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A B S T R A C T   

The COVID-19 pandemic has caused significant impacts on energy demand in Norway and many countries. It is 
important to improve the existing knowledge of building operation under unforeseeable disturbances. This study 
aimed to identify the potential problems of electricity use patterns for four building types with electric heating: 
kindergartens, schools, apartments, and townhouses. By comparing the electricity profiles for the lockdown 
period 2020 with the normal condition in previous years, it showed that the electricity demand in the two 
educational institutions was almost on the same level, while there were apparent changes for the residential 
buildings. To estimate the energy saving potential and increase, three scenarios were developed considering 
different operation strategies: Scenario 1 considered operation under normal settings; Scenario 2 considered 
operation of educational buildings under nighttime and weekend settings; Scenario 3 considered operation of 
residential buildings under work-at-home conditions. Energy signature curve models were built to predict yearly 
demand. The results showed that the electricity demand might be reduced by one-third in educational buildings 
by following Scenario 2. Meanwhile, the electricity density of small apartment varied more significant than the 
townhouse, causing an electricity increase of 27% for the apartment and 1.3% for the townhouse under Scenario 
3.   

1. Introduction 

Since the World Health Organization (WHO) announced COVID-19 
disease as the pandemic in March 2020, many countries have under
taken restrictive measures to tackle the pandemic and slow down the 
spread of the coronavirus [1]. Due to the partial or full lockdown 
imposed on public places, commercial, and industrial schemes, building 
occupancy schedules have been adapted into remote work. The drastic 
changes have led to significant impacts on energy demand and put 
pressure on energy sector management and energy market. 

Energy profiles are powerful tools in energy system planning and 
management. They reflect the requirements of total demand and energy 
use patterns of the customers. The COVID-19 related demand variation 
and corresponding energy load profiles have been analyzed on different 
grid levels and scales in several publications. 

In the analysis of electricity use trends during the pandemic in 
Ontario province, Canada, it is found a 14% of electricity decline with a 

considerable CO2 reduction in April 2020 [2]. The hourly-based load 
curve shows the weekly highest electricity demands were moved from 
the latter part of the week to the earlier part. Meanwhile, the morning 
peak loads, and the evening peak loads were avoided, which yielded a 
noticeable flattened curve [2]. Peak load shift is also reported in other 
studies [3–6]. From the analysis of electricity data covering millions of 
customers in Illinois, USA, the results show that weekday load profiles 
for dwellings became more likely to weekend profiles [3]. Through 
extrapolation of the findings on total load profiles, COVID-19 related 
profiles may change long-term workplace arrangements and further 
influence peak hourly loads. In a study of a Canadian social housing 
building during the 4-month of lockdown, it was found out that on 
average the daily electricity use was slightly increased by 2% while the 
daily hot water use was slightly decreased by 3% [4]. The biggest im
pacts on energy use were mostly seen during the first two months (April 
and May) of the lockdown period, for example, in April the electricity 
use increased by 46% and the hot water increased by 103% during the 
middle of the day [4]. An online survey to explore the impacts of 
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California’s Shelter-in-place order on energy activities in the residential 
buildings under the confinement measures was conducted in [5] and the 
responses indicate an increase of energy demand from 10 to 15 o’clock, 
which is also related to the characteristics of respondent and dwelling. 
The main findings present the relationship between such COVID-19 
related changes and intention to adopt smart home technologies, 
which may benefit household practices in the future [5]. The Brazilian 
power system and its four subsystems before and after adopting the 
distancing measures were analyzed in [6]. The comparison results of the 
weekly electricity profiles and the weekly change percentages show a 
remarkable reduction of energy demand. And the energy use trends of 
the subsystems were observed with different dynamics depending on the 
geographic locations. 

The energy use and energy profiles for certain building types were 
investigated in [7–10]. The impacts on energy use in residential aged 
care facilities were analyzed in [7]. From the comparison of electricity 
peak demand and profiles experiencing lockdown in four Australian 
climatic zones, the energy use and peak loads are shown greatly climatic 
related. Another study was performed on one energy-intensive labora
tory building at a university campus [8]. After the lockdown, it was 
found that the unregulated electricity use in the laboratory reduced the 
power demand by half. The authors suggest a communication with the 
building managers about the typical building function and the actions 
taken during lockdown [8]. Four simulation scenarios of energy use in a 
typical Serbian household were analyzed in [9]: S1 – reference case, S2 – 
mild protection measures, S3 – semi-quarantine measures, S4 – complete 
quarantine, to assess the link between user behavior and energy source 
uses. By using the occupancy profiles in the building as input, the 
simulation models show that there was an increase in heating and 
electricity use during the pandemic due to the increased user presence. 
Compared with the normal conditions, the increase of heating and 
electricity use for the scenario-based models could be 31-32% and 
54-58% respectively [9]. From the energy analysis in a southern Bra
zilian city, Florianópolis, during the lockdown [10], it was observed that 
the electricity use of administrative buildings, elementary schools, and 
nursery schools was reduced by 38.6%, 50.3%, and 50.4%, respectively, 
comparing with the same period of 2018-2019. These almost unoccu
pied municipal buildings do require considerable energy demand with 
nearly half of the energy being used regardless of the occupants’ pres
ence [10]. 

The extent of total energy demand influence from the various 
restrictive approaches was examined in [11]. The investigation contains 
four European countries with strict containment measures and two Eu
ropean countries with less restrictive ones. By comparing the total 
electricity demand depending on the residents’ activities, it shows that 
there was a considerable electricity demand decline in the countries 
with severe lockdown measures [11]. These sudden changes of energy 
demand have influenced energy production and utility company’s in
vestment plans. Regarding the energy supply side, the following 
research has worked on the problems on energy production, economy, 
and security experiencing the confinement measures. 

The power sector in Southeast Asia was examined in [12] and the 
study finds out the restrictive action has aggravated the vulnerabilities 
of their current power system. It highlights the significance of buildings 
as a resilient system in this region. A data-driven analysis was performed 
on the U.S. bulk power systems and electricity markets during the 
pandemic in [13]. The power sector was severely affected from March to 
May 2020. From the market-specific study, the northeast region suffered 
the most severe impacts on power operation and economic interests. 
Meanwhile, the authors believe more attention should be paid to 
possible shocks and disproportionate impacts between energy com
panies and consumers. From a thorough study of global power system 
operation [14], many countries have suffered considerable revenue loss 
due to a reduction of ca.8 to 30% of total electricity demand. The sub
stantial decrease mainly came from the temporary halt of industrial, 
commercial, and public transportation activities. Power generation from 
the conventional nuclear power was affected, meanwhile it was noticed 
that the contribution from renewable energy increased by 3.5- 72% 
depending on the countries [14]. In addition to the economic problems 
of conventional utility companies, the authors in [15] underscore the 
challenges on load forecasting and required flexibility because of the 
changed balance and increased uncertainty. 

The COVID-19 related indoor air quality issues have been studied as 
well. The indoor CO2 concentration in residential buildings experiencing 
the home office regime was investigated in [16]. It shows that the 
adoption of a proper aeration process can minimize the increase of 
heating energy caused by changing the room function [16]. Another 
study shows that the mean daily PM2.5 concentration rose by approxi
mately 12% and the mean volatile organic compound concentration by 
37% to 559% comparing with the condition before and during the 
COVID-19 lockdown [17]. 

The literature review shows that there is a number of investigations 
regarding COVID-19 related energy use in non-cold climate region. 
However, the real data analysis and scenario-based modelling of electric 
heating use are missing for buildings in Norway and the similar climate 
zones. Therefore, the main objective of this study is to investigate the 
energy use behavior in Norwegian buildings with electric heating during 
the COVID-19 pandemic. The reason to study electric heating in build
ings is that the country remains highly dependent on electricity. Ac
cording to the statistics [18], nearly three quarters of Norwegian 
households are using electricity for heating purposes in the form of 
either electric radiator, electric floor heating, air source heat pump, or 
central electric heating. In the service sector, electricity accounts for 
approximately 77% of total energy use by supplying heating demand at 
a large extent. Moreover, within the Nordic region, although heat pumps 
are gradually replacing direct electric heating, the electricity demand in 
the residential sector has been increasing over the last decade, according 
to the report from the Nordic Energy Research [19]. 

As an important section of non-residential buildings at a municipal 
level, kindergartens and schools are commonly dispersedly located in 
cities or towns. Statistically, costs for building operation management 
become the second biggest expenditure of educational institutions, only 
beneath salaries of employees [20]. Building operators are therefore 
responsible for maintaining the required indoor environment in 
energy-efficient ways. 

By complying with the Norwegian national lockdown regime 

Nomenclature 

ASHRAE American Society of Heating, Refrigerating and Air- 
Conditioning Engineers 

BAS building automation systems 
DHW domestic hot water 
ED Euclidean distance 
ES curve energy signature curve 
GESD generalized extreme studentized deviate 
MAPE mean absolute percentage error 
PCC Pearson Correlation Coefficient 
SH space heating 
TMY typical meteorological year 
WD weekday 
WE weekend 
el electricity 
n number of observations 
R2 coefficient of determination 
S standard deviation 
tot outdoor temperature 
yr year 
€ currency of Euro  
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initiated in March till May 2020, the teaching activities on campus were 
severely interrupted and transferred into remote learning, meanwhile 
many employees followed work-at-home rules. Therefore, this study 
focuses on the educational buildings and residential buildings in Norway 
and similar climatic regions. Concerning both for personal interests and 
municipality’s public expenses, the secondary objective is to estimate 
the energy demand and economic impacts on the buildings with electric 
heating during the lockdown and future unforeseeable disturbances, 
which may also have influences on local energy planning. 

To fulfill the research purposes, the three questions shall be 
answered: 1) whether the educational buildings were managed in an 
energy-efficient way during the temporary closure? 2) are there any 
energy and economic saving potentials in the educational buildings that 
might have been neglected and how much saving potentials may be 
reached? 3) how much electricity and economic impacts influenced the 
residential buildings with different household size and family members? 

The novel contributions of this study may be summarized as follows. 
In our analysis, we utilized the measured electricity use data in real 
buildings during the lockdown and normal time. In such a way, the 
analysis was based on statistics rather than certain assumptions. It was 
found out that the common assumptions about energy use during 
COVID-lockdown in publications for public buildings were not always 
true and the household scale affected energy use in these buildings. 
Three scenario-based models were proposed, and they were used to 
discuss their impacts on energy management and local energy planning 
by varying building type ratio. 

The rest of the paper is organized as the following. Section 2 in
troduces the study methods including the data information of the 
observed buildings, and the description of the three scenarios that were 
used to establish the energy models. The main results of the study are 
presented in Section 3. The electricity profiles under the three scenarios 
were analyzed and compared based on the measured data. The regres
sion models’ accuracies were evaluated by ASHRAE criteria. An eco
nomic analysis was further carried out to compare the annual electricity 
costs for the scenario-based models. Due to the different use character
istics between the educational buildings and the residential buildings, 

the feasible energy-saving strategies were proposed for the former ones, 
and the impacts on increased bill were studied for the latter ones. Lastly, 
the limitations, future work, and conclusions are discussed and sum
marized in Section 4 and Section 5. 

2. Methodology 

The outline of the main steps for this study is illustrated in Figure 1. 
Section 2.1 collects the building information. Section 2.2 – Section 2.4 
explain the three scenarios regarding the different building operation 
strategies. In Section 2.5, the method for the economic analysis is 
introduced by considering the three levels of electricity spot price. 
Section 2.6 introduces the method for assessing the consequence on 
local energy planning. 

2.1. Description of the observed buildings 

During the lockdown, the educational buildings were supposed to be 
closed with minimum energy use, meanwhile the residential buildings 
were supposed to have higher energy demand under work-at-home 
conditions. To answer the above research questions, 14 kindergartens, 
eight schools, one apartment, and one residential house located in 
Trondheim, Norway, were analyzed in this study. The building areas of 
the kindergartens are between 279 and 1 143 m2, while those of the 
schools are between 2 157 and 5 443 m2, of which six are primary 
schools, one is a middle school, and one is a mixed one. All of them use 
electricity as their main building energy supply source, for instance, 
space heating (SH), domestic hot water (DHW), ventilation, and other 
electric appliances. About the space heating demand, there are electric 
panel heaters and ventilation heating in the kindergartens and schools. 
The maintenance and operation of these educational institutions are 
handled by Trondheim Municipality. The energy data were retrieved 
from the municipality’s energy monitoring platform [21]. The historical 
annual demands of these observed buildings were close to the local 
average level. Therefore, these buildings may be representative to pre
sent the energy use changes and variations during the pandemic period. 
The residential house is a two-story townhouse with a floor area of 133 
m2, where accommodates a family of two adults and two pupils. The 
building is supplied by natural ventilation, and heated by a radiant wood 
stove, three electric radiators, and supplemented by an air source heat 
pump. In addition to the electric assistant heating, electricity is used for 
DHW, lighting, and other appliances. The apartment with natural 
ventilation has a floor area of 40 m2, where accommodates an adult. It 
uses electricity for radiator (for SH), DHW, and other appliances. The 
electricity data of the two residential buildings were voluntarily shared 

Figure 1. The workflow of the analysis of electricity use  

Table 1 
List of building information.  

Building type Floor area (m2) Data duration (Y/M/D) 

Kindergarten 279- 1 143 2018.01.01- 2020.12.31 
School 2 157- 5 443 2018.01.01- 2020.12.31 
Apartment 40 2018.10.01- 2020.12.31 
Townhouse 133 2018.10.01- 2020.12.31  
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by the dwellers who retrieved them from the local power grid supplier 
Tensio [22]. All these observed buildings have no submeter. 

Weather conditions were considered in the energy analysis, and the 
historical weather data were obtained from the local meteorological 
station [23]. The electricity use of the educational buildings was from 
the beginning of 2018 to the end of 2020, while the electricity use of the 
two residential buildings was from October 2018 to the end of 2020 due 
to the upgrade into smart meter in September 2018. The data informa
tion is briefly explained in Table 1. The analysis was performed on 
average specific electricity use (kWhel/ m2), to define the representative 
electricity use concerning buildings with different characteristics. 
MATLAB was used for the data analyses. 

2.2. Scenario 1 - Electricity demand based on normal operation mode 

Scenario 1 considered the electricity use under normal conditions 
without the disturbance from lockdown or other temporary disruption 
from 2018 to 2020 except March - May 2020. In the educational 
buildings, there is a remarkable difference in electricity demand be
tween daytime on weekdays and off-work hours, which is mainly caused 
by the different campus activities and attendance between the two time 
slots. Whereas, the electricity use pattern in residential buildings is 
unlike kindergartens and schools. It generally has low demand during 
working hours and high demand when dwellers are at home. 

As addressed before, large proportion of electricity is used for heat
ing purposes in the electric-heated buildings in the cold climate areas. 
Accordingly, outdoor temperature (tot) may be regarded as the key 
predictor to determine the related heating electricity use in buildings 
under different operation strategies. To find the relationship between 
the electricity demand and outdoor temperature, energy signature curve 
(ES curve) was used in the study. ES curve has been widely utilized in 
building energy planning by researchers and engineers at all levels 
[24–26]. ES curve generally consists of two parts, the temperature 
dependent part and temperature independent part. They are divided by 
changing point temperature (CPT) or heating effective temperature. The 
formulas for the ES curve may be expressed as: 

If tot ≤ CPT, P(tot) = p1⋅tot + p2 + ε (1)  

If tot > CPT, P(tot) = p1⋅tot + p2 + ε; ≈ p2 (2) 

In Eqs.(1) and (2), p1 and p2 are the coefficients of each ES curve 
model, and ε is the residual error. The heating demand follows the linear 

growth under the slope of p1. Besides the outdoor temperature, the work 
schedules also decide the operation settings and affect the electricity 
use. In the educational buildings, the ES curves were made for weekdays 
and weekends, separately. Concerning the possible random operation of 
electric appliances, which may cause irregular electricity use, the ES 
curves for the residential buildings were defined based on average 
weekly base. 

The importance of using typical meteorological year (TMY) to esti
mate building energy performance from one single year analysis is 
highlighted in [27]. The outdoor temperature is made based on the most 
“representative” conditions over the last decade. In this analysis, TMY 
data 2007- 2016 of Trondheim were retrieved from the European Union 
website [28]. Combining the acquired energy signature under Scenario 
1, the TMY data were applied to obtain the electricity use of the typical 
year. This scenario was applied to both the educational buildings and the 
residential buildings. 

2.3. Scenario 2 - Electricity demand based on night and weekend 
operation mode in the educational buildings 

This scenario referred to the energy-saving mode for a limited 
operation of buildings during a temporary closure. It was assumed that 
building management sector switched the energy supply operation to 
the settings of low demands during normal weekdays’ nighttime and 
weekend to save energy. In the educational buildings, the electricity use 
was usually observed at minimum levels to maintain the acceptable 
indoor temperatures and air quality during weekends and off-work 
hours on weekdays, with the almost zero attendance. Similar as the 
study in [11], the weekday demand profiles for educational buildings 
during the pandemic were assumed to be identical as the weekend 
profiles of the reference week in 2019. Thus, Scenario 2 was only applied 
to the educational buildings in this study. 

The hypothesis was made by considering the guidance of building 
operation in epidemic situations by the American Society of Heating, 
Refrigerating and Air-Conditioning Engineers (ASHRAE). It highlights 
that buildings equipped with or without a building automation systems 
(BAS) are not recommended to completely shut down the HVAC systems 
during the temporary closure or no occupancy [29]. The buildings shall 
be maintained “within a reasonable range of temperature and humidity” 
by setting the HVAC systems with relaxed temperature and humidity. 

To find the electricity characteristics for Scenario 2, the ES curve was 
developed based on the hourly electricity use during the normal 

Figure 2. Electricity spot price vs Outdoor temperature, and Correlation of electricity spot price in 2016- 2020  
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weekdays’ nighttime and weekends. After that, by following the similar 
way as Scenario 1, the electricity use of the TMY under Scenario 2 was 
acquired. It enables us to see the possible electricity reduction that may 
be achieved in the educational buildings when the building energy 
supply system runs at a low demand level. 

2.4. Scenario 3 - Electricity demand based on lockdown operation mode 
in the residential buildings 

When the rule of home office was in effect, the hypothesis of elec
tricity use in the residential buildings might be higher than normal sit
uation, especially during daytime since the work schedules of dwellers 
changed, similar as in the Canadian residential community [4]. Scenario 
3 was to find the increased electricity use caused by the influence from 
lockdown in the residential buildings, and to study energy robustness by 
dwelling scale. 

The ES curve was established based on the average weekly electricity 
use from March to May 2020. The electricity characteristics for this 
scenario were extrapolated to the whole typical year by using the co
efficients acquired from this period. Then a yearly electricity use was 
obtained by using the similar methods for Scenario 1 and Scenario 2. 

2.5. Economic impact assessment 

In Norway, the specific electricity price contains two parts, the fixed 
grid rent price (fi) and the variable price (vi), see Eq.(3). This pricing 
mode is commonly adopted in many European countries [30, 31]. fi 
refers to the fee and tax when using the grid, which is generally deter
mined by the local authority and the value is normally constant within a 
certain amount of time, while vi varies a lot based on the demand and 
supply in the power market. 

pi = fi + vi (3) 

Using the spot price as reference, each energy company charges with 
different price packages concerning their own interests. To calculate the 
annual electricity costs in this study, the fixed price was retrieved from 
Statistic Norway [18], and the variable price was considered with the 
spot price of Trondheim from NordPool (2016- 2020) [30]. 

The five-year spot price versus the outdoor temperature is plotted in 
Figure 2, where the orange dots represent the main price groups and the 
blue dots represent the extreme price groups (very high and low spot 
price). These extreme data points were separated from the main clouds 
by the method of Generalized extreme studentized deviate (GESD). The 

explanation and application of GESD can be found in [32, 33]. More
over, as illustrated in the correlation heatmap at the bottom right in 
Figure 2, the five years had weak relation with each other. Most of the 
two-year correlation factors were smaller than 0.3. In Figure 3, it com
pares the annual spot price profile from 2016- 2020, showing the 
high-price level in 2018 in yellow line, the low-price level in 2020 in 
green line, and the others in between. Both the heat map and the annual 
spot price profiles were adjusted with the same starting day of the five 
years. As shown in Figure 2 and Figure 3, it is rather difficult to define a 
simple mathematical method explaining the variations of the five-year 
spot prices. Regarding the complex prediction of electricity prices, 
some examples are shown in [34–36]. Thus, in this study, three price 
cases were made. The spot price of 2018 was treated as the case of 
highest price level, that of 2020 for the case as the lowest price level, and 
the median values of the rest of the years as the case of moderate price 
level. The thick blue line is for the median values as shown in Figure 3. It 
was assumed that these three price levels were capable to represent the 
electricity market situation in recent years. 

By combining the annual electricity profiles of a TMY and the three 
price levels, it allows us to calculate the annual electricity costs for the 
observed buildings regarding the three operation scenarios and further 
compared the costs. 

2.6. Aggregation and consequence on energy planning 

Local energy planning may be improved by analyzing the energy use 
during critical and special circumstances such as lockdown. An imagi
nary community could be assumed to be made up of one kindergarten, 
one school, and one residential area composed of 40% of apartment and 
60% of townhouse. By aggregating the annual specific electricity de
mand for the four building types in a normal year (Scenario 1) and 
lockdown year (Scenario 2 and Scenario 3), the annual total electricity 
use for this community was calculated as 

Enor yr = enor yr,kind⋅Akind + enor yr, sch⋅Asch + enor yr, apm⋅Aresi⋅40%

+ enor yr, house⋅Aresi⋅60% (4)  

Eld yr = eld yr, kind⋅Akind + eld yr, sch⋅Asch + eld yr, apm⋅Aresi⋅40%⋅i

+ enor yr, apm⋅Aresi⋅40%⋅(1 − i) + eld yr, house⋅Aresi⋅60%⋅i

+ enor yr, house⋅Aresi⋅60%⋅(1 − i) (5)  

where enor yr, kind, enor yr, sch, enor yr, apm, and enor yr, house refer to the annual 
specific electricity use for kindergarten, school, the apartment, and the 

Figure 3. Annual electricity spot price profiles in 2016- 2020  
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townhouse in a normal year, respectively; eld yr, kind, eld yr, sch, eld yr, apm, 
and eld yr, house refer to the annual specific electricity use for kindergarten 
(Scenario 2), school (Scenario 2), the apartment (Scenario 3), and the 
townhouse (Scenario 3) in a lockdown year, respectively; Akind, Asch, and 
Aresi refer to the building area of kindergarten, school, and the residen
tial area, respectively; and i refers to the percentage of work-from-home 
adoption in the residential area. By varying the residential area Aresi and 
the work-from-home adoption percentage i, the electricity demand 
especially the peak demand and the capacity factor may be affected. 

Capacity factor of an energy plant is the ratio of the actual total energy 
production over a period to the maximum output if the plant operates at 
its rated capacity, and it measures the overall utilization of an energy 
plant [37]. These influences on local energy planning are discussed in 
Section 4. 

3. Results 

The analysis results of electricity daily profiles before and during 
COVID-19 lockdown are presented in Section 3.1, the scenario-based 
electricity demands are illustrated in Section 3.2, Section 3.3 shows 
the electricity profiles in a TMY under the three scenarios, and the yearly 
electricity costs under different scenarios and price levels are compared 
in Section 3.4. 

Table 2 
Monthly average temperature   

March April May 

2018 -3.1 ⁰C 4.7 ⁰C 12.3 ⁰C 
2019 -0.4 ⁰C 6.7 ⁰C 7.4 ⁰C 
2020 1.4 ⁰C 3.5 ⁰C 6 ⁰C  

Figure 4. The average daily electricity profiles for kindergartens from March to May in 2018- 2020, where a) profiles on weekdays, b) profiles on weekends  

Figure 5. The average electricity profiles for schools from March to May in 2018- 2020, where a) profiles on weekdays, b) profiles on weekends  
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3.1. Analysis of daily electricity profiles before and during COVID-19 
lockdown 

According to previous research and statistics, nearly half of energy 
use in buildings is used for heating in the cold climate. Therefore, the 
outdoor temperature has large influence on the total electricity use. The 
average monthly outdoor temperature between March and May during 
the three years are listed in Table 2, where 2018 had the coldest March 
and the warmest May, 2019 had the warmest April, and 2020 had the 
warmest March and the coldest April and May. 

Considering different schedules and occupancy levels on weekdays 
and weekends, the electricity use profiles were therefore analyzed 
separately. The average daily electricity demand profiles for kinder
gartens, schools, and two residential buildings during March to May 
2018- 2020 are compared in Figure 4 - Figure 7, respectively. In these 
figures, WD denotes weekday and WE denotes weekend, and the dashed 
lines stand for 2018, the dashed lines with plus symbol for 2019, and the 

solid lines for 2020. 
For the educational buildings shown in Figure 4 and Figure 5, the 

electricity use followed the opening hours and schedules. On weekdays, 
the demand generally arose between 6 and 17 o’clock with the peak 
demand at around 8 or 9 o’clock. The demand rising ahead of the 
teaching activities was aimed extending the thermal comfort and 
improve the indoor air quality. From 19 to 6 o’clock next morning, the 
energy supply systems maintained at a low demand. It may be observed 
that the shapes of the three- year electricity profiles from March to May 
were quite similar. The average demands were mostly in line with the 
average monthly outdoor temperature. Also, kindergartens generally 
require higher energy demand than schools, which follows the statistical 
data due to the higher requirement of thermal comfort and hygiene in 
kindergartens [38]. 

Regarding the residential buildings, the electricity use patterns were 
different. In the apartment see Figure 6, there was distinct higher de
mand during the daytime on weekdays in 2020 than 2019. Meanwhile 

Figure 6. The average electricity profiles for the single apartment from March to May in 2019- 2020, where a) profiles on weekdays, b) profiles on weekends  

Figure 7. The average electricity profiles for the townhouse from March to May in 2019- 2020, where a) profiles on weekdays, b) profiles on weekends  
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several local peak demands were noticed, such as 10, 13, and 14 o’clock 
in March, 14 and 15 o’clock in April, 9 and 13 o’clock in May. Addi
tionally, the average higher demand in the evening was mainly due to 
the running of appliance, and the peak load in the midnight was used for 
recharging the hot water tank. The use pattern during weekends were 
similar with weekdays, but due to more time spent indoors there were 
several local peak loads both in 2019 and 2020. In the townhouse see 
Figure 7, March 2020 had slightly higher daytime electricity use, while 
April 2020 and May 2020 used more electricity during daytime than 
2019. The morning peaks arising at 7 or 8 o’clock in 2019 was shifted 
later to 9 or 10 o’clock in 2020 due to the study- and- work- at home 
regime. Again, several local peak demands were also noted during the 
daytime on weekdays, such as around lunch period. The specific elec
tricity demand in the single apartment was generally higher than the 
townhouse. The WD values were similar to the WE values in the resi
dential buildings, which is also mentioned in [3]. This may indicate that 

the effect of occupants on private buildings plays a more important role 
than in public buildings, and the household energy demand varies based 
on residents’ behavior, as mentioned in [39, 40]. 

In general, among the four building types, March claimed the highest 
electricity, May needed the lowest electricity, and April was in between, 
with an exception of the unusually cold May in 2020. To identify the 
effect from the outdoor temperature difference to the electricity, 
Euclidean Distance (ED) was calculated to prove that the larger outdoor 
temperature difference was supposed to yield the higher ED and vice 
versa. ED was calculated as: 

dED(X, Y) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − yi)

2

√

(6)  

where X and Y refer the vector of the average daily profile in each year, 
xi and yi refer to the electricity demand at i-th hour in each year. 

Figure 8. Z-Scores of average daily electricity profiles for kindergartens from March to May in 2018- 2020, where a) Z-Scores for weekdays, b) Z-Scores for weekends  

Figure 9. Z-Scores of average daily electricity profiles for schools from March to May in 2018- 2020, where a) Z-Scores for weekdays, b) Z-Scores for weekends  
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Besides the difference defined by ED, the average daily profiles were 
further performed with Z standardization (Z-Score) and Pearson Corre
lation Coefficient (PCC) analysis to identify the similarities. Through the 
calculation of Z-Scores and PCC, the amplitudes of demand values were 
normalized by making the profiles of compatible scales, and the shape 
similarities of each two profiles can be measured by PCC. This may avoid 
the possible influence of the outdoor temperature to the energy profile 
shapes. The benefits of using the PCC measures to effectively recognize 
the profiles similarities were highlighted in [41]. 

The Z-score and PCC were calculated as Eqs.(7) and (8), respectively: 

Zi =
xi − x

S
(7)  

where xi refers to the electricity demand at i-th hour, S refers to the 
standard deviation of the day (24 hours), x refers to the mean value of 

the day. 

PCC(X, Y) =
cov(X, Y)

SXSY
=

∑n
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(xi − x)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(yi − y)2

√ (8)  

where cov means the covariance. 
The Z-Scores of each average daily profile corresponding to Figure 4- 

Figure 7 are presented in Figure 8- Figure 11. When demand scales were 
normalized and discarded, the educational buildings reflected a highly 
similar pattern on weekdays during the three months from 2018 to 
2020. However, the energy use on weekend varied from month to 
month. As for the residential buildings, the energy use patterns over the 
three months from 2019 to 2020 were quite different, with noticeable 
local peak demand during daytime on weekdays, for example from 12 to 
16 o’clock in the single apartment 9 to 14 o’clock in the townhouse. 

Figure 10. Z-Scores of average daily electricity profiles for the single apartment from March to May in 2019- 2020, where a) Z-Scores for weekdays, b) Z-Scores 
for weekends 

Figure 11. Z-Scores of average daily electricity profiles for the townhouse from March to May in 2019- 2020, where a) Z-Scores for weekdays, b) Z-Scores 
for weekends 
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The results of ED and PCC measures within every two years for 
kindergartens and schools are compared in Figure 12 and Figure 13, 
where the yellow bars stand for the EDs within 2018- 2019, the green 
bars for the EDs within 2018- 2020, and the light blue bars for the EDs 
within 2019- 2020. The PCCs are plotted by the red lines with the dots, 
and each dot refers to the same year of the bar where it is located. By 
discarding the real energy demand scales influenced by the outdoor 
temperature, it was observed that the PCC results from March to May 
during the three years were higher than 0.93 in kindergartens and 0.91 
in schools on weekdays, and the highest PCCs were even found within 
2019- 2020 (the red dots located at the light blue bars). Even on 
weekends, there were also several PCCs beyond 0.7 between 2019 and 
2020. This proved again that the patterns and operation of the three- 
year average daily energy use were of high similarity. The higher tem
perature deviation from 2018 to the other two years led to larger energy 
demand differences, which was reflected in the ED results. The closer 
outdoor temperature between 2019 and 2020 led to the smaller ED on 

weekdays. Comparing with weekdays, both the daily profiles and the ED 
results of electricity presented much lower demands on weekends in 
kindergartens and schools. This is mainly because the educational in
stitutions in Norway usually do not carry out teaching activities on 
weekends, but the buildings can be occasionally rented out to maximize 
the public resource usage [38]. This explained the much lower impact 
from the outdoor temperature difference to the energy demand on 
weekends than that on weekdays, and the weekend demand was alike 
the night mode. 

About the residential buildings, the ED and PCC results of the 
townhouse (purple columns and black dots) and the single apartment 
(blue columns and red crosses) between 2019 and 2020 are compared in 
Figure 14. The ED values of the townhouse were lower than those of the 
apartment within the three months both on weekdays and weekends, 
only with the exception in March when the two were close. Additionally, 
the EDs of the townhouse on weekends were smaller than on weekdays, 
which was also backed by the high average PCC values. It mostly implied 

Figure 12. The ED and PCC results of kindergartens in 2018- 2020, where a) for weekdays, b) for weekends  

Figure 13. The ED and PCC results of schools in 2018- 2020, where a) for weekdays, b) for weekends  
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that the residents kept their usual weekend plans, for example the out
door activities. Generally, EDs of the townhouse were rather stable. 
Whereas the apartment had much larger ED values and more various 
PCC values, which was similar with the findings in the average profiles 
in Figure 6 since more time was spent at home. The occupant behavior in 
smaller dwelling size had higher energy impacts. 

Based on the findings from the weekday electricity profiles of kin
dergartens and schools during the lockdown period, the operation might 
not shift to night/weekend settings as the hypothesis. Due to the prac
tical reasons, the schools and kindergartens were still open during the 
period to support the parents who were working in the critical positions 
such as health system, police station, transportation and so on. Both 
kindergartens and schools showed similar operation strategies between 
March and May from 2018 to 2020, by showing their similar electricity 
use patterns with the close average daily profiles and PCC results. This is 
unlike the electricity use examined in the university laboratory building 
[8] and the nursery school and elementary school buildings [10]. In the 
former building, most of the users are adults and able to take care of 
themselves [8]; in the latter buildings, although most of users are chil
dren same as in this study, nearly half of electricity demand was reduced 
[10]. 

Meanwhile the residential buildings showed a large variation influ
enced by the changes of the dweller’s working schedule during the 
period as projected. Besides that, there was a bigger influence on specific 
electricity demand in the single apartment than the multi-member 
townhouse. Since the apartment has a smaller floor area and one 
dweller, it may be more sensitive with the changes. And the wood stove 
in the townhouse was not treated in the study. 

3.2. Analysis of scenario-based electricity demands 

This section studies the electricity use under the three scenarios in 
the observed buildings. All the ES curve models were established based 
on the measured data. 

In the educational institutions, as shown above, the building energy 
systems were most likely maintained at normal level during the lock
down. Hence, the electricity use in kindergartens and schools during 
2018- 2020 was treated under normal operation. In Scenario 1, the 
daily-based ES curve models of weekdays and weekends were built 
separately. The ES curve models of kindergartens are shown in 
Figure 15, where the weekdays (blue dots) and weekends (purple dots) 
have great demand differences. Since the ventilation, heating, and other 

Figure 14. The ED and PCC results of townhouse and single apartment in 2019- 2020, where a) for weekdays, b) for weekends  

Figure 15. Energy signature curve models for kindergartens for Scenario 1  
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appliances were much less operated on weekends, the electricity de
mand was lower than weekdays by around 35- 40%. The CPT was 
identified at 14◦C both on weekdays and weekends by giving the 
adequate piece-wise approximation. The needs for electricity demand 
became less when the outdoor temperatures were above the CPT, that 
the regression lines had milder slopes than the ones below the CPT. This 
was mainly because of the reduction for electric space heating. Schools 
had similar electricity demand characteristics and their ES curve models 
are shown in Appendix Figure A1. 

For the residential buildings in Scenario 1, the ES curve models for 
the single apartment and the townhouse were built on the weekly 
electricity use by excluding the lockdown period. Figure 16 presents 
their weekly-based ES curve models, where the orange dots are for the 
apartment and the blue dots for the townhouse. The CPT of 13◦C gave a 
proper division between the temperature-dependent and temperature- 
independent electricity use in the apartment. Meanwhile, the rela
tively low electricity density in the townhouse made it follow the same 
linear relation over the whole outdoor temperature range without a CPT. 
When the outdoor temperature was below the CPT, the slope for the 
apartment was steeper than the townhouse. When the outdoor temper
ature was close and above the CPT, the slopes for the two residential 
buildings were close. This implied that when it was cold outside, the 
share of electricity used for space heating in the apartment was much 
higher than in the townhouse. 

Table 3 gives the coefficients and the accuracy evaluation of the ES 
curve models for all the observed buildings for Scenario 1. Accuracy of 

Figure 16. Energy signature curve models for the single apartment and the townhouse for Scenario 1  

Table 3 
Coefficients and Accuracy of the ES curve models for Scenario 1   

Coefficients of model Accuracy of model 
Building type CPT 

(◦C) 
p1  p2  R2 MAPE 

(%) 

Kindergarten 
(WD) 

14 -1.3 (≤
14◦C) 

30.8 (≤
14◦C) 

0.90 11.9 

-0.4 
(>14◦C) 

18.1 
(>14◦C) 

Kindergarten 
(WE) 

14 -0.9 (≤
14◦C) 

17.9 (≤
14◦C) 

0.79 

-0.1 
(>14◦C) 

7.6 (>14◦C) 

School (WD) 14 -1.2 (≤
14◦C) 

25.1 (≤
14◦C) 

0.82 18.2  

-0.3 
(>14◦C) 

13.6 
(>14◦C) 

School (WE) 14 -0.7 (≤
14◦C) 

15.1 (≤
14◦C) 

0.80  

-0.2 
(>14◦C) 

7.7 (>14◦C) 

Apartment 13 -2.3 (≤
13◦C) 

38.5 (≤
13◦C) 

0.80 18.2 

-0.2 
(>13◦C) 

12.2 
(>13◦C) 

Townhouse / -0.6 17.9 0.63 
(↓) 

14.6  

Figure 17. Energy signature curve models for kindergartens for Scenario 2  
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the regression models were evaluated by two criteria, the coefficient of 
determination (R2) and the mean absolute percentage error (MAPE). 
Except for the townhouse, the ES curve models for all the other building 
types had the R2 higher than 0.75 and the MAPE lower than 20%, which 
meant they all satisfied the requirements of ASHEAE Guidelines for 
carrying out a satisfying model [42, 43]. The lower R2 for the regression 
model in the townhouse might be explained by the relatively low share 
of electricity used for space heating purpose, while the other electric 
appliances accounted for a reasonably high share of electricity accord
ingly. It led to the linear relationship between the outdoor temperature 
and electricity not as strong as the other building types, where the space 
heating was only supplied by the electricity. However, according to the 
proposal from Henseler that R2 with 0.5 is moderate in scholarly 
research as a rule thumb [44]. Also, the MAPE of the model for the 
townhouse was lower than 20% as required in [45] for a good fore
casting. Therefore, the ES curve model for the townhouse was regarded 
qualified at some extent and may be utilized for a rough identification of 
profile in TMY in the following section. 

As explained in Section 2.3, Scenario 2 considered the electricity 
demand level for buildings with low attendance during nighttime and 
weekends under normal situation. This energy-saving mode was regar
ded as the hypothesis of the operation mode that the kindergartens and 
schools should have adopted during the temporary closure. 

The ES curve models for the kindergartens were carried out on 
hourly-based data, see Figure 17. It was noted that there were some 
outliers, marked within the dashed cloud. This must be caused by the 
occasional activities held during the weekends with high use of lighting, 
ventilation, and other appliances, as mentioned in Section 3.1. The ES 
curve models for schools were similar with kindergartens, and they are 
shown in Figure A2. The coefficients and the accuracy criteria of the ES 
curve models for kindergartens and schools under Scenario 2 are briefed 
in Table 4. The CPT of the two building types were still noted at 14◦C 
with proper piecewise regression. The MAPE for the two building types 
were below 20%, and R2 for the two building types are no less than 0.75. 
The ES curve models for the educational buildings meet the ASHRAE 
requirement of satisfying regression models. 

Scenario 3 meant to identify the electricity use when the work-at- 
home regime was adopted. The weekly-based ES curve models for the 
two residential buildings under Scenario 3 are plotted in Figure 18. 
There was a noticeable higher electricity demand for the apartment 
under Scenario 3 than Scenario 1 (Figure 16), within the same outdoor 
temperature range. It indicated that there was higher electricity impact 
on the apartment, which was also consistent with the findings in the 
average daily profiles and ED results above. Because of the relatively 
small range of outdoor temperature during the work-at-home period, 
one linear model was sufficiently identified for the apartment without a 
CPT. 

Table 5 gives the coefficients and the accuracy criteria of the ES 
curve models for the two residential buildings under Scenario 3. The R2 

for the two building types were higher than 0.8, and the MAPEs were 
below 10%, indicating these ES curve models were accurate to be used in 
the following work. 

3.3. Scenario-based electricity profiles 

A yearly electricity use profile may be predicted by combining the 
regression coefficients defined in Section 3.2 and the outdoor temper
ature in a typical weather year. Figure 19- Figure 21 illustrate the 
possible electricity profiles for kindergartens, schools, the single apart
ment, and the townhouse. 

As shown by the solid red lines in Figure 19 and Figure 20, kinder
gartens and schools needed 172 kWh and 139 kWh electricity per m2 in a 
typical year, under the normal operation settings (Scenario 1). These 
demand values were lower than the Norwegian Statistics, 183 kWh/ 
(m2∙yr) for kindergartens and 167 kWh/(m2∙yr) for schools [38]. While 
under the energy-saving mode (Scenario 2), only 112 kWh/m2 was 
needed in kindergartens and 99 kWh/m2 in schools in a TMY, as shown 
by the green dashed lines. From the comparison between the two 
building management modes, it indicated that there was a remarkable 
energy saving potential during a temporary shutdown. By implementing 
proper settings for the building service systems and improving the 
arrangement of the educational institutions, the electricity use may be 
reduced by approximately 35% in the kindergartens and 29% in the 

Table 4 
Coefficients and accuracy of the ES curve models for Scenario 2   

Coefficients of model Accuracy of model 

Building type CPT (◦C) p1  p2  R2 MAPE (%) 
Kindergarten 14 -0.9 (≤ 14◦C) 17.9 (≤ 14◦C) 0.76 15.9 

-0.1 (>14◦C) 7.6 (>14◦C) 
School 14 -0.7 (≤ 14◦C) 15.4 (≤ 14◦C) 0.75 19.4  

-0.1 (>14◦C) 7.1 (>14◦C)    

Figure 18. Energy signature curve models for the single apartment and the townhouse for Scenario 3  

Table 5 
Coefficients and Accuracy of the ES curve models for Scenario 3   

Coefficients of model Accuracy of model 

Building type CPT (◦C) p1  p2  R2 MAPE (%) 
Apartment / -1.6 41.9 0.88 8.1 
Townhouse / -0.5 17.7 0.84 9.2  
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schools. Since kindergartens usually have longer opening hour and 
higher indoor temperature requirements than schools, it explains kin
dergartens may have 6% more electricity reduction possibility than 
schools. 

Regarding the scenario comparison in the residential buildings, the 

impact on the specific electricity demand was much higher in the single 
apartment than in the townhouse, as plotted in Figure 21. Under the 
normal situation when the daytime attendance was low, the annual 
electricity demand of a typical year was 222 kWh/m2 and 126 kWh/m2 

in the apartment and townhouse, respectively, as shown in the solid 

Figure 19. Annual electricity profiles for kindergartens under Scenario 1 and Scenario 2  

Figure 20. Annual electricity profiles for schools under Scenario 1 and Scenario 2  

Figure 21. Annual electricity profiles for the single apartment and the townhouse under Scenario 1 and Scenario 3  
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lines. Comparing with the Norwegian Statistics of the average energy 
use per household, this apartment used 20% more energy than the 
average level, and this townhouse used 14% less electricity than the 
average level (the fuel of wood was not considered) [18]. However, 
when the rule of work-at-home was in effect, 26.9% more electricity was 
needed in the apartment, while the townhouse only required 1.3% more 
electricity, as shown in the dashed lines. Again, the higher electricity 
density in the single apartment makes it more sensitive after the use 
pattern changed. Unlike the educational institutions, it may not be 
straightforward to point out the energy saving potential in the 

residential buildings. The possibilities and measures to save electricity 
can be realized by upgrading the building energy supply methods in the 
apartment building or its neighborhood community, for example, to 
introduce ground source heat pump, or connect to a district heating 
network if available [46–48]. 

3.4. Results of economic costs calculation 

By combining the predicted electricity profiles defined in Section 3.3 
and the three price levels described in Section 2.5, the annual electricity 

Figure 22. Annual electricity cost estimation of kindergartens and schools under two operation scenarios, where a) annual cost of kindergartens, b) annual cost 
of schools 

Figure 23. Annual electricity cost estimation of the single apartment and the townhouse under two operation scenarios, where a) annual cost of the apartment, b) 
annual cost of the townhouse 
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costs for the four building types were estimated according to the three 
price cases. 

In the educational buildings, the building area of kindergartens and 
schools was assigned with the Norwegian average area of 700 m2 and 4 
000 m2, respectively [38]. Figure 22 compares the annual electricity 
costs of one representative kindergarten and one representative school 
under the normal operation mode (Scenario 1) and the night and 
weekend mode (Scenario 2), where moderate el price, highest el price, 
and lowest el price are the shortcuts of the cases of moderate, highest, 
and lowest electricity price. For the kindergarten, the cost reductions 
between the two running modes varied from 1 461 €/yr (equivalent as 
2.1 €/(m2.yr)) under the case of lowest electricity price to 2 873 €/yr 
(4.1 €/(m2.yr)) under the case of highest electricity price, see 
Figure 22a. For the school, Figure 22b exhibits that between 5 658 €/yr 
(1.4 €/(m2.yr)) and 10 946 €/yr (2.7 €/(m2.yr)) may be saved if the 
building was shifted to the night and weekend settings during lockdown. 
It is worthy noted that the economic saving potential from switching 
operation mode was greater when the electricity price was higher. It 
further emphasized the importance of carrying out energy-efficient 
operation strategy during low attendance on campus. 

In the residential buildings, the economic impacts were interpreted 
differently from the educational buildings. Due to more time spent at 
home by the dwellers, between 78 - 164 € (2.0 €/(m2.yr) - 4.1 €/(m2.yr)) 

more money may be needed in the apartment, see Figure 23a, while the 
increase would be less than 15 € (0.1 €/(m2.yr)) in the townhouse, see 
Figure 23b. Although the larger dwelling of multi family members 
required higher total electricity expenditure than the smaller single 
apartment, they might act more robust in the changes of the use 
patterns. 

To sum up, based on the findings from both energy and economic 
point of view, the yearly electricity costs were dependent both on the 
building management settings and the power market price. For example, 
at the lowest electricity price level, the expenses for normal operation in 
both kindergarten and school were still lower than the energy-efficient 
mode concerning the other two price cases. It was similar as in the 
residential buildings, the home office mode at the lowest price level 
might even cause less expenditures than the others. 

4. Discussions and limitations of this study 

In this study, there are three points worthy to be discussed. 
Firstly, in these observed buildings, there are no submeters for 

separating the electricity used for heating purpose, lighting, and appli
ances. However, based on the evaluation results of the model accuracy, 
the R2 and the MAPE, most of the developed ES curve models met the 
requirement of satisfying regression models, mainly because a large 

Figure 24. Electricity duration curves for different residential building areas, comparing normal year with lockdown year when varying percentages of work- 
from-home 

Figure 25. Capacity factor vs electricity peak demand for different residential building areas, comparing normal year with lockdown year when varying percentages 
of work-from-home adoption 
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share of electricity goes to space heating. During the pandemic, the 
energy response of the buildings may be region and country related, 
which may be influenced by the building function, social aspects, and 
rule tightness [10, 11, 49]. Therefore, it is worthy using the ES curve 
models as a robust and fast method to predict the electricity demand 
based on different operation strategies, especially for buildings without 
submeters. However, the model accuracy may be weaker such as in low 
energy building and passive house, where space heating accounts for 
lower energy share. 

Secondly, the COVID-19 related impacts on the buildings’ annual 
CO2 emissions were not included. It was considered adequate to identify 
the electricity demand changes and possible energy saving potential, 
because the change percentage of the CO2 emissions would be the same 
as demand changes regardless of the CO2 factors. However, it will still be 
interesting to find credible source of CO2 factor and investigate the CO2 
emissions in response to future unforeseeable disruption. 

Thirdly, the consequence on the local energy planning was discussed 
based on the example of the imaginary community by following Eqs.(4) 
and (5) in Section 2.6, where Akind, Asch, and Aresi were chosen with 700 
m2, 4000 m2, 10 000 – 90 000 m2 with each step of 20 000 m2, 
respectively. As shown in Figure 24, the thick lines represent the elec
tricity duration curves in the normal year, and the thin lines represent 
the electricity duration curves in the lockdown year by varying the 
percentages of work-from-home adoption from 0% to 100%. For each 
residential area group, the 0% of work-from-home adoption is shown 
with the lowest line, and the 100% is shown with the highest line. It is 
apparent that the duration curves in the normal year are steeper than 
most of the work-from-home conditions for all the residential area 
groups. 

Figure 25 further compares the capacity factor with the electricity 
peak demand regarding different residential areas. The solid circles in 
the dashed cloud line stand for the normal year condition. The lockdown 
year’s result for each residential area is shown with the solid line by 
varying work-from-home adoption from 0% to 100%. As noted in 
Figure 25, normal year had lower plant capacity factor and needed 
higher peak demand than some of work-from-home conditions for the 
smaller residential areas (e.g. 10 000 – 50 000 m2). It is interesting to see 
the energy utilities may not be fully utilized in normal year, which may 
lead to uneconomic production. In the larger residential areas (e.g. 70 
000 – 90 000 m2), although the plant capacity can be better used with a 

higher capacity factor, it may require higher peak demand during the 
lockdown. For example, the percentage changes of the peak demand for 
the residential area of 10 000 m2 were between -9.3% and -6.1% from 
0% to 100% of work-from-home adoption, and these changes for the 
residential area of 90 000 m2 were between -1.8% and 2.6% from 0% to 
100% of work-from-home adoption. It may be explained as the saved 
electricity from the closed kindergarten and school may not be compa
rable with the more electricity being used when most of the residents 
stay at home, for a larger residential area. The detailed changes 
regarding each residential area are listed in Table A1. 

From this example, it may be concluded that the local infrastructure 
sizing may be influenced by different aspects, such as the areas of resi
dential and educational buildings, energy operation mode, and some 
unintended conditions. As suggested in a study of one university campus 
with multiple building functions [50], an appropriate building type ratio 
would be helpful to reduce the total load and load fluctuation of a dis
trict. Therefore, it is important to analyze the energy demand under 
different scenarios to discover the optimal sizing in the future planning. 

Since the lockdown regime in Norway was in effect from mid-March 
to early May 2020, the outdoor temperature during this period (0 - 21◦C 
on weekly base) did not cover the local historical outdoor temperature 
range throughout a year (such as -7 - 21◦C on weekly base in 2019), 
especially the recorded low temperature in winter. Hence, the extrap
olation of the Scenario 3 based ES curve models to the TMY might not 
fully represent the annual household electricity profile. The increased 
annual household electricity demand (especially in winter) may be 
higher than the estimation in this study, by extrapolating the electricity 
characteristics under the limited outdoor temperature range during the 
lockdown. Moreover, as shown in the results, the electricity use density 
to the outdoor temperature in the apartment was much higher than in 
the townhouse, making the deviation even larger for the apartment than 
for the townhouse. To better prepare for the future unforeseen disrup
tions as well as the trends of workplace and lifestyle, more data and/or 
seasonal correction factors are necessary for further study, for example, 
to take experiment of home office activities involving more dwellings. 
This may present a more comprehensive insight with more accurate 
forecasting models and better knowledge. 

5. Conclusion 

The COVID-19 pandemic has put heavy stress and crucial challenges 
around the world. Accordingly, many countries have carried out 
confinement regulation to hinder the infection spreading. Due to the 
changed work regime, the significant impacts on energy sectors have 
been seen in many countries. This study was focused to analyze the 
electricity profiles and the relevant changes in Norwegian buildings with 
electric heating. Two Norwegian educational building types at munic
ipal level (kindergartens and schools) and two Norwegian residential 
buildings (a single apartment and a townhouse) during the lockdown 
were studied on the measured data. 

The scenario-based analysis in this study was mainly made for 
identifying the possible electricity demand and corresponding electricity 
increase and saving potential at a macro scale if new disruption would 
be introduced. To achieve the aim, the article developed the three sce
narios regarding the different building operation strategies. Scenario 1 
modeled the electricity use under normal conditions, Scenario 2 
modeled the electricity on settings during normal weekdays’ nighttime 
and weekends for kindergartens and schools, and Scenario 3 modeled 
the household electricity use under the work-at-home conditions. 

The work was conducted as follows. The average daily electricity 
profiles before and during the lockdown were identified. It was found 
that there were almost no changes of electricity use pattern in the two 
educational building types, but there was demand variation in the res
idential buildings. The ES curve models were then developed for 
describing the electricity characteristics under each scenario. Most of 
the models were qualified as satisfying regression models by evaluating 

Table A1 
Peak demand and its changes regarding different residential area under normal 
condition and changing percentage of work-from-home adoption  

Residential 
area (m2) 

Peak 
demand 
(MW) – 
normal 
condition 

Percentage of 
work-from- 
home adoption 
(%) 

Peak 
demand 
(MW) – 
work-from- 
home 

Percentage 
changes of the 
peak demand 
(%) 

10 000 0.498 0 0.452 -9.3 
10 0.453 -9.0 
50 0.460 -7.7 
100 0.468 -6.1 

30 000 1.164 0 1.108 -4.8 
10 1.113 -4.4 
50 1.132 -2.8 
100 1.155 -0.8 

50 000 1.829 0 1.774 -3.0 
10 1.782 -2.6 
50 1.813 -0.9 
100 1.851 1.2 

70 000 2.495 0 2.439 -2.2 
10 2.450 -1.8 
50 2.494 -0.1 
100 2.548 2.1 

90 000 3.160 0 3.105 -1.8 
10 3.119 -1.3 
50 3.175 0.5 
100 3.244 2.6  
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with the accuracy criteria R2 and MAPE. These scenario-based ES curve 
models were used for making annual electricity profiles in a typical 
weather year. Under Scenario 1, around 172 kWhel/m2 and 139 kWhel/ 
m2 were needed in a TMY for kindergartens and schools, respectively. 
These electricity use could be reduced by 35% for kindergartens and by 
29% for schools, with proper building operation during a temporary 
closure, as suggested by Scenario 2. Meanwhile, when the dwellers’ 
schedules changed into home office regime (Scenario 3), approximately 
27% and 1.3% more electricity were required for the single apartment 
and the townhouse, respectively. The small apartment with higher 
electricity density made it more electricity sensitive than the large 
house, especially during the lockdown period. The annual power bills 
were estimated in three spot price level cases, showing that more 
expensive electricity yielded bigger driving forces to adopt better 
building management. With proper settings, between 2.1 - 4.1 €/(m2.yr) 
may be saved for kindergartens, and 1.4 - 2.7 €/(m2.yr) for schools. The 
apartment may spend 2.0 - 4.1 €/(m2.yr) more for electricity, while the 
increased bill for the townhouse may be trivial. 

The analysis on the aggregated electricity demand showed that the 
local infrastructure sizing may be influenced by the areas of residential 
and educational buildings, energy operation mode, and some unin
tended conditions. For the residential area of 10 000 m2, the percentage 
changes of the peak demand were between -9.3% and -6.1% from 0% to 
100% of work-from-home adoption, and these changes for the residen
tial area of 90 000 m2 were between -1.8% and 2.6%. Therefore, it is 
important to analyze the energy demand under different scenarios to 

discover the optimal sizing in the future planning. 
The methods and results of this article may be useful to similar or 

other building types in response to future unforeseeable disruption, 
especially the buildings in the similar climatic conditions. 
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Figure A1, A2 and Table A1 

Figure A1. Energy signature curve models for schools for Scenario 1  

Figure A2. Energy signature curve models for schools for Scenario 2  
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buildings: A case study in Florianópolis, Brazil. Sustainable Cities and Society, 69, 
Article 102823. https://doi.org/10.1016/j.scs.2021.102823 

[11] Bahmanyar, A., Estebsari, A., & Ernst, D. (Oct. 2020). The impact of different 
COVID-19 containment measures on electricity consumption in Europe. Energy 
Research & Social Science, 68, Article 101683. https://doi.org/10.1016/j. 
erss.2020.101683 

[12] T. Lowder, N. Lee, and J. Leisch, “COVID-19 and the Power Sector in Southeast 
Asia: Impacts and Opportunities,” National Renewable Energy Lab. (NREL), 
Golden, CO (United States), NREL/TP-7A40-76963, Jun. 2020. doi: https://doi. 
org/10.2172/1665768. 

[13] Ruan, G., Wu, J., Zhong, H., Xia, Q., & Xie, L. (Mar. 2021). Quantitative assessment 
of U.S. bulk power systems and market operations during the COVID-19 pandemic. 
Applied Energy, 286, Article 116354. https://doi.org/10.1016/j. 
apenergy.2020.116354 

[14] Madurai Elavarasan, R., et al. (Dec. 2020). COVID-19: Impact analysis and 
recommendations for power sector operation. Applied Energy, 279, Article 115739. 
https://doi.org/10.1016/j.apenergy.2020.115739 

[15] Zhong, H., Tan, Z., He, Y., Xie, L., & Kang, C. (Sep. 2020). Implications of COVID- 
19 for the electricity industry: A comprehensive review. CSEE Journal of Power and 
Energy Systems, 6(3), 489–495. https://doi.org/10.17775/CSEEJPES.2020.02500 

[16] Kalmár, T., & Kalmár, F. (Mar. 2021). Investigation of natural aeration in home 
offices during the heating season – case study. Journal of Building Engineering, 35, 
Article 102052. https://doi.org/10.1016/j.jobe.2020.102052 

[17] Domínguez-amarillo, S., Fernández-agüera, J., Cesteros-garcía, S., & R., A (2020). 
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