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ABSTRACT

Taking insights from the remote sensing field, in the recent
decade, the advantages of hyperspectral imaging technology
has been exploited for painting conservation. The estimation
of pigment proportion in painting is a challenge that is due to
the highly mixed nature of the paint layers, usually requiring
to take into account the law of mixing colorants in turbid me-
dia. Having knowledge of some pigments and paint layers of
the reverse side of The Scream (1893), in this study, we are
exploring the feasibility of using a more simple linear model
for its unmixing. The obtained results are promising, despite
the simplicity of the mathematical model.

Index Terms— hyperspectral images, spectral unmixing,
fully constrained least squares, cultural heritage application

1. INTRODUCTION

The identification of an artist’s material of a painting is tradi-
tionally carried out using micro-destructive techniques, e.g.,
X-ray fluorescence (XRF) and Fourier-transform infrared
spectroscopy (FTIR) [1]. Despite allowing to identify pig-
ments, dyes, and organic components present in the painting,
they are only point-analysis. Hyperspectral imaging (HSI),
which captures both spatial and spectral information, offers
a complementary non-invasive technique to the field of con-
servation. With the characteristic wavelengths of paints lying
in the visible and near-infrared spectral ranges [2], HSI can
provide an analysis of pigments for the surface of a painting.

The use of spectral imaging for painting conservation
started in the early 90s [3], aimed at providing more accurate
documentation of cultural heritage paintings. In the recent
decade, we can find works exploiting the use and advantages
of HSI to provide, e.g., pigment and constituent maps, show-
ing their presence [4] and also their estimated proportion
or concentration in a mixture [5, 6]. From a computational
point of view, these works can be categorized as classification
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or unmixing tasks. A classification task is when the aim is
to identify the main pigments present in a painting. If the
estimation of their proportion is also required, then the task
becomes that of an unmixing.

Hyperspectral unmixing (HU) is an active research area
in the field of remote sensing. It formulates that an observed
spectral signature, typically originating from a single pixel, is
of either micro- or macroscopic material mixtures and multi-
ple scattering [7]. In remote sensing, due to the low resolu-
tion of the sensor, linear HU can be used since a macroscopic
fashion (optical) of the mixture can be assumed. In painting
conservation, the resolution of a pixel is very high, since the
distance between the object of interest and the sensor is sig-
nificantly closer compared to that in the remote sensing setup.
Additionally, the mixing law for when different wet paints are
mixed is different from that of an optical mixing in the atmo-
sphere. Kubelka-Munk (K-M) theory is the mixing law of
colorants that are largely used in the HU of paintings [5, 6].

K-M theory expresses the relationship between absorption
and scattering coefficients of incident lights in intensely light
scattering materials or, what is called, turbid media [8]. How-
ever, it is mathematically complex, making it unsuitable for
many applications. This has lead to its simplifications which,
nevertheless, still have their challenges. They are known to
be restrictive and their shortcomings and limitations have also
been identified [9, 10].

For paintings that have been previously analyzed using
the traditional point-wise techniques, we have what is analo-
gous to ground truth in the remote sensing context. This is
available for The Scream (1893) by Edvard Munch [11, 12],
for which we have also previously mapped the presence of its
main pigments on the entire surface of the painting [4]. Ex-
ploiting the knowledge of the particular characteristics of its
reverse side, in this study, we are exploring the feasibility of
using the linear spectral mixture analysis approach. Details of
the said characteristics, the methods, and our justification of
its use can be found in Section 2. Some experimental results
and analysis can be found in Section 3, followed by a conclu-
sion in Section 4. Frequently used mathematical notations are
also provided for ease of reading in Table 1.



Table 1: Frequently used mathematical notations.

Y Image vector Y = [yT
p ], Y ∈ RP×M

+ , where
yp ∈ RM×1

+ is the spectrum at pixel p
A Spectral signatures of known pigments A = [ar],

A ∈ RM×R
+ , ar ∈ RM×1

+

S Proportion vector S = [sp], S ∈ RP×R
+ , sp ∈

R1×R
+

1r,1p Vector of ones of size R× 1 and P × 1
M Number of spectral bands
P, p Number of pixels and pixel index
R, r Number of known pigments and their index

2. MATERIALS AND METHODS

2.1. Target painting

The target painting for this study is the reverse side (verso)
of the painted version of The Scream (tempera/ crayon/ oil,
Woll 333) from 1893, owned by the National Museum of Art,
Architecture and Design (NM) in Oslo, Norway [13]. Due to
the size of the painting and the acquisition setup, the painting
had to be scanned as three overlapping cutouts (Fig. 1). After
a preprocessing, each cutout is of varying widths and heights
around 1400×4680 pixels. Spectrally, it has 160 bands from
approximately 414.62 to 992.50 nm, in 3.63 nm intervals.
Due to the noise level at the first five bands, only 155 spectral
bands starting from 432.80 nm are considered.

In an interview with a conservator from the NM [14], it
was mentioned that Munch very rarely mixed the paints in
the palette, but rather directly onto the cardboard support of
this painting. It was further explained the technique he often
used was brushing one paint thinly across another, resulting
in a third color that is optically mixed. And as what can also
be observed in the reverse side of the painting in Fig. 1, there
are many strokes of clean or unmixed colors. There are also
what is called the scumble effects, i.e., a perceptual effect that
is due to the translucent colors lying across each other. An-
other important aspect of the painting that will be useful in
the unmixing task is the cardboard support. It was said that
there was no proper preparation for the cardboard. There is no
ground layer aside from gelatin that was already on the card-
board itself. This means that for a thin layer of paint or pig-
ment, the spectral reflectance will be that of an optical mixing
with the reflectance of the cardboard support.

2.2. Fully constrained least squares unmixing

The characteristics of The Scream (1893), i.e., with many
clean colors and scumble effects, justify the use of a more
simple unmixing algorithm, i.e., fully constrained least
squares (FCLS) linear spectral unmixing. In order to use
the algorithm, a priori knowledge of the signatures of pig-

Fig. 1: Three hyperspectral cutouts of the reverse side (verso)
of The Scream (1893).

ments present in the painting is required. In this case, this
information is obtained from previous studies, where the main
pigments have been identified in several points of the paint-
ing [11, 12]. Using them as guidance, spectral reflectances of
the identified pigments can therefore be extracted from the
hyperspectral image in order to build a matrix A containing
the signatures of the pigments.

For a linear unmixing approach to provide reliable and
directly interpretable estimation of pigment proportion S, two
constraints must be imposed. They are the abundance non-
negativity (ANC) and sum-to-one (ASC) constraints [15],

spr ≥ 0, 1 ≤ r ≤ R;
R∑

r=1

spr = 1.

These constraints allow embedding the physical aspects of
materials into the algorithm. ANC says that the estimated
proportion for each pigment must be a positive fraction, while
ASC makes sure that the cumulative proportion of a single-
pixel p does not go above 100%.

In a least squares linear unmixing, we consider a pixel yp

to be modeled as a linear combination of spectral signatures
of known pigments Asp and an additive noise term εp,

yp = Asp + εp, p = 1, . . . , P.

Then, consider the optimization problem,

J = min
S

1

2

P∑
p=1

‖yp −Asp‖2 + λ1‖S1r − 1p‖2 + λ2‖S‖q,

where ‖S‖q =

P∑
p=1

R∑
r=1

sqpr, 0 < q < 1.



The first term in J enforces fidelity, the second encourages
ASC, and the third acts as a sparsity term. Considering the
whole image vector Y, the function can be written as,

J = min
S

1

2
‖Y − SAT ‖2F + λ1‖S1r − 1p‖2 + λ2‖S‖q.

To optimize J , the steepest descent method will be used,
where its derivative w.r.t S is,

∂J

∂S
= SATA−YA+ λ2q‖S‖q−1 + λ1S1r1

T
r − λ11p1

T
r .

The (element-wise) steepest descent method for each iteration
k is given by,

s(k+1)
pr = s(k)pr − η(k)pr [(S(k)ATA)pr − (YA)pr+

λ2q(s
(k)
pr )

q−1 + λ1(S
(k)1r1

T
r )pr − λ1].

The step size ηpr is allowed to change at each k,

η(k)pr =
s
(k)
pr

[(S(k)ATA)pr + λ2q(s
(k)
pr )q−1 + λ1(S(k)1r1T

r )pr]
.

Finally, the update rule can be written as,

s(k+1)
pr =

s
(k)
pr [(YA)pr + λ1]

[(S(k)ATA)pr + λ2q(s
(k)
pr )q−1 + λ1(S(k)1r1T

r )pr]
.

With regards to ANC, it is possible to show that the sequence
of cost function values this algorithm yield is non-negative
[16]. Note that the method relates to refs. [16,17], written for
non-negative matrix factorization setting.

2.3. Spectral library of pure and mixed pigments

Information of the main pigments present in the three loca-
tions pointed by white arrows in Fig. 1 is available [11].
Details of their corresponding pigments are provided in Ta-
ble 2. Additionally, knowing that most of the surfaces are
not covered by pigments, a signature of the cardboard sup-
port will also be used in the spectral library. Finally, spec-
tral reflectances of these four samples are obtained from, first,
averaging a 2 × 2 window and, then, smoothing them using
Savitzky-Golay filter [18] of window length 7 and polynomial
order 2. The resulting spectral library can be seen in Fig. 2.

3. RESULTS AND DISCUSSION

3.1. Evaluation using subsets containing the samples

To evaluate the feasibility of using FCLS for this painting, a
subset of size 300×300 pixels is used, as well as the following
tuning parameters λ1 = 1300, λ2 = 23, q = 0.5. It contains
the location of the samples in Fig. 1. Closely observing the
subset through Fig. 3a, it is almost certain that pure and/ or

Table 2: Known pigments used in this study. Sample num-
bers in parentheses correspond to physical samples studied
and analyzed in Ref. [11].

Sample Colour Main pigments found

1 - Cardboard support
2 (33) Red Vermilion
3 (35) White LW mixture: Lead white, zinc white
4 (34) Blue UB mixture: Ultramarine blue, lead

white, barites

Fig. 2: Spectral reflectances of the samples given in Table 2.
Colors of the spectra are representative of the main pigments.

mixed pigments in this subset are only variations of samples
1-4. The estimated proportion in different pixels will vary,
but no other pigments are expected on the surface, which will
contribute to a significantly larger reconstruction error e =
‖Y − SAT ‖2F .

The unmixing results can be observed in Fig. 3. The pro-
portion maps for each sample in Fig. 3c-3f provide reason-
able results agreeing with a quick visual observation on the
target image. The map for the cardboard support (Fig. 3c)
correctly shows where the cardboard is exposed, without any
superposing paint layer. Its combination with the vermilion
map (Fig. 3d) is also able to show where the vermilion layer
is thinner and more translucent, showing the cardboard layer
beneath. The map for the LW mixture correctly provides a
high proportion in the brushstroke where sample 3 was taken
from. However, it also shows that the LW mixture is found
where the cardboard support is supposedly exposed. This
can be explained through the high similarity between spec-
tral reflectances of sample 1 (cardboard) and 3 (LW mixture),
see Fig. 2. This is understandable and expected since in the
VNIR spectral range, the shape of cardboard and white pig-
ments spectra are difficult to differentiate. It can be easily
solved by incorporating SWIR spectral ranges encompassing
cellulose absorption bands.

Fig. 3f shows a high proportion of UB mixture in the
brushstrokes area where sample 4 was taken from. However,
this area also generates relatively high e in Fig. 3b. The spec-
tra of three pixels with the highest e from this area are shown
in Fig. 5. The spectrum corresponding to e = 0.35 has a



(a) Target subset (b) Reconstruction error (c) Cardboard (d) Vermilion (e) LW mixture (f) UB mixture

Fig. 3: Results for a subset of verso (L) containing the origin of samples 1–4 (Table 2). Subfigures (c)-(f) provide the estimated
proportion of each samples and are of identical dynamic ranges, i.e., 0–1.

(a) Target subset (b) Cardboard (c) Vermilion (d) LW mixture (e) UB mixture (f) Unknown mixture

Fig. 4: Results for a subset containing paint layers supposedly of the samples in Table 2 and another unknown mixture.

Fig. 5: Three pixels with highest reconstruction error e, lo-
cated in brushtroke areas with high proportion of UB mixture.

peak at around 450 nm, which does not exist in the signature
of sample 4 (UB mixture). This could mean that there is an
unknown blue pigment in the mixture. The two other spectra
are almost identical in shape with the spectrum of sample 4,
only lower in intensity. FCLS deems them to be composed of
nearly 100% sample 4. The reconstruction error is then due
to the ASC constraint imposed on the algorithm. To go very
close to the spectrum of sample 4, it would require spr ≥ 1.

3.2. Unmixing of image subset of unknown paint layers

Using the knowledge from a previous mapping study [4], an-
other subset is chosen as a target. Its location is approximately
within the white square of the second image in Fig. 1. From
that study we know that this subset contains vermilion and
UB mixture. From a visual observation of Fig. 4a, it is possi-
ble that LW mixture is also present. Our hypothesis of where

these known pigments are present are annotated in the target
image. There is also an unknown red-brownish paint layer
which was not recognized as vermilion in Ref. [4], giving a
higher e compared to the rest. A quick experiment using only
the spectral library in Table 2 also supports the mapping study.

Adding a signature of the unknown layer to the spectral
library, the unmixing is carried out, resulting in maps in Fig.
4. As previously, the proportion map for cardboard (Fig. 4b)
is able to identify the exposed support and where the paint
layer above it is thin and translucent. The map for vermil-
ion (Fig. 4c) agrees with the result in Ref. [4]. The issue
with the LW mixture being recognized where the cardboard
is exposed remains a challenge for this subset. However, the
map (Fig. 4d) shows a high proportion of the mixture in a
location agreeing with our hypothesis. The map for the UB
mixture (Fig. 4e) also agrees with the result in Ref. [4], ex-
cept for areas where the mixture is darker in color. Finally,
for the unknown mixture, the map is giving nearly 100% in
the brushstroke area where the signature is taken from. It
also says that the top right area of the subset consists of this
red-brownish pigment, which is likely a false-positive since it
would most probably be a UB mixture [4]. This problem can
be attributed to the use of F-norm in the cost function, which
takes into account intensity differences between spectra while
neglecting the shape information [19]. Intensity difference is
necessary to calculate the proportion, however, shape differ-
ence captures the characteristics of individual pigments. For
example, a mixture of red pigments would not typically have
a peak around 450 nm, since it is usually the characteristic of
blue pigments. This information of peak location will be well



accounted for in the shape difference, instead of the intensity.

4. CONCLUSION AND FUTURE WORK

The hyperspectral unmixing of paintings into their pigments
is a challenge due to the complex nature of spectral mix-
ing in turbid media, e.g., paint layers. Kubelka-Munk col-
orant mixing law is typically incorporated in the model. How-
ever, it is mathematically complex and its simplifications are
also known to be restrictive. The reverse side of The Scream
(1893) is composed of many clean colors and scumble effect,
enabling us to assume that the painting can be modeled us-
ing a fully-constrained least-squares linear mixing model. A
spectral library of known pigments was also built using a few
ground truth information available from previous studies.

The results obtained in this study are promising, agreeing
with a previous pigment mapping study. A number of limita-
tions have been identified, suggesting some improvements for
future works. A separate study can be carried out to build an
optimal spectral library, guided by the knowledge of the avail-
able ground truth. More signatures of pigments beyond the
ground truth would also be necessary, possibly using informa-
tion from the front side of the painting. It would also be inter-
esting to compare the results with an algorithm that uses, e.g.,
spectral angle distance in place of the F-norm, in order to ac-
count for individual pigment characteristics. Finally, a com-
parison with the widely used Kubelka-Munk theory would be
necessary to provide more understanding of when a simpler
mixing model can be employed for the unmixing of paintings.
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