
Lecture notes on quantitative unique continuation for solutions
of second order elliptic equations

Alexander Logunov and Eugenia Malinnikova

Abstract. In these lectures we present some useful techniques to study quanti-
tative properties of solutions of elliptic PDEs. Our aim is to outline the proof
of a recent result on propagation of smallness. The ideas are also useful in the
study of the zero sets of eigenfunctions of the Laplace–Beltrami operator. Some
basic facts about second order elliptic PDEs in divergent form are collected in the
Appendix at the end of the notes.
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1. Eigenfunctions of Laplace–Beltrami operators

1.1. Definition Let M be an oriented Riemannian manifold with metric tensor
g = (gij), let |g| denote the absolute value of the determinant of the matrix (gij),
and let g−1 = (gij) be the inverse tensor. The gradient of a C1 function f on M is
a vector field locally given by

gradM f =
∑
i,j

(gij∂jf)∂i.

The Laplace–Beltrami operator on functions on M is defined as the divergence of
the gradient. In local coordinates, it becomes

∆Mf =
1√
|g|

div(
√
|g|g−1∇f),

where ∇f = (∂1f, . . . ,∂nf) in chosen coordinates.
The following Green formula holds for functions f,h ∈W1,2

0 (M)∫
M
h∆MfdVM = −

∫
M
〈gradM f, gradM h〉gdVM,

where the volume form dVM is defined as dVM =
√

|g|dx1 ∧ · · ·∧ dxn in local
coordinates .

Assume now that M is a compact manifold without boundary. We consider
eigenfunctions φλ of the Laplace–Beltrami operator, such that

∆Mφλ + λφλ = 0.

Then ∫
M

|gradMφλ|
2
gdVM = λ

∫
M

|φλ|
2dVM.
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All eigenvalues of −∆M are real and non-negative. Eigenfunctions corresponding
to distinct eigenvalues are orthogonal since

λ

∫
M
φλφµdVM = −

∫
M
(∆Mφλ)φµdVM = µ

∫
M
φλφµdVM.

The eigenvalues form an increasing sequence that tends to infinity,

0 = λ1 < λ2 6 λ3 6 · · · 6 λn 6 · · · .

The first eigenfunction φ0 is a constant. There is an orthonormal basis of
eigenfunctions for L2(M). We refer the reader to [6, Chapter 1] for details.

Example 1.1.1. (Dirichlet Laplacian for a domain in Rd) Instead of a compact
manifold, we may also consider a bounded domain Ω in Rd and the Laplace
operator with the Dirichlet boundary condition

∆φ+ λφ = 0, φ|∂Ω = 0.

The first eigenvalue is given by the variational formula

λ1(Ω) = min
φ

∫
Ω

|∇φ|2,

where the minimum is taken over all functions φ ∈W1,2
0 (Ω) such that

∫
Ω |φ|2 = 1.

This formula implies that if Ω1 ⊂ Ω2 then

λ1(Ω1) > λ1(Ω2).

The first eigenfunction does not change sign and can be chosen positive in Ω,
while all other eigenfunctions are orthogonal to the first one and therefore change
sign in Ω. The eigenvalues can be determined by the min-max formula

(1.1.2) λk(Ω) = min
Ak

max
φ∈Ak

∫
Ω |∇φ|2∫
Ω |φ|2

,

where the minimum is taken over all k-dimensional subspaces of W1,2
0 (Ω). Alter-

natively, there is an inductive description of eigenvalues (and eigenfunctions),

(1.1.3) λk(Ω) = min
φ

∫
Ω |∇φ|2∫
Ω |φ|2

,

where the minimum is taken over all φ ∈ W1,2
0 (Ω) which are orthogonal to the

first k− 1 eigenfunctions φλ1 , . . . ,φλk−1 .
The variational characterization of the eigenvalues, (1.1.2) and (1.1.3), also hold

for the eigenvalues of the Laplace-Beltrami operator on compact manifolds.

1.2. Courant nodal domain theorem The zero set Z(φ) of a function φ is

Z(φ) = {x : φ(x) = 0},

and we also refer to it as the nodal set of φ. The connected components of
M \Z(φ) are called the nodal domains of the function φ.

The simplest example of a compact manifold is the unit circle T ' [0, 2π).
Eigenfunctions of the Laplace operator are 2π-periodic solutions of the eigenvalue
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problem

φ ′′ + λφ = 0.

This equation has a 2π periodic solution when λ = n2 for some integer n. The first
eigenfunction, corresponding to n = 0 is a constant. For n > 0 the eigenfunctions
are linear combinations of φn,1(θ) = cos(nθ) and φn,2(θ) = sin(nθ). Each of
them has 2n zeros on the circle.

The Courant nodal domain theorem gives an upper bound for the number of
nodal domains of eigenfunctions on manifolds of arbitrary dimension. LetM be a
compact manifold as above and φλn be an eigenfunction of the Laplace-Beltrami
operator corresponding to the n-th smallest eigenvalue.

Theorem 1.2.1 (Courant). The number of connected components of M \ Z(φλn) is at
most n.

For the proof we refer the reader to [8, Chapter 6] and [6]. The proof is beauti-
ful and short except for one non-trivial result on weak unique continuation prop-
erty of solutions of second order elliptic PDEs. The result says that a non-zero
Laplace-Beltrami eigenfunction cannot vanish on an open subset of a manifold.
The aim of these notes is to give a new quantitative sharpening of this uniqueness
result.

1.3. More examples A first intuition on the geometry of zero sets of eigenfunc-
tions comes from the pictures of nodal domains on the unit sphere and the stan-
dard torus, see [18].

Example 1.3.1. The eigenfunctions on the unit sphere Sd in Rd+1 are restrictions
of the homogeneous harmonic polynomials which are called spherical harmonics.
If P is a polynomial of d+ 1 variables, ∆P = 0 and P(x) = |x|nY(x/|x|), where Y is
a function on S = Sd, then

∆SY +n(n+ d− 1)Y = 0.

There is a basis of spherical harmonics for L2(Sd). Therefore there are no other
eigenfunctions of the Laplace-Beltrami operator on the sphere, further details are
given in Exercise 1.8.3.

Example 1.3.2. Another standard compact manifold, on which we can compute
eigenfunctions explicitly, is the torus.

Let Td be the d-dimensional torus which we will identify with the rectangle∏d
j=1[−π,π] glued along each pair of opposite sides. Then we have a basis of

eigenfunctions of the form

φ(x) = exp

i d∑
j=1

njxj

 , ∆Tdφ+

d∑
j=1

n2
jφ = 0,

where nj ∈ Z.
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We notice that if dimension d > 1, there are eigenvalues for the Laplace–
Beltrami operators on Sd and Td with arbitrary large multiplicities. This is a
source of interesting examples of eigenfunctions.

The zero sets of standard spherical harmonics and eigenfunctions on the torus
are not hard to visualize, but the structure of the zero sets of linear combinations
of these functions (corresponding to the same eigenvalue) may be complicated.

1.4. Bessel functions and Helmholtz equation Another classical example of
eigenfunctions are bounded solutions of the Helmholtz equation in Rn,

∆φ+ λφ = 0.

For λ 6 0 the maximum principle holds and there are no non-trivial bounded
solutions. Hence we are interested in the case λ > 0 and, rescaling the variable,
we may assume that λ = 1.

The Laplace operator in polar coordinates can be written as

∆φ = ∂2
rφ+

d− 1
r
∂rφ+

1
r2∆Sφ.

We look for solutions of the equation ∆φ+φ = 0 of the form φ(x) = f(|x|)Y(x/|x|).
Separating the variables, one can check that Y is an eigenfunction of the Laplace–
Beltrami operator on the unit sphere. The eigenvalues on the sphere are given in
Example 1.3.1 (see also Exercise 1.8.3 below). Then we find a family of solutions
of the Helmholtz equation of the form

φ(x) = fn(|x|)Y

(
x

|x|

)
, ∆SY = −n(n+ d− 2)Y,

where fn(r) satisfies the following ordinary differential equation

r2f ′′ + (d− 1)rf ′ + (r2 −n(n+ d− 2))f = 0.

Writing fn(r) = r1−d/2gn(r) we see that gn(r) satisfies the Bessel equation

r2g ′′ + rg ′ + (r2 − (n+ d/2 − 1)2)g = 0.

This is a second order ODE with analytic coefficients with a solution Jn+d/2−1
called the Bessel function (of the first kind) which is continuous at the origin. The
solution is of the form

Jn+d/2−1(r) = r
n+d/2−1hn+d/2−1(r)

where hn+d/2−1(r) is an analytic function of r and hn+d/2−1(0) 6= 0 (see for
example [35, Chapter 4.2]); the second solution has a singularity at r = 0. Thus
we get

fn(r) = r
1−d/2Jn+d/2−1(r) = r

nhn+d/2−1(r).

We consider positive zeros of Jν (they are simple, since Jν is a non-zero solution
do second order ODE) and enumerate them 0 < jν,1 < jν,2 < · · · .

Using the obtained description of the solutions of the Helmholtz equation, we
can compute eigenfunctions and eigenvalues of the Dirichlet Laplace operator for
the unit ball in Rd, see Exercise 1.8.4 below.
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1.5. Yau’s conjecture Examples of eigenfunctions on the torus and sphere show
that the number of nodal domains may vary, but is bounded from above as shown
by Courant nodal domain theorem. At the same time, there exist eigenfunctions
with large eigenvalues and just two nodal domains as was shown already in 1925
in the dissertation of Antonie Stern; see [3] for historical details and references.

On the other hand, these examples show that nodal lines become more com-
plicated and dense as the eigenvalue grows. We give a proof of a well known
result on the density of the zero sets of eigenfunctions in the next section. First
we formulate a deep conjecture of Yau [37].

Conjecture (Yau). Let M be a smooth compact d-dimensional Riemannian manifold.
There exist constants C1 and C2, which depend on M, such that

C1
√
λ 6 Hd−1(Z(φλ)) 6 C2

√
λ,

for any eigenfunction φλ satisfying ∆Mφλ + λφλ = 0.

The singular set of a function is the set where both the function and its gra-
dient equal zero. The singular sets of an eigenfunction has Hausdorff dimen-
sions d− 2 and its nodal sets is the union of smooth hypersurfaces with finite
(d − 1)-dimensional Hausdorff measure and the singular set. The finiteness of
the Hausdorff measure of the nodal set is a non-trivial fact; see [17] for details.

The Yau conjecture was proved for the case of real analytic metrics by Donnelly
and Fefferman in 1988, [9]. We outline some of the ideas in Section 2.6.

1.6. Lift of eigenfunctions The following lifting trick is used intensively in the
study of eigenfunctions. Let M be a d-dimensional manifold and φλ be an eigen-
function, ∆Mφλ + λφλ = 0, we define the function

h(x, t) = φλ(x)e
√
λt,

on the product manifold M ′ = M×R. Then ∆M ′h = 0. Locally we view h as a
solution of an elliptic equation in divergence form on a subdomain of Rd+1.

The first application of the lifting trick is the proof of the result on the density
of the zero sets of eigenfunctions.

Proposition 1.6.1. Suppose that M is a compact Riemannian manifold. There exists
ρ = ρ(M) such that for any eigenfunction φλ with λ > 0 and any x ∈ M the distance
from x to the zero set Z(φλ) is less than ρλ−1/2.

Proof. Suppose that φλ does not change sign in some ball Br ⊂ M. We assume
that r is small enough and consider a chart for M that contains Br. Then the
function h(x, t) = φλ(x)exp(

√
λt) is a solution of a second order elliptic equation

in divergence form and h does not change sign in Br × [−r, r]. By the Harnack
inequality, (see Theorem 5.1.6 below)

sup
D

|h| 6 C(M) inf
D

|h|,
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where D = Br/2 × [−r/2, r/2]. That r < ρλ−1/2 then follows from

sup
D

|h| = sup
Br/2

|φλ| exp(r
√
λ/2) > exp(r

√
λ) inf
D

|h|. �

The zero set of h = φλ(x) exp(
√
λt) is the cylinder over Z(φλ), hence questions

about Z(φλ) can be restated in terms of Z(h). One advantage is that h is a solution
of an elliptic second order PDE in divergence form with no lower order terms.

1.7. A question of Nadirashvili Suppose that h is a harmonic function in the
unit disc D ⊂ R2 such that h(0) = 0. The zero set of h is the union of analytic
curves and by the maximum principle it has no loops. We assume that h(0) = 0
then an elementary geometric argument implies that

H1(Z(h)∩D) > 2.

Nadirashvili asked whether a higher dimensional version of this statement holds.

Conjecture (Nadirashvili). There is a constant c > 0 such that for any harmonic
function h in the unit ball B of R3 such that h(0) = 0, the following inequality holds

H2(Z(h)∩B) > c.

The question was formulated for harmonic functions in Rn and remained open
for many years. The proof given recently in [26] by the first author is complicated
(and beyond the scope of these lectures), it gives the affirmative solution to the
version of the Nadirashvili conjecture for solutions of second order elliptic equa-
tion in divergence form with smooth coefficients.

Theorem 1.7.1 ([26]). Suppose that Lu = div(A∇u) is a uniformly elliptic operator in
the unit ball B ⊂ Rd with smooth coefficients. There exists a constant c = c(A) such
that for any solution of Lu = 0 with u(0) = 0 satisfies

Hd−1(Z(u)∩B) > c.

A corollary, also shown in [26], is the lower bound in Yau’s conjecture on
compact Riemannian manifolds with smooth metric. A polynomial upper bound

Hd−1(Z(φλ)) 6 Cλ
Ad ,

where Ad depends only on the dimension of the manifold and C depends on the
manifold and the metric was obtained in [25].

1.8. Exercises

Exercise 1.8.1 (Harnack inequality). Let L = div(A∇·) be a uniformly elliptic
operator with bounded coefficients. Use the Harnack inequality (Theorem 5.1.6)
to prove the following statements.

(1) If u is a bounded solution of Lu = 0 in Rd then u is a constant.
(2) Let Ct denote the cylinder

Ct = {x = (x1, . . . xd) ∈ Rd : x2
1 + · · ·+ x

2
d−1 6 t

2}.
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Suppose that Lu+ cu = 0, c ∈ R and u is positive in the cylinder C1 and
let M(R) = max{u(x) : x ∈ C1/2, |xd| 6 R}. Then there exists C such that
M(R) 6 u(0)eCR.

Exercise 1.8.2. Suppose that ∆Mu+ λu = 0 and Ω is a connected component of
M \ Z(u). Assume that Ω is a domain with piece-wise smooth boundary and
prove that the first Dirichlet Laplace eigenvalue of Ω is

λ1(Ω) = λ.

Remark: Careful details can be found in [6], see also [7].

Exercise 1.8.3 (Harmonic polynomials). The restrictions of homogeneous harmonic
polynomials on the unit sphere S ⊂ Rd+1, called spherical harmonics, are the
eigenfunctions of the Laplace–Beltrami operator. We denote the eigenspace that
corresponds to the eigenvalue λ = n(n+ d− 1) by En,d. If Y ∈ En,d then the
function P(x) = |x|nY(x/|x|) is harmonic.

(1) Apply Green’s formula in Rd to show that if Yn ∈ En,d and Ym ∈ Em,d

with n 6= m then ∫
S
YnYm = 0.

(2) Consider the following inner product on the space Pn,d of homogeneous
polynomials of degree n in d variables,

[P,Q] = P(D)(Q) =
∑

|α|=n

α!PαQα,

where P(x) =
∑

|α|=n Pαx
α, Q(x) =

∑
|α|=nQαx

α. Show that the space
of harmonic polynomials Hn,d ⊂ Pn,d is the orthogonal complement of

Qn,d = {P ∈ Pn,d : P(x) = |x|2P1(x),P1 ∈ Pn−2,d}

with respect to this inner product.
(3) Show that any homogeneous polynomial F of degree n in Rd can be

written as

F(x) = Hn(x) + |x|2Hn−2(x) + · · · |x|2kHn−2k,

where k = bn/2c and Hj is a homogeneous harmonic polynomial of de-
gree j. This implies that spherical harmonics form a basis for L2(S) and
there no other eigenfunctions.

(4) Deduce that if Y ∈ Hn,d and F is a polynomial of degree less than n then∫
S YF = 0.

(5) Suppose that P(x) ∈ Hn,d and Q is a factor of P, P = QF for some polyno-
mial F. Show that Q changes sign in Rd.

Exercise 1.8.4 (Dirichlet eigenfunctions for balls). Let Jn be the Bessel function
such that

u(reiθ) = Jn(r)(a cosnθ+ b sinnθ)
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satisfies ∆u+ u = 0 in R2, i.e., Jn is a solution of the second order ODE

r2J ′′ + rJ+ (r2 −n2)J = 0.

Furthermore, let 0 < jn,1 < jn,2 < · · · be the positive zeros of Jn.

(1) Show that there is a constant c such that n 6 jn,1 6 cn. (Hint: you
may use the equation for the lower bound and the density of zero sets of
eigenfunctions for the upper bound.)

(2) Show that the following functions

φn,k(re
iθ) = Jn(jn,kr)(a cosnθ+ b sinnθ)

are eigenfunctions of the Dirichlet Laplacian on the unit ball of R2, and
that the smallest eigenvalue is j20,1.

Remark 1: A classical and deep result of Siegel implies that two distinct Bessel
functions Jn and Jm with integer n and m have no common zeros and thus all
eigenvalues of a disk are simple.
Remark 2: Let λd,k be the kth eigenvalue of the Dirichlet Laplace operator on
the unit ball B0 ⊂ Rd. Suppose that M is a smooth d-dimensional Riemannian
manifold, x ∈ M and let B = B(x, r) be the ball on M of radius r and center x.
Let λk(B) be the kth eigenvalue of the Dirichlet Laplace-Beltrami operator for B.
Then one can show that (see [6])

λk(B) ∼ r
−2λd,k, r→ 0.

Exercise 1.8.5 (Yau’s conjecture). Prove the lower bound Hd−1(Z(u)) > c
√
λ in

the Yau conjecture in dimensions one and two. Hint: for the case d = 2, first
use Exercise 1.8.2, then the inequality λ1(Ω1) > λ1(Ω2) for Ω1 ⊂ Ω2, and finally
Remark 2 above.

2. Doubling index and frequency function

An important tool to study nodal sets of eigenfunctions and growth properties
of solutions of elliptic PDEs is the so-called frequency function. The idea goes
back to the works of Almgren [2] and Agmon [1], where it was introduced for
the case of harmonic functions in Rn. It was generalized to solutions of second
order elliptic equations by Garofalo and Lin [13], see also [20] and [31].

2.1. Frequency function Let A(x) be a symmetric uniformly elliptic matrix with
Lipschitz coefficients defined on some ball Br centered at the origin and such that
A(0) = I. Define the function µ by

µ(x) =
(A(x)x, x)

|x|2
,

then µ(0) = 1, Λ−1 6 µ(x) 6 Λ. Moreover, since A has Lipschitz coefficients,
we have

A(x) = I+O(|x|) and µ(x) = 1 +O(|x|).
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Let u be a solution to the equation div(A(x)∇u(x)) = 0. We consider weighted
averages of |u|2 over spheres:

H(r) = r1−d
∫
∂Br

µ(x)|u(x)|2ds(x).

Denoting by ν = x/|x| the unit outer normal vector for the sphere and applying
the divergence theorem, we obtain

H(r) = r−d
∫
∂Br

(|u|2A(x)x,ν)ds = r−d
∫
Br

div(|u|2A(x)x).

In the case of the Laplace operator, A = I and µ(x) = 1, the function t 7→ H(et)

is convex, i.e.,

H(r) 6 H(r1)
αH(r2)

1−α, when r = rα1 r
1−α
2 , α ∈ (0, 1).

This can be proved either using the decomposition of harmonic functions into se-
ries of spherical harmonics, or by integration by parts as below, the computations
are slightly simplified in this case, see [15].

A similar convexity property was discovered for solution of elliptic equations
in [13], we provide a calculation that is a small variation of the one given in [20].

First we compute the derivative of H,

(2.1.1) H ′(r) = −dr−1H(r) + r−d
∫
∂Br

div(|u|2A(x)x).

We rewrite the integral in the second term as∫
∂Br

div(|u|2A(x)x) =∫
∂Br

2u(∇u,A(x)x) +
∫
∂Br

|u|2trace(A(x)) +
∫
∂Br

|u|2AD(x),

where AD(x) =
∑
i,j(∂iaij)xj. We also note that

µ(x) = 1 +O(|x|), trace(A) = d+O(|x|), and AD(x) = O(|x|).

This implies

(2.1.2)
∫
∂Br

div(|u|2A(x)x) =∫
∂Br

2u(∇u,A(x)x) + d
∫
∂Br

|u|2µ(x) +O(rdH(r)).

We rewrite the first integral in the right-hand side of (2.1.2) using the symmetry
of A and then apply the divergence theorem once again to obtain∫

∂Br

2u(∇u,A(x)x) =
∫
∂Br

2u(A(x)∇u, x) = 2r
∫
Br

div(uA(x)∇u).

Next, using the equation div(A∇u) = 0, we have

(2.1.3)
∫
∂Br

2u(∇u,A(x)x) = 2r
∫
Br

(A(x)∇u,∇u).
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Finally, combining (2.1.1), (2.1.2), and (2.1.3), we get

H ′(r) = 2r1−d
∫
Br

(A∇u,∇u) +O(H(r)).

Following [13] and [20], define

I(r) = r1−d
∫
Br

(A∇u,∇u) = r−d
∫
∂Br

(uA∇u, x),

and the frequency function of u

N(r) =
rI(r)

H(r)
.

Then

(2.1.4) H ′(r) = 2I(r) +O(H(r)), N(r) =
rH ′

2H
+O(1).

Proposition 2.1.5. There exists a constant C that depends only on the ellipticity and
Lipschitz constants of matrix A(x) such that for any solution u to div(A∇u) = 0 in a
ball BR centered at the origin, the function F(r) = eCrN(r) is increasing on (0,R).

Proof. We compute N ′(r), taking into account that the first derivatives of the
coefficients of A are bounded. We already know that

H ′(r) = 2I(r) +O(H(r)).

Next we estimate (rI(r)) ′. If w is a vector field in Br with (w, x) = r2 on ∂Br, then

(2.1.6) (rI(r)) ′ = (2 − d)I(r) + r2−d
∫
∂Br

(A∇u,∇u)

= (2 − d)I(r) + r1−d
∫
Br

div(w(A∇u,∇u))

= (2 − d)I(r) + r1−d
∫
Br

div(w)(A∇u,∇u) + r1−d
∫
Br

(w,∇(A∇u,∇u)).

We used the divergence theorem in the second equality above. To simplify the
last term we note that

(2.1.7) (w,∇(A∇u,∇u)) = 2(w, Hess(u)(A∇u)) + (AD,w∇u,∇u),

where AD,w(x) = {
∑
k(∂kaij)wk}i,j. Furthermore, the Hessian is a symmetric

matrix and

Hess(u)(w) = ∇(∇u,w) − (Dw)∇u.

Thus, we obtain,∫
Br

(Hess(u)w,A∇u) =
∫
Br

(∇(∇u,w),A∇u) −
∫
Br

((Dw)∇u,A∇u)

=

∫
Br

div((∇u,w)A∇u) −
∫
Br

((Dw)∇u,A∇u)(2.1.8)

= r−1
∫
∂Br

(∇u,w)(A∇u, x) −
∫
Br

((Dw)∇u,A∇u).
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We used the equation div(A∇u) = 0 for the second identity and the divergence
theorem for the third one.

Now we choose w(x) = µ(x)−1A(x)x. Then

(w(x), x) = |x|2, Dw = I+O(|x|), div(w) = d+O(|x|).

We proceed to work with (2.1.8) and rewrite the first integral as∫
∂Br

(∇u,w)(A∇u, x) =
∫
∂Br

µ(x)−1(A∇u, x)2.

Now combine the second term in (2.1.6) and the second term in (2.1.8), taking
into account the inequalities for Dw and div(w), we get

r1−d
∫
Br

div(w)(A∇u,∇u) − 2r1−d
∫
Br

((Dw)∇u,A∇u) =

(d− 2)I(r) +O(rI(r)).

Moreover, we have

r1−d
∫
Br

|(AD,w∇u,∇u)| 6 Cr1−d
∫
Br

r|∇u|2 = O(rI(r)),

where C depends on the ellipticity and Lipschitz constants of A and on the di-
mension of the space. Now (2.1.6), (2.1.7), (2.1.8) and the last two inequalities
imply

(rI(r)) ′ = 2r−d
∫
∂Br

µ(x)−1(A∇u, x)2 +O(rI(r)).

Finally, the last inequality and (2.1.4) give

N ′(r)(N(r))−1 = (rI(r)) ′(rI(r))−1 − (H ′(r))(H(r))−1

=
2r−2d

I(r)H(r)

(∫
∂Br

(A∇u, x)2

µ(x)

∫
∂Br

µ(x)|u|2 −

(∫
∂Br

(uA∇u, x)
)2
)
+O(1).

The first term is positive by the Cauchy-Schwarz inequality. Therefore

N ′(r) > −CN(r)

and the proposition follows. �

Corollary 2.1.9. Suppose that div(A(x)∇u(x)) = 0 in BR0 , where A(x) = I+O(x)

as above. Let also N(r) be the frequency of u. Then there exists DN that depends on R0,
N(R0/2), the ellipticity and Lipschitz constants of the operator, and the dimension of the
space, such that ∫

B2r

|u|2 6 DN

∫
Br

|u|2

for any r ∈ (0,R0/4).

Proof. For any r < R0/2 we write (2.1.4) and apply the proposition

H ′(r)H(r)−1 6 2I(r)H(r)−1 + c = 2r−1N(r) + c 6 2r−1N(R0/2)eC(R0−2r).
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Integrating H ′(r)/H(r) over an interval [ρ, 2ρ] for ρ < R0/4, we get∫
∂B2ρ

µ(x)|u(x)|2ds(x) 6 CN

∫
∂Bρ

µ(x)|u(x)|2ds(x),

where CN = exp(C1 + C2N(R0/2)) with C2 = C2(R0). Finally, integrating the
inequality with respect to ρ from 0 to r, and using that Λ−1 6 µ 6 Λ we obtain
the required estimate. �

2.2. Three spheres theorem for elliptic PDEs Another consequence of the mono-
tonicity of the frequency function is the three sphere theorem. Its simplest version
is the classical Hadamard three circle theorem for analytic functions. It states that
if f is an analytic function on the unit ball in C and

M(r) = max{|f(z)| : |z| = r},

then the following inequality holds

M(r) 6M(r1)
αM(r2)

1−α, where r = rα1 r
1−α
2 , r, r1, r2 < 1.

The classical proof is based on the fact that the logarithm of the modulus of
an analytic function is subharmonic. It turns out that even without analyticity
a version of the Hadamard inequality holds for harmonic functions and more
generally for solutions to uniformly elliptic equations. One of the first general
results is due to Landis [21].

We derive the three spheres theorem from the properties of the frequency func-
tion, following [13]. Proposition 2.1.5 implies the inequality eCrN(2r) > N(r),
which, combined with (2.1.4), gives

rH ′(r)

H(r)
6

(
c+

2rH ′(2r)
H(2r)

)
eCr.

Then integrating from r to 2r with respect to dr/r we obtain

(2.2.1) logH(2r) − logH(r) 6 (c log 2 + logH(4r) − logH(2r))e2Cr.

Proposition 2.2.2. Assume that L = div(A∇·) is a uniformly elliptic operator, A is
symmetric and has Lipschitz entries in a domain Ω. Suppose also that A(0) = I and
B(0, 4r) ⊂ Ω. There exist α > 0 and C > 0 such that for any solution u of Lu = 0 the
following inequality holds∫

∂B2r

|u|2 6 C

(∫
∂Br

|u|2
)α(∫

∂B4r

|u|2
)1−α

.

Proof. We collect similar terms in (2.2.1) and take the exponent of both sides to
obtain ∫

∂B2r

µ|u|2ds 6 C1

(∫
∂Br

µ|u|2ds

)α(∫
∂B4r

µ|u|2ds

)1−α

with α = (1 + e4Cr)−1 so that α can be chosen close to 1/2 as r → 0. This
inequality and bounds on µ imply the required estimate. �
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Assume that A is as above with A(0) = I. Proposition 2.2.2 and the equivalence
of Lp-norms for solutions of elliptic equations (see Corollary 5.1.4 below) imply
the following three ball inequality for supremum norms

sup
B2r

|u| 6 C

(
sup
Br

|u|

)α1
(

sup
B8r

|u|

)1−α1

,

for some C and α1 ∈ (0, 1) depending on A and r but not on u.
We can drop the assumption that A(0) = I applying a local change of variables,

balls are replaced by ellipses. Applying the inequality several times and inscrib-
ing ellipses in balls we obtain the following statement. (We omit some technical
details required for an accurate argument.)

Corollary 2.2.3. Let L = div(A∇·) be a uniformly elliptic operator with Lipschitz
coefficients in a domain Ω. There exist r0 > 0, k large enough, C and β ∈ (0, 1) such
that if B = Br is a ball with r < r0 and Bk2r ⊂ Ω then

sup
B2r

|u| 6 C

(
sup
Br

|u|

)β(
sup
Bkr

|u|

)1−β

,

for any u that solves the equation Lu = 0 in Ω.

The general version of this result can be obtain by the chain argument.

Corollary 2.2.4. Let L be as above and B ⊂ K ⊂⊂ Ω, where B is open and K is compact.
There exist C and γ ∈ (0, 1) that depend only on K,Ω,B and the ellipticity and Lipschitz
constants of L such that for any solution u to Lu = 0 in Ω the following inequality holds

sup
K

|u| 6 C

(
sup
B

|u|

)γ(
sup
Ω

|u|

)1−γ
.

Proof: Chain argument. Assume that supΩ |u| = 1. For each point x ∈ K there
is a curve γ connecting x to some fixed point in B. We then can find a finite
sequence of balls {Bj}

J
j=1 such that r(Bj) < r0, B1 ⊂ B, Bj+1 ⊂ 2Bj, k2Bj ⊂ Ω and

x ∈ BJ = B(x). Applying the previous corollary we see that

sup
Bj+1

|u| 6 sup
2Bj

|u| 6 C(sup
Bj

|u|)β.

Iterating this estimate we obtain

sup
BJ

|u| 6 C1(sup
B

|u|)β1 ,

for some C1 and β1 that depend on C, β and the number J of the iteration steps.
Finally, we take a finite cover of K by balls B(x) and get the required estimate. �

2.3. Doubling index We prefer to replace the frequency function by a compara-
ble but more intuitive quantity that we call the doubling index. Let h ∈ C(Ω),
such that h does not vanish on any open subset of Ω. For any closed ball B such
that 2B ⊂ Ω we define

Nh(B) = log
max2B |h|

maxB |h|
.
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Note that if p is a homogeneous polynomial of degree n and a ball B is centered
at the origin than Np(B) = n log 2. At the same time if we compute the frequency
function Np(r) of this polynomial (defined for the case of the Laplace operator,
A = I), we get Np(r) = n. In general, if h is a solution to Lh = 0 in the ball
BR0 then, using the equivalence of norms (Corollary 5.1.4) and the estimate in the
proof of Corollary 2.1.9, we obtain that for r < R0/4

C−1
1 Nh(r) −C2 6 Nh(Br) 6 C1Nh(4r) +C2.

The inequality above and the almost monotonicity of the frequency implies the
following almost monotonicity for the doubling index when 4r < R < R0,

(2.3.1) Nh(Br) 6 C(Nh(BR) + 1) .

2.4. Doubling index for eigenfunctions The monotonicity of the doubling in-
dex and three sphere theorem hold for solutions of second order elliptic equa-
tions of the form div(A∇h) = 0. For eigenfunctions φλ(x) on compact manifolds
there is no monotonicity of the doubling index and the three sphere inequality
gets a constant that depends on the eigenvalue. As above, we consider the lift
h(x, t) = e

√
λtφλ(x) and then apply the results of the previous sections to h that

solves an equation of the form div(A∇h) = 0.
Donnelly and Fefferman used the doubling indices in their study of nodal

sets of eigenfunctions on smooth manifolds. One of their celebrating results for
general smooth compact Riemannian manifolds is the following.

Proposition 2.4.1. Let M be a smooth compact Riemannian manifold. There exists r0

and C depending on M such that for any eigenfunction φ = φλ,

∆Mφλ + λφλ = 0,

the doubling index Nφ(B) 6 C
√
λ when B is a ball on M with radius r 6 r0.

Proof. Let B = B(x, r) be a ball on M. We consider the ball B ′ on M× [−R,R],
R > r, such that the center of B ′ is (x, 0) and the radius on B ′ is r. We say
that B ′ is the lift of B. We note that Nφ(B) 6 Nh(B

′) + C
√
λ. It is enough to

prove the estimate for the doubling index of h on M × [−R,R]. Assume that
maxM |φ| = |φ(x0)| = 1 and fix r such that for each point x ∈M the geodesic ball
Br(x) is contained in a chart.

Let B be any ball of radius r/2k on M and B ′ be its lift in M×R. Consider
a finite chain {Bj}

J
j=1 of geodesic balls in M× [−r, r] with centers on M× 0 and

equal radii r/2k chosen so that B1 = B ′, Bj+1 ⊂ 2Bj and (x0, 0) ∈ BJ. Then, since
supkBj |h| 6 e

r, Corollary 2.2.3 implies

sup
Bj

|h| > c(sup
2Bj

|h|)1/βe−Cr > c(sup
Bj+1

|h|)1/βe−Cr.

It implies that supB ′ |h| > c1, where where c1 depends on r and M (which also
determine the number of balls in a chain). Then,

er
√
λ sup
B

|φ| > c1,
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Thus for any ball B of radius at least r and for the corresponding lifted ball B ′

we obtain Nφ(B) 6 C(
√
λ + 1) and Nh(B

′) 6 C(
√
λ + 1). Finally, the almost

monotonicity of the doubling index for h implies similar estimate for balls of
radius less than r. �

2.5. Cubes A version of the (maximal) doubling index for cubes is used in the
next sections. For a given cube Q ⊂ Rd we denote its side length by s(Q). Then
the volume of the cube is |Q| = (s(Q))d.

Assume that u is a solution to the equation Lu = 0 in a domain Ω ⊂ Rd and
for each cube Q with 2Q ⊂ Ω define

(2.5.1) N∗u(Q) = sup
q⊂Q

log
max2q |u|

maxq |u|
.

We claim that the almost monotonicity of the usual doubling index implies that
the supremum above is finite. By the definition, we have now that if q ⊂ Q then
N∗u(q) 6 N∗u(Q).

We want to compare the maximal doubling index N∗u(Q) defined above to the
doubling index log max2Q |u|− log maxQ |u|. Take a cube q ⊂ Q. If q is small,
s(q) < cds(Q), we first apply almost monotonicity inequality for the doubling
index (2.3.1). Let b be the largest ball inscribed in q then 2q ⊂ kdb, where
kd = 2

√
d and we have

log
max2q |u|

maxq |u|
6 log

maxkdb |u|
maxb |u|

6 C1 log
maxkdB |u|

maxB |u|
+C2,

where B is a ball concentric with b such that kdB ⊂ Q, R = R(B) ∼ s(Q). This
implies

max2q |u|

maxq |u|
6 C3

(
maxkdB |u|

maxB |u|

)C1

.

Now, using that R(B) is comparable to s(Q), we repeat the chain argument from
the proof of Corollary 2.2.4 to obtain the inequality

max
Q

|u| 6 C

(
max
B

|u|

)γ(
max

2Q
|u|

)1−γ
.

with C and α ∈ (0, 1) which does not depend on B (for B with R(B) ∼ s(Q) the
number of balls in the chain is uniformly bounded). Finally,

maxQ |u|

max2Q |u|
6 C

(
maxB |u|

maxkdB |u|

)γ
6 C

(
maxq |u|
max2q |u|

)γ/C1

.

For large cubes q with s(q) > cds(Q) the last inequality follows directly from the
three balls inequality and the chain argument. Thus we obtain

(2.5.2) log
max2Q |u|

maxQ |u|
> a1N

∗
u(Q) − a2,

where a1 and a2 depend on the ellipticity and Lipschitz constants of the operator
only when we assume that s(Q) 6 1.
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We also consider eigenfunctions on manifolds and define the doubling index
for eigenfunctions over cubes in a similar way, to prove that the supremum is
finite for this case we can use the monotonicity for the lifted function.

2.6. Remarks on the size of the zero sets of eigenfunctions and the doubling
index In this section we first formulate some results that were proved by Don-
nelly and Fefferman [9]. We assume that M is a real-analytic Riemannian man-
ifold (or that coefficients of the corresponding elliptic operator are real-analytic,
see also [23].)

Lemma 2.6.1. Let L = div(A∇·) be a uniformly elliptic operator with real analytic
coefficients defined in the unit cube Q0 ⊂ Rd+1. There is constant C = C(L) such that
if Lh = 0 in Q0 then for any Q1 such that 4Q1 ⊂ Q0 the size of the zero set of h in Q1

admits the following estimate

Hd(Z(h)∩Q1) 6 CNs(Q1)
d,

where N = max{1,N∗h(2Q1)}.

We don’t know if this lemma remains true for non-analytic case.
Suppose that φλ is an eigenfunction on a compact manifold M with real-

analytic metric. Applying Lemma 2.6.1 to the function h(x, t) = φλ(x) exp(
√
λt)

on charts and having in mind the bound for the doubling index of h, one obtains
the upper bound for Hd(Z(h)∩M× [−1, 1]). Moreover, since Z(h) is the cylinder
over Z(φ), the upper bound in Yau’s conjecture follows

Hd−1(Z(φλ)) 6 C
√
λ.

This part of the conjecture is open for non-analytic manifolds. The best known
result, see [25], is based on a non-analytic version of the lemma above, the esti-
mate is

Hd(Z(h)∩Q1) 6 CN
As(Q1)

d

for some A = A(d). It implies a polynomial bound in Yau’s conjecture.
To obtain the lower bound in Yau’s conjecture on manifolds with real analytic

metric, Donnelly and Fefferman proved the following statement.

Lemma 2.6.2. Suppose that M is a real-analytic manifold. There exists N0 such that the
following is true. If φ = φλ is an eigenfunction on M and M is partitioned into cubes
with side length ≈

√
λ
−1

, M = ∪q, then for at least half of these cubes q the doubling
index of φ in q is bounded by N0, N∗φ(q) 6 N0.

This lemma can be combined with the next one (applied for the lifted function)
to give the conjectured lower bound for the size of the zero set of eigenfunctions
on real-analytic manifolds.

Lemma 2.6.3. Let L = div(A∇·) be a uniformly elliptic operator with smooth coefficients
in the unit cube Q0 ⊂ Rd+1. There exists a function f(N) that depends only on L such
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that if Lh = 0 in Q0, h(0) = 0 and N∗h(Q1) 6 N, where Q1 = 1/4Q0, then

Hd(Z(h)∩Q1) > f(N)s(Q1)
d.

The last lemma does not require analyticity of the coefficients. A simple quan-
tification of this estimate is known (see remarks in [27]); the statement of 2.6.3
is weaker than Theorem 1.7.1. Detailed discussion of the current state of Yau’s
conjecture and related open problems can be found in [29].

We conclude this lecture by formulating an estimate for the size of the zero set
from above which is not as precise as the polynomial bound in [25]. It follows
from earlier results of Hardt and Simon [17].

Lemma 2.6.4. Let L = div(A∇·) be a uniformly elliptic operator with smooth coefficients
in the unit cube Q0 ⊂ Rd+1. There exists a function F(N) that depends only on L such
that if Lh = 0 in Q0, and N∗h(Q1) 6 N, where Q1 = 1/4Q0, then

Hd(Z(h)∩Q1) 6 F(N)s(Q1)
d.

2.7. Exercises

Exercise 2.7.1. For h harmonic on Rd, define the frequency function of h by

N(r) =
rH ′(r)

2H(r)
,

where H(r) = r1−d ∫
|x|=r |h(x)|

2ds(x).

(1) Show that if h is a homogeneous polynomial of degree n then N(r) = n.
(2) Let h =

∑L
k=l pk, where pk is a homogeneous harmonic polynomial of

degree k and pl,pL 6= 0. Show that

lim
r→0

N(r) = l and lim
r→∞N(r) = L.

Remark: l is called the vanishing order of h at the origin.
(3) Use the fact that N(r) is a non-decreasing function to prove that(

R

r

)2N(r)

6
H(R)

H(r)
6

(
R

r

)2N(R)

.

Exercise 2.7.2 (Applications of the three ball inequality).
Suppose that h is a non-constant harmonic function in Rd such that |h| 6 1 on a
half-space {x = (x1, xd, xd > 0}. Let m(R) = max|x|<R |h|.

(1) Show that there exist c > 0 and α ∈ (0, 1) such that for any R > 0

m(R) 6 Cm(5R)α.

(2) Show that m(R) > c exp(Rβ) for some β > 0.

Exercise 2.7.3 (Log-convex functions).
Let m : R+ → R+ be a continuous function. We say that m is log-convex if
f(t) = ln(m(exp(t))) is a convex function. (For example if m(x) = xa,a > 0 then
f(t) = at and m is log-convex.) Warning: usually a positive function g is called
logarithmically convex if log(g) is a convex function.
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(1) Show that if ak are non-negative numbers then

m(x) =

n∑
k=1

akx
k

is log-convex. Hint: The sum of two log-convex functions is log-convex.
(2) Let u be a harmonic function in the unit ball of Rd, we know that

u(x) =

∞∑
k=0

|x|kYk(x/|x|),

where Yk is an eigenfunction of the Laplace-Beltrami operator on the unit
sphere S ⊂ Rd. Show that

m(r) =

∫
S
|u(ry)|2ds(y)

is log-convex.
(3) Let K(x, t) be the heat kernel in Rd,

K(x, t) = (4πt)−d/2 exp(−|x|2/(4t)),

and it satisfies the equation ∆K(x, t) = ∂tK(x, t). Suppose that u is a
harmonic function in Rd such that u(x) exp(−c|x|2) ∈ L2(Rd) for any
c > 0. Define

M(t) =

∫
Rd

|u(x)|2K(x, t)dt.

Compute M ′(t) and show that M(m)(t) > 0 for any m.

Remark: The positivity of all derivatives implies thatM(t) is a log-convex function.
This convexity was studied by Lippner and Mangoubi [24] for the case of discrete
harmonic functions.

Exercise 2.7.4 (Reverse Hölder inequality for solutions of elliptic equations). Show
that if u is a solution of a uniformly elliptic equation with Lipschitz coefficients,
div(A∇u) = 0 in a ball B0 then for some (any) q > 1 there exists Cq(u) such that
for any ball B ⊂ 1/2B0(

|B|−1
∫
B
|u|2q

)1/q
6 Cq(u)|B|

−1
∫
B
|u|2.

Remark: It implies that |u|2 is a Muckenhoupt weight and therefore the zero set
has zero Lebesgue measure, |Z(u)| = 0. A similar inequality holds for the function
u− |B|−1 ∫

B u and together with the Caccioppoli inequality it implies that |∇u|2

is also a Muckenhoupt weight (see [13] for details).

3. Small values of polynomials and solutions of elliptic PDEs

Let P be a non-constant polynomial of one complex variable with complex
coefficients, P ∈ C[z],

P(z) = anz
n + an−1z

n−1 + · · ·+ a1z+ a0,
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where aj ∈ C and an 6= 0. As |z| goes to infinity the behavior of P(z) resembles
that of the highest degree term anz

n. As we know P(z) has n zeros counting
multiplicities and the set {z : |P(z)| < C} is bounded and contains the zeros. We
use the following notation

Ea(P) = {z : |P(z)| < e−a}.

3.1. Classical results of Cartan and Polya A classical result on the size of the
set where a polynomial takes small values is due to H. Cartan. Let Pn denote the
set of all polynomials of degree n with leading coefficient 1,

Pn = {p(z) = zn + an−1z
n−1 + · · ·+ a1z+ a0 ∈ C[z]}.

Lemma 3.1.1 (Cartan, 1928). Let p ∈ Pn then for any a,α > 0 there exist a finite
collection of balls {Bj} such that Ena(p) ⊂ ∪jBj and

∑
j r
α
j 6 e(2e

−a)α, where rj is
the radius of Bj.

In particular, taking α = 2, one obtains that |Ena(p)| 6 4πe1−2a. This estimate
is not sharp as the next result shows.

Lemma 3.1.2 (Polya, 1928). Let p ∈ Pn then |Ena(p)| 6 πe−2a for any a > 0.

The last inequality is sharp, the equality is obtained when p(z) = zn.
Lemmas of Cartan and Polya deal with polynomials for which the leading

coefficient is equal to one and provide estimates of the set of all points of the
complex plane where the polynomial is small, the proofs of both lemmas and
related results can be found in [30]. We are interested in a local version of such
estimates.

3.2. Remez inequality for polynomials Now we consider polynomials with real
coefficients on the real line and we do not normalize the leading coefficient.

Lemma 3.2.1 (Remez, 1936). Let E be a measurable subset of an interval I of positive
measure, |E| > 0. Then for any polynomial Pn ∈ R[x] of degree n

max
x∈I

|Pn(x)| 6

(
4|I|
|E|

)n
max
x∈E

|Pn(x)|

More precise inequality and its proof is outlined in the exercises below, see
Exercise 3.5.3. The original reference in [33], a proof is also given in a more
accessible paper [4].

We reformulate the inequality in the following way

|E| 6 4|I|
(

maxx∈E |Pn(x)|
maxx∈I |Pn(x)|

)1/n
,

for any measurable subset E ⊂ I. We normalize Pn such that maxI |Pn| = 1 and
use the notation

Ean(Pn) = {x ∈ R : |Pn(x)| < e
−an}.

Then the Remez inequality can be written as

|Ean(Pn)∩ I| 6 4|I|e−a.
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There are interesting generalizations of the Remez inequality, in particular the
measure of the set can be replaced by another geometric characteristic; higher
dimensional version are also known, we refer the reader to [5, 12].

3.3. Propagation of smallness result The main result we prove in these lectures
is the following quantitative propagation of smallness for solutions of elliptic
equation in divergence form. As above we assume that div(A∇·) is a uniformly
elliptic operator, A is a symmetric matrix with Lipschitz coefficients on some
domain in Rd. We know that a solution to div(A∇h) = 0 cannot vanish on a set
of positive measure (see for example Remark after Exercise 2.7.4) and look for a
quantitative version of this result.

Theorem 3.3.1 ([28]). Let h be a solution of div(A∇h) = 0 in Ω. Assume that

|h| 6 ε on E ⊂ Ω,

where |E| > 0. Let K be a compact subset of Ω then

(3.3.2) max
K

|h| 6 C0 sup
Ω

|h|1−αεα,

where C0 > 0 and α ∈ (0, 1) depend on A, |E|, dist(E,∂Ω), and K.

The inequality (3.3.2) can be considered as a version of the three balls theo-
rem where the smallest ball is replaced by a measurable set. The constants in
the inequality depend on the measure of the set and the distance from this set
to the boundary of Ω but not on the set itself, which could be an arbitrarily
wild measurable set. The question whether such inequality holds was asked by
Landis, weaker quantitative estimates were obtained by Nadirashvili [32] and
Vessella [36].

First, we formulate the following result (Remez inequality for solutions of el-
liptic PDE, [28]):

Claim: Let Q0 be the unit cube in Rd. Assume h is a solution to the equation
div(A∇h) = 0 in 2Q Ṫhen for any cube Q ⊂ Q0 and any measurable subset E of
Q of positive Lebesgue measure, the following inequality holds

(3.3.3) sup
Q

|h| 6 C sup
E

|h|

(
C
|Q|

|E|

)CN
,

where C depends on A only, and N = N∗h(Q) is the doubling index defined in (2.5.1).

This statement confirms that in some sense solutions of elliptic equations lo-
cally behave as polynomials with degree bounded by the multiple of the doubling
index. In particular (the lift of) an eigenfunction corresponding to eigenvalue λ
behaves as a polynomial of degree C

√
λ.

This phenomenon was pointed out in the works of Donnelly and Fefferman,
see for example [11], where, among other results, an interesting Bernstein type
inequality for eigenfunctions is obtained.
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Let us show that (3.3.3) implies Theorem 3.3.1. First we remind that by (2.5.2)

exp(a1N) 6 ea2 sup
2Q

|h|(sup
Q

|h|)−1,

for some a1,a2 > 0. Suppose that (3.3.3) holds with some constant C, choose
C1 = C1(|E|) such that(

C
|Q|

|E|

)C
= ea1C1 , i.e. C1 = Ca−1

1 log(C|Q||E|−1).

Then

sup
Q

|h| 6 C sup
E

|h| exp(a1C1N) 6 C2 sup
E

|h|

(
sup
2Q

|h|

)C1
(

sup
Q

|h|

)−C1

.

This implies the inequality in the theorem for the case Ω = 2Q and K = Q with
α = (C1 + 1)−1 and C0 that depends on |E| and on A but not on h. To obtain the
statement of the theorem we use the standard chain argument as in the proof of
Corollary 2.2.4.

In its turn, the inequality (3.3.3) is equivalent to the following local estimate of
the volume of sub-level sets.

Lemma 3.3.4. Suppose that div(A∇h) = 0 in 2Q and that supQ |h| = 1. Write
N = N∗h(Q) > 1 and

Ea(h) = {x ∈ Q : |h(x)| < ea}.

Then

(3.3.5) |Ea(h)| 6 Ce
−βa/N|Q|,

for some positive C and β that depend on A only.

3.4. Base of induction We prove Lemma 3.3.4 in the next section using double
induction on a and N. Now we check the base of the induction, considering two
cases a 6 c0N and N 6 N0.

Our aim is to prove the inequality (3.3.5). First we note that for a/N < c0

the inequality holds trivially. Indeed if we choose the constant C = C(β) large
enough, we get

Ce−βa/N > Ce−βc0 > 1.

Now we want to show that (3.3.5) holds for some β and C if we assume that N
is small enough. The lemma below is the base of our induction on N.

Lemma 3.4.1. Assume that h satisfies div(A∇h) = 0 in kdQ, supQ |h| = 1 and
N∗h(Q) 6 N0. Let Ea = {x ∈ Q : |h(x)| < e−a}. Then

(3.4.2) |Ea| 6 Ce
−γa|Q|,

for some γ = γ(N0,A) and C = C(N0,A).

The estimate on the doubling index implies that sup1/2Q |h| > C(N0). We com-
bine this inequality with the oscillation theorem (see Theorem 5.1.5 in Appendix).
Recall that oscQ h = supQ h− infQ h.
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Theorem 3.4.3. Let L = div(A∇·) be a uniformly elliptic operator in Ω and Lh = 0.
There exists τ = τ(s) < 1, depending on s and on the ellipticity constant, such that for
any cube Q ⊂ Ω

oscsQ h < τ(s) oscQ h and τ(s)→ 0 as s→ 0.

Corollary 3.4.4. Assume that h satisfies div(A∇h) = 0 in 2Q, supQ |h| = 1 and
N∗h(Q) 6 N0. There exist an integer K, and positive b and m that depend on N0, on the
ellipticity constants of A and on the dimension d such that if Q is partitioned into Kd

smaller equal cubes, Q = ∪q, then

sup
q

|h| > b for any q

and there exists one cube q0 in the partition such that infq0 |h| > m.

Proof. Since N∗h(Q) 6 N0, we get a lower bound on the supremum of |h| on each
small cube q. Furthermore, assume that h(x0) = maxQ/2 |h| > c(N0) (we replace
h by −h if necessary) and that K is chosen large enough. We take q0 such that
x0 ∈ q0. Clearly oscQh 6 2 and since K/2q0 ⊂ Q by the oscillation theorem we
have oscq0 h 6 2τ(2/K). Then we conclude

inf
q0
h = sup

q0

h− osc
q0
h > c(N0) − 2τ(2K−1) > m,

when m < c(N0)/2 and K is large enough. �

In particular, the corollary implies that |{x ∈ Q : |h| < m}| 6 (1 − K−d)|Q|.
Dividing each q once again into smaller cubes, we get on each new cube the
supremum of |h| is at least b2 and

|{x ∈ Q : |h| < mb}| 6 (1 −K−d)2|Q|.

Iterating the corollary we see that

|{x ∈ Q : |h| < mbl}| 6 (1 −K−d)l+1|Q|,

when supQ |h| = 1. Thus the estimate (3.4.2) holds for e−a = blm and γ such
that bγ = 1 −K−d, it completes the proof of the Lemma 3.4.1.

3.5. Exercises

Exercise 3.5.1. Let f ∈ L2(T2), ‖f‖L2 = 1. We define the L2-doubling index of f on
a square q by

n(f,q) = log

∫
2q |f|

2∫
q |f|

2 .

Assume that T2 is partitioned into K2 equal squares we say that a square is good
if n(f,q) < 100. Show that ∑

q good

∫
q
|f|2 > 1/2.

Remark: Here the 1/2 is a very rough estimate. Can you can find a better one?
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Exercise 3.5.2 (Discrete version of Remez inequality). Use the Remez inequality to
show that if P is a polynomial of degree n and S ⊂ I ∩Z contains n+m points
then

max
I

|P| 6

(
4|I|
m

)n
max
S

|P|.

Exercise 3.5.3 (Remez inequality for polynomials). Let Tn(x) be the Chebyshev
polynomial or degree n, such that Tn(cos θ) = cos(nθ). This sequence can be
defined by

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x) − Tn−1(x).

Clearly for each n there is a sequence −1 = xn,0 < xn,1 < · · · < xn,n = 1 such
that Tn(xn,k) = (−1)n−k.

Suppose that c > 0 and E ⊂ I = [−1, 1 + c] is a measurable set with |E| = 2. In
this exercise we prove that for any polynomial P of degree n

max
I

|P| 6 Tn(1 + c)max
E

|P|.

The equality is obtained for example when E = [−1, 1] and P = Tn. To prove the
inequality it is enough to assume that E is open and show that

P(1 + c) 6 Tn(1 + c)max
E

|P|.

(1) Show that there are points yk in E such that |xn,k − xn,j| 6 |yk − yj| and
1 + c− xn,k > 1 + c− yk for k = 0, . . . ,n.

(2) Use the Lagrange interpolation formula and the properties of the Cheby-
shev polynomials to show that P(1 + c) 6 Tn(1 + c)maxE |P|.

(3) Let x > 1, show that Tn(2x− 1) 6 (4x)n.

Remark: This gives a proof of the Remez inequality formulated in the lecture
notes.

Exercise 3.5.4 (Quantitative unique continuation for harmonic functions). We will
use Remez inequality to show the quantitative unique continuation form sets of
positive measure for harmonic functions.

(1) Suppose that h is a bounded harmonic function in the unit ball B0. Let
r < r0(d) be small enough. Show that there exists q(r) < 1 and C such
that for any integer n there is a polynomial pn having degree at most n
such that

max
|x|6r

|h(x) − pn(x)| 6 Cq(r)
n max

|x|61
|h(x)|.

Moreover q(r)→ 0 as r→ 0.
(2) Prove that there is r1 = r1(d) such that if E is a measurable subset of r1B0

of positive measure, m = |E|, and h is a harmonic function in B0 then

max
r1B0

|h| 6 C(max
E

|h|)α(max
B0

|h|)1−α,

where α depends on m and r1.
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Exercise 3.5.5 (logarithmic capacity). The logarithmic capacity of a compact subset
of the complex plane is defined by

cap(K) = lim
n→∞

(
min
p∈Pn

max
K

|p(x)|

)1/n
.

(1) Show that the limit exists.
(2) Prove that cap(Ena(p)) = e−a for any p ∈ Pn.
(3) Use Polya’s lemma to show that |K| 6 πcap(K)2 for any compact set K ⊂ C.

4. Proof of propagation of smallness result

We now prove Lemma 3.3.4 using double induction on a and N and some
iterative argument. We start with some preliminary result on the distribution of
the doubling index that will help us to carry on the induction step.

4.1. On distribution of the doubling indices The results on the doubling index
that we formulate below are crucial for the proof. Let Q0 be the unit cube in Rd.

Assume that f ∈ C(Q0) and for any cube q such that 2q ⊂ Q0 define

Nf(q) = log
max2q |f|

maxq |f|
.

Warning: We have used the notation Nh(r) for the frequency of h in the ball
B(0, r) in Section 2. But for the rest of the notes we do not refer to the frequency
function and use Nf(q) for the doubling constant of f in a cube q as defined
above.

Lemma 4.1.1. Let a cube Q ⊂ Q0 be partitioned into Kd equal cubes qi, K > 8. Let
Nmin = min

i
Nf(qi) and assume that Nmin is large enough, Nmin > N0(d). Then

Nf(Q/2) >
K

8
Nmin.

Proof. Let maxQ/2 |f| = |f(x0)|, x0 ∈ qi for some i. Then, since Nf(qi) > Nmin,
there exists x1 ∈ 2qi such that |f(x1)| > eNmin |f(x0)|. At this point, we have
x1 ∈ 2qi ⊂ (1/2 + 2/K)Q. We find one of the cubes in the partition for which
x1 ∈ q and repeat the step. We end up with a sequence {xj}j such that

|f(xj)| > e
jNmin |f(x0)|

and xj ∈ (1/2 + 2j/K)Q. We repeat this J = bK/4c times, such that the last xJ is
still in Q. Then

max
Q

|f| > eKNmin/8 max
Q/2

|f|.

which implies the required estimate. �

For solutions of elliptic equations we can formulate the above result using
the monotonicity of the doubling index and the maximal doubling index N∗h(q)

defined by (2.5.1).
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Corollary 4.1.2. Let L = div(A∇·) be a uniformly elliptic operator in 2Q0. There exist
constants N0 and J0 such that if Lh = 0 in 2Q0, Q ⊂ Q0, Q is partitioned into Jd equal
cubes qi and J > J0 and N∗(Q) > N0, then for at least one cube q in the partition

N∗h(q) 6 N∗h(Q)/2.

We rewrite the inequality (2.5.2) in the following form

Nh(cq) 6 N∗h(q) 6 A1Nh(q) +A2.

Then Corollary 4.1.2 follows immediately from Lemma 4.1.1.
Our aim in induction argument is to divide the cube into small cubes and find

a sub-cube with small doubling index.

4.2. Choosing the right notation We fix the ellipticity constant Λ > 1 and the
Lipschitz constant C and consider second order elliptic operator L = div(A∇·) in
the cube 2Q0, where Q0 is the unit cube in Rd. We vary the parameters N > 1
and a > 0 and aim at proving the estimate (3.3.5).

Let

m(u,a) = |{x ∈ Q0 : |u(x)| < e−a sup
Q0

|u|}|

and

M(N,a) = sup
∗
m(u,a),

where the supremum is taken over all elliptic operators div(A∇·) and functions
u satisfying the following conditions in 2Q0:

(i) A(x) = [aij(x)]16i,j6d is a symmetric uniformly elliptic matrix with Lips-
chitz entries and ellipticity and Lipschitz constants bounded by Λ and C
respectively,

(ii) u is a solution to div(A∇u) = 0 in 2Q0,
(iii) N∗u(Q0) 6 N.

Our aim is to show that

(4.2.1) M(N,a) 6 Ce−βa/N.

The constant β > 0 will be chosen later and will not depend on N.
As we remarked in Section 3.4 we can assume that a/N > c0. By Lemma 3.4.1

we can also assume that N is sufficiently large. The proof now contains two main
steps. First, with the help of Corollary 4.1.2 we prove a recursive inequality for
M(N,a). Then we show that the recursive inequality implies the exponential
bound (3.3.5) by a double induction argument on a and N.

4.2.1. Recursive inequality. We show that for some a0 > 0 and s < 1

(4.2.2) M(N,a) 6 (1 − s)M(N/2,a−Na0) + sM(N,a−Na0).

Fix a solution u to the elliptic equation div(A∇u) = 0 with N∗u(Q0) 6 N.
Divide Q0 into Jd equal subcubes q. Then by Corollary 4.1.2 at least one cube q0
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satisfies N∗u(q0) 6 N/2. We have

m(u,a) =
∑
q

|{x ∈ q : |u(x)| < e−a sup
Q0

|u|}|.

By the definition of the doubling constant we see that

sup
q

|u| > c1J
−C1N sup

Q0

|u|.

Since N is sufficiently large, we can forget about c1 above by increasing C1 and
we have

sup
q

|u| > e−a0N sup
Q0

|u|.

Define size(q) := |{x ∈ q : |u(x)| < e−a+a0N supq |u|}|. We continue to estimate
m(u,a) in terms of these sizes

m(u,a) 6
∑
q

size(q) = size(q0) +
∑
q6=q0

size(q).

We can estimate the first term by size(q0) 6 J−dM(N/2,a− a0N) using the
fact that the restriction of u to the cube 2q corresponds to a solution of another
elliptic PDE which can also be written in divergence form with some coefficient
matrix which has the same bounds for ellipticity and Lipschitz constants.

For the second term, we have∑
q6=q0

size(q) 6 (Jd − 1)J−dM(N,a− a0N) = sM(N,a− a0N),

where s = (Jd − 1)J−d < 1. Adding the inequalities for the first and second
terms and taking the supremum over u, we obtain the recursive inequality (4.2.2)
for M(N,a).

4.3. Recursive inequality implies exponential bound We will now prove that

(4.3.1) M(N,a) 6 Ce−βa/N

for some C large enough and β > 0 small enough by a double induction on N
and a. Without loss of generality we may assume N = 2l, where l is an integer
number. Suppose that we know (4.3.1) for N = 2l−1 and all a > 0 and now we
wish to establish it for N = 2l. By Lemma 3.4.1 we may assume l is sufficiently
large. For a fixed l we argue by induction on a with step a02l. We may assume
that a/N > k0a0, where k0 > 0 will be chosen later. For a 6 k0a0N the inequality
is true if we choose the constant C large enough. The induction base implies the
inequality for k = k0. We describe the step of the induction from a = (k− 1)a02l

to a = ka02l.
By the induction assumption we have

M(2l, (k− 1)a02l) 6 Ce−β(k−1)a0

and

M(2l−1, (k− 1)a02l) 6 Ce−2β(k−1)a0 .
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We apply the recursive inequality (4.2.2)

M(2l,ka02l) 6 C(1 − s)e−2β(k−1)a0 +Cse−β(k−1)a0 .

Our goal is to obtain the following inequality

(1 − s)e−2β(k−1)a0 + se−β(k−1)a0 6 e−βka0

for k > k0 and some β > 0. Dividing by e−ka0β we reduce it to

(1 − s)e−βa0(k−2) + seβa0 6 1.

The last inequality holds with the proper choice of the parameters: once s < 1
and a0 are fixed, we choose β to be small enough so that the second term is less
than (1 + s)/2 and then choose k0 sufficiently large that the first term is smaller
than (1 − s)/2 when k > k0. This concludes the induction step and the proof of
our main result.

More delicate propagation of smallness from sets of codimension smaller then
one is discussed in [28].

4.4. Exercises

Exercise 4.4.1. Suppose that Lu = 0 in the unit cube Q0.

(1) Use the oscillation theorem to show that there exists a constant K which
depends on the Lipschitz and ellipticity constants for L such that if q is a
small cube with Kq ⊂ Q and Z(u)∩ q 6= ∅ then

log
maxKq |u|
maxq |u|

> 2.

(2) Show that there exists c and B0 such that ifQ0 is partitioned into Bd cubes
q, B > B0 and Z(u)∩ q 6= ∅ for each q then

Nu(Q/2) = log
maxQ |u|

maxQ/2 |u|
> cB,

where c depends on K from (1).

Exercise 4.4.2. Assume that m : Z+ ×Z+ → R+ satisfies

m(k, j) 6 C for j < 4, m(1, j) 6 e−j,

and

m(k, j) 6 m(k− 1, 2(j− 1)) +
1
4
m(k, j− 1).

Prove that m(k, j) 6 Ce−j.
Remark: A similar argument is used to derive the estimate in the lecture notes
from the iterative inequality.

Exercise 4.4.3 (Remez inequality for eigenfunctions). (1) Let M be a compact
manifold. Use the lift and the Remez inequality for solutions of elliptic
equations to show that there exists a constant C = C(M) such that for
any eigenfunction φλ and any compact set E ⊂M, we have the following
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inequality.

max
E

|φλ| > C
−1 max

M
|φλ|

(
|E|

C|M|

)C√λ
.

(2) Let M = S2 and B be a small ball on S2, construct a sequence of eigen-
functions φλ on the sphere with λ → ∞ such that supB |φλ|/ supM |φλ|

decays as e−c
√
λ.

Exercise 4.4.4. Apply the Remez inequality for solutions of elliptic equations to
show that if h is a solution of Lh = 0 in kQ0 then g = log |h| is in BMO and
‖g‖BMO(Q0) 6 CLN

∗
h(Q0). Reminder: A function g is said to have bounded mean

oscillation if there exists a constant C such that
1
|Q|

∫
Q
|g− cQ| 6 C

for any cube Q and some constants cQ. The smallest C for which the inequality
holds is called the BMO-norm of g.
In particular if a function g satisfies

|{x ∈ Q : |g(x) − cQ| > γ}| 6 C exp(−Aγ)|Q|,

for some cQ then g ∈ BMO and ‖g‖BMO 6 c/A.

5. Appendix: Second order elliptic equations in divergence form

5.1. Elliptic operator in divergence form: regularity We study solutions of sec-
ond order elliptic equations in divergence form

Lu := div(A∇u) + cu = 0,

where u ∈W1,2(Ω), i.e., |∇u| ∈ L2(Ω), Ω ⊂ Rd. The matrix A = A(x) is symmet-
ric and uniformly elliptic, i.e.,

Λ−1|v|2 6 (A(x)v, v) 6 Λ|v|2

for any x ∈ Ω and any v ∈ Rd.
First we assume that the elements of A(x) are measurable bounded functions

(the boundedness follows from the uniform ellipticity condition). We will assume
that c is measurable and bounded, weaker integrability assumptions on c are
sufficient for some of the results below. The equation Lu = 0 is understood in
the integral sense, similarly, we consider the inequalities Lu > 0 and Lu 6 0. The
first classical result is the maximal principle, see for example [14, Theorem 8.1].
We use here the standard notation, u+ = max(u, 0).

Theorem 5.1.1 (Maximal principle). Suppose that c 6 0 and u ∈ W1,2(Ω) satisfies
Lu > 0. Then

sup
Ω

u 6 sup
∂Ω

u+.

We also use the following classical inequality for gradients of solutions of gen-
eral elliptic PDEs in divergence form.
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Theorem 5.1.2 (Caccioppoli inequality). Suppose that Lu = 0 in Ω, BR ⊂ Ω, r < R.
Then ∫

Br

|∇u|2 6 C
(

1
(R− r)2 + ‖c‖L∞

) ∫
BR

|u|2,

where C = C(d,Λ).

Classical iteration methods of De Giorgi and Moser imply the following esti-
mates, see [16, Chapter 4]

Theorem 5.1.3 (Local boundedness). Suppose that Lu > 0 in Ω, 2B ⊂ Ω, then
u+ ∈ L∞loc(Ω) and

sup
B

u+ 6 C

(
|2B|−1

∫
2B

|u+|2
)1/2

,

where C depends on d,Λ and ‖c‖∞.

This gives immediately the equivalence of norms

Corollary 5.1.4. Suppose that Lu = 0 in 2B0, where B0 is the unit ball of Rd, then

C1‖u‖L2(B) 6 ‖u‖L∞(B) 6 C2‖u‖L2(2B),

where C depends on d,Λ and ‖c‖∞.

Another part of the regularity theory that goes back to De Giorgi and Moser is
the following oscillation theorem (seee [16, Chapter 4]).

Theorem 5.1.5 (Oscillation inequality). Let L = div(A∇·) be a uniformly elliptic
operator in Ω. There exists q = q(Λ) < 1 such that for any ball B such that 2B ⊂ Ω

sup
B

u− inf
B
u < q(sup

2B
u− inf

2B
u).

The difference supB u− infB u is called the oscillation of the function u in B
and denoted by oscB u.

A different way to obtain regularity was discovered by Landis (see [21] for
details) and developed to elliptic equations is non-divergence form with bounded
coefficients by Krylov and Safonov, see [19,21,22,34]. This approach also leads to
the oscillation inequality.

Finally, we formulate the Harnack inequality of Moser for solutions of elliptic
equations in divergence form, see for example [16, Chapter 4].

Theorem 5.1.6 (Harnack inequality). Let u be a non-negative solution to elliptic equa-
tion div(A∇u) = 0 in Ω, 2B ⊂ Ω. Then

sup
B

u 6 C inf
B
u, C = C(d,Λ).

There is a nice proof of the Harnack inequality for solutions of elliptic equa-
tions in divergence form that bypasses the classical iteration methods can be
found in [34]. Note that in all of the results in this section the constants de-
pend on the ellipticity constant only, thus we may apply the inequalities on small
or big scales.
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5.2. Comparison to harmonic functions We turn now to elliptic PDEs in diver-
gence form with Lipschitz coefficients. This smoothness assumption allows us to
freeze the coefficients and consider the equation as a perturbation of the equation
with constant coefficients. Changing coordinates, we can think about constant co-
efficient elliptic operator as a simple transformation of the usual Laplace operator.
More precisely, let u be a solution to

div(A∇u) = 0,

where A = {aij(x)}, x ∈ Ω and

|aij(x) − aij(y)| 6 C|x− y|.

Then for any x0 ∈ Ω, we may choose first a ball Br(x0) and then a linear trans-
formation S : Bρ(0)→ Br(x0) such that f = u ◦ S is a solution of elliptic equation
div(Ã∇f) = 0 with

Ã(0) = I, |ãij(y) − δij| 6 C|y|.

Moreover r/ρ is bounded, the bound depends on the ellipticity and Lipschitz
constants for A.

We mostly study local properties of solutions and then reduce the problem to
equation of this specific form. Note that when we apply this idea we get inequal-
ities that hold on small scales, the constants depend on the Lipschitz constants of
the coefficients and may grow when we consider large balls.

A classical regularity result implies that if u ∈ W1,2(Ω) is a weak solution
of the divergence form elliptic equation as above (with Lipschitz coefficients) and
Ω ′ ⊂⊂ Ω then u ∈W2,2(Ω ′) and then if ∂Ω ′ is smooth then by the trace property
u, |∇u| ∈ L2(∂Ω ′).
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