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A B S T R A C T

Cohesive zone modelling is the main tool to solve the problems of crack initiation and growth, and therefore
several mixed-mode cohesive laws are being developed. The majority of the cohesive laws are path independent
because this property offers several advantages. However, there has been no experimental evidence of path-
independent fracture. Within linear elastic fracture mechanics, path independence is a prerequisite, but not
in problems with a large fracture process zone. In this study, it was demonstrated experimentally that path
independence applies, to a certain degree, to unidirectional composites with large-scale fibre bridging. Thus,
path-independent mixed-mode cohesive laws, preferably derived from a potential function, can be used to
describe fracture for this class of materials.
1. Introduction

The concept of describing fracture by a traction–separation law or a
cohesive law was first introduced by [1] and [2]. Then, Needleman [3]
incorporated a mode I cohesive zone model in a continuum mechan-
ics finite-element model. Needleman [4] and Xu and Needleman [5]
extended the concept of cohesive laws to account for mixed-mode
fracture, where the fracture process zone is subjected to normal and
tangential separations. Since then, cohesive-based finite-element mod-
elling has been the main technique for analysing fracture problems
involving crack initiation and growth e.g. [6–9].

Because the fractures in many structures or components — in par-
ticular, layered structures, such as composite or sandwich structures
— comprise a mixed mode, a large number of mixed-mode partition
theories e.g. [10,11] and mixed-mode cohesive laws are being continu-
ously developed. The mixed-mode cohesive laws can be classified into
different categories depending on their characteristics, as described by
Goutianos and Sørensen [12]. A fundamental property is path inde-
pendence [4,13–17] - for example, mixed-mode cohesive laws derived
from a potential function are path independent. For path-independent
mixed-mode cohesive laws, the work of the cohesive traction depends
only on the normal and tangential separations and not on the opening
history, as schematically shown in Fig. 1a and in Fig. 1b with solid
lines. If three loading paths (𝑝𝑜, 𝑝1 and 𝑝2) are considered between
points 𝑂 and 𝐴, then the mixed-mode fracture energy is independent of
the loading history (or loading path). For mixed-mode cohesive laws,
which are path dependent [8,18,19], the mixed-mode fracture energy
depends on the loading history, as shown in Fig. 1b with dashed lines.
The energy dissipation in the fracture process zone is the same for path-
dependent and path-independent mixed-mode cohesive laws only when
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the loading is proportional (path 𝑝𝑜 in Fig. 1). Typically, a mixed-mode
cohesive law is path dependent if it cannot be derived from a potential
function.

Path independence is a necessary characteristic for mixed-mode
cohesive laws when modelling fractures in the framework of linear
elastic fracture mechanics (LEFM), which is an energy-based approach
to fracture. Within LEFM, the criterion for crack growth under mixed
mode (plane stress) is

(𝜓̃) = 𝑐 (𝜓̃) (1)

where 𝑐 is the critical energy release rate or fracture energy and  is
the energy release rate given by

(𝜓̃) =
𝐾2
𝐼 +𝐾

2
𝐼𝐼

𝐸
(2)

Within LEFM,  is equal to 𝐽 in Fig. 1. Moreover, 𝑐 is a function
of the phase angle, 𝜓̃ , of the stress intensity factors 𝐾𝐼 and 𝐾𝐼𝐼 , which
is also called ‘mode mixity’ [20,21]. Under LEFM, 𝜓̃ equals the phase
angle of the crack tip stresses, 𝜓 . Eqs. (1) and (2) are independent of
the loading history, i.e., the onset of fracture occurs at the same value
of 𝑐 irrespective of whether 𝐾𝐼 and 𝐾𝐼𝐼 are increased proportionally.

In many cases where it is known that fracture involves strong
history-dependent fracture mechanisms, such as plastic deformation
or frictional sliding [19], then it is necessary to use path-dependent
mixed-mode cohesive laws.

Several modern materials, e.g., composites and adhesive joints, are
tough, presenting a large-scale fracture process zone; thus, LEFM, in
many cases, cannot be used. Therefore, it is unclear whether path-
independent or path-dependent cohesive laws should be used. In gen-
eral, it is preferable to use path-independent mixed-mode cohesive
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Fig. 1. (a) Proportional loading path (𝑝𝑜) and nonproportional loading paths (𝑝1 and 𝑝2, (b) Path independent (solid lines) and path dependent (dashed lines) mixed-mode fracture
energy.
laws, even under nonproportional loading [9]. For path-dependent
cohesive laws, every possible loading path would result in a different
fracture energy, as shown in Fig. 1b. A consequence of this is that these
cohesive laws should be able to predict the correct energy dissipation
along different loading paths. This could be done by using mixed-
mode cohesive laws based on micromechanical models, which include
path-dependent failure mechanisms or based on mixed-mode fracture
experiments along different loading paths. Without such models or
experiments, the use of path-dependent mixed-mode cohesive laws
will probably yield incorrect predictions, e.g., it will be uncertain
whether the correct energy is dissipated from point 𝑂 to point 𝐴 in
Fig. 1. However, the use of path-independent mixed-mode cohesive
laws ensures that the prescribed energy is dissipated between points
𝑂 and 𝐴. However, for most cases, there is no experimental evidence
showing that fracture is path independent or path dependent. The lack
of such experiments mainly results from the experimental difficulties in
applying nonproportional loading paths.

Thus, the aim of this study was to investigate whether
path-independent mixed-mode fracture is a reasonable assumption for
materials that exhibit a large-scale fracture process zone. The study was
limited to composite materials where the large-scale fracture process
zone is caused by fibres bridging the crack faces at the crack tip wake. It
should be noted that such composite materials exhibit a relatively large
scatter in fracture resistance and the scatter increases with increasing
the mode II component. For unidirectional fibre composites similar
to the ones used in the present work, steady-state fracture resistance
differences in the order of 0.3-0.5 kJ/m2 or larger than 2.0 kJ/m2 as the
mode mixity increases to near mode II are typical [22–24]. Therefore,
such experimental evidence, as in the present work, can justify the use
of path-independent mixed-mode cohesive laws for fracture simulations
of composite materials and structures, considering the natural variation
in the fracture resistance. In addition, it demonstrates that it is suffi-
cient to perform mixed-mode fracture experiments under proportional
loading.

The remainder of this paper is organised as follows. First, the
experimental procedure is presented. Then, the experimental results
are presented. Finally, the obtained results and their implications are
discussed.

2. Experimental details

2.1. Materials and specimen manufacturing

A laminate was manufactured by vacuum infusion of an epoxy
resin into layers of noncrimp unidirectional E-glass fabrics. A 35- ±15-
𝜇m-thick and 60-mm-long perforated release film (Teflon) was placed
in the middle of the fabrics along one of the edges of the laminate.
The perforated release film (slip foil) was stiff enough to avoid being
wrinkled or folded and it acted as a crack starter. Subsequently, the
2

epoxy resin was infused. The use of a perforated film as crack starter
ensured that there were no dry spots after the infusion. The curing cycle
was 19 h at 40 ◦ C, followed by 5 h at 75 ◦ C. The Young’s modulus in
the fibre direction, 𝐸11, was approximately 38 GPa. Double cantilever
beam (DCB) specimens were subsequently cut from the laminate for
mixed-mode fracture experiments using the fixture shown in Fig. 2a.
The specimen length, 𝐿, was 500 mm, the width 𝐵 was 30 mm, and the
height, 2𝐻 , was 14 mm (see Fig. 2b). Steel parts (tabs), which made it
possible to mount the DCB specimens on the test fixture (Fig. 2a), were
fitted to the DCB specimens with screws and an epoxy glue (Fig. 2c).
Pins were placed in the neutral axis of each beam at the end of the slip
foil, as shown in Fig. 2b.

2.2. Loading arrangement and instrumentation

The fixture that was used to apply pure bending moments, 𝑀1
and 𝑀2, using two transverse arms [22,25] is schematically shown in
Fig. 2a. The two moments are 𝑀1 = 𝑃𝓁1 and 𝑀2 = 𝑃𝓁2, where the
force P in the steel wire is constant. Thus, the moment ratio 𝑀1∕𝑀2 is
controlled by changing the length of the two transverse (moment) arms
𝓁1 and 𝓁2. As the lower beam (see Fig. 2a) moves downward, the force
𝑃 increases; thus, the two moments also increase, i.e., applied rotations
are applied in practice. The force is measured by two load cells, and
the average value is used to calculate 𝑀1 and 𝑀2. The experiments
were conducted at a constant displacement rate of the lower beam of
5 mm/min, and the force data were acquired at a frequency of 20 Hz.
Details regarding considerations to minimise the errors in the applied
moments e.g. due to friction in the rollers can be found elsewhere [25].

An extensometer (Instron, type 2620–602), with a range of ±2.5
mm, was mounted in the pins, as shown in Fig. 2c. The extensometer
was free to rotate and, therefore, measure the magnitude of the crack
opening displacement, 𝛿∗𝑚, at 𝑥1 = 0 mm under the assumption that
the elastic strain in the beams between the neutral axes and the
crack surfaces is negligible. The data from the extensometer were also
acquired at a frequency of 20 Hz.

As shown in Fig. 2a, acoustic emission (AE) sensors were also
mounted on the specimen surface to record the acoustic activity during
fracture and a coarse speckle pattern on the side surface for digital
image correlation (DIC). However, the AE and DIC data are not shown
in the present work. All the tests were video recorded with the camera
facing the DCB specimens in the 𝑥1-𝑥2 plane (see Fig. 2).

3. 𝑱 -Integral evaluation and loading procedure

3.1. 𝐽 -Integral evaluation

For a DCB specimen loaded with uneven bending moments, the frac-
ture energy can be calculated by evaluating the 𝐽 -integral [26] along
the external boundaries of the specimen [22,25]. For an orthotropic
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Fig. 2. (a) Schematic illustration of test fixture to apply pure uneven bending moments using a wire and rollers, (b) the double cantilever beam (DCB) specimen showing the
position of the slip foil and the pins, (c) photograph of a DCB specimen showing the extensometer and the fixation to the transverse arms and (d) schematic illustration of (c).
specimen and under plane strain, the 𝐽 -integral along the external
boundaries is given by

𝐽𝑒𝑥𝑡 = (1 − 𝜈212)
21(𝑀2

1 +𝑀2
2 ) − 6𝑀1𝑀2

4𝐵2𝐻3𝐸11
, for |𝑀1| < 𝑀2 (3)

where 𝑀1 and 𝑀2 are measured during the experiment, and 𝜈12 is the
Poisson ratio with an assumed value of 0.3. The value of 𝜈12 has a minor
effect on 𝐽𝑒𝑥𝑡. Eq. (3) is valid for both small and large-scale fracture
problems. Under LEFM, the mode mixity for an orthotropic specimen
is [25]

𝜓̃(𝜆,𝑀1∕𝑀2) = tan−1
{

𝜆−1∕4
√

3
2

(

1 +𝑀1∕𝑀2
1 −𝑀1∕𝑀2

)}

(4)

where 𝜆 = 𝐸22∕𝐸11 [27].
The mode mixity, 𝜓̃ , is used occasionally in the next section for

the different DCB specimens together with the moment ratio 𝑀1∕𝑀2,
which is the appropriate parameter for problems with large-scale frac-
ture process zones. Table 1 lists the moment ratios used in the present
study and the associated nominal mode mixities.

3.2. Loading procedure

Fig. 3 shows the fracture resistance, 𝐽𝑅, as a function of 𝛿∗𝑚 for a
DCB specimen monotonically loaded to steady-state fracture in pure
mode I. At a certain load level (state 𝑎1), a crack is initiated at the
root of the initial notch. By further increasing the load, the crack tip
extends, and, at the wake of the crack tip, a fracture process zone
(FPZ ) develops (state 𝑎 in Fig. 4a). In composites, the FPZ typically
3

𝑏 2 𝑏
Table 1
Relationship between the mode mixity 𝜓̃ and
the moment ratio 𝑀1∕𝑀2.
Mode mixity,
𝜓̃ (deg)

Moment ratio,
𝑀1∕𝑀2 (-)

0.0 −1.0
41.0 0.0
58.0 0.299
88.0 0.943

consists of fibres bridging the crack faces and together with the crack
tip fracture process zone (FPZ𝑐) constitute the entire fracture process
zone (FPZ), with a length typically of several millimetres. If the FPZ
is small compared to the stress field controlled by the stress intensity
factors 𝐾𝐼 and 𝐾𝐼𝐼 (Eq. (1)), LEFM applies. The 𝐾-dominant zone
depends on the specimen geometry and for DCB specimens is rather
small [10,28]. For a homogeneous DCB specimen, the size of the 𝐾-
dominant zone, defined as a circle with the crack tip at its centre and
radius 𝑟𝐾 , is approximately 𝑟𝐾 = 0.01𝐻 ≈ 70 μm. Therefore, a FPZ in
the order of several millimetres is large compared to the 𝐾-dominant
zone and LEFM is strictly not applicable.

In the case of pure bending moments, as in the present work, the
FPZ continues to increase in length until all bridging fibres fail in the
region close to the root of the initial notch (state 𝑎3 in Fig. 4a). At this
moment, the FPZ is fully developed. By further increasing the applied
rotation, the FPZ translates along the specimen length under constant
moments without changing its length (state 𝑎 in Fig. 4a). In practice,
4
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Fig. 3. Fracture resistance, 𝐽𝑅, as a function of the magnitude of end opening, 𝛿∗𝑚, for
a DCB specimen monotonically loaded in pure mode I to steady-state fracture.

owing to material variation along the fracture plane, there is some
variation in the steady-state fracture resistance, as can be seen in Fig. 3.

As mentioned in Section 1, it is experimentally difficult to achieve
nonproportional loading paths, such as 𝑝1 or 𝑝2 in Fig. 1. For this
reason, in the present work, each DCB specimen was loaded with a fixed
𝑀1∕𝑀2 ratio up to a load level high enough to cause crack growth on
the order of 20 to 40 mm (state 𝑎2 in Fig. 4a). From the monotonically
loaded DCB specimens [29] for the same 𝑀1∕𝑀2 ratio, it was known in
advance that, at this load level, the steady-state fracture would not be
reached. The length of the FPZ at this point is denoted as 𝓁1

𝐹𝑃𝑍 . After
the crack grew, the DCB was completely unloaded. The lengths 𝓁1 and
𝓁2 were then changed to have a different 𝑀1∕𝑀2 ratio (Fig. 4b). Upon
loading the DCB specimen again, the FPZ developed in a process zone
morphology left by the first loading (states 𝑏0 and 𝑏2 in Fig. 4b). As
mentioned above, by further increasing the applied rotation, a steady
state, 𝐽 𝑠𝑠𝑅 , is achieved when the bridging fibres fail at the root of the
notch (state 𝑏 in Fig. 4b). Owing to the different moment ratios,
4

3

the length of the fully developed zone was generally different from
the previous loading step. A further increase of the applied rotations
caused the FPZ to translate along the specimen length at a constant
load (steady-state fracture). The fracture process zone length, when
the bridging fibres fail at the crack tip of the first loading step is
denoted as 𝓁2

𝐹𝑃𝑍 . The crack growth, afterwards, takes place in a virgin
material, and there should be no loading history effects. After steady-
state crack growth (in most cases, of several millimetres), the specimen
was completely unloaded. The experimentally measured steady state
fracture resistance in state 𝑏4 is different from 𝐽 𝑠𝑠𝑅 as it will be shown
in the next Section. Its maximum value is denoted as 𝐽 𝑠𝑠,𝑚𝑎𝑥𝑅 . Both 𝐽 𝑠𝑠𝑅
and 𝐽 𝑠𝑠,𝑚𝑎𝑥𝑅 will be presented. It should be noted that 𝐽 𝑠𝑠𝑅 differs from
𝐽 𝑠𝑠,𝑚𝑎𝑥𝑅 also for the monotonically loaded DCB specimens.

This study focused, in the second loading step, on the fracture
response until a steady state was reached because it is in this region
that there is an effect from the process zone morphology left by the first
loading. Because it was not sufficiently accurate to determine when the
steady-state was reached by curves, as shown in Fig. 3, video recording
was used to identify when the bridging fibres failed at the root of the
initial notch as shown for example for a monotonically loaded DCB
specimen in Fig. 5. The frames from (a) to (d) correspond to increasing
load. It can be seen that at a certain load the bridging fibres fail at
the root of the notch (Fig. 5d). It should be noted that this technique
involves to a certain degree subjective judgment of the load level or
the end opening where the bridging fibres fail at the root of the notch.
However, this uncertainty is not critical since the error for example in
determining the critical end opening is in the order of microns.

Because the DCB specimens were transparent, the crack front (plane
𝑥1-𝑥3) was clearly visible during loading and unloading. The crack front
in all cases was nearly straight. The delamination/crack tip, along 𝑥1
was at the same location on both sides of the DCB specimens.
Fig. 4. Fracture process zone (FPZ) development in a DCB specimen loaded with pure bending moments: a) fracture initiates from a notch and (b) fracture extends from a damaged
region.
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Fig. 5. Determination of the load level and of the end opening where the bridging files fail at the root of the notch using the frames from video recording. The load level increases
from frame (a) to frame (d).
Table 2
Loading details and fracture resistance in the first (1) and in the second (2) loading steps for the nonproportionally
loaded DCB specimens: the specimens are completely unloaded after the first loading step.
No 1st loading (1) 𝐽𝑅 2nd loading (2) 𝐽 𝑠𝑠𝑅 𝐽 𝑠𝑠,𝑚𝑎𝑥𝑅

𝑀1∕𝑀2 (-) (N/m) 𝑀1∕𝑀2 (-) (N/m) (N/m)

1 −1.0 952.5 → 0.0 2627.9 3423.8
2 0.943 4131.4 → 0.0 2669.0 3832.6

Average 2648.5 3628.2
± 29.1 ± 289.1

3 0.0 2477.4 → −1.0 1594.2 2812.2
4 0.299 2408.8 → −1.0 1032.4 1053.7
5 0.943 4142.9 → −1.0 916.0 1091.4

Average 1180.9 1652.4
± 362.7 ± 1004.6

6 −1.0 969.4 → 0.943 7781.8 8617.4
7 0.0 2091.7 → 0.943 5246.0 5682.4
8 0.299 2820.8 → 0.943 7970.6 8746.1

Average 6999.5 7682.1
± 1521.5 ± 1733.0
4. Results

4.1. Steady-state fracture resistance

Fig. 6 shows the steady-state fracture resistance of the DCB speci-
mens, which were subjected to two loading steps with different moment
ratios at each step, as described in Table 2. The data are plotted as
coloured circle symbols and refer to the second loading step. More
specifically, the steady-state fracture resistance values, 𝐽 𝑠𝑠𝑅 , correspond
to the fracture resistance when the bridging fibres fail at the root
of the initial notch (state 𝑏3 in Fig. 4b) in the second loading step.
These nonproportional-loading steady-state fracture resistance values
are compared with the steady-state fracture resistance of DCB spec-
imens continuously loaded up to steady-state fracture (monotonic,
proportional loading, and one loading step), which are plotted as square
symbols. It is clear that both sets of DCB experiments, proportional (one
loading step) and nonproportional (two loading steps) loading, yield
the same steady-state fracture resistance within experimental tolerance.

The results of Fig. 6 for the nonproportionally loaded DCB speci-
mens are also given in Table 2, which includes the maximum fracture
energies, 𝐽𝑅, attained in the first loading step prior to unloading. The
maximum steady-state fracture resistance values obtained during the
second loading step, 𝐽 𝑠𝑠,𝑚𝑎𝑥𝑅 , are also given. In most cases, 𝐽 𝑠𝑠𝑅 and
𝐽 𝑠𝑠,𝑚𝑎𝑥𝑅 (always referring to the second loading) are comparable. For
specimen 3 and to a lesser extent for specimens 1 and 2, 𝐽 𝑠𝑠,𝑚𝑎𝑥𝑅 is higher
than 𝐽 𝑠𝑠𝑅 . For comparison purposes, the maximum steady-state fracture
resistance values of the monotonically loaded DCB specimens are given
in Table 3.
5

Fig. 6. Steady-state fracture resistance, 𝐽 𝑠𝑠𝑅 , as a function of the moment ratio 𝑀1∕𝑀2
for specimens loaded proportionally/monotonically to steady-state and specimens
loaded in two steps with different moment ratios, nonproportional loading (see Table 2).
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Table 3
Loading details and fracture resistance for the proportionally
loaded DCB specimens (average values from 3 specimens).
𝑀1∕𝑀2 𝐽 𝑠𝑠𝑅 𝐽 𝑠𝑠,𝑚𝑎𝑥𝑅
(-) (N/m) (N/m)

−1.0 1213.1 ± 143.8 1297.7 ± 202.1
0.0 2982.0 ± 288.8 3883.0 ± 646.3
0.299 3063.9 ± 350.4 3141.7 ± 367.2
0.943 6601.8 ± 111.2 6687.3 ± 571.6
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4.2. Fracture resistance curves

Fig. 7a shows the fracture resistance curve for DCB specimen 1
(Table 2) loaded in pure mode I up to 𝛿∗𝑚 of approximately 1 mm.
The fracture response follows the behaviour of two DCB specimens
monotonically loaded to steady-state fractures [29]. At 𝛿∗𝑚 ≈ 1 mm, the
length of the FPZ, 𝓁1

𝐹𝑃𝑍 , is approximately 21.5 mm and corresponds to
the damage state 𝑎2 in Fig. 4, e.g., a not fully developed FPZ. Then, the
specimen is completely unloaded. When the load drops to zero, 𝛿∗𝑚 is
approximately 0.05 mm.

In the second loading step (Fig. 7b), the specimen is loaded with
a different 𝑀1∕𝑀2 ratio of 0.0, and the response is again compared
with two DCB specimens monotonically loaded under the same moment
ratio to a steady-state fracture. The response of specimen 1 is initially
linear, up to 𝛿∗𝑚 ≈ 1 mm, because of the damage induced in the first
loading step. As the load is further increased, the crack propagates, and
the bridging fibres within the FPZ are subjected to a different mode
mixity than that in the first loading step. The damage state 𝑏3, where
he bridging fibres fail at the root of the initial notch, is reached at 𝛿∗𝑚 ≈

3.6 mm. This damage state is reached for approximately the same end
opening as for the monotonically loaded specimens (damage state 𝑎3
n Fig. 4). When the applied load is increased further, the crack grows.

hen 𝛿∗𝑚 is approximately 7.2 mm, the bridging fibres at the end of the
PZ from the first loading step fail. Thus, for 𝛿∗𝑚 between 1 and 7.2 mm,

the crack grows in a region damaged during the first loading step, yet
the fracture resistance curve of specimen 1 resembles the response of
the two monotonically loaded specimens with 𝑀1∕𝑀2 = 0.

Fig. 8 is similar to Fig. 7 with the difference that specimen 2 is
oaded near mode II in the first loading step. The length of the FPZ
nduced in this loading step is approximately 34.2 mm. During the
econd loading step, the response is linear up to a 𝛿∗𝑚 of 1.35 mm. The
orresponding 𝐽𝑅 value is approximately 1.9 kJ/m2 and approximately
wo times lower than the maximum 𝐽𝑅 reached in the first loading

step before unloading. Similar to Fig. 7b, the bridging fibres fail at
the root of the initial notch at the same end opening as for the
monotonically loaded DCB specimens with the same moment ratio.
Therefore, specimens 1 and 2 reach the damage state 𝑏3 at the same
𝛿∗𝑚 although they have been subjected to a moment ratio in the first
loading step that is very different, e.g., mode I versus near mode II.

When steady-state fracture is reached, in the second loading step,
there are still fibres bridging the crack faces at the crack tip position of
the first loading step. Thus, up to steady-state fracture, there should
be an effect from the process zone morphology left from the first
loading step if the fracture is path dependent. However, the response of
specimen 2 is nearly identical to the response of the two monotonically
loaded specimens; thus, it is not influenced by the first loading step.

In Figs. 9–11, the DCB specimens are subjected to a different mo-
ment ratio in the first loading step with 𝑀1∕𝑀2 = 0.0 (𝜓̃ =41◦), 0.299
(𝜓̃ =58◦) and 0.943 (𝜓̃ =88◦). In the second loading step, all three
specimens are loaded in pure mode I, 𝑀1∕𝑀2 =-1.0 (𝜓̃ =0◦).

Specimen 3 (Fig. 9) is loaded up to a 𝛿∗𝑚 of approximately 1.5 mm,
and, as expected, the response follows the response of the monotoni-
cally loaded specimens. The corresponding 𝐽𝑅 value is approximately
2.5 kJ/m2. Then, the applied rotation is held fixed until equals 2 mm.
Finally, the specimen is unloaded. In the second loading step, the
damage state 𝑏3 is reached at the same end opening with the two
monotonically loaded specimens loaded in pure mode I. The corre-
sponding fracture resistance value is approximately 1.6 kJ/m2, which
is significantly lower than the fracture resistance, 𝐽𝑅, value reached in
the first loading step. However, with further increase of the applied
moments, the fracture resistance for specimen 3 deviates from those
of the monotonically loaded specimens, and the steady-state fracture
resistance is 2.8 kJ/m2. Thus, up to damage state 𝑏3, it can be argued
that there are no loading history effects. Subsequent crack growth,
6

however, appears to be influenced by the first loading step.
For this particular composite material system, [29] found that,
under monotonic loading, there is a local maximum in steady-state
fracture resistance for a moment ratio of 0.0, which is the moment ratio
applied in the first loading step. The monotonically loaded specimens
had a long FPZ [29], and the same can be seen for specimen 3 (Fig. 9)
with an FPZ length of approximately 80 mm at damage state 𝑏3.
Therefore, the behaviour of specimen 3 in Fig. 9b can be attributed to
the special fracture behaviour of the selected composite material when
𝑀1∕𝑀2 is 0.0.

Specimen 4 (Fig. 10), however, does not show history loading
effects. In the first loading step, the specimen is loaded up to a 𝛿∗𝑚
of 0.8 mm, and the corresponding 𝐽𝑅 is 2.3 kJ/m2. In the second
loading step, the crack growth starts at a much lower fracture resistance
than in the first loading step, and the response is close to that of the
monotonically loaded specimens. The damage state 𝑏3 is reached at a
similar end opening (Fig. 10b), and the subsequent fracture resistance
curve follows the response of the monotonically loaded specimens. The
bridging fibres at the position of the crack tip in the first loading step
fail when 𝛿∗𝑚 equals 7.5 mm. Thus, up to this point, the crack grows
in a region previously damaged in the first loading step, but no effects
are shown in the second loading step. The length of the fully developed
FPZ is approximately 61 mm, which is significantly lower than that of
the fully developed FPZ length of specimen 3 (Fig. 9).

Specimen 5 (Fig. 11a) is loaded in near mode II up to a 𝛿∗𝑚 of
0.25 mm, and the corresponding 𝐽𝑅 value is 4.2 kJ/m2, almost twice
as high as that of specimen 4. In the second loading step, the damage
state 𝑏3 is reached at approximately the same end opening as for the
monotonically loaded specimens.

Up to a 𝛿∗𝑚 of 7.3 mm, the crack growth occurs in a region that
has been damaged in the first loading step, but there is no influence
in the response, as Fig. 11b shows. At this point, the length of the
fully developed FPZ is almost that of specimen 4 (Fig. 10b). Thus, the
responses of specimens 4 and 5 are the same and nearly identical to
those of the monotonically loaded specimens. Thus, fracture appears to
be path independent.

Figs. 12–14 feature specimens 6–8 (Table 2), which are subjected to
different moment ratios in the first loading step and in near mode II in
the second loading step.

Specimen 6 is loaded in pure mode I in the first step. Fracture
initiates at a 𝐽𝑅 of approximately 0.3 kJ/m2, and the specimen is
further loaded up to a 𝛿∗𝑚 of 1.1 mm. The response up to this load
follows the responses of two monotonically loaded specimens, and the
FPZ length is close to 28 mm. When the specimen is then loaded in near
mode II in the second loading step, crack growth does not occur until
𝐽𝑅 is approximately 4.4 kJ/m2, which is significantly higher than the
fracture resistance, 𝐽𝑅, values for crack initiation and growth in the
first loading step. Moreover, the 𝐽𝑅 at which the crack grows in the
second step is similar to the corresponding values of the monotonically
loaded specimens. When the applied moments (rotations) are increased,
the crack grows further, and the damage state b3 is reached at a similar
end opening as those of the monotonically loaded specimens (Fig. 12b),
although the corresponding 𝐽𝑅 value is higher. With a further increase
in the loading, the crack continues to grow to a damaged region from
the first loading step up to a 𝛿∗𝑚 of 7.7 mm. The overall response of
specimen 6 in the second loading step resembles the behaviour of the
monotonically loaded specimens up to this point, i.e., the response is
not significantly affected by the damage introduced in the first loading
step. The fully developed FPZ is approximately 144 mm.

Fig. 13 shows the fracture resistance curves for specimen 7 for the
first and second loading steps. In the first step, the moment ratio is 0.0,
and the fracture initiates at approximately 1.2 kJ/m2. The specimen is
loaded up to a 𝛿∗𝑚 of 0.85 mm, and the corresponding FPZ length was
23.4 mm. In the second loading step, the crack does not grow until
𝐽𝑅 reaches a much higher value of approximately 4.3 kJ/m2, which
is similar to the corresponding values for the monotonically loaded

specimens (see Fig. 13b).
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Fig. 7. Fracture resistance as a function of the magnitude of the end opening, 𝛿∗𝑚, for specimen 1 (Table 2): (a) 𝑀1∕𝑀2 = −1.0 for the first loading, and (b) 𝑀1∕𝑀2 = 0.0 for
he second loading — the responses are compared with monotonic (proportional) loading for the same 𝑀1∕𝑀2 ratio, and the damage states 𝑎2, 𝑎3, and 𝑏3 are defined in Fig. 4.
Fig. 8. Fracture resistance as a function of the magnitude of the end opening, 𝛿∗𝑚, for specimen 2 (Table 2): (a) 𝑀1∕𝑀2 = 0.943 for the first loading, and (b) 𝑀1∕𝑀2 = 0.0 for
the second loading — the responses are compared with monotonic (proportional) loading for the same 𝑀1∕𝑀2 ratio, and the damage states 𝑎2, 𝑎3, and 𝑏3 are defined in Fig. 4.
Fig. 9. Fracture resistance as a function of the magnitude of the end opening, 𝛿∗𝑚, for specimen 3 (Table 2): (a) 𝑀1∕𝑀2 = 0.0 for the first loading, and (b) 𝑀1∕𝑀2 = −1.0 for
he second loading — the responses are compared with monotonic (proportional) loading for the same 𝑀1∕𝑀2 ratio, and the damage states 𝑎2, 𝑎3, and 𝑏3 are defined in Fig. 4.
When the loading is increased, crack growth initiates, and growth
ccurs in the region that was partially fractured in the first step. The
ridging fibres fail at the root of the initial notch when 𝛿∗ is 4.1 mm,
7

𝑚

which is slightly higher than the corresponding 𝛿∗𝑚 values for the mono-
tonically loaded specimens. Complete fracture at the crack tip of the
first loading step occurs when 𝛿∗ is 6.1 mm. The steady-state fracture
𝑚
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Fig. 10. Fracture resistance as a function of the magnitude of the end opening, 𝛿∗𝑚, for specimen 4 (Table 2): (a) 𝑀1∕𝑀2 = 0.299 for the first loading, and (b) 𝑀1∕𝑀2 = −1.0 for
the second loading — the responses are compared with monotonic (proportional) loading for the same 𝑀1∕𝑀2 ratio, and the damage states 𝑎2, 𝑎3, and 𝑏3 are defined in Fig. 4.
Fig. 11. Fracture resistance as a function of the magnitude of the end opening, 𝛿∗𝑚, for specimen 5 (Table 2): (a) 𝑀1∕𝑀2 = 0.943 for the first loading, and (b) 𝑀1∕𝑀2 = −1.0 for
the second loading — the responses are compared with monotonic (proportional) loading for the same 𝑀1∕𝑀2 ratio, and the damage states 𝑎2, 𝑎3, and 𝑏3 are defined in Fig. 4.
Fig. 12. Fracture resistance as a function of the magnitude of the end opening, 𝛿∗𝑚, for specimen 6 (Table 2): (a) 𝑀1∕𝑀2 = −1.0 for the first loading, and (b) 𝑀1∕𝑀2 = 0.943 for
the second loading — the responses are compared with monotonic (proportional) loading for the same 𝑀1∕𝑀2 ratio, and the damage states 𝑎2, 𝑎3, and 𝑏3 are defined in Fig. 4.
resistance is lower than that of the monotonically loaded specimens,

but this difference is typical for fracture mechanics experiments. It
8

is interesting that the FPZ, when the damage state 𝑏3 is reached, is

approximately 151 mm and then reduces to 130 mm.
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Fig. 13. Fracture resistance as a function of the magnitude of the end opening, 𝛿∗𝑚, for specimen 7 (Table 2): (a) 𝑀1∕𝑀2 = 0.0 for the first loading, and (b) 𝑀1∕𝑀2 = 0.943 for
the second loading — the responses are compared with monotonic (proportional) loading for the same 𝑀1∕𝑀2 ratio, and the damage states 𝑎2, 𝑎3, and 𝑏3 are defined in Fig. 4.
Fig. 14. Fracture resistance as a function of the magnitude of the end opening, 𝛿∗𝑚, for specimen 8 (Table 2): (a) 𝑀1∕𝑀2 = 0.299 for the first loading, and (b) 𝑀1∕𝑀2 = 0.943
or the second loading — the responses are compared with monotonic (proportional) loading for the same 𝑀1∕𝑀2 ratio, and the damage states 𝑎2, 𝑎3, and 𝑏3 are defined in Fig. 4.
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Specimen 8 (Fig. 14) is first loaded with a moment ratio of 0.299.
uring this step, the fracture initiates at a 𝐽𝑅 of 1.8 kJ/m2, and the

pecimen is further loaded up to a 𝛿∗𝑚 of 1.25 mm. In the second
oading step, crack growth occurs at a 𝐽𝑅 of 4.6 kJ/m2, although,
n the first step, an FPZ of 33.2 mm developed at much lower 𝐽𝑅
alues. The damage state 𝑏3 is reached at the same end opening as the
onotonically loaded specimens. When the applied moments increase

urther, the crack continues to grow until the specimen is unloaded
ithout complete failure of the bridging fibres at the final location of

he crack tip in the first loading step. Thus, the entire crack growth
hould be influenced by the damage of the first loading step as it
ccurs in a damaged region. However, the fracture resistance curve is
imilar to that of the monotonically loaded specimens, indicating that
he fracture is path independent. The length of the fully developed FPZ
s nearly equal to that of specimen 6 (Fig. 12).

. Discussion

.1. Path-independent fracture

It is sometimes argued that the damage in the FPZ is irreversible,
ustifying the use of path-dependent cohesive laws [19]. Although this
ay be true for certain cases, it is not in general true, as shown in the
9

resent work. The results of the previous section show that the fracture o
f unidirectional composite materials with large-scale fibre bridging at
he wake of the crack tip, i.e., large fracture process zone/nonlinear
racture mechanics, is approximately path independent, although the
amage is irreversible. The dissipated energy, calculated using the 𝐽 -
ntegral, is found to be approximately the same along different loading
aths, even when extreme loading paths are used. This is an important
inding because the use of mixed-mode cohesive laws derived from

potential function is widespread, and the present work provides
xperimental evidence of the justification of using these cohesive laws
o model mixed-mode fractures under arbitrary loading paths. As men-
ioned in Section 1, one major disadvantage of using path-dependent
ohesive laws is that a significantly larger number of experiments
ould be required to describe such cohesive laws properly. Further-
ore, such experiments, i.e., loading at the load path with changing
ode mixity, are difficult to perform. This is the reason why most frac-

ure tests are conducted under proportional loading. The present work
hows that, for unidirectional composites, it is a good approximation to
ssume that fracture is path independent; therefore, path-independent
ohesive laws derived from proportionally loaded fracture experiments
an describe a unique mixed-mode failure envelope.

The current work focuses on composite materials and, in partic-
lar, unidirectional composites. Similar experiments should be per-
ormed for other material types to determine whether the assumption

f path-independent fracture is reasonable.
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5.2. Validity of the 𝐽 -integral approach

Owing to experimental difficulties in applying different loading
paths, the approach used in the present work of complete specimen
unloading before changing the applied mode mixity, in principle, in-
validates the use of the 𝐽 -integral. However, it is shown that, in the
ase of large-scale fibre bridging, the 𝐽 -integral approach can still be
sed. A physical explanation is that, in the case of fibre bridging, during
nloading, there is no further damage accumulation.

. Concluding remarks

The most commonly used mixed-mode cohesive laws are based on a
otential function and, therefore, are path independent. This character-
stic agrees with the premises of LEFM. However, for fracture problems
ith large-scale fracture process zones, as in the case of composite
aterials, path independence has not previously been tested experi-
entally. In the present work, it was experimentally shown that, for
nidirectional composites with a large-scale fracture process zone, path
ndependence is a reasonable assumption. Therefore, path-independent
ixed-mode cohesive laws, e.g., ones derived from a potential function,

ould be used instead of path-dependent cohesive laws.
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