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A B S T R A C T   

Aluminium alloys contain various types of intermetallic particles with different sizes, such as 
constituent particles and dispersoids. The main mechanism of ductile fracture in these materials is 
assumed to be nucleation of voids around the constituent particles, which grow during plastic 
deformation and eventually coalesce, resulting in material failure. The role of the dispersoids is 
less certain, but they are assumed to contribute in the last stages of the ductile fracture process. 
While the constituent particles are in the range of a couple of microns, the size of dispersoids is 
normally one order of magnitude smaller. To disclose the possible effects of the dispersoids on the 
ductile fracture process in aluminium alloys, this paper presents a numerical study of a finite- 
element based unit cell, which consists of a single spherical void embedded in a matrix mate
rial represented by a porous plasticity model with void size effects. Accordingly, the single, 
primary void of the unit cell is assumed to have nucleated on a constituent particle, whereas the 
matrix porosity is assumed to account for secondary, smaller voids nucleated on dispersoids. The 
effects of the intrinsic length scale of the matrix material on the void growth and coalescence are 
studied for a range of stress states, while the initial primary and secondary void volume fractions 
are kept constant. The secondary voids have a substantial effect on the behaviour of the unit cell 
when their size is large compared to the intrinsic material length scale, but they were not found to 
influence the growth of the primary void. Instead, the growth of the secondary voids promotes 
strain softening and influences the coalescence process of the primary voids, which gradually 
changes mode from internal necking to loss of load-carrying capacity of the inter-void ligament.   

1. Introduction 

The failure processes in ductile materials are governed by the nucleation of voids at small second-phase particles and subsequent 
growth and coalescence of these microscopic cavities (Benzerga and Leblond, 2010). Nucleation occurs either through decohesion 
between the matrix material and the particles or by cracking of particles when the stress at the surface is sufficient (Maire et al., 2011; 
Westermann et al., 2014; Pedersen et al., 2015; Pineau et al., 2016). Microscopic voids may also be present in the material before 

* Corresponding author. 
E-mail address: vetle.espeseth@ntnu.no (V. Espeseth).  

Contents lists available at ScienceDirect 

Journal of the Mechanics and Physics of Solids 

journal homepage: www.elsevier.com/locate/jmps 

https://doi.org/10.1016/j.jmps.2021.104493 
Received 26 January 2021; Received in revised form 6 May 2021; Accepted 11 May 2021   

mailto:vetle.espeseth@ntnu.no
www.sciencedirect.com/science/journal/00225096
https://www.elsevier.com/locate/jmps
https://doi.org/10.1016/j.jmps.2021.104493
https://doi.org/10.1016/j.jmps.2021.104493
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmps.2021.104493&domain=pdf
https://doi.org/10.1016/j.jmps.2021.104493
http://creativecommons.org/licenses/by/4.0/


Journal of the Mechanics and Physics of Solids 157 (2021) 104493

2

deformation (Campbell, 2011; Toda et al., 2014). Voids will continue to grow under plastic deformation until they eventually coalesce 
and result in material failure. The stress state is recognized as one of the main factors influencing the fracture strain of a given material 
subjected to plastic deformation. McClintock (1968) and Rice and Tracey (1969) were among the first to address the importance of the 
stress triaxiality on the growth phase. While the effects of the stress triaxiality are well established (Needleman and Tvergaard, 1984; 
Johnson and Cook, 1985; Mirza et al., 1996; Alves and Jones, 1999; El-Magd and Brodmann, 2001; Westermann et al., 2014), more 
recent studies acknowledge the importance of the deviatoric stress state on the damage evolution in ductile materials (Bao and 
Wierzbicki, 2004; Barsoum and Faleskog, 2007, 2011; Gao et al., 2009; Dunand and Mohr, 2011; Gruben et al., 2012; Faleskog and 
Barsoum, 2013; Haltom et al., 2013; Scales et al., 2016; Erice et al., 2018), particularly at low stress triaxialities. Whereas intermediate 
to high stress triaxialities result in large dimples on the fracture surface due to void growth and internal necking of the inter-void 
ligament, elongated small shear dimples are observed in the low triaxiality domain, suggesting internal void shearing as the main 
rupture mechanism (Barsoum and Faleskog, 2007). 

The volume fraction and size distribution of constituent particles influence the ductility of aluminium alloys (Pedersen et al., 2015; 
Thomesen et al., 2020). These particles are relatively large, typical in the range of 1 − 10 μm, and act as nucleation sites for voids 
because defects are more likely to be found in large particles, thus making them less resilient to cracking (Hahn and Rosenfield, 1975; 
Hannard et al., 2016). The dispersoids, which are introduced to control recrystallization and grain growth, are typically approximately 
0.1 μm or even smaller in size (Hannard et al., 2016). While the importance of constituent particles on ductile fracture is well 
established, the role of the dispersoids is less certain. It is common to accept that these particles only enter in the last stages of the 
fracture process when linking of voids from the larger constituent particles gives rise to microscopic stress concentrations and sub
sequent strain localization, which encourage nucleation of voids from these smaller particles (Hahn and Rosenfield, 1975). Coales
cence may immediately follow as the conditions for void growth are already met. The contribution from the dispersoids can be 
recognized as smaller and more densely packed dimples on the fracture surface. Broek (1973) observed for a wide variety of different 
aluminium alloys that the spacing between intermediate inclusions correlates to the average dimple size on the fractured surface, 
which supports the role of the dispersoids. Moreover, the presence of a second population of smaller voids has been found to accelerate 
damage and lead to a reduction in ductility (Cox and Low, 1974; Faleskog and Shih, 1997; Tvergaard, 1998). The fine hardening 
precipitates, another class of particles typical in the range of a few nanometres in size, are assumed only to contribute to the fracture 
process by altering the strength and strain hardening of the matrix material (Hahn and Rosenfield, 1975). 

Analytical and numerical methods to describe the microscopic mechanisms of ductile fracture have been researched for decades. 
Porous plasticity models include these mechanisms by considering a micro-mechanically motivated homogenized material based on 
the Hill-Mandel homogenization theory (Mandel, 1966; Hill, 1967). The underlying microscopic physical mechanisms, such as void 
nucleation, growth and coalescence, are accounted for through the evolution of some appropriate microstructural variable at the 
homogenized material level. The Gurson model (Gurson, 1977) is the most widely recognized porous plasticity model. Tvergaard 
(1981, 1982) later modified the Gurson model to achieve better agreement with unit cell calculations by introducing three fitting 
parameters in the yield function. Extensions of the Gurson model that account for nucleation (Chu and Needleman, 1980), coalescence 
(Tvergaard and Needleman, 1984) and shearing (Nahshon and Hutchinson, 2008) of voids have also been proposed in the literature. 

In its original form, the Gurson model only considers the volume fraction of voids (or the porosity), whereas the effects of the size of 
the voids are not accounted for. As the void-size becomes smaller than some intrinsic material length, the Gurson model becomes 
questionable. As stated by Hutchinson (2000): “Application of void growth prediction based on the conventional plasticity to submicron-sized 
voids is probably unjustified”. The plasticity of a hardening metallic material is governed by the total density of statistically stored and 
geometrically necessary dislocations. While statistically stored dislocations (SSDs) are created in homogeneous plastic straining, the 
density of geometrically necessary dislocations (GNDs) scales with the gradient of the plastic strain field. At the microscale, strongly 
size-dependent plasticity can be observed because microstructural constraints, such as small particles, introduce a considerable in
crease in GNDs (Ashby, 1970; Poole et al., 1996; Gao et al., 1999). Size-dependent plastic behaviour has been confirmed experi
mentally by micro-twist (Fleck et al., 1994), micro-indentation (Stelmashenko et al., 1993; Ma and Clarke, 1995; Nix and Gao, 1998) 
and micro-bending (Stölken and Evans, 1998) tests. In a numerical study, Fleck and Hutchinson (1997) considered the size effect on 
void growth for an isolated spherical void embedded in a strain gradient enhanced solid. In general, small voids are less prone to grow 
compared to larger voids, as they tend to generate a large gradient in the strain field. Similar findings were later reported by Huang 
et al. (2000) and Li and Huang (2005). 

Modified Gurson-type yield functions that account for size effects have been proposed in the literature, starting with the model of Li 
et al. (2003) and Wen et al. (2005). Recently, Niordson and Tvergaard (2019) heuristically enriched the Gurson-Tvergaard model to 
account for size-effects. Based on results from unit cell simulations of a void embedded in a strain gradient enhanced material, they 
proposed to introduce size-effects into the yield surface by lowering the effective void volume fraction and reducing the hydrostatic 
stress sensitivity. Monchiet and Bonnet (2013) used limit analysis on a hollow sphere made of a strain gradient enhanced solid to show 
that the yield surface of the Gurson model could be enriched to capture void size effects by making the influence of the hydrostatic 
stress on yielding void size dependent. It was shown that voids with a size in the same range as the intrinsic material length grow slower 
than larger voids. Moreover, smaller voids result in a higher material yield stress, particularly at large stress triaxialities. For very large 
voids compared to the intrinsic material length, the Monchiet-Bonnet model conveniently coincides with the Gurson model. 

Micromechanical unit cell calculations for ductile materials that contain primary and secondary voids of different length scales 
have been performed for tension (Fabrègue and Pardoen, 2008) and intense shearing (Nielsen and Tvergaard, 2011). Both studies 
consider an explicitly modelled void embedded in a matrix material described by the Gurson-Tvergaard model, but extended to include 
nucleation (Chu and Needleman, 1980). Using such a representation of the matrix material yields an upper bound for the influence of a 
secondary population of voids and can only be justified when these voids are large compared to the intrinsic material length. The 
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ductility was found to decrease with the presence of secondary voids that nucleated and grew in-between the larger primary voids. 
Fabrègue and Pardoen (2008) showed that the presence of a secondary population of voids does not substantially affect the growth of 
the first population but results in an acceleration of the coalescence phase. Similar behaviour was reported by Tvergaard (1998) when 
the secondary voids were explicitly introduced in the finite element mesh. Moreover, primary voids that have an oblate shape promote 
the nucleation and growth of secondary voids (Fabrègue and Pardoen, 2008). 

This numerical study aims to disclose the possible effects of the dispersoids on the ductile fracture process in a structural aluminium 
alloy using finite-element based unit cell simulations. The unit cell consists of a spherical primary void embedded in a matrix material, 
which, to account for the secondary voids, is described by the Monchiet-Bonnet porous plasticity model with void size effects. The 
single, primary void of the unit cell is assumed nucleated on a constituent particle, whereas the secondary, smaller voids in the matrix 
are assumed nucleated on dispersoids. Proportional loading of the unit cell using multipoint constraints ensures a constant macro
scopic stress triaxiality and Lode parameter during deformation. The paper is structured as follows. Section 2 presents the material 
parameters used in the numerical study, which are representative for a 6000-series aluminium alloy in the cast and homogenized 
condition. The Monchiet-Bonnet porous plasticity model, which defines the matrix material behaviour, is described in Section 3, 
whereas Section 4 presents the setup for the finite-element based unit cell calculations. The results from the unit cell calculations are 
presented and discussed in Section 5, while some concluding remarks are given in Section 6. 

2. Material parameters 

The study of Thomesen et al. (2020) on the plastic flow and fracture of cast and homogenized 6000-series aluminium alloys makes 
the basis for the material parameters used in the numerical study. The selected alloy is the AA6110 alloy in the T6 temper, which is an 
alloy with a 0.2% proof stress of 310 MPa. 

Thomesen et al. (2020) performed uniaxial tension tests on smooth axisymmetric specimens aligned so that the tensile axis of the 
specimen coincided with the longitudinal axis of the billet. After machining, the specimens were solution heat-treated and artificially 
aged to T6 temper. Three repeat tests were conducted in a universal testing machine with a crosshead velocity of 1 mm/min. The force 
was measured directly from the load cell, while a contactless laser gauge was used to continuously record the smallest diameter of the 
cross-section of the specimen. The flow stress curve to fracture was determined from the tests using the Bridgman-LeRoy correction to 
obtain the flow stress in the post-necking region. A three-term Voce hardening rule was used by Thomesen et al. (2020) to represent the 
work-hardening of the material. The flow stress σM reads 

σM = σ0 +
∑3

i=1
Qi
(
1 − e− Cip

)
(1)  

where σ0 is the initial yield stress, p is the equivalent plastic strain, and Qi and Ci are the hardening parameters. The material pa
rameters governing the elastic and plastic behaviour of the material are compiled in Table 1, where the elastic constants are given 
typical values for aluminium alloys from the literature. 

The size distribution of the constituent particles for the AA6110 alloy was found by image processing on backscattered electron 
micrographs. A total of 30 images were taken over the surface to determine the particle size distribution. The largest equivalent 
diameter of the constituent particles was found to be approximately 4 μm, where the equivalent diameter reads dp =

̅̅̅̅̅̅̅̅̅̅̅̅̅
4Ap/π

√
, and the 

area of the constituent particle in the image plane is denoted Ap. The total area fraction of constituent particles was calculated to be 
0.0076. In accordance with the Delesse principle (Underwood, 1970), the initial volume fraction of constituent particles fp,0 is 
approximated to be 0.0076. We have in this work used a volume fraction of 0.007 for the primary voids. 

An estimate of the size and distribution of the dispersoids was obtained from simulations using the microstructure-based model 
Alstruc (Dons, 2001), which depends on standard solidification and diffusion theory. From the chemical composition of the alloy, the 
grain size and the secondary dendrite arm spacing, one can find estimates on the type, volume fraction and size of different particles. 
The equivalent diameter of the dispersoids ds,0 was estimated to be approximately 0.1 μm, while the initial volume fraction fs,0 was set 
to 0.005. According to Evans and Hutchinson (2009), there seems to be a strong inverse correlation between the intrinsic material 
length l1 introduced in the Fleck-Hutchinson theory (Fleck and Hutchinson, 1997) and the yield strain in a wide range of metallic 
alloys. Based on Fig. 13 in their paper, it is reasonable to assume an intrinsic material length of the AA6110 alloy in temper T6 to be 
within the interval 0.01 μm < l1 < 0.1 μm. For the purpose of this study, it is enough to consider the range 0.01 μm ≤ l1 ≤ 0.05 μm. All 
material parameters are compiled in Table 1. 

Table 1 
Material data for the AA6110-T6 aluminium alloy (Thomesen, 2019).  

Elastic constants Yield stress and isotropic strain hardening 

E[MPa]  ν[-]  σ0[MPa]  Q1[MPa]  C1[-]  Q2[MPa]  C2[-]  Q3[MPa]  C3[-]  
70000 0.3 277.7 35.9 1311.7 63.6 19.1 6888.4 0.01 

Tvergaard parameters Constituent particles Dispersoids Intrinsic length 

q1[-]  q2[-]  q3[-]  fp,0[-]  dp,0[μm]  fs,0[-]  ds,0[μm]  l1[μm]  
1.5 1.0 2.25 0.007 4.0 0.005 0.1 0.01 − 0.05   
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The reader is referred to Thomesen (2019) and Thomesen et al. (2020) for the chemical composition, homogenization, artificial 
ageing, material characterization and mechanical testing of the AA6110 alloy used herein. 

3. Constitutive model of the matrix material 

Monchiet and Bonnet (2013) developed a Gurson-type macroscopic yield criterion that accounts for void size effects. Following the 
approach of Gurson (1977), an upper-bound limit load analysis on a rigid-perfect plastic hollow sphere embedded in a matrix material 
that obeys the strain gradient plasticity model of Fleck and Hutchinson (1997) was used to obtain the macroscopic yield criterion for a 
porous plastic material with void size effects. A hypoelastic-plastic formulation of the Monchiet-Bonnet model is applied here to allow 
for large deformations. The corotational stress approach is used to account for large rotations (Belytschko et al., 2014), and hence
forward (̂∘) denotes a corotated tensor, i.e., a tensor (∘) expressed in a local material system that follows the local spin of the material 
point. 

Assuming small elastic deformations, the corotated rate-of-deformation tensor D̂ is additively split into an elastic and a plastic part, 
viz. 

D̂ = D̂
e
+ D̂

p
(2)  

The corotated stress tensor σ̂ and the corotated rate-of-deformation tensor D̂ are defined by 

σ̂ = RT ⋅ σ ⋅ R (3)  

D̂ = RT ⋅ D ⋅ R (4)  

where σ is the Cauchy stress tensor and D is the rate-of-deformation tensor expressed in the fixed global coordinate system. The 
transformation from the local material system to this fixed global system is defined by the orthogonal rotation tensor R. 

Under the assumption of linear isotropic elasticity, the hypoelastic formulation relates the corotated stress rate tensor ˙̂σ and the 
elastic rate-of-deformation tensor D̂

e 
according to the generalized Hooke’s law 

˙̂σ =
E

1 + νD̂
′e
+

E
3(1 − 2ν) tr

(
D̂

e)
I (5)  

where E is the elastic modulus and ν is the Poisson’s ratio. The deviatoric and volumetric parts of the elastic rate-of-deformation tensor 

are denoted D̂
′e 

and 13 tr(D̂
e
)I, respectively, where D̂

′e
= D̂

e
− 1

3 tr(D̂
e
)I and I is the second-order identity tensor. 

The macroscopic yield criterion of the Monchiet-Bonnet model is defined by (Monchiet and Bonnet, 2013) 

Φ(σ̂, f , σM, η) =
(

σeq

σM

)2

+ 2q1f cosh
(

3
2ηq2

σH

σM

)

−
(
1+ q3f 2) ≤ 0 (6)  

where Φ = 0 defines the periphery and Φ < 0 the interior of the elastic domain. The von Mises equivalent stress and the hydrostatic 

stress are expressed as σeq =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3
2σ̂

′

: σ̂
′

√

and σH = 1
3 tr(σ̂), respectively, where σ̂

′

= σ̂ − σHI is the deviatoric stress tensor, here expressed 
in the corotated coordinate system. It is emphasized that the stress tensor is normally interpreted as a macroscopic quantity in porous 
plasticity. We will use lowercase letters here to avoid any confusion with the macroscopic stresses applied to the unit cell boundaries in 
Section 4, which are denoted by capital letters. The porosity f , the flow stress of the matrix material σM and the variable η are 
considered internal microscopic quantities. The parameters q1, q2 and q3 introduced by Tvergaard (1981, 1982) were not incorporated 
in the original formulation by Monchiet and Bonnet (2013). If the porosity f equals to zero, Eq. (6) takes the form of the von Mises yield 
criterion. Moreover, the yield function is fulfilled for zero stresses (i.e. σeq = σH = 0) at a certain porosity level, defined by f = q− 1

1 for 
q3 = q2

1, which implies that the yield function collapses into a single point and the material loses its load-carrying capacity. Thus, for q3 

= q2
1 the porosity must be f < q− 1

1 . The initial porosity is denoted f0. 
The work hardening of the matrix material is heuristically introduced into σM using the three-term Voce hardening rule in Eq. (1). 

By assuming a plastically incompressible matrix material, the evolution of the porosity f can be expressed according to 

ḟ = (1 − f )tr
(

D̂
p)

(7)  

Only the contribution of void growth is considered in this work, and any contributions from nucleation (Chu and Needleman, 1980) 
and the effects of the deviatoric stress state (Nahshon and Hutchinson, 2008) have been excluded. 

The corotated plastic rate-of-deformation tensor D̂
p 

can be determined from the associated flow rule as the homogenization process 
preserves normality (Gurson, 1977). Thus 

D̂
p
= λ̇

∂Φ
∂σ̂ = λ̇

[
3

σ2
M

σ̂
′

+
fq1q2

ησM
sinh

(
3
2ηq2

σH

σM

)

I
]

(8) 
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where λ̇ is the plastic multiplier. The first term in Eq. (8) gives the deviatoric part, while the second term defines the volumetric part of 
the plastic rate-of-deformation tensor. From Eq. (7) it is clear that only the volumetric part contributes to void growth and thus only 
spherical void growth is allowed for. The equivalent microscopic plastic strain rate ṗ is given from the equivalence in plastic power, 
defined as 

σ̂ : D̂
p
= (1 − f )σMṗ (9) 

The Monchiet-Bonnet model clearly has the same properties as the classical Gurson-Tvergaard model. However, the additional non- 
dimensional variable η induces a void size dependency by modifying the hydrostatic stress sensitivity of the yield function Φ. The 
variable η enters as an approximation in the integration of the volume average macroscopic potential. Owing to the introduction of 
strain rate gradient terms in the modified equivalent strain rate, this approximation is necessary to find a closed-form solution of the 
macroscopic yield criterion. This approximation agrees well with numerical integration of the macroscopic potential (Monchiet and 
Bonnet, 2013). The non-dimensional variable η is calculated as 

η =
3

ln(f )

[

arcsinh
(α

u

)
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
(u

α

)2
√ ]u=1

u=f 1/3

(10)  

with 

α =
1
3

̅̅̅̅
2
5

√
a
l1

(11)  

Here, a is the radius of the spherical void and l1 is an intrinsic material length introduced by the strain gradient plasticity model of 
Fleck and Hutchinson (1997). Experimental findings suggest that the intrinsic material length is in the micrometre range (Fleck et al., 
1994; Stölken and Evans, 1998). Owing to the matrix incompressibility, it is possible to relate the growth in void size to the growth of 
the porosity (Monchiet and Bonnet, 2013). Accordingly, the evolution for the internal material variable α is obtained as 

α̇ =
α

3f (1 − f )
ḟ =

α
3f

tr
(

D̂
p)

(12)  

The evolution of η is obtained from the time derivative of Eq. (10). By substituting for ḟ and α̇ with the rate equations established above, 
we arrive at 

η̇ =
1

f ln(f )

⎡

⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
1
α2

√

− f
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
f 2/3

α2

√

− (1 − f )η

⎤

⎦tr
(

D̂
p)

(13)  

Eqs. (7), (9) and (13) complete the evolution rules for the three internal quantities which appear in the yield function Φ. 
The ratio between the initial void radius a0 and the intrinsic material length l1 is the only additional material parameter in the 

Monchiet-Bonnet model compared to the Gurson model. The evolution of void radius a follows from Eqs. (11) and (12). Fig. 1 (a) shows 
the yield surface in the normalized equivalent-hydrostatic stress space for various ratios a/l1. It appears that the yield surface domain 
gradually increases for decreasing values of a/l1, which is of particular importance for high hydrostatic stress states. The void size does 

Fig. 1. (a) The von Mises yield locus (black line) and the yield loci of the Monchiet-Bonnet model (coloured lines) for various ratios a /l1 in the 
normalized equivalent-hydrostatic stress space. The blue curve shows the yield locus of the Gurson-Tvergaard model. (b) The evolution of the non- 
dimensional variable η in Eq. (10) with a/l1. The original Tvergaard parameters (q1 = 1.5, q2 = 1.0, q3 = 2.25) and a matrix porosity f = 0.005 
have been used in the illustrations. 
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not influence the yield surface in purely deviatoric load cases (σH = 0). The non-dimensional variable η in Eq. (10) is plotted in Fig. 1 
(b) as a function of a/l1. For large voids, i.e., when a is large compared to l1, η tends towards unity and Eq. (6) conveniently takes the 
form of the Gurson-Tvergaard model. In contrast, if a ≪ l1, η becomes large and prevents void growth because the volumetric part of 
the plastic rate-of-deformation tensor D̂

p 
vanishes. This results in a pressure-insensitive yield criterion similar to the von Mises yield 

criterion. The reduction in the rate of void growth can be explained by the presence of a strong strain gradient, which increases the 
hardening of the material in the vicinity of the void cavity. 

The constitutive relations are completed by the Kuhn-Tucker conditions 

Φ ≤ 0, λ̇ ≥ 0, Φλ̇ = 0 (14)  

which distinguish between elastic loading/unloading and plastic loading. A stress-update algorithm is used to ensure that these 
constraints are fulfilled, and here the temporal integration of the constitutive equations is carried out using the cutting plane algorithm 
(Ortiz and Simo, 1986). The consistent tangent modulus is evaluated numerically. A user-defined material subroutine (UMAT) is used 
to implement the Monchiet-Bonnet model in ABAQUS/Standard 6.14. To ensure sufficient stability and accuracy of the stress-update 
algorithm, a sub-stepping scheme is employed whenever the norm of the deviatoric strain increment Δε exceeds a threshold given by 

Δε = Δt
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

D̂
′

: D̂
′

√

> 0.01
σ0

E
(15)  

where Δt is the current time increment. The deviatoric strain increment Δε̂
′

= ΔtD̂
′

supplied by the finite element solver is then 

divided into NS sub-steps so that the new sub-increments fulfil the above requirement, i.e., NS = nint

(
Δt

̅̅̅̅̅̅̅̅̅̅

D̂
′

:D̂
′

√

0.01σ0/E

)

, where nint(∘) returns 

the integer of the real number (∘). 

4. Unit cell modelling 

4.1. Stress state parameters 

Important stress state parameters used in this work will be outlined in the following. All macroscopic quantities are expressed with 
capital letters, while lowercase letters are reserved for local microscopic quantities related to the material response of the matrix. The 
arbitrary stress state P in Fig. 2 (a) can be expressed as 

Σ1 = Σ′

1 + ΣH = Σeq

(
2
3

cos(θL)+ T
)

Σ2 = Σ′

2 + ΣH = Σeq

(
2
3

cos
(

θL −
2π
3

)

+ T
)

Σ3 = Σ′

3 + ΣH = Σeq

(
2
3

cos
(

θL +
2π
3

)

+ T
)

(16)  

where Σ1,Σ2,Σ3 and Σ′

1,Σ′

2,Σ′

3 are the principal stresses and deviatoric principal stresses, respectively, ΣH = I1/3 is the hydrostatic stress, 
θL is the deviatoric angle and Σeq =

̅̅̅̅̅̅̅̅
3J2

√
is the von Mises equivalent stress. The first stress invariant and the second deviatoric stress 

Fig. 2. Illustration of a stress point P in (a) the principal stress space and (b) the π-plane. The stress tensor is split into a hydrostatic part (ΣHI) and a 
deviatoric part (Σ′ ), where e gives the direction of the hydrostatic axis. The yield locus takes the form of a circle in the π-plane for a von Mises 
material. The deviatoric angle θL is defined in both sub-figures. GT, GS and GC refer to generalized tension, generalized shear and generalized 
compression, respectively. 
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invariant are defined by I1 = tr(Σ) and J2 = 1
2Σ′

: Σ′ , respectively, where Σ and Σ′ are the macroscopic stress and deviatoric stress tensors. 
In Eq. (16), the stress triaxiality T has been introduced as the ratio between the hydrostatic and the equivalent stress, i.e., 

T =
ΣH

Σeq
(17)  

which serves as an important quantity for void growth (McClintock, 1968; Rice and Tracey, 1969) and will be used to control the 
imposed stress state of the unit cell. The deviatoric angle θL defines the angle between the first principal axis in the π-plane and the 
deviatoric stress vector Σ′ , see Fig. 2 (b). As we assume an isotropic material, θL is confined to lie within the range [0, π /3]. The 
principal stresses are then arranged so that Σ1 ≥ Σ2 ≥ Σ3. The Lode parameter L is related to the deviatoric angle θL by the relation 

L =
̅̅̅
3

√
tan
(

θL −
π
6

)
=

2Σ2 − Σ1 − Σ3

Σ1 − Σ3
(18)  

It follows that L = − 1 and L = 1 define the peripheral deviatoric states θL = 0 (generalized tension) and θL = π/3 (generalized 
compression), respectively, whereas L = 0 defines the deviatoric state θL = π/6 (generalized shear). 

It is clear from Eqs. (16) and (18) that the ratios between the different principal stress components Σ1,Σ2,Σ3 only depend on the 
stress triaxiality and the Lode parameter. Evidently, any proportional stress state can be uniquely defined by these two stress in
variants, while the von Mises equivalent stress controls the magnitude of the stress state. 

4.2. Unit cell and finite element discretization 

Fig. 3 illustrates how a realistic heterogeneous microstructure of a polycrystalline material, consisting of grains and particles of various 
sizes and shapes, can be reduced to a unit cell. Scanning electron microscope (SEM) images of the current aluminium alloy reveal a 
concentration of constituent particles at the grain boundaries, while the dispersoids are more spatially distributed in the matrix material 
(Thomesen et al., 2020). A highly simplified microstructure is given in Fig. 3 (b), where grains are approximated by a homogenized matrix 
description. The constituent particles and the dispersoids are assumed to be evenly distributed and initially of spherical shape, where the 
size within each population is uniform. It is emphasized that the variation in the shape and the spatial distribution of particles has been 
neglected, even if these parameters can have a pronounced influence on the ductile fracture process (Pardoen and Hutchinson, 2000; 

Fig. 3. The various levels of approximation from a polycrystalline solid to a unit cell. An illustration of a realistic microstructure is shown in (a), 
which consists of grains and particles of various shapes and sizes. The large black specks mainly located at the grain boundaries represent the 
constituent particles, while the small white dots more evenly distributed represent the dispersoids. A simplified microstructure, in which the grains 
are represented by a homogenous matrix material and both populations of particles are assumed to be evenly distributed and of equal spherical 
shape, is shown in (b). The resulting unit cell is presented in (c). In (d), the dispersoids have been homogenized into the matrix material as secondary 
voids, and the constituent particle is considered as an initial void. 
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Fabrègue and Pardoen, 2008). The unit cell in Fig. 3 (c) can be assembled from the homogenized microstructure. 
Owing to the substantial size difference, the dispersoids cannot be discretely represented in the finite element mesh within 

reasonable computational effort. The effects of dispersoids are therefore incorporated in the matrix material model as described in the 
previous section and illustrated in Fig. 3 (d). This simplification is justified when the size of the secondary voids is much smaller than 
the primary voids. There is then a strict separation between the different scales, which allows for the consideration of secondary voids 
at the homogenized material level. The size of the primary voids must also be considerably larger than the intrinsic material length. 
Otherwise, the hardening arising in the matrix due to strain gradients must be considered. All voids are assumed to be pre-existing as 
only the growth phase will be considered in this work. This assumption might be justified for the larger particles, where particle 
cracking occurs more readily, but is not obvious for the small dispersoids as large stresses are often necessary to promote decohesion at 
the matrix-particle interface (Fabrègue and Pardoen, 2008). 

Under the assumption of a uniform and periodic distribution of voids from constituent particles, finite element simulation will be 
used to evaluate the microscopic and macroscopic response of the cell shown in Fig. 4 (a). Shear effects have been precluded in the 
analyses and only normal macroscopic stress components act on the boundaries of the cell. The primary void surface is free from any 
tractions. Only 1/8 of the unit cell is modelled as symmetry is exploited to reduce the computational cost. The external edges of the unit 
cell are assumed to be of equal length 2l0, where l0 is the initial length of the 1/8-model. The primary void is assumed initially spherical 
with a radius of Rp,0. The initial void volume fraction of primary voids is then given by 

fp,0 =
Vp,0

VRVE,0
=

π
6

⎛

⎝Rp,0

l0

⎞

⎠

3

(19)  

where Vp,0 is the initial volume of the primary void and VRVE,0 is the total volume of the unit cell in the undeformed configuration. As 
the initial volume fraction fp,0 and void radius Rp,0 of constituent particles are known for this AA6110 alloy (see Table 1), the initial 
length l0 of the unit cell can be determined. Periodic boundary conditions are enforced by restricting the external boundaries to remain 
straight throughout the deformation. The prescribed displacement of the nodes located on the rigid walls is controlled through non- 
linear kinematical constraints so that the stress triaxiality ratio T (Eq. (17)) and the Lode parameter L (Eq. (18)) are maintained 
constant. A multi-point constraints (MPC) user subroutine is used to ensure that that the macroscopic deformation power of the cell 
equals to its volume-average counterpart in accordance with Hill-Mandel homogenization theory (Mandel, 1966; Hill, 1967). The 
method is detailed in Dæhli et al. (2017) and will not be further explained in this study. 

The implicit FE software ABAQUS/Standard 6.14 is utilized to perform the finite element simulations. A study on mesh conver
gence showed that a cell configuration consisting of 2080 linear hexagonal elements with selective reduced integration (C3D8 in 
ABAQUS) adequately described the cell response. The spatially discretized FE-model is shown in Fig. 4 (b). Details of this study have 
been omitted herein for brevity. 

4.3. Calculation of stress, strain and porosities of the unit cell 

The macroscopic stress tensor Σ applied to the cell is calculated as a volume average of the stresses in all integration points 

Σ =
1

Vmat

∑nint

j=1
σjVj, Vmat =

∑nint

j=1
Vj (20) 

Fig. 4. (a) Illustrates the unit cell, where the 1/8-model is indicated with a light grey colour, while (b) gives the spatially discretized FE-model of the 
1/8-model (Dæhli et al., 2017). 

V. Espeseth et al.                                                                                                                                                                                                       



Journal of the Mechanics and Physics of Solids 157 (2021) 104493

9

where σj and Vj are the Cauchy stress and current volume associated with integration point j, respectively, Vmat is the total material 
volume associated with the matrix and nint is the total number of integration points. The porosity of the primary void fp is calculated 
from 

fp =
Vp

VRVE
, VRVE = l1l2l3 (21)  

where l1, l2, l3 are the side length of the 1/8-model in the current configuration and Vp = VRVE − Vmat is the volume of the cavity 
associated with the discretely represented primary void. The porosity of secondary voids fs in the matrix material is evaluated as the 
volume average in the same manner as the macroscopic stress, i.e., 

fs =
Vs

Vmat
, Vs =

∑nint

j=1
fjVj (22)  

where fj is the porosity in integration point j and Vs is the total volume of secondary voids. It is emphasized that f is the local porosity of 
secondary voids associated with the Monchiet-Bonnet model in Section 3, and should henceforward not be confused with the volume 
average counterpart fs. The total porosity is calculated from 

ftot =
Vp + Vs

VRVE
(23)  

where Vp + Vs contains the volume of all cavities inside the cell. 
An equivalent macroscopic strain measure Eeq is used to compare the macroscopic stress response and the void volume fraction 

evolution. We define 

Eeq =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2
3

E′

: E′

√

(24)  

where E′

= E − 1
3 tr(E)I is the deviatoric part of the macroscopic strain E. The macroscopic principal logarithmic strain components are 

calculated from the current unit cell configuration as 

E1 = ln

⎛

⎝l1

l0

⎞

⎠,E2 = ln

⎛

⎝l2

l0

⎞

⎠,E3 = ln

⎛

⎝l3

l0

⎞

⎠ (25) 

The point of coalescence is defined as the point at which the strain state shifts to a mode of uniaxial straining in the tensile direction 
(Koplik and Needleman, 1988). Localization of plastic strains in the inter-void ligament, that is the x2x3-plane in Fig. 4, occurs sub
sequent to this point, while the material outside the ligament unloads elastically. Physically, this represents the link-up with a 
neighbouring primary void from an adjacent unit cell. 

5. Numerical results 

The unit cell from Section 4.2 will be deformed in a displacement-controlled manner with an imposed proportional stress state so 
that the stress triaxiality and the Lode parameter are constant during the simulation. We start by considering a Lode parameter equal to 
− 1, which corresponds to a state of generalized tension associated with the stress state in the centre of axisymmetric specimens where 
Σ1 > Σ2 = Σ3. Other deviatoric stress states are discussed at the end of this section. The stress triaxiality is varied sequentially from 0.6 
to 3.0, which corresponds to the stress state occurring in a slightly notched axisymmetric tensile specimen to the stress state in front of 
a crack tip (Benzerga and Leblond, 2010). Lower stress triaxialities may result in void closing and can lead to questionable results in the 
absence of a physical particle inside the centre cavity. 

By altering the matrix material in the unit cell, effects from a secondary population of voids can be included. The pressure insensitive 
von Mises material model, which corresponds to no secondary voids, will be solved directly with a radial return mapping algorithm 
(Simo and Hughes, 1998), and not as the special case f = 0 in Eq. (6), to avoid any complications with the undefined logarithmic term in 
Eq. (10) when zero porosity is defined. Moreover, a Gurson-Tvergaard material is readily obtained by assigning l1 a low value so that η is 
close to unity. Any responses in between these two extremes are obtained by decreasing the intrinsic material length l1 (or, equivalently, 
increasing the initial ratio a0/l1). This way, the contribution from a secondary population is directly controlled through l1. Note that the 
ratio a/l1 increases with the plastic deformation as the void radius a increases with the matrix porosity f . Thus, the value of a0 /l1 only 
refers to the initial state, where the initial radius of the secondary voids a0 = 1

2ds,0 equals 0.05 μm (see Table 1). Fig. 1 (a) shows the 
normalized equivalent stress as a function of the normalized hydrostatic stress for the different matrix materials used in this work, 
assuming a matrix porosity of f = 0.005. As the initial radius Rp,0 and volume fraction fp,0 of the primary void are 2.0 μm and 0.007, 
respectively, Eq. (19) yields an initial unit cell side length l0 of 8.43 μm. We emphasize that the porosity and equivalent void radius 
related to the primary void are used to generate the geometry of the computational cell, while the secondary porosity, which is linked to 
nucleation of voids on the dispersoids, is incorporated in the porous plasticity model applied for the matrix. 
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5.1. Macroscopic stress-strain response 

Fig. 5 (a) and (b) present the macroscopic von Mises equivalent stress and the primary porosity evolution as a function of the 
macroscopic equivalent strain for Lode parameter L = − 1 and stress triaxiality of 0.8 and 2.0. The results for L = 0 and L = 1 will be 
discussed in Section 5.5. Higher triaxiality markedly reduces the overall stress level and the strain at coalescence for all values of the 
intrinsic material length l1 due to a faster growth of the primary void. At a given stress triaxiality, there is a decrease in both the overall 
stress level and the strain at coalescence with decreasing values of l1. The reason is the faster growth of the secondary voids and the 
associated softening of the matrix material in the inter-void ligament. 

Fig. 6 displays the deformed cell configuration in the x1x2- and x2x3-planes at the end of the curves in Fig. 5 (a) and (b) for stress 
triaxiality equal to 0.8 (Fig. 6 (a)) and 2.0 (Fig. 6 (b)) with different internal material lengths l1. Note that the coordinate axes in Fig. 6 
coincide with the coordinate axes in Fig. 4 (b). The distribution of the secondary porosity is included as contours in the plots. The 1 /8-cell 
model is mirrored about the x3x1-plane and the surface of the primary void cavity is not included in the contour plot to accentuate its 
shape. Using von Mises plasticity for the matrix material, the inter-void ligament necks down to almost zero width, due to the absence of 
the secondary population of voids. In contrast, only a minor reduction of the ligament material thickness is observable for the Gurson- 
Tvergaard matrix material. As seen from Fig. 6, the reduction of the overall stress level complies with the softening of the inter-void 
ligament material due to fast growth of the secondary voids in this region. An intrinsic material length l1 of and 0.025 μm in the 
Monchiet-Bonnet model yields a macroscopic and microscopic response in-between these two extremes as the inter-void ligament 
material is less prone to softening when the initial ratio a0/l1 decreases. This ratio must be greater than 1 in order to find any significant 
effects from the secondary voids in the matrix material. 

Fig. 5. (a)(c)(e) Macroscopic equivalent stress Σeq, and (b)(d)(f) porosity of the primary void fp as a function of the macroscopic equivalent strain Eeq 

for a stress triaxiality equal to 0.8 and 2.0. The colour of the curves gives the model used in the matrix material, as described in figure (a). The point 
of coalescence is indicated by a cross (× ) and the peak stress is indicated by a circle (•). 
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5.2. Void growth and coalescence phase 

The porosity of primary voids fp as a function of the macroscopic equivalent strain is shown in Fig. 5 (b) for the case of L = − 1. 
Initially, the presence of secondary voids growing in the matrix material does not affect the growth of the primary voids. It does, 
however, accelerate the point of coalescence, which complies with findings by Fabrègue and Pardoen (2008). Though the growth of fp 

is essentially unaffected, the overall stress level of the unit cell is still reduced as previously discussed. Fabrègue and Pardoen (2008) 
did not report such large reductions in macroscopic stress level prior to coalescence, possibly because they included nucleating phases 
and assumed no pre-existing secondary void population. 

In the case of a triaxiality equal to 0.8, a sudden rise in fp occurs after the onset of coalescence, indicated by a cross (× ) in the 
graphs. This rise becomes more pronounced with higher values of the intrinsic material length l1 due to a shift in failure mechanism, as 
can be seen from the deformed unit cells in Fig. 6 (a). When the growth of secondary voids is slow or absent, the primary voids can grow 
after the onset of coalescence, and the failure mode becomes necking-down of the inter-void ligament material. With faster growth of 
the secondary population of voids, i.e., for lower values of l1, the material in the inter-void ligament will soften and eventually fail 
before extensive growth of the primary void occurs. This critical point could be interpreted as the coalescence of secondary voids, 

Fig. 6. The unit cell configuration at the end of the curves in Figure 5 (a) and (b) for a stress triaxiality T equal to (a) 0.8 and (b) 2.0 and L = − 1. 
Only the cell walls at the x1x2- and x2x3-planes are included, where the coordinate axes coincides with the coordinate axes in Figure 4 (b). The 1/8- 
cell model is mirrored about the x3x1-plane and the surface of the cavity is not included in the contour plot to accentuate the shape of the primary 
void. The contour plot shows the local porosity from secondary voids f ∈ [0.005, 0.3]. Any elements with values below or above this range are given 
a light or dark grey colour, respectively. 
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which subsequently results in the linking of neighbouring primary voids. A shift between these two mechanisms occurs rather 
gradually as l1 is increased. The same holds true for a stress triaxiality equal to 2.0, but the sudden shift in fp becomes less prominent as 
the primary void grows more uniformly and almost retains its initial spherical shape, see Fig. 6 (b). 

Fig. 7 (a) shows the evolution of the volume average secondary porosity fs as the unit cell deforms. It is observed that fs grows much 
faster with straining when the intrinsic material length is smaller than the secondary void size a0, i.e., a0/l1 is larger than unity. 
Moreover, a sudden shift in the evolution of fs occurs at the onset of coalescence in these cases, which is directly related to rapid void 
growth inside the inter-void ligament material, as previously observed in Fig. 6. This shift is not as visible for l1 = 0.05 μm as only 
minimal secondary void growth occurs. 

To evaluate the contribution to the overall porosity from the secondary voids, the ratio between the volume average secondary 
porosity fs and the total porosity ftot is given in Fig. 7 (b). A negative slope indicates that the overall porosity growth is dominated by 
the growth of the primary voids, while a positive slope implies that the overall porosity growth is dominated by the growth of the 
secondary voids. It is seen that the slope gradually shifts from negative to positive as l1 is decreased, which is true for both stress 
triaxialities. In all cases, except for l1 = 0.05 μm, an abrupt increase in the slope occurs after the point of coalescence which indicates 
that the growth of secondary voids dominates in this phase. Whether this accelerated growth of secondary voids occurs or not, in
dicates the main mechanism of failure previously discussed. 

5.3. Ductility 

Ductility can be quantified by the strain at which coalescence occurs, if fracture occurs shortly after the material loses its load- 
carrying capacity. The critical macroscopic strain at coalescence Ecr is given as a function of the stress triaxiality in Fig. 8. The 
exponential decrease in ductility with increasing stress triaxiality can be immediately recognized. The value of Ecr is almost halved 
when the Gurson-Tvergaard model is used for the matrix material instead of von Mises plasticity. A gradual rise in ductility occurs 
when the intrinsic material length l1 is increased. However, l1 must be rather small compared to the size of the secondary population of 
voids to observe any significant contribution from them on the ductility. 

5.4. Inter-void ligament width 

The predicted width of the ligament material between primary voids in the x2x3-plane at the strain level given in Fig. 6 (a) is 
illustrated in Fig. 9 and compared to an SEM image of the fracture surface of the AA6110 alloy (Thomesen et al., 2020). The figures are 
scaled to the same size for comparison. The fractography is taken from an axisymmetric specimen with a notch radius of 2 mm. The 
stress triaxiality in the centre of such a specimen is expected to be approximately 1.1-1.3 during plastic deformation in tension. The 
fracture surface consists of large dimples, associated with constituent particles, and some small areas with a high density of small 
dimples. The spacing between the larger dimples is not as large as predicted with the Gurson-Tvergaard model. Indeed, the initial size 
of the dispersoids a0 must be in the same range as the intrinsic material length l1 for a reasonable representation of the fracture surface. 

5.5. Influence of deviatoric loading 

The deviatoric stress state is also important for the damage evolution of ductile materials, especially at low stress triaxialities 
(Barsoum and Faleskog, 2007). Fig. 5 (c) and (e) display the macroscopic equivalent stress-strain curves of the unit cell for generalized 
shear (L = 0) and generalized compression (L = 1), respectively. As for generalized tension (L = − 1) in Fig. 5 (a), the equivalent 
macroscopic stress is strongly reduced at the higher stress triaxiality because of the rapid expansion of the primary void. A minor 

Fig. 7. (a) The volume average porosity fs of secondary voids and (b) the ratio fs/ftot as a function of the macroscopic equivalent strain Eeq for a 
triaxiality of 0.8 (solid lines) and 2.0 (dashed lines). The point of coalescence is indicated by a cross (× ). The simulations with von Mises plasticity 
governing the matrix material behaviour are not included as fs = 0. 
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increase in the equivalent macroscopic stress can be observed for generalized shear compared to generalized tension. We can still 
identify a distinct point of void coalescence where the deformation proceeds in a uniaxial deformation mode and leads to accelerated 
softening. In the case of generalized compression, the shift into a uniaxial deformation mode with the associated accelerated softening 
is absent, and void coalescence, as defined here, does not occur. In the case of a porous matrix material, the cell simulation terminates 
due to loss of load-carrying capacity in the integration point closest to the void surface as f = q− 1

1 . It is interesting to notice that the 
influence of the matrix material model on the macroscopic stress response scales rather consistently with the changes in stress 
triaxiality and Lode parameter. 

Fig. 5 (d) and (f) display the porosity of the primary void fp for generalized shear and generalized compression, respectively. The 
growth of the primary void is fastest for generalized tension (L = − 1) in Fig. 5 (b), intermediate for generalized shear (L = 0) and 
slowest for generalized compression (L = 1), i.e., the void growth rate decreases with increasing value of the Lode parameter. Similar 
results have been reported in other unit cell studies, e.g. Dæhli et al. (2018). As for generalized tension, the growth of the primary void 
with straining is initially the same for all constitutive models of matrix material and deviations are only seen at the onset of accelerated 
softening. As accelerated softening does not occur for generalized compression, the growth rate of the primary void remains the same 
until failure occurs due to excessive growth of the secondary voids. 

The significance of the Lode parameter on the unit cell response, and particular the void growth, is linked to the evolution of the 
void shape (Dæhli et al., 2018). The contour of the primary void at peak equivalent macroscopic stress (marked by a circle (•) in Fig. 5 
(a)(c)(e)) in the three principal planes is plotted in Fig. 10 for generalized tension, generalized shear and generalized compression for 
stress triaxiality T = 0.8, 1.0 and 2.0. The different planes are identified by distinct colours. Solid lines represent a von Mises matrix 
material, while dashed lines indicate a Gurson-Tvergaard matrix material. The primary void evolves into a prolate shape for gener
alized tension and an oblate shape for generalized compression. The effect of the deviatoric stress state on void shape is more 
prominent at low stress triaxialities, and as the stress triaxiality increases, the effect fades out. The matrix material model only in
fluences the size of the primary void and not its shape. This finding is rather obvious as the peak equivalent macroscopic stress occurs at 
a lower macroscopic equivalent strain for lower values of the intrinsic material length l1 and the growth of the primary void has been 
shown to be largely unaffected by the existence of the secondary voids. 

Fig. 11 displays histograms of the secondary porosity distribution within all integration points of the unit cell at peak equivalent 
macroscopic stress. Each bar in the plot represents the percentage of integration points with secondary porosity f within a given in
terval. Results are included for two values of the intrinsic material length l1 in addition to the Gurson-Tvergaard model (l1 → 0). An 

Fig. 8. Critical strain Ecr at coalescence (marked by a cross (× ) in Figs. 5 and 7) for T ∈ [0.6, 3.0] and L = − 1. The colour on the curves indicates 
the model used for the matrix material. 

Fig. 9. The spacing between voids in the inter-void ligament (x2x3-plane) at the strain level given in Fig. 6 (a) for T = 0.8 compared to an SEM 
image of the fracture surface of a notched axisymmetric tensile specimen of the AA6110 alloy, leftmost figure (Thomesen et al., 2020). Periodic 
distribution of voids is assumed. 
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increase in both mean value and spread of secondary porosity f arises as the value of l1 is reduced. The same trend is recognized for 
decreasing overall stress triaxiality. This latter finding seems contradictory as the average microscopic stress triaxiality in the matrix 
will decrease with the overall macroscopic stress triaxiality. However, the microscopic plastic strain in the integration points is in 
general higher as slower growth of the primary void allows for larger deformation of the cell at peak equivalent stress. The secondary 
porosity distributions for generalized tension and generalized shear are rather comparable, whereas for generalized compression the 
mean value is higher and the spread lower within the unit cell. 

6. Concluding remarks 

Finite-element based unit cell simulations of a primary void embedded in a matrix material governed by the size-dependent 
Monchiet-Bonnet porous plasticity model were conducted to disclose the effect of secondary voids on ductile fracture. The primary 
voids are assumed nucleated on the constituent particles in an aluminium alloy, whereas the secondary voids are assumed nucleated on 
dispersoids, which are typically one order of magnitude smaller than the constituent particles. By letting the intrinsic material length l1 
of the Monchiet-Bonnet model tend to zero, the Gurson-Tvergaard model is obtained, while as the intrinsic material length tends to 
infinity, the material becomes isochoric and governed by a pressure-insensitive yield criterion similar to the von Mises yield criterion. 
Simulations were performed to study the influence of the intrinsic material length scale and the imposed stress state on the macro
scopic response and ductility of the unit cell. 

By adopting the Gurson-Tvergaard model for the matrix material, the change in the overall response and ductility of the unit cell is 
considerable and induced by the weakening of the material in the inter-void ligament due to extensive growth of secondary voids. 
However, the width of the material surrounding the large dimples at fracture does not compare well to the fracture surface from 
physical tests, suggesting that a non-zero intrinsic material length l1 should be introduced to account for void size effects. 

The unit cell simulations with the Monchiet-Bonnet model for the matrix material demonstrates that the intrinsic material length 
scale must be in the same range as the size of the dispersoids or even smaller for the secondary voids to grow substantially and thereby 
affect the overall response and ductility of the unit cell. As the initial ratio a0/l1 increases, the coalescence mode gradually progresses 

Fig. 10. The contours of the primary void in the xixj-plane at peak equivalent macroscopic stress (marked by a circle (•) in Fig. 5(a)(c)(e)) for 
different combinations of stress triaxiality and Lode parameter. The void radii on the vertical and horizontal axes are in μm. The shaded circle with 
centre in the origin represents the initial spherical void. The red, blue and green curves correspond to the x1x2-plane, x3x1-plane and x2x3-plane, 
respectively. Solid and dashed lines represent simulations with von Mises plasticity and the Gurson-Tvergaard model, respectively. 
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from internal necking, as obtained with von Mises plasticity in the matrix, to a total loss of strength in the inter-void ligament material. 
The presence of the secondary voids has no influence on the initial growth of the primary void but promotes earlier void coalescence in 
generalized tension and generalized shear and thus decreases the ductility. The effect of the secondary voids on void coalescence and 
ductility is controlled by the ratio a0/l1. In generalized compression, void coalescence does not occur, and failure occurs exclusively by 
excessive growth of the secondary voids. 

Comparison of the predicted spacing between voids at failure with an SEM image of the fracture surface of a notched axisymmetric 
tensile specimen of the AA6110 alloy indicates that the intrinsic material length should be in the range of the size of the dispersoids. An 
intrinsic material length of 0.1 μm is in the very limit of what has been proposed in the literature (Hutchinson, 2000; Evans and 
Hutchinson, 2009) which might indicate that the dispersoids have rather limited effect on the ductility of the AA6110 alloy. However, 
the intrinsic material length at which size effects start to contribute is not exactly known and is probably dependent on the material. In 
these simulations, it was assumed that the secondary voids were nucleated on the dispersoids from the start. It is known from the 
literature that voids nucleate less readily on small particles than on large ones, which implies that this assumption will lead to an 
overestimation of the effect of the dispersoids on ductile failure. From these considerations, it is expected that the influence of dis
persoids on ductile failure in aluminium alloys is limited. 
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Fig. 11. Histograms of the distribution of the secondary porosity f within all integration points of the unit cell at peak equivalent macroscopic 
stress. The interval size of the bars is 0.00025, where each bar represents the percentage of integration points with f within this interval. Red, green 
and blue coloured bars correspond to different material models for the matrix material and the same colour code as in previous graphs is applied. 
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