not called or added together, both have a higher upper treewidth bound
of one. The graph using additions is shown in Figure 5.20b, where the colored paths
mark the same kind of cycles as in Figure 5.20a. We find two differences between these
functions, which therefore does not affect the treewidth of the graph in this case. Firstly,
the dependency edge from the entry node to the exit nodes goes through the chain of
function calls in Figure 5.20a, while it goes directly to the exit node in Figure 5.20b. This
causes the blue path in 5.20b to contain fewer edges than in 5.20a. We also see that the
green cycle through the function call dependencies does not appear in 5.20b.

In Figure 5.21 we show how the graphs differ when the functions calls are made to the
same function, compared against the case where each variable is called by several differ-
ent functions. This graph is generated from a program allocating 3 variables. In the Fig-

50

(a) Allocating 4 integer variables (b) Allocating 3 PolyBench matrices

Figure 5.19: Minimum number of variables needed to be allocated to generate a graph of maximum
treewidth for the corresponding allocation types.

ure 5.21a each variable is called twice by the same function, and in Figure 5.21b each vari-
able is called twice by two different functions, resulting in a higher upper bound treewidth.
The structural difference between these graphs is the dependency of the function call to
the entry node of the function. For 5.21a we see that each call-node is dependent on the
same lambda-argument, shown in magenta, while for 5.21b two such lambda-arguments
are passed to the two different functions, shown in magenta and green respectively.

Call orderings

In Figure 5.22 we show the allocation of 3 variables referenced two times by two different
functions in a sequential call order. Compared to the graph showing the corresponding
blockwise referencing to the variables in Figure 5.21a, we see that the edges from the

51

(a) Allocating 4 variables and passing each
to a function call.

(b) Allocating 4 variables and adding them together.

Figure 5.20

lambda argument nodes to the function call nodes are separated by other calls through-
out this chain of function calls, rather than blocked together as they are when referenced
sequentially.

We find that further increasing the amount of references to a variable beyond a certain
number of times in a blockwise call sequence, will no longer increase the treewidth. In-
creasing the number of times the variable is called in a sequential call sequence will not
increase the treewidth at all.

Again, this indicates an upper bound that can be reached by a certain number of calls
to the variables allocated, which is the same result we found for the number of variables

52

Common
function
interior

(a) Allocating 3 variables and passing them twice
to the same funciton.

(b) Allocating 3 variables and passing them twice
to three different functions.

Figure 5.21

allocated. Both these approaches assume either a constant number of variables allocated,
or a constant number of times each variable is called. As seen in Section 5.1.5, when both
these parameters are increased, the treewidth increases indefinitely.

53

Figure 5.22: Allocating 3 variables and calling them twice in a sequential call order.

Variable allocations and use in expressions

We see that the difference in the resulting programs is how the loading of the variables
are dependent on each other. Each value loaded is also dependent on the allocation of its
storage space on the stack, and when only loading the variables, this dependency and the
state dependency to the previous load are the only paths generating cycles in the graph.
When adding all variables together we get a chain of additions that are also dependent on

54

both the previous load and the previous addition. Splitting the expressions into smaller
parts, the number of these dependencies on previous additions gets fewer, and the length
of these dependency chains gets smaller.

The effects on the treewidth appear to be minimal however, decreasing the upper tree-
width bound by one when splitting the expression and by two when only loading the vari-
ables. From Figure 5.15b, we find the upper treewidth bound of 30 variable declarations
referenced in 30 expressions. When either splitting the expression into two parts, or when
loading all values separately this upper treewidth bound decreases from 39 to 31.

We also find that the ordering of the variables in the expressions affect the treewidth in
the same manner as when passing the variables to function calls. While Figure 5.15b show
the variables referenced in the expressions in a blockwise call order, when referencing the
variables in a sequential call order the treewidth increases more gradually to 4 − 8 for 14
allocations and 15 references, or 30 allocations and 4 references. The treewidth does then
not increase above this threshold for the sequential call ordering.

If the variables are referenced once in a single expression, such as adding all the vari-
ables together, the upper treewidth is higher than if each such expression is split in two,
adding half of the variables together in two separate expressions. We continue reducing
the expression until the variables are not used in an expression, but simply stated by them-
selves, resulting in a single load of the variable in the resulting LLVM bytecode. We find
that the upper treewidth bound is continuously lowered as the expression size gets smaller.

In Figure 5.19 we see that the graphs resulting from a program either allocating vari-
ables and passing each to a single function call, allocating 4 variables and adding them
together are similar and have the same treewidths. We find that the major difference in
the resulting graphs is the fact that the function calls have an extra dependency to the
lambda-argument, which expressions such as addition does not.

In Figure 5.23 we show the differing sections of three programs issuing 10 variable
allocations, referencing them in the three different manners presented above. We see that
when only declaring the variables in the top row of the figure, there is a dependency chain
between the loading of the values. When also adding the variables together, we intro-
duce addition nodes which are also dependent on their corresponding load and previous
addition. This is seen in the bottom two subfigures.

55

n0; n1; … n8; n9;

n0 + … + n4; n5 + … + n9;

n0 + n1 + … + n8 + n9;

Figure 5.23: Section of the graph concerning the reference to the variables after their allocation for
three different expression types.

56

Chapter 6
Conclusion

6.1 Conclusion
In this thesis we have developed a framework for both parsing the RVSDG IR to a corre-
sponding graph representation, and finding the upper and lower treewidth bounds of these
graphs. For a set of benchmark programs we find that the treewidth is low and bounded.

This framework is further used to investigate how different program features impact
the treewidth and graph structure of the RVSDG. We have induced structural changes to
a set of benchmark programs by applying different optimizations, and analyzed how this
affects the treewidth of the resulting programs. We found that while there is no correlation
between the runtime of the resulting programs and the optimizations individually, collec-
tions of optimizations that increase the efficiency of the program also results in a reduced
treewidth of the corresponding graphs.

We have also identified and induced program features that affect the RVSDG treewidth,
and presented tailored programs to investigate these effects. We have analyzed two such
categories of features. Firstly, identifying different methods of passing arguments to func-
tions and different orderings of function calls, we have seen how these affect the resulting
treewidth. Secondly, mapping the effects of variable liveness and allocation, we found that
for an increasing amount of variables allocated, or an increasing amount of references to
these variables, the treewidth of the resulting program increases. We have shown that this
growth is bounded when only one of the parameters increase, and that it grows indefinitely
when both increase.

We have also conducted a detailed analysis of the RVSDGs generated by these pro-
grams. We have shown how the program feature changes affect the resulting graphs,
using the data flow and state dependencies between nodes to reason about the resulting
treewidths. We identified different types of generated cycles in the graph, connecting them
to the program feature changes induced. These cycles scales proportionally with the num-
ber of nodes or operations in the graph.

57

6.2 Future work
Determining that we have a low and bounded treewidth for the RVSDG opens several
avenues of further research.

By implementing a method for finding the upper bound for the treewidth, we have
taken the first step towards finding the tree decomposition itself. We also have created
a framework that allows parsing of RVSDG programs into corresponding graphs. This
framework already includes important features required to find the tree decomposition, and
is possible to extend to implement further operations needed. An overview of approaches
to find the tree decomposition is given in Section 2.5.2.

To benefit from these results, we also need to decide and design specific optimization
algorithms for the RVSDG. This requires formulating the optimization problems on the
graph, such that they can be solved using dynamic programming techniques with the help
of the tree decomposition. These techniques are discussed in Section 2.5.3. We could
also investigate practical properties of running dynamic programming algorithms using the
tree decomposition. This can be used to further investigate the feasibility of running such
algorithms in a real-world compiler, and determine what treewidth the tree decomposition
needs to provide results within a realistic time-frame.

In the experiments we investigate the program feature impact on the resulting treewidth
and note that there is only a change in the upper bound treewidth. There is thus a possibility
that the actual treewidth does not change. Instead, structures in the graph might change
in such a way that the minor-min-width upper bound heuristic does not perform as well,
overestimating the upper treewidth bound of the graph. To further investigate this, finding
the tree decomposition as delineated above will be beneficial.

58

Bibliography

[1] Aho, Alfred V. and Lam, Monica S. and Sethi, Ravi and Ullman, Jeffrey D. Com-
pilers: Principles, Techniques, and Tools (2Nd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2006.

[2] Arseny Kapoulkine et. al. pugixml, version 1.10. https://pugixml.org/,
2019. GitHub; Accessed 12-06-2019.

[3] Asbjørn Djupdal. rvsdg-viewer. https://github.com/phate/rvsdg-
viewer, 2017. GitHub; Accessed 12-06-2019.

[4] Helge Bahmann, Nico Reissmann, Magnus Jahre, and Jan Meyer. Perfect recon-
structability of control flow from demand dependence graphs. ACM Transactions on
Architecture and Code Optimization, 11:1–25, 01 2015.

[5] Jeremias Berg and Matti Jarvisalo. SAT-based approaches to treewidth computation:
An evaluation. In 2014 IEEE 26th International Conference on Tools with Artificial
Intelligence, pages 328–335. IEEE, 2014.

[6] Hans Bodlaender. Discovering treewidth. Lecture Notes in Computer Science,
3381:1–16, 01 2005.

[7] Hans L. Bodlaender. Dynamic programming on graphs with bounded treewidth.
Automata, Languages and Programming, pages 105–118, 1988.

[8] Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel
Lokshtanov, and Michal Pilipczuk. A O(ckn) 5-approximation algorithm for tree-
width. CoRR, abs/1304.6321, 2013.

[9] Burgess, Mark and Hale-Evans, Ron. The GNU C Programming Tutorial. A GNU
Manual, 2020. Edition 4.1; http://www.crasseux.com/books/ctut.pdf.

[10] G. Charwat. Dynamic programming on tree decompositions using binary decision
diagrams: Research summary. Technical Communications of ICLP, 1433, 01 2015.

59

https://pugixml.org/
https://github.com/phate/rvsdg-viewer
https://github.com/phate/rvsdg-viewer
http://www.crasseux.com/books/ctut.pdf

[11] François Clautiaux, Aziz Moukrim, Stéphane Nègre, and Jacques Carlier. Heuristic
and metaheuristic methods for computing graph treewidth. RAIRO - Operations Re-
search, 38(1):13–26, 2019.

[12] D-Wave Systems Inc. D-wave networkx, version 0.82. https:
//docs.ocean.dwavesys.com/projects/dwave-networkx/
en/latest/_modules/dwave_networkx/algorithms/
elimination_ordering.html, 2019. Read the Docs; Accessed 12-06-
2019.

[13] R. Diestel. Graph Theory. Electronic library of mathematics. Springer, 2006.

[14] R. G Downey and M. R Fellows. Fundamentals of parameterized complexity.
Springer, 2013. OCLC: 865474474.

[15] E. R. Gansner, E. Koutsofios, S. C. North, and K. . Vo. A technique for drawing
directed graphs. IEEE Transactions on Software Engineering, 19(3):214–230, March
1993.

[16] Fănică Gavril. Algorithms for minimum coloring, maximum clique, minimum cov-
ering by cliques, and maximum independent set of a chordal graph. SIAM Journal
on Computing, 1(2):180–187, 1972.

[17] Vibhav Gogate and Rina Dechter. A complete anytime algorithm for treewidth.
CoRR, abs/1207.4109, 2012.

[18] Martin Jambor. The new intraprocedural Scalar Replacement of Aggregates.
GCC Summit, 2010. https://gcc.gnu.org/wiki/summit2010?action=
AttachFile&do=view&target=jambor.pdf.

[19] Neil Johnson and Alan Mycroft. Combined code motion and register allocation using
the value state dependence graph. In Lecture Notes in Computer Science, pages 1–16.
Springer Berlin Heidelberg, 2003.

[20] J. Kleinberg and É. Tardos. Algorithm Design. Pearson/Addison-Wesley, 2006.

[21] Philipp Klaus Krause. Graph decomposition in routing and compilers. PhD thesis,
Frankfurt am Main, 2016.

[22] Philipp Klaus Krause, Lukas Larisch, and Felix Salfelder. The tree-width of c. Dis-
crete Applied Mathematics, 2019.

[23] Brendan McKay. graph formats. http://users.cecs.anu.edu.au/~bdm/
data/formats.txt, http://users.cecs.anu.edu.au/~bdm/data/
formats.html, 2015. Accessed 12-06-2019.

[24] N. Llopis, C. Nicholson et. al. Unittest++, version 2.0.0. https://github.com/
unittest-cpp/unittest-cpp. Github.

60

https://docs.ocean.dwavesys.com/projects/dwave-networkx/en/latest/_modules/dwave_networkx/algorithms/elimination_ordering.html
https://docs.ocean.dwavesys.com/projects/dwave-networkx/en/latest/_modules/dwave_networkx/algorithms/elimination_ordering.html
https://docs.ocean.dwavesys.com/projects/dwave-networkx/en/latest/_modules/dwave_networkx/algorithms/elimination_ordering.html
https://docs.ocean.dwavesys.com/projects/dwave-networkx/en/latest/_modules/dwave_networkx/algorithms/elimination_ordering.html
https://gcc.gnu.org/wiki/summit2010?action=AttachFile&do=view&target=jambor.pdf
https://gcc.gnu.org/wiki/summit2010?action=AttachFile&do=view&target=jambor.pdf
http://users.cecs.anu.edu.au/~bdm/data/formats.txt
http://users.cecs.anu.edu.au/~bdm/data/formats.txt
http://users.cecs.anu.edu.au/~bdm/data/formats.html
http://users.cecs.anu.edu.au/~bdm/data/formats.html
https://github.com/unittest-cpp/unittest-cpp
https://github.com/unittest-cpp/unittest-cpp

[25] Adam Nemet. Compiler-assisted Performance Analysis. 2016 US LLVM Developers’
Meeting, 2016. https://llvm.org/devmtg/2016-11/Slides/Nemet-
Compiler-assistedPerformanceAnalysis.pdf.

[26] Helge Bahmann Nico Reismann. Jive RVSDG API. https://github.com/
phate/jive.git, 2019. GitHub; Accessed 08-10-2019.

[27] Nico Reismann, Magnus Sjalander. polybench-jlm. https://github.com/
phate/polybench-jlm, 2019. GitHub; Accessed 12-06-2019.

[28] Geoff Nixon. Clang optimization levels. https://stackoverflow.com/a/
27576831, 2014. Stack Overflow; Accessed 02-06-2020.

[29] Ohio State University. PolyBench/C. http://web.cse.ohio-state.edu/
~pouchet.2/software/polybench/, 2015. Accessed 12-06-2019.

[30] LLVM Project. LLVM’s Analysis and Transform Passes. https://llvm.org/
docs/Passes.html, 2020. The LLVM Compiler Infrastructure Documentation;
Accessed 15-05-2020.

[31] Nico Reismann. Jlm: An experimental compiler/optimizer for llvm ir.
https://github.com/phate/jlm.git, 2019 - checked out at commit
3ae45dfe406f2d4ec6005ff093eb5b929d3de8ff.

[32] Nico Reissmann. Principles, Techniques, and Tools for Explicit and Automatic Par-
allelization. PhD thesis, NTNU, 2019.

[33] Nico Reissmann, Jan Meyer, Helge Bahmann, and Magnus Själander. RVSDG: An
Intermediate Representation for Optimizing Compilers. arXiv:1912.05036, 2019.

[34] Donald J. Rose. A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations. In RONALD C. READ, editor, Graph Theory
and Computing, pages 183 – 217. Academic Press, 1972.

[35] Clang Development Team. clang - the Clang C, C++, and Objective-C com-
piler. https://clang.llvm.org/docs/CommandGuide/clang.html,
2020. Clang 11 Documentation; Accessed 01-06-2020.

[36] Clang Development Team. Clang Compiler User’s Manual. https://
clang.llvm.org/docs/UsersManual.html, 2020. Clang 11 Documenta-
tion; Accessed 20-05-2020.

[37] Clang Development Team. Frequently Asked Questions (FAQ). https://
clang.llvm.org/docs/FAQ.html, 2020. Clang 11 Documentation; Accessed
06-05-2020.

[38] Mikkel Thorup. All structured programs have small tree width and good register
allocation. Information and Computation, 142(2):159–181, 1998.

61

https://llvm.org/devmtg/2016-11/Slides/Nemet-Compiler-assistedPerformanceAnalysis.pdf
https://llvm.org/devmtg/2016-11/Slides/Nemet-Compiler-assistedPerformanceAnalysis.pdf
https://github.com/phate/jive.git
https://github.com/phate/jive.git
https://github.com/phate/polybench-jlm
https://github.com/phate/polybench-jlm
https://stackoverflow.com/a/27576831
https://stackoverflow.com/a/27576831
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://llvm.org/docs/Passes.html
https://llvm.org/docs/Passes.html
https://github.com/phate/jlm.git
https://clang.llvm.org/docs/CommandGuide/clang.html
https://clang.llvm.org/docs/UsersManual.html
https://clang.llvm.org/docs/UsersManual.html
https://clang.llvm.org/docs/FAQ.html
https://clang.llvm.org/docs/FAQ.html

[39] Rim van Wersch and Steven Kelk. Toto: An open database for computation, storage
and retrieval of tree decompositions. Discrete Applied Mathematics, 217:389 – 393,
2017.

[40] Vince Bridgers, Felipe de Azevedo Piovezan. LLVM IR Tutorial. LLVM Develop-
ers Conference Brussels, 2019. https://www.llvm.org/devmtg/2019-04/
slides/Tutorial-Bridgers-LLVM_IR_tutorial.pdf.

[41] Daniel Weise, Roger F. Crew, Michael D. Ernst, and Bjarne Steensgaard. Value
dependence graphs: Representation without taxation. In POPL ’94: Proceedings of
the 21st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 297–310, Portland, OR, January 1994.

62

https://www.llvm.org/devmtg/2019-04/slides/Tutorial-Bridgers-LLVM_IR_tutorial.pdf
https://www.llvm.org/devmtg/2019-04/slides/Tutorial-Bridgers-LLVM_IR_tutorial.pdf

Appendix A
Result Tables

Benchmarks
Upper bound Limits Relative

O1 O2 max min O1 O2

2mm 5 5 16 5 0.00 0.00
3mm 5 5 14 5 0.00 0.00
adi 7 7 10 7 0.00 0.00
bicg 5 5 10 5 0.00 0.00
correlation 5 5 10 5 0.00 0.00
covariance 5 5 9 5 0.00 0.00
deriche 7 7 12 7 0.00 0.00
doitgen 5 5 10 5 0.00 0.00
fdtd-2d 7 7 13 7 0.00 0.00
gesummv 5 5 12 5 0.00 0.00
mvt 5 5 10 5 0.00 0.00
trmm 5 5 10 5 0.00 0.00
gemm 6 5 14 5 0.11 0.00
symm 6 5 13 5 0.12 0.00
gramschmidt 6 5 10 5 0.20 0.00
trisolv 6 4 8 4 0.50 0.00
nussinov 8 6 8 6 1.00 0.00
gemver 5 6 19 5 0.00 0.07
syrk 5 6 11 5 0.00 0.17
atax 5 6 10 5 0.00 0.20
seidel-2d 10 7 10 6 1.00 0.25
syr2k 6 8 13 6 0.00 0.29
ludcmp 5 7 10 5 0.00 0.40
jacobi-1d 5 6 7 5 0.00 0.50
floyd-warshall 5 6 7 5 0.00 0.50
cholesky 4 7 7 4 0.00 1.00
durbin 5 7 7 5 0.00 1.00
lu 4 7 7 4 0.00 1.00

63

jacobi-2d 7 10 10 6 0.25 1.00
heat-3d 11 11 11 8 1.00 1.00

Table A.1: Comparison between the upper bound treewidth for a program optimized at level O1 or
O2 compared to programs optimized with individual optimizations. Included is the generated upper
bound treewidth for the optimization level, largest and smallest treewidths generated by the program
for any optimization, and relative treewidth sizes compared to these.

Benchmarks
Lower bound Limits Relative

O1 O2 max min O1 O2

adi 6 6 7 6 0.00 0.00
atax 5 5 6 5 0.00 0.00
bicg 5 5 6 5 0.00 0.00
correlation 5 5 7 5 0.00 0.00
covariance 4 4 6 4 0.00 0.00
deriche 5 5 7 5 0.00 0.00
doitgen 4 4 6 4 0.00 0.00
durbin 5 5 5 5 0.00 0.00
fdtd-2d 6 6 6 6 0.00 0.00
gemm 5 5 7 5 0.00 0.00
gesummv 5 5 7 5 0.00 0.00
gramschmidt 5 5 6 5 0.00 0.00
jacobi-2d 5 5 6 5 0.00 0.00
ludcmp 5 5 6 5 0.00 0.00
mvt 5 5 6 5 0.00 0.00
symm 5 5 6 5 0.00 0.00
syr2k 5 5 6 5 0.00 0.00
syrk 5 5 6 5 0.00 0.00
trmm 5 5 6 5 0.00 0.00
2mm 5 4 7 4 0.33 0.00
3mm 5 4 7 4 0.33 0.00
trisolv 5 4 6 4 0.50 0.00
nussinov 6 5 6 5 1.00 0.00
floyd-warshall 4 5 6 4 0.00 0.50
gemver 5 6 7 5 0.00 0.50
seidel-2d 7 6 7 5 1.00 0.50
cholesky 4 5 5 4 0.00 1.00
lu 4 5 5 4 0.00 1.00
heat-3d 7 7 7 6 1.00 1.00
jacobi-1d 5 5 5 4 1.00 1.00

Table A.2: Comparison between the lower bound treewidth for a program optimized at level O1 or
O2 compared to programs optimized with individual optimizations.

64

Variables
References in function calls

1 2 3 4 5 6 7 9 20 30

1 2–2 3–3 3–3 3–3 3–3 3–3 3–3 3–3 3–3 3–3
2 3–3 4–4 4–4 4–4 4–4 4–4 4–4 4–4 5–5 5–5
3 4–4 5–6 5–6 6–6 6–6 6–6 6–6 6–6 7–7 7–7
4 4–5 5–8 5–9 6–10 7–8 8–8 8–8 8–8 9–9 9–9
5 4–6 5–9 6–11 7–12 8–10 8–10 9–10 9–10 11–11 11–11
6 4–6 5–10 6–12 7–14 8–15 9–12 9–12 11–12 13–13 13–13
7 4–7 5–9 6–13 8–16 8–17 8–14 9–14 11–14 15–15 15–15
8 4–7 5–9 6–13 7–17 8–19 8–16 10–16 12–16 17–17 17–17
9 4–7 5–9 6–12 7–17 8–21 9–22 11–23 11–18 18–19 19–19

10 4–7 5–10 6–15 7–18 8–22 10–23 10–25 13–20 19–21 21–21
20 4–7 5–11 7–15 7–18 8–22 9–24 10–27 13–32 23–41 34–41
30 5–7 5–12 6–15 7–18 8–22 10–25 11–28 14–36 30–70 37–61

Table A.3: Lower and upper treewidth bounds for an increasing amount of variables allocated down-
wards, and number of calls to each variable rightwards.

Variables
References in expressions

1 2 5 10 20 30

1 2–2 2–2 2–2 2–2 2–2 2–2
2 3–3 3–3 3–3 3–3 3–3 3–3
3 4–4 4–4 4–4 4–4 4–4 4–4
4 4–5 4–5 5–5 5–5 5–5 5–5
5 4–6 5–6 6–6 6–6 6–6 6–6
6 4–6 5–7 6–7 7–7 7–7 7–7
7 4–7 5–9 7–8 8–9 8–9 8–9
8 4–7 5–10 7–11 9–11 9–11 9–11
9 4–8 5–11 7–12 10–12 10–12 10–12

10 4–7 6–11 7–12 10–12 11–12 11–12
20 4–10 5–15 8–31 13–26 21–28 21–26
30 4–10 5–15 8–35 13–47 22–39 31–39

Table A.4: The generated lower and upper bound treewidth bounds for programs of an increasing
number of variables allocated downwards, and increasing number of times these are used in an
expression rightwards.

65

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Sigve Sjømæling Nordgaard

Program feature impact on the
treewidth of the RVSDG IR

Master’s thesis in Computer Science

Supervisor: Jan Christian Meyer

June 2020

	Problem Description
	Abstract
	Acknowledgements
	Table of Contents
	Introduction
	Background
	Intermediate Representations
	Data-flow Centric IRs
	Tree Decomposition
	Heuristics
	Related work
	Finding the treewidth
	Creating the tree decomposition
	Algorithms on graphs of bounded treewidth

	Theory
	The Regionalized Value State Dependency Graph
	Tree decompositions
	Heuristics
	The min-fill heuristic
	The minor-min-width heuristic

	Program Features
	Functions
	Liveness Analysis

	Method
	Representing the RVSDG as a dotfile
	rvsdg-treedc framework
	Parser and data structures
	Heuristics

	Benchmarks
	Metrics
	Optimizations
	Function arguments
	Variable Liveness

	Results & Discussion
	Results
	General treewidth results
	Optimizations
	Impact on program runtime
	Functions
	Variable liveness

	Discussion
	General treewidth results
	Analysis of dependencies in functions
	Analysis of dependencies with respect to variable liveness

	Conclusion
	Conclusion
	Future work

	Bibliography
	Result Tables

