
1

Model-Driven Availability Assessment of the
NFV-MANO with Software Rejuvenation

Besmir Tola, Yuming Jiang, and Bjarne E. Helvik

Abstract—Network Function Virtualization enables network
operators to modernize their networks with greater elasticity,
network programmability, and scalability. Exploiting these ad-
vantages requires new and specialized designs for management,
automation, and orchestration systems which are capable of
reliably operating and handling new elements such as virtual
functions, virtualized infrastructures, and a whole new set of
relationships among them. Operations such as resource alloca-
tion, instantiation, monitoring, scaling, or termination of virtual
functions are key lifecycle operations that NFV management
and orchestration (NFV-MANO) frameworks need to correctly
perform. Failures of the NFV-MANO prevent the network
ability to respond to new service requests or events related
to the normal lifecycle operation of network services. Thus, it
is important to ensure robustness and high availability of the
MANO framework. This paper adopts a model-driven approach
to predict the availability of the NFV-MANO and assess the
impact that different failure modes have. We propose different
models, based on Stochastic Activity Networks (SANs), which
abstract various MANO deployment configurations, inspired
by current containerized open-source MANO implementations.
Moreover, we integrate software rejuvenation and investigate the
trade-off between its associated overhead and system availability
increase. An extensive experimental campaign with fault-injection
techniques on a real-life MANO implementation allows to derive
a number of realistic recovery parameters. The case studies
are used to quantitatively evaluate the steady-state availability
and identify the most important parameters influencing system
availability for the different deployment configurations.

Index Terms—NFV-MANO, Availability, Software aging, Soft-
ware rejuvenation, SAN models, Containers.

I. INTRODUCTION

NETWORK Function Virtualization (NFV) empowers an
innovative transformation of today’s network architec-

tures. At the core of the paradigm lies the separation of the
network functions from the underlying hardware platforms.
Network-based services can be realized through virtualized
software entities, commonly referred to as Virtualized Network
Functions (VNFs), which can be executed in general purpose
hardware rather than requiring specialized purpose-built plat-
forms. They can embody network functions such as Routers
(vRouter), Firewalls (vFW), and Load Balancers (vLB) [1],
and can be chained together to provide advanced full-scale
network services [2], [3].

As defined by the European Telecommunications Standards
Institute (ETSI), the standard high-level architecture of NFV
incorporates three main blocks that are the NFV infrastructure
(NFVI), the VNFs, and a logically centralized Management
and Orchestration (MANO) entity [4]. The NFVI provides a
virtualization environment for the deployment and execution
of VNFs, including virtual compute, storage and networking

NFV Orchestrator (NFVO)

NS
Catalogue

VNF
Catalogue

NFVI
Resource

NFV
Instance

VNF Manager

(VNFM)

Virtualized Infrastructure

Manager (VIM)
NFVI

VNF

EM

OSS/BSS

NFV-MANO

Fig. 1. The NFV-MANO high-level framework (adapted from [4]).

resources. VNFs are software implementations of network
functions which should be able to interact with other VNFs for
providing composed network services. The MANO performs
life-cycle management of VNFs and NFs, and the orchestration
of infrastructure resources supporting their execution.

Removing the dependency between the network function
software and the hardware infrastructure is expected to bring
a variety of advantages in how networks are operated and
managed [5], [6]. Nonetheless, it also brings additional im-
plications on the network management systems that need to
be extended beyond traditional FCAPS (Fault, Configuration,
Accounting, Performance, Security) management services in
order to provide life-cycle management of a new set of
entities such as the VNFs, network services (NSs), and the
virtualized infrastructure [7]. In addition, the operators need
to ensure that service lifecycle is adequately orchestrated and
managed such that service needs and requirements are met. To
this aim, ETSI has defined a specific NFV-Management and
Orchestration (NFV-MANO) framework [4], in the remainder
simply referred to as MANO. Fig. 1 presents the high-level
architectural view of the MANO framework which consists of
the following functional blocks:

NFV Orchestrator (NFVO): It is the primary responsible for
the orchestration and management of the NFV infrastructure
(NFVI) resources across multiple virtualized infrastructure
managers (VIMs) and the lifecycle of the network services
including operations like on-boarding, instantiating, scaling,
or terminating network services. It also interacts with the
operation and business support system (OSS/BSS), through
which customers/operators perform service operations includ-
ing instantiating, updating, or terminating a service.

VNF Manager (VNFM): It is the block in charge of the
configuration and lifecycle management of one or more VNFs.

2

The VNFM receives from the NFVO management instructions
for VNFs (e.g. deploy, configure, and terminate) and executes
them through its interfaces with the VNFs. The NFVO and
VNFM jointly work to ensure that the network services and
their corresponding VNFs meet the service quality require-
ments (e.g. reliability, latency or throughput).

Virtualized Infrastructure Manager (VIM): It manages and
orchestrates the physical resources, i.e., compute, storage, and
networking, upon which the VNFs are executed.

In addition to the three main blocks, a set of catalogs
represent the repositories of on-boarded NS, VNF packages
and the relative instances. Moreover, another repository holds
information regarding available/consumed NFVI resources, as
abstracted by the VIM.

An important end-user expectation is the high-availability
level that NFV-enabled services will deliver. This is because
several of the envisioned NFV service use cases fall into the
telecom domain in which carrier-grade quality of service is a
strict requirement, i.e., 5-nines availability [8], [9]. Moreover,
NFV is foreseen to be a main pillar of future 5-th generation
(5G) networks where stringent delay and availability demands
(5-nines or more, i.e., less than 5 minutes of yearly down-
time) are expected [10]. However, ensuring high-availability
levels can be an arduous challenge that network operators
need to cope with since service outages, induced by various
component failures, are inevitable events. High availability
is typically achieved by providing fault-tolerance capabilities
through the allocation of redundant elements [11] over which
the system switches upon the failure of primary components.
To this end, a robust management and orchestration system
featuring resiliency facets is mandatory for conducting correct
and timely counter-actions to such events [12], [13]. Moreover,
failures of the MANO itself could jeopardize the overall
functionality of the network and potentially impact the service
delivery by causing severe outages, which sometimes may
be hard to deal with [14], [15]. It is thus of an utmost
importance to ensure that a logically-centralized management
and orchestration system is highly dependable and able to
ensure service continuity [8]. To highlight the importance of a
dependable MANO system, ETSI has published guidelines and
requirements regarding the MANO resiliency capabilities [16].

Cloud-native application engineering is a consolidated ap-
proach in designing, building, and running applications that
can fully exploit cloud computing benefits. An important
pattern of cloud-native applications is that they are composed
of microservices where each of these small services can
operate independently of each other, provide a specific ser-
vice, and communicate through well-defined mechanisms [17].
Moreover, cloud-native applications are packaged as a set of
lightweight containers (e.g., Docker [18] or LXC [19]) aiming
at providing context isolation, highly accessible, scalable and
portable virtual environments. This way, service provisioning
becomes more flexible, agile, and reliable [20]. Driven by such
benefits, there is an increasing trend in adopting cloud-native
design patterns also for virtualized network functions through
deploying and running networking code as containerized soft-
ware [21]–[23]. This trend has been embraced also by some of
the most prominent open-source MANO projects which lever-

age a microservice architecture in deploying and operating
MANO components through lightweight containers [24]–[26].

In this paper, we take a model-driven approach for predict-
ing the availability of container-based MANO implementa-
tions and evaluating the impact that variations of critical failure
and repair parameters have on the overall system availability.
We adopt Stochastic Activity Networks (SANs) modeling
formalism and perform a quantitative assessment of various
deployment configurations enriched with fault-tolerance on
both software and hosting infrastructure. An extensive sen-
sitivity analysis allows us to localize bottleneck parameters
for each of the deployment setups. The main contributions of
this article introduce:

(i). Modeling abstractions for containerized MANO imple-
mentations, integrated with software rejuvenation and
deployed in different redundant configurations, which
are inspired by practices adopting cloud-native designs.

(ii). An experimental campaign on a containerized MANO
platform aiming at retrieving realistic system recovery
parameters.

(iii). A characterization of failure dynamics and an extensive
sensitivity analysis targeting dependability metrics for
both centralized and distributed MANO deployments.

(iv). Computational results that characterize failure dynamics,
and sensitivity analysis that identifies critical parameters
and rejuvenation policies for maximizing the steady-
state availability (SSA).

The remainder is organized as follows. Section II presents
the related work and highlights the key novelties. Section III
presents the case study MANO architecture and the mapping
of the components to the ETSI framework. The different
deployment configurations that considered in this study are
illustrated in Section IV. Section V introduces the software
aging phenomenon and the mechanisms to cope with its re-
lated effects. The availability models resembling the different
configurations are presented in Section VI. In Section VIII,
we show the results of the analysis and conclude the paper by
highlighting the most important insights in Section IX.

II. RELATED WORK

NFV dependability is an important challenge and a signifi-
cant research effort has been put on addressing this challenge.
ETSI has promulgated various NFV specifications in regard to
requirements, capabilities, and models for assessing reliability,
availability, and service continuity [8], [16], [27], [28].

Most of the model-based studies evaluating NFV availability
focus on network service availability modeling and quantifica-
tion without considering the potential impact that the MANO
may have on the end-to-end service availability. These studies
either focus on specific NFV use cases such as virtualization
of the evolved packet core (EPC) system [29] and the virtual-
ization of the IP multimedia subsystem (IMS) [30], or model
and analyze generic network services provided through NFV-
enabled infrastructures [31], [32], without regarding the effect
that a faulty MANO may have on the overall service avail-
ability. However, as emphasized by ETSI, the MANO plays a
crucial role in fault management [16] and it may have a huge

3

impact on the NFV-enabled network service performance [14],
[15]. As a result, a study of its failure dynamics and availability
analysis can be an important contribution for predicting and
identifying MANO availability bottlenecks.

In [29], the authors present an availability model of a
virtualized EPC by using stochastic activity networks. The
study assesses the system availability through discrete-event
simulation and identifies the most relevant criteria to account
for by service providers in order to meet a certain availability
level. The proposed model includes also the MANO system
but no analysis is performed.

A two-level hierarchical availability model of a network
service in NFV architectures has been proposed in [31].
By aggregating non-state space (Reliability Block diagrams)
and state-space models (Stochastic Reward Nets), the au-
thors quantify the SSA and perform a sensitivity analysis
to determine the most critical parameters influencing the
network service availability. Similarly, in [32], they extend
such analysis by including the VIM functionality, as the entity
responsible for the management of the physical infrastructure
resources, into the reliability block diagram (RBD). Their
main findings indicate that a relatively small increment of
hypervisor or VNF software failure intensity has a marginal
effect on the service availability. In addition, they identify
the most appropriate redundancy configuration in terms of
additional replicas for providing fine-nines availability. The
same authors model and assess the availability of an NFV-
oriented IP multimedia subsystem (IMS) [30]. Exploiting the
same modeling techniques, they assess the availability of a
containerized IMS and perform a sensitivity analysis on failure
and repair rate of some of the IMS components. In addition,
they identify the best k-out-of-n redundancy configuration for
each IMS element such that a five-nine availability is reached.

In [33], the authors propose a hierarchical availability model
of an NFV service by adopting stochastic activity networks.
Each VNF, composing the network service, is considered as a
load-sharing cluster and specific separate models abstracting
different redundancy mechanisms, called Availability Modes,
are constructed. The study performs a sensitivity analysis on
various critical parameters and also investigates the impact that
a faulty orchestrator has on the service availability. Differently,
in this paper we focus on the MANO system rather than the
NFV-service and propose availability models derived from
current microservice based implementations. Moreover, our
study provides insights on the most critical parameters specifi-
cally affecting the MANO availability for different deployment
options and under software proactive maintenance.

Even though different from a model-based investigation, the
authors of [34] propose centralized and distributed mecha-
nisms for providing a reliable and fault-tolerant microservice-
based MANO. The mechanisms exploit load balancing and
state sharing and include some tunnable parameters which can
help an operator optimise the trade-offs between reliability
and the associated costs in terms of resource usage. The
proposed setup allows the definition of a cost function which
can help the operator determine the best configuration among
the centralized and distributed MANO deployments.

One of the first studies to carry out an availability assess-

ment of containerized systems is [35]. The authors propose
availability models for different configurations and compare
various container deployments. Through both analytic and
simulation computational results they investigate the k-out-
of-N redundancy configuration and evaluate the availability
sensitivity to different failure parameters. In [36], the same
authors present the development of a software tool called
ContAv which can perform the evaluation of containerized
systems’ availability. Through the use of both non-state and
state-space models, designed by the authors, the tool assesses
the system availability for different configurations and allows a
system architect to easily parametrize and perform sensitivity
analysis. However, both works assume that container restarts
are sufficient for recovering the containerized application. This
can be an oversimplified assumption since the application
source code, built in the container image, can also be subject
to failures which require a software fix or patch [37]–[39].
Moreover, the work disregards the hardware infrastructure
which can also be a dependability bottleneck despite the
container instances are provided with instance redundancy.
The models presented in our work relax these assumptions.
In addition, we investigate also the impact that both aging and
non-aging related bugs have on the system availability, where
software rejuvenation is considered as a countermeasure.

Built on our previous attempt to characterize failure and
recovery behavior of the MANO system [40], the present
work extends the investigation in several aspects. One is more
truthful modeling abstractions for MANO implementations.
Another is a model for distributed MANO deployments which
encompasses redundancy on both software and hosting in-
frastructure. In addition, a component-wise MANO model is
introduced. In all these, the impact of software proactive main-
tenance, in the form of software rejuvenation, is particularly
factored in. Moreover, we exploit fault-injection techniques
and perform experimental trials on a realistic testbed based
on which some key model parameters are retrieved for use in
numerical analysis.

III. CASE STUDY

There are currently several open-source MANO framework
implementations, such as OSM [24], SONATA [26], and
ONAP [41]. To restrain the nonconforming development of
MANO architectures with incompatible APIs, ETSI has pro-
vided several guidelines of the different MANO architectural
options [6], [42], which are currently widely accepted within
the sector. Despite the various options, an ETSI-compliant
architecture should adhere to the streamlined specifications
and include the main functional blocks, which should provide
an end-to-end network service management and orchestration.

In this paper we extrapolate the deployment options of
OSM, a well-established architecture supported by ETSI and
led by a large community of network operators and research
institutions [24]. OSM claims to be closely aligned with
ETSI NFV information models and consists in a production-
quality and VIM-independent software stack. Eight releases
have been distributed up to now and Release 8 is currently
the latest release. It includes different installation methods

4

Auth

Object
Storage

TSDB
(Metrics)

Northbound Interface (NBI)

Lifecycle Manager (LCM)

Resource

Orchestrator

(RO)

POL

VNF Configuration

and Abstraction

(VCA)

OSM client Lightweight UI

OSM IM

OSM IM

N2VC

OSM IM

MON

Database
(NoSQL)

OSM IM
Kafka

Common
Services

PLA

Fig. 2. OSM architectural view (adapted from [24]).

where the MANO components can be deployed as dockerized
instances [18] into a hypervisor-based virtualized environment,
a public hosting infrastructure, or directly into a proprietary
commodity hardware. The latter represents a common way of
deploying and running the OSM stack.

Fig. 2 illustrates the architectural view of OSM with the
specific names of the stack components. The LCM module
stands for Lifecycle Manager and plays the role of the NFVO
in the ETSI MANO framework. The VCA assumes the role
of the VNFM and exploits a Juju controller [43], deployed in
a Linux Container (LXC) [19], for performing the VNFs con-
figuration and management. The VIM, despite being formally
part of the MANO framework, is typically bundled with the
NFVI and thus is not present in the OSM stack. However,
the interaction with the VIM is realized through a specific
driver called resource orchestrator (RO). Note that this is also
common for other MANO implementations, see for example
OpenBaton [25] and Tacker [44]. A set of additional inte-
grated components enable VNF placement, policy, fault and
performance management. Specifically, the PLA component
explores an optimization engine which defines the placement
of VNFs into the available NFVI infrastructure, e.g., subject to
resource constraints, cost, and utilization. The MON module
performs monitoring by collecting VNF metrics from the VIM
and VCA, storing them in a time-series database (TSDB), and
reporting alarms related to these metrics. Policy management
is accomplished by the POL component and regards tasks
such as configuring auto-scaling groups for VNFs, listening for
MON alarms, and reporting scaling/alarm messages to LCM
when scaling/alarm conditions are met. In addition, there is
also a set of common services such as data stores, authentica-
tion, and monitoring tools which are used by other components
for accomplishing their tasks. For example, Prometheus [45]
realizes the TSDB which is used to scrap and store time-series
data related to VNF metrics collected by the MON module.
Finally, the communication among the different components is
executed through a unified distributed Apache Kafka message
bus for asynchronous communication [46]. Apache Kafka is
a fault-tolerant message queuing system that uses a publish-
subscribe model for streaming messages like a data pipeline.

Typical operations that a standard-compliant MANO is
expected to perform fall into five major categories [6]: i) VNF
package-related operations such as on-boarding, enabling,
disabling, updating, querying, and deleting VNF packages; ii)
VNF-related operations such as feasibility check, instantiation,

scaling (both expansion and contraction), terminating, and
fault management; iii) NS descriptor (NSD) operations such
as on-boarding, disabling, enabling, updating, querying, and
deleting NSDs; iv) NS-related operations such as instantiation,
scaling (scale-in and scale-out), updating, and terminating
NSs; and v) VNF forwarding graph (FG), i.e., VNF chaining,
lifecycle operations such as creating, updating, querying, and
deleting VNF FGs.

Executing the aforementioned operations requires the coop-
eration of multiple functional blocks of the MANO framework.
For example, the VNF scaling operations envision the coordi-
nation and exchange of control flows among the NFVO, the
VNFM, and also the VIM [6]. This is also reflected in the
OSM architecture since similar operations involve interaction
of several components. As a mere example, the automated
VNF scaling procedure relies on alarms, raised from VNF and
VIM collected metrics, that trigger a scaling process for which
also the MON, POL and TSDB components interact with the
LCM, Juju and RO modules. Henceforth, from a dependability
perspective, ensuring the complete functionality of the MANO
requires that all components are able to provide their services.
As a result, it is reasonable to assume the OSM software as
a single entity since the failure of even a single component
will prevent the system from providing its agreed function(s).
This assumption is (to a certain extent) also validated in the
experiments reported in Section VII and used in the analysis
in Section VIII.

IV. DEPLOYMENT CONFIGURATIONS

In this section we illustrate the different deployment cases
which are the focus of this study.

A. Docker Swarm deployment

Docker is a widely used container technology and an
application running on Docker is constituted by a container
manager (also called engine or daemon), which manages im-
ages, volumes, networks, and container instances. A container
instance is build from a container image which is typically
stored in an image repository. It is common that for a given
image, several container instances are spawned, forming a
cluster, for purposes like load balancing, high-availability or
scalability.

The OSM Docker swarm installation deploys 14 docker
containers running in swarm mode with each component
having one single replica. Docker swarm mode is a native
feature of Docker for managing and orchestrating a cluster of
Docker engines forming a so called swarm. It entails several
cluster management characteristics such as: i) decentralized
configuration of cluster nodes at runtime, ii) automatic scaling,
iii) automatic cluster state reconciliation, and iv) integrated
load balancing. A swarm is a cluster of Docker nodes which
can act as managers, who manage the swarm membership and
delegate tasks, and workers which run swarm services.

A Docker node can be a manager, worker, or both. A service
is the definition of the tasks that shall be executed by the
swarm through either standalone managers or worker nodes.
When defining a service, the optimal state of it is defined
by specifying features like number of replicas, network and

5

Swarm manager and worker

(node-1)

Container

Container
.
.

.

Swarm manager

(node-1)

Worker

(node-2)

Container

Container
.
.

.

Fig. 3. Illustration of Manager (left) and Manager-Worker (right) deployment
configurations and experimental testbed.

storage resources attached to it, and the ports the service
exposes etc. It is the responsibility of the Docker manager
to maintain the swarm state in case one of the worker nodes
becomes unavailable by re-scheduling its tasks to other nodes.

A swarm may consist in only one node, which by default
will simultaneously act as a manger and worker, but it cannot
be only a worker without a manager. We refer to this setup
as the Manager configuration. To be noted that this kind of
deployment does not provide sufficient protection in terms of
faulty physical host and supporting software like the operating
system. Therefore, though not specifically recommended by
the OSM community, we consider the case where an additional
node joins the swarm for acting as a manager node and the
service workload is only processed in the worker node. This
is also a Docker recommendation in case a limited number
of physical hosts is available [47]. In this case, the swarm
cluster is composed of worker and manager nodes and we
refer to it as Manager-Worker configuration. Fig. 3 depicts
the key differences between the two deployment options.

One of the key features of a swam is the automatic cluster
state reconciliation. This is an important feature in terms of
fault management policies. In case one of the services of the
cluster is down, the swarm state changes and the manager
immediately respawns the failed container/containers on other
available nodes (e.g., in the Manager node in a Manager-
Worker setup) and the service stack becomes healthy again.
Moreover, also in case events such as daemon, OS, and
hardware failures are experienced on the worker node, all
containers are respawned in the other node and the service
is recovered.

B. Kubernetes deployment

Kubernetes, also known as K8s, is a container orchestration
platform, alternative to Docker swam, created by Google and
currently being managed by the Cloud Native Computing
Foundation [48]. It was created with orchestration in mind
and is supported by a much greater community compared to
Docker swarm. In Release 8, OSM has evolved into supporting
Kubernetes both as the infrastructure to run OSM as well as the
infrastructure to deploy Kubernetes-based network functions.

Kubernetes is specifically designed for managing clusters of
containerized applications. A K8s cluster consists of a set of
worker machines, called nodes, and a container orchestration
layer, called control plane. A worker node hosts the pods,
which are the set of running applications executing the work-
load, and the control plane manages the worker nodes and
the pods running in them. The control plane includes four
components; the frontend K8s API server kube-apiserver,

Control plane node

Master-1

Container

Container

Control plane node

Master-3

Worker-1

.

.

.

Worker-2 Worker-3

Control plane node

Master-2

Stacked etcd cluster

Container

Container
.
.

.
Container

Container
.
.

.

Load Balancer

Fig. 4. Illustration of a highly available Multi-master cluster deployment.

the key-value data store etcd, kube-controller-manager pro-
cess(es), and the task scheduler. Particularly important is the
etdc system which is a strongly consistent and distributed key-
value store for reliably storing data in a distributed system. It
uses Raft consensus algorithm [49] for leader election and for
ensuring that cluster internal state is consistently replicated
among the members. For an # members cluster, the quorum,
i.e., majority, is lost when more than (# − 1)/2 members fail.
For more details on how the Raft protocol operates, the reader
may refer to [49].

A recent OSM feature is the ability to deploy OSM in a
K8s highly-available (HA) cluster. In this deployment option,
the OSM pods, i.e., OSM software stack components, are
replicated into three distinct virtual machines running in the
same physical hosts. In addition, also the control plane, called
Master, is deployed in a separate machine and runs in the
same host. This configuration aims at providing fault toler-
ance by actively running three OSM pods in a load-sharing
configuration. In case any of the pods fails, the master will
reschedule incoming requests on the remaining ones. However,
fault tolerance is only on the OSM software level since the
physical host is a single point of failure. Moreover, the failure
of the the single Master would destabilize the cluster state and
it would prevent the system from accepting and processing
incoming requests although the pods would still be up and
running.

To overcome this limitation, and driven by Kubernetes
recommendations for deploying highly available clusters [50],
we consider another topology, called Multi-master cluster,
where worker and master nodes are distributed in multiple
physical hosting nodes. The cluster is composed of three OSM
pods which are deployed in separate physical hosts and there
are also three Masters, forming the cluster control plane, with
each of them also running in a separate physical node. Fig.
4 illustrates this K8s-inspired cluster topology. Each of the
three Masters, hosts an etcd member and they together form
an etcd cluster that enables maintaining a strongly consistent
internal state and ensures that the lost of one of the members,
i.e., Masters, can be tolerated. Note that only the Masters
participate in the etcd cluster. This way, the failure of one
single Master would not compromise the quorum and the
cluster would still be able to elect a leader for managing the
overall cluster.

6

V. SOFTWARE AGING AND REJUVENATION

Past studies of software engineering classify software faults
into two main categories, Bohrbugs and Mandelbugs [37].
Bohrbugs, otherwise called deterministic, are software faults
that typically can be easily reproduced since they tend to
manifest themselves consistently under the same conditions.
They often may lead to a software crash or process hanging
and the bugs need to be identified and resolved. It is possible
that accurate test and validation efforts can identify and correct
this kind of bugs. Mandelbugs are bugs whose activation
and error propagation are more complex in nature. They are
difficult to isolate and as a result, they are hard to reproduce.
Their manifestation is transient in nature and are usually
caused by timing and synchronization issues resulting in race
conditions. A retry operation or software restart may often
resolve the issue [51].

Software aging is a well-known phenomenon associated
with software systems [52]. The general characteristic of
software aging is the fact that as the software execution time
period increases, the associated failure intensity also increases.
A successive activation of relative aging-related software faults
causes software errors, which have not yet caused a software
failure, to accumulate in the internal system state. It is due to
this accumulation that aging-related errors may propagate to a
system failure. This system state is also called the erroneous or
failure probable state. It has been shown that all aging-related
bugs are Mandelbugs [37], [52], hence further classifying
Mandelbugs into two categories; aging-related and non-aging
related Mandelbugs. Typical faults in IT software systems
caused by aging effects include resource leakages, numerical
errors, or data corruption accumulation.

The time to aging-related failure defines the time period
from the moment of the software startup time to the obser-
vation of an aging-related failure. Its probability distribution
is mostly influenced by the running lifetime period and the
software workload quantity. The aging effect is not reversible
without an external interventions and a proactive fault man-
agement method to deal with software aging is software
rejuvenation. The rejuvenation aim is to clean up the internal
system state and thus prevent the occurrence of more severe
failures. Common methods of rejuvenation techniques consist
of a system restart and/or reboot procedure [38]. Any rejuve-
nation will typically incur to some overhead, i.e., downtime
due to safe restarts, but the goal is to prevent more severe
crash failures that may be difficult to recover. As a result, an
important problem is to optimize the rejuvenation schedule.
Analytic-based models have been widely adopted to find the
optimal tradeoff for a variety of software systems including
virtualized servers [53]–[55], service function chains [56],
and software-defined controllers [39], [57]. Common to all
these efforts is the adoption of Petri-net based formalisms and
the characterization of aging dynamics with the objective of
identifying the optimal rejuvenation schedule such that the
system SSA is maximized.

In similar lines, the scope of this work is not limited to char-
acterizing MANO software-dependability dynamics impacted
by the aging phenomenon but also assesses non-aging related

faults’ impact on the SSA. Henceforth, on the software level,
we consider both aging and non-aging related Mandelbugs,
while assuming that correct testing and validation has removed
the Bohrbugs prior to deployment.

VI. AVAILABILITY MODELS

A SAN is a modeling formalism with which detailed perfor-
mance, dependability, or performability models can be imple-
mented in a comprehensive manner [58]. SANs are stochastic
extentions of Petri Nets consisting of four primitives: places,
activities, input gates, and output gates. Places are graphically
represented as circles and contain a certain number of tokens
which represent the marking of the place. The marking of
each place in the model represents the state of the system.
Activities are actions that take a certain amount of time to fire
and move tokens from one place to another. They impact the
system performance and can be timed (thick vertical lines)
or instantaneous (thin vertical lines). A timed activity has
a distribution function associated with its duration and can
have distribution case probabilities used to model uncertainty
associated with activity completion. The case probabilities
are graphically represented as small circles on the right of
the activities. Upon completion, an activity fires and enables
token movements from places connected by incoming arcs to
places connected by outgoing arcs. This way a system state
update occurs and tokens are moved from one place to another
by redefining the places’ markings. Input and output gates
define marking changes that occur when an activity completes.
Different from output gates, the input gates are also able to
control the enabling of activity completion, i.e., firing. All the
models are constructed using the Möbius software tool [59].

In the following, we illustrate the proposed abstraction
models for the different MANO configurations.

A. Manager Configuration

Fig. 5 illustrates the SAN model of the Manager configura-
tion. It abstracts the deployment of the MANO containerized
software into one physical node, which acts as both manager
and worker for the service tasks. Note that in the figure,
we have treated the software deployment of both worker
and manager together for illustration simplicity. Making the
“manager” part more explicitly can be done similarly as
in Fig. 6 for the Manger-Worker configuration. The model
includes the MANO software (i.e., all MANO components),
Docker daemon, OS, and hardware layers, and a similarly
structured model may also apply to other containerized system.
The places D, OS, and HW are initialized with 1 token each,
indicating working Docker daemon, OS, and hardware com-
ponents, respectively. The place sw is an extended place and
allows the representation of structures or arrays. Specifically,
we consider the tokens in sw to be a structure containing two
fields, one representing the operational units, initialized
with one token, and the other one representing the potential
number of software aging-related faults, initialized with
tokens. Similarly to previous works (see [29]–[32]), it
is assumed that all the timed activities follow a negative
exponential distribution unless otherwise specified.

7

MANO Software

Docker Daemon

Operating System

Hardware

M
A
N
A
G
E
R

A
N
D

W
O
R
K
E
R

(a) SAN availability model of the MANO.

Rejuvenation Schedule

(b) Rejuvenation schedule model.

Fig. 5. SAN availability model of the Manager MANO configuration with
software rejuvenation.

In [40] and some other studies (see for example [39],
[57], [60]), software aging is modeled with a “one-shot”
representation where a token is fired, following a certain
distribution, from an up place to an error-prone place and the
same token can be subject to a consequent firing due to a
software aging-related failure. Nevertheless, this representation
fails to capture the very essence of software aging, which
is the continuous accumulation of software aging errors and
the consequent increase of the failure rate. In this paper, we
adjust this drawback by representing a more realistic aging
behavior. Specifically, aging is represented through a timed
activity sw_aging, with rate _swag . The firing of sw_aging is
enabled by the input gate IG3, which verifies that the system is
operational, i.e., there is one token in the sw field operational

units, and there is at least one token in the field software
aging-related faults. For every sw_aging firing, there is a
token removal from the # tokens, present in aging-related

faults, and placed in sw_aged, which in turn represents the
error-prone state. This way, the model allows the accumulation
of aging errors in sw_aged and the sw_aging_failure, which
represents the aging failure event, is directly proportional to
the number of accumulated tokens in sw_aged. This way,
the more accumulated aging errors, the higher is the failure
intensity due to aging.

For the non aging-related Mandelbugs, the timed activity
sw_nonaging_failure represents the non-aging related software
failure event with rate _sw−failnag . When sw_nonaging_failure
fires, the token representing the operational unit is removed
from the place sw indicating that a MANO software failure
has been experienced and the system is in a failed state.

For both software failure events, we differentiate between

two types of failures based on their recovery process. We
make use of case probabilities associated to the timed activities
where �nag defines the probability that a non-aging related
failure event is recovered with a software restart and with
probability 1 − �nag, the failure recovery requires a manual
intervention for executing a software repair. Similarly, �ag
defines the probability that an aging related failure is recovered
with a software restart and with 1−�ag with a software repair.

Once a software failure is experienced, a token is placed
in either sw_p_failed or sw_t_failed, which define the re-
covery process that the software will undergo. heartbeat and
catch-exception symbolize the detection of failures and are
defined with deterministic times `ℎ and `2 . sw_rep and
restart represent the repair (including any eventual reboot
or upgrade of software) and restart events of the software
with rate `swrep and `swres , respectively. On the docker engine
level, i.e., daemon, D_failure and D_restart model the failure
and recovery events of the daemon with rates _D and `Dr ,
respectively. The recovery entails a daemon restart where with
probability �D a daemon restart recovers the failure and with
1−�D a hard repair is needed. The latter is defined through the
activity D_rep with rate `Drep . Once the daemon is repaired,
an additional restart is performed to fully recover it. Similarly
to the daemon, the operating system level is modeled with the
same dynamics having specific failure and repair parameters
which we introduce in Section VIII. On the hardware level,
HW_failure and HW_replace represent the failure and recovery
with rates _HW and `HWrep , respectively. The place HW_spare
indicates the spare hardware equipment used to replace the
failed hardware and is initialized with 1 token.

A novel contribution compared to our earlier work [40] is
the adoption of software rejuvenation, as a proactive software
maintenance mechanism. We apply a time-based rejuvenation
where in specific time intervals, called rejuvenation intervals,
the system undergoes a graceful software restart. To model
this mechanism, we introduce a model (Fig. 10(a)) that defines
the rejuvenation scheduling, and an additional timed activity
rejuvenate models the time it takes the system to restart.
More specifically, the place Clock_rej holds one token and
the deterministic time activity Schedule_rej, which defines
the rejuvenation interval, upon firing moves the token from
Clock_rej to Trigger_rej, where the latter represents the state
that the rejuvenation can be triggered. This movement is
enabled by the IG_rej port which verifies that the system
is operational, there is at least one token in sw_aged, and
there is one token in Trigger_rej. If these conditions are
satisfied, the rejuvenation is performed and rejuvenate fires
a token. At the same time, IG_clean removes all the accu-
mulated tokens in sw_aged by setting them to zero and sets
the operational units field in sw to zero, indicating that
the system is undergoing a downtime due to rejuvenation.
The Schedule_rej and rejuvenate activities are defined with
deterministic times `(2ℎ43 and `A4 9 , respectively. Once the
rejuvenation is completed, the token is moved from Trigger_rej
and placed into Clock_rej by the firing of the instantaneous
activity Reset_clock, and the output gate $�8 resets the sw
fields operational units and aging-related faults equal
to one and # tokens, respectively. The output gate $�7

8

Operating System
Hardware
Rejuvenation Schedule

Docker Daemon
Operating System
Hardware

W
O
R
K
E
R

M
A
N
A
G
E
R

Fig. 6. SAN availability model of the MANO deployed in a Manager-Worker
configuration.

operates similarly to $�8 except that in this case the system
has gone through a software recovery procedure. Note that
rejuvenation can be performed only when it is scheduled to
happen and the system is operational.

Finally, the following output gates define the token marking
movements among lower-level places: OG1/OG3/OG5 manage
the failure events of the daemon, OS, and hardware levels,
respectively. When their related timed activities fire, connected
to their incoming arcs, the output gate places one token in
the respective failed position and sets to zero the upper-level
places. This is because a failure of the physical hardware
will cause a failure of the OS which in turn impacts the
operational state of the daemon and MANO software as well;
OG2/OG4/OG6 places 1 token in their relative working place,
i.e., D/OS/HW, and the relative upper-level places to which
they are connected by outgoing arcs. For example, a recovery
from a daemon failure brings the daemon in the up state but
requires a restart of the MANO software for a fully working
system. The system is fully operational when the operational

units field of sw place holds one token.

B. Manager-Worker Configuration

The Manager-Worker configuration consists of two separate
nodes forming a cluster and the OSM stack is deployed on the
worker node, with the latter being responsible for workload
processing. Fig. 6 depicts the Manager-Worker SAN model.
To distinguish the models of the two entities, we add a suffix
_M for all the places and activities regarding the manager part.
The system is fully working if there is a token in either of the
sw, sw_aged, or sw_M places.

On the worker node, the MANO software component is
similar to the Manager configuration except for the recovery
phase where once a failure is detected, the containers run-
ning the software are respawned, through the timed activity

respawn, in the manager node. We distinguish two cases: when
a software repair is needed, the token is moved from p_det
of the worker node to p_det_M of the manager. In the other
case, the token is moved from t_det to sw_M indicating that
a respawn, i.e., container restart, is sufficient to recover the
system. However, for both cases, we consider the eventuality
of a respawn process that fails. To this end, we consider two
case probabilities associated with the timed activities. With
probability �respawn, the container respawn is successful and
1 −�respawn it fails. In the latter, there is a need for a manual
coverage, represented by manual_cov, and the token is placed
back in place sw. In order for the respawn to instantiate,
the hosting manager node needs to be operational and this
is controlled by the enabling gates IG1/IG2 which enable
the respawn only if the daemon, OS and hardware of the
manager are working, i.e., their respective places D_M, OS_M,
and HW_M contain each 1 token. In addition, differently
to the Manager setup, once the daemon fails, there is just
the recovery of the daemon since the MANO software is
immediately respawned in the manager node. The rest of the
model is similar to the Manager configuration and due to
space limitations we use colored bars with component names
to indicate the relative parts of the model and omit illustrating.

On the manager node, once a token is deposited in sw_M,
the system is again operational. While the software is running
in this node, we assume that it is subject to only non-aging
software related failures. This is because swarm mode best
practices suggest that the worker node should be the dedicated
node for handling task requests in a ’normal’ condition.
Therefore, we limit the hosting of the MANO software to
the manager node only for the period the worker node is
failed. To this end, the input gate IG6 enables a respawn of
the software containers from the manager node to the worker
node once the worker node is up and running again and ready
to accommodate the containers. As a result, the manager node
will host the containers for a relatively short time compared to
the software aging time, hence making the assumption of only
non-aging failure events on the manager node a reasonable
assumption. The rest of the manager components, i.e., daemon,
OS, and hardware are similar to the Manager configuration
which for lack of space have been represented through colored
bars, hence we omit further illustrating.

C. Multi-master Cluster Configuration

For abstracting the Multi-master cluster system, we exploit
a Rep/Join model composition formalism which is integrated
in Möbius. The formalism exploits system symmetries and
generates lumped state spaces which are smaller compared to
systems that do not exploit symmetries. This is particularly
useful for large systems whose model nets generate complex
stochastic processes [61]. The formalism enables the compo-
sition of a model in the form of a tree, where each leaf node
represents a system submodel and each non-leaf node can
be a Join or Replicate node. A Join node is a state-sharing
node used to compose two or more submodels, whereas a
Replicate node is used to compose a model consisting of a
number of identical submodel replicas and can also enable

9

(a) Composed model.

Master Software

Docker Daemon

Operating System

Hardware

(b) Master SAN model.

Fig. 7. SAN availability model of the MANO deployed in the Multi-master
cluster with software rejuvenation.

state-sharing among its replicated submodels. The replicated
submodels behave independently of each other and the root
node represents the complete cluster model.

The Multi-master cluster we consider is not part of a
deployment option or an enhancement feature of OSM and
is primarily driven by Kubernetes recommendations for the
deployment of ’truly’ highly available clusters [50]. For the
scope of our investigation, we make some reasonable assump-
tions that limit the system complexity, yet do not impact
system performance, as they can be deployment options that
an operator can arbitrarily choose. First, we assume that
the cluster components fail independently. This can be a
reasonable assumption in case components are geographically
distributed; therefore, minimizing the likelihood that events
can simultaneously affect two or more nodes. In addition, we
assume that the load balancer is failure free and uniformly
distributes the workload among nodes (refer to Fig. 4). More-
over, we also consider that the OSM pods are not deployed
in virtual machines but directly on standard hardware running
an operating system. We also assume that each worker node
of the cluster runs a Docker runtime engine, i.e. daemon.

The cluster is modeled through the Rep/Join formalism by
replicating three times both the Master, i.e., control plane, and
the Worker submodels, as illustrated in Fig. 7(a).

The Worker submodel is similar to the Manager config-
uration model except for the presence of two shared places
called Worker_down and Master_down. These two places are
also present in the Master submodel and are used to keep
track of the availability of Workers and Masters for the overall
composed model, i.e., the Multi-master cluster. Every time a
Worker or Master fails, a token is placed in the respective
place and removed when they are recovered.

The Master submodel, illustrated in Fig. 7(b), is similar
to the previous configurations on the hardware, OS, and
Docker daemon levels. On the software level, we consider
failure events that can affect either singularly the Master
nodes or the overall cluster. Several studies have shown
that distributed applications experience a variety of issues
due to their distributed implementation. Some of the most
typical issues that can cause cluster-wide failures concern state
inconsistencies, leader election, defective fault management, or
scalability issues [39], [62]–[64]. We account for these failure
modes by assuming that each of the Master replicas may
experience software failures (e.g., failures of the API server,
scheduler, or etcd members) causing a single replica failure,
cluster-wide crash, or cluster state inconsistencies. We use
state distributions to characterize these events with probability
�master, �crash, and 1−�master−�crash, respectively. The Master
software fails with rate _Master (transition master_failure), and
this event is enabled through the input gate IG1 only if less
than three Masters are down, i.e. less than three tokens in
the shared place Master_down. In case a cluster-wide crash
or state inconsistency is observed, the respective output gates
OG_crash and OG_state place three tokens in Master_down.
On the recovery of such failures, the gate OG_cluster removes
three tokens from Master_down and places them in Master_sw
to indicate that a cluster-wide failure has been recovered.

The overall Multi-master cluster is considered unavailable
when three tokens are present in place Worker_down and more
than one token is present in place Master_down. Note that
also other failure/recovery events on the other components
(daemon, OS, and hardware) for both submodels place/remove
one token in Master_down or Worker_down depending on the
submodel.

D. Component-wise MANO Model

The approach taken so far in this paper is to consider the
MANO software as a single component on the software level.
On the one hand, decomposing the MANO software model
into specific components would allow characterizing the vari-
ous components in a finer grain in regard to their failure/repair
dynamics. This can be of particular interest for cases where
some software components are developed, tested, and validated
by ’external’ developing teams which may follow different
practices, as is the case of the Juju VCA component which
is developed and maintained by Canonical rather than the
OSM community. Nevertheless, abstracting realistic MANO
solutions is still subject to the actual architecture since the
various solutions significantly differ in terms of architecture
and implementations [65]. To illustrate, modeling the OSM
software would require abstracting 14 software components,

10

and even more for ONAP because it comprises 20 functional
modules [65]. As a result, it is hard to employ a generalized
model which is capable of a fine grain modeling of realistic
implementations.

On the other hand, at a high level, all solutions should
adhere to the ETSI standards, where the three main functional
blocks, i.e, NFVO, VNFM, and VIM, must be part of a
compliant architecture. This requirement can be reflected in a
functionality-wise generalized model. This modeling approach
could be suitable in cases where failure/repair dynamics of
individual components differ significantly, though the lack of
detailed studies in this matter, and ultimately failure and repair
parameters of individual components, may discourage the
pursue of this modeling approach. In the rest of this section,
such a component-wise modeling attempt is introduced. In
the next section, we also introduce experimental trials to
retrieve key parameters regarding recovery times of individual
components which can be used for a preliminary investigation.

Fig. 8 depicts the adopted model of a high-level MANO
with separate components. In particular, the model includes
separate NFVO, VNFM, and VIM software elements, de-
ployed in the same hosting node, and their relative rejuvenation
policies. The same software layer model utilized in the Man-
ager configuration is used to abstract each of the components
and due to lack of space they are represented through colored
bars instead of SAN primitives. The three components are
assumed to fail independently and the failure of just one of
them would lead to an unavailable MANO. This assumption is
according to the expectations of an ETSI-standardized NFV-
MANO system as all main functional blocks are expected to be
fully operational in order to be able to orchestrate and manage
NFV services [16]. Due to the lack of failure data regarding
MANO solutions, let alone single software components, we
assume that each of the components is characterized by similar
failure times which together exemplify the total intensity of
the MANO software adopted in the other models. Regarding
the repair process, we retrieved individual recovery parameters
through experimental trials on the OSM solution by injecting
faults on the software level targeting individual components,
i.e., LCM, Juju VCA, and RO. On the Docker daemon,
OS, and hardware level, the same submodels utilized in the
Manager configuration are also used here, and the failure of
any of these levels demands a restart of each of the MANO
components once the level is restored such that the system can
be deemed operational.

The rejuvenation process is separate for each of the three
components and is subject to the individual utilization and
software aging rates. For example, an operator could reduce
the rejuvenation frequency for less utilized components and
vice-versa. However, for simplicity, and also due to lack of
knowledge regarding individual failure characteristics, we as-
sume that the same rejuvenation process governs the individual
rejuvenation policies. This can also be beneficial since a fully
synchronized rejuvenation process will lead to the minimum
downtime overhead introduced by rejuvenation. In addition,
the rejuvenation duration is equal to the highest amount of
time required to restart the single components. The model is
solved by feeding the individual recovery times of the LCM,

Docker Daemon
Operating System
Hardware
Rejuvenation Schedule NFVO (LCM)

NFVO software (LCM)
VNFM software (Juju VCA)
VIM software (RO)

Rejuvenation Schedule VNFM (Juju VCA)
Rejuvenation Schedule VIM (RO)

Fig. 8. SAN availability model of the MANO with separate software
components.

Juju VCA, and RO components, while maintaining the total
failure intensities. We compare the two approaches in terms
of SSA and perform a sensitivity analysis on the impact that
variations of the rejuvenation interval, software aging, and
software-aging induced failures have on the SSA.

VII. EXPERIMENTAL TESTBED

Model-driven availability assessment relies on model pa-
rameters regarding failure and repair processes. However, the
lack of failure and repair data is a common issue for novel
technologies and projects. To partially tackle this issue, we
performed an experimental campaign aiming at retrieving
realistic recovery times of the system components by adopting
fault-injection techniques. Our testbed consists of hardware
and software technologies that are commonly used in cloud
computing infrastructures in which the OSM software stack
is deployed from scratch. Specifically, OSM Release 8 is
deployed in swarm mode option, i.e., with Docker swarm
orchestrator, into a Linux-based operating system (server ver-
sion with kernel 5.15) with Docker engine (version 20.10.5)
running on a 56-core Intel® Xeon® @ 1.70GHz machine with
128GB RAM, two 10-Gbps and two 1-Gbps Intel Ethernet
NICs, and four 1-TB SATA hard drives. In this deployment
option, the single machine will act as both manager and worker
node, i.e., Manager deployment.

In order to perform measurements of the Manager-Worker
deployment in case the worker node experiences failure on
the host level, namely respawn times, we join to the OSM
swarm deployment another host machine by using the standard
docker swarm join command. The latter node is equipped
with the same software and hardware technologies of the
previous one and acts as a worker node. The host machines
are connected to each other by their 10-Gbps NICs through
a 5-Gbps Ethernet network switch and the OSM swarm is
deployed in the worker node. Fig. 3 depicts the testbed adopted
for the experimental campaign. This way, we emulate the two
Docker swarm deployments and the testbeds are ready for fault
injections on the different system components.

Starting with the Manager deployment, we inject the fol-
lowing fault types:

11

Software faults: responsible for software crashes and process
hanging of the OSM software layer. Such faults can be
varied in terms of manifestation nature including time and
synchronization issues resulting in race conditions, resource
leakage due to software aging errors, and error handling
faults [37], [51]. Several of these software faults are also
reported in the Bugzilla bug tracker platform utilized by the
OSM community [66]. To emulate the occurrence of these
faults, we forcefully terminate each of the OSM containers,
and measure the time it takes for the stack to return in a
running state. Precisely, we kill all containers of the stack and
continuously (every second) interrogate each of the tasks, i.e.,
containers, until they reach a running state (the .CurrentState

of the task). The interval between the time the fault is injected
and the time the last task is running defines the overall time
that will parametrize the mean time to perform an OSM
software restart (i.e., the `restart activity on the model).

Docker engine faults: similarly to OSM containers, also
the Docker engine can be subject to software faults. [67]
reports faults affecting the Docker engine caused by software
aging phenomenon. This component is particularly critical
as a failure of the daemon causes the simultaneous failure
of all running containers, networks, and mounted volumes.
We mirror the fault on this layer by abruptly halting the
container management process, i.e., dockerd process, and
record the time it takes to restart, i.e., be running again. The
measurements will define the rate of the D_restart activity.

Operating system faults: also the operating system is af-
fected by software faults and several studies present recurring
faults including OS exceptions, error codes, OS panics, or
hangs [68]–[70]. Needless to say, the failure of the OS results
in the termination of all the software layers running on top.
To mimic this type of faults we force an immediate OS
reboot without terminating any process or unmounting any
file systems, i.e., hard reboot. The experiment executes the
reboot command and records the time the command is issued.
Upon system boot, we retrieve the time it takes for the kernel
to reach the default runlevel (5 in the machines) and compute
the time difference. The assessment will determine the mean
time to perform an OS reboot, defined as `OSr in the models.

Swarm node faults: these are faults that trigger a respawn of
the containers in another node in case events such as daemon,
OS, and hardware failures are experienced on the node that
hosts the swarm services. We emulate this kind of faults by
using standard docker commands that drain the availability of
the node to host the containers and this triggers the automatic
re-instantiation of the whole stack into another node. Specif-
ically, we run docker node update --availability drain

<NODE-ID> on the Worker node, which disables the Worker
ability to host swarm tasks, and measure the time it takes for
all containers to reach a running state in the Manager node.

The considered form of injection is focused on failure
modes as effect of faults occurring in the components that can
affect the system. Although from a terminology viewpoint, this
form of injection in some cases is referred to as error/failure
injection, it is also common to refer to this form as fault
injection since failures of a component can be regarded as
faults from the perspective of the system that incorporates the

component [71].
We performed 50 controlled experiments for each fault type,

resulting in 200 experiments in total. For each fault type, we
develop ad-hoc shell scripts that inject the fault, trigger the
recovery and measure the recovery time, wait for a reasonable
amount of time such that the targeted system reaches a stable
state, and re-run the fault injection. It is worth noting that
we consider these kinds of faults as events that cause a
soft failure of the targeted system for which a restart/reboot
of the system is sufficient to recover it. In addition, we
also performed 50 fault-injection trials individually on three
software components; the LCM module, the Juju VCA, and
the RO component. These individual mean recovery times are
used in the assessment of the Component-wise model.

While running the experimental trials, we made several
observations. At first, through an inspection of each of the
containers, using docker inspect command, we observe that,
while each of the containers is created within seconds from
the fault injection time, the times for them to reach a running
state significantly differ from each other. Some tasks reach a
running state within a few seconds, e.g., the Database and the
AUTH components, while others require a few tens of seconds,
e.g., the RO, POL, and TSDB. Other components require even
a few minutes to reach a running state, hence clearly showing
a significant difference compared to recovery times reported
in studies regarding containerized applications (i.e., recovery
within hundreds of milliseconds) [35], [36].

Secondly, we observe a consistent behavior when inspecting
the faults that cause a restart of the whole OSM stack, e.g.,
Docker engine faults. The LCM and the MON containers are
always the last to reach a running state, with LCM reaching the
desired state before MON. Although they are started multiple
times, they fail to reach a running state until the rest of the
components are running. Such observation is different when
the single components of LCM, RO, and Juju are restarted
individually. The times in these cases are smaller, refer to
Table I, and consequently lead to an intuition that there should
be some software dependencies among the components such
that only when other containers are running, and consequently
exposing services, others may reach a running state. However
we are not able to identify the level of dependency for each
of the running containers without a detailed knowledge of the
software architectural design. This observation further sup-
ports the consideration that treating the OSM stack as a single
entity may be more reasonable than treating its individual
elements separately. Finally, during the Swarm node fault-
injection measurements we observed that upon the node avail-
ability draining, all the containers were quickly respawned in
the other node except Grafana and Prometheus. This behavior
led to swarm instability, and hence we applied a workaround
by quickly rolling back the node availability so that these two
components can be restarted in the same node. This is likely
due to some dependency among these components and the
host node where they are initially launched. Clearly this does
not represent the considered scenario, i.e., Manager-Worker,
but we assume that their respawn times are similar, although
respawned in the same node. We measured the respawn times
similarly to the Manager case by adopting the workaround.

12

The mean recovery times described above, together with the
relative standard deviation, are reported in Table I. We notice
that some of the components such as the Juju, the RO and
the Docker daemon have a rather fair stability in their mean
time to recover since they present a limited spread of time
values. As expected, the restart of the OSM software on both
the same or another node, i.e, Swarm node faults, presents
very similar values. This is because the services are managed
by the swarm and spawning containers in another node, with
the same processing capability, involves the same process, i.e.,
the docker engine spins up the same tasks using the already
pulled container images.

VIII. NUMERICAL ANALYSIS

In this section, we present a numerical (evaluation) study.
The proposed models are defined in the Möbius software
tool [59] and they are solved using discrete-event simulation,
integrated in the tool, with 99% confidence interval and
10−5 width of relative confidence interval. The SAN model
parameters are in part retrieved from previous literature [39],
[57], in part from experimental measurements, and the rest are
estimated guesses based on our empirical experience. They
are illustrated in Table I, and they represent the baseline
parameters.

A. Sensitivity Analysis

Given the baseline parameters, the achieved MANO avail-
ability for every model is presented in Table II, together
with the relative availability when an optimized rejuvenation
policy is applied. We observe that for all deployments there
is a meaningful improvement in terms of downtime reduction
when an optimal rejuvenation policy is applied. The gain is
more pronounced for the Manager-Worker and Multi-master
case studies, achieving a 39% and 61% of downtime reduction
relative to the system downtime without rejuvenation.

The sensitivity analysis is performed by varying failure and
recovery parameters with one order of magnitude, i.e., ×10
and ×10−1, from their baseline values, and retrieving the SSA
in case no rejuvenation is employed. The sensitivity to these
parameters, for all the case studies, separated into failure and
recovery events, is presented in Fig. 9. We have adopted a
modified logarithmic scale on the availability axis in order to
obtain a better visualization of the high availability numbers.

For the Manager case, the most impactful failure parameters
are software non-aging failure rate followed by hardware,
software aging, and software aging failure rate. In particular,
reducing the software non-aging related failure rate decreases
the availability to 0.9913. Among these failure parameters,
software aging rate brings the highest improvement on the
SSA, reaching 0.9984. Concerning recovery parameters, soft-
ware repair, followed by the hardware replace rate, has the
highest impact on the system availability by reducing it from
0.99723 to almost 0.989. At the same time, the highest
improvement, reaching 0.99932, is achieved for a software
repair rate increase, i.e. lower software repair time.

The same analysis for the Manager-Worker deployment
reports a considerable reduction of the critical parameters.

TABLE I
AVAILABILITY MODEL PARAMETERS

(�FROM EXPERIMENTS, ‡FROM LITERATURE [39], [57]).

Intensity Time Description [Mean time to]

_−1
swag = 1 week MANO software aging‡

_−1
sw−failag

= 3 days next MANO software failure after aging‡

_−1
sw−failnag

= 1 month next MANO non-aging software failure‡

`−1
swrep = 1 hour MANO software repair‡

`−1
swres = 185 (±15.6) seconds MANO software restart (OSM stack)�

`−1
NFVOres

= 32 (±3.1) seconds NFVO container restart (LCM)�

`−1
VNFMres

= 8.5 (±0.6) seconds VNFM container restart (Juju VCA)�

`−1
VIMres

= 19.5 (±0.7) seconds VIM driver container restart (RO)�

`−1
ℎ

= 10 seconds heartbeat*‡

`−10
2 = 1 millisecond catch exception*‡

_−1
D = 4 months next daemon failure‡

`−1
Drep

= 1 hour daemon repair‡

`−1
Dr

= 30 (±1.8) seconds Docker daemon restart�

_−1
OS = 4 months next OS failure‡

`−1
OSrep

= 1 hour OS repair‡

`−1
OSr

= 249 (±21.4) seconds OS reboot�

_−1
HW = 6 months next hardware failure‡

`−1
HWrep

= 24 hours hardware repair‡

`−1
HWreplace

= 1 hour hardware replace‡

`−1
rej = 3 minutes rejuvenation duration�

�nag = 0.3 prob. for non-aging transient failures‡

�ag = 0.7 prob. for aging transient failures‡

�D = 0.9 daemon restart coverage factor‡

�OS = 0.9 OS reboot coverage factor‡

#spare = 1 Number of spare hardware‡

= 60 Number of potential software aging faults‡

`−1
respawn = 189 (±21.6) seconds respawn MANO software containers�

`−1
cov = 1 hour manual coverage
�respawn = 0.9 respawn coverage factor‡

_−1
Master = 4 months next master failure
`−1

master = 5 minutes recover master failure
`−1

cluster = 15 minutes recover cluster crash
`−1

incons = 3 minutes recover state inconsistencies‡

�master = 0.55 probability of Master software failure‡

�crash = 0.05 probability of cluster-wide crash‡

*Deterministic time

TABLE II
STEADY-STATE AVAILABILITY OF THE DIFFERENT MODELS WITHOUT AND

WITH OPTIMAL REJUVENATION POLICY.

Manager Manager-Worker Multi-master Component-wise
MANO w/o rej. 0.99723 0.99871 0.999782 0.99723
MANO opt. rej. 0.99762 0.999215 0.999915 0.99794

Downtime reduction 14% 39% 61% 25%

Besides the overall availability gain introduced by the fault-
tolerance on the host level (refer to Section VI-B), the negative
impacts of both software non-aging failure rate and software
repair rate are markedly reduced compared to the Manager
case. To illustrate, for the Manager case, a ten-fold increase
of software non-aging related failure rate decreases the SSA
from 0.99723 to 0.99143, which corresponds to an increase
of 50.84 hours of yearly downtime (from 24.28 to 75.12).
For the same parameter reduction, the Manager-Worker SSA
is reduced from 0.99871 to 0.99526 corresponding to a 30.76
hours of additional yearly downtime. However, there is a more
evident impact of parameters related to the physical host. We
notice that an increase of either the OS or daemon failure rate
has a more pronounced effect on availability reduction. This is
because more frequent failures of the Manager OS or Docker
daemon would prevent the Manager from hosting the MANO
software in case a failure is observed on the Worker side.

13

0.
99

99
9

0.
99

99

0.
99

9

0.
99

0.
9

Availability

sw
rep

HW
replace

sw
res

OS
rep

OS
r

D
rep

h

D
r

c

D

OS

sw-fail
ag

sw
ag

HW

sw-fail
nag

x10

x10 -1

(a) Manager

0.
99

99
9

0.
99

99

0.
99

9

0.
99

0.
9

Availability

sw
rep

HW
replace

respawn

OS
rep

OS
r

D
rep

h

D
r

c

D

OS

sw-fail
ag

sw
ag

HW

sw-fail
nag

x10

x10 -1

(b) Manager-Worker

0.
99

99
9

0.
99

99

0.
99

9

0.
99

0.
9

Availability

sw
rep

cluster

incons

OS
rep

OS
r

D
rep

master

Dr

master

D

OS

sw-fail
ag

sw
ag

HW

sw-fail
nag

x10

x10 -1

(c) Multi-master

Fig. 9. Sensitivity analysis for the different MANO deployments without
rejuvenation.

Moreover, a higher respawn rate (`respawn) can considerably
improve the SSA up to 0.99937.

The Multi-master configuration increases further the system
availability, reaching 0.999782. However, the same critical
parameters identified in previous case studies continue to
be critical. In particular, similarly to the Manager-Worker
setup, deterioration of host level failure intensities has a non-
negligible impact. This is because such failures influence
more the availability of the Master nodes compared to the
Worker nodes due to the fact that failure of more than one
Master limits the overall cluster availability, as opposed to

the Worker nodes where failure of all the three replicas is
needed to cause a service outage. On the other hand, a ten-
fold improvement, whether failure rate reduction or recovery
rate increase, brings more substantial benefits in the SSA. For
several failure and recovery parameters, SSA values exceed
four nines availability, i.e., less than 52 minutes of yearly
downtime. Observing individual Master parameters, we notice
that the recovery times of events that can cause a cluster-
wide failure such as `cluster and `incons greatly impact the
system SSA. In particular, a ten-fold change of the time
to recover cluster failures can affect the SSA significantly.
This is because recovering a cluster crash requires a larger
amount of time compared to the events that cause inconsistent
states. On the other hand, a ten-fold reduction in `8=2>=B also
causes a comparable reduction which can be explained by
the higher frequency that such events occur. These findings
confirm past model-based assessments of distributed control-
plane implementations which report the impact of cluster-wide
failures [39].

B. Software Rejuvenation Impact

It is obvious that applying frequent rejuvenation does pre-
vent the accumulation of aging errors, yet a frequent main-
tenance may lead to useless downtime caused by software
restart. In order to fully profit from rejuvenation, an operator
needs to find a balance between the deliberate downtime
and the avoiding of more severe outages due to the error
accumulation. Therefore, an operator should determine the
optimal policy for scheduling the rejuvenation process.

The impact of different rejuvenation policies, i.e., `Sched and
`rej, for all the cases under study are illustrated in Fig. 10 and
Table III summarizes the optimal values. We use the same
modified logarithmic scale to better illustrate the computed
results. As expected, and common to all models, the results
show that that enabling a shorter rejuvenation duration, brings
significant benefits in availability. This is more evident when
early rejuvenation schedules are applied.

TABLE III
STEADY-STATE AVAILABILITY WITH OPTIMAL REJUVENATION POLICY

WHEN VARYING REJUVENATION DURATION.

Rejuvenation Availability [Optimal rejuvenation interval in hrs]
duration Manager Manager-Worker Multi-master Component-wise

30 secs 0.99795 [36] 0.999678 [36] 0.9999362 [48] 0.99794 [48]
1 min 0.99785 [72] 0.999428 [48] 0.9999320 [60] 0.99772 [72]
3 mins 0.99762 [132] 0.999215 [96] 0.999915 [72] 0.99715 [180]
5 mins 0.99737 [168] 0.999144 [108] 0.999894 [84] 0.99705 [180]

Concerning the Manager scenario for baseline parameters,
i.e., a rejuvenation duration of 3 minutes, the maximum
achievable availability is 0.99762 with an optimal rejuvenation
interval of 132 hours. In case the software maintenance lasts
longer, i.e., 5 minutes, the optimal rejuvenation trigger time
is 168 hours, yet the availability gain is almost negligible
compared to the non rejuvenated case. A similar trend is
observed for the Manager-Worker implementation. The maxi-
mum availability that can be achieved with baseline parameters
is 0.999215 for a maintenance interval of 96 hours, i.e., a safe
software restart every four days.

14

6 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

Rejuvenation interval [hrs]

0.999

0.99

0.9

A
v
a
ila

b
ili

ty

30 secs

1 min

3 mins

5 mins

w/o rej.

 rej

(a) Manager

6 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

Rejuvenation interval [hrs]

0.9999

0.999

0.99

0.9

A
v
a

ila
b

ili
ty

30 secs

1 min

3 mins

5 mins

w/o rej.

 rej

(b) Manager-Worker

612 24 36 48 60 72 84 96 108 120 132 144 156 168 180

Rejuvenation interval [hrs]

0.99999

0.9999

0.999 A
v
a

ila
b

ili
ty

30 secs

1 min

3 mins

5 mins

w/o rej.

 rej

(c) Multi-master

6 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

Rejuvenation interval [hrs]

0.999

0.99

0.9

A
v
a
ila

b
ili

ty

32 secs

1 min

3 mins

5 mins

w/o rej.

 rej

(d) Component-wise

Fig. 10. Impact of rejuvenation policies on system availability for the different
MANO deployments and for a varying rejuvenation duration.

In the Multi-master case, the overall availabilities are
much higher and the maximum availability is achieved with
a software restart every two days reaching 0.999915 with
baseline parameters. Different to the other models, for short
rejuvenation intervals, the difference between the rejuvenation
durations (`rej) is less pronounced. This is because Multi-
master entails a load-sharing cluster composed of three repli-
cas of the MANO software which provides adequate protection
even in cases where rejuvenation duration takes longer, i.e.,

TABLE IV
STEADY-STATE AVAILABILITY WITH OPTIMAL REJUVENATION POLICY

WHEN VARYING SOFTWARE AGING RATE.

Mean time to Availability [Optimal rejuvenation interval in hrs]
software aging Manager Manager-Worker Multi-master Component-wise

1 day 0.99665 [24] 0.99840 [36] 0.999626 [48] 0.99670 [36]
3 days 0.99743 [36] 0.99890 [48] 0.999816 [60] 0.99753 [36]
7 days 0.99762 [132] 0.999215 [96] 0.999915 [72] 0.99795 [132]
10 days 0.99791 [144] 0.999439 [108] 0.999956 [84] 0.99815 [156]

longer downtime of one replica due to rejuvenation.
The results of the Component-wise model analysis show

system performances that are much like the Manager model
where for the baseline parameters the maximum achievable
SSA differ at most 3.2 · 10−4 compared to the Manager rep-
resentation (0.99762 vs. 0.99794). Note that the rejuvenation
schedules of the individual components are fully synchronized
and the baseline duration equals 32 seconds, which is the high-
est amount of time required to restart the single components,
i.e., LCM.

C. Software Aging Impact

Software aging is an unpredictable parameter since it de-
pends on several factors that may be out of developer’s control
such as software utilization rate, i.e., system load, operational
profile and infrastructure, or software implementation. How-
ever, it has been shown that under high system workload, the
software aging rate tends to increase, hence more aging errors
are accumulated [67], [72], [73]. Consequently, the aging-
related failure intensity increases.

We carry out a numerical analysis for a varying rejuvenation
interval and assuming four software aging intensities repre-
senting high, medium, moderate, and low software utilization
rates, i.e., 1, 3, 7 and 10 days mean time to software aging
intensity. Fig. 11 illustrates the results for all the models.
In addition, Table IV highlights the maximum availability
figures for each of the deployments. Results reveal that for
low to moderate software utilization, i.e., 7-10 days, the
availability figures are closer compared to medium-high uti-
lization. Such tendency is more evident as the rejuvenation
interval decreases. Moreover, the difference between medium
and high utilization is decreased when more fault-tolerance is
introduced in the system, i.e., comparing the different MANO
deployments. Again, the Component-wise system represen-
tation exhibits results almost identical to the Manager. For
baseline parameters, the maximum SSA difference between
the two models is within 3.3 · 10−4 (0.99762 vs. 0.99795).
Finally, for each of the case studies, the highest uptime gain is
achieved for high software utilization indicating that a system
under high workload can benefit more from rejuvenation.

The sensitivity analysis revealed that aging failure rate
may have a considerable impact on the availability of the
MANO. We explore a range of software aging parameters
by varying the aging rate and the aging failure rate between
1 and 10 days. Fig. 12 depicts the MANO availability for
different parameter combinations, for each of the studied
cases. In the Manager deployment case, it can be seen that
the impact of the aging failure rates greatly depends on the

15

6 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

Rejuvenation interval [hrs]

0.999

0.998

0.99

A
v
a

ila
b

ili
ty

1 day 3 days 7 days 10 days

-1
SW

ag

(a) Manager

6 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

Rejuvenation interval [hrs]

0.9999

0.999

0.99

A
v
a
ila

b
ili

ty

1 day 3 days 7 days 10 days

-1
SW

ag

(b) Manager-Worker

612 24 36 48 60 72 84 96 108 120 132 144 156 168 180

Rejuvenation interval [hrs]

0.99999

0.9999

0.999

0.99

A
v
a
ila

b
ili

ty

1 day 3 days 7 days 10 days

-1
SW

ag

(c) Multi-master

6 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

Rejuvenation interval [hrs]

0.999

0.998

0.99

A
v
a

ila
b

ili
ty

1 day 3 days 7 days 10 days

-1
SW

ag

(d) Component-wise

Fig. 11. System availability when varying rejuvenation interval and software
aging rate.

rate of aging. For a short software aging time (_−1
SWag

), i.e,
lower than 7 days, an increase of the aging-related failure
rate, i.e., lower time for software failure due to aging, can
have a significant impact on the MANO availability. On the
contrary, for a low to moderate software utilization, i.e., high
times for the software to age, variations of the aging-related
failure rates have a much lower impact. A similar trend, yet
much less marked, is observed also for the Manager-Worker
deployment. This tendency becomes negligible for the Multi-
master deployment, therefore supporting the previous finding
that adequate protection is needed on both host and software

1 day 3 days 7 days 10 days

-1

SW
ag

0.9914

0.994

0.996

0.998

0.999

A
v
a
ila

b
ili

ty

1 day

3 days

7 days

10 days

-1
SW-fail

ag

(a) Manager

1 day 3 days 7 days 10 days

-1

SW
ag

0.9986

0.9988

0.999

A
v
a
ila

b
ili

ty

1 day

3 days

7 days

10 days

-1
SW-fail

ag

(b) Manager-Worker

1 day 3 days 7 days 10 days

-1

SW
ag

0.9986

0.999

0.9996

0.9999

A
v
a

ila
b

ili
ty

1 day

3 days

7 days

10 days

-1
SW-fail

ag

(c) Multi-master

8 hrs 24 hrs 56 hrs 80 hrs

-1

SW
ag

comp

0.9914

0.994

0.996

0.998

0.999

A
v
a

ila
b

ili
ty

8 hrs

24 hrs

56 hrs

80 hrs

-1
SW-fail

ag

comp

(d) Component-wise

Fig. 12. Impact of software aging vs. aging-related failure.

levels for neutralizing variations of critical parameters such as
software aging and aging-induced failure rates.

Regarding the Component-wise model, Fig. 12(d) shows the
sensitivity analysis for single components having three times
lower failure intensities on the component’s level compared
to (such that the overall failure intensity of treating them
together is the same as) the single MANO software model,
i.e., Manager. Also for this analysis, the results show a trend
very similar to the Manager model. The SSA of both models
differs at most 5.05 ·10−4. Moreover, increments or reductions
of software aging parameters produce very much alike impacts

16

for both models. Such observations, together with the previous
insights, show that modeling of the MANO software as a
single component yields a reasonable representative analysis
of the system’s steady state availability.

D. Threats to Validity

A possible limitation of this study concerns the precision
in our numerical investigation. This is due to the accuracy
of baseline parameters, which is, in general, common to
many model-based studies. Although the majority of model
parameters have been retrieved from related studies, we ac-
knowledge that the choice of parameters may skew the analytic
results. In particular, due to a lack of publicly available data
regarding failure and recovery dynamics of MANO systems,
we have made reasonable assumptions, based on studies re-
garding software of similar complexity. To lift this limitation
a bit, we have performed experimental trials on a realistic
MANO deployment aiming at retrieving recovery parameters’
values of MANO software. Nevertheless, the very scope of
the sensitivity analysis is to shed light onto the uncertainty
related to these parameters, and two-orders of magnitude
variation range is, in our opinion, sufficient to capture to
a wide extent the uncertainties. An additional threat to the
validity of our results is related to some assumptions regarding
deployment configurations. In the Multi-master deployment,
we assume that the load balancer is failure free. This is not the
case for realistic deployments. However, from a deployment
perspective, a service operator can limit the impact of this
threat by using external load balancers which can provide a
sufficient level of reliability. In addition, we also assume that
while being hosted in the Manager node, regardless of the
type of fault affecting the Worker node, the MANO software
is only subject to non-aging related failures. While this does
not reflect a realistic behavior, it is reasonable for those events
that require a relatively short time to recover compared to the
software aging rate. Overall, the goal of this work is to propose
a methodology and model abstractions for assessing MANO
implementations which can be used by system operators that
have access to empirical data and can extract parameter values
for use in the models.

IX. CONCLUSION

This paper presents four comprehensive availability models
for a containerized NFV-MANO architecture encompassing
various redundancy configurations. The models incorporate
diverse failure modes and the corresponding recovery behav-
iors, regarding both hardware and software components. The
models also include software aging effects and software reju-
venation, as proactive maintenance, aiming at mitigating aging
effects. We performed an experimental campaign on real-life
MANO system aiming at retrieving realistic system recovery
parameters. We carried out an exhaustive sensitivity analysis
from which we assess and quantify the steady-state availability
and identified the impact that critical parameters have. The
investigation showed that non-aging-related software failures
and software repair rates stand out as key deteriorating failure

and repair parameters, respectively. However, employing clus-
tering mechanisms such as Kubernetes with redundancy on
both host and software levels further boosts the NFV-MANO
availability. Moreover, software aging can have a considerable
impact on the MANO availability and we observed that a
correct tuning of the rejuvenation policy can be beneficial
and is particularly well-suited in cases where a high software
utilization is experienced.

REFERENCES

[1] ETSI, GS NFV, “ETSI GS NFV 001 v1. 1.1 Network Functions
Virtualisation,” Use Cases. sl: ETSI, 2013.

[2] G. Brown and H. Reading, “Service chaining in carrier networks,” Heavy
Reading, 2015.

[3] J. M. Halpern and C. Pignataro, “Service Function Chaining
(SFC) Architecture,” RFC 7665, Oct. 2015. [Online]. Available:
https://rfc-editor.org/rfc/rfc7665.txt

[4] ETSI, GS NFV, “Network Functions Virtualisation (NFV): Architectural
Framework,” ETSI GS NFV, vol. 2, no. 2, p. V1, 2013.

[5] ETSI, “Network Functions Virtualisation, An Introduction, Benefits,
Enablers, Challenges & Call for Action,” White Paper, no. 1, pp. 1–
16, 2012.

[6] ETSI, GS NFV, “Network functions virtualisation (NFV); management
and orchestration,” NFV-MAN, vol. 1, p. v0, 2014.

[7] R. Mijumbi et al., “Management and orchestration challenges in network
functions virtualization,” IEEE Communications Magazine, vol. 54,
no. 1, pp. 98–105, 2016.

[8] ETSI, GS NFV, “ETSI GS NFV-REL 001 v1. 1.1: Network Functions
Virtualisation (NFV); Resiliency Requirements,” 2015.

[9] B. Han, V. Gopalakrishnan, G. Kathirvel, and A. Shaikh, “On the re-
siliency of virtual network functions,” IEEE Communications Magazine,
vol. 55, no. 7, pp. 152–157, 2017.

[10] B. Blanco et al., “Technology pillars in the architecture of future
5G mobile networks: NFV, MEC and SDN,” Computer Standards &
Interfaces, vol. 54, pp. 216–228, 2017.

[11] K. S. Trivedi and A. Bobbio, Reliability and availability engineering:
modeling, analysis, and applications. Cambridge University Press,
2017.

[12] G. Arfaoui, J. M. Sanchez Vilchez, and J. Wary, “Security and Resilience
in 5G: Current Challenges and Future Directions,” in 2017 IEEE
Trustcom/BigDataSE/ICESS, 2017, pp. 1010–1015.

[13] N. F. S. De Sousa, D. A. L. Perez, R. V. Rosa, M. A. Santos, and
C. E. Rothenberg, “Network service orchestration: A survey,” Computer
Communications, vol. 142, pp. 69–94, 2019.

[14] A. J. Gonzalez et al., “Dependability of the NFV orchestrator: State
of the art and research challenges,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 4, pp. 3307 – 3329, 2018.

[15] G. Nencioni et al., “Orchestration and control in software-defined 5G
networks: Research challenges,” Wireless Communications and Mobile
Computing, vol. 2018, 2018.

[16] ETSI, GS NFV, “ETSI GR NFV-REL 007 v1.1.2: Network Function
Virtualisation (NFV); Reliability; Report on the resilience of NFV-
MANO critical capabilities,” 2017.

[17] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices archi-
tecture enables devops: Migration to a cloud-native architecture,” Ieee
Software, vol. 33, no. 3, pp. 42–52, 2016.

[18] Docker Website. Accessed: 2020-11-15. [Online]. Available: "https:
//www.docker.com/"

[19] Linux Containers (LXC). Accessed: 2020-11-15. [Online]. Available:
"https://linuxcontainers.org/"

[20] N. Dragoni et al., “Microservices: yesterday, today, and tomorrow,” in
Present and ulterior software engineering. Springer, 2017, pp. 195–
216.

[21] T. Taleb, A. Ksentini, and B. Sericola, “On service resilience in
cloud-native 5G mobile systems,” IEEE Journal on Selected Areas in
Communications, vol. 34, no. 3, pp. 483–496, 2016.

[22] S. Sharma, R. Miller, and A. Francini, “A Cloud-Native Approach to
5G Network Slicing,” IEEE Communications Magazine, vol. 55, no. 8,
pp. 120–127, 2017.

[23] 5G-PPP Software Network Working Group et al., “From webscale to
telco, the cloud native journey,” Editor: Bessem Sayadi, July, 2018.

[24] Open Source MANO (OSM). Accessed: 2020-11-15. [Online].
Available: "https://osm.etsi.org"

17

[25] OpenBaton. Accessed: 2020-11-15. [Online]. Available: "https://
openbaton.github.io"

[26] SONATA website. Accessed: 2020-11-15. [Online]. Available: "https:
//www.sonata-nfv.eu/"

[27] ETSI, GS NFV, “ETSI GS NFV REL 004 v1.1.1: Network Functions
Virtualisation (NFV); Assurance; Report on Active Monitoring and
Failure Detection,” 2016.

[28] ——, “Reliability; Report on Models and Features for End-to-End
Reliability,” no. GS REL 003 v1.1.2, 2016-07.

[29] A. Gonzalez et al., “Service availability in the NFV virtualized evolved
packet core,” in Global Communications Conference (GLOBECOM),
2015 IEEE. IEEE, 2015, pp. 1–6.

[30] M. Di Mauro et al., “IP multimedia subsystem in an NFV environment:
availability evaluation and sensitivity analysis,” in 2018 IEEE NFV-SDN.
IEEE, 2018, pp. 1–6.

[31] ——, “Service function chaining deployed in an NFV environment: An
availability modeling,” in IEEE CSCN. IEEE, 2017, pp. 42–47.

[32] ——, “Availability modeling and evaluation of a network service de-
ployed via NFV,” in International Tyrrhenian Workshop on Digital
Communication. Springer, 2017, pp. 31–44.

[33] B. Tola, G. Nencioni, B. E. Helvik, and Y. Jiang, “Modeling and
evaluating NFV-enabled network services under different availability
modes,” in 2020 16th International Conference on the Design of Reliable
Communication Networks DRCN 2020. IEEE, March 2019.

[34] T. Soenen et al., “Optimising microservice-based reliable NFV manage-
ment and orchestration architectures,” in The 9th International Workshop
on Resilient Networks Design and Modeling, Sep. 2017, pp. 1–7.

[35] S. Sebastio, R. Ghosh, and T. Mukherjee, “An availability analysis ap-
proach for deployment configurations of containers,” IEEE Transactions
on Services Computing, pp. 1–1, 2017.

[36] S. Sebastio, R. Ghosh, A. Gupta, and T. Mukherjee, “Contav: A tool
to assess availability of container-based systems,” in 2018 IEEE 11th
Conference on Service-Oriented Computing and Applications (SOCA),
2018, pp. 25–32.

[37] M. Grottke and K. S. Trivedi, “Software faults, software aging and soft-
ware rejuvenation,” The Journal of Reliability Engineering Association
of Japan, vol. 27, no. 7, pp. 425–438, 2005.

[38] K. S. Trivedi et al., “Recovery from failures due to Mandelbugs in IT
systems,” Proceedings of IEEE PRDC, pp. 224–233, 2011.

[39] P. Vizarreta, K. Trivedi, V. Mendiratta, W. Kellerer, and C. Mas-
Machuca, “DASON: Dependability Assessment Framework for Imper-
fect Distributed SDN Implementations,” IEEE Transactions on Network
and Service Management, vol. 17, no. 2, pp. 652–667, 2020.

[40] B. Tola, Y. Jiang, and B. E. Helvik, “On the Resilience of the NFV-
MANO: An Availability Model of a Cloud-native Architecture,” in 2020
16th International Conference on the Design of Reliable Communication
Networks DRCN 2020, 2020, pp. 1–7.

[41] L. Foundation. Open Network Automation Platform. Accessed:
2020-11-15. [Online]. Available: "https://www.onap.org/"

[42] G. N. ETSI, “Network functions virtualisation (NFV); management and
orchestration; report on architectural options,” vol. 1, p. v0, 2016.

[43] Juju Documentation. Accessed: 2020-11-15. [Online]. Available:
"https://juju.is/docs"

[44] OpenStack Tacker. Accessed: 2020-11-15. [Online]. Available: "https:
//wiki.openstack.org/wiki/Tacker"

[45] Prometheus - Monitoring system and Time-series database.
Accessed: 2020-02-26. [Online]. Available: "https://prometheus.io/
docs/introduction/overview/"

[46] A. S. Foundation, “Apache Kafka,” accessed: 2020-11-15. [Online].
Available: "\url{https://kafka.apache.org/intro}"

[47] Docker Documentation. Accessed: 2020-11-15. [Online]. Available:
"https://docs.docker.com/engine/swarm/"

[48] Kubernetes Website. Accessed: 2020-11-15. [Online]. Available:
"https://kubernetes.io/"

[49] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference (USENIX-
ATC 14), 2014, pp. 305–319.

[50] Creating Highly Available clusters with kubeadm. Accessed:
2020-11-15. [Online]. Available: "https://kubernetes.io/docs/setup/
production-environment/tools/kubeadm/high-availability/"

[51] M. Grottke and K. S. Trivedi, “Fighting bugs: Remove, retry, replicate,
and rejuvenate,” Computer, vol. 40, no. 2, pp. 107–109, 2007.

[52] M. Grottke, R. Matias, and K. S. Trivedi, “The fundamentals of software
aging,” in 2008 IEEE ISSRE Wksp, Nov 2008, pp. 1–6.

[53] F. Machida, D. S. Kim, and K. S. Trivedi, “Modeling and analysis
of software rejuvenation in a server virtualized system with live VM
migration,” Performance Evaluation, vol. 70, no. 3, pp. 212–230, 2013.

[54] M. Escheikh, Z. Tayachi, and K. Barkaoui, “Workload-dependent soft-
ware aging impact on performance and energy consumption in server
virtualized systems,” in 2016 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), 2016, pp. 111–118.

[55] M. Torquato and M. Vieira, “Interacting SRN models for availability
evaluation of VM migration as rejuvenation on a system under varying
workload,” in 2018 IEEE International symposium on software reliabil-
ity engineering workshops (ISSREW). IEEE, 2018, pp. 300–307.

[56] E. Guedes and P. Maciel, “Stochastic model for availability analysis of
service function chains using rejuvenation and live migration,” in 2019
IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW). IEEE, 2019, pp. 211–217.

[57] P. Vizarreta, P. Heegaard, B. Helvik, W. Kellerer, and C. M. Machuca,
“Characterization of failure dynamics in SDN controllers,” in 2017 9th
International Workshop on Resilient Networks Design and Modeling
(RNDM), 2017, pp. 1–7.

[58] W. H. Sanders and J. F. Meyer, “Stochastic activity networks: Formal
definitions and concepts,” in School organized by the European Educa-
tional Forum. Springer, 2000, pp. 315–343.

[59] Möbius: Model-based environment for validation of system reliability,
availability, security and performance. Accessed: 2020-11-15. [Online].
Available: "https://www.mobius.illinois.edu"

[60] T. A. Nguyen, D. S. Kim, and J. S. Park, “A comprehensive availability
modeling and analysis of a virtualized servers system using stochastic
reward nets,” The Scientific World Journal, vol. 2014, 2014.

[61] W. H. Sanders and J. F. Meyer, “Reduced base model construction
methods for stochastic activity networks,” IEEE Journal on Selected
Areas in Communications, vol. 9, no. 1, pp. 25–36, 1991.

[62] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang,
P. U. Jain, and M. Stumm, “Simple testing can prevent most critical
failures: An analysis of production failures in distributed data-intensive
systems,” in 11th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 14), 2014, pp. 249–265.

[63] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat, “Evolve
or die: High-availability design principles drawn from Googles network
infrastructure,” in Proceedings of the 2016 ACM SIGCOMM Conference,
2016, pp. 58–72.

[64] R. Hanmer, L. Jagadeesan, V. Mendiratta, and H. Zhang, “Friend or
foe: Strong consistency vs. overload in high-availability distributed
systems and SDN,” in 2018 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW). IEEE, 2018, pp. 59–64.

[65] G. M. Yilma, Z. F. Yousaf, V. Sciancalepore, and X. Costa-Perez,
“Benchmarking open source NFV MANO systems: OSM and ONAP,”
Computer Communications, vol. 161, pp. 86–98, 2020.

[66] OSM Bugzilla bug tracking system. Accessed: 2020-11-15. [Online].
Available: "https://osm.etsi.org/bugzilla/describecomponents.cgi"

[67] M. Torquato and M. Vieira, “An experimental study of software aging
and rejuvenation in dockerd,” in 2019 15th European Dependable
Computing Conference (EDCC), 2019, pp. 1–6.

[68] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An
Empirical Study of Operating Systems Errors,” SIGOPS Oper. Syst.
Rev., vol. 35, no. 5, p. 73–88, Oct. 2001. [Online]. Available:
https://doi.org/10.1145/502059.502042

[69] K. Kanoun and Y. Crouzet, “Dependability benchmarks for operating
systems,” International Journal of Performability Engineering, vol. 2,
pp. 275–287, 2006.

[70] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “Software aging
analysis of the linux operating system,” in 2010 IEEE 21st International
Symposium on Software Reliability Engineering, 2010, pp. 71–80.

[71] D. Cotroneo, A. K. Iannillo, R. Natella, and S. Rosiello, “Dependability
assessment of the Android OS through fault injection,” IEEE Transac-
tions on Reliability, 2019.

[72] R. Matos, J. Araujo, V. Alves, and P. Maciel, “Characterization of
software aging effects in elastic storage mechanisms for private clouds,”
in 2012 IEEE 23rd International Symposium on Software Reliability
Engineering Workshops, 2012, pp. 293–298.

[73] D. Cotroneo, F. Fucci, A. K. Iannillo, R. Natella, and R. Pietrantuono,
“Software aging analysis of the android mobile OS,” in 2016 IEEE 27th
International Symposium on Software Reliability Engineering (ISSRE),
2016, pp. 478–489.

18

Besmir Tola received the M.Sc. degree in Elec-
tronics and Telecommunication Engineering from
the University of Siena (Italy) in 2014. In autumn
2015, he joined the IIK department at the Norwe-
gian University of Science and Technology (NTNU)
as a Ph.D. candidate in Information Security and
Communication Technology. From spring 2020, he
holds an Assistant Professor position within the
same department. In 2016 and 2018, he was a
visiting researcher at the Nokia Bell Labs in Stuttgart
(Germany), and UNINETT (Norwegian National Re-

search and Education Network Operator), respectively, where he worked on
dependability modeling and analysis of cloud computing infrastructures and
services. His research interests include performance and dependability analysis
of cloud computing, SDN, and NFV architectures.

Yuming Jiang received the B.Sc. degree from
Peking University and the Ph.D. degree from the
National University of Singapore. He has been a
Professor with the Norwegian University of Science
and Technology, Trondheim, Norway, since 2005.
From 1996 to 1997, he was with Motorola, Beijing,
China, and from 2001 to 2003, he was with the
Institute for Infocomm Research (I2R), Singapore.
He visited Northwestern University from 2009 to
2010, and Columbia University from 2015 to 2016.
His research interests are the provision, analysis, and

management of quality of service guarantees, with a focus on (stochastic)
network calculus and its applications. He has authored the book entitled
Stochastic Network Calculus. He was a Co-Chair of IEEE Globecom 2005
- General Conference Symposium, a TPC Co-Chair of 67th IEEE Vehicular
Technology Conference (VTC) 2008, the General Chair of IFIP Networking
2014 Conference, the Chair of the 2018 International Workshop on Network
Calculus and Applications, and a TPC Co-Chair of the 32nd International
Teletraffic Congress (ITC32), 2020.

Bjarne E. Helvik (1952) received his Siv.ing. degree
(MSc in technology) from the Norwegian Institute
of Technology (NTH), Trondheim, Norway in 1975.
He was awarded the degree Dr. Techn. from NTH
in 1982. He has since 1997 been Professor at the
Norwegian University of Science and Technology
(NTNU), the Department of Telematics and Depart-
ment of information Security and Communication
Technology. In the period 2009 – 2017, he has been
Vice Dean with responsibility for research at the
Faculty of Information Technology and Electrical

Engineering at NTNU. He has previously held various positions at ELAB
and SINTEF Telecom and Informatics. In the period 1988-1997 he was
appointed as Adjunct Professor at the Department of Computer Engineering
and Telematics at NTH. During 2003 - 2012 Principal investigator at the
Norwegian Centre of Excellence Q2S - the Centre for Quantifiable Quality
of Service and is since 2020 Principal investigator at the Centre for Research
based Innovation NORCICS - Norwegian Center for Cybersecurity in Crit-
ical Sectors. His field of interests includes QoS, dependability modelling,
measurements, analysis and simulation, fault-tolerant computing systems and
survivable networks, as well as related system architectural issues. His current
research is on ensuring dependability in services provided by multi-domain,
virtualised ICT systems, with activities focusing on 5G and SmartGrids.

