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Abstract
This study proposes a load management strategy for parking and charging facilities with
the capacity to serve several hundreds of electric vehicles. The strategy is built upon two
assumptions on power distribution systems of large charging stations: i) they are
configured as clusters, each comprising a number of charging units for reduced cabling
complexity, ii) the power delivery components (such as feeders and circuit breakers) of
individual clusters are sized for load factors smaller than 100% to reduce the capital costs.
Unless controlled, the load demand can concentrate into particular cluster(s) whereas
other clusters can still tolerate additional demand. This may lead to avoidable load in-
terruptions and, thus, reduced energy provision. To address this issue, a load management
strategy that optimises the distribution of vehicles across the clusters and their charging
profiles is proposed. The strategy is compared in simulation with a benchmark strategy in
different commercial parking lot scenarios. The results demonstrate that the optimal
management achieves identical demand fulfilment rates despite more pronounced load
factor limitations as compared to the benchmark strategy. This can enable further
reduction in system component sizing. In the tested scenarios, the proposed strategy
leads to increased long term profits ranging between 12% and 43%.
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1 | INTRODUCTION

Electric vehicles (EV) are characterised by a shorter range
and a significantly longer recharging period compared to fuel‐
based cars [1]. Due to the recent progress in battery tech-
nology, several EV models with sufficiently large drive range,
which can cover most travel scenarios on a single charge, are
now available in the market [2]. Nevertheless, unavailability of
EV charging infrastructure remains a limiting factor for the
fast adoption of EVs [3]. To remove the concerns of po-
tential users, and to support electrification of road transport,
the number of EV charging points must be increased.
However, merely increasing the number of charging points
may not solve all infrastructural requirements. The temporal
characteristics of the charging demand can be challenging for

the power systems since simultaneous charging of many ve-
hicles within a local area can lead to significant issues such as
frequent voltage drops and accelerated ageing of transformers
[4, 5]. Controlled charging is seen as the key to reduce the
simultaneity of the charging load and, thus, as an enabler for
efficient and sustainable e‐mobility [6–8].

The majority of prior research on EV charging control
focusses on the stations that have few charging units (CUs).
However, the diffusion of EVs will increase the importance of
centralised charging environments, that is, large charging sta-
tions (LCSs) with several hundreds of CUs. The literature
studies in this field consider optimal scheduling [9, 10] and
demand response schemes [11] to shape the load of LCSs.
However, the issues related to electrical installation within
parking have not been considered in these studies.
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1.1 | Contextualisation of the problem

There are not yet many existing charging stations comprising
several hundred of CUs. Besides, comprehensive descriptions
of LCS‐suitable topologies can be found only in few sources in
the literature such as Ref.[12, 13]. The most suitable topology
for LCSs is still an open question that needs to be answered by
further research. Nevertheless, this study highlights the
importance of the internal structure of LCSs and argues that
the selected configuration can introduce some important
constraints that affect load management. To investigate this
issue on a generic system topology that is practically applicable
in several cases, this study assumes that the internal configu-
rations of the future LCSs will fulfil two conditions. First, LCSs
will be organised as charger clusters (CC) each consisting of a
number of CUs due to space constraints. Second, as suggested
by many studies that address optimal sizing of charging in-
frastructures, for example, Ref.[14, 15], power capability of the
clusters will be smaller than the total installed power of the
CUs for economic reasons. For simplicity, the systems where
both conditions apply will be referred to as under‐sized charger
clusters (UCC) in this study.

A system configuration based on UCCs would be reason-
able as a sound engineering practice for ensuring segmentation
while limiting the cost of such large‐scale installations. How-
ever, the heterogeneity of the parking profiles and energy de-
mands of unscheduled parking and charging of EVs can cause
the load demand to concentrate into particular clusters whereas
other clusters can have remaining margins for increased
loading. Such conditions may cause frequent reductions of the
charging power due to the load factor limitations of UCCs, and
consequently, lead to reduced energy provision to the EVs. To
avoid such problems, the load must be controlled in a way that
considers the constraints arising from the cluster‐based
configuration.

1.2 | Literature review

The literature on EV charge control addresses a variety of
topics such as smart charging for cost minimisation [16],
ancillary service provision [17], and admission control/queuing
[18]. To solve these problems, a large number of distributed
and centralised control schemes were proposed. The readers
may refer to the review papers such as Ref.[19–21] for further
theoretical analysis on alternative control schemes. In this
section, we will mention few representative examples to give a
general overview on state‐of‐the‐art strategies and demonstrate
the need for an original formulation to deal with the novel
problem that is defined in Section 1.1.

In distributed charging control, several system components
such as CUs and aggregators are equipped with some
computing capability; therefore, the computational effort is
shared among several entities. This also prevents the overall
system operation in case of single point failures. Distributed
control can be realised in decentralised and hierarchical
schemes. In decentralised schemes, CUs compute and adjust

their schedules by communicating with the other EVs until a
global equilibrium is achieved. Yin et al represents the load
management problem of a charging station as a Stackelberg
game in Ref.[22]; the EVs are selfish players, negotiating with
each other and the aggregator to find an equilibrium to the
power dispatch problem. Although it is advantageous to take
decisions as a result of negotiations between players rather
than a centralist approach that prioritises a single entity's ob-
jectives, the communication overhead to achieve the consensus
makes the practicability questionable in scenarios with several
hundreds of EVs.

Hierarchical schemes delegate control and computational
load to multiple direct or indirect aggregators via a tree‐like
communication topology; they are, thus, neither fully central-
ised, nor fully decentralised [20]. In broader literature, hierar-
chical schemes are popular on multi‐micro‐grid (MMG)
scheduling problems [23–25]. In the recent publications, bi‐
level approaches that decouple management of single micro‐
grid from MMG attracted significant interest. For example,
Ref.[25] defines the power dispatching problem such that the
upper level calculates a dynamic price that reacts to the
changes in the operating conditions in a community integrated
energy system and the lower level optimises the charging
behaviour of EVs based on the dynamic price signal calculated
by the upper level.

In contrast to distributed control, a single entity is
responsible for decision making in a centralised control.
Several authors proposed centralised strategies based on
traditional optimisation techniques such as mixed integer linear
programming [26] for LCSs. Optimisation‐based centralised
control techniques are robust and they guarantee optimality; on
the other hand, they can be computationally expensive when
dealing with large scale problems. To alleviate the computa-
tional effort and to increase scalability, some recent publica-
tions propose strategies based on machine learning. For a
detailed review on machine learning approaches, the interested
readers are advised to refer to Ref.[21, 27]. The ability to find a
near optimal solution without the execution of an optimisation
problem is the main advantage of learning‐based strategies;
therefore, they are applied mostly to deal with uncertainty in
complex systems. On the other hand, unlike optimisation‐
based strategies, the optimality is not guaranteed in learning‐
based centralised schemes.

None of the load management/scheduling strategies
introduced in prior publications takes into account the topol-
ogy of the electrical installation in LCSs. A management
strategy that considers also the operational constraints due to
UCC‐based topology is required. Although an UCC‐based
LCS appears similar to a multi‐micro‐grid system in terms of
clustering, the methods proposed in available literature on
MMG are likely to be sub‐optimal for our problem. Here,
special attention must be paid to the mobility of the loads.
Since the individual micro‐grids in an MMG system are usually
owned by different entities or geographically separated, it is
unlikely that a central entity is authorised to control the dis-
tribution of the incoming EVs into specific micro‐grids; on the
other hand, the operator of a clustered charging station can
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allocate incoming EVs into clusters with an instruction com-
mand upon their arrivals. Therefore, it is recommendable to
investigate a new strategy that considers the specific con-
straints and controllable features of cluster‐based charging
stations.

1.3 | Contributions of the paper

This work introduces a strategy that controls the charging
schedules (optimal scheduling), the distribution of EVs into
clusters (optimal allocation) and the short term power refer-
ences of all CUs (optimal intervention). The proposed strategy
optimises temporal and spatial distribution of the system load
by considering the temporal variations of the electricity prices,
the urgency of the charging demands and the load factor
constraints of the under‐sized clusters. Since it controls not
only the charging but also the mobility of incoming EVs, the
proposed strategy is, in essence, a parking management strat-
egy. However, we will prefer the term load management as it
mainly controls the electrical behaviour of the parking system.
For the sake of simplicity, we will refer to the developed
strategy as optimal strategy.

The key contributions of this study can be summarised as
follows. First, this work highlights the impact of electrical
installation within parking in the load management problem of
LCSs and formalises this problem in a way that can be solved by
optimisation algorithms. In this regard, rather than a specific
topology, this work considers the common problems of cluster‐
based configurations in which each cluster has a smaller power
capability than its installed power. Second, this study introduces
an optimisation‐based approach to systematically address the
capacity constraints of cluster‐based electrical installation.

This work demonstrates the effectiveness of the proposed
optimal strategy by comparing its performance with a bench-
mark strategy that (1) does not optimise the charging sched-
ules, (2) considers only the existing load distribution of the
clusters when assigning an incoming EV to clusters, and (3)
does not distinguish the urgencies of the charging demand
when supply reduction is needed. The results show that the
optimal strategy effectively increases the energy supply of the
system in identically constrained scenarios. These results
indicate that larger levels of under‐sizing can be possible
without decreasing the demand fulfilment performance thanks
to optimal management. The high‐level economic analysis
conducted in this study shows that optimal management en-
ables a remarkable increase in long‐term profits.

2 | GENERAL PRINCIPLES FOR
TOPOLOGY SELECTION

2.1 | Number and power level of charging
units

The optimal number and power level of CUs in a LCS depends
on the parking patterns. In case that the number of CUs are

less than the number of simultaneously present EVs, plugged
EVs that occupy CUs without charging prevent other ones
from getting connected. The extended stays after charging
completion block the supply potential of the system.
Increasing the number of CUs to avoid such blockages without
increasing the power capability of the installation could pay off
in the parking facilities where the cars are left for several hours
such as the garages of residential and office buildings, airports
and park‐and‐ride areas.

In case of long stays, slow charging is more favourable
than fast charging. Typically, fast charging is requested only
when the recharging demand is urgent, because of the high
costs [28], and the accelerated battery ageing [29] in this
mode. For this reason, LCS is a concept that is more
applicable in the areas where slow charging modes are
preferred.

2.2 | Cluster‐based configuration

Installed power of an LCS with Level 2 AC chargers may
reach several megawatts (MW). Elaborate discussions on
suitable system topologies for MW level charging stations
almost exclusively examined the systems with few high‐
power DC (fast) chargers [30, 31]. Despite the equivalent
total power levels, there are clear distinctions between the
stations with numerous low‐power CUs and the ones with
few high‐power CUs. The most obvious difference is the
importance of the space coverage of the equipment. The
space constraints can be more pronounced in the parks
accommodating hundreds of cars. In this case, it can be
difficult to include additional electrical equipment and local
balancing elements such as stationary battery storage systems
and fuel cells as suggested for fast charging stations with few
chargers [32].

Service reliability is an essential factor for topology selec-
tion of LCSs. In principle, it is desired to include dedicated
feeders from the main bus to each CU as illustrated in
Figure 1a. Such configuration enables to localise maintenance
and faults, and, thus, to keep the majority of the system
operable despite local interruptions. However, this approach
may not be feasible in practice due to the space limitations and
large number of CUs in LCSs.

Clustering ‘N’ number of CUs and connecting them into a
cluster bus that is supplied by a dedicated cluster feeder de-
creases wiring complexity and space coverage over the fully
paralleled systems. An overview of the generic cluster‐based
topology can be seen in Figure 1b.

2.3 | Sizing strategy

The conservative approach for sizing a charger cluster, that is,
selecting physical components such as switch‐gears and feeders
requires consideration of the aggregated power of CUs to
guarantee continuous operation under 100% loading. However,
if full load is rarely expected, it may be desired to reduce the
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capital costs with a proper under‐sizing strategy. In this case,
the physical components of a cluster are selected by consid-
ering a power level smaller than the total installed power of the
chargers in the cluster, Pc.

It is important to notice that the considered under‐sizing is
not about the power ratings of the CUs. The CU rating is a
design parameter whose effect is straightforward; the smaller
sizing indicates the lower investment costs and also the lower
supply capability in identical time periods. However, the rela-
tionship between sizing of the power delivery components of
the clusters for example, cables and supply potential is rather
complicated; it depends on how the charging profiles of
multiple CUs are managed.

The quantification of sizing for physical components such
as selection of cross‐section of the cables and rating of the
switch‐gears is not within the scope of this study since they
require careful examination of the physical constraints of the
charging station such as dimensions and layout of the parking
environment, length and thermal boundaries of the cables
and number of cable joints. This study addresses sizing at
higher level and uses total installed power of the clusters to
define the ‘normal’ sizing of the system. Therefore, with Pc
being the total installed power of the charging units in the
cluster, the aggregated load of the cluster pcðtÞ is hard‐
constrained by a reference value specified by the under‐
sizing parameter U :

pcðtÞ ≤ Pc ⋅ ð100% − U%Þ ð1Þ

The equivalent of the constraint (1) exists in broader
charging control literature where capacity constraints of the
entire charging station are considered such as Ref.[33]. This
study applies such a constraint in each cluster of the LCS. This
rule is enforced in the optimal intervention step of the pro-
posed load management strategy.

3 | LOAD MANAGEMENT STRATEGY

The behaviour of a large‐scale EV charging facility can affect
the public electric grid in a complex way. However, in case of
distribution grids with sufficient capacity, it can be assumed
that the selected sizing, which determines the peak power of
the station, guarantees that the activities in the charging station
do not jeopardise the public grid operation. Therefore, the load
management (LM) problem addressed in this study is consid-
ered to be independent from grid‐side factors under normal
operational conditions. This is also in line with the dominant
tendency in the literature [34, 35] that decouples grid conges-
tion and charging station management problems, and thus,
defines different roles to the distribution system operator
(DSO) and charging system operator (CSO).

The operational goals of a CSO are to fulfil the charging
demands and minimise the charging costs under given con-
straints. The dynamics and constraints that need to be
considered in LM can be summarised as follows. First, the
energy stored in an EV battery increases with charging and is
limited by the battery capacity E. Second, the number of cars
connected in a CC increases with new EV allocations, and
decreases with the departures of connected EVs. Third, the
supply capability of a charging station is limited by the power
rating PCU of CUs, and can be limited due to under‐sized CCs.

The LM strategy proposed in this work combines charging
rate control and parking management in the charging station to
deal with the constraints of UCC‐based configuration. The
strategy consists of three optimisation models that control the
following:

1. the charging schedules of EVs (Scheduling);
2. the CUs where the incoming EVs should be connected

(Allocation);
3. the short‐term power references of all CUs (Intervention).

F I GURE 1 Alternative layouts for large charging stations. (a) Each charging unit is connected to the main bus via a dedicated feeder. (b) Charging units are
clustered and cluster buses are connected to the main bus via cluster feeders
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The energy demand and departure time of the hosted EVs
should be known for calculating optimal scheduling, allocation
and intervention decisions. This information indicates whether
an EV can tolerate reduced charging rates and/or idle periods
within the connection session. In this study, it is assumed that
the energy capacity of the battery, state of charge (SOC), and
the departure time are given by the users upon arrivals.

Based on the provided input, first, the scheduling model
identifies the optimal (reference) charging schedule of the EV
with the objective of charging cost minimisation. Second, the
allocation model determines where to park (CU to connect)
the EV. The optimal allocation aims to minimise unbalances
between the load demands of clusters to avoid concentration
of the demand in particular clusters. The intervention model
runs periodically and updates the short term power references
of all CUs by considering the individual schedules and capacity
constraints of the UCCs. The three steps of the LM are
illustrated in Figure 2.

3.1 | Optimal scheduling

This model calculates the reference schedule p� of an
incoming EV. p�ðtÞ specifies the power that is planned to be
supplied along a particular time step ½t; t þ ΔtÞ ⊂ ½tA; tDÞ with
t, Δt, tA and tD being, respectively, the time step identifier,
length of one time step, arrival time and estimated departure
time of the EV. This problem is formulated as a linear pro-
gramme (LP). The LP defines the charging power constraint
over a continuous range that is upper bounded by the rating of
the charging unit PCU as suggested by many authors in liter-
ature [24, 26, 36]:

0:0 ≤ p�ðtÞ ≤ PCU ð2Þ

The scheduling problem is subject to constraints associated
with the EV battery capacity E. These constraints are for-
malised via a dependent variable s�ðtÞ, representing the

reference SOC for t. Initial and final (target for departure)
values of this variable, s�ðtAÞ and s�ðtDÞ, are given as optimi-
sation parameters by the scenario. The SOC of the EV battery
increases with charging according to the power conversion
efficiency of the battery chargers, η. To model the dynamics of
the SOC, the equations presented in Ref.[37] have been
simplified and included in the optimisation model as optimi-
sation constraints:

s�ðt þ ΔtÞ ¼ s�ðtÞ þ
p�ðtÞ ⋅ η ⋅ Δt

E
ð3Þ

s�ðtÞ ≤ 100% ð4Þ

The goal of schedule optimisation is minimisation of the
charging cost. Therefore, the objective function weighs the
power consumption according to the temporal variations of
the electricity price:

min
XD

t¼A
W ðtÞ ⋅ p�ðtÞ ð5Þ

In broader literature, the time‐of‐use electricity price,
κelðtÞ, is used as the equivalent of W ðtÞ [36]. However, using
constantly the same price signal to optimise the temporal
behaviour of charge load is not efficient in LCSs; it can result
in an aggregated load shape with excessively high peaks during
low price windows. Such high peaks may require deviation
from the optimal schedules due to the given power constraints
(1) and, in certain scenarios, this may eventually reduce the
energy supply of the LCS. This study suggests two rules to
ensure optimum utilisation of supply potential while mini-
mising the charging cost.

First, when the declared departure time, tD, of an EV
arriving in the charging station at tA, denotes a parking dura-
tion that is shorter than a certain threshold, that is,
tD − tA < Tthr , the cost‐optimal scheduling is bypassed. In this

F I GURE 2 Three steps of load management strategy: (i) Individual scheduling of the arriving EV, (ii) Allocation of the EV to one of the clusters
considering the individual schedules, (iii) Updating the short‐term power references of charging units
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case, the schedule of the EV is equal to continuous charging
with maximum power, that is, PCU until the target SOC is
reached:

p�ðtÞ ¼ PCU s�ðtÞ < s�ðt ¼ tDÞ

0 s�ðtÞ ≥ s�ðt ¼ tDÞ

�

ð6Þ

Second, the total required charging power, p�ΣðtÞ, calculated
by summing up the schedules of all occupied CUs, p�c;uðtÞ, is
compared with an effective upper limit for power consumption
of the charging station, PmaxðtÞ. The coefficients W ðtÞ that
penalise the power consumption at the time steps during which
the scheduled system load exceeds this threshold are scaled up
by the factor F :

W ðtÞ ¼
κelðtÞ p�ΣðtÞ < PmaxðtÞ

ð1þ FÞ ⋅ κelðtÞ p�ΣðtÞ ≥ PmaxðtÞ

(

ð7Þ

In Ref.(7), PmaxðtÞ is a dynamic parameter. Under normal
operation, it is defined by the peak power capability of the
charging station, that is, the under‐sizing constraints of the
clusters. However, in exceptional operational conditions, the
DSO that is responsible for the public grid that the charging
station is connected to can impose a time‐varying power
constraint, PdsoðtÞ. In practice, DSO constraint changes
PmaxðtÞ only when it is smaller than the peak power capability
of the system:

PmaxðtÞ ¼
PdsoðtÞ PdsoðtÞ < PΣ ⋅ ð1 − U%Þ
PΣ ⋅ ð1 − U%Þ PdsoðtÞ ≥ PΣ ⋅ ð1 − U%Þ

�

ð8Þ

3.2 | Optimal allocation

After solving the optimal scheduling problem, the optimal
values of p�ðtÞ and s�ðtÞ are passed over to optimal alloca-
tion problem as optimisation parameters. Allocation is a
combinatorial problem due to the finite number of options,
that is, the CUs that an incoming EV can connect to. In our
generic representation, the alternatives within a particular
cluster are not distinguished. Therefore, the number of op-
tions are equal to number of the clusters. These options are
formally represented by exclusive binary variables xc with c
representing a particular cluster among the set of clusters C.
Equation (9) ensures that the EV is allocated to one and
only one cluster.

XC

c
xc ¼ 1 ð9Þ

The first constraint that the optimal allocation problem is
subject to is that the number of cars connected to the CUs of a
cluster c cannot exceed N after the allocation of the new EV.

With Ic being the integer parameter that specifies the number
of occupied CUs in the CC indexed by c before the allocation,
this constraint is implemented as follows:

xc þ Ic ≤ N ð10Þ

Considering the schedules of the connected EVs, p�c;u, and
the schedule of the incoming EV, p�, the scheduled load factor
of the cluster c becomes l�c after allocation of the incoming EV.
It is important to note that l�c is different from previous cal-
culations only for the cluster c that the incoming EV is allo-
cated to

l�c ðtÞ ¼
p�ðtÞ ⋅ xc þ

PN

u¼1
p�c;uðtÞ

PCU ⋅ N
ð11Þ

The objective function is selected based on the a priori
knowledge that the higher inter‐cluster loading unbalances
denote the higher risk for local concentration of high load. A
proactive control to avoid excessive loading in a particular
cluster—while others' capacities are idle—increases the service
capacity of the system. Therefore, the objective function of the
allocation model presented by Ref.[38] which minimises the
inter‐phase and inter‐arm unbalances of modular converter‐
based charging systems was adopted and modified for the
general use:

min
XT

t¼0

X

c1;c2∈fCg
∣l�c1ðtÞ − l�c2ðtÞ∣ ð12Þ

where c1 and c2 indicate two clusters in the system. After
solving the optimal allocation problem, the reference charge
schedule and state of charge, p�c;u and s�c;u, of the identified CU
are updated by the optimal scheduling results, that is, p� and s�,
respectively. The new p�c;u and s�c;u values are taken as optimi-
sation parameters in the following optimisation instances.

3.3 | Optimal intervention

The goal of the optimal intervention is to detect the situ-
ations that require deviation from p�c;uðtÞ within an optimi-
sation horizon ½t0; tFÞ, to find a new schedule pc;u that
minimises the deviation from reference SOCs at the end of
the considered horizon s�c;uðtFÞ, and to implement result at
the current time step pc;uðt0Þ for a short period of time
½t0; t0 þ ΔtÞ:

min
XC

c¼1

XN

u¼1
jsc;uðtFÞ − s�c;uðtFÞj ð13Þ

The objective function (13) penalises the deviations from
the schedules calculated in the optimal scheduling step.
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Therefore, the optimisation problem is a linear programme
with the quadratic objective function. An important issue that
needs to be considered in intervention decisions is that some
of the EVs are expected to leave the charging station within the
considered horizon ½t0; tFÞ while others stay for longer periods.
To link the EVs’ presence into the intervention model, the
expressions presented in Ref.[39] that specify the time period
within which the EV can be charged is modified and included
in the optimisation model:

0:0 ≤ pc;uðtÞ ≤ PCU t < tD;c;u
0 t ≥ tD;c;u

�

ð14Þ

where tD;c;u represents the estimated departure time of the EV
connected to c; u. While optimising pc;uðtÞ, the power capa-
bility constraints of the charging station must be respected. At
the highest‐level of consideration, these constraints are the
energy capacities of the EV batteries and power ratings of CUs
and CCs. Therefore, the constraints (2)–(4) of the optimal
scheduling model are transferred to the optimal intervention
model by replacing p�ðtÞ and s�ðtÞ with pc;uðtÞ and sc;uðtÞ,
respectively. Furthermore, the power capabilities of the under‐
sized clusters (1) are also considered as hard‐constraints in the
intervention model.

As stated earlier, the charging station is not in charge of
managing the power flows in the public grid and the capacity
that it can use is agreed upon before commissioning. However,
when the operator of the public grid predicts or detects
congestion due to external reasons, it can intervene in the
operation of the charging station [40]. Without loss of gener-
ality, these interventions are included in the LM via the time‐
varying parameter that constrains the power consumption of
the charging station, pdsoðtÞ, which is referred to as the DSO
constraint:

XC

c

XN

u
pc;uðtÞ ≤ pdsoðtÞ ð15Þ

It is important to note that it is possible to modify the
proposed LM to include application‐specific restrictions other
than equation (15) simply by adding new constraints to the
optimal intervention model without modifying optimal
scheduling and allocation models.

4 | PERFORMANCE METRICS

When the under‐sizing constraints (1) dictate frequent
reduction or suspension of power supply, some of the energy
demand can remain unfulfilled. Therefore, as a cost reduction
strategy, under‐sizing has the potential drawback of
decreasing the demand fulfilment. This part introduces the
performance metrics to evaluate the proposed LM strategy in
relation to the trade‐off between demand fulfilment and in-
vestment cost.

4.1 | Demand fulfilment

The vehicle demand fulfilment rate f v of the charging event v
is the fraction of the charging demand that is met:

f v ¼
svðtDÞ − s�vðtAÞ

s�vðtDÞ − s�vðtAÞ
ð16Þ

where s�vðtAÞ is the arrival SOC of the EV that participated in
the event v. s�vðtDÞ and svðtDÞ are, respectively, the targetted
and achieved final SOC over the session.

A scenario indicated by V consists of jV j number of
charging events that take place within the time window
½tV 0; tV FÞ. To quantify the demand fulfilment performance at
the system level, the scenario demand fulfilment rate, fV , is
used. fV is the ratio of the charging events with certain indi-
vidual fulfilment, X , to all charging events in V :

f V ðXÞ ¼
jv ∈ V jf v ≥ Xj

jV j
ð17Þ

4.2 | Unit cost of charging

Unit cost of charging, qV , is the average cost of provision
of 1 MWh charging energy in scenario V . This term
normalises the cost of daily electricity purchase with respect
to the daily energy supply, eV , and thus, allows to compare
different scenarios and management strategies on a unified
cost metric. With pΣ;V ðtÞ being the power that the charging
station consumes at time step t in scenario V and κelðtÞ
the time varying price of electricity, qV is calculated as
follows:

eV ¼
Xt¼tV F

t¼tV 0

pΣ;V ðtÞ ⋅ Δt ð18Þ

qV ¼

Pt¼tV F

t¼tV 0

pΣ;V ðtÞ ⋅ Δt ⋅ κelðtÞ

eV
ð19Þ

4.3 | Long‐term profit

Long‐term economic impacts of different sizing and load
management strategies are evaluated based on a high level
cost–benefit analysis.

π¼ ρ − κ ð20Þ

ρ¼
XY −1

y¼0
ρðyÞ ð21Þ
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κ ¼ κins ⋅ ð1þ rÞY þ
XY −1

y¼0
ðκgf ðyÞ þ κelðyÞÞ ð22Þ

π, ρ and κ are the net profit, total revenues and total costs
of the charging station. ρ is the summation of the annual
revenues within the period of Y years. κ is composed of the
capital costs and operational costs. Capital cost is the instal-
lation cost of the charging station hardware, κins, including EV
chargers, transformers, distribution boards, cables, breakers
etc. κins is multiplied by the compound interest rate ð1þ rÞY to
accurately estimate the value of the long‐term investment.
Operational cost is composed of two components. The first
one, κgf ðyÞ is the grid fee paid based on the capacity agreement
between the charging station and the public grid operator in
year y. The second one, κelðyÞ is the annual cost of electricity
purchase. To estimate κelðyÞ and ρðyÞ, it is assumed that the
scenario V is repeated Zy times over year y and the CSO gets a
payment of ω for each unit of energy that it provides to EVs.

5 | TEST SCENARIOS

5.1 | Parking lot

An example of commercial parking lot (CPL) was selected as
the test environment. Behind this selection lies the expectation
that, in high EV uptake scenarios, high occupancy rates during
the day, that is, 7 AM–9 PM, will signal a noticeably high service
potential, and thus, motivate the owners of such facilities to

equip their systems with large number of CUs. On the other
hand, since the occupancy rates of CPLs decrease significantly
at night, component under‐sizing will be preferable for most
CPLs. In this case, the LM strategy will play a key role to
maximise the supply potential of the system within the peak
hours where the load demand can exceed the given power
capacity.

A charging infrastructure that consist of 6 equally sized
clusters, as shown in Figure 3, was considered in the simulation
scenarios. Each cluster has 50 charging units. The CUs are
connected to the 3‐phase cluster buses and have 11 kW power
rating (PCU ¼ 11kW ). It was assumed that the power delivery
components of the clusters are selected in such a way that the
system operates stably as long as the constraint (1) is enforced.
Therefore, the optimal intervention model introduced in Sec-
tion 3.3 was used without any modification.

5.2 | Parking profiles and energy demand

To test the LM strategy, five scenarios with 400 parking
events were generated. The number of events in the sce-
narios are equal to the number of EVs such that each EV
visits the CPL once. Each of the five scenarios exhibits a
unique distribution of long versus short‐time parking events.
The long‐time events are performed by the full‐time em-
ployees who work in the neighbourhood, arrive in their
workplace between 8 and 9 AM in the morning and pick up
their cars 7–10 h later. In the short‐time events, the arrival
times are randomly distributed over 7 AM–5 PM and the

F I GURE 3 Six equally sized clusters with
50� 11kW CUs
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parking duration between 1.5 and 3 h. The test scenarios are
named after the percentage of the long‐time events. For
example, ‘Scenario30’ refers to the one where 30% of the
parking events are performed by long‐time visitors. The
distribution of EV arrival/departures in the generated test
scenarios are plotted in Figure 4.

In the test scenarios, each EV has 55 kWh battery ca-
pacity that can be charged with 11 kW 3‐phase Type 2
chargers of the CPL. They arrive at the CPL with a
randomly assigned SOC between 20% and 80%. Due to their
randomly generated arrival/departure times, arrival SOC and
charging demand, they can tolerate supply interruptions at
various levels. To clarify the concept of tolerance, suppose an
EV with a battery capacity of E arrives in the charging
station with an SOC of s�ðtAÞ at tA and aims to leave with
s�ðtDÞ at tD. With the given charger rating PCU , it takes
minimum TM to supply the indicated energy demand. In this
case, the EV can tolerate a supply interruption that lasts
shorter than ðtD − tAÞ − TM of its parking duration. The
tolerance, m, is defined to be relative to the total parking
duration:

TM ¼
ðs�ðtDÞ − s�ðtAÞÞ ⋅ E

PCU
ð23Þ

m¼
tD − tA − TM

tD − tA
ð24Þ

The distribution of m in a scenario defines the difficulty
for load management. If most/all of the EVs in a highly
occupied cluster has low tolerance, m, the supply interruptions
that are required due to the load factor limitations would also
affect the demand fulfilment rates. Contrarily, larger m values
facilitate dealing with the simultaneity of the charging demand
as they allow temporal adjustments.

To quantify the tolerance level in the scenarios, and thus,
inherent difficulty for LM, the events with very low (0%–20%),
low (20%–40%), medium (40%–60%), high (60%–80%) and
very‐high (80%–100%) m values are grouped and their per-
centages among all events are presented in Table 1. In Sce-
nario30, 51% of the EVs can tolerate interruptions that last
shorter than 20% of their parking duration. In this scenario,
only 4% of EVs can achieve the desired SOC when they do not
receive any energy for more than 80% of their parking dura-
tion while the same tolerance category has 12% of the all EVs
in Scenario70.

5.3 | Implementation of optimisation and
simulation

The optimisation modelling package Pyomo [41] was used to
deploy the LM algorithms in the simulations. The optimisation
solver CPLEX [42] was used to solve the optimisation prob-
lems. The solver used the dual‐simplex algorithm in the tests.
Since the number of variables in the allocation problems is six
in the tested case, the optimal allocation decisions were
calculated through enumerations. The events were simulated in
a Python programming environment with 5‐min simulation
resolution. Also, 5‐min is the resolution with which the opti-
misation horizons are discretised in all three models, that is,
Δt¼ 5� 60 s.

Optimisation horizon of scheduling was adapted in each
instance such that it equals to the parking duration of the
incoming EV, that is, tD − tA. A constant optimisation horizon
of 8 h was preferred in optimal allocations and interventions
considering the regular parking duration in CPL. The Euro-
pean wholesale market prices that occurred on 6 January 2020
[43] were used to define the temporal variations in the elec-
tricity price κelðtÞ, which is plotted in Figure 5.

F I GURE 4 Distribution of arrival/departure times in test scenarios

TABLE 1 Distribution of tolerance levels in test scenarios

Tolerance m Sce30 Sce40 Sce50 Sce60 Sce70

Very low 0%–20% 51% 45% 38% 29% 21%

Low 20%–40% 10% 7% 6% 5% 5%

Medium 40%–60% 14% 16% 16% 19% 19%

High 60%–80% 21% 22% 28% 35% 43%

Very high 80%–100% 4% 10% 12% 12% 12%
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6 | INDIVIDUAL EVALUATION OF
OPTIMAL SCHEDULING, ALLOCATION
AND INTERVENTION MODELS

This section evaluates optimal scheduling, optimal allocation
and optimal intervention models individually according to the
sequence of their implementation. Each optimisation model is
compared with a suitable benchmark strategy that controls the
same variables as the corresponding step of the optimal LM
strategy. The benchmark strategy for the scheduling step is
equal to skipping schedule optimisation and selecting the
schedules according to Ref.(6). In the allocation and inter-
vention steps, the optimisation horizon of the benchmark
strategies are limited with the current time step. This means
that benchmark allocation sends an arriving car to the cluster
that has the least load at the moment of arrival and benchmark
intervention is agnostic to future departures.

Based on the comparisons, each sub‐section recommends a
particular strategy to control the relevant variables that is,
schedules in Section 6.1, allocations in Section 6.2 and short‐
term power references in Section 6.3. Each subsection con-
siders the recommendations provided in the precedent sub-
sections. In this way, the final recommendation on the final
sequenced approach of LM strategy is built step by step.

6.1 | Evaluation of scheduling strategy

This section evaluates the scheduling strategy according to the
unit cost of charging, qV . As mentioned earlier, in the
benchmark strategy, the schedules are always determined by
(6). Benchmark and optimal scheduling strategies were simu-
lated in each scenario with varying under‐sizing constraints U .
Benchmark allocations and benchmark interventions were
implemented in these simulations. In the optimal strategy, to
specify the EVs with schedules to be optimised, the threshold
Tthr was selected as 5 h. This selection enabled distinguishing
long and short events; the schedules of the former were
optimised with the cost‐minimisation objective (5) while the
latter were defined with the rule (6).

Table 2 shows the unit cost of charging, qv, and total en-
ergy supply, ev, in all simulated cases. The results highlight that
optimal scheduling decreases qV by 3%–7% in exact‐
(U ¼ 0%) and low under‐sizing scenarios (U ¼ 25%). The
impact of the selected scheduling strategy on qV decreases

slightly when the under‐sizing is higher (U ¼ 50%). In Sce-
nario30, Scenario60 and Scenario70, the cost reduction is
accompanied by a 1% decrease in the ev. However, this effect
is scenario dependent; in Scenario40 and Scenario50, optimal
scheduling saves 3% of charging cost without a noteworthy
change in energy supply. Therefore, it is recommended to
implement the optimal scheduling strategy to operate LCSs
with UCCs.

6.2 | Evaluation of allocation strategy

This section investigates the impact of the allocation strategy
on the total energy supply of the charging station, eV . For this
purpose, several simulations were performed by implementing
both benchmark allocation and optimal allocation on the test
scenarios. As recommended in Section 6.1, the optimal
scheduling strategy was implemented in these simulations.
Furthermore, to observe only the impact of allocations, an
optimisation horizon of 5 min was considered in the inter-
vention step (benchmark intervention) as done in Section 6.1.

Figure 6 depicts the aggregated power profile of the
charging station in Scenario30 for U ¼ 0% and U ¼ 50%. In
this scenario, system load exceeds 1650 kW, that is, 50% of the
total installed capacity at 13:00 if the system is exact‐sized. In
case of 50% under‐sizing, it is not possible to follow the
reference schedules between 13:00 and 15:00; therefore, the
load must be curtailed. Figure 6 shows that, for U ¼ 50%,
optimal allocation enables energy supply at maximum power
continuously between 13:00 and 15:00. At the same window,
527.6 kWh (15.4%) less energy is supplied through benchmark
allocations. Although this difference is mostly compensated in
the following hours, the cumulative energy supply in optimal
allocation is 28 kWh (0.3%) larger as compared to benchmark.
Likewise, some of the charging shifted to slightly more
expensive period, the unit cost of charging increased by 0.1
Eur/MWh (0.4%).

F I GURE 5 Temporal variations in electricity price

TABLE 2 Unit cost of charging (Eur/MWh) and total energy supply
(kWh) with benchmark versus optimal scheduling

U = 0% U = 25% U = 50%

Metric Ben‐ Opt‐ Ben‐ Opt‐ Ben‐ Opt‐

Sce30 Supply 9247 9247 9247 9241 9199 9102

Unit cost 43.7 42.5 43.7 42.5 43.6 42.7

Sce40 Supply 9442 9442 9442 9432 9265 9274

Unit cost 43.8 42.3 43.8 42.4 43.7 42.6

Sce50 Supply 9687 9687 9673 9667 9428 9415

Unit cost 43.9 42.1 43.8 42.2 43.6 42.5

Sce60 Supply 9947 9947 9903 9889 9596 9464

Unit cost 43.9 41.8 43.9 42.0 43.4 42.4

Sce70 Supply 8479 8479 8447 8473 8362 8269

Unit cost 44.3 41.4 44.2 41.6 43.5 42.1
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The same procedure was applied in all scenarios for
various under‐sizing levels. Table 3 shows the cumulative
energy supply in all simulated scenarios. For U ¼ 50%,
optimal allocation performs slightly better than benchmark
allocations in Scenario30 and Scenario50. At this under‐
sizing level, Scenario40 is the only exception where opti-
mised allocations lead to small decrease in energy supply.
On the other hand, in the scenarios with high percentage of
long‐time events, that is, Scenario60 and Scenario70, optimal
allocations increase the energy supply by 2.5%. The simu-
lation results of the heavily under‐sized scenarios, that is, for
U ¼ 75% demonstrate that the optimal allocations affect the
energy supply significantly in the positive direction. In
Scenario70, the increase enabled by the optimisation is 36%.
Due to the increased supply in high under‐sizing scenarios,
it is recommended to implement optimal allocation in LCSs
with UCCs.

6.3 | Evaluation of optimal intervention
model

As expressed in Section 3.3, this model finds the optimal
charging rates to implement at the current time step. The
benchmark intervention model is agnostic to the future de-
partures as its optimisation horizon spans only the current time

step. On the contrary, the optimal intervention takes into ac-
count the departures that will take place in the next 8 h. To
evaluate the impact of forward‐looking (optimal) intervention,
all scenarios were simulated by implementing both benchmark
and optimal interventions alongside with optimal scheduling
and optimal allocations.

Table 4 compares the energy supply in different cases. In
low under‐sizing scenarios, the impact of forward‐looking
optimisation is limited. For U ¼ 25%, the resulting energy
supply in benchmark and optimal interventions are almost
same. The impact of extended optimisation horizon is more
significant in highly under‐sized scenarios. For U ¼ 50% in all
scenarios except Scenario70, optimal intervention increases
energy supply between 1% and 2.5%. For U ¼ 75%, the dif-
ference made by optimal intervention is 8% in Scenario30, 9%
in Scenario40%, 6% in Scenario50, 5% in Scenario60%, and
4% in Scenario70.

Based on the demonstrated advantages of optimal inter-
vention, that is, extended foresight, it is recommended to
implement optimal interventions to control short time power
references.

7 | OVERALL EVALUATION OF THE
OPTIMAL LOAD MANAGEMENT

In Section 6, each of the three steps of the proposed
(optimal) LM strategy is evaluated individually through
comparison of benchmark versus optimal scheduling,
benchmark versus optimal allocation and benchmark versus
optimal intervention. Based on the comparisons, it is rec-
ommended to implement optimal scheduling, optimal allo-
cation and optimal intervention rather than corresponding
benchmarks. This section evaluates the three‐step optimal
LM strategy as a whole by comparing the resulting perfor-
mance metrics against the results of the simulations where
all steps are replaced with the corresponding benchmark
strategy. For convenience, the combination of optimal
scheduling, optimal allocation and optimal intervention will
be referred to as optimal LM and the combination of
benchmark scheduling, benchmark allocation and benchmark
intervention as benchmark LM.

TABLE 3 Energy supply with benchmark vs optimal allocations

U Strategy Sce30 Sce40 Sce50 Sce60 Sce70

0% Benchmark 9247 9442 9687 9947 8479

Optimal 9247 9442 9687 9947 8479

25% Benchmark 9241 9432 9667 9899 8473

Optimal 9247 9442 9669 9887 8479

50% Benchmark 9102 9274 9415 9464 8269

Optimal 9130 9229 9470 9703 8478

75% Benchmark 7284 7025 6736 6443 5571

Optimal 7447 7331 7546 7660 7554

F I GURE 6 Aggregated power profiles in Scenario30 with benchmark
versus optimal allocation

TABLE 4 Energy supply with benchmark vs optimal intervention

U Strategy Sce30 Sce40 Sce50 Sce60 Sce70

0% Benchmark 9247 9442 9687 9947 8479

Optimal 9247 9442 9687 9947 8479

25% Benchmark 9247 9442 9669 9887 8447

Optimal 9247 9442 9687 9947 8479

50% Benchmark 9130 9229 9470 9703 8478

Optimal 9247 9442 9687 9947 8479

75% Benchmark 7447 7331 7546 7660 7554

Optimal 8037 7979 8031 8018 7865
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7.1 | Impact of DSO constraint

This sub‐section investigates the response of the optimal LM
to the DSO's interventions. In the investigated scenario, the
DSO predicts a congestion in the grid for the following day. It
informs the CSO about a curtailment, which constrains the
power consumption of the charging station with 25% of its
total installed capacity in the morning and evening hours; with
50% around noon, assuming that some of the congestion will
be relieved thanks to PV generation.

PdsoðtÞ ¼
25% ⋅ PΣ 06 : 00 ≤ t < 10 : 00
50% ⋅ PΣ 10 : 00 ≤ t < 16 : 00
25% ⋅ PΣ 16 : 00 ≤ t < 20 : 00

8
<

:
ð25Þ

Five scenarios were simulated with consideration of Pdso
for U ¼ 50% case. As the system load factor is already
restricted by 50% due to under‐sizing, the constraint imposed
by the DSO does not require any further limitation in the
power consumption within 10:00–16:00 interval. Figure 7
shows how the DSO constraint affects the power profile of the
charging station under optimal LM in Scenario50.

Table 5 shows the energy supply for all simulated cases
without and with consideration of the DSO constraint in the
benchmark and optimal LM. The simulation results show that
the DSO constraint leads to 4%‐12% reduction in total energy
supply of the system under benchmark LM. However, the
optimal LM achieved the identical supply potential in spite of
the DSO constraint.

7.2 | Benchmark and optimal sizing

This section investigates the maximum under‐sizing level that
can be achieved without appreciable decrease of the demand
fulfilment rates. In the evaluations, the under‐sizing levels that
allow to meet the following condition are considered to be
achievable:

f V ð99%Þ ¼ 100% ð26Þ

Before benchmark versus optimal LM comparisons, the
impact of small variations in scenarios on the results obtained
via the benchmark LM was analysed. Therefore, the scenarios
were modified by shortening/extending the duration of each
parking event by a random factor, which is drawn randomly
from the �50% range for the short and �10% for the long
events. The percentage of the events where the condition (26)
is met in each original and modified scenario can be seen in
Table 6. These results indicate that the small variations in
scenarios related to the duration of the parking events do not
influence the demand fulfilment performance of benchmark
LM significantly. Therefore, the maximum U values that meet
the condition (26) in the original scenarios can be considered
as maximum under‐sizing levels that can be achieved by
benchmark LM. These levels will be referred to as benchmark
sizing in the analyses. The maximum U levels that fulfil the
condition (26) via the optimal LM strategy were obtained with
the same approach and are defined as optimal sizing.

Table 7 presents the maximum under‐sizing that can be
achieved via each LM strategy. In all tested scenarios, optimi-
sation enables significantly larger under‐sizing. The difference
between benchmark versus optimal sizing increases with the
increased percentage of long‐time events in the scenario. In
Scenario30, the system could be under‐sized by 65% instead of

F I GURE 7 Aggregated power profiles in Scenario50 for U ¼ 50%
without and with DSO constraint

TABLE 5 Energy supply for benchmark and optimal LM under DSO
constraint

Benchmark LM Optimal LM

Scenarios
Without DSO
constraint

With DSO
constraint

Without DSO
constraint

With DSO
constraint

Sce30 9199 8783 9247 9247

Sce40 9265 8832 9442 9442

Sce50 9428 9029 9687 9687

Sce60 9596 9262 9947 9947

Sce70 9362 8277 8479 8479

TABLE 6 Demand fulfilment ( f V ð99%Þ) under original and
modified scenarios

Scenario U = 10% U = 20% U = 30% U = 40% U = 50%

Sce30 Original 100% 100% 100% 100% 89%

Modified 100% 100% 100% 100% 89%

Sce40 Original 100% 100% 100% 90% 86%

Modified 100% 100% 100% 91% 86%

Sce50 Original 100% 100% 94% 90% 86%

Modified 100% 100% 93% 92% 85%

Sce60 Original 100% 95% 93% 88% 86%

Modified 100% 96% 93% 91% 86%

Sce70 Original 96% 95% 95% 95% 94%

Modified 97% 97% 97% 96% 95%
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40% thanks to optimal LM. In Scenario50, where the per-
centage of long and short events are equal, the system could be
under‐sized by 60% instead of 20%. In Scenario70, 70%
under‐sizing is still possible by optimal LM whereas it should
be no more than 5% if the load is controlled by the benchmark
strategy.

The further under‐sizing, enabled by optimal LM, re-
duces the impact of the charging station on the public grid.
Even in the least affected scenario, Scenario30, the peak
power that the charging station consumes decreases by 825
kW, which accounts for 25% of the total installed capacity of
the station.

In a real system, the layout of the parking environment can
be subject to various constraints, which necessitate different
clustering approaches. It is important to note that the goal of
this discussion is not to give recommendations on system
design for a specific use case but demonstrating that the
optimal LM is an efficient means to reduce the system instal-
lation costs. However, to demonstrate that the proposed
strategy works properly in systems that are clustered in
different sizes, the original scenarios were modified by varying
the segmentation of 300 CUs. In addition to the original
6� 50 setup (6 clusters with 50 CUs per cluster), the cases
with 12� 25 and 20� 15 were tested. In these tests, maximum
reasonable under‐sizing levels achieved via optimal LM were
considered. The simulation results show that optimal LM
achieves nearly identical results, that is, less than 0.5% devia-
tion in energy supply in all scenarios.

7.3 | Long‐term profits

The findings presented in Section 7.2 demonstrate that the
optimal LM outperforms the benchmark LM in terms of the
under‐sizing level that it enables. To demonstrate overall eco-
nomic impact of optimal LM, a high level economic analysis
was conducted based on the metric, π, introduced in
Section 4.3.

The parameters that were considered for cost and revenue
calculations are shown in Table 8. The unit costs of the
hardware components were obtained through normalisation of
the parameters provided by a previous study [12] that estimates
the hardware costs of a charging station with 300 EV chargers.
In this analysis, an annual interest rate of 5% (r ¼ 5%) was
considered. The European wholesale market prices that
occurred on 6 January 2020 [43] were used for the calculation
of charging costs in each scenario. The revenues were calcu-
lated by multiplying the amount of energy supply with the flat
tariff of 0.15 €/kWh.

Assuming that the scenarios will be repeated 300 times
annually over the course of Y years, the long term net profits
of the system were estimated by scaling the daily revenues
and electricity bills of the charging station with 300� Y .
Table 9 provides the estimated net profits of 5 CPLs that
exhibit one of the introduced scenarios repeatedly over
10 years. The table shows the estimated profits for bench-
mark and optimal LM under three sizing cases: exact sizing
(0% under‐sizing), benchmark sizing (maximum under‐sizing
via benchmark LM) and optimal sizing (maximum under‐
sizing via optimal LM).

The results reveal that under‐sizing is an effective approach
to increase the long term profits. For example, the 10‐year net
profit can be boosted by 22% in Scenario30 when the system is
under‐sized by 40%. Under benchmark sizing, optimal LM
increases the long term profits slightly. A further reduction in
the system down to the optimal sizing adds 3%–38% to long
term profits as compared to benchmark sizing in the tested
scenarios. However, when the benchmark LM is implemented
at the optimal sizing level, such profit increases are achieved
only by violating the condition (26). In this case, 10%–26% of

TABLE 7 Maximum reasonable under‐sizing via benchmark vs
optimal LM

Management strategy Sce30 Sce40 Sce50 Sce60 Sce70

Benchmark LM 40% 30% 20% 10% 5%

Optimal LM 65% 60% 60% 60% 70%

TABLE 8 Cost/revenue parameters [12, 43–45]

Cost component Unit cost

Transformer 9000 Eur/MW

Power delivery elements of a cluster 15,000 Eur/MW

EV chargers 1000 Eur/11 kW

Grid fee (κgf ) 10,000 Eur/MW/year

Electricity price in spot market κel ∈ ½33; 48� Eur/MWh

TABLE 9 10‐Year net profits in Euros

Sizing U Benchmark LM Optimal LM

Scenario30 Exact 0% 1 593 746 1 625 941

Benchmark 40% 1 940 760 1 941 124

Optimal 65% 2 006 951 2 170 632

Scenario40 Exact 0% 1 652 092 1 694 215

Benchmark 30% 1 912 334 1 914 190

Optimal 60% 2 046 436 2 191 493

Scenario50 Exact 0% 1 728 236 1 780 846

Benchmark 20% 1 901 743 1 902 541

Optimal 60% 2 101 635 2 272 002

Scenario60 Exact 0% 1 808 486 1 871 687

Benchmark 10% 1 895 151 1 899 127

Optimal 60% 2 165 094 2 356 551

Scenario70 Exact 0% 1 332 219 1 405 233

Benchmark 5% 1 375 175 1 384 173

Optimal 70% 1 899 805 1 970 883
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the EVs in the tested scenarios leave the charging station with
more than 1% unfulfilled demand.

To accurately quantify the improvement that optimal LM
enables, one must compare the profits estimated for the
benchmark LM under benchmark sizing with the results of
optimal LM under optimal sizing since these are the maximum
profits that can be achieved while meeting the satisfactory
demand fulfilment rates. The comparison shows that the
optimal LM in Scenario30 gives 12% rise to the 10‐year profits.
In Scenario70, the profits increase by 43% thanks to optimal
LM. In other three scenarios, the additional profits acquired by
optimal LM are between 15% and 25%.

To conclude the results of the economic analysis, the
optimal LM makes it possible to achieve high demand fulfil-
ment rates in heavily under‐sized systems. The impact of
optimal LM are particularly remarkable in the scenarios that
include more long‐time events. In the scenarios where more
EVs have no or limited tolerance to supply interruptions, the
increase in profits are less pronounced but still significant.

8 | SCALABILITY ANALYSIS

This section investigates the computational effort that is
required to apply the proposed strategy in randomly generated
scenarios to demonstrate its scalability and practicability. For
this analysis, we solved the optimisation problems by the
CPLEX [42] solver in a personal computer with an Intel(R)
Core(TM) i5‐8250U CPU @1.80 GH. The optimal scheduling
and allocation steps of the proposed strategy are implemented
sequentially upon EV arrivals. Therefore, the required time to
execute scheduling plus allocation decisions determines the
duration for an incoming EV to wait before the system
operator sends it to a particular cluster in the system. To
quantify the scalability of scheduling‐allocation steps, we define
10 s as the maximum acceptable waiting time.

In repeated simulations, we tested several levels of tem-
poral granularity, that is, horizon (estimated parking duration)
and time resolution (size of time step, Δt) of the optimisation
problem. We varied the optimisation horizon as 4, 8, and 24 h
and the resolution as 5 and 1 min. Furthermore, we solved
optimal allocation problems with 16, 32, 64 and 128 clusters.
Table 10 presents the mean computation times for each
simulated case. The proposed strategy is able to find the

optimal solution for the joint scheduling‐allocation problem
that includes 16 cluster options and 1440 time steps (1‐min
resolution in 24 h) in much less than 10 s while, in case of 64
options for cluster selection, it can only deal with 288 time
steps, which accounts for 5‐min resolution in 24 h. When there
are 128 candidate clusters in the system, no more than 48 time
steps can be considered in the optimisation problem.

Table 10 depicts a linear increase in the computation time
due to the increased number of time steps (left to right in the
table). On the other hand, the impact of the number of clusters
is exponential (top to bottom). This highlights that the number
of integer variables, which is the number of clusters in the
allocation problem, is more decisive for the overall computa-
tion time, and thereby for the scalability of the pre‐connection
steps of the proposed strategy.

The intervention step of the proposed strategy de-
termines the real‐time power references of the CUs; there-
fore, the time required to calculate the optimal values
(computation time) must be sufficiently shorter than the
duration for which the calculated references will be imple-
mented (implementation time). We considered 5 min as both
implementation time and the resolution of the optimisation
problem. In repeated simulations, we increased the number
of CUs gradually and calculated the mean computation time
for the optimal intervention problem. The simulation results
show that the optimal intervention model is able to find
optimal references for up to 1760, 690 and 120 CUs in less
than 5 s if, respectively, 6, 12 and 96 steps are considered in
the optimisation problem.

It is important to note that the presented scalability metrics
are dependent upon the hardware and software that the pro-
posed strategy is applied with. In practical applications, it can
be expected that an EV charging station comprising several
hundreds of CUs could dedicate larger computational resource
than what is used in this work. Nevertheless, the presented
analyses show that the proposed strategy is practically appli-
cable in scenarios with several hundreds of CUs despite a
moderate computational capability.

9 | CONCLUSION

This study addresses the operational difficulty of large EV
charging stations organised as under‐sized charger clusters
(UCC). Unless controlled, the load can concentrate into
particular cluster(s) due to the heterogeneity of the behaviour
of EVs. Uneven distribution of loads across the UCCs can
lead to preventable supply interruptions. A load management
strategy (LM) is introduced in this study to address this
challenge. The LM strategy combines three optimisation
models that, respectively, optimise the charging schedules
(optimal scheduling), distribution of the vehicles among the
charger clusters (optimal allocation) and short‐term power
references of charging units (optimal intervention). The
optimal scheduling and allocation steps minimise the charging
cost and inter‐cluster unbalances, respectively. The opera-
tional boundaries of the power infrastructure are addressed in

TABLE 10 Mean computation times for calculating optimal
scheduling and allocation problems with various numbers of time steps and
number of clusters

Number of time steps

Number of clusters 48 96 240 288 960 1440

16 0.21 0.45 0.83 1.09 1.71 4.79

32 0.50 1.05 2.38 2.79 4.55 12.37

64 1.90 3.42 8.50 9.99 16.89 48.63

128 9.78 20.19 49.66 67.01 116.68 312.90
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the optimal intervention model. Without loss of generality,
only the peak power limits of the clusters are considered in
this study. Depending on specific application requirements,
constraints beneath the peak power limits can be integrated
into the management strategy by modifying only the inter-
vention step.

The proposed strategy is tested in five commercial parking
lot scenarios with various distribution of long and short time
events and different tolerances for supply interruptions. Each
step of the optimal management strategy is evaluated against a
corresponding benchmark strategy: benchmark versus optimal
scheduling, benchmark versus optimal allocation and bench-
mark versus optimal intervention. The results highlight the
superiority of optimal strategies over benchmark strategies on
the metrics of unit cost of charging and system energy supply.
In addition to the comparison of individual steps of the
benchmark versus optimal management, the whole of three‐
step optimal management is evaluated against the three‐step
benchmark management. It is demonstrated that the optimal
strategy effectively increases the energy supply of the system
with respect to the amount provided by the benchmark strat-
egy in identically constrained scenarios. Such supply increase
enables larger levels of under‐sizing without decreasing the
demand fulfilment prospects of the system.

As result of a high‐level economic analysis, it is concluded
that optimal management can boost the net 10‐year profits of
the charging station by more than 40% in certain scenarios.
Furthermore, the scalability of the optimal strategy is investi-
gated by analysing the computation times in scenarios at
various scales. The results demonstrate that the strategy is
practically applicable in scenarios with several hundreds of
charging units even with a moderate computational capability
of a personal computer. Future research should be devoted to
the development of management concepts with consideration
of bidirectional energy flow and investigation of vehicle‐to‐
cluster, cluster‐to‐cluster and/or cluster‐to‐grid modes of
operation in charging stations with UCC‐based configurations.
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