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Abstract
In this paper, the transport of sub-cooled water across a partially frozen soil matrix (frozen fringe) caused by a temperature

difference over the fringe, is described using non-equilibrium thermodynamics. A set of coupled transport equations of heat

and mass is presented; implying that, in the frozen fringe, both driving forces of pressure and temperature gradients

simultaneously contribute to transport of water and heat. The temperature-gradient-induced water flow is the main source

of frost heave phenomenon that feeds the growing ice lens. It is shown that three measurable transport coefficients are

adequate to model the process; permeability (also called hydraulic conductivity), thermal conductivity and a cross coupling

coefficient that may be named thermodynamic frost heave coefficient. Thus, no ad hoc parameterizations are required. The

definition and experimental determination of the transport coefficients are extensively discussed in the paper. The maxi-

mum pressure that is needed to stop the growth of an ice lens, called the maximum frost heave pressure, is predicted by the

proposed model. Numerical results for corresponding temperature and pressure profiles are computed using available data

sets from the literature. Frost heave rates are also computed and compared with the experimental results, and reasonable

agreement is achieved.
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1 Introduction

Frost heave, i.e. the transport of sub-cooled water to a

growing ice lens, occurs when three conditions coincide:

the temperature is below the normal freezing point of

water, the sub-cooled water is connected to a water reser-

voir, and the soil is susceptible to formation of ice lens. The

growth, which often takes place under confined conditions,

can lead to a substantial build-up of pressure, or ground

self-organization [11]. A maximum value of 1.14 MPa/K

was reported by Takashi et al. [26] and Førland and Kjel-

strup Ratkje [8]. This pressure can result in service life

reduction, and sometimes failure of the overlaying

infrastructures. Criteria and properties that characterize the

phenomenon are therefore of interest.

The phenomenon was observed already in 1914 by

arctic explorer Nansen [22]. Black and Hardenberg [3]

reviewed the early frost heave investigations. A series of

measurements were done around the turn of the last century

[6–15], and afterwards, various models have been devel-

oped with the aim to predict the onset of frost heave

[9–30].

In a series of papers, Konrad and Morgenstern

[17, 19, 18] elaborated on a physical model for frost heave.

They divided the soil into three layers; (1) a layer of

unfrozen soil, (2) a partially frozen layer, called the frozen

fringe, and (3) a practically completely frozen one. These

layers are illustrated in Fig. 1. The temperature and pres-

sure at the top of the unfrozen layer are T0 (0 �C or

273.15 K) and p0, respectively. Inside the frozen fringe

(layer 2) Ts\T\T0. At the base of the ice lens the tem-

perature is Ts, the ice segregation temperature. Layer (3)

above the ice has T\Ts and is completely frozen. Similar

terminology is adopted in this paper (Fig. 1).
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Assuming continuity of the subcooled liquid water

phase, the liquid pressure varies from p0 at the bottom of

the frozen fringe to pl at the bottom of the ice lens, as

shown in Fig. 1. The frozen fringe thickness is determined

by the freezing temperature of the subcooled confined

water. In coarser soils, the position of the ice lens can be

close to the freezing front (a few mm), while in finer soils,

it can be many millimeters away from the freezing front.

Throughout this work, the common Darcy’s and Four-

ier’s laws are adopted for layers 1 and 3. While, in the

frozen fringe, layer 2, the mass flux carries heat. This

implies coupled transport of heat and mass, and thus the

simple Darcy’s and Fourier’s laws are not valid for this

layer. By coupling, we mean specifically that the mass flux

might also be driven by a thermal force, and likewise, that

the heat flux will obtain a contribution from the pressure

gradient. This coupled transport phenomenon was already

proven by experimental evidence [17, 24, 16].

The proportionality coefficient between the water flux

and the temperature gradient was measured and introduced

as the segregation potential (SP), by Konrad and Morgen-

stern [18]. However, they used this formula in the presence

of a pressure gradient. While, as shown, for a well-defined

measurement, it is critical to specify a constant pressure

along the frozen fringe. To implement this modification,

we propose that the thermodynamic frost heave coefficient,

s, replaces SP.

Non-equilibrium thermodynamics theory was already

applied to frost heave problem in 1967. According to the

review of Black and Hardenberg [3], Hoekstra and Miller

[12] began to incorporate concepts of irreversible thermo-

dynamics. The review also cited Groenevelt and Bolt [9],

Kay and Groenevelt [13], and Groenevelt and Kay [10] for

use of a similar approach. The rigid-ice model of Miller

[21] described the transport of heat and mass through a

frozen soil using similar equations from irreversible ther-

modynamics. The theory was also applied by Derjaguin

and Churaev [6], and Førland and Kjelstrup Ratkje [8] to

describe the phenomenon. More recently, a similar for-

mulation, but from a different approach, was derived by

Rempel [25], and Wettlaufer and Worster [29]. All authors

predicted that a maximum pressure exists, and such a

pressure has been measured by Takashi et al. [26]. A

possibility to improve on the description of frost heave is

nevertheless possible using the discrete theory of non-

equilibrium thermodynamics for heterogeneous systems

[14]. This is important because of the discrete nature of the

process, and the need to find an equation set suitable for

modelling on larger scales. The system pictured in Fig. 1 is

discrete, and we need to deal with the overall conditions,

the finite thickness of the frozen fringe, as well as the local

conditions at the point of the ice lens.

The purpose of this article is thus to recapitulate and

extend the earlier description of frost heave in terms of

non-equilibrium thermodynamics. The aim is to achieve a

formulation that can be used to obtain a necessary and

sufficient set of transport coefficients from Onsager recip-

rocal relations, a set that later can be used in frost heave

simulations. This work will therefore focus on specifying

Onsager coefficients that characterize frost heave phe-

nomena, and their laboratory measurements. Once the

properties are known, mostly from measurements at steady

state, they can be used to simulate the dynamic process.

Such analyses will follow in work to come. Numerical

examples will be given as far as possible, using properties

of the well-studied Devon silt [18, 1], and Xuzhou silty

clay [33]. To have well-defined experiments, we continue

to use the same three-layer characterization as Konrad and

Morgenstern [17], and limit ourselves to water-saturated

soils. The outline of the paper is as follows: The general

coupled transport equations for the finite frozen fringe are

defined in Sect. 2. A detailed description of the experi-

mental determination of the coefficients follows in Sect. 3.

A practical set of the transport equation, tailored for frost

heave phenomena, is introduced in Sect. 4, and is followed

by discussion and numerical examples illustrated with data

from literature.

2 Coupled transport equations

The original layer construction and terminology of Konrad

and Morgenstern [17] are adopted in this paper. Measure-

ments are frequently done at steady state. Temperatures are

in practice measured with an accuracy of 0.1 K and will be

given accordingly. As explained in connection with Fig. 1,

transport of sub-cooled water takes place from the unfrozen

layer (at 273.2 K and some liquid pressure p0) to an ice

lens at a finite distance away. The ice lens is allowed to

grow above the frozen fringe, at temperature Ts\T0 and

Fig. 1 Schematic illustration of frost heave in layer 3 after transport

of heat and water through layer 2. Layer 1 is connected to a water

reservoir
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liquid pressure pl. The temperature across the frozen fringe

may cover the range from 273.2 to 269.2 K for fine clay, or

from 273.2 to 273.0 K, for coarser materials. For the

Devon silt, the range 273.2–272.5 K was estimated by

Konrad and Morgenstern [17].

Considering a volume element along the x-axis in

Fig. 1, transport of heat and water takes place from the

unfrozen layer towards the ice lens. It is assumed that the

sample is fully consolidated prior to the steady state con-

dition, and thus, there is no change in effective stress

during the analysis. In layers 1 and 3, the simple laws of

Darcy’s and Fourier’s are adopted. The coupling between

transport phenomena takes place in layer 2. It is described

by a symmetric flux-force matrix, standard of nonequilib-

rium thermodynamics [14]. We refer to the literature [14]

for the basic principles and the derivation of the entropy

production.

Following Kjelstrup and Bedeaux [14], the flux of heat _q

(in Jm�2 s�1) and mass _w (in kgm�2 s�1) out of layer 2

into layer 3 are:

_q ¼ Lqq
DðT�1Þ
Dx

� Lqw
1

T0

Dlw;T0
Dx

ð1Þ

_w ¼ Lwq
DðT�1Þ
Dx

� Lww
1

T0

Dlw;T0
Dx

ð2Þ

The fluxes are considered to be one-dimensional along

the x-coordinate, and the difference D refers to the frozen

fringe, which is a discrete system. The fringe includes

water–ice phase transitions at both boundaries. We there-

fore always integrate from T0 = 273.2 K and p0. The end

of the fringe is the position where the ice lens is formed.

The thermal driving force, DðT�1Þ
�
Dx (in K�1 m�1), is the

main driving force for the heat flux _q. Theory prescribes

that this flux is taken at layer 3, when the driving force,

�Dlw;T0
�
T0Dx (in J kg

�1 K�1 m�1), for the water flux, _w, is

evaluated at T0 = 273.2 K.

The temperature in these equations is given in K. The

chemical driving force has only one contribution in the

absence of solutes; namely from the pressure change in the

liquid water column across layer 2:

Dlw;T0 ¼ VwDp ð3Þ

Here Vw (in m3 kg�1) is the specific volume of water,

while p is the fluid pressure. The difference refers to the

pressure difference below the ice lens, and the pressure at

the table of water. According to Kjelstrup and Bedeaux

[14], _q refers to the heat flux out of the layer 2 into layer 3,

when T0 is used in the definition of the chemical driving

force. Derjaguin and Churaev [6] who used the same form,

explained that the disjoining pressure did not have an

impact on the form.

The coefficients Lij are generalized conductivity coeffi-

cients, to be related to more common coefficients in Sect.

3. The subscripts q and w refer to the phenomena they

describe, the heat and water fluxes, respectively. The

coupling coefficients Lqw and Lwq are special for irre-

versible thermodynamics. The coefficient matrix is sym-

metric according to Onsager, Lqw ¼ Lwq, but only if the

fluxes and forces are written in the special form dictated by

the entropy production [14]. Only three coefficients are

independent, thanks to the matrix symmetry. In Sect. 3, the

independent coefficients will be defined and be related to

experiments. The coefficients obey D ¼ LqqLww �
LqwLwq � 0 according to the second law of thermodynamics

[14], and this relation can be used to check if coefficients

are consistent with the second law.

The transport coefficients in Eqs. (1) and (2) depend on

the state of the soil. Saturated frozen soils are in general

characterized by their pore size distribution, mineralogy of

the grains, unfrozen water saturation, Ŝw, (alternatively, ice

saturation, Ŝi) and temperature T. The presence of possible

solutes in the water may also play a role. For a given soil

composition, the unfrozen water saturation can be expres-

sed by a freezing characteristic curve. Konrad and

Duquennoi [16] gave a relation for Devon silt. In their

model, the unfrozen water saturation was written as a

logarithmic function of temperature

(Ŝw ¼ 1þ 0:273 log �0:0005=ðT � T0Þ½ �). Azmatch [1]

reviewed the procedures for its determination and con-

cluded that the unfrozen water saturation as well as per-

meability of frozen soils can be taken as a unique function

of temperature (ignoring the hysteresis effect). When

Ŝw ¼ f ðTÞ, the transport coefficients will also be functions

of Ŝw (or T) alone; i.e. Lij ¼ LijðTÞ.

3 Experimental determination of transport
coefficients

Equations (1) and (2) will be used to define experiments.

We proceed to explain a set of experiments that determines

the Onsager coefficients, before we conclude with a more

practical set of equations, containing more familiar trans-

port coefficients. It should be noted that the samples to be

measured in the following experiments are fully saturated

with water before the experiment starts, and consolidated.

The apparatuses are schematically shown in Figs. 2, 3 and

4.

3.1 Hydraulic conductivity (permeability)

As mentioned earlier, ice lenses usually form in a tem-

perature range between 273.2 and 272.2 K. In this range,
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the amount of unfrozen water in a fine-grained soil is still

large enough to give a non-negligible permeability. In

general, the permeability, K, of a (partially) frozen soil is

defined from the water flux equation, Eq. (2), by:

K � � Vw _w

Dp=Dx

� �

DT¼0

¼ Lww
V2
w

T
ð4Þ

In theory, the permeability can be determined by

applying a pressure difference on the sample at subzero

temperature, T, and measuring the mass flux of water. The

sample thickness, Dx, and the pressure difference, Dp, are
finite, and the ratio of the two can be regarded as an

average value over the state of the sample. Transport is

caused by a high pressure at the inlet of the sample, and

lower pressure at the sample outlet. The steady water flux

should follow from a pressure difference alone. According

to Eq. (4), the sample is partially frozen, but isothermal.

The experiment requires ice-lens-free samples, otherwise

the lens would block the flow. Such an experimental setup

was proposed by Black and Miller [2], see the sketch in

Fig. 2. Theoretically, it is also possible to follow a different

route to access the permeability coefficient, which is pro-

vided by Eq. (12) in Sect. 3.2.

The experiments should be repeated at different tem-

peratures to give K ¼ KðTÞ. Depending on the soil type,

even at subzero temperatures, some water can stay in its

liquid state in the capillaries (for instance in clay, 30–40%

of water content can stay in liquid state at - 1 �C). In this

manner, one can find K ¼ KðTÞ for a possible range of

temperatures applicable to a frozen fringe, where unfrozen

water and ice are simultaneously present in the pores. The

value of K as a function of temperature can be transformed

into a function of unfrozen water saturation by means of

the freezing characteristic curve. Equation (4) gives Dar-

cy’s law for the frozen fringe; and an expression for the

first Onsager coefficient:

Vw _wð ÞDT¼0¼ �K
Dp
Dx

ð5Þ

Lww ¼ K
T

V2
w

ð6Þ

3.2 The thermodynamic frost heave coefficient

We now define the thermodynamic frost heave coefficient

that follows from Eq. (2):

s � � _w

DT=Dx

� �

Dp¼0

¼ Lwq

T
2

ð7Þ

where T is the average temperature of the frozen fringe.

The coefficient s (in kgm�1 K�1 s�1) is defined as the ratio

of the water flux to the temperature gradient across the

frozen fringe at uniform liquid pressure, p. The coefficient

s is related to the coupling coefficient Lwq in the original set

of equations. For a direct measurement of s, we need to

measure the temperatures at the boundaries of the frozen

fringe and the water flux, at a constant pressure. It is not

easy to control the pressure in a partially frozen zone like

frozen fringe. An experiment to measure the ratio in Eq. (7)

without pore pressure control was called the frost heave

test; see e.g. [18], and the coefficient was called the

Fig. 2 Permeameter experimental setup (after Black and Miller [2])

Fig. 3 Schematic illustration of a frost heave test apparatus (after

Loranger et al. [20])

Fig. 4 Thermal conductivity apparatus using heat flux plate (after

Côté and Konrad [4])
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segregation potential SP. We propose here to replace the

determination of SP, with a more precise coefficient s.

A frost heave cell can be used to determine the ther-

modynamic frost heave coefficient (Fig. 3). In this exper-

iment, a pretreated, consolidated, homogeneous sample is

thermostatted at both ends, and the temperature profile

along the sample is recorded. We apply a temperature

gradient over the sample length, Dl. The sample has free

access to water from the warm end. At steady state, we

measure the length of the frozen fringe, Dx, the temperature

difference over the frozen fringe and the flux of mass into

the system. Ideally, the liquid pressure should be constant

in this experiment. Then, s is well-defined as a function of

state variables like temperature, while SP depends on

pressure gradient in addition to the state variables.

Theory allows us to, alternatively, determine the coef-

ficient s from the permeability test described in Sect. 3.1.

By dividing Eqs. (1) and (2) at an isothermal condition, we

obtain:

_q

_w

� �

DT¼0

¼ Lwq
Lww

¼ q� ð8Þ

The ratio is called the heat of transfer. The energy bal-

ance across the frozen fringe provides the insight into the

order of magnitude of this quantity. The heat flux out of the

frozen layer minus the heat flux into the frozen fringe is the

product of the mass flux, _w, times the enthalpy of freezing,

Dw;iH(in J kg�1). Therefore, the heat of transfer q* must be

of the same order of magnitude as Dw;iH. It was shown by

Kjelstrup and Bedeaux [14] that the heat of transfer is a

fraction of the enthalpy difference:

q� ¼ �j:Dw;iH ð9Þ

where Dw;iH ¼ Hi � Hw, Hw is the specific enthalpy of

water and Hi is the specific enthalpy of ice, and j is a

dimensionless number between 0 and 1. The factor depends

on the ratio of the soil thermal resistivity to the ice inter-

face resistivity [14]. For instance, in Devon silt, the thermal

conductivity k (the inverse of the resistivity) varies

between 1.76 (frozen silt) and 1.55 (partially frozen silt)

Wm�1 K�1 [19], giving a mean value of 1.6 Wm�1 K�1.

The conductivity of ice at 0 �C is about 2.2 Wm�1 K�1.

Using the formula of Kjelstrup and Bedeaux [14], we

obtain:

j ¼ k�1
silt

k�1
silt þ k�1

ice

¼ 0:58 � 0:6 ð10Þ

The meaning of this number is that 60% of the heat

liberated by the phase transition is delivered to the ice, the

remaining part is delivered to the soil matrix. Derjaguin

and Churaev [7] allocated the whole enthalpy of freezing to

the heat of transfer, meaning that all heat was delivered to

the ice. By introducing Eq. (9) into Eq. (8) we obtain the

coupling coefficient:

Lwq ¼ �j:Dw;iH:Lww ð11Þ

The thermodynamic frost heave coefficient, s, can now

be related to permeability by:

s ¼ �j
K

TV2
w

Dw;iH ð12Þ

The estimate of j can be evaluated by measuring s, and

permeability K. Note that the permeability, K, refers to the

temperature, T , and so will s. The other terms are con-

stants. It is possible to perform the measurement defined by

Eq. (7) than by Eq. (4). Then, Eq. (12) provides an alter-

native route to permeability.

3.3 Thermal conductivity

The thermal conductivity, k, is defined from the heat flux

Eq. (1) at uniform pressure:

k � � _q

DT=Dx

� �

Dp¼0

¼ Lqq

T
2

ð13Þ

The thermal conductivity (in Wm�1 K�1) is also a

function of unfrozen water saturation. From Eq. (13), we

can determine the thermal conductivity, when the pore

water pressure is constant along the frozen fringe.

Here, we can use the experimental setup proposed by

Côté and Konrad [4]. In this experiment, the pretreated,

consolidated sample is mounted between two temperature-

controlled plates. Thermo-electrical heat flux meter (flux

plates) equipped with thermocouples is placed between the

sample and the plates. The temperatures for the top and

bottom plates are set using thermal baths; and measured

using thermocouples. The laboratory setup is illustrated in

Fig. 4. As unfrozen water can play an important role in

frozen states, thermal conductivities at different freezing

gradients can be measured to estimate the thermal con-

ductivity as a function of temperature or unfrozen water

saturation.

3.4 The pressure difference during water
transport across the fringe

Knowing Lww and Lwq (as described in Sects. 3.1 and 3.2),

we can calculate the pressure difference across the fringe.

This expression is relevant when there is a net flux of water

to the ice (a growing ice lens):

Dp ¼ � T0Dx
VwLww

Lwq
DT

T
2
Dx

þ _w

� �
ð14Þ
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4 A practical set of flux-force relations

We can now contract all the information discussed above,

introduce the measured properties, and obtain a practical

set of flux equations:

_q ¼ �k
DT
Dx

� sTVw
Dp
Dx

ð15Þ

_w ¼ �s
DT
Dx

� K

Vw

Dp
Dx

ð16Þ

In the above equations, we have assumed T=T0 � 1. The

last equation is interesting because it shows that a maxi-

mum pressure difference exists for a given temperature

difference. A temperature difference across a frost heave

susceptible frozen soil leads to a water flux. According to

Eq. (14), a counter pressure will build, until in the end the

thermal force is balanced by the pressure force. At this

point, when the pressure difference reaches its maximum

value, and the balance of forces is achieved, the water flux

will stop. The state, described by the balance of forces, is

called the Soret equilibrium state. The ratio of the driving

forces in Soret equilibrium becomes:

Dp
DT

� �

_w¼0

¼ �Vw
s

K
ð17Þ

The balance of forces is illustrated in Fig. 5, for j ¼ 1,

DT ¼ 0:5 �C and s=K from Eq. (12). Figure shows a linear

reduction in the temperature from the top boundary of the

unfrozen layer to the bottom of the ice lens. Counter to that

is a gradual linear increase in the water pressure, ending

with a maximum value at the ice. In this situation, there is

no net driving force for water flux in Eq. (16).

The maximum frost heave pressure is given by the

thermodynamic frost heave coefficient and the permeabil-

ity. One may expect that these properties depend on the soil

in question. Takashi et al. [26] reported a limiting value of

1.14 MPa/K for Manaita bridge clay and Negishei silt,

which is corresponding to j ¼ 1 in the present theory. The

value was considerably reduced as the temperature of the

cooling plate went down. Interestingly, the authors repor-

ted that it was possible to move from one Soret equilibrium

to another, following the same slope. This is expected for a

reversible phenomenon and supports the above description.

Equations (15) and (16), together with equations for

mass and energy conservation (given by Eqs. 18 and 20 in

’’Appendix’’), were used to model the final stage of a frost

heave test on Devon silt, using data reported by Konrad and

Morgenstern [18]. The onset of formation of the final ice

lens was considered as our time reference (t ¼ 0) in this

simulation, and the amount of heave from this point was

calculated and compared with the experimental result. In

this test, the soil sample was initially unfrozen, with a

temperature of ? 3 �C. The top surface temperature was

next reduced to - 5.5 �C to trigger the freezing process. It

remained constant during the test. Water was freely

available at the base at atmospheric pressure. The initial

porosity of the 78 mm soil sample was 38%. The hydraulic

conductivity of the unfrozen soil was 1 9 10–7 cm/s, the

soil freezing characteristic curve and relative permeability

relation with temperature are available in Azmatch [1]. The

thermal conductivity of unfrozen, partially frozen and fully

frozen states were 1.47, 1.51 and 1.76 W/moC, respec-

tively. The thermodynamic frost heave coefficient for this

analysis is calculated from Eq. (12) as s=K ¼ 1:22	 109j
(kg2 m�3 K�1 s�2). Frost heave is computed for different

values of j ¼ 1, 0:9, 0:6 and presented in Fig. 6. As shown

in figure, the result corresponding to j ¼ 0:9 has the best

match with the experiment.

The water pressure and temperature profiles at the end of

the experiment were computed from the model and are

shown in Fig. 7. Below the freezing front, a suction of

Fig. 5 Temperature and pressure profiles at Soret equilibrium

Fig. 6 Comparison between the measured and predicted frost heave

for Devon silt
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around 27 kPa is predicted by our model. This suction

value is in the range of those reported on Devon silt by

Konrad and Duquennoi [16]. Note that at this stage, tem-

poral variation of the temperature profile, and thus the

pressure, are extremely slow. We might practically say that

the system has reached a steady state condition. However,

this is not completely true, since the growing ice lens will

increase the length of the sample and the distance of the

frozen fringe from the cooling plate. Thus, the thermal

condition in the frozen fringe gets slowly affected.

The model was also used to simulate the steady state

part of the frost heave test on Xuzhou silty clay conducted

by Zhou and Zhou [32]. The 13 cm soil sample in this test

was initially unfrozen, with a temperature of ? 6 �C. The
bottom end of the column was maintained unchanged at

this temperature, while the top end was cooled and kept at

- 12 �C. The sample was allowed to take up water from

the bottom, at atmospheric pressure. The test was con-

ducted in an open system without any overburden. The

initial porosity of the sample was 30%. The permeability of

the unfrozen soil was 1 9 10–8 cm/s, the soil freezing

characteristic curve, relative permeability and thermal

conductivity relations with temperature are given in Zhou

and Zhou [32]. The thermodynamic frost heave coefficient

for this analysis is again calculated from Eq. (12) as s=K ¼
7:32	 108 (kg2 m�3 K�1 s�2); i.e. j ¼ 0:6. Simulation

results are compared with the test data in Fig. 8, and rea-

sonable agreement has been achieved.

5 Conclusion

We have developed a discrete description of the coupled

transport of heat and mass that takes place across the frozen

fringe when the temperature sinks below the freezing

temperature in frost heave susceptible soils. The

description can be seen as an extension of the works of

Derjaguin and Churaev [6], Førland and Kjelstrup Ratkje

[8] and Kjelstrup and Bedeaux [14], and treats the fringe in

a discrete manner, with interfaces controlled by the table of

water and the growing ice lens. In this domain, Darcy’s and

Fourier’s laws do not apply. An emphasis was made on

how to measure the transport coefficients. A new coeffi-

cient was defined; the thermodynamic frost heave coeffi-

cient, expressing the ability to increase the pressure at the

ice lens. The coefficient is similar, yet different from the

segregation potential defined by Konrad and Morgenstern

[18]. The transport coefficients were defined in Eqs. (4), (7)

and (13), and the Onsager symmetry relation was applied to

find the expression for the maximum frost heave pressure,

characteristic for each soil. The analysis was illustrated

with numerical examples from Devon silt and Xuzhou silty

clay. This completes the thermodynamic analysis of the

transport phenomena in frost heave. A mechanical analysis

will follow in upcoming works.

6 Availability of data and material

All the used data were cited, and the relevant references

can be found in the reference list.

Appendix: equations of mass and energy
conservation

The mass conservation equation for water and ice phases

can be written as:

Fig. 7 Temperature and pressure profiles at the end of the frost heave

test on Devon silt

Fig. 8 Comparison between the measured and predicted frost heave

for Xuzhou silty clay
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/
1

Vw
� 1

Vi

� �
_̂
Sw þ o _w

ox
¼ 0 ð18Þ

where / denotes the porosity of the soil. The following

boundary condition is applied to the mass conservation

equation at the ice lens (interface 2–3 in Fig. 1):

_wð Þ2�3¼
_h

Vi
ð19Þ

where _h is the heave rate.

Assuming local thermal equilibrium, a single energy

balance equation can be used to describe the heat transfer

process in a multiphase system. This assumption implies

that all the phases at each spatial point reach thermal

equilibrium instantaneously together. Neglecting the

kinetic energy, viscous and intrinsic dissipation, the energy

conservation equation can be written as:

C

V
_T þ Cw _wð Þ: oT

ox
þ o _q

ox
þ Dw;iH: _mw!i ¼ 0 ð20Þ

where C is the effective heat capacity of frozen soil, V

denotes the specific volume of frozen soil, Cw is the heat

capacity of water and _mw!i is standing for the phase

change of water to ice.
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