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A B S T R A C T   

The location-allocation problem of manifolds, which is a part of subsea field layout optimization, directly affects 
the flowline cost. This problem has always been studied as a mixed-integer nonlinear programming (MINLP) 
problem, or an integer linear programming (ILP) problem when there are location options for the facilities. 
Making a MINLP model is surely convenient to interpret the optimization problem. However, finding the global 
optimum of the MINLP model is very hard. Hence, practically, engineers use approximation algorithms to search 
a good local optimum or give several good location options based on their experience and knowledge to reduce 
the MINLP model into an ILP model. Nevertheless, the global optimum of the original MINLP model is no longer 
guaranteed. 

In this study, enlightened by the graphic theories, we propose a new method in which we reduce the MINLP 
model into an ILP model—more precisely, a binary linear programming (BLP) model—without compromise of 
achieving global optimum, but also with extremely high efficiency. The breakthrough in both efficiency and 
accuracy of our method for the location-allocation problem of manifolds and wellheads is well demonstrated in 
various cases with comparison to the published methods and the commercial MINLP solver from LINDO. Besides, 
we also provide our results for larger-scale problems which were considered infeasible for the commercial MINLP 
solver. More generally, our method can be regarded as a specific MINLP/NIP (nonlinear integer programming) 
solver which can be used for many other applications. This work is the second of a series of papers which sys
tematically introduce an efficient method for subsea field layout optimization to minimize the development cost.   

1. Introduction 

In Part I, we introduced the directional well trajectory planning 
method base on 3D Dubins curve. Briefly, it solved the optimization 
problem of “1-site-n-wells” which means to drill several wells from only 
one drilling site like from a subsea multiwell template. However, the 
practical issue for field layout optimization is more likely to be “k-sites- 
n-wells” which means to drill several wells from multiple drilling sites. 
To handle it, we have to solve the combinatory problem which is well 
known for its NP-hardness as the location-allocation problem. In this 
study, we only focus on the location-allocation of manifolds with the 
main purpose of establishing an efficient method to find the global op
timum for this kind of problems. 

A manifold is a subsea facility like a hub used to collect the pro
duction from several different wells. Based on the number of connection 
hubs on the manifold, there are many types such as: 2-slot, 4-slot and 6- 

lot, etc. The 4-slot manifold is the most used in Norway. 
Given the positions of the wellheads on the seabed, we have to 

optimize the positions of the manifolds and the connection relationship 
between manifolds and wells so that the flowline costs can be mini
mized. This is the meaning of the “location-allocation” in this case. More 
specifically, it is a continuous space location-allocation problem as the 
facility, i.e. the manifold, can be located anywhere rather than a set of 
location options. The location-allocation problem of manifolds, which 
directly affects the flowline cost, has always been treated as a MINLP or 
an ILP when there are explicit location options for the facilities (Wang 
et al., 2012, 2017; Zhang et al., 2015, 2017; Hong et al., 2018; Duan 
et al., 2016; Ramos Rosa et al., 2018; Huisman, 2011). The MINLP is an 
easy way to describe the real-world problem in a mathematic language, 
however finding the global optimal solution to the model is an NP-Hard 
problem which can easily exceed the time we can afford. Hence, prac
tically, engineers use heuristic algorithms (Huisman, 2011), such as the 
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simulated annealing (SA) algorithm (Hong et al., 2018) or the genetic 
algorithm (Wang et al., 2017), to search a good local optimum; or give 
several good location options for the manifolds based on their experi
ence and knowledge, to reduce the MINLP model to an ILP model. 
Nevertheless, the global optimum can no longer be guaranteed. 

As we want to achieve a minimum in tie-back flowline costs, it is easy 
to come to the classic Minimum Spanning Tree (MST) problem. Indeed, 
if we don’t consider the influence of flowline maintenance on the pro
duction in the future, the classic MST algorithms (Kruskal, 1956; Prim, 
1957) or dynamic MST algorithms (Chin and Houck, 1978) can give us 
the optimum solution of the lowest cost. However, practically, we 
cannot afford to let too many wells depend on the same flowline in case 
of the production suspension due to maintenance or any emergency. 
Besides, different production fluids may not be suitable to be mixed and 
transported in the same flowline. Therefore, it is conventional in the 
industry to just connect several wells together to a manifold which is 
then connected to the topside facilities. A carefully designed MST al
gorithm with the practical issues taken into consideration may exist and 
completely break away from the industrial conventions, but thus is 
outside of the scope of this study. 

Considering the conventional layout, we propose to regard the 
location-allocation problem as a size-constrained clustering problem 
and solve it with the help of graphic theories. It should be noted that, 
changing the perspective on this layout optimization problem does not 
change the NP-hardness for finding the global optimum: the well-known 
K-Means algorithm (Lloyd, 1982; Arthur and Vassilvitskii, 2007) for 
clustering problem cannot fulfill the size constraint, besides, it can’t 
guarantee the global optimum; the exact size-constrained 2-clustering 
(Lin, 2012; Bertoni et al., 2015) algorithm is a very efficient algorithm 
which generates the global optimum, however, it’s only suitable for 
dividing data points into 2 clusters; Zhu’s work (Zhu et al., 2010) which 
converted the size-constrained clustering problem into a ILP model, 
actually revealed the hardness equivalence. 

Even though this new perspective does not change the NP-hardness, 
the concept of clustering enlightened us to build a much more efficient 
algorithm to achieve the global optimum for this NP-hard problem, 

making it practically feasible to solve a much larger-scale problem. 
Briefly, our algorithm takes the advantage of Delaunay Triangulation to 
linearize the MINLP model into a binary linear problem (BLP) model 
without increasing the magnitude of variable number compared to the 
original MINLP’s. In the following, we elaborate our method for a 
simplified version of this NP-hard problem where there is only one type 
of manifold so that it will be easy for readers to understand our method 
completely. In the case study, the comprehensive comparison to the 
previously published methods and the commercial MINLP solver in 
LINGO, which has matured for about 40 years, shows the great advan
tage of our method. In the further discussion, we introduce how to use 
our method to deal with several types of manifolds and many other 
practical scenarios. 

2. Problem description and basic assumptions 

The location-allocation problem of manifolds can be described as 
follows: there are n wells to tie back to k manifolds on the seabed, all 
wellheads’ locations are given, then find the optimal manifold location 
so that it can minimize the tie-back flowline cost, where m,

k ∈ Positive Integer; m is the cluster size, i.e. the number of connected 
wells to a manifold, it is also the number of slots on the manifold if there 
is no vacant slot unconnected. Practically, there are manifolds of several 
different slot-sizes, normally including 2-slot, 4-slot and 6-slot. For an 
easy understanding of our method, we firstly simplify the problem as 
there is only one type of manifold, i.e. m = 4. Therefore, the total 
number of wells is n = m⋅k which is a multiple of m. 

We adopt the same assumptions used in the previously published 
case study (Wang et al., 2012) with which we are going to compare: 
firstly, the seabed is simplified as a continuous 2D-plane; secondly, the 
flowline cost is proportional to the square of distance, i.e. squared 
Euclidean distance. 

As for more general problems where the number of wells is not a 
multiple of m, or when we want to use several types of manifolds, or 
even when the basic assumptions no long exist, they will all be discussed 
in Section 5. After we introduce our method in Section 3 and Section 4, 

Fig. 1. Example of wellheads’ positions in 2D.  
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you will find it easy to solve these general problems as well, once you 
grasp the core idea of our method. 

3. Methodology 

3.1. Brief analysis 

As the name suggests, the location-allocation problem of manifold 
includes two parts: the location of manifolds, and the allocation relation 
between wells and manifolds. The allocation part can be regarded as a 
clustering problem. The second assumption, which assumes the cost to 
be proportional to the square of the distance, makes it quite easy to 
locate the manifold once the wells are clustered: the location of a 
manifold is the geometric mean position of the wells allocated to the 
manifold, i.e., the wells in the same cluster. This can be easily derived by 
partial differentiation, refer to the Section 3.4 in Wang’s work (Wang 
et al., 2012) for the derivation details. Hence, given the positions of m 
wellheads in a cluster pi : (xi, yi), i = 1, 2, ... , m, the position pM :

(X,Y) of the manifold that connects these m wells can be easily calcu
lated as Eq. (1) shows: 

X =

∑m

i=1
xi

m
, Y =

∑m

i=1
yi

m
(1) 

The number of all clusters is easily obtained by the combination 
formula shown in Eq. (2). 

Cm
n =Cm

mk =
n!

m!(n − m)!
=

(mk)!
m![m(k − 1)]!

(2) 

When m is small, the number of all clusters is still growing relatively 
slow as the problem scale n grows. But the combinations of the clusters 
still increase sharply. The number of combinations is given in Eq. (3). 
Nowadays, the computational limit of the prevalent CPUs is around 1×

1012 FLOPS. Given m = 4, k = 5, i.e. to allocate n = 20 wells to 5 
manifolds, the number of all combinations is around 2.546× 109, which 
is still within the computational ability. If k just increases a bit to k =

10, i.e. n = 40, the number will become around 3.546 × 1027 which is 
beyond of the computational ability. 

Cm
mk⋅Cm

m(k− 1)⋅Cm
m(k− 2) ... Cm

m

k!
=

∏k− 1

i=0
Cm

m(k− i)

k!
=

∏k− 1

i=0

[m(k − i)]!
m![m(k − i − 1)]!

k!

=
(mk)!

(m!)
k

× k!
(3) 

However, the wells in an optimal cluster are adjacent which makes 
most of the clusters definitely impossible to be optimal. We regard the 
clusters where the wells are adjacent as useful clusters. Compared to the 
number of all clusters, the number of useful clusters is much smaller, 
resulting in a much smaller number of useful combinations. This is the 
key idea to solve the problem efficiently. A useful combination consists 
of k useful clusters of size m. As shown in Fig. 1, the cluster {1,2,3,14} is 
a useful cluster, while the cluster {1,2,9,10} is obviously not. 

As for the number of useful clusters, we cannot give an explicit 
expression to calculate this because it depends on how the wells are 
distributed, and how we define the adjacent relationship. But we will 
show how small it is in the following case studies in Section 4. 

3.2. From MINLP to BLP 

Based on the previous methods, such as Wang’s work (Wang et al., 
2012), the problem can be directly interpreted as a MINLP model: 

min
C, δ

C. * δ = min
C, δ

∑k

i=1

∑n

j=1
ci,jδi,j (4)  

s.t.
∑n

j=1
δi,j = m, ∀i ∈ {1, 2, 3 ... k}

∑k

i=1
δi,j = 1, ∀j ∈ {1, 2, 3 ... n}

Where δ is the binary variable matrix whose dimension is k× n, as 
shown in Eq. (5), δi,j = 1 means the j well is connected to the i manifold. 
δ indicates the allocation between the manifolds and wells. k is the 
number of manifolds/clusters, n is the number of wells. C is the 
continuous variable matrix of flowline cost dependent on δ and it has the 
same dimension as δ. ci,j is the nonlinear term of the flowline cost of 
connecting the j well to the i manifold. Therefore, the total number of 
MINLP variables is 2kn. “.*” is element-wise multiplication operator. 
The first constraint ensures that each manifold connects to m wells, and 
the second ensures that each well is only connected to one manifold. 

δ=

⎡

⎢
⎢
⎢
⎢
⎣

δ1,1 δ1,2 ... δ1,n
δ2,1 δ2,2 ... δ2,n
.

.

.

.

.

.

.

.

.

.

.

.
δk,1 δk,2 ... δk,n

⎤

⎥
⎥
⎥
⎥
⎦

(5) 

The formulation is very easy, but it is very hard to find the global 
optimum for such a MINLP model. In Wang’s work (Wang et al., 2012), 
he could only use a heuristic method to get an approximation. In in
dustry, engineers usually provide several candidate positions for the 
manifolds based on their knowledge and experience, so that C can be 
pre-calculated to be a coefficient matrix, rather than a continuous var
iable matrix, therefore reducing the MINLP model into an ILP model. 
The industrial method is also a compromised method to achieve a good 
approximation rather than the global optimum, unless the global 
optimal locations are exactly included in the candidate locations. 

We can eliminate the continuous variables in the MINLP model, 
making it a nonlinear integer programming (NIP) problem, as shown 
below: 

min
δ∈Binary

Cost(δ,m, p)

= min
δ∈Binary

∑k

i=1

(
∑n

j=1

(
δi,j
(
xj − Xi

)2
+ δi,j

(
yj − Yi

)2)
) (6)  

s.t.
∑n

j=1
δi,j = m, ∀i ∈ {1, 2, 3 ... k}

∑k

i=1
δi,j = 1, ∀j ∈ {1, 2, 3 ... n}

Where p is the well position matrix comprised of well position vector 
pi : (xi, yi), i ∈ {1, 2, 3 ... n}. (Xi, Yi) is the position coordinate of the i 

manifold, shown in Eq. (7), which is actually equivalent to Eq. (1). 

Xi =

∑n

jj=1
δi,jjxjj

m
, Yi =

∑n

jj=1
δi,jjyjj

m
(7) 

Even though there is no more continuous variable, and the number of 
the NIP variables is half of the MINLP’s, i.e. kn, the computational 
complexity of the NIP is completely equivalent to the MINLP, because 
the nonlinear term of the cost is still in the objective function, making it 
practically infeasible for a MINLP/NIP solver to find the global optimal 
of this specific model with only 40 wells. Equ. (3) shows the difficulty of 
finding the global optimal for the model. The infeasibility will also be 
shown in the following case study in Section 4. 

But an insight into Eq. (6) reveals that one important cause of the 
inefficiency is repeatedly computing k × n times for the same position of 
the i manifold, i.e., (Xi, Yi). If we just compute this manifold position 
term only once, and store it as a coefficient, then Eq. (6) will become a 
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simple linear equation. A naive idea of enumerating all possible clusters, 
which avoids from this redundant computation, leads to the following 
BLP model: 

min
γ∈Binary

∑N

j=1
γj⋅cost(A,m, p)j (8)  

s.t. An×NγN×1 = 1n×1
A ∈ Binary  

Where N = Cm
n is the number of all possible clusters of size m, it is also 

the number of variables in this BLP model. γ is the binary variable vector 
whose dimension is N× 1, γj = 1 means the j cluster is selected for the 
optimal combination. γ indicates the selection of clusters. A is the co

Fig. 2. Delaunay triangulation of original points.  

Fig. 3. Delaunay triangulation with ward points.  
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efficient matrix of dimension n× N, as shown below, ai,j = 1 means the i 
well is in the j cluster. From MINLP/NIP to BLP, the allocation rela
tionship between manifolds and wells, i.e., δ, is equivalently converted 
to the selection of clusters, i.e., γ. 

A=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a1,1 a1,2 ... a1,N
a2,1 a2,2 ... a2,N
.

.

.

.

.

.

.

.

.

.

.

.
an,1 an,2 ... an,N

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, where
∑n

i=1
ai,j = m, ∀j = {1, 2, 3 ... N}

(9) 

Different from the dependent relationship between the C and δ in the 
MINLP model in Eq. (4). The cost(A,m,p)j is a function independent of 
the variables γ, hence it is still a coefficient rather than a variable. This 
coefficient can be calculated as shown below. 

Fig. 4. Non-convex delaunay triangulation.  

Table 1 
Positions of 20 wells.  

Well No. 1 2 3 4 5 6 7 8 9 10 

x − 2 − 6 − 3 − 1 − 5 − 7 − 3 2 12 27 
y 35 25 14 3 − 2 − 10 − 15 − 7 − 10 − 8 

Well No. 11 12 13 14 15 16 17 18 19 20 

x 19 13 7 5 20 23 30 37 35 25 
y 1 3 10 30 15 20 21 16 9 5  

Table 2 
Comparison of CPU performance (2021/07/02, 2021).  

CPU model cores/ 
computer 

GFLOPS/ 
core 

GFLOPS/ 
computer 

Intel Core 2 Duo CPU P8700 @ 
2.53 GHz 

2 2.96 5.92 

Intel Core i5-4210U CPU @ 
1.70 GHz 

4 2.59 10.32  

Table 3 
Comparison of five 4-slot manifold Layout. 
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Fig. 5. Comparison of five 4-slot manifold layout.  

Table 4 
Comparison of two 10-slot manifold Layout. 

Fig. 6. Comparison of two 10-slot manifold layout.  

Table 5 
Comparison of ten 4-slot manifold Layout. 
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Fig. 7. Comparison of ten 4-slot manifold layout.  

Table 6 
Comparison on larger-scale Problems. 
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cost(A,m, p)j =
∑n

i=1

⎛

⎜
⎜
⎝ai,j

⎛

⎜
⎜
⎝xi −

∑n

ii=1
aii,jxj

m

⎞

⎟
⎟
⎠

2

+ ai,j

⎛

⎜
⎜
⎝yi −

∑n

ii=1
aii,jyj

m

⎞

⎟
⎟
⎠

2⎞

⎟
⎟
⎠ (10) 

Compared with the MINLP model, the corresponding BLP model has 
a larger number of variables. Ostensibly, more variables mean compu
tationally harder. However, it actually simplifies the computational 

complexity drastically because it is linear, therefore, we can use relax
ation strategy along with branch and cut algorithm to solve the BLP 
model much faster. As for solving the BLP model, we can directly use the 
ILP/BLP solvers provided by IBM CPLEX, LINGO, GUROBI, TOMLAB, or 
just use the build-in function “intlinprog” in Matlab Optimization 
Toolbox, etc. 

Nevertheless, the number of all possible clusters still grows too fast as 
N = Cm

n = O(nm), even for m = 4. It can easily run of the memory. 
Hence, as discussed in Section 3.1, we can make N to be the number of 
useful clusters rather than the number of all possible clusters to make it 
much more efficient. 

3.3. Find the useful clusters 

Obviously, the points in a useful cluster are close to each other. To 
build the adjacent relationship, we use the Delaunay triangulation to 
build an undirected adjacent graph first. Delaunay triangulation con
nects points in a nearest-neighbor manner as it maximizes the minimum 
angle in all triangles. The algorithm to construct Delaunay triangulation 
has been well developed since it was proposed by Delaunay in 1934. 
Lawson’s (Lawson, 1972) and Bowyer-Watson’s (Bowyer, 1981; Watson, 
1981) are the two classic algorithms for Delaunay triangulation. The 
time complexity of the most efficient Delaunay triangulation algorithm 
can be bounded as O(n log n) (Leach, 1992), where n is the number of 
points. As for the coding implementation in Matlab, we can directly use 
the build-in function “delaunay". 

Delaunay triangulation also bears a convex hull property which 
makes the adjacency on the boundaries unwanted, as shown in Fig. 2. 
For example, the Point 7 and Point 10 in Fig. 2 are quite far apart, and 
the adjacent relation between these two points is obviously unwanted. 
To handle this trivial issue, we can use the following strategy to elimi
nate the unwanted adjacent relation on boundaries:  

1. Add 8 ward points outside of the convex hull, and do Delaunay 
triangulation for all the points, as shown in Fig. 3, the ward points 
are marked as black dots. The number of ward points can increase a 
bit as the problem scale grows large.  

2. Delete the ward points and their connected edges, as shown in Fig. 4. 
Then, we get a non-convex Delaunay triangulation graph which 
shows a better adjacent relationship on boundaries. 

After we get the adjacent graph, as shown in Fig. 4, we mark all the 
edges as distance 1, and build up the adjacent matrix of this undirected 
graph. The distance matrix of the undirected graph in Fig. 4 is given in 
Appendix IV. The conventional adjacency matrix only indicates the 
relationship of distance ≤ 1, denoting such an adjacent relationship as 
adjacent-1. To prove that the adjacent-1 relationship contains all the 
global optimal clusters, we can either enumerate all the clusters when 
the problem scale is not too large, or modify the adjacency matrix to 
indicate the relationship of distance ≤ 2, i.e., to use the adjacent-2 
relationship to find the useful clusters. Both the adjacent-1 matrix and 
the adjacent-2 matrix of the undirected graph in Fig. 4 are given in 
Appendix IV as well. No doubt, the adjacent-2 matrix will introduce 
more useful clusters into the BLP model resulting in a longer computa
tional time. We use the adjacent-2 relationship as a backup proof of the 
correctness of the adjacent-1 when it is infeasible to enumerate all 
clusters. 

Then, the basic criterion to pick out the useful cluster from the 
adjacent relationship is that the selected points can form a tree in the 
adjacent graph, for example, {1, 2, 3, 5} is a useful cluster, but {1, 2, 5, 
13} is not in the adjacent-1 relationship because this cluster can’t form a 
tree as the shortest distance from point 13 to any other point in the 
cluster is larger than 1, however, {1, 2, 5, 13} will become a useful 
cluster in the adjacent-2 relationship. We provide our algorithm for 
finding all the useful clusters with the basic criterion in Appendix III. 

More strictly, a useful cluster should never isolate any points, for 

Fig. 8. Results of larger-scale problem by our method.  
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Fig. 9. Result of a 20-point highly ill-conditioned case.  

Fig. 10. Result of a 36-point highly ill-conditioned case.  

Table 7 
Comparison of a 20-point highly ill-conditioned case.   

LINGO/local Our method 

Computational time 92s–145s 0.09s–0.19s  

Table 8 
Comparison of a 36-point highly ill-conditioned case.   

LINGO/local Our method 

Computational time 565s–662s 0.21s–0.35s  
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example, {2, 14, 16, 17} fulfills the basic criterion, but it is not a strictly 
useful cluster because it isolates the point 1. Obviously, the strict cri
terion will give us less useful clusters which means more efficiency in 
solving the BLP model. However, we find that for most problems of 
various scales, applying the strict criterion decreases the overall effi
ciency if we use a good BLP solver such as the IBM CPLEX. Hence, here 
we do not recommend the strict criterion for finding useful clusters. Or 
maybe it is just because our algorithm for strict criterion is not good 
enough. 

At last, it should be noted that the algorithm of finding useful clusters 
presented in Appendix III is not efficient enough to deal with clusters of 
large sizes. But fortunately, in the location-allocation problem of man
ifolds, we barely need to deal with clusters of size larger than 8. As for a 
very special case where the points are only divided into two clusters, we 
recommend the 2RCC algorithm (Lin, 2012; Bertoni et al., 2015) which 
can directly generate the two global optimal clusters. 

4. Case study 

We tested our BLP method on different cases to show its efficiency 
and robustness. We also compared our BLP method with the previous 
MINLP/NIP method solved by LINGO. Among the commercial solvers 
mentioned in Section 3.2, LINGO is the only one which provides 
nonlinear solvers without limitation in the problem scale under an ac
ademic license. In order not to bias the comparison, the following results 
of LINGO are based on the original codes provided by LINDO technical 
support. The computational time is generated from a laptop Dell 
Inspiron 15–7537 (Intel Core i5-4210U, 12 GB DDR3 1600 MHz). Be
sides, we also invited Dr. Hong Chen to use his SA algorithm (Hong et al., 
2018) to compute the 100 points problem in Case 2 for comparison. 

As we coded in Matlab to implement our method, we used IBM 
CPLEX API, which is very Matlab-user-friendly, to solve the BLP model. 
It should be noted that LINGO can also solve the BLP efficiently, how
ever, their API for Matlab is not so friendly as IBM’s. 

4.1. Case 1: test on a published case 

The first case is exactly the same as that in Wang’s work (Wang et al., 
2012). The positions of the 20 wells are given in Table 1, also shown in 
Figs. 1–6: 

Compared with Wang’s CPU (Intel Core Duo P8700), Intel Core i5- 
4210U has a superior performance in parallel computation but inferior 
computational ability for a single core/thread, as shown in Table 2, 
based on Whetstone benchmarks conducted by the Asteroids@home 
project (2021/07/02, 2021). Hence, to have a better comparison, we 
implemented our method in serial computation. Note that the data 
provided by the Asteroids@home changes slightly as the project goes on. 

The result comparison of five 4-slot manifold layout is given in 
Table 3 and Fig. 5. It seems that there is not too much improvement 
compared with Wang’s result. However, if we take the two 10-slot 
manifold layout for comparison, as shown in Table 4 and Fig. 6, the 
big gap in the optimal cost in Wang’s method becomes unacceptable. For 
this specific problem which only divide the points into two clusters, we 
directly use the 2RCC algorithm. 

It should be noted that it is meaningless to strictly compare the 
computational time with Wang’s because of the difference between 
global optimal and local optimal. The improvement of computational 
time of achieving the global optimal is huge by comparing LINGO’s 
result and ours. 

Compared to the large number of all clusters, it is easy to see the 
efficiency of our method lies on the small number of useful clusters. In 
this case, the number of useful clusters, i.e., the number of clusters under 
the “adjacent-1” relationship is only 373, which is also the number of 
BLP variables. While the number of MINLP variables is 200, which has 
the same magnitude as the BLP variable number. The “adjacent-2” is also 
conducted in case that the computation for all clusters runs out of 

memory. 

4.2. Case 2: test on larger-scale cases 

It is quite tricky that when the number of wells is just doubled, the 
problem would become almost infeasible for a global solver. Refer to the 
analysis in Section 3.1. Expectedly, we could not find any published 
work that has a case of more than 20 wells. We randomly generated 100 
points, shown in Appendix I. Firstly, we used the first 40 points to test, 
and the results are shown in Table 5 and Fig. 7. The result of LINGO local 
solver is the best it achieved in 20 trials, and each trial takes more than 
10 min. The LINGO global solver cannot get the result even after 8 h. Our 
method can easily get the global optimal. In this 40-point case, the 
number of useful clusters generated by our method is 1088, which is less 
than 3 times of the number in the 20-point case. While the number of 
MINLP variables is 800, which is 4 times of the number in the 20-point 
case. 

Till now, we have already seen the advantage of our method. It is 
already meaningless to compare for a larger-scale problem, but we 
provide our results in Table 6and Fig. 8 for reference. Besides, we also 
invited Dr. Hong Chen to try his SA method (Hong et al., 2018) on the 
100-point problem for comparison. His method always converges at the 
optimal cost around 970, which is just a local optimum, with the time 
cost of more than half an hour. By comparing to the MINLP or NIP 
variable number, we can see a much slower growing trend of the BLP 
variable number, which indicates its efficiency for large scale problem. 
As for a larger problem where there are 500 randomly distributed points 
with m = 4, it can be solved by our method around 5 min (see Figs. 9 and 
10). 

4.3. Case 3: test on highly ill-conditioned cases 

We intentionally generated two sets of points distributed orthogo
nally. Such a distribution pattern is highly ill-conditioned because there 
are too many combinations (local optimal solution) of the same total 
cost in the orthogonal distribution so that it can easily trap a local/ 
heuristic solver at a bad local optimum or at least increase the compu
tational time of the local/heuristic solver to converge to a good local 
optimum. It should be noted that, the follow result of LINGO/local is the 
best result from 20 trials, whereas most of the time, it cannot converge to 
the global optimal. The computational time of LINGO/local is the time of 
the trial which reaches the global optimum. Our method is deterministic 
(see Tables 7 and 8). 

As we increase the number of points, the LINGO/local solver can no 
longer converge to the global optimum within 20 trials. While our 
method can get the global optimum for such a problem of 100 points 
with the time around 0.61s–0.78s. 

5. Further discussion 

Now consider for a more general problem where the number of wells 
n is not a multiple of m, i.e. n = m⋅k+ h, Because h < m, we can directly 
get the useful clusters of size h while we are finding the useful clusters of 
size m by the algorithm provided in Appendix III. Then use the method 
proposed in Section 3.2 to build the BLP model. The only difference is 
that N now becomes the total number of useful clusters of both size m 
and size h, denoted as Nm and Nh ,respectively. A and γ also need to 
include clusters of both sizes, as shown in Eq (12) below. In this case, it is 
solving a problem where there are manifolds of two different slot sizes. 
More generally, it can also handle the problem where there are mani
folds of more than 2 different slots. For example, if we have manifolds of 
m1,m2, ...,mt slots, the model can be built as Eq (13). For more details 
about the application in the clustering problem of more than one size, 
kindly refer to the Subsea Field Layout Optimization (Part III) where we 
deal with the clustering problem of completion intervals. 
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min
γ∈Binary

∑Nm+Nh

j=1
γj⋅cost(A,m, h, p)j (11)  

s.t. An×(Nm+Nh)γ(Nm+Nh)×1 = 1n×1

A ∈ Binary
∑n

i=1
ai,j = m, ∀j = {1, 2, 3 ... Nm}

∑n

i=1
ai,j = h, ∀j = {Nm + 1, Nm + 2, Nm + 3 ... Nm + Nh}

A=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a1,1 a1,2 ... a1,Nm

a2,1 a2,2 ... a2,Nm

.

.

.

.

.

.

.

.

.

.

.

.
an,1 an,2 ... an,Nm

a1,Nm+1 a1,Nm+2 ... a1,Nm+Nh

a2,Nm+1 a2,Nm+2 ... a2,Nm+Nh

.

.

.

.

.

.

.

.

.

.

.

.
an,Nm+1 an,Nm+2 ... an,Nm+Nh

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(12)  

min
γ∈Binary

∑

∑t

l=1
Nml

j=1
γj⋅cost(A,m, h, p)j (13)  

s.t. A
n×

(
∑t

l=1
Nml

)γ(∑t

l=1
Nml

)

×1

= 1n×1

A ∈ Binary
∑n

i=1
ai,j = m1, ∀j = {1, 2, ... , Nm1}

∑n

i=1
ai,j = m2, ∀j = {Nm1 + 1, Nm1 + 2, ... , Nm1 + Nm2}

⋮
∑n

i=1
ai,j = ml, ∀j =

{
∑t− 1

l=1
Nml + 1,

∑t− 1

l=1
Nml + 2, ... ,

∑t

l=1
Nml

}

When there are barriers on the seabed, as it was discussed in (Hong 
et al., 2018; Zhang et al., 2017), we can just delete the useful clusters 
which intersect with the barriers. The time complexity of checking 
intersection of N clusters with a barrier is linear to N, i.e. T = O(N); 
while solving a BLP model of N variables has a higher order of N, i.e. T =

O(Nc), c > 1. Hence, we can expect the efficiency to be the same or even 
higher because of less useful clusters. 

When we consider the seabed as a 3D, i.e. the first basic assumption 
no longer exists, we can firstly project the well positions onto 2D to find 
the useful clusters, then the difference is the cost function of each 
cluster, i.e. Eq. (10). 

When the cost function is not proportional to the squared Euclidean 
distance, i.e. the second basic assumption no longer exists, the geometric 
mean position is no longer the manifold’s optimal location, we just 
replace Eq. (10) with the given cost function, and then calculate the 
optimal manifold location by gradient descent or any viable method and 
the cost for each cluster based on the given cost function. For example, 
when the cost is proportional to the Euclidean distance, then the man
ifold’s optimal location is the geometric median of the connected wells. 
The difference in computational complexity is completely dependent on 
the difference in the complexity of the cost function. The effect of the 
complexity of the cost function of a cluster on the whole problem is just 
linear. The NP-hardness lies in the combinatory problem, not the 
computation for cost. 

It should be noted that there are different methods to define the 
adjacent relationship for finding the useful clusters. The method for 
reducing all clusters to useful clusters is problem (cost function) 
dependent. The Delaunay triangulation method is not a universal 
method for all scenarios. The method for finding useful clusters directly 
affects the efficiency and accuracy. For example, if we simply define the 
adjacent relationship by Euclidean distance, it will be hard to determine 

the proper distance radius for defining a useful cluster. As shown in 
Fig. 7, some clusters extend in a relatively large distance, while others 
are quite confined in a small radius. If the distance radius is set too small, 
we will miss the optimal clusters and cannot obtain the global optimum, 
i.e. accuracy is affected; if it is too large, it will lead to a large number of 
useful clusters, i.e. efficiency is affected. In the Part III where the sce
nario is much more practical and more complex, we will propose 
another method which superposes the “economic zones” to find the 
useful clusters. 

At last, if you have doubt in the global optimality for the adjacent-1 
result, you can use adjacent-2 result to check if enumerating all clusters 
is impossible. 

6. Conclusion 

This study introduces a brand-new method to deal with the location- 
allocation problem of manifolds in subsea field layout optimization. 
With the help of graphic theories, our method reduces the traditional 
MINLP model into a significantly more efficient BLP model leading to a 
breakthrough in both accuracy and efficiency. The two core ideas of our 
method are the conversion from the allocation relationship between 
manifolds and wells to the selection of clusters of wells and the reduction 
from all clusters to useful clusters. The advantage of our method is well 
demonstrated in the case studies. Our efficient method makes the global 
optimal solution to the problem of a much larger scale feasible. Besides, 
it is not limited in subsea field layout optimization, it is actually a spe
cific MINLP solver for any optimization problem which can be regarded 
as a location-allocation problem, or equivalently, a size-constrained 
clustering problem where the global optimal solution is the combina
tion of clusters of adjacent points. As for other patterns of global optimal 
solutions, for example we want the minimum cost of all clusters to be 
maximized, we need carefully design a proper algorithm to reduce all 
clusters to useful clusters. However, it will be another problem whether 
there is such a proper algorithm for a specific pattern. 
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Appendix I. Position of 100 Random Points  

X Y 

53.71210 15.30460 
56.54320 21.41880 
20.10500 15.45620 
26.24180 18.17600 
28.26940 29.00110 
8.95860 24.66350 
8.15190 9.53250 
31.94990 17.63090 
43.54740 3.90610 
23.92220 7.63060 
21.50510 24.09090 
17.11680 20.03540 
52.11810 0.40880 
37.58480 16.84740 
14.47030 13.63680 
58.68490 27.14850 
38.43000 8.46480 
13.79090 1.95100 
40.88010 14.29780 
39.94940 29.51140 
8.08310 27.67050 
1.34960 16.83590 
15.73200 19.56970 
6.99090 23.18040 
4.15910 3.18530 
51.17580 0.03220 
10.81980 16.25290 
1.94510 0.20570 
44.03560 13.54010 
32.19100 5.86990 
16.56180 23.61430 
22.10750 18.55690 
0.77320 0.46560 
53.35240 26.72560 
51.96120 22.85110 
15.25480 27.21110 
34.16880 22.75710 
9.55590 11.42190 
35.66190 9.93330 
19.86600 15.12240 
39.51680 16.93710 
51.81810 23.01590 
34.05740 23.39600 
58.82890 14.52290 
47.50990 24.06640 
9.15560 14.13040 
49.98160 6.08280 
11.51180 17.38840 
38.33920 19.99500 
40.14000 20.30300 
46.32530 28.27530 
22.78910 23.10450 
26.49510 22.12210 
28.98360 25.98790 
36.48630 29.72840 
10.55970 15.11780 
0.12150 18.87260 
47.41340 23.77830 
30.81650 13.45950 
12.79380 15.73070 
6.20700 5.14420 
9.44020 3.92000 
24.45090 6.56340 
24.46540 3.16440 

(continued on next page) 
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(continued ) 

X Y 

3.16160 4.24280 
56.50890 13.70900 
8.99830 23.64400 
23.06240 8.43190 
18.66350 6.74360 
10.11210 27.26620 
53.79890 0.21990 
19.36350 17.66220 
44.03980 16.26350 
24.65430 19.60570 
23.98760 9.40300 
30.33130 6.93480 
10.15840 12.48190 
31.48470 8.96400 
38.47220 20.17310 
0.97180 28.14770 
50.21110 10.29440 
48.20770 16.88890 
41.86710 3.56670 
27.71330 5.07060 
4.95680 8.36690 
49.24300 16.70440 
11.58120 14.56770 
26.72130 28.56670 
0.77750 6.95760 
18.52450 14.35980 
52.52110 15.79570 
50.11560 23.78160 
19.98570 5.79020 
52.84230 27.28800 
28.78120 27.66590 
33.64900 0.39800 
36.95450 23.02650 
39.71390 28.42030 
36.99800 24.39920 
41.10840 27.71490  

Appendix II. List of Symbols 

k: number of manifolds; 
m: cluster size, i.e. number of wells connected to the manifold; 
n: number of all wells; 
h: number of remaining wells that cannot be clustered into the size of m; 
i, j, ii, jj: index for computation; 
N: number of all possible clusters or useful clusters; 
Nm: number of all useful clusters of size m; 
Nh: number of all useful clusters of size h; 
pi: i-th well position, (xi, yi); 
δ: MINLP integer/binary variable matrix; 
C: MINLP continuous variable matrix 
γ: BLP binary variable vector; 
A: BLP coefficient matrix 
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Appendix III. Algorithm of Finding Useful Clusters Written in Matlab

Appendix IV. Distance Matrix, Adjacent Matrix, Modified Adjacent Matrix of the undirected graph in Fig. 4 

Distance Matrix  

Ind 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0 1 2 3 3 4 5 4 4 4 3 3 2 1 2 2 2 3 3 3 
2 1 0 1 2 2 3 4 3 4 4 3 3 2 1 2 2 2 3 3 3 
3 2 1 0 1 1 2 3 2 3 4 3 2 1 1 2 2 2 3 3 3 
4 3 2 1 0 1 2 2 1 2 3 2 1 1 2 2 3 3 4 3 3 
5 3 2 1 1 0 1 2 1 2 3 3 2 2 2 3 3 3 4 4 4 
6 4 3 2 2 1 0 1 1 2 3 3 2 3 3 3 4 4 5 4 4 
7 5 4 3 2 2 1 0 1 1 2 2 2 3 4 3 4 4 4 3 3 
8 4 3 2 1 1 1 1 0 1 2 2 1 2 3 2 3 3 4 3 3 
9 4 4 3 2 2 2 1 1 0 1 1 1 2 3 2 3 3 3 2 2 
10 4 4 4 3 3 3 2 2 1 0 1 2 3 3 2 3 2 2 1 1 
11 3 3 3 2 3 3 2 2 1 1 0 1 2 2 1 2 2 3 2 1 
12 3 3 2 1 2 2 2 1 1 2 1 0 1 2 1 2 2 3 2 2 
13 2 2 1 1 2 3 3 2 2 3 2 1 0 1 1 2 2 3 2 2 
14 1 1 1 2 2 3 4 3 3 3 2 2 1 0 1 1 1 2 2 2 
15 2 2 2 2 3 3 3 2 2 2 1 1 1 1 0 1 1 2 1 1 
16 2 2 2 3 3 4 4 3 3 3 2 2 2 1 1 0 1 2 2 2 
17 2 2 2 3 3 4 4 3 3 2 2 2 2 1 1 1 0 1 1 2 
18 3 3 3 4 4 5 4 4 3 2 3 3 3 2 2 2 1 0 1 2 
19 3 3 3 3 4 4 3 3 2 1 2 2 2 2 1 2 1 1 0 1 
20 3 3 3 3 4 4 3 3 2 1 1 2 2 2 1 2 2 2 1 0  

Adjacent-1 matrix (the conventional adjacency matrix, distance ≤ 1)  

Ind 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
2 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
3 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 
4 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 
5 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

(continued on next page) 
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(continued ) 

Ind 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

10 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 
11 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 
12 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 
13 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 
14 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 
19 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 
20 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1  

Adjacent-2 matrix (distance ≤ 2)  

Ind 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 
2 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 
3 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 
4 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 
5 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 
6 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 
7 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
8 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 
9 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 
10 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 
11 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 
12 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 
13 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 1 
14 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 
15 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 
16 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 
17 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 
18 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 
19 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 
20 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1  
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