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Abstract—Blade icing detection becomes increasingly signif-
icant as it can avoid revenue loss and power degradation.
Conventional methods are usually limited by additional costs,
and model-driven methods heavily depend on prior domain
knowledge. Data-driven methods, especially deep learning ap-
proaches without needing the time-consuming handcraft feature
engineering, offer a promising solution for blade icing detection.
However, the monitoring signals normally have complex and
diverse features as wind turbine operates in complex envi-
ronments, thus effective model is needed for data analyzing.
Additionally, the distribution of monitoring data is imbalanced,
which causes the abnormal data mining inadequate. In this work,
a multilevel convolutional recurrent neural network (MCRNN),
is proposed for blade icing detection. Specifically, discrete wavelet
decomposition is leveraged to obtain multilevel features both from
the time domain and the frequency domain. A parallel structure
combining an LSTM branch and a CNN branch is established
in each level for feature extraction. To alleviate the severe data
imbalance, two mechanisms, including data resampling algorithm
and class-rebalanced loss function, are investigated. Furthermore,
a multi-step accumulation strategy is proposed to enhance the
accuracy of real-time detection. Extensive studies demonstrate
that the proposed MCRNN can achieve up 38.8% and 42.9%
higher Fl-score over the best baseline on the balanced data
sets processed by data resampling algorithm and 23.9% and
30.6% higher on imbalanced data sets with MCRNN optimized
by the class-rebalanced loss function. The real-time detection
verifies the applicability of the proposed method and indicates
that the proposed multi-step accumulation strategy can improve
the accuracy of icing detection.

Index Terms—Wind turbine, Icing detection, Deep learning,
Discrete wavelet decomposition, Neural network.

I. INTRODUCTION

ENEWABLE energy sources have gained much attention

due to the global energy crisis and the increasing demand
for clean energy [1]. Because of its characteristics of abundant
availability, cost-effectiveness, and technological maturity for
commercial use, wind power is currently one of the fastest-
growing renewable energy segments worldwide [2]. However,
blade icing is a strong limitation for the performance of wind
turbines in cold climates. Wind farms are established mostly
based on high altitude mountainous areas with low temperature
and high humidity, where wind turbine blades are susceptible
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to be icing, especially in winter. Ice accretion on blades not
only affects the power generation by wind turbines with up to
30% loss in annual power generation in severe cases, but also
gives rise to safety problems in the vicinity of the wind power
plants [3]. Therefore, icing detection of wind turbine blade
has been receiving increasing attention. To minimize losses
caused by blade icing, to date, much effort have been invested
in icing condition detection.

Conventional methods for blade icing detection of wind tur-
bine can be simply divided into direct and indirect techniques.
The direct methods are based on the physical properties of
ice, while the indirect methods are determined by measuring
parameters, and these parameters are affected by the accretion
of ice [4]. Direct detection methods mainly include ultrasonic
damping [5], resonance frequency measurement [6], optical
measurement technology [7] and so on. Indirect detection
techniques include comparison of output power [3], heated
and unheated anemometers [8], dew point and temperature
[6], etc. The advantage of the conventional methods is that
highly reliable measurement (i.e. the thickness and presence
of ice [9], [3]) can be observed. However, the disadvantage is
obvious that these technologies may bring negative affect of
blade structure and are limited by their high costs and huge
personnel requirements, or are inaccurate in icing detection
and insensitive to small amounts of ice [10].

In order to overcome the shortcomings of conventional
approaches, recently, blade icing detection methods based on
monitoring signals of wind turbines have received extensive
attention due to their lower cost and less mechanical changes.
These methods consist of model-driven methods and data-
driven methods. The model-driven methods employ domain
knowledge to build a mathematical model to reflect the rela-
tionship between monitoring signals and icing. A mathematical
model was proposed by Corradini et al. for blade icing
monitoring of wind turbines based on an observer to estimate
error overpasses a suitable threshold of the rotor angular
speed [11]. Shi introduced a model-based blade icing detection
method, which does not require additional measurements and
can be used for any type of blade aerodynamic changes, not
just ice on the blade [12]. An icing model was developed
by Hu et al. to better understand the icing condition of the
blade. The model was verified by numerical simulation of the
ice on the rotating NREL Phase VI blades [13]. However, it
is challenging to obtain an accurate model for the blade icing
estimation of wind turbine. Because the model-driven methods
are heavily relying on the prior domain knowledge and some
assumptions. In addition, external tools, such as wind tunnel,



IEEE SENSORS JOURNAL

may be required to tune the model parameters.

By contrast, data-driven methods utilize shallow machine
learning and deep learning approaches for icing detection of
wind turbine blades. Shallow machine learning methods such
as linear discriminant analysis were taken to indicate features
of power and wind speed distribution, then multiple random
forest classifiers was utilized for icing detection in [14].
Besides, Georgios employed kNN to perform icing failure
detection according to the correlation of wind speed and
power [15]. Support vector machine (SVM) is also used for
wind turbine icing detection in [16]. Yi et al. proposed an
imbalanced classification model for blade icing detection of
wind turbine. A novel minority clustering SMOTE (synthetic
minority oversampling technique) method is presented to
overcome the imbalance in the collected sensor data [17].
These shallow machine learning methods do not rely on
precise mathematical models. Nevertheless, much effort on
hand-crafted feature design must be exerted [18].

Deep learning methods do not need to manually extract
features [19]. It can automatically learn high-level feature
representations of monitoring sensor data, which has shown
potential for application of blade icing detection of wind
turbines. Chen et al. proposed a deep neural network to
learn discriminative features for the model construction. The
phenomenon of data imbalance for the blade icing detection
is clearly figured out and a triplet loss function is employed
to preserve intra-class and inter-class information [20]. Liu
et al. proposed a deep neural network which combines deep
learning and ensemble learning technique for the improvement
of model accuracy and generalization capability [21]. Cheng et
al. proposed a temporal attention convolutional neural network
for the blade icing detection [22]. Yuan et al. [23] studied blade
wind turbines icing detection combining the wavelet transfor-
mation with fully convolutional neural network (FCNN). How-
ever, the time dependency is not considered in the proposed
waveletFCNN, which may not fit in the actual application
scenarios. Despite the successful application of deep learning
in other domain, such as computer vision and natural language
processing, it is still lacking of in-depth investigation of the
applications in blade icing detection of wind turbine. There
are still some challenges for the use of deep-learning-based
methods for detection of the icing of wind turbine blades.

1) Data aspect: The wind turbine works in the normal state
most of the time, while the time when the blades are
icing is relatively less, which cause the data in normal
state is much more than that in abnormal state, so the
monitoring data collected by the supervisory control and
data acquisition (SCADA) system is imbalanced between
classes. Using these imbalanced data for icing detection
model training may result in biased identification of icing
in the blade.

2) Incomplete information: Data collected from SCADA
system is inevitably subject to information loss from
sensor damage. General treatments for missing data in-
clude imputation, mean substitution and etc. However, the
detection task suffers from accumulated errors by only
applying data completion algorithms on the incomplete
data.

3) Model aspect: Wind turbine is a complex engineering
system with fickle working circumstance, which results
in the monitoring signals are apt to have complex and
diverse features. Therefore, learning useful features by
deep learning methods from the complex multivariate
signals to identify blade icing is challenging.

4) Application aspect. The data-driven models are usually
trained in an offline fashion and then are deployed for
the real-time estimation. Although the high accuracy
data driven model can be achieved during the offline
training and testing stage, the real world situation is
more complicated which may cause the high-accuracy
offline trained model with a high error estimation rate or
false alarm rate in the model deployment of application
scenarios. Therefore, high-availability methods should be
explored for actual scenarios.

To address the aforementioned challenges, a multilevel
convolutional recurrent neural network (MCRNN) is proposed.
Specifically, for the data aspect, data analysis and prepro-
cessing are conducted to reduce the influence of noise and
redundant information. To alleviate the severe data imbalance,
two solutions, including data resampling algorithm and class-
rebalanced loss function, are investigated. For incomplete
information, different methods are used for data interpolation
according to the duration of the missing value intervals,
including linear interpolation algorithm and direct interpo-
lation using data of the same period in different year. For
the model aspect, multilevel discrete wavelet decomposition
(MDWD) is first conducted on the original data to obtain
wavelet detail coefficients that reveal the signal variance in
multiple scales to disclose the information in both the time
and frequency domains. Then, a parallel structure combining
an LSTM branch and a CNN branch is then established in each
level to learn knowledge from the correlation of multivariate
signals. Finally, to achieve high availability in real scenarios, a
multi-step accumulation strategy is introduced to reduce error
estimation rate or false alarm rate in the model deployment of
application scenarios.

The main contributions of this work are:

1) A novel deep neural network MCRNN is proposed for
blade icing detection of wind turbine. The MDWD is first
utilized to obtain multilevel features. A parallel structure
network is then employed on each multilevel feature to
capture the complicated correlations in both frequency
and temporal domains. A data re-sampling method and a
loss function based method are investigated to alleviate
the imbalance of the monitoring data. A multi-step ac-
cumulation strategy is proposed to effectively reduce the
false alarm rate in the real-time detection phase.

2) The proposed MCRNN is evaluated on real-world
datasets from two wind turbines. Based on the base-
line comparison, the proposed MCRNN demonstrates its
effectiveness and superior performance. The proposed
MCRNN is further demonstrated and compared with
several model variants. Sensitivity analysis on MCRNN
determines the optimal hyperparameters. Real-time pre-
diction verifies the applicability of the method.
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Fig. 1. Overall structure of the proposed method. (a) The SCADA system collects wind turbine operating data. (b) Analysis and preprocessing of the raw
data. (c) The processed data sets are input to the proposed MCRNN model for feature extraction and knowledge learning. X is the input sensor data, A; and
D; represent the approximate coefficient and detail coefficient of each level in multilevel discrete wavelet decomposition. BN and ReLU indicate the batch
normalization layer and the ReL U layer, respectively. (d) Feature classification and icing detection.

The rest of the paper is organized as follows: The overall
architecture of the proposed MCRNN is introduced in Section
II. Section III verifies the effectiveness and superiority of the
proposed model. Section IV summarizes the whole paper.

II. MULTILEVEL CONVOLUTIONAL RECURRENT NEURAL
NETWORK FOR ICING DETECTION

This section introduces the overall architecture of the pro-
posed multilevel convolutional recurrent neural network for
icing detection. The whole workflow is first introduced. Then,
each part is described in detail.

A. Workflow structure

As shown in Fig. 1, the overall architecture of the proposed
multilevel convolutional recurrent neural network for icing
detection contains data collection and processing, feature
extraction and knowledge learning by MCRNN and icing
detection. The collected sensor data is inevitably contaminated
for various reasons, and therefore it is necessary to clean the
data in order to minimize the effect of noise. Furthermore, to
address the challenge of the data aspect mentioned in Section
I, the imbalanced data are also analyzed and processed. The
processed sensor data is then input to MCRNN for feature
extraction and knowledge learning. The details are illustrated
in Section II-C. The features extracted by MCRNN are finally
input to a designed classifier for icing detection and the
optimal models for are employed for real-time icing detection.

B. Data collection and processing

The data used in this paper is collected from the SCADA
system that needs to use the existing sensors only. The data
mainly include the data regarding the status of the wind
turbine components, and internal and external environmental
conditions. There are four steps for data processing in this

paper, namely, data labeling, visualization, imbalanced data
processing, and data split and normalization.

1) Data labeling. The raw data are labeled by experienced
engineers. Due to the unstable operation of wind turbines,
some uncertain intervals are removed. Uncertain intervals are
those that are very difficult to label as either normal or icing
state even for these experienced engineers.

2) Missing value processing. The missing data problem of
monitoring signals is ubiquitous due to various factors such
as sensor damage and human error. If a single data point or
several data points are lost, the linear interpolation algorithm
is applied to interpolate the missing data points. When the data
loss intervals last for several hours or even a single day, the
operation state of wind turbine may have changed for several
times, thus leveraging the interpolation algorithm to complete
the data sets will bring larger error. So in this case, data at the
same time in different year are used for data interpolation.

3) Statistics. To fully characterize the features of the labeled
data, statistics methods can be useful for the understanding
of the sensor data. Statistics has the following two beneficial
aspects: 1) Identifying the redundant information that makes
little or no contribution to the detection of blade icing. These
redundant data will be discarded directly because they may
lead to poor feature representation ability. ii) Visualization of
the correlation between signals. If there exists high correlation
between two or more signals, it will lead to a severe degree
of model overfitting. To alleviate the overfitting of the model,
the average value of highly correlated variables is used as a
new variable replacing the highly correlated variables for the
icing detection carried out in this paper.

4) Imbalanced data processing. Class imbalance is a very
common problem in the real world [24]. The data collected
from SCADA system show severe imbalance because the wind
turbines usually work in normal conditions most of the time,
and the blades will freeze only a few times. If the trained
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Fig. 2. Two solutions for imbalanced data processing. (a) Resampling is
performed during data segmentation to generate balanced datasets. (b) A
rebalanced loss function is used to optimize the model.

model cannot handle the data imbalance well, the prediction
results of the model will be biased. To address this challenge,
two solutions, including data resampling algorithm and class-
rebalanced loss function, are explored. As shown in Fig. 2 (a),
a data resampling based method is utilized to generate bal-
anced datasets. For the normal data, the samples are obtained
by utilizing the sliding window without overlapping. While,
for the icing data, we can get the same number of samples by
using the sliding window with overlapping. For example, in
Fig. 2 (a), we can get four samples for normal data, and there
are also four samples for icing data by using the proposed data
resampling approach. Otherwise, there are only two samples
using the sliding window without overlapping. As depicted
in Fig. 2 (b), a class-rebalanced loss function is leveraged to
optimize the model by assigning more weights to the icing
data (minor class).

5) Data split and normalization. The output data of the
SCADA system comprise a discrete sequence because the
SCADA system fetches signals from different sensors approx-
imately every 7 seconds. To ensure that each sample input
to the MCRNN has a certain time range, it is necessary to
split the original data with a fixed step size. In addition, data
normalization is also a highly important step for data pro-
cessing. The data normalization can be helpful to remove the
unit limitation of the data and convert it into a dimensionless
pure value, which is convenient for enabling the simultaneous
analysis of the indicators with different units or magnitudes.

C. Multilevel convolutional recurrent neural network

The proposed multilevel convolutional recurrent neural net-
work consists of three parts: discrete wavelet decomposition,

LSTM branch and CNN branch. Specifically, as illustrated in
Fig. 1 (c), the raw monitoring signals are first transformed
by MDWD for multilevel features. Then, the original signals
along with the discrete wavelet decomposition coefficients
in each level are taken by the LSTM branch and CNN
branch separately. The LSTM branch is used for temporal
features learning. The CNN branch is used for capturing
spatial information.

1) Multilevel discrete wavelet decomposition: Wind turbine
is a complex engineering system with fickle working circum-
stance, which results in the monitoring signals acquired by the
SCADA system are apt to have complex and diverse features.
Wavelet decomposition is well-known method for the analysis
of a time series because they can capture the features both from
the time and frequency domains [25]. It is advantageous to
transform the signals by MDWD to obtain further serviceable
information.

The time series can be decomposed by MDWD into
groups of multilevel sub-series which are ranked in order
of frequency from high to low. These frequencies are ben-
eficial and crucial for feature learning in frequency domain.
We denote a sequence segment of each channel as z, =
[zo, s &n, - ,xN—1],c=1,2,--- ,C, where C is the total
channel number of the data. NV is the length of sequences,
and [z1,--- , %, -+ ,xc] € RN*C. According to Fig. 1 (c),
the 1-dimensional discrete wavelet transform is conducted on
each input signal channel z. until a specific level L. Con-
tinuous decomposition is only conducted on low-frequency
components that generated from the 1/2 down-sampling of the
intermediate variable sequences. In each level, the sequences
represented by A; are the approximate coefficients of the
signal, which is the low-frequency component generated by
applying a low pass filter ¢ = [dg, -, dm, - ,dnm], and
D; are the detail coefficients of the signal, which is the
high-frequency component generated by a high pass filter

© = [po, s Pm, - yom), and M << N. The subseries
of the upper level are convoluted as:
M
A1 [k] = zi[k +m] - P (1)
m=0
M
Digalk] = > ai[k +m] - @y 2)
m=0

where A; 1 and D;; 1 denote the subapproximate coefficients
and subdetail coefficients, respectively. xg is the input series,
and x;[k] is the k-th element of the low-frequency compo-
nents in the [ th level, [ = 0,1,---, L. The approximation
coefficients represent some smoothed averages of the input
signal, thus, we only augment the detail coefficients to the
original sequences because the approximation coefficients may
be a portion of the redundant data that hinder model training.
Subsequently, the augmented segment for each channel can be
represented by X, = [z, d%,--- ,dE].

2) LSTM branch: Monitoring data of wind turbine is pre-
sented in the form of time series which is not independent
data but a series of discrete data with temporal dependence.
It is critical for the proposed model to extract potential and
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valuable information from the original sequences with the
transformed sequences together. The leverage of LSTM is
based on the insight that the temporal correlations of the
points hidden in a time series are closely related to frequency
[26]. Besides, LSTM is suitable for processing and predicting
important events with long time dependencies in time series.
Moreover, Dropout layer is concatenated with the LSTM layer
to improve the generalization capability. According to the
previous subsection, we define the input of the LSTM branch
as: Xy = [Xa-gla e vDL] - [[‘L’B]v T 7[x§]7‘ .- 7[1.2“’
where X, € RCX?’, and ¢ indicates the time stamps of each
subsequence. The computation at each time step of the LSTM
layer is described by Graves et al. [27], and to be consistent
with the notations we used, we reformulate the definition as:
g' = o(W'h™t + I'z))

g = oWt 4 I/at)

a(Weht=1 + I°x))
¢ = tanh(W°h'~' + I°x}) 3)
mt:gf®mt71 +gz®gc
h' = tanh(g° ® m")

Yy = fdropout,p(go)

where ¢, g7, g°, g¢ are the activation vectors of the input,
forget, output and cell state gates respectively, and o is
the logistic sigmoid function. The recurrent weight matrices
are described by W W/ We W€, and I*,I7, I°, I¢ jointly
represent the projection matrices. The hidden state vector is
expressed as h'. Simultaneously, ® is defined as elementwise
multiplication. Finally, the calculation process of the dropout
is defined as fqropout,p» Where p is the probability of retaining
a unit in the network.

3) CNN branch: CNN is utilized as it can capture compact
data features of the short time contextual information in time
series. The CNN branch consists of basic convolution neural
network blocks composed of a convolutional layer followed
by the batch normalization layer [28] and the ReLU layer
[29]. The convolution layer can effectively fuse temporal
information and channel information, so that the crucial feature
of raw data and detail coefficients for icing detection can be
completely extracted. The batch normalization (BN) layer is
added to accelerate the training and improve generalization.
The ReLU layer can alleviate the overfitting of the model
because the interdependence of the parameters will be reduced.
The input of the CNN branch is the same as the LSTM branch.
Besides, we define X, in the LSTM branch as X in the CNN
branch. The basic convolution block is formulated as:

X;=ReLU(BN(f(W x X;_1+b))),i=0,1,--- | I.

“)
where X; is the input or the output of each basic convolutional
block and I is the total number of the basic blocks. f is
the activation function, and * represent the convolutional
operation. Meanwhile, the parameters learned by convolutional
layer are defined as W and b. Then, following the basic
convolution neural network blocks, a global average pooling
layer is employed to achieved dimensionality reduction and
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Fig. 3. An illustration of the multi-step accumulation strategy. py, is the icing
possibility and T is the threshold.

reduce the number of the parameters of the network. The
outcomes of the LSTM branch and the CNN branch and
the ultimate outcomes of the LSTM-CNN are merged by the
concatenate layer.

D. Icing detection

1) Icing detection classifier: Multilevel features learned
by MCRNN, as illustrated in Fig. 1 (d), are input to a
classifier for blades icing detection. The classifier is employed
for calculating the classification probability distribution that
indicates the probability of the true category (blade icing),
so that the classifier can generate a prediction of whether
or not icing is present on the blades. In this work, a dense
layer associated with softmax function is employed as the
classifier. The dense layer multiplies the weight matrix by the
input vector and adds a bias to map n real numbers belonging
to (—o0,400) to K real numbers (fractions) belonging to
(=00, +00); K real numbers belonging to (—oo,+00) are
mapped to K numbers (probability) belonging to (0, 1) by the
softmax function, while ensuring that the sum is 1, where K
is the total number of categories. The complete process of the
dense layer along with softmax function can be summarized
as:

§ = softmax(z) = softmax(W7'x +b) (5)
€%
softmax(z;) = —7——,j=1,--- , K. (6)
d =) Yy €% ’

where z is the input of the dense layer, W and b represent the
weight and the bias term respectively, and 3 is the probability
of the classes. Training sets and validation sets are used to train
the best models with excellent versatility and generalization
ability. Finally, the optimal models will be applied for icing
detection in the real world.

2) Multi-step accumulation strategy: After offline training
phase, the optimal MCRNN models can be obtained for real-
time blade icing detection of wind turbine. To implement the
real-time icing detection, a sliding window is utilized. The
length of the sliding window is the same as that used in
the offline training model. The sliding window moves on the
available real-time data and then the trained model provides
the predicted probability of icing on the each window-size-
length data. However, the variable operating conditions of
wind turbine and external environment factors may cause
monitoring signals change a great deal, which bring about
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Anemometer: anemometer measures the wind
speed and wind direction.

Generator: generator speed is recorded and
sent to SCADA system.

Pitch system: the information transmitted by the
sensors in the pitch system includes pitch angle,
pitch speed, and pitch motor temperature.

Yaw system: the sensors in yaw system
transmits the yaw position and yaw speed
to the SCADA system.

Transformer: additional sensors and monitoring devices in the transformer that measure
and record the power information.

Fig. 4. Sketch of sensor location in the components of a wind turbine (modified figures from [30] and [31]). The specifications of the sensors are presented

in TABLE L.

more detection errors of MCRNN in real circumstances. It
will waste the energy of the monitoring personnel and make
the situation more complicated if the icing detection has

TABLE I

SPECIFICATION OF THE SCADA DATA

high false alarm rate. Therefore, a multi-step accumulation Number | Variable name Description
: : : _ 1 wind_speed Wind speed
s'trategy is proposed to improve the accuracy of ice c}etec ) generator_speed | Generator speed
tion and reduce the false alarm rate. As shown in Fig. 3, 3 power Active power
assuming the predicted probability of blade icing is expressed 4 wind_direction Wind direction
as [p1,p2, " ,Pn—1,Pn] For the predicted probability p,, 5 wind_mean @ivt‘:;gzs?nd direction angle
(m < n), we compare it with the threshold 7. At the same 6 yaw_position Yaw position
time, we also need to check the comparison results of the 7 yaw_speed Yaw speed
predicted probability and the threshold of Py, 11 ~ Prmik_1- g g::z:;—z;‘gz ‘:Egg g£ gﬁ‘c’ﬁ ;
If k consecutive predicted probabilities are higher than the set 10 pitch3_angle Angle of pitch 3
threshold, an icing warning should be output. £ can be set 11 pitch1_speed Speed of pitch 1
: ot 12 pitch2_speed Speed of pitch 2
according to the actual application and the length of the data 5 pitch3 speed Speed of pitch 3
fragment. 14 pitchl_moto_tmp | Temperature of pitch motor 1
15 pitch2_moto_tmp | Temperature of pitch motor 2
E. Loss function 16 pitch3_moto_tmp | Temperature of pitch motor 3
. 17 acceleration_x Horizontal acceleration
The raw data collected from SCADA system are charac- 18 acceleration_y Vertical acceleration
terized by severe imbalance, and therefore, the proposed data 19 environment_temp | Environment temperature
. . 20 internal_temp Internal temperature of nacelle
resampling method on raw data and the loss-function-based 21 pitch_1_ng5_temp | Switching temperature of pitch 1
method for model optimization have been investigated. For 22 pitch_2_ng5_temp | Switching temperature of pitch 2
: : 23 pitch_3_ng5_temp | Switching temperature of pitch 3
the data resampl'lng method, the raw data are subjected to ) pitch 1 ng5 DC | DC power of pitch 1 switch charger
resample to obtain balanced data sets. The cross entropy loss 25 pitch_2_ng5_DC | DC power of pitch 2 switch charger
function is used to optimize the model when the balanced 26 pitch_3_ng5_DC | DC power of pitch 3 switch charger

data sets are used to train the model. For the loss-function-
based method, the imbalanced data sets are applied for model
training directly and the focal loss function is leveraged for
model optimization [32].

The cross-entropy loss (CL) function is defined as:

CL = —ylog(y) + (1 — y)log(1 —7) (7

where y represents the label of data, and the positive/negative
samples are denoted as 1/0. ¢ denotes the probability that the
sample is predicted to be positive.

Focal loss (FL) [33] adds a modulating factor to the cross-
entropy loss to reduce the relative loss for well-classified

Pt =

samples and focus on difficult samples. The equation of FL is
defined as:

gv Zf Y= 1,
1 — g, otherwise. (8)

FL(p) = —a¢(1 — p)log(pe)

where o, is the weight parameter between the categories
used to balance the importance of positive/negative classes.
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(I — p)" represents the modulating factor of the sim-
ple/difficult samples where ~ represents the focusing param-
eter (simple samples belong to the category with a large
number of samples while the difficult samples belong to the
category with a small number of samples). In the model
optimization process, the simple samples are down weighted
to make the loss function pay more attention to the training
of difficult samples. Consequently, employing the focal loss
function to optimize the model can relieve the problem caused
by imbalanced data sets that lead to the models trained on such
data to perform poorly for weakly represented class (the class
that has a much lower number of data points).

III. EXPERIMENTS
A. Experimental setup

In this section, the experiment setup is first introduced;
this mainly includes the data source and evaluation metrics.
Second, the data analysis and processing are explained. Third,
the performance of the proposed MCRNN model is evaluated
with detailed experiments. The discussion of the experimental
results is presented at the end of this section.

1) SCADA data: The experimental data are derived from
standard data sets provided by the Ministry of Industry and
Information Technology of the People’s Republic of China,
including the monitoring data of two turbines manufactured
by Goldwind, Inc. and located in Inner Mongolia, China. We
logged the SCADA data with a running time of 695.59 hours
and 305.77 hours for these two wind turbines, respectively.
The SCADA system collects data from hundreds of different
sensors. According to the specific domain knowledge, engi-
neers in the related filed have identified 26 variables related to
frozen blades. These variables are specified in detail in Table
I, and some of the sensor locations in the components of a
wind turbine are shown in Fig. 4. The datasets from these two
wind turbines are named WT-1 and WT-2.

2) Evaluation metrics: In the testing phases, consistently
imbalanced data sets are used to evaluate the effectiveness
of the proposed model. For the experiments on imbalanced
data sets, the model can easily obtain high accuracy that is
inappropriate for model evaluation, because the amount of the
normal data is much higher than that of the abnormal data so
that the result must be biased toward the category with a large
number of the data. Therefore, precision, recall and F1-score
are employed to evaluate the performance of the proposed
model. These metrics are defined as:

TP
S L 9
Precision TP+ FP 9)
TP
=" 10
Recall = 5 FN (10)
Fl — score — 2 x Precision x Recall an

Precision + Recall

where TP, FFP, FN and TN are true positive, false posi-
tive, false negative and true negative, respectively. Focusing on
the precision, we may fail to detect the potential icing failure.
By contrast, a number of false positives may be received when
we merely pay attention to the recall. Fl-score increase the

TABLE II
PARAMETERS SETTINGS

Setting description Setting or value

MDWD Level 3
Number of LSTM layer in LSTM branch 1
Number of hidden units in LSTM layer 16
p in Dropout layer 0.5
Number of basic convolution block in CNN branch 3
The filter sizes of the convolutional layers 64, 128, 64
The kernel sizes in convolutional layers 8,53
o in FL function 0.25
~ in FL function 3
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Fig. 5. Data distribution of wind speed versus power, and wind speed versus
generator speed. (Blue dots represent normal data, and orange dots represent
icing data). The visualized data are normalized due to the confidentiality of
the original data, resulting in the loss of data units.

balance of the precision and recall and thus is used as the
main evaluation metric in the experiments.

3) Parameter settings: In MCRNN, the MDWD level is set
up to 3 which is demonstrated in Section III-E. For the LSTM
branch, we set up a LSTM layer with 16 hidden units, and p is
set as 0.5 in Dropout layer. Three basic blocks are set up in the
CNN branch with the filter sizes of 64, 128, 64, respectively.
Correspondingly, the convolution operation is carried out by
three 1-D kernels with the sizes of 8, 5, 3 without striding. The
step m of multi-step accumulation strategy is set as 3 during
real-time icing detection phase. i and v in FL function are
set up to 0.25 and 3, respectively. The settings are summarized
in TABEL II.

B. Data analysis and processing

1) Data analysis: The electrical machinery that generates
power from wind forms the core of a wind turbine. Icing will
affect the aerodynamic shape of the blade, thereby reducing
the power generated at the given wind speed. The relationship
between power and wind speed observed from Fig. 5 shows
that for a given speed, the power of the wind turbine blades
drops significantly after ice accumulates compared to the
normal (non-icing) generated power. It is worth noting that
the raw data is transformed to protect the sensor data privacy.
Similar to power, the effect of ice accumulation on the blades
also has an effect of reducing the generator speed. As the
wind speed increases, the power of the wind turbine will show
almost no increase after reaching the maximum value. For this
time, there are obviously no data on blade ice accumulation.
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Fig. 6. Baseline comparison on balanced data sets of (a) WT-1, and (b) WT-2.
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These redundant data (wind speed>2, generator speed<1.5)
have no effect on the analysis of the blade ice accumulation.
Therefore, we discard these data because they can lead to the
poor feature representation ability.

Mechanically, the three blades of a normal wind turbine
are balanced with strict weight and torque to avoid fatigue
wear due to long-term imbalance. However, in the presence
of ice accumulation, the blades are in an uncertain state,
and the degree of three-leaf icing cannot be absolutely the
same. Ice cubes attached to the blades may cause the wind
wheel to be imbalanced with regard to weight and torque.
However, examination of the relationship of the variables
related to the three blades shows that even in the presence of
ice accumulation, some properties of the three blades maintain
good consistency. To alleviate the over-fitting of the model, the
average value of the variables with the same attributes of the
three blades listed in TABLE I was used as a variable for the
experiment.

2) Data processing: The raw signals are split into a col-
lection of fragments of the fixed-length time steps to use as
input into the proposed model. The fixed-length time step is
called as window size hereafter. Each fragment is combined
with a binary label indicating whether or not the blades are
frozen during this period. To solve the problem caused by data
imbalance, for the data aspect, we augment the number of
positive samples (samples representing icing in sensor data)
by generating overlapping abnormal fragments and normal
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Baseline comparison on imbalanced data sets of (a) WT-1, and (b) WT-2.

fragments without overlap regions (see Fig. 2 (a) for an
example). Finally, we obtain two kind of data sets according
to whether the data are resampled, where the first kind of data
set is balanced, and the second is imbalanced.

C. Baseline comparison

We compare our model with four baselines on balanced data
sets and imbalanced data sets; the following baseline models
are used:

o« LSTM is a time cyclic neural network, specifically de-
signed to solve the long-term dependency problem of
general RNN (recurrent neural network).

« MLSTM FCN is investigated for various multivari-
ate time series classification tasks, and can be quickly
deployed in real-time systems and embedded systems
because of its small size and efficient characteristics [34].

« FCNN is a fully convolutional neural network for time
series classification [35].

+ WaveletFCNN is a deep learning modeling method for
wind turbine blade icing detection [23].

« SSENET is a strong baseline for multivariate time series
classification. SSENET utilizes the densely connection to
build deep neural network. In this work, the attention
mechanism used in SSENET are removed since the
comparison is to verify the performance of the model
structure [18].
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TABLE III
COMPARISON OF DIFFERENT MODEL VARIANTS ON BALANCED DATA SETS

MCRNN-MR® MCRNN-MC® MCRNN-CR® MCRNN® [ MCRNN-MR? MCRNN-MC? MCRNN-CR MCRNNZ
Precision 0.29 0.33 0.33 0.63 0.29 0.31 0.42 0.54
WT-1| Recall 091 0.79 0.75 0.61 0.84 0.80 0.58 0.60
Fl-score 0.44 0.46 0.46 0.62 0.43 0.45 0.49 0.57
Precision 0.27 031 0.30 0.64 0.30 0.44 0.37 0.84
WT-2 | Recall 0.88 0.86 0.90 0.76 0.94 0.52 0.64 0.52
Fl-score 0.41 0.45 0.45 0.70 0.45 0.48 0.47 0.64

TABLE IV
COMPARISON OF DIFFERENT MODEL VARIANTS ON IMBALANCED DATA SETS

MCRNN-MR® MCRNN-MC® MCRNN-CR® MCRNN® [ MCRNN-MRZ MCRNN-MC? MCRNN-CR MCRNNZ
Precision 0.33 0.30 0.20 0.44 0.29 0.29 0.24 0.53
WT-1| Recall 0.30 0.66 0.90 0.80 0.84 0.76 0.85 0.81
Fl-score 0.31 0.41 0.32 0.57 0.43 0.43 0.37 0.64
Precision 0.29 0.43 0.18 0.63 0.44 0.56 0.43 0.69
WT-2 | Recall 0.76 0.40 0.58 0.50 0.52 0.60 0.40 0.72
Fl-score 0.42 0.42 0.28 0.56 0.48 0.57 0.42 0.71

In this comparison, the window sizes of the two data
sets, WT-1 and WT-2, are set to 32 and 64, respectively. In
addition, MCRNN® and MCRNN¥ are two basic variants of
the proposed model, where MCRNN uses the cross-entropy
loss function during model training, and MCRNN®" uses the
focal loss function, and these are applied in the two kinds of
data sets: balanced data sets and imbalanced data sets.

The comparison results on balanced data sets are presented
in Fig. 6. As shown in Fig. 6 (a), the Fl-score improvements
of MCRNN® on WT-1 over the best baseline, SSENET, is
34.8%, and in Fig. 6 (b), the Fl-score improvement over the
best baseline, SSENET, on WT-2 is 42.9%. The Fl1-score
improvements of MCRNN’" on WT-1 and WT-2 over the
best baseline, SSENET, are 23.9% and 30.6%, respectively.
From Fig. 6, we can observe that the result obtained by using
the cross-entropy loss function is better than that obtained
when the focal loss function is utilized, indicating that the
rebalancing effect of the focal loss function on these balanced
multivariate time series data is not competitive. Moreover, it
is clear that the baseline models can achieve a high recall
but a low precision, indicating that the results contain many
false positives, so that most of the normal operation time of
the machine is classified as icing time. These models are not
suitable for real icing detection because they may cause a
high false alarm rate leading to high manpower consumption
to check the real operating state of the machine.

The comparison results on imbalanced data sets are pre-
sented in Fig. 7. On both data sets WT-1 and WT-2, the
proposed models shows the highest Fl-score. Specifically,
MCRNNC® improves by 1.8% and 5.7% over the best baseline,
SSENET, on both data sets, respectively, while the improve-
ments of MCRNN®" are 14.3% and 34%, respectively. In
addition, the best model for icing detection on the imbalanced
data sets is MCRNNY", and the Fl-score results of MCRNNZ¥
are 12.3% and 26.8% higher than those of MCRNN® on

the two data sets separately, indicating that the use of the
rebalanced loss function, namely, focal loss function, can
alleviate the imbalance of the data that gives rise to a severe
result bias to the majority class.

D. Comparison to different model variants

Comparisons of three model variants are performed in order
to investigate how each component of MCRNN affect its
performance.

« MCRNN-MR: MCRNN-MR is MCRNN with MDWD

and LSTM module but no CNN component.

« MCRNN-MC: MCRNN-MC is MCRNN with MDWD

and CNN module but no LSTM component.

« MCRNN-CR: MCRNN-CR is MCRNN with MDWD

module been removed.

The comparison results of different model variants on
balanced data sets are illustrated in TABLE III, where the best
scores are highlighted in bold. The results show that regardless
which module in the proposed model is removed, the best
performance cannot be achieved. Taking MCRNN-CR as an
example, according to TABLE III, the F1-scores of MCRNN¢
and MCRNN®" are 34.8% and 16.3% higher than MCRNN-
CR® and MCRNN-CR” on WT-1 data respectively, 55.6%
and 36.2% higher on WT-2 data. As shown in TABLE IV,
the Fl-scores of MCRNN® and MCRNN’" are 78.1% and
73% higher than MCRNN-CR® and MCRNN-CR” on WT-
1 data respectively, 100% and 69% higher on WT-2 data.
Therefore, we can’t achieve the best result with removing
the MDWD module. The effect of LSTM and CNN can also
be demonstrated according TABLE III and TABLE IV. From
overall view, the F1-scores of MCRNNC are 36.8% and 60.6%
higher on average than those of the model variants on WT-
1 and WT-2 respectively, and the results of MCRNNZ are
25.2% and 37.2% higher on average than those of the model
variants on the two data sets. These results show that removal
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Fig. 9. Comparison on imbalanced data sets of (a) WT-1, and (b) WT-2 with different time steps.

of the LSTM branch will reduce the performance of the model,
indicating the datasets have temporal dependency. Removal of
the CNN branch also lead to the inability to obtain better
results, proving the powerful feature extraction performance
of CNN on the multivariate time series.

The comparison results of different model variants on
imbalanced data sets are listed in TABLE IV. Similar to
the results of comparison on balanced data sets, removal of
any part of the model will reduce the model performance. In
addition, all of the model variants using the focal loss function
obtain higher F1-score than those using the cross entropy loss
function, suggesting that the focal loss function is superior to
the cross entropy loss function for the blade icing detection
on imbalanced data.

E. Sensitivity analysis

Two parts of sensitivity analysis are given below. 1) Sen-
sitivity analysis of MDWD level; 2) Sensitivity analysis of
window size.

1) Impact of different MDWD level: Intuitively, the analysis
results of MDWD with disparate levels on sequences may
be different. Thus sensitivity analysis of MDWD level is
conducted in order to verify the influence of different MDWD
levels on icing detection results and to find which is the best
level we should set up in icing detection. The decomposition is

conducted on low-frequency components that generated from
the 1/2 down-sampling of the intermediate variable sequences
of each level, so it will result in low frequency resolution if
the sequence of the last level of decomposition is too short.
Therefore, according to the length of the data segment, we
conduct experimental analysis on the four level of 2, 3, 4, and
5.

In the experiments, balanced data sets are employed com-

TABLE V
MDWD LEVEL SENSITIVE ANALYSIS

MDWD Level

2 3 4 5
WT-1 Balanced data Precision | 045 0.63 045 041
& Recall 0.72 0.61 0.80 0.71
CL function Fl-score | 0.55 0.62 0.59 0.52
WT-1 Imbalanced data | Precision | 0.62 0.53 0.58 0.65
& Recall 0.64 0.81 0.64 0.52
FL function Fl-score 0.63 0.64 0.61 0.59
WT-2 Balanced data Precision | 049 0.64 055 0.49
& Recall 0.86 0.76 0.82 0.78

CL function Fl-score | 0.62 0.7 0.66 0.6
WT-2 Imbalanced data | Precision | 0.56 0.69 0.66 043
& Recall 0.66 0.72 042 0.84
FL function Fl-score 0.61 0.71 051 0.57
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Fig. 10. Real-time detection on WT-1 data with (a) directly detection and (b) detection with multi-step accumulation strategy. ‘m’ indicates minute, which
means icing detection is conducted every minute. Model I and II indicate the optimal models (listed in TABLE VI) employed for real-time icing detection,

and the information of the models is listed in TABLE VI.

TABLE VI
INFORMATION OF OPTIMAL MODELS

Model | Training data Model Fl-score  Precision Recall
I WT-1 MCRNNY 0.62 0.63 0.61
I WT-1 MCRNNF 0.64 0.53 0.81

bining with cross-entropy loss function, and imbalanced data
sets combining with focal loss function. The results of sen-
sitivity analysis of MDWD level are illustrated in TABLE V
with the highest F1-score highlighted in bold. It can be known
from TABLE V that the highest Fl-score can be obtained by
all the models when the wavelet transform level is 3, which
means that using wavelet transform level of 3 can get better
time domain and frequency domain information for feature
extraction than the others.

2) Impact of different window size: To investigate the
influence of window size in data segmentation, sensitivity
analysis of different window size is conducted. The sensitivity
analysis is conducted on two data sets: balanced data set and
imbalanced data set. In this comparison, four window size of
32, 64, 128 and 256 are set for data segmentation in both data
sets, corresponding to approximately 3.5, 7, 15 and 30 minutes
of data, respectively.

The comparison results of balanced data set are shown in
Fig. 8. The comparison results on WT-1 show that the F1-score
obtained using the window size of 32 is higher than the values
obtained using other window size values, while the results on
WT-2 indicate that the window size of 64 is optimal. All of
the data contained in a segment are generated within a few
minutes regardless of whether this segment uses 32 or 64 as
the window size for the data segmentation. The advantage of
using such a shorter segmentation length is that icing can be
detected in a shorter and earlier time. As shown in Fig. 9 (a)
and Fig. 9 (b) for the comparison results of the imbalanced
data set, the results on WT-1 and WT-2 demonstrates that step
sizes of 32 and 64 are superior to the other two step sizes,
same as found in the balanced data set.

F. Real-time icing detection

In order to further verify the practical application of the
proposed model, real-time icing detection is performed. Real-
time icing detection is conducted on part of WT-1 test dataset.
As mentioned in Section II, the data sets are split into fixed-
length data segments used for model training, so the same
length data segment should be collected each time for real-time
detection. A sliding window of fixed-length moves forward
on the available sensors data, and the stride is sets to 8
corresponding to about one minute. Thus, icing detection
is done every minute. The information of optimal models
generated in the training phase for icing detection is listed
in TABLE VI. The probability threshold of icing and normal
is set to 0.5 which is of an average level. In the real-
use scenario, the threshold should be further determined by
observed relationship between the output probability and ice
amount in the blades. In order to improve the robustness of
the detection method in this paper and keep the false alarm
rate as low as possible, the proposed multi-step accumulation
strategy is applied in real-time detection. When the probability
of icing prediction is greater than the threshold for less than &
consecutive times, the probability will be reduced to less than
the threshold. k is set to 3 here.

The results are illustrated in Fig. 10. From of the visual-
ization graphs, Fig. 10 (a) shows the results of direct real-
time detection, while Fig. 10 (b) shows the results of real-
time detection with multi-step accumulation strategy. From
an overall point of view, the two model training methods
(using balanced data with cross-entropy loss function and
using imbalanced data with focal loss loss function) both can
detect all icing areas. From the perspective of false alarm
rate, as show in Fig. 10 (a), there are false alarms (curve in
the red box) in the non-icing periods by carrying out real-
time icing detection with direct alarm. As can be seen in
Fig. 10 (b), employing multi-step accumulation alarm strategy
can obviously reduce these false alarms, thereby effectively
reducing the non-icing periods false alarm rate.

G. Discussion

By conducting experiments on balanced data sets and imbal-
anced data sets, we find that MCRNN outperforms the state-
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of-the-art approaches in terms of Fl-score in Figs. 6 and 7,
demonstrating the effectiveness and superiority on multisensor
time series data for icing detection task. In view of the severe
imbalance characteristic of the data generated by SCADA
system, we consider the problem for the data aspect and
algorithm aspect, respectively. For the data aspect, the highest
Fl-score is achieved by MCRNN® on the balanced data sets,
and the Fl-scores achieved by MCRNNC are 16.9% higher
on average than the results on the no-sampling data sets. The
effect of the data aspect solution suggests that conducting
resampling on imbalanced data is favorable for the capture
of the correlation on multivariate time series by the proposed
model. From the algorithm aspect, MCRNNY" can achieve the
best performance on the imbalanced data sets. In addition, the
solution for algorithm aspect can achieve 1.4% ~ 3.2% higher
F1-score than the solution for the data aspect. Therefore, our
experiments verify the effectiveness of the two solutions for
addressing the imbalanced data, particularly the effect of using
the focal loss function during the model training phase on
imbalanced multivariate time series data. In addition, we can
find the best MDWD level is 3 for the proposed MCRNN
to achieve best performance. Moreover, the results in the
sensitivity analysis demonstrate that a shorter time step can
provide better icing detection results, which is more relevant
with real needs. Early activation of the deicing system or
the shutdown of the turbine for maintenance is beneficial for
machine maintenance and energy loss reduction. Furthermore,
the results of real-time detection prove that the multi-step
accumulation strategy can reduce the false alarm rate, so in real
application scenarios, leveraging the strategy can improve the
robustness of icing detection models and bring about reduction
of the energy consumption of monitoring personnel.

IV. CONCLUSION

In this paper, with the goal of meeting the challenges in
detection of icing of wind turbine blades, we propose MCRNN
that can learn the multiple channel correlations and multiple
scale dynamic patterns in the analysis of time series data.
The model contains two basic modules. 1) The first is a
data transformation module, where multilevel discrete wavelet
decomposition is leveraged to obtain the time domain and fre-
quency domain information of the data that are beneficial and
crucial for the feature learning. 2) In addition, we effectively
make use of LSTM to analyze the temporal dependency of the
data, and the powerful feature extraction capability of CNN is
also used. Thus the proposed model can maximize the leverage
of time-frequency domain information of the original data
and the data transformed by MDWD. To address the severe
imbalance of data, we propose two solutions from the data
and algorithm aspects. Furthermore, multi-step accumulation
strategy is proposed to enhance the robustness of the proposed
MCRNN to detect icing on blades. A series of experimental
comparisons fully verify the generalization performance of the
proposed MCRNN model, the effectiveness of the solution on
imbalanced data and the necessity of multi-step accumulation
strategy. The results demonstrate that the proposed model
outperforms several methods for wind turbine blades icing
detection.
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