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Abstract

This thesis investigates novel market designs and production planning. Its overarch-

ing goal is to improve the economic efficiency of electricity markets and support the

integration of renewable electricity production. Hence, the thesis considers problems

faced by multiple stakeholders, from regulators to individual producers, using a va-

riety of methods, where equilibrium models and stochastic optimization are most

prominent. Paper I proposes “flexible electricity bidding zones,” an innovative mar-

ket design that changes zonal configuration according to congestion patterns in the

power system. This results in cost savings and a design that is more robust to large-

scale integration of renewables. Paper II examines oligopolistic wholesale electricity

markets. It investigates inverse equilibrium models as a method to investigate mar-

ket conditions. Paper III demonstrates how complete markets for risk, which allows

market participants to hedge both locational and energy price risk, promote efficient

investments. Specifically, it shows that extending the contract duration of financial

transmission rights lower costs of capital for geographically remote projects, which

large-scale renewables usually are. Finally, paper IV considers the cost of neglecting

the co-movement between prices and inflows when establishing operational policies

in hydro-dominated systems. It demonstrates modest cost savings and provides

general insights on behaviors, like how a policy that considers co-movement values

future water more.
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Chapter 1

Introduction

The Intergovernmental Panel on Climate Change (IPCC) states that “rapid and far-

reaching transitions in energy, land, urban and infrastructure (including transport

and buildings), and industrial systems” would be required to limit global warming

to 1.5°C (IPCC, 2018). Following the 2015 Paris agreement, with a goal to limit

global warming to 2°C, preferably 1.5°C, committed countries plan their strategies

to reduce greenhouse gas emissions. The energy sector, which includes electricity,

heat, and transport, was responsible for 73.2% of greenhouse gas emissions in 2016

(Ritchie and Roser, 2017) and is thus a major contributor to global warming. To

reach climate targets, IPCC recommends to increase renewables, phase out carbon-

emitting production, and improve energy efficiency. Developments in renewable

technologies indicate that a transition to a zero-carbon power system may be feasible.

For example, the International Energy Agency (2020) includes a swift expansion in

renewables for all scenarios in its 2020 World Energy Outlook. Maturing technologies

and supportive policies promote access to cheap capital for investors, argues the

report. It also highlights the developments in solar photovoltaics (PV), which after

a sharp decrease in cost over the last decade offers some of the least-cost electricity

ever, while installed wind capacity continues to grow.

Despite promising trajectories for renewable production capacity, its implemen-

tation is not without challenges. From an operational perspective, both wind and

solar have the notorious drawback of variable production. As a result, large-scale

production uncertainty increases and exposes stakeholders to new challenges, like

operation and planning of renewable production, distributed generation, assessment

of available transfer capabilities, reliability evaluation, state estimation, risk analy-
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sis, interaction with electricity markets, and operation and planning of distribution

and transmission systems (Soroudi and Amraee, 2013). These challenges come on

top of overarching uncertainties like technological developments, competitor behav-

ior, regulation, and energy policies (Möst and Keles, 2010). In short, participants

in the power sector are exposed to a wide array of uncertainties ranging from daily

operational decisions to long-term investments.

This thesis consists of four papers that aim to improve the economic efficiency

of electricity markets and support the integration of renewables by alleviating asso-

ciated risks. It considers challenges faced by several stakeholders, from regulators

and system operators, investors in renewable production, and producers, considering

both system and operations perspectives. Paper I proposes a novel market design

termed “flexible electricity bidding zones,” which introduces more flexibility to ex-

isting zonal electricity markets so they can facilitate a larger share of intermittent

renewable production and reduce costs. Paper II keeps a system perspective, but

considers the market power challenges that electricity markets are exposed to. It

investigates inverse equilibrium analysis, a data-driven method that fits observa-

tions to model structures, which regulators can use to assess electricity markets.

Both papers I and II consider the wholesale electricity market, but liberalized elec-

tricity markets can also trade risk. As paper III demonstrates, these markets are

crucial to secure project finance for investments. In particular, paper III shows that

increasing the contract duration of financial transmission rights (FTRs) improves

social surplus and encourages investments in geographically isolated assets, which

large-scale renewables usually are. Finally, paper IV takes a hydropower producer’s

perspective and investigates the impact of considering the correlation between prices

and inflows when establishing an operational policy. Hydropower allows large-scale

storage that can counteract intermittent renewable resources. Improved production

planning improves reservoir management and the efficiency of power systems.

The diverse set of papers aspires to reflect the various challenges an energy

transition introduces. They therefore consider different stakeholders and decision

levels. But the papers also reflect the diversity in an energy transition through

varying degrees of disruption in their ideas. Most notably, paper I argues for a novel

market design that would introduce a major systematic change, while paper III

shows how a modest change in the contract period of an existing risk instruments can

benefit project finance of renewables. The papers also relate in terms of methods.

2



Papers I and IV use stochastic optimization, a modeling framework for decision-

making under uncertainty, while paper II uses equilibrium modeling. Paper III

combines the two and solves a stochastic equilibrium model.

In the remainder of the thesis, Chapter 2 provides a background on the appli-

cations considered. It links applications to methods and foreshadows some relevant

findings in the papers. Chapter 3 describes the papers and outlines their contribu-

tions. With this in mind, Chapter 4 provides a reflection on the papers and proposes

directions for future research. Chapter 5 concludes the thesis. The full papers are

in the appendix.
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Chapter 2

Background

This chapter aims to put the papers of this thesis into context and provide back-

ground information on the applications and methods. All the papers consider some

aspect of electricity markets, but they use a wide variety of methods motivated by

the different research questions. Paper I employs Reverse Search (Avis and Fukuda,

1996) and Algorithm X (Knuth, 2000) from computer science, in addition to deter-

ministic and two-stage stochastic optimization. Equilibrium modeling and inverse

optimization are the focus of paper II, while paper III uses a decomposition tech-

nique, introduced by Mays et al. (2019), to solve a two-stage stochastic equilibrium

model. Finally, paper IV formulates a novel price process and solves a multistage

stochastic problem using stochastic dual dynamic programming (SDDP) (Pereira

and Pinto, 1991). The papers, included in the appendix, present, explain, and dis-

cuss the methods, so this will not be repeated here. Instead, this chapter focuses on

connecting the applications to the methods.

2.1 Wholesale electricity markets

Generation, transmission, distribution, and retail supply constitute the main ele-

ments of electricity supply. Historically, these tasks were vertically integrated as

monopolies. But in the 1990s, several countries undertook efforts to liberalize sec-

tors that did not benefit from natural monopoly effects (Al-Sunaidy and Green,

2006; Joskow, 2008). Their aim was to improve market efficiency and investments

decisions by encouraging competition. Among the changes were the introduction of

wholesale electricity markets. These markets facilitate the trades between genera-
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tors, resellers and large consumers.

Electricity as a commodity has some particular features that warrants complex

market designs (Cramton, 2017). A power system ensures the critical requirement

that production must equal demand at all times. But it also introduces transmission

constraints, which may prevent the most cost-efficient dispatches because they are

physically infeasible. Moreover, because electricity is practically considered an es-

sential service (Tully, 2006), reliability and security of supply are key considerations

in addition to efficient markets. In Europe, three markets, day-ahead, intraday, and

balancing, generally constitute wholesale electricity markets. These are separated

by time to delivery, where the day-ahead market clears the day before delivery. The

intraday market is a real-time market that closes shortly before delivery, while the

balancing market corrects any imbalances between supply and demand in real-time.

2.1.1 Market designs

Efficient wholesale electricity markets should provide proper mechanisms for conges-

tion management and electricity pricing. The former ensures that planned produc-

tion and consumption comply with the physical constraints of the grid. Congestion

is the situation where a corridor reaches its maximum capacity. Electricity pric-

ing, on the other hand, is fundamental to ensure efficient short-term operations and

long-term investment signals. Electricity market designs address both challenges.

At present, liberalized electricity markets either follow nodal pricing schemes, pro-

posed by Schweppe et al. (1988), or zonal based electricity pools (Weibelzahl, 2017).

U.S. independent system operators use the former, while most European system

operators apply the latter. In a nodal pricing design, a system operator performs an

economic dispatch of the generation assets. An economic dispatch is an optimization

problem that dispatches generators with the objective to maximize social surplus.

Nodal pricing considers the full grid and thus provides locational marginal prices

that reflect the price of injection and withdrawal at nodes. In contrast, zonal mar-

kets pool together nodes to form a zone with a uniform price. They either ignore

or approximate the physical constraints within a zone, and approximate transfer

capacities between zones.

Both nodal and zonal market designs have their benefits and limitations. The

former is typically considered the theoretically ideal because the locational marginal

prices provide both short- and long-term efficiency in models without uncertainty
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(Holmberg and Lazarczyk, 2015). Zonal markets provide fewer prices and follow a

democratic principle of equal electricity prices regardless of location (Stoft, 1997).

Proponents of this scheme argue that these benefits, together with what they deem

a simpler bidding process that increases liquidity, counteract an economic loss com-

pared to a nodal pricing design (Bjørndal and Jörnsten, 2007). The loss is caused by

zonal markets’ requirement to ignore or approximate grid constraints within zones.

Their day-ahead markets may therefore clear into production schedules that are

physically infeasible, which the system operator must redispatch to a feasible sched-

ule. Note that these are the main market design paradigms of liberalized wholesale

markets, but different markets have adopted different variations of them.

An energy transition introduces some challenges for zonal markets. Energy tra-

ditionally followed predictable paths from large fossil fuel based generators to load

hubs. This simplifies planning. A low-carbon power system, by contrast, requires

production from distributed and intermittent renewables sources. This, in turn,

creates a changing and uncertain congestion pattern that provides more intrazonal

congestion and hence increased redispatch costs. In case studies of the economic

consequences of large-scale renewable integration in European zonal markets, both

Neuhoff et al. (2013) and Aravena and Papavasiliou (2017) demonstrate an efficiency

loss and challenges related to the current scheme.

Efforts have been made to increase the efficiency of zonal markets. Flow-based

market coupling, which approximates the grid within zones rather than ignores

it, was implemented in the Central Western European markets in May 2015 and

further expansions are planned (Van den Bergh et al., 2016). Although this is

an improvement over the traditional approach that ignores intrazonal congestion,

it approximates the grid and thus reduces rather than eliminates the challenges.

The theoretical properties and superior performance by nodal markets over zonal

markets in case studies (e.g., Leuthold et al., 2008; Neuhoff et al., 2013; Aravena

and Papavasiliou, 2017), raise the question of whether to replace the zonal design

with nodal pricing. Still, such a transition is vulnerable to political pushback and it

is also a concern to what extent results from models translate to actual operations.

Except for hybrid pricing, an approach proposed by Bjørndal et al. (2014, 2018)

where some countries have nodal pricing and others zonal markets, most research on

market design considers the benefits and limitations of the two schemes rather than

new designs. Paper I of this thesis aims to change this by proposing a novel electricity
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market design called “flexible electricity bidding zones.” This design changes zones

according to the most efficient dispatch. As a result, it considers congestion to a

larger degree, but maintains the simpler bidding process and few prices of zonal

markets.

2.1.2 Market clearing

An associated aspect of market designs is the market clearing. In nodal pricing

designs, a system operator performs an economic dispatch that maximizes surplus

based on production and transmission constraints. Zonal markets, on the other

hand, facilitate an auction where producers and consumers make bids about their

preferred quantities and prices. The intersection between supply and demand de-

cides the zonal price and accepted bids. Both clearings are made the day before

delivery and are therefore called day-ahead markets. Because market circumstances

may change at delivery, for example due to equipment failure or forecast errors in

renewable production and demand, the system operators ensure a feasible dispatch

through redispatch actions.

The disparity between the day-ahead clearing and redispatch incurs costs to the

system. Redispatch actions require response on short notice, which limits the set

of available production assets and usually warrants higher costs because flexible

peakers, like natural gas fired plants, generally have higher operating costs than

baseload. Renewable production is also difficult to forecast in the day-ahead mar-

ket. Its increased presence in the energy mix enhances differences between day-ahead

and delivery and thus increases redispatch costs. As a response, researchers have

suggested stochastic market clearings, which clears the day-ahead while considering

expected cost over several redispatch scenarios (see, e.g., Wong and Fuller, 2007;

Pritchard et al., 2010; Morales et al., 2014; Morales and Pineda, 2017; Kazempour

et al., 2018; Bjørndal et al., 2018; Zakeri et al., 2019). A stochastic clearing pro-

vides lower expected costs for a given set of uncertain parameters, compared to a

deterministic clearing (Bjørndal et al., 2018). Intuitively, this is because the system

operator can decide a dispatch that is robust to a larger set of outcomes rather

than perform a myopic optimization toward a single forecast. But this feature also

causes the main criticism. A stochastic clearing scheme cannot guarantee short-term

revenue adequacy and cost recovery. It only ensures them in expectation, although

some works, like Morales et al. (2014), Morales and Pineda (2017), and Zakeri et al.
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(2019), try to alter the scheme to satisfy the properties. Revenue adequacy ensures

that the system operator does not incur losses, while cost recovery makes sure that

generators and transmission operators always achieve non-negative profits. Both are

therefore fundamental properties for an electricity market.

Paper I of this thesis uses stochastic clearing as the low-cost benchmark. It

shows that a zonal stochastic clearing achieves costs similar to a nodal stochastic

clearing for most zonal configurations. The reason is that both consider the phys-

ical constraints of the grid in the redispatch problem. More importantly, Paper I

demonstrates that in a setting with decoupled day-ahead and redispatch markets,

flexible electricity bidding zones achieves costs just slightly higher than the nodal

stochastic clearing. This is a valuable insight because unlike a stochastic clearing, it

can guarantee short-term revenue adequacy and cost recovery. To make these con-

clusions, paper I introduces a framework that can enumerate all zonal configurations

of a power system.

2.2 Oligopolistic electricity markets

While the previous section considers market design, this section investigates the be-

havior of the participants in the markets. This is important because transmission

constraints and high investment costs in production assets create barriers of entry

and reduce access to electricity markets. Consequently, electricity markets usually

have a limited number of large producers that can impose price-making behavior.

Liberalized electricity markets are therefore often characterized as oligopolies (New-

bery and Greve, 2017). That is, a market form where a small group of suppliers

dominate the market. Market power abuse is thus a serious concern for regulators.

Electricity has several features that provide market power to generators (Joskow,

2008). Limited transmission capacity can lead to congestion and thus limit the area

of competition. For example, generators at high-demand areas can actively try to

congest import corridors and thus become price-makers within this area. Electricity

has low elasticity of demand that generators can exploit to increase prices. Moreover,

no cheap large-scale storage technology is available so consumers cannot easily keep

storage. Empirical studies have uncovered extensive market power in electricity

markets, where the studies on England and Wales (Wolfram, 1999; Sweeting, 2007)

and the California electricity crisis (Joskow and Kohn, 2002; Borenstein et al., 2002)
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are most prominent. Nevertheless, Joskow (2008) summarizes that investigations on

New Zealand, Chile, Colombia, the PJM Interconnection, Texas, Alberta, Brazil and

some areas of continental Europe have identified various market power issues.

The economic dispatch problem, which the previous section introduced, assumes

perfect competition. All market participants are price-takers and bid their marginal

costs. The resulting dispatch is equivalent to a benevolent system operator that

minimizes the costs while considering production and transmission constraints. In

an oligopoly, this is no longer a valid assumption. Producers are price-makers and

can maximize their own surplus rather than the system’s. Market outcomes are

therefore Nash equilibria, a condition that indicates that no participant can gain

anything by changing their own strategy.

Equilibrium models aim to find equilibria among decision-makers with individ-

ual objectives. Because these models can represent oligopolies, they have been used

extensively to investigate electricity markets (Gabriel et al., 2013). Both paper II

and III of this thesis consider equilibrium models. Paper II investigates the po-

tential of inverse equilibrium modeling, a data-driven method that combines inverse

optimization and equilibrium models. Inverse optimization aims to fit parameters of

an optimization problem according to observations of the decision-variables (Ahuja

and Orlin, 2001). Similarly, an inverse equilibrium problem aspires to fit parame-

ters of an equilibrium problem according to observations of equilibria. This provides

insight on whether an equilibrium model fits the data and it has predictive power.

Paper III applies a stochastic equilibrium problem. Recall that stochastic op-

timization is a method for analyzing decisions under uncertainty. Specifically, pa-

per III considers risk-averse producers that invest in generation and trade financial

instruments to hedge energy price and locational risk with consumers. These deci-

sions are made under the consideration of several possible future scenarios of how

the market unfolds. Some scenarios have worse consequences for the market partici-

pants than others. Risk-averse agents put more emphasis on minimizing the impact

of worst-case outcomes. Paper III incorporates this by using conditional value at

risk (CVaR) as a risk measure. Using CVaR, the modeler can put all emphasis on a

certain percent of worst outcomes and keep a convex optimization problem (Rock-

afellar and Uryasev, 2000). As a result, the market participants find equilibria for

installed capacities and financial contracts considering risk-adjusted expected costs

and contract payouts.
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2.3 Financial transmission rights

The wholesale electricity markets that this thesis has covered so far are physical

markets that sell energy. But financial markets where producers and consumers can

trade financial instruments also exist. Financial instruments can protect a project’s

downside and provide predictable floor revenues. This, in turn, provides better

credit ratings (Prabhu et al., 2017), which reduce the cost of capital. These markets

have become important to secure project finance in liberalized electricity markets,

as illustrated by merchant investments in gas-fired power plants in the United States

(Eberhardt and Szymanski, 2015) or power purchase agreements (PPAs) for renew-

able generation (Bartlett, 2019; Kobus et al., 2021). Corporations and financial in-

stitutions have increasingly replaced utilities as counterparties for offtake contracts

(Bartlett, 2019). Unlike utilities, these actors require settlements at liquid hubs

rather than project locations. In liberalized U.S. electricity markets, which follow

the nodal pricing scheme, this introduces a challenge. Producers receive prices ac-

cording to the location where they inject energy, but must settle energy price hedges

against a hub price different from the one they are exposed to. As a result, they

experience a locational risk.

A financial transmission right (FTR), introduced by Hogan (1992), is a finan-

cial contract that entitles its holder to the difference in locational marginal prices

between two locations. It ensures access to transmission for market participants

without interfering with the economic dispatch, which physical transmission rights

may. However, as for example Benjamin (2010) outlines, FTRs have multiple pur-

poses in electricity markets. Because FTRs pay the price difference between two

locations, they serve as hedges against locational risks and congestion. System op-

erators that coordinate electricity markets accrue merchandising surplus, known as

congestion rents, from buying and selling electricity at different prices in the sys-

tem. As nonprofit entities, the system operators must allocate this revenue back

to the grid owners. FTRs are a means to do so. Grid investors, usually ratepayers

represented by load serving entities, receive FTRs that they can choose to keep for

payouts or sell in an auction for proceeds. An advantage with this arrangement is

that FTR holders are exposed to less counterparty risk than similar financial instru-

ments, like a contract for differences, because congestion rents guarantee payouts.

The condition where congestion rents are sufficient to cover FTR payouts is called
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revenue adequacy. For FTR auctions in liberalized U.S. markets, a simultaneous fea-

sibility test ensures that revenue adequacy holds (Alderete, 2013). The final benefit

of FTRs is that they provide price signals for market participants.

Even though the FTR is an established instrument to hedge locational risk,

there is no evidence from industry that it supports project finance (Eberhardt and

Szymanski, 2017). Paper III of this thesis demonstrates that by altering FTRs to

longer contract periods that cover a project’s lifetime, they reduce the cost of capital

and encourage surplus-maximizing investments. This result is contingent on a risk

market that also provides hedges for energy price risks. Producers at locations other

than the hub combine financial instruments for locational and energy price risk, and

thus hedge both risks. Paper III can make these findings because it considers the

risk-adjusted expected returns. Better hedges reduce the negative consequence of

unfortunate scenarios, and hence improve the risk-adjusted expected return. Risk

trading strategies therefore influence the risk-adjusted expected revenue stream that

investors use to determine investments. Protection against a project’s downside

reduces the risk premium demanded by investors and hence influences the cost of

capital.

2.4 Hydropower planning

This chapter has so far kept a system perspective and will now change its focus

to the decisions of individual producers. The wholesale electricity market is, after

all, a construct where individual producers and consumers exchange energy. Fol-

lowing the liberalization of wholesale markets, the producers’ objective became to

maximize their profits (Wolfgang et al., 2009). With respect to the energy tran-

sition, hydropower producers are in a beneficial position because they provide re-

newable large-scale storage and flexibility that can balance intermittent renewable

production (Gullberg, 2013; Egging and Tomasgard, 2018). These advantages also

generate complex decision problems. Hydropower producers must allocate resources

optimally both short and long term, where the latter introduces a planning horizon

of several years into the future (Gjelsvik et al., 2010).

Medium- to long-term hydropower planning is therefore a sequential decision

problem under uncertainty. Hydropower producers evaluate present production

against opportunities several months or even years in the future. They face uncer-
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tain prices and inflow to reservoirs, and must determine whether to accept present

prices or store water in anticipation of better prices in the future. Unlike the two-

stage stochastic optimization problems in papers I and III, where all uncertainty

realizes in the second stage, hydropower planning is a multistage stochastic prob-

lem where new information realizes at every stage. The problem can be formulated

as a Markov decision process, a framework that can represent sequential decision

problems under uncertainty (Powell, 2014).

Multistage stochastic problems are usually exposed to the curse of dimensionality,

and hydropower planning is no exception. The state and action spaces are so large

that an exact solution becomes intractable in real-world applications. In hydropower

planning, both states (the amount of water in reservoirs) and actions (production

and spillage decisions) are continuous variables that create infinite combinations of

states and actions. Even if a problem discretizes them, it is still computationally

intractable to solve at a representative granularity. Decision-makers therefore try

to approximate multistage stochastic problems to become tractable to solve while

remaining representative of the full problem. This is for example the idea behind

methods in approximate dynamic programming (Powell, 2011) and reinforcement

learning (Sutton and Barto, 2018). In hydropower applications, the industry stan-

dard approach is to formulate a function that approximates the expected value in

the future. Stochastic dual dynamic programming (SDDP), introduced by Pereira

and Pinto (1991), formulates this as a piece-wise linear function from the Benders

cuts of subproblems at each stage. The subproblems represent the decisions produc-

ers make based on what revenues they can earn now versus the expected revenues

in the future. The approximated expected future value function allows continuous

states and actions in the problem. See Pereira and Pinto (1991) or Gjelsvik et al.

(2010) for technical details on SDDP.

Hydropower production has no fuel cost, which leads producers to calculate wa-

ter values that represent the marginal value of an additional unit under an optimal

production schedule. When reservoirs approach their maximum capacity, the wa-

ter value decreases because producers have abundant supply and may risk spillage.

Conversely, low reservoir levels indicate limited supply that increase the water value.

A hydro-dominated system’s reservoir level therefore influences electricity prices.

Reservoir levels are in turn affected by inflows. Consequently, inflow to reservoirs

influences electricity prices in hydro-dominated systems. Despite this intuitive rela-
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tionship, the industry standard is to assume independent price and inflow processes

when establishing an operational policy (Gjelsvik et al., 2010).

Paper IV of this thesis investigates the cost of assuming independent price and

inflow processes when establishing an operational policy. It introduces a price model

that includes the co-movements between inflows to reservoirs and electricity prices.

Using Markov chain SDDP (Löhndorf and Shapiro, 2019) on a case study with

industry data, it finds 0.17% to 0.30% reduction in expected revenues from assuming

independent price and inflow processes. These findings are valuable for producers

because the indicate that the theoretical differences result in modest additional costs

in practice. The paper also identifies theoretical insights, like how a producer that

considers co-movements values current water more in the future, and is hence more

likely to postpone production and keep higher reservoir levels.
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Chapter 3

Contributions

This chapter presents the four papers that constitute the main body this thesis. In

addition to a summary, it also describes the papers’ scientific contribution and my

personal contribution to each paper. The appendix contains the full papers. This

chapter also includes an overview of additional scientific contributions that are not

part of the thesis.

3.1 Papers

3.1.1 Paper I: Flexible electricity bidding zones

Authors: Simon Risanger, Steffen J. Bakker, Stein-Erik Fleten, and Asgeir Tomas-

gard

Submitted to an international peer-reviewed journal.

Nodal pricing and zonal markets are the main paradigms for electricity market de-

sign in liberalized wholesale electricity markets. Markets based on the zonal design

neglect or approximate transmission constraints within zones. This makes them

vulnerable to costly redispatch actions when intrazonal congestion occurs. Studies

show that large-scale integration of geographically decentralized and intermittent

renewable production, which is is necessary to achieve a low-carbon power system,

will increase costs. As a response, this paper proposes an alternative market de-

sign called “flexible electricity bidding zones.” In contrast to existing zonal markets,

this scheme changes zonal configuration according to the most efficient dispatch.

Consequently, it considers a changing congestion pattern because it can choose con-
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figurations where bottlenecks appear between zonal boundaries. Because flexible

electricity bidding zones consider the total cost of both a day-ahead clearing and

redispatch, it is comparable to a stochastic market clearing. This scheme clears the

day-ahead market while considering the expected cost of different redispatch sce-

narios. The main criticism against stochastic clearing is that it cannot guarantee

short-term revenue adequacy and cost recovery. As a result, a producer may be

asked to produce at a price lower than a marginal cost or a system operator may

not be able to cover its costs. An implementation of flexible electricity bidding

zones on a decoupled day-ahead clearing and redispatch provides slightly higher

costs than a stochastic clearing but ensures short-term revenue adequacy and cost

recovery. Moreover, a transition from a zonal design to a flexible scheme warrants

less structural change than to introduce nodal pricing.

This paper contributes to multiple aspects of wholesale electricity market design.

Most importantly, it introduces a novel design that decreases costs and is more adapt

to the advent of large-scale renewable integration than existing zonal markets. It

also keeps the benefits of a simple bidding process and few prices. The comparison

and connection to stochastic market clearing combine two research topics that have

developed in isolation of each other. By introducing a framework that identifies

all zonal configurations, the paper also contributes to research on zonal selection.

Existing literature either uses heuristics or solve directly for the best zones, which

does not allow the flexibility of models or the ability to investigate all configurations.

My contribution to this paper includes the conceptualization and formulation of

the research question. I formulated the mathematical framework, implemented it,

made the case study, and acquired input data to perform the experiments. After-

wards, I took the lead on analysis and prepared the original draft. I facilitated the

subsequent iterations between co-authors and revised the manuscript.

3.1.2 Paper II: Inverse Equilibrium Analysis of Oligopolistic

Electricity Markets

Authors: Simon Risanger, Stein-Erik Fleten, and Steven A. Gabriel

Published as Risanger, S., S.-E. Fleten and S. A. Gabriel (2020). Inverse equilibrium

analysis of oligopolistic electricity markets. IEEE Transactions on Power Systems

35 (6), 4159-4166. doi: 10.1109/TPWRS.2020.2993070.
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Wholesale electricity markets are usually modelled as an oligopoly due to features

like transmission constraints, high investment costs, and limited amount of large

producers. Researchers therefore frequently use equilibrium models, which can rep-

resent an oligopoly, to investigate electricity markets. This paper investigates in-

verse equilibrium models, a method that combines equilibrium models and inverse

optimization. While inverse optimization fits parameters to observable decisions, in-

verse equilibrium models fit parameters to observable equilibria. Inverse equilibrium

modeling is a data-driven method that can assess whether a market structure fits ob-

servations and it has predictive power. This paper introduces a novel methodology

that exploits Karush-Kuhn-Tucker conditions when it formulates inverse equilibrium

problems. Complementary problems expressed by Karush-Kuhn-Tucker conditions

are widely used in the power system modeling community, and these models can

transform into inverse models with little additional modeling effort. The paper il-

lustrates this on established Nash-Cournot games between price-making producers.

It also demonstrates and discusses how inverse equilibrium models provide gener-

ally inconsistent estimation. Econometric approaches are often better suited for this

purpose.

The main contribution of this paper is to demonstrate how to formulate inverse

equilibrium models from relaxed stationarity conditions from Karush-Kuhn-Tucker

conditions. It illustrates how to transform existing complementarity models in the

power system literature to inverse equilibrium models. Through two case studies,

the paper demonstrates the advantages and caveats of inverse equilibrium models.

For instance, how the data-driven method can assess the fit of model structures, but

is an inconsistent estimator. In a similar vein, the paper discusses the similarities

and differences between inverse equilibrium models and related machine learning

and econometric approaches.

My contribution to this paper includes the conceptualization and formulation

of the research question. I formulated the models, implemented them, made the

case study, and performed the experiments. Afterwards, I took the lead on analysis

and prepared the original draft. I facilitated the subsequent iterations between

co-authors and revised the manuscript.
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3.1.3 Paper III: Congestion risk, transmission rights, and

investment equilibria in electricity markets

Authors: Simon Risanger and Jacob Mays

Submitted to an international peer-reviewed journal.

Investors in production assets depend on financial instruments to hedge against

uncertain revenue streams from volatile wholesale electricity prices. A risk trad-

ing strategy provides predictable revenue streams and better service of debt, which

means that projects receive better credit ratings and lower costs of capital. Lib-

eralized U.S. electricity markets have locational marginal prices where producers

receive a price according to where they inject energy. Financial instruments are

increasingly offered by corporations and financial institutions, who want to settle

contracts at liquid hubs. Producers are therefore exposed to locational risks. Finan-

cial transmission rights (FTRs) are contracts that pay the price difference between

two locations. Despite FTRs’ ability to hedge locational risk, industry reports no

evidence that they support project finance. This paper uses a stochastic equilibrium

model where risk-averse producers invest in installed capacity and trade financial

instruments to investigate this phenomenon. It shows that combining energy price

hedges with FTRs over the project’s lifetime, in contrast to the current maximum

duration of three years, encourages surplus-maximizing investments. Producers are

thereby protected against both types of risk. Producers outside the hub use FTRs

extensively and consequently receive lower cost of capital. Large-scale renewables

tend to be geographically remote, and proper management of locational risk is im-

portant to encourage investments in these assets.

This paper contributes with a framework that can investigate the impact of

FTRs and other energy price hedges on generation investments in an electricity

market with network constraints. Using this framework, we contribute with practical

policy insights. Incomplete risk markets, including instruments for locational risk,

lead to suboptimal investments. An FTR-specific remedy is to provide contracts

over longer duration, preferably over the project’s lifetime, so producers achieve

improved hedges and lower cost of capital. The management of locational risk is

especially important for renewable projects because they tend to be geographically

remote and increasingly secure energy price hedges, like power purchase agreements

(PPAs), on liquid hubs.

18



My contribution to this paper includes the conceptualization and formulation of

the research question together with Jacob Mays. I formulated the models, imple-

mented them, and performed the experiments. Afterwards, I analyzed the results

together with Jacob Mays and prepared the original draft. I facilitated the subse-

quent revisions of the manuscript with the co-author.

3.1.4 Paper IV: Co-movements between forward prices and

resource availability in hydro-dominated electricity mar-

kets

Authors: Andreas Kleiven, Simon Risanger, and Stein-Erik Fleten

Submitted to an international peer-reviewed journal.

In liberalized wholesale electricity markets, hydropower producers calculate a water

value based on current and estimated future revenues. They must evaluate whether

to produce now or store water in aspiration of better prices in the future, while

considering uncertain inflow to reservoirs. If hydropower production dominates a

system, the amount of water in the system’s reservoirs determines the supply, which

again affects the water values. Yet the industry standard is to neglect this relation-

ship and assume independent price and inflow processes when establishing opera-

tional policies. This paper implements the state-of-the-art stochastic dual dynamic

programming method for hydropower planning and trains policies on a novel price

process that considers co-movements in prices and inflow. The multistage model

reinforces the results of a simpler two-stage setting. Producers that consider co-

movements expect low prices during high-inflow situations, which make them value

current water more in the future. They therefore prefer slightly higher reservoirs

and are more prone to postpone production, and risk more spillage. Producers

that ignore the correlation undervalues current water. On data for a Norwegian

hydropower producer, the paper finds 0.17% to 0.30% reduction in expected rev-

enues for a producer that establish an operational policy without considering the

co-movement in price and inflow. The results suggest that, despite theoretical dif-

ferences, the current industry practice only incurs modest extra costs in practice.

Although slim in relative terms, the savings can accumulate to large absolute values

for sizable hydropower plants.

This paper contributes with a novel price process that considers the co-movement
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between prices and inflows. The process includes both local and system hydrological

states, which influence each other and provide insight about the system supply and

thereby prices. The paper’s application is of significant industry interest. It exam-

ines the impact of assuming independent price and inflow processes both analytically

and on a realistic case study on industry data. The paper provides evidence that

current industry practice of assuming independent prices and inflows when estab-

lishing an operational policy only incurs modest additional costs, despite theoretical

differences. In addition, the paper also outlines general insights through a two-stage

example. Thus we extract general conclusions about the difference in policies that

consider co-movements in price and inflow.

My contribution to this paper was to formulate, implement, pre-process, and

perform experiments on the hydropower planning problem. This includes making

the Markov chain from Monte Carlo simulations from the price process and imple-

ment stochastic dual dynamic programming to train policies. Andreas Kleiven was

responsible for the price process and two-stage example. Both prepared the orig-

inal draft and contributed to subsequent reviews and edits. We also verified and

discussed each other’s work and contributed to analysis.

This paper will also be included in Andreas Kleiven’s PhD dissertation.

3.2 Additional contributions

In addition to the papers presented in Section 3.1, I also performed research on

COVID-19 response that is not part of this thesis. Together with co-authors from

the UT Austin COVID-19 Modeling Consortium, we investigated how to select

pharmacies and United States Postal Service (USPS) facilities to ensure access to

COVID-19 tests. The research was published in the following papers:

• Risanger, S., B. Singh, D. Morton, L. A. Meyers (2021). Selecting pharmacies

for COVID-19 testing to ensure access. Health Care Management Science. doi:

10.1007/s10729-020-09538-w.

• Bismark, S., S. Risanger, D. Morton, M. Pignone, L. A. Meyers (2021). Ex-

panding access to COVID-19 tests through US Postal Service facilities. Medical

decision making 41 (1), 3-8. doi: 10.1177/0272989X20969690.
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Chapter 4

Reflections and further research

The papers in this thesis consider the objectives of improving electricity market

efficiency and supporting the integration of renewables. Yet, they make contribu-

tions to both methods and policy in a diverse range of topics. The variety stems

from an ambition to combine both disruptive research, like a novel market design in

paper I or method in paper II, and incremental advances with potential for short-

term practical impact, like investigating FTRs in paper III or operational policies

for hydropower producers in paper IV. This chapter provides reflections on the pa-

pers, including their merits and limitations. It also provides suggestions for further

research.

Paper I introduces the concept of flexible electricity zones. The intuition behind

the idea is solid; several existing studies have investigated the benefits of selecting

optimal zones. The paper raises the question of why these optimal zones needs to be

fixed. Different system states will naturally have different optimal zones. In theory,

flexible zones have only upsides from a cost perspective. If a fixed zone is indeed

the best, the flexible zones would just take this form. Although the theoretical

and system benefits are clear, we need to assess whether this holds in practice. In

what manner does flexible zones impact the different stakeholders and how will they

respond? Producers have years of experience on how to operate profitably under

the current market scheme. Even though a scheme with flexible zones can still

have the same auction structure, market participants need to reassess their bidding

procedure. Political pushback is also a topic of practical concern. Advocates of zonal

markets argue for the democratic principle of equal prices for all consumers within

a zone. Flexible zones could increase the frequency where two locations close to one
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another experience different prices. Another practical concern is operations. System

operators need to find feasible ways to assess multiple zonal configurations, clear the

market, and organize cross-border capacity with neighboring zones. In other words,

a structural change like a new market design impacts multiple stakeholders in various

respects. The concerns mentioned here are just some among many. Further research

on the practical implementation of flexible zones is necessary.

Being a novel market design, flexible electricity bidding zones provide multiple

avenues for further research. Some are computational, like how to identify zonal

configuration effectively in real-world power systems. The enumeration approach

presented in the paper is not scalable to large systems. Moreover, how can system

operators efficiently combine market clearing and zonal selection? Economic factors

also warrant further investigation. Examples are how prone flexible zones are to

abuse of market power, the cost-benefit allocation among stakeholders, and long-

term price signals for investments. Even though the twelve-node case study in the

paper shows promising results, more realistic ones are necessary. Both in terms of

modeling detail and system size.

A main question surrounding flexible electricity bidding zones is that if a system

has to undergo major structural changes regardless, why not go for nodal pricing?

Although nodal pricing is the academic gold standard for congestion management,

practical and political concerns surround its practical implementation. After all,

European markets are still hesitant, despite successful implementations in the United

States. The viability of flexible electricity bidding zones then depends on whether

countries decide to discard existing zonal markets, but do not want to move to nodal

pricing. As discussed in paper I, flexible zones share some beneficial traits with the

current zonal scheme. Still, nodal pricing has been applied and tried in practice,

something flexible zones have not. Regulators may therefore associate more risk

with flexible electricity bidding zones.

Paper II investigates inverse equilibrium models, a topic with limited literature.

The paper serves more as an inquiry to the method than a promotion. Although

the method has merits, like being data-driven, can fit model structures to obser-

vations, and has predictive power, it also has associated challenges. The method

shares features with both machine learning and econometric approaches but does not

excel in neither field. Its increased interpretability compared to machine learning

is a promising ability, but its practical applicability is limited by equilibrium mod-
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els. Constraint qualifications necessary to find unique equilibria make equilibrium

models less representative of real-world applications. For instance, an equilibrium

model, and hence an inverse equilibrium model, cannot consider unit commitment

decisions or an AC representation of the grid. These are important characteristics

of a power system. In general, the impact of inverse equilibrium modeling is limited

by the ability of equilibrium models to represent actual market conditions.

Considering the challenges associated with the inverse equilbrium modeling, pa-

per II aims to be an impartial guide to the method for the power systems community.

Further research should focus on either improving prediction or estimating param-

eters, not accomplishing both at the same time. Inverse optimization is considering

how to include noisy observations (e.g., Aswani et al., 2018; Thai and Bayen, 2018;

Aswani, 2019), which can serve as inspiration to improve the estimation ability of

inverse equilibrium models.

Paper III has potential for short-term practical impact. It verifies statements

from industry that calls for long-term protection against locational risks. A slight

modification of FTRs may accomplish this and introduce more efficient investments.

Practical challenges are also associated with this approach. Notably, all FTRs must

satisfy the simultaneous feasibility test that guarantees revenue adequacy. This

test limits the FTR supply by ensuring that congestion revenue covers all payouts.

Potential long-term FTRs must also satisfy this condition along with FTRs of other

contract durations. Paper III uses FTRs because they are established instruments to

hedge price risks. Still, the important requirement for investors is to hedge locational

risk, not necessarily the specific instrument.

Locational risk and its impact on generation investments have not received much

academic scrutiny, which indicates potential for further research. The framework

in Paper III provides a first step, but it also experienced computational challenges

related to convergence. This may prevent investigation of more realistic case stud-

ies. Alternative approaches, for example a multi-agent system, must be considered.

Other means to protect against locational risk is important from a policy perspec-

tive. This may include other types of financial contracts, like contract for differences,

that are not constrained by the simultaneous feasibility test. Note, however, that

the simultaneous feasibility test has advantages by ensuring FTR payouts through

congestion rents. This reduces counterparty risk. Finally, it is also worthwhile to

consider alternative allocation schemes. Generators could receive FTRs directly in-
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stead of participating in an auction. This can ensure that projects are protected

against locational risk in the long term. However, such schemes must consider how

they impact transmission financing.

Paper IV is operational and has the least barrier to implementation of the papers

in this thesis. It mainly requires hydropower producers to alter their price modeling

and pre-processing before establishing an operational policy. The work is connected

to the Norwegian Research Centre for Hydropower Technology (HydroCen), which

includes industry partners with interest for the results. Consequently, the paper

includes a case study on industry data and detailed modeling similar to that in

industry. Its findings are of direct relevance to all hydropower producers in hydro-

dominated systems.

Future research from paper IV is to investigate cost savings over a larger set of

case studies to get a general sense of the benefits of modeling co-movements. The

price model is complex and requires a deliberate calibration procedure. This may

discourage industry actors to incorporate it in their workflow. It is therefore worth

investigating whether simpler models, like just using a correlation coefficient between

prices and inflows, can reproduce similar results. This will reduce the barrier for

industry adoption.
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Chapter 5

Conclusion

A goal to limit global warming to below 1.5°C requires an unprecedented energy

transition. Innovations in renewable technologies indicate that an energy transition

in power systems is possible. At the same time, it is important to facilitate a

transition within a system that maximizes social surplus. These objectives introduce

a range of challenges to stakeholders. This thesis consists of four papers that consider

some of them.

Paper I takes a system perspective and considers how wholesale electricity mar-

ket designs can assist the integration of large-scale renewables. Zonal markets, that

neglect or approximate congestion within zones, are not particularly suited to dis-

tributed and intermittent production. As a response, Paper I proposes a novel design

called “flexible electricity bidding zones,” which alters zonal configuration accord-

ing to the most efficient dispatch. When it clears the day-ahead market separately

from redispatch, flexible electricity bidding zones achieve just slightly higher costs

than stochastic nodal clearing but guarantee short-term revenue adequacy and cost

recovery.

Continuing a system perspective, paper II investigates inverse equilibrium models

as a means to study oligopolistic electricity markets. This data-driven method fits

observations of market outcomes to model structures. It shares traits with machine

learning and econometric approaches. Still, its performance depends on whether a

power system can be described by an equilibrium model and its parameter estimation

is generally inconsistent.

Paper III investigates project finance and risk trading. In liberalized U.S. elec-

tricity markets, producers receive a price according to where they inject energy. Ge-
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ographically remote producers, like large-scale renewables tend to be, are exposed

to locational risk because energy price hedges usually settle at liquid hubs. These

contracts are important to provide predictable revenue streams and secure funding.

Paper III demonstrates how extending the duration of financial transmission rights

to project lifetimes improve investment incentives when they are combined with en-

ergy price hedges. Complete risk markets promotes investments that increase the

society’s surplus.

Finally, paper IV takes the perspective of hydropower producers, which provide

necessary storage to balance intermittent renewables in an energy transition. A

common industry assumption in hydro-dominated system is to ignore how inflow

to reservoirs influences prices when establishing an operational policy. Hydropower

producers therefore underestimate their water values. Paper IV introduces a novel

price model that includes co-movements in prices and inflows. An operational policy

that considers this co-movement will value current water more in the future. This

leads to higher reservoir trajectories and an inclination to postpone investment.

Despite theoretical differences, a case study on industry data indicates modest cost

savings in practice.
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Inverse Equilibrium Analysis of
Oligopolistic Electricity Markets

Simon Risanger, Student Member, IEEE,
Stein-Erik Fleten, and Steven A. Gabriel, Senior Member, IEEE

Abstract—Inverse equilibrium modeling fits parameters
of an equilibrium model to observations. This allows
investigation of whether market structures fit observed
outcomes and it has predictive power. We introduce a
methodology that leverages relaxed stationarity conditions
from Karush-Kuhn-Tucker conditions to set up inverse
equilibrium problems. This facilitates reframing of ex-
isting equilibrium approaches on power systems into in-
verse equilibrium programs. We illustrate the methodology
on network-constrained and unconstrained Nash-Cournot
games between price-making power generators. The inverse
equilibrium problems in this paper reformulate into linear
programming problems that are flexible and interpretable.
Still, inverse equilibrium modeling provides generally in-
consistent estimation and econometric approaches are bet-
ter for this purpose.

Index Terms—Inverse equilibrium, inverse optimization,
equilibrium modeling, electricity markets.

I. INTRODUCTION

DESPITE the liberalization of electricity markets,
features such as a limited amount of large produc-

ers, high investment costs, and transmission constraints
may cause price-making behavior, barriers of entry,
and reduce access to markets. As a result, the markets
are vulnerable to abuse of market power. Equilibrium
models, which represent these oligopolistic tendencies,
are therefore widely used to study electricity markets [1].

When we study actual energy markets, it is gener-
ally easy to observe the equilibrium outcomes, such as
prices and flows. The theoretical development in inverse
equilibrium modeling [2], [3] leverages this fact. The
framework expands the theory of inverse optimization
[4], which fit parameters of an optimization problem
given observations of decision variables. As a result, we
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can use actual data to analyze markets and participant
behavior to a greater extent.

Recent literature shows an increased interest from
the power systems community in inverse optimization.
Applications include the investigation of price response
of consumers [5], [6], estimation of offer prices from
rival producers [7], and investigation of the parameters of
transmission constraints in electricity markets based on
locational marginal prices [8]. Relevant work on inverse
equilibrium models include [9] and [10], which use the
variational inequality approach of [3] to estimate bid
curves of competing firms that employ strategic bidding.

Expanding the literature cited above, we show how
to use a Karush-Kuhn-Tucker (KKT) representation [11]
to formulate inverse equilibrium models. This allows
existing equilibrium models from KKT formulations to
be rearranged into inverse problems. Although [2] also
considers inverse nonlinear complementarity problems,
their approach requires initial estimates of parameters.
Our methodology follows the idea of [3] and [11], where
they minimize relaxed optimality conditions. As a result,
we can apply our observations directly and solve the
inverse equilibrium problem as an optimization problem.

Considering the rich history of equilibrium modeling
in the power system community, it is natural to assume
that inverse equilibrium modeling can be a valuable tool.
While this is true to some extent, the approach also has
limitations. The goal of this paper is to highlight both
strengths and weaknesses of inverse equilibrium to mod-
elers who consider using this method. Our contributions
are the following:
• We develop a method to fit objective function coeffi-

cients of participants in a power system by inverting
an equilibrium model from KKT conditions.

• We explain how inverse equilibria relate to similar
concepts in econometrics and machine learning.

• We invert a Nash-Cournot game of transmission-
constrained and unconstrained electricity markets.

• We use examples to illustrate how inverse equilib-
rium fits models and describe its performance in the
presence of noise.

• We discuss performance, implementation, and chal-
lenges of inverse equilibrium models, as illustrated



IEEE TRANSACTIONS ON POWER SYSTEMS 2

by our examples.
The remainder of this paper is as follows: Section

II outlines how inverse equilibrium modeling relates to
econometrics and machine learning. Section III provides
an introduction to equilibrium models from KKT condi-
tions and explain how to utilize stationarity conditions
to invert the problem. We apply the method on relevant
examples in Section IV. Section V addresses implemen-
tation challenges, while Section VI concludes the paper.

II. RELATIONSHIP TO ECONOMETRICS
AND MACHINE LEARNING

At first glance, inverse equilibrium modeling may
seem like another addition to the literature on structural
econometrics [12]. Several econometric studies exist on
electricity markets, especially intending to expose market
power (see e.g. [13], [14] and [15]). However, the major
difference is that inverse equilibrium modeling is a
completely data-driven method. As a result, we make
no assumptions on the distribution of our observations.
Rather, we try to fit an equilibrium model of a market
structure and see whether it fits the data well or not.
Econometric estimation, on the other hand, assumes that
there is an underlying population, which our sample
data should reasonably represent, and tries to estimate
true parameters of the population. This gives greater
explanatory power than inverse equilibrium modeling.
The cost, however, is careful data collection and esti-
mator formulations. For instance, the estimators require
that data comply with certain attributes, a traditionally
prominent example is the Gauss-Markov assumptions, to
enjoy statistical properties like unbiasedness and consis-
tency. Although state-of-the-art econometrics have non-
parametric estimation methods and approaches to handle
challenges such as heteroskedasticity, serial correlation
and endogeneity, the field nevertheless require a set of
assumptions on the data in order to infer from it. Es-
timations from inverse equilibrium modeling, which do
not require these assumptions, do thereby not share these
properties. We illustrate this by example in Section IV.
For an example of structural estimation in power systems
see [16], for an overview on econometric methods, see
e.g. [17] or [18]. In addition, [3, Appendix 2] discusses
the relationship between inverse equilibrium modeling
and structural estimation, while [19] suggest poor ac-
curacy from estimation by first-order conditions within
a conjectural variations framework of an oligopolistic
electricity market.

Inverse equilibrium modeling relates more to a ma-
chine learning philosophy, which values prediction over
explanation, than econometrics. However, inverse equi-
librium modeling adds more structure than a pure ma-
chine learning predictor. Most notably, inverse equilib-
rium modeling has a strong prior. We believe that a

certain equilibrium market structure is the basis for the
observations and want to see whether or not this is
correct. If an inverse model is a good fit to the data, we
can insert the fitted parameters in the original problem
to obtain good predictive power [3]. Although this is
a nice feature, we limit this paper to only consider
formulating and solving inverse equilibrium problems,
and refer the interested reader to [10] and [20] that use
inverse optimization for prediction.

From the discussion, we see that inverse equilibrium
complements existing econometrics and machine learn-
ing methods. We emphasize that inverse equilibrium
modeling is generally an inconsistent estimator. Even if
we get interpretable fitted parameters, such as costs or
willingness-to-pay, we cannot conclude with confidence
that they represent those of an underlying market. They
are merely a good fit. If the goal of a study is to estimate
true market parameters, econometric approaches should
be used. That being said, inverse equilibrium modeling
has several advantages:

• We require no assumptions on the input data.
• Inverse equilibrium modeling is flexible, and one

can easily add or remove constraints and alter the
problem.

• The problem often rearranges into a tractable linear
programming problem.

• One can obtain estimates for other values than
objective function coefficients, for instance coeffi-
cients of transmission constraints as shown in [8].

• By using the KKT approach of this paper, it is
simple to invert mixed complementarity models.

• Inverse equilibrium models have more structure
than pure machine learning predictors, which in-
creases interpretability.

III. INVERSE EQUILIBRIUM MODELING

A. Equilibrium models

We consider a set of decision-makers, P =
{1, . . . , |P|}, where each player p ∈ P has an optimiza-
tion problem illustrated by (1). Functions fp, gpi, and hpj
may be different or similar for the different decision-
makers. Moreover, θ, φ and ψ denote the parameters
of the respective functions. Notice that the objective
(1a) is dependent on x−p = (xk)k∈P\p, which denotes
the decisions of the other players, in addition to its
own decision variable vector xp. The problem can be
restricted by inequality constraints i ∈ I and equality
constraints j ∈ J . Because restrictions (1b) and (1c)
do not depend on x−p, they are internal constraints for
player p. Finally, we note that λpi and νpj represent the
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dual variables of constraints (1b) and (1c), respectively.

min
xp

fp(xp, x−p; θp, θ−p) (1a)

s.t. gpi(xp;φp) ≤ 0, (λpi) i ∈ I (1b)
hpj(xp;ψp) = 0, (νpj) j ∈ J (1c)

The decision-makers cannot optimize their own prob-
lem without considering the responses of the other play-
ers. Solving all p ∈ P problems simultaneously leads
to an equilibrium problem. Both variational inequalities
(VIs) and mixed complementarity problems (MCPs) are
paradigms to model the simultaneous solution of these
player-specific problems. VIs are based on considering
the variational principle related to non-negative direc-
tional derivatives for feasible directions (to minimiza-
tion problems). MCPs rely on the KKT conditions and
involve both primal and dual variables, which has a
modeling advantage in some cases [1]. We only consider
MCPs in the remainder of this paper.

We assume that problem (1) for all p ∈ P satisfies a
constraint qualification that makes the KKT conditions
necessary. The KKT conditions are sufficient, for ex-
ample, when fp is convex (concave for a maximization
problem) while gpi and hpj are affine. A solution that
satisfies the KKT conditions (when these conditions are
sufficient) is thus an optimal solution of (1). Likewise, a
solution that simultaneously satisfies the KKT conditions
for all p ∈ P , as shown in (2), is an equilibrium solution.

∇xpfp(xp, x−p; θp, θ−p)+
∑

i∈I
λpi∇xpgpi(xp;φp)

+
∑

j∈J
νpj∇xphpj(xp;ψp) = 0, p ∈ P

(2a)

gpi(xp;φp) ≤ 0, i ∈ I, p ∈ P (2b)
hpj(xp;ψp) = 0, j ∈ J , p ∈ P (2c)

λpi ≥ 0, i ∈ I, p ∈ P (2d)
λpigpi(xp;φp) = 0, i ∈ I, p ∈ P (2e)

B. Inverse equilibrium models

Problem (2) assumes that parameters, θ, φ and ψ,
are fixed and seeks a solution satisfying all the con-
ditions. By contrast, inverse equilibrium modeling is
the reverse-engineering direction to this. Namely, given
an equilibrium solution, it seeks to find the parameters
θ, φ and ψ that best fit the observed solution. The
equilibrium outcomes, represented by the decision vari-
ables x1, . . . , x|P| become fixed observations, and thus
parameters, x̃1, . . . , x̃|P|, in the inverse problem. Our
method is similar to [11], which applies KKT relaxations
to convex optimization problems.

We allow stationarity conditions (2a) to be relaxed,
while constraints (2b) to (2e) must hold. A deviation

from (2a) results in near-equilibrium solutions, but out-
comes are still feasible when (2b) to (2e) hold. We can
thus relax the stationarity condition by deviation εp, as
shown in (3), to create a near-equilibrium solution. This
allow the inverse model to consider observations that are
not necessarily optimal strategies for its assumed model.
Note that the deviations are not independent because we
relax the stationarity condition, which includes decision
variables of the other problems.

∇xp
fp(xp, x−p; θp, θ−p)−

∑

i∈I
λpi∇xp

gpi(xp;φp)

−
∑

j∈J
νpj∇xp

hpj(xp;ψp) = εp
(3)

We assume that observations come from rational play-
ers, and thus are optimal decisions in the actual market.
The inverse equilibrium problem (4) therefore seeks to
minimize the vector norm of these deviations, ‖ε‖ where
ε = {εp : p ∈ P}. This fits the parameters in a manner
where the observations are as optimal as possible for the
assumed model. Recall that observations x̃1, . . . , x̃|P| are
parameters in the inverse problem. The dual variables,
λki and νkj , become parameters if they are observable.
A notable example is prices, which are dual variables of
market-clearing constraints and observable at the power
exchange. If unobservable, the dual variables continue
to be decision variables, which we assume for the re-
mainder of the paper. The parameters we want to fit, for
instance cost coefficients, slopes or intercepts of inverse
demand functions, also become decision variables.

min
ε,λ,ν,θ,ψ,φ

‖ε‖ (4a)

s.t. ∇xp
fp(x̃p, x̃−p; θp, θ−p)

−
∑

i∈I
λpi∇xpgpi(x̃p;φp)

−
∑

j∈J
νpj∇xphpj(x̃p;ψp) = εp, p ∈ P

(4b)

Constraints (2b) to (2e)

Depending on the number of variables that are ob-
servable and how many parameters we try to fit, there
may be several optimal solutions for (4). With respect
to interpretability, we want the solution space as small
as possible. We can achieve this by adding constraints,
getting observations for variables and fitting fewer pa-
rameters. Several different observations also increase
the probability of having marginal observations, i.e.
observations that reveals some limit of the variables. This
reduces scale invariance, which is the situation where the
fitted parameters has a range of optimal solutions.

We therefore introduce h ∈ H = {1, . . . , |H|} as
index for different observations. For instance, the elec-
tricity market outcomes for multiple hours or days. We
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introduce observations x̃1h, . . . , x̃|P|h into the inverse
equilibrium problem and minimize the deviation at each
observation, εph, constrained to (4b) and (2b) to (2e) for
all observations.

The inverse equilibrium problem has several con-
venient computational properties compared to ordinary
equilibrium problems. Complementarity constraints of
equilibrium problems are non-convex, and thus computa-
tionally challenging for large instances. When decision
variables become fixed observations, they cease being
variables. If an observed variable is part of a bilinear
term, the term becomes linear. If one wants to fit param-
eters in an inequality constraint, i.e. φ, complementarity
conditions can arise because we multiply φ with the dual
variable λ in constraint (2e). However, this is not an
issue if we do not need to estimate φ or if we have
observations of its corresponding dual variable λ̃.

Objective function (4a) minimizes the distance from
the objective and can be represented by any norm. An
L1-norm (the sum of absolute values) or L∞-norm
(the single largest magnitude in a vector) linearizes
the inverse equilibrium objective. For the examples in
Section IV, we use the L1-norm. If the constraints are
affine, then (4) becomes a linear programming problem.
Consequently, we are able to solve much larger instances
of inverse equilibrium problems than equilibrium prob-
lems.

C. Pre-process data to reduce problem size
Although we can solve the inverse equilibrium prob-

lem in its original form (4), pre-processing data reduces
problem size and decreases the risk of numerical com-
plications. Take for instance restriction (2e):

λpigpi(xp;φp) = 0.

Given an observation x̃p and we know φ, then we
know the value of gpi(x̃p;φ), which now becomes a
parameter in the problem. If gpi(x̃p;φ) = 0, we can
omit restriction (2e), because we know it is satisfied.
Similarly, if gpi(x̃p;φ) 6= 0, we can set λpi = 0 instead
of the numerically more complicated (2e). In addition,
non-negativity constraint (2d) becomes redundant.

IV. ILLUSTRATIVE EXAMPLES OF INVERSE
EQUILIBRIUM MODELS

To illustrate the computational aspects of solving
inverse equilibrium problems, we introduce two Nash-
Cournot games where strategic generators use market
power to maximize profits. Throughout the section, we
use the PATH solver [21] in GAMS to solve the equilib-
rium problems, while we implement the inverse equi-
librium problems, which become linear programming
problems, in the Pyomo package for Python and solve
with the Gurobi solver.

A. Generic Nash-Cournot game

1) Model formulation: First we consider a generic
Nash-Cournot game between p ∈ P price-making gener-
ators with finite capacity. They supply a price-sensitive
load without any transmission constraints. Generation is
denoted xp, and has a marginal cost cp, as described
by optimization problem (5). Each generator tries to
maximize its profits, given by objective function (5a).
A linear inverse demand function with slope a ≥ 0 and
intercept b ≥ 0 determines the price. We include ξ as
a demand shock that increases or decreases the demand
intercept. In actual application, there is significant un-
certainty regarding ξ. We include it merely to generate
different observations for the case study. A generator
cannot exceed its maximum generation capacity Qmax

p ,
as enforced by (5b), and generation is non-negative.
Finally, µp denotes the dual variable of the maximum
generation restriction.

max
xp

− cpxp +
(
b+ ξ − a

∑

k∈P
xk

)
xp (5a)

s.t. xp ≤ Qmax
p (µp) (5b)

xp ≥ 0 (5c)

We formulate the KKT conditions of (5) as described
in Section III-A. The objective (5a) is concave and
constraints (5b) and (5c) are affine, so the KKT con-
ditions (6) are necessary and sufficient to represent a
global optimum of (5). The market equilibrium is the
set of x1, . . . , x|P| that satisfy (6) for all players, where
the perp operator ⊥ signifies that the product of the
constraints on both sides of the operator must equal zero.

0 ≤ cp − b− ξ + a

(
xp +

∑

k∈P
xk

)
+ µp

⊥ xp ≥ 0

(6a)

0 ≤ −xp +Qmax
p ⊥ µp ≥ 0 (6b)

We apply the option to deviate by εh from the stationarity
condition (6a), as explained in Section III-B, and use
several observations h ∈ H. Each observation differs
by realizations of the demand shock ξh. Equation set
(7) becomes the inverse equilibrium problem, where the
objective function (7a) is to minimize the distance to an
equilibrium point considering all observations.
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min
c,a,b,µ,ε

‖ε‖ (7a)

s.t.
(
cp − b− ξh + a

(
xph +

∑

k∈P
xkh

)

+ µph + εph

)
xph = 0, p ∈ P, h ∈ H

(7b)

0 ≤ cp − b− ξh + a
(
xph +

∑

k∈P
xkh

)

+ µph + εph, p ∈ P, h ∈ H
(7c)

(−xph +Qmax
p )µph = 0, p ∈ P, h ∈ H (7d)

µph ≥ 0, p ∈ P, h ∈ H (7e)

2) Illustrative case study: To illustrate the inverse
Nash-Cournot game, we create a case study where we
consider three price-making electricity generators. All
have a maximum production of Qmax

p = 5000MWh and
their marginal costs are c1 = 50.0AC/MWh and c2 =
c3 = 60.0AC/MWh. Their collective consumers are rep-
resented by a linear inverse demand function with slope
a = 0.01AC/MWh2 and intercept b = 200.0AC/MWh.
We insert these values into the equilibrium problem
(6) and solve. The Nash-Cournot equilibrium is x1 =
4250MWh and x2 = x3 = 3250MWh when the
demand shock ξ = 0.

We solve equilibrium problem (6) a hundred times to
produce observations x̃1h, x̃2h, and x̃3h. Each observa-
tion has a different demand shock ξh selected at random
from a normal distribution with mean of 0 and standard
deviation 20AC/MWh. We thus have |H| = 100 different
observations.

The inverse generic Nash-Cournot game (7) takes
observations x̃1h, x̃2h, and x̃3h as parameters and solves
for c1, c2, c3, a, b, µ, and ε. We assume that the demand
shocks ξ̃h are known and thus parameters as well. Note
that this is not a realistic assumption, but prevents noise
in the example, which is a topic we consider in Section
IV-A4.

The objective value of (7a) becomes 8 · 10−5, so
sufficiently small to indicate that the model fits the data.
Slope a is correctly fitted to 0.01AC/MWh2, but some
deviation occurs for b = 150.0AC/MWh, c1 = 0.0,
and c2 = c3 = 10.0AC/MWh. All deviations are fitted
exactly 50.0AC/MWh less than the original value, so
we have a case of scale invariance. Whenever we are
dealing with a market, we can use price observations λ̃h.
We introduce the relationship that the inverse demand
function determines price, as shown in (8), as a scaling
constraint.

λ̃h = b+ ξ̃h − a
∑

k∈P
x̃kh, h ∈ H (8)

When we include (8) to the inverse problem (7), we ob-
tain the same objective value, but parameters fit exactly

to the true value. Hence, we show that if data coincide
with the inverse equilibrium model, it fits perfectly.

3) Fit inverse equilibrium models to other market
structures: The inverse equilibrium approach fits data
to models. To illustrate, we fit data from a competitive
equilibria to the inverse Cournot model (7). We use 100
observations from when a social planner coordinates all
decisions. Table I outlines the results.

TABLE I
RESULTS OF FITTING PERFECT COMPETITION DATA TO INVERSE

COURNOT MODEL.

True Without (8) With (8)
Deviation, ε [AC/MWh] 0 208.1 1113.2
Intercept [AC/MWh], b 200.0 143.6 200.0
Slope, a [AC/MWh2] 0.01 0.0067 0.01
Cost gen. 1, c1 [AC/MWh] 50.0 0.0 0.0
Cost gen. 2, c2 [AC/MWh] 60.0 20.3 17.6
Cost gen. 3, c3 [AC/MWh] 60.0 20.3 14.2

In contrast to the previous example, we observe a
non-zero deviation. The inverse model does not manage
to fit parameters such that the observations become an
equilibrium of (7). In other words, the players deviate
from their optimal Cournot strategy and a Cournot model
is not a good representation of the data.

Table I also shows that the price relationship (8)
increases the deviation ε and thus changes the solution
space. It is therefore no longer a scaling constraint. We
also note that the fitted parameters do not resemble the
true parameters. This example illustrates the strength
of inverse equilibrium modeling to test different market
structures. It also emphasizes caution towards consider-
ing the fitted parameters as true estimations.

4) Performance under noise: In general, we cannot
prove that inverse equilibrium modeling, as inverse op-
timization in its canonical form, yield consistent esti-
mators. That is, as the number of observations increase,
the fitted parameters will not converge to a true value.
If the goal is to estimate parameters, consistency is an
important feature. For this reason, we cannot recommend
inverse equilibrium as an estimator.

To display the caveat of using inverse equilibrium as
an estimator, we solve the generic Nash-Cournot game
for |H| = 10, 100, 500, and 1000 observations with a
known random demand shock. We then add a normally
distributed noise with mean 0 and standard deviation
200MWh to the output of Generator 3. If production
with noise exceeds its production limit, we simply set it
to Qmax

3 .
A consistent estimator would be able to reduce the

noise as the number of observations increase and con-
verge to the true value. Table II shows that this is not
the case for the inverse equilibrium model. In fact, the
fitted parameters show no significant trend and adhere
to the randomness of the noise. The total deviation ε in
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Table II shows a steady increase because it gets more
terms that deviate. Theoretically, we can observe this
from objective (7a) of the inverse equilibrium model.
We only minimize the deviation from optimum and have
no noise correcting term. With a noise correcting term,
the problem becomes non-convex (see [22]) and thus
computationally hard to solve.

TABLE II
PERFORMANCE OF INVERSE COURNOT MODEL WHEN GENERATOR

3 HAS NOISE THAT FOLLOW DISTRIBUTION N (0, 200MWh).

Observations, |H| 10 100 500 1000
ε [AC/MWh] 4.85 61.88 294.55 611.33
b [AC/MWh] 198.88 200.78 199.21 198.78
a [AC/MWh] 0.0099 0.010 0.0099 0.0098
c1 [AC/MWh] 50.64 50.33 50.89 51.57
c2 [AC/MWh] 60.43 60.38 60.81 61.47
c3 [AC/MWh] 60.44 60.87 60.68 61.64

B. Nash-Cournot equilibrium in power systems

1) Model formulation: To illustrate the inverse equi-
librium method for power systems, we use the model
formulation of [23] that neglects the presence of arbi-
trageurs. See [23] for the assumptions that provide a
unique equilibrium solution. We want to fit demand and
supply function parameters to observations. The inverse
demand function (9) sets the price λi at a particular bus
i ∈ N , where N is the set of nodes, with respect to
total quantity qi, slope ai and intercept bi. Equation (10)
denotes the linear marginal cost for a producer p, where
xp is its generation.

f−1i (qi) = λi(qi) = bi − aiqi (9)

MCp(xp) = dp + cpxp (10)

A profit-maximizing producer p decides its sales to
a particular node spi and its generation xp according to
problem (11). The objective (11a) is to maximize profits,
given by the difference between revenue and cost. The
cost of using the transmission network, wi, is a parameter
in problem (11), but we define it later as the dual variable
of the market-clearing condition (15). Constraint (11b)
enforces a maximum limit on xp, while restriction (11c)
ensures that sales are equal to generation.

max
spi,xp

∑

i∈N
(bi − ai

∑

k∈P
ski − wi)spi

− (dp + cixp − wp(i))xp

(11a)

s.t. xp −Qmax
p ≤ 0, (αp) (11b)

∑

i∈N
spi − xp = 0, (βp) (11c)

spi ≥ 0, xp ≥ 0 (11d)

The KKT conditions of the producer problem (11)
become (12). Notation p(i) denotes the mapping from
producer p to node i, i.e. the location of the generator.

0 ≤ −bi + ai(spi +
∑

k∈P
ski) + wi + βp

⊥ spi ≥ 0, i ∈ N
(12a)

0 ≤ dp + 2cpxp − wp(i) + αp − βp ⊥ xp ≥ 0 (12b)
0 ≤ −xp +Qmax

p ⊥ αp ≥ 0 (12c)
∑

i∈N
spi − xp = 0, βp ∈ R (12d)

A system operator oversees energy flow while maxi-
mizing revenue from grid use, as shown in problem (13),
where yi is net energy injection at node i. Constraints
(13b) and (13c) guarantee flows within the minimum
and maximum limits of line l ∈ L, where L is the set
of lines. A PTDF matrix determines the flows in the
system, where element PTDFli gives the ratio of flow
on line l caused by power injections at node i. Although
the system operator has an optimization problem, the net
injection yi is in fact determined by sales and production
by the producers, as we show later in the market-clearing
condition (15). Consequently, the system operator does
not act strategically.

max
yi

∑

i∈N
wiyi (13a)

s.t. −F cap
l −

∑

i∈N
PTDFliyi ≤ 0, (γ−l ) l ∈ L

(13b)∑

i∈N
PTDFliyi − F cap

l ≤ 0, (γ+l ) l ∈ L

(13c)

The KKT conditions of the system operator problem
(13) are (14):

wi +
∑

l∈L
PTDFli(γ

−
l − γ+l ) = 0, yi ∈ R i ∈ N

(14a)

0 ≤ F cap
l +

∑

i∈N
PTDFliyi ⊥ γ−l ≥ 0, l ∈ L (14b)

0 ≤ F cap
l −

∑

i∈N
PTDFliyi ⊥ γ+l ≥ 0, l ∈ L (14c)

Finally, the market-clearing condition (15) states that
the net injection for each node must be equal to the
difference between sales to the node and its internal
production.

∑

p∈P
spi − xp(i) = yi, wi ∈ R i ∈ N (15)

Both the producer and system operator problems are
concave with affine constraints, so the KKT conditions
are necessary and sufficient to represent the global
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optimum. The equilibrium problem is to find the set of
variables that satisfy (12) for all the players, (14), and
(15).

We invert the equilibrium problem to (16) for multiple
observations h ∈ H according to the method of Section
III-B. Because the producer problem has two decision
variables, sales, spi, and production, xp, it has two
stationarity conditions. Consequently, we introduce two
sets of deviation variables, εspih and εxph, for spih and xph,
respectively. In the example, we weigh the deviations
equally.

min
a,b,c,d,α,β,γ−,γ+,w,ε

‖ε‖ (16a)

s.t. (16b)(
− bi + ai(spih +

∑

k∈P
skih) + wi

+ βph + εspih

)
spih = 0, p ∈ P, i ∈ N , h ∈ H

(16c)

0 ≤ −bi + ai(spih +
∑

k∈P
skih) + wi

+ βph + εspih, ∀p ∈ P, i ∈ N , h ∈ H
(16d)

(dp + 2cpxph − wp(i) + αph

− βph + εxph)xph = 0, p ∈ P, h ∈ H (16e)

0 ≤ dp + 2cpxph − wp(i) + αph − βph + εxph,

p ∈ P, h ∈ H (16f)

(−xph +Qmax
p )αph = 0, p ∈ P, h ∈ H (16g)

wih +
∑

l∈L
PTDFl,i(γ

−
lh − γ+lh) = 0, i ∈ N , h ∈ H

(16h)

(F cap
l +

∑

i∈N
PTDFl,iyih)γ

−
lh = 0, l ∈ L, h ∈ H

(16i)

(F cap
l −

∑

i∈N
PTDFl,iyih)γ

+
lh = 0, l ∈ L, h ∈ H

(16j)
αph ≥ 0, p ∈ P, h ∈ H (16k)

γ−lh, γ
+
lh ≥ 0, l ∈ L, h ∈ H (16l)

yi, wi ∈ R, i ∈ N , βp ∈ R, p ∈ P (16m)

2) Illustrative case study: As a case study, we con-
sider the the 6-bus system from [24], as shown in Figure
1. Network flows behave according to the PTDF matrix
represented in Table III where we define bus 1 as the
hub. The line from bus 1 to 6 has a capacity of 200MW ,
bus 2 to 5 has 250MW , while the rest are sufficiently
high not to limit any flows. Buses 1, 2, and 4 contain
price-making producers, while buses 3, 5, and 6 are
price-taking consumers. Table IV outlines the intercept
and slope of both producer marginal cost and inverse
demand.

1 2

3

4

56

Fig. 1. Illustration of the 6 bus network from [24] used for equilibrium
in power systems example.

TABLE III
PTDF MATRIX OF 6-BUS EXAMPLE.

Line/bus 1 2 3 4 5 6
(1,2) 0 -0.583 -0.292 -0.292 -0.333 -0.25
(1,3) 0 -0.292 -0.646 -0.146 -0.167 -0.125
(1,6) 0 -0.125 -0.063 -0.563 -0.5 -0.625
(2,3) 0 0.292 -0.354 0.146 0.167 0.125
(2,5) 0 0.125 0.063 -0.438 -0.5 -0.375
(4,5) 0 -0.042 -0.021 0.479 -0.167 0.125
(4,6) 0 0.042 0.021 0.521 0.167 -0.125
(5,6) 0 0.083 0.042 0.042 0.333 -0.25

TABLE IV
FITTED PARAMETERS FROM 6-BUS EXAMPLE. INTERCEPTS IN

AC/MWh AND SLOPES IN AC/MWh2 .

Fitted Fitted True True
Bus intercept slope intercept slope

1 10.0 0.05 10.0 0.05
2 15.0 0.05 15.0 0.05
3 37.5 0.05 37.5 0.05
4 42.5 0.25 42.5 0.025
5 75.0 0.1 75.0 0.1
6 80.0 0.1 80.0 0.1

We obtain observations by solving the KKT conditions
(12) for all the players, (14), and (15) as an equilibrium
problem using the input data of the 6-bus example. To
get different observations we apply both supply and
demand shocks. We assume that all producers have fossil
fuel generators with equal emission per unit energy and
must pay a carbon price, λCO2 , for their emissions. We
select carbon prices at random from a normal distribu-
tion with mean of 10AC/MWh and standard deviation
2AC/MWh. The carbon price becomes an additional
term in the marginal cost, MCp(xp) from (10), of
the producers. The demand shock ξh comes from a
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normal distribution with mean 0 and standard deviation
2AC/MWh. We assume a sufficiently high generation
limit, Qmax

p = 1000MWh, as to not be binding for
any of the observations.

We select 100 random carbon prices and demand
shocks before solving the equilibrium model to generate
observations. The objective value of (16a) becomes
slightly above zero at 0.021. Thus we can conclude
that the Nash-Cournot model fits the data. Moreover, we
see from Table IV that the fitted parameters coincide
with the actual variable. In contrast to the example in
Section IV-A we have no scale invariance. The data
provides sufficient marginal observations to scale the
fitted parameters correctly.

V. COMMENTS ON IMPLEMENTATION

As demonstrated in the examples of Section IV,
existing equilibrium models can easily be recast as in-
verse equilibrium models. Although the fitted parameters
in our examples provide good estimates of objective
function parameters, we emphasize that the data was
generated in a controlled environment. In real appli-
cations, the data will be noisy and the results more
challenging to interpret. Inverse equilibrium modeling
tries to fit a hypothesis, i.e. equilibrium structure, to data.
A benefit of this approach is that the inverse equilibrium
models are interpretable. While this limits generalization,
it enables the modeler to use domain knowledge.

Data from real-world applications are subject to noise.
Inverse equilibrium models are unlikely to enjoy as small
deviations as our examples. This is expected, as it only
shows that an equilibrium structure does not perfectly
fit the data. An interesting feature is that we can try
different equilibrium set-ups and observe what structure
has the least deviation, and thus is the best fit for the data.
Note that there may be several reasons for deviations; the
model structure may not adhere to the observations, the
observations can be noisy or there may be underlying
dynamics or costs unobserved by the modeler.

The KKT approach in this paper benefits from the
close relationship to existing MCP models applied to
power systems. Consequently, the deviations are mea-
sured in costs per variable unit, which is less intuitive
to interpret than just costs. The VI approach [3], on the
other hand, measures deviations in the unit of the objec-
tive function. However, this requires a VI representation
of the equilibrium problem.

As discussed in Section II, it is important to be
cautious when investigating the fitted parameters. They
are not representative of characteristics of an underlying
population as in econometrics, they are merely the best
fit to the data. Estimation of underlying market param-
eters is an important task for market monitors. For this
purpose we recommend consistent estimators established

in the econometric literature. If the reader is interested
to try inverse equilibrium approaches in an estimation
direction, we refer to [25], [26] and [22], which consider
inverse optimization with noisy observations.

Inverse equilibrium modeling is a general approach
that can be applied to any equilibrium problem. In this
paper we use Cournot models because they are familiar
to the power system modeling community. An alternative
approach are conjectural variations models (see e.g. [27],
[28] and [29]), which are more general. A challenge
with inverting for instance the model in [27], is that
even if the KKT conditions of the problem are necessary
and sufficient, the inverse problem becomes non-convex
in parameters. Hence, to make the inverse equilibrium
problem convex, we need observations on a parameter
in the bilinear term. For more information on estimation
of conjectural variations models in power systems we
refer to [30].

VI. CONCLUSION

Inverse equilibrium modeling is a data-driven method
that fit parameters of an equilibrium model in order
to minimize the deviation from an observation. This
paper shows how to use Karush-Kuhn-Tucker (KKT)
conditions to invert equilibrium problems. As shown
in two applications, a constrained and an unconstrained
Nash-Cournot game between power producers, this only
requires a small deviation from the original equilibrium
problem. Our methodology is thus easy to apply on exist-
ing equilibrium models applied to power systems, where
working with KKT conditions is prominent. Inverse
equilibrium models as shown in this paper can transform
into linear programming problems. The method can in-
vestigate if data fit a model structure and it has predictive
power. However, its estimation is generally inconsistent
and econometric approaches are better for this purpose.
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