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Changes in land cover are increasingly affecting land surface properties and provision of ecosystem
services. Understanding recent historical land cover changes and their interlinkages with key
environmental processes is instrumental to better support strategies for land-use management. The
recently released products from the European Space Agency and Copernicus Climate Change Service
contain high-resolution (300 m) time series of global land cover maps from 1992 to 2018. This study
investigates the land transitions in these products and explores the effects on two key environmental
aspects, namely, carbon losses from deforestation and soil erosion rates. We used a powerful server for
big data analysis to retain the original spatial resolution of the datasets. We found 722 Mha (5.5 % of the
total ice-free land surface) of gross land cover changes, which mainly involved transitions to and from
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Deforestation . ¢ :
Land use emissions forest/agriculture. Cropland gains are 205 Mha and losses 126 Mha (net expansion of 79 Mha).
Soil erosion Deforestation occurring in 242 Mha was mainly caused by agricultural expansion, whereas 196 Mha were

afforested. Settlements show the largest relative expansion (44 Mha, +210 %), of which 67 % (29 Mha)
occurred at expenses of agricultural land. Deforestation caused 12.3 (7.6/14.2) Gt Carbon losses from
below- and aboveground biomass from 2010 to 2018, corresponding to 1.5 (1.0/1.8) Gt Carbon per year.
Global agriculture activities have increased total soil erosion of 3.2 Gt and soil erosion rates of 0.22 Mg
ha=' yr~! in the period 2001-2012, especially in tropical regions. The identified land transitions and
changes in key environmental processes reflect a human-dominated Earth system and the indirect effects
of climate change on land cover, especially in boreal ecosystems.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Land is the basis for human livelihoods and well-being. It is the
main supplier of food, freshwater and multiple other ecosystem
services, including biodiversity. Human activities are already
affecting more than 70 % (likely 69-76 %) of the global, ice-free
land surface (IPCC, 2019). Anthropogenic activities have caused
extensive land cover changes (Klein Goldewijk et al., 2017), which
also affected protected areas within biodiversity hotspots (Bailey
etal., 2016; Hu et al., 2020). Changes in land cover are both a driver
and a consequence of global environmental change (Foley et al.,
2005; Bonan, 2008; Alkama and Cescatti, 2016), and they have
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great impact on our society and ecosystems at regional and global
scales (Verburg et al., 2011; Turner et al., 2007).

Assessing changes in land cover and their environmental effects
is an on-going and fast developing research area (Nowosad et al.,
2019; Hua et al., 2018; Mousivand and Arsanjani, 2019; Liu et al.,
2018b; IPCC, 2019). Major applications aim to understand spatial
and temporal patterns of land cover dynamics (IPCC, 2019;
Mousivand and Arsanjani, 2019; Liu et al.,, 2018b), explain the
underlying mechanisms causing the changes (Lepers et al., 2005;
Ceccherini et al., 2020; Jaimes et al., 2010), construct models for
assessing challenges to society and environment (Hurtt et al.,
2020; Kuemmerle et al., 2016; Chen et al., 2020), quantify impacts
to climate change at a global (Alkama and Cescatti, 2016; Bonan,
2008; Prestele et al., 2017) or regional scale (Huang et al., 2020a;
Hu et al., 2019; Lejeune et al., 2018; Cherubini et al., 2018a), assess
effects on ecosystem services (Tolessa et al., 2017; Chen et al., 2019;
Bayer et al., 2020; Vendldinen et al., 2020), and help stakeholders
to design more sustainable land use polices (Ellis and Ramankutty,
2008; Duveiller et al., 2020; Verburg et al., 2011; Seneviratne et al.,
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2018; Englund et al., 2020). Different types of land cover or land
use changes have been studied in the literature, such as agriculture
expansion and contraction (Grau et al., 2005; Spawn et al., 2019;
Krause et al., 2009; Nass et al.,, 2021; Leirpoll et al., 2021),
deforestation and afforestation (Seto et al., 2012; Jaimes et al.,
2010; Li et al., 2016; Hansen et al., 2013), forest dynamics and
management (Ceccherini et al., 2020; Pan et al., 2011; Hansen et al.,
2013; Cherubini et al., 2018b), urbanization (Arsanjani et al., 2013;
Cakir et al., 2008; Arsanjani et al., 2018), wetland shrinkage (Song
et al., 2012; Ghosh et al.,, 2018; Debanshi and Pal, 2020; Xu et al.,
2019), and desertification (Veron et al., 2006; Bestelmeyer et al.,
2015; Lamchin et al., 2016). A common approach used is the
temporal analysis of variability per pixel to detect land cover
transitions. Results are frequently shown as aggregated averages at
relatively low resolution or focus on specific regions and spatial
scales. This is due to two main issues that analysts face when
assessing changes in land cover at high spatial resolution and
global scale. The first is related to the challenges in processing big
datasets, because timeseries of high-resolution global datasets
with detailed land cover classification are usually highly compu-
tationally demanding and time consuming. The second is due to
the lack of both spatially and temporarily consistent land cover
datasets that cover the globe for a long time period of observations
(Nowosad et al., 2019). Recently, the European Space Agency'’s
Climate Change Initiative (ESA—CCI) provided annual global land
cover maps from 1992 to 2015, and the Copernicus Climate Change
Service climate data store (C3S-CDS) released the global land cover
annual maps from 2016 to 2018 (C3S, 2019). These two datasets are
highly consistent and have high spatial resolution (300 m at the
equator), and they offer the possibility to analyze global land cover
transitions in detail.

Some studies have investigated the ESA—CCI land cover product
from different perspectives. Li et al. (2016) used an early version of
the ESA—CCI land cover product to analyze land transitions at three
specific points in time, 2000, 2005 and 2010. However, due to
computational challenges, they disregarded some transitions to
save resources and time. Liu et al. (2018b) identified land
transitions and hotspots of land use changes using the trajectory
analysis method. However, again due to limited computation
capacity, they had to aggregate the datasets into 0.5° x 0.5°
resolution and then compute the area proportions in the
aggregated datasets. Li et al. (2018) analyzed the gross and net
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Annual land cover maps
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changes in land covers for some plant functional types commonly
used in land surface models. They investigated the spatial
distribution of changes in land cover for cropland, grassland and
forests between 1992 and 2015. They also compared the ESA—CCI
land cover product to the LUH dataset (Hurtt et al., 2011),
concluding that the ESA—CCI data can improve the representation
of land cover dynamics in land surface models and the
characterization of local or global carbon cycle dynamics. Nowosad
et al. (2019) assessed and visualized main land cover gains and
losses between 1992 and 2015 after pre-processing the land cover
data to resize them at a landscape level. The ESA—CCI land cover
product was also used by Mousivand and Arsanjani (2019) to
quantify historical changes in land covers and then predict future
land transitions using Markov chain. Some of these studies
apparently did not consider the curvature of the Earth while
translating the gridded land cover datasets into areal extensions,
and thereby introduced a bias (overestimation) of the areas for the
grid cells at high latitudes (Liu et al., 2018a; Mousivand and
Arsanjani, 2019; Liu et al., 2018b). Overall, these studies did not
include the recent C3S-CDS product (which also includes annual
land cover maps from 2016 to 2018), since it was not available at
that time, and they did not quantify the specific land cover
transitions or their spatial distributions. Preliminary studies are
also integrating the ESA—CCI land cover products with adjacent
fields, such as remotely sensed data or other ground-level
observations to study the effects of changes in land covers on
regional climate (Huang et al., 2020a; Duveiller et al., 2018), and,
although relatively little explored so far, they offer possibilities for
integrations with multiple datasets to discern the effects of
changes in land covers on environmental areas of concerns, like for
example soil erosion, vegetation carbon storage, and ecosystem
services.

In this study, we quantitatively analyze and visualize recent
historical land cover dynamics at a global level from 1992 to 2018
as represented by the integration of the ESA—CCI and C3S-CDS land
cover products. The analysis retains the original spatial resolution
(300 m) of the maps thanks to the use of a powerful server for big
data analysis, and it shows gains and losses in land cover, as well as
trends and spatial patterns of land cover transitions (i.e., from one
land cover class to another). The 37 original land cover classes of
the datasets are translated into the land cover classes specified by
the Intergovernmental Panel on Climate Change (IPCC), which are

Global below- and
aboveground biomass
carbon, 2010

Analysis of historical
trend in 27 years for each
Land class

Analysis of historical
trends in 27 years of land
cover transitions

Global soil erosion, 2001
and 2012

Global below- and
aboveground biomass
carbon loss

Land cover transition for
each pair of LCs

Spatial distribution
patterns of land cover
changes and transitions

Global soil erosion

Fig. 1. A simplified flowchart of the approach and main methodological steps considered in this study, from the original datasets to the estimates of carbon emissions from

vegetation losses and soil erosion.
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more reliable for the identification of land cover transitions than
the original classes.

To the best of our knowledge, this is the first attempt to merge
and analyze the two land cover products, to show global maps and
timeseries of both changes in land covers (losses and gains) and
land transitions between each pair of land cover classes, and to
identify areas of potential hotspots of changes in land covers at a
global level. In addition, we apply this integrated dataset to assess
the effects of historical recent changes in land covers on two major
global environmental issues: total carbon emissions and their
spatial patterns from losses in aboveground and belowground
biomass carbon due to deforestation to agriculture and settlement;
contribution to global soil erosion from land use (i.e., agriculture)
and changes in land covers (e.g., from forest to agriculture and vice
versa). Fig. 1 shows a simplified flowchart of the approach and
main methodological steps considered in the study.

In summary, the aim of our work is to address the following
research questions:

e What are the main global land transitions from 1992 to 2018
according to the ESA—CCI and C3SCDS products?

e What are the spatial distributions of the main land cover
transitions?

e How does global land cover and land use changes influence key
environmental aspects, such as carbon losses from deforestation
and soil erosion rates?

2. Methodology
2.1. Land cover datasets

The land cover products from ESA—CCI and C3S-CDS provide
global annual maps from 1992 to 2015 and from 2016 to 2018,
respectively (ESA, 2017; C3S, 2019), that are highly consistent over
time and space. They were specifically developed to provide a
consistent evaluation of the historical temporal evolution of
changes in land covers at a global level. To ensure the continuity,
these two datasets have the same spatial resolution (300 m at the
equator, or 10 arc-sec), and each map is in the form of 129600 x
64800 grids Lon/Lat raster. Both products use the World Geodetic
System 84 (WGS84) reference ellipsoid as the coordinate reference
system, and they provide global maps describing the land surface
using the same categories and coding scheme. These datasets have
been developed to increase the robustness of land cover datasets
for carbon and climate change models, land surface studies, and
landscape dynamic assessment (ESA, 2017; C3S, 2019; Li et al,
2018, 2016).

The datasets are based on 37 land cover classes according to the
United Nations Land Cover Classification System to describe the
Earth’s terrestrial surface (Di Gregorio, 2016). These maps are
obtained by combining several earth observation products and by
using the GlobCover unsupervised classification chain (ESA, 2017;
Defourny et al., 2009; Poulter et al., 2015). Unlike the other single-
year products, the land cover products from ESA—CCI and C3S-CDS
maintain good time consistency, and their overall global accuracy
is about 71 % (ESA, 2017; C3S, 2019). Some classes, such as
cropland, forests, urban and bare areas have higher accuracy, and
others, such as mosaic classes, have lower accuracy. The high
certainty of cropland classes makes the land cover products
especially useful for cropland monitoring. Global user and
producer accuracies of cropland classes range between 85-94 %
and 76-92 % across both datasets, with medians of 89 % and 82 %
(ESA, 2017; C3S, 2019). These high user and producer accuracies
indicate a high spatial cropland match and high precision in total
cropland area extent. Additionally, broadleaved evergreen forests

Anthropocene 34 (2021) 100291

have high user and producer accuracies (86 % and 96 % for ESA—CCI,
and 89 % and 86 % for C3SC-CDS, respectively), thereby making the
products suitable for monitoring tropical deforestation and
afforestation. For example, ESA—CCI has a regional overall accuracy
of 85 % when applied as a forest product in the Brazilian Amazon
(Qin et al.,, 2019).

The original 37 land cover classes in these two land cover
products have been translated into the generic IPCC land cover
classes with a cross-walking table (Supplementary Table S1) to
obtain more reliable results of land cover transition dynamics
(ESA, 2017). This conversion avoids false change detection
between land cover classes which are semantically close in the
original 37 land cover classes (ESA, 2017; Liu et al., 2018b). The
ESA—CCI land cover product has already been used to investigate
the pattern of changes in land covers (Nowosad et al., 2019;
Tschora and Cherubini, 2020; Liu et al, 2018b), to assess
consistency with other products (Hua et al., 2018; Liu et al,
2018a) and to investigate climate-land interactions (Duveiller
et al., 2018; Huang et al., 2020a; Li et al., 2018). However, to the
best of our knowledge, these two land cover products have not
been integrated into a single dataset and the spatial patterns at a
global level have not been depicted.

2.2. Datasets of global biomass carbon and soil erosion

A harmonized global dataset of biomass carbon density,
aboveground (ABC) and belowground (BBC), for 2010 at 300 m
resolution has been recently made available (Spawn and Gibbs,
2020; Spawn et al., 2020), and it is here used to quantify gross
vegetation carbon losses due to the major land use transitions that
happened between 2010 and 2018. This carbon density map was
created with a novel method that integrates remotely sensed maps
of specific vegetation characteristics with ancillary maps of tree
cover, land covers and rule-based decision tree (Spawn et al.,
2020). The dataset combines published estimates for vegetation
specific densities and their results have been rigorously validated.
The dataset was recently built from the ESA—CCI product, and it
has the same resolution of the two land cover datasets used in our
study.

Land cover transitions and anthropogenic activities are among
the main causes of soil erosion (SE), which lead to serious
consequences to human society, such as risks to food security and
depletion of ecosystem services (Borrelli et al., 2017; Tarolli and
Straffelini, 2020; Huang et al., 2020b). SE is usually defined as the
mass of net soil loss per unit area and time (Nearing et al., 2017b).
Borrelli et al. (2017) provided a resampled global dataset of SE
rates in 2001 and 2012, with a spatial resolution of 25 km, to
study temporal changes in soil erosion rates over time. Their
estimates of SE rates are based on the revised universal soil loss
equation (RUSLE) modelling approach, a well-known empirical
method for predicting SE (Risse et al, 1993; Stolpe, 2005;
Bagarello et al., 2017). In the RUSLE approach, SE is expressed as
the mass of soil loss per unit area and time and computed by
combining the contribution factors, such as land cover and
management, rainfall runoff erosivity, soil erodibility, slope
steepness and length, and soil conservation practice. This dataset
was produced to investigate the nexus between land cover
transitions and SE, especially to monitor the risks of increasing SE
rates due to cropland expansion. For example, Borrelli et al. (2017)
showed a global increase in soil erosion driven by land use change
of 2.5 % between 2001 and 2012.

All these datasets are converted to the same spatial resolution
of the land cover data, i.e., 300 m. If the original maps do not cover
the whole globe, they are extended to cover-90 °N -90 °N and -180
°E -180 °E, and values of pixels in the extended parts are marked as
missing values.
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2.3. Analysis of land cover dynamics

To answer the first and second research questions of this study,
we combined the ESA—CCI and the C3S-CDS land cover products to
investigate the historical land cover dynamics from 1992 to 2018.
Our main focus is on total change and trend of each land cover
class, land transitions between different land covers, and spatial
distributions of the observed land dynamics. We firstly computed
the total area of each grid for each specific IPCC land cover class,
considering the curvature of the earth. The total area for each land
cover class m (denoted as Area,,) is computed as follows,

Arean =" (LG =m) x A; (1)

for every year from 1992 to 2018. j is the index of the grid with a
spatial resolution of 300 m at the equator, and LG is the land cover
class in grid j. N denotes the total number of grids on the whole
Earth. A; is the area of grid j, which varies by latitude: 0.09 km? at
the equator and gradually smaller while progressing towards the
pole because of the curvature of the Earth. The latter is taken into
account as follows,

o

= m X
where, R is the Earth radius, lat;, lat,, lon; and lon,, are the values of
latitude and longitude of grid Aj, and |e| stands for the absolute
value. To better illustrate the global trends of changes in each land
cover class, results from Eq. (1) are normalized to the total area in
1992 of each land cover type.

We then investigate the pairwise land cover transitions
(denoted as LCp,yearp—n,vearq) Detween two years to see if a grid
changed the land cover class (e.g., from m to n),

Aj R? x |sin(lat,) — sin(laty)| x |lon, — lony| 2)

LCn yearp—n.vearg = (LCJ = m) Yearp ¥ (LCj = Tl) Yearg )

where, LCp, yearp—n,yearq 1S @ matrix with 0 and 1 to indicate the
transition of land cover class m in year p (denoted as Yearp) to land
cover class ninyear q (denoted as Yearq) for all pairs of m and n, m #
n. The total area of the transition between the two years (denoted
as Aream,yearp—n,yearq) 1S computed by combining Eqs. (2) and (3) as
follows

N

Aream‘Yearpan.Yearq = ZLCm.Yearpﬂn‘Yearq X Aj (4)
j=1

Eq. (4) can be used to compute the total area of pairwise land
cover transitions for any given two years between 1992 and 2018.
The global land cover transitions are identified and then
aggregated to 9 km spatial resolution at the equator by a local
window of 30-by-30 grids for map visualization purposes. The area
proportion (from O to 1) of each land cover transition (denoted as
AreaPp, yearp—n,year) Detween any chosen two years in each local
window is computed as

P

J

(= )y (1= 1) )

Areapm.YearpHn‘Yearq =

M~

Aj

.
If
-

(5)

Both sums in numerator and denominator in Eq. (5) are within
the local window, which contains 900 grids, i.e., P = 900. Different
low spatial resolutions can be obtained through Eq. (5) if
necessary.

The changes in land covers can be obtained similarly. First, we
identified the land cover increase or decrease (denoted as LGjm;,

Anthropocene 34 (2021) 100291

Yearp aNd LCj | vearq, respectively) for grid j and each land cover class
m between any given two years between 1992 and 2018,

LCj‘mﬂYearpﬂYearq = (LC]' # m)Yearp X (LC] = m)Yearq
LCj‘mi,YearpHYearq = *(Lcj = m)Yearp X (Lcj 7é m)yearq

(6)

Using Eq. (6), the increase and decrease of each land cover are
coded as 1 and -1. If there is no change between the two years, we
set the value of the grid to 0. Using this approach, the spatial
distribution patterns of the changes in land covers can be obtained.
We then aggregated the result to 9 km spatial resolution using a
local window of 30-by-30 grids for visualization purposes,

(,,

Similar to Eq. (5), both sums in numerator and denominator in
Eq. (7) are within the local window.

M~

(Lcj,mT,YearpﬂYearq + LCj,mi,YearpaYearq) X Aj)

Il
—_

AreaPy, =

(7)

R

Il
—_

Aj
J

2.4. Estimates of carbon losses and soil erosion

To answer the third research question of this study, we
estimated the biomass carbon losses and SE due to land cover
transitions. The loss of biomass carbon due to loss in forest cover
for the transition from forest to agriculture or settlement is
estimated from the global ABC and BBC density datasets recently
made available (data are representative of 2010 only) (Spawn et al.,
2020). The ABC loss due to deforestation (forest to agriculture,
denoted as A ABC ror_acr) is computed by identifying the grids of
forest areas in 2010 that have been converted to agriculture in
2018, assuming the difference in aboveground biomass between
the two land covers as an instantaneous emission to the
atmosphere. For these grids, carbon emissions are estimated by
the difference between the associated ABC content of forests in
each grid transitioned to agriculture and the global average carbon
content of agricultural land, as follows

AABCror—acr = Y <ABCg.FOR‘201O - ABCAGR> x Ag (8)
z

where, ABC4cr is the estimated average ABC density per grid cell g
of all agricultural grids. This is done to consider average carbon
density for agricultural land, because the ABC density for 2010 is
not available (as the grid was classified as forest). ABCagr is
assumed to be equal to the global mean, the 10th percentile or the
90th percentile of all ABC of agricultural grids in 2010. The sum in
Eq. (8) computes the total carbon emissions from all the grids that
were classified as forest in 2010 and agriculture in 2018. Similarly,
the estimated ABC loss for forest to settlement (A ABC ror_sgr) iS
computed as

AABCrop_sgr = ZABCh,FORA,ZMO x Ap 9)
h

under the assumption that deforestation to settlement leads to
a total loss of ABC. The sum in Eq. (9) estimates total carbon
emissions from all the grids h that were classified as forest in 2010
but settlement in 2018. Eq. (3) can be used to identify the
transitions in Egs. (8) and (9). It was then possible to produce maps
of the loss of ABC and show the main emission regions, after
aggregation to local windows of 30-by-30 grids that include the
sum of the therein loss of ABC to improve visualization. The same
procedure is used to estimate carbon losses from belowground
biomass carbon, but in this case the BBC density maps are used.

Similarly, we study SE associated with the main land cover
transitions by integrating the SE dataset and the land cover
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products. The SE dataset provided by Borrelli et al. (2017) contains
the SE rates in two years, 2001 and 2012 (denoted as SERgo; and
SER50:2). Under the assumption that the SE rate changes linearly
during these two years, the rate of change of the SE rates in each
grid k can be computed as
SER — SER,

bk,mﬂn _ k‘m.2012At k,n,2001 (10)

with At = 11. With 2001 as the reference year (t = 0), the total
increased SE from 2001 to 2012 (denoted as ASE, 2001—n,2012) €an
be computed as

ASEm 2001—n2012 = D f:fon by m_ntdt x Ay

= % XI:A’( X (SERk,m.zolz - SERk,n,zom) (In)
K

The sum in Eq. (11) is over each grid k which is classified as land
cover class min 2001 and class nin 2012, and m =n is allowed. Such
a setting enables us to compute the SE not only due to land cover or
land use change, but also for the same land cover over time. In this
study we focus on SE due to land cover transitions between
agriculture and forest, agriculture remaining agriculture, and
forest remaining forest.

3. Results
3.1. Global trends of land cover changes

The trends in recent historical changes for each type of land
cover class are shown in Fig. 2, the underlying losses, and gains in
Supplementary Figure S1, and the main transitions between pairs
of land cover classes in Fig. 3. Results are normalized to the relative
area of each land cover class in 1992.

In relative terms, settlement is by far the land cover class that
increased the most during the study period, as it has expanded by
more than 200 % (Fig. 2b). The second largest increase (3%) is for

——AGR —FOR —GRA —WET —SHR —SPA —BAR

2
1.8
1.6
1.4
1.2

1

TS TS ESFTESTL TS
NN N N NN Y Y Y v v W

Fig. 2. Normalized trends for each land cover from 1992 to 2018. Different colors
indicate different classes. Trends are smoothed using a five-year moving average. (a)
Normalized trends for agriculture, forest, grassland, wetland, shrubland, sparse
vegetation, and bare areas. (b) Normalized trends for settlement. AGR: Agriculture,
FOR: Forest, GRA: Grassland, WET: Wetland, SET: Settlement, SHR: Shrubland, SPA:
Sparse vegetation, BAR: Bare area.
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agriculture, whose net area gains peaked around 2006 and then
remained relatively constant (Fig. 2a). However, this stable trend
does not imply that there were no transitions to and from
agriculture and other land cover classes (mainly forest) after 2006,
because it is the result of a balance between agriculture gains and
losses (Fig. S1). Until 2006, conversion of forests to agriculture was
larger than the opposite transition (from agriculture to forests),
resulting in net area gains for agriculture, but after 2006 the two
transitions are approximately of the same magnitude (Fig. 3a).
Grassland areas expand of about 1% (Fig. 2a), and this is largely at
expenses of forest areas (Fig. 3b). All other land covers have
decreased with varying trends. Wetland had the most significant
decreasing trend (-6%), mainly as a result of drying due to climate
change, unsustainable water withdrawals, and excessive nutrient
loads that favor plant growth (Werner et al., 2013; Green et al,,
2017), which make vegetation to gradually take over wetland areas
(Fig. 3c). Shrubland and sparse vegetation decreased steadily from
1992 to 2008 (-2%), and thereafter the net trends remained
relatively constant. Changes in area extensions of shrubland and
sparse vegetation are difficult to interpret. Shrubland in tropical
areas can be typically associated with savannah or Cerrado, and the
shrubland-to-forest transition can indicate a development of early-
stage trees in 1992 that are progressively becoming larger and with
closer canopy. The opposite transition (forest-to-shrubland) can be
indicative of forest degradation (Fig. 3d). Net changes of forest
areas show a decline of 1%, which mainly occurred before 1999, but
declines in forest areas are still on-going (although compensated
by forest expansion). Bare areas are also declining in favor of
grassland, a transition that can be explained by the progressive
observed greening of the Earth as a feedback to rising atmospheric
carbon concentrations and temperatures (Zhu et al., 2016).

3.2. Total land cover changes and spatial distributions

The total changes in land covers from the beginning (1992) to
the end (2018) of our study period are quantified in terms of
million hectares (Mha) and shown in Table 1 (numbers in the table
refer to the transitions from row to column). There are transitions
among all land classes, except from settlement to other classes. The
global spatial distribution of the patterns of relative gains and
losses for each land cover and the main land cover transitions are
shown in Figs. 4 and 5, respectively.

A total of 722 Mha of gross changes in land covers occurred in
our planet between 1992 and 2018 according to the ESA—CCI and
C3S-CDS datasets. Agriculture is the land cover class with the
largest area gains (205 Mha) and forest the one with the largest
decrease (241 Mha). At the same time, agricultural has lost 126
Mha and forest has gained 196 Mha, resulting in net area changes
of +79 Mha and -45 Mha, respectively. Agriculture mainly
translated to forests (79 Mha), a transition that is typically
associated with either cropland abandonment due to socio-
economic reasons, such as in Eastern Europe after the fall of the
Soviet Union (Lesiv et al., 2018), or afforestation for ecological
restoration, such as in coastal Brazil (Rezende et al., 2018), or
measure to contrast land degradation, such as in China (Peng et al.,
2014). These regions of the world are among those that show the
main trends in agricultural declines and increases in forest areas
(Fig. 4a, b and Fig. 5a). Settlement is the second main driver of
agriculture area loss (29 Mha, about 23 % of the total agriculture
loss), and mostly occurred in Eastern China, India, US, and Western
Europe (Fig. 5b). Agriculture expansion mainly happened at
expenses of forest (123 Mha), shrubland (30 Mha) and grassland
(25.7 Mha), and essentially took place in many world regions, such
as Central and Eastern Asia, US, South America, and Central Africa
(Fig. 4a). The largest presence of forest-to-agriculture transitions
occurred at the borders of the Amazon basin and in Southeast Asia
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Fig. 3. Land cover transitions, in million hectares (Mha). Trends are smoothed using a five-year moving average. (a) Agriculture/Forest transitions. The blue line shows the
transition from agriculture to forest, and the red line shows the transition from forest to agriculture. The yellow line is the net gain or loss of forest in forest/agriculture
transitions. (b) Forest/Grassland transitions. The blue line shows the transition from forest to grassland, and the red line shows the transition from grassland to forest. The
yellow line is the net gain or loss of grassland in forest/grassland transitions. (c) Forest/Wetland transitions. The blue line shows the transition from forest to wetland, and the
red line shows the transition from wetland to forest. The yellow line is the net gain or loss of wetland in forest/wetland transitions. (d) Forest/Shrubland transitions. The blue
line shows the transition from forest to shrubland, and the red line shows the transition from shrubland to forest. The yellow line is the net gain or loss of forest in forest/
shrubland transitions. AGR: Agriculture, FOR: Forest, GRA: Grassland, WET: Wetland, SET: Settlement, SHR: Shrubland, SPA: Sparse vegetation, BAR: Bare area.

Table 1

Global land cover changes during the period 1992-2018. The numbers in the table refer to the transitions from row to column. AGR: Agriculture, FOR: Forest, GRA: Grassland,
WET: Wetland, SET: Settlement, SHR: Shrubland, SPA: Sparse vegetation, BAR: Bare area, WAT: water (Unit: Mha).

AGR FOR GRA WET SET SHR SPA BAR WAT Sum (loss)
AGR 0 79.0 9.2 0.2 291 4.0 1.7 12 18 126.2
FOR 123.7 0 26.6 14.4 43 521 9.0 2.6 8.9 241.5
GRA 25.7 19.4 0 0.3 4.7 15 20.1 6.9 1.0 79.5
WET 11 24.7 0.6 0 0.3 0.4 0.3 0.0 14 29.0
SET 0 0 0 0 0 0 0 0 0 0
SHR 30.1 54.4 3.8 0.2 22 0 12 0.5 0.5 93.0
SPA 18.7 13.6 33.6 0.3 0.7 0.7 0 124 0.6 80.7
BAR 4.7 0.4 19.6 0.0 2.0 0.1 29.7 0 0.9 57.4
WAT 14 4.4 0.8 23 0.4 0.5 0.7 4.6 0 15.0
Sum (gain) 205.2 196.0 94.3 17.7 43.7 59.3 62.7 28.2 15.1 722.2
Net (gain-loss) 79.1 —45.5 14.8 -11.3 43.7 -33.7 —18.0 —29.2 0.2

(Fig. 5¢). Global deforestation resulted in a loss of forest area equal
to 241 Mha. After agriculture, the main forest losses are caused by
shrubland (52 Mha) and grassland (27 Mha), detected in South
America and the boreal climate (Fig. 5d). Agriculture, shrubland,
and grassland together are responsible for 84 % of forest loss.
Expansion of forest areas mainly come from agriculture (79 Mha),
shrubland (54 Mha) and wetland (25 Mha). These transitions are
mostly due to the effects discussed above, such as cropland
abandonment and afforestation programs in the case of agricul-
ture-to-forest (Fig. 5a), forest degradation or potential incon-
sistencies in the classification system for the shrubland-to-forest,
and global warming and/or anthropogenic activities for wetland-
to-forest (Fig. 5e). There are multiple other possible considerations
for the changes in land covers and transitions among the different
classes. Grassland major gains are from sparse vegetation (34

Mha), forest (27 Mha) and bare areas (20 Mha). The latter mostly
occurred in arid and semi-arid areas (Fig. 5g). Shrubland largely
increased at expenses of forests (52 Mha), and settlement mostly
took over agricultural land (29 Mha, 67 % of the total expansion)
(Fig. 5b). Further, settlement appears to be a non-reversible land
cover class in the datasets considered in our analysis, because no

conversion of settlement to other land cover classes is registered
throughout the whole study period. Sparse vegetation mainly
originated from bare areas (30 Mha) and grassland (20 Mha),
which can be correlated to a feedback of warmer conditions and
higher CO, atmospheric concentrations that extend the growing
season and stimulate vegetation activities and tree growth,
especially at higher latitudes (Fig. 5h). Similarly, sparse vegetation
in boreal climates are also transitioning to forests, as a result of
generally improved conditions for tree growth and woody
encroachment at forest-tundra ecotones (Fig. 5f). As expected,
wetland losses (29 Mha) mainly occurred at high Ilatitudes,
especially in the Nordic region and Russia (Fig. 5d), and mainly
resulted in expansion of forests. Overall, bare area decreases of 57
Mha, with a net loss of 29 Mha. Bare area loses 30 Mha and 20 Mha
to sparse vegetation and grassland, respectively (Figs. 5g and h).

3.3. Global vegetation carbon losses and soil erosion
The global biomass density maps from Spawn et al. (2020) and

Spawn and Gibbs (2020) have the same spatial resolution of the
land cover products from ESA—CCI and C3S-CDS, and they can be
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Fig.4. Global land cover changes (increase or decrease) for selected land cover classes as a fraction of a grid cell. All the subfigures are aggregated to 9 km spatial resolution for
visualization purposes only and the numbers in the color bars indicate the fraction of the grid cell affected by the change (positive values indicate expansion, negative values
contraction). Land cover change of (a) agriculture, (b) forest, (c) shrubland, (d) wetland. Note different scales on color bars.

integrated to investigate the biomass carbon losses aboveground
(ABC) and belowground (BBC) due to the recent historical land
cover transitions. In this paper, we focused on the gross global
losses due to the transitions from forest to agriculture and
settlement. Between 2010 and 2018, we estimated that 9 GtC (5.7/
10.7 GtC, when the 90th/10th percentile is used in Eq. (8)) are lost
from aboveground vegetation clearance driven by agriculture
expansion, and 0.23 GtC are lost from conversion of forest to
settlements. The spatial distribution of the ABC loss due to
agriculture expansion in forest areas is shown in Fig. 6. The major
losses are in the tropical band, mainly South America, Africa, and
Indonesia, and are estimated at 6.5 (4.0/8.1) GtC. In the tropics,
deforestation rates are high and trees typically store a larger
amount of carbon than in other biomes. In terms of BBC, losses
follow the same spatial pattern of ABC (see Supplementary Fig. S2),
although quantities are smaller. A total of 2.7 (1.8/3.3) GtC is
estimated at a global level, and 1.7 (1.1/2.1) GtC in the tropics.
Supplementary Table S2 shows specific values.

Average SE rates increased from 5.0 Mg ha—! yr~!in 2001 to 5.2
Mg ha! yr=! in 2012 in the grid cells that were classified as
agriculture in both years (AGR-AGR). The SE rate thus increased
0.23 Mg ha~! yr~! (Table 2), a value that is more than 5 times
higher the rate of the forest areas that remained forested (0.041 Mg
ha—'yr1),i.e., grid cells that were classified as forest both in 2001
and 2012 (FOR-FOR). The transition from forest to agriculture (FOR-
AGR, grid cells that were classified as forest in 2001 but agriculture
in 2012) accelerated SE with an average increase of 0.71 Mg ha™!
yr~1, which was 17 times higher than the rate of grid cells where
forests remained forests. These changes in rates of soil erosion
resulted in a total increase of SE of 3.2 Gt and 1.1 Gt in the AGR-AGR
and FOR-FOR case, respectively. Transition from forest to agricul-
ture has caused a total soil erosion loss of 0.14 Gt. Despite the
smaller rates, the total SE is larger in FOR-FOR than in FOR-AGR
because the former occurs over a much larger area of the globe
than the latter. The average SE rate after afforestation of agriculture
land (AGR-FOR, i.e., grid cells that were classified as agriculture in
2001 but forestin 2012)is 0.095 Mg ha~! yr~!, which is much lower
than the case where agriculture remained agriculture (AGR-AGR).
These results confirm the effectiveness of forest establishment as a
measure to contrast soil erosion. Large-scale afforestation

programs have been implemented in the last 20 years to prevent
(or even reverse) land degradation, such as those in the Loess
Plateau in China (Feng et al., 2020, 2016).

Global SE caused by agricultural activities (AGR-AGR) mainly
occurred in the tropical band, such as Brazil, Sub-Saharan Africa
and Southeast Asia (Fig. 7). Decreased rates in SE were found in
areas corresponding to countries with transitioning or advanced
economies, such as North America, Europe and East China (Fig. 7),
where agriculture conservation practices are more common
(Borrelli et al., 2017). While declines of SEs in forests can be
attributed to climatic variables (and to some extent to forest
management), agricultural land areas are more exposed to soil
erosion from anthropogenic factors (e.g., tillage). An expansion of
practices of conservation agriculture in developing countries is
seen as an option to mitigate most of the major negative trends of
SE, and ultimately prevent further deforestation from expansion of
agricultural areas (Borrelli et al., 2020; IPCC, 2019; Smith et al.,
2020).

4. Discussion

This paper performed an extensive quantitative analysis of
global land cover dynamics using the 27 years’ time series high
resolution maps from the ESA—CCI and C3S-CDS products. This
overview depicts the major trends in changes in land covers in our
planet. The spatial distribution patterns of land cover dynamics
shown in this study are broadly in line with those previously
reported. For example, Li et al. (2018) found net forest losses
between 1992 and 2015 of about 60 Mha (45.5 Mha in our study),
mainly occurring in South America, Central America and Indonesia.
A study that used satellite data to investigate global land
transitions between 1982-2016 for highly aggregated land cover
classes, such as tall vegetation (i.e., trees >5 m in height), short
vegetation and bare ground, found declines in bare ground of 116
Mha (57 Mha in our study, but for a shorter time period), increases
in tree cover and reductions in short vegetation (estimates not
directly comparable with our study due to different land
classification systems) (Song et al, 2018). They also found
clear regional patterns in land use changes, such as tropical
deforestation, agricultural expansion, temperate reforestation or
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afforestation, urbanization, tree cover expansion in northern and
montane systems, and vegetation losses in many arid and semi-
arid ecosystems.

Previous studies have validated and assessed the accuracy of the
land cover data used in our analysis (Li et al., 2018; Hua et al., 2018;
Liu et al.,, 2018a; Defourny et al., 2009). There are limitations in the
ESA—CCI and C3S—CCI land cover products, mainly due to potential
misclassifications. Global overall accuracies of the two land cover
products are 71 % and vary with spatial location and between classes.
Regional overall accuracies are found to be 70 % in South America
(Pérez-Hoyosetal.,2017),62 % in Africa (Pérez-Hoyos et al., 2017), 72
% in China (Yang et al., 2017), 84 % in coastal Eurasia (Hou and Hou,
2019), and 64 % in the Arctic (Liang et al., 2019). While the products
haverelatively high global accuracies for cropland, forests, and urban
classes, there are relatively larger uncertainties related to the
mapping of mosaic natural vegetation, mosses and lichen classes.
This means that our analysis offers more reliable data for the land
cover transitions involving forests, agriculture, and settlements,

while it has larger uncertainties for the land classes shrubland and
sparse vegetation. Additionally, accuracies of individual classes vary
slightly across the two land cover products. For example, in the
ESA—CCI product, the urban class globally has a higher than average
user accuracy (88 %) and a lower than average producer accuracy (51
%), leading to a global underestimation of urban areas. However, this
has been improved in C3S-CDS where both urban user and producer
accuracies are above average (75 %), providing improved precision in
total area extent.

We found that most transitions occurred between forest and
agriculture, and agriculture extension was the main driving force
of deforestation. Agriculture had the largest net gains during the
study period (Table 1), and this is mainly because of the expansion
of agriculture activities in Brazil, Africa, Central Asia, Eastern China
and Southeast Asia (Fig. 5). This can indicate an increasing demand
for food products from developing countries, which is associated
with higher risks of conversion to cropland or pasture of forest or
shrubland areas. On the contrary, agriculture land is declining in
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Table 2 Our analysis also showed an example of the importance of
Global SE change between 2001 and 2012. AGR: Agriculture, FOR: Forest. changes in land covers for key global environmental processes,
SE AGR-AGR FOR-FOR FOR-AGR AGR-FOR such as soil erosion and carbon emissions, thanks to the integration
Rate (Mg ha-'yr) 023 0.041 0.71 0.095 of the land cover products. with other datasets of terrestrial
Total (Unit: Gt) 32 11 0.14 0.018 ecosystem properties. We estimated global annual ABC loss due to

other locations, such as India, Europe, East China and Southeast
Brazil, where natural revegetation is likely ongoing (Mousivand
and Arsanjani, 2019). Settlement expanded almost linearly during
the entire study period, mainly at the cost of agricultural land.
Further, the continuing trends in losses of forests and shrubland for
agricultural expansion has high risks for irreversible species loss,
especially in areas with highly fragmented habitats, such as the
biodiversity hotspots (Betts et al., 2017; Barlow et al., 2016). Due to
climate warming, wetland at high latitude is decreasing, and it is
mainly replaced by forests (Zhu et al., 2016). We found greening
trends for bare areas, with increasing presence of grass and sparse
vegetation because of CO, fertilization and other climate feedbacks
(Zhu et al., 2016). On the other hand, human effects of conservation
activities and forestry can lead to large scale expansion of forests,
such as in Southern China and coastal Brazil (Brandt et al., 2018).
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deforestation from expansion of agriculture and settlement of 1.2
(0.7/1.4) GtC/yr, which is of 1.5 (1.0/1.8) GtC/yr when BBC is
included. In the tropics, values are of 1.0 (0.6/1.3) GtC/yr when both
ABC and BBC are considered. These are gross estimates of carbon
losses from vegetation due to major drivers (i.e., expansion of
agriculture and urban areas), which do not rely on specific
assumptions about the fate of converted forestland or harvested
wood products. A comparison with existing studies is challenging,
especially at global levels, owing to different approaches, spatial
scales, temporal periods, and types of processes considered (Zarin,
2012; Ramankutty et al., 2007). Harris et al. (2012) estimated an
average gross carbon loss of 0.81 GtC/yr using satellite observa-
tions of deforestation in the tropics from 2000 to 2005, including
both above- and below-ground biomass carbon. Their outcomes
are 25-50% of recently published estimates. Baccini et al. (2017)
estimated changes of carbon in woody vegetation from deforesta-
tion and forest degradation in the tropical region and reported an
average loss of 0.86 GtC/yr from 2003 to 2014 using the MODIS
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Fig. 7. Spatial pattern of differences in global soil erosion rates between 2001 and 2012 in agricultural land (AGR-AGR). Negative values indicate SE alleviation (i.e., a reduction
in SE rate), and positive values SE aggravation. AGR-AGR refers to the grid cells classified as agriculture both in 2001 and 2012 (unit: t). This map is aggregated to 75 km spatial

resolution for visualization purposes only.
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pantropical satellite data, and argued that emissions from
degradation are probably larger than those from deforestation.

Our analysis only accounted for carbon losses from vegetation
carbon resulting from transitions from forest cover to agriculture
and settlements. Most of the existing global studies produced
estimates that include a variety of other processes, such as changes
in soil organic carbon, forest growth or degradation, and expansion
of new forests, so reporting net emissions from changes in land use.
For example, Houghton and Nassikas (2017) estimated a global net
carbon emission from land use changes during 2006-2015 of 1.1
GtC/yr using the bookkeeping model to prescribe vegetation and
soil carbon density changes. Le Quéré et al. (2016) reported a global
carbon emission of 1.3 GtC/yr during 2006-2015 from an ensemble
of land surface models, and Friedlingstein et al. (2019) provided a
recent estimate of 1.5 GtC/yr for the period 2009—-2018. They both
computed carbon fluxes from land use changes and included
estimates for both vegetation (deforestation and forest growth/
expansion) and soil carbon. All these analyses used the bookkeep-
ing model to prescribe vegetation and soil carbon density changes
and land cover data from the Food and Agriculture Organization of
the United Nations (Keenan et al.,, 2015). In the bookkeeping
method, there are many broad assumptions about the fate of
cleared lands and their respective carbon stocks to estimate the
associated net carbon fluxes, which include CO, fluxes from
deforestation, afforestation, logging (forest degradation and
harvest activity), shifting cultivation, and regrowth of forests
following wood harvest or abandonment of agriculture.

Our analysis did not attempt to estimate soil emissions, but the
soil carbon pool is much larger than the carbon in living biomass.
However, the effects of land use changes on soil carbon emissions
are difficult to quantify and still poorly understood (Guo and
Gifford, 2002; Don et al., 2011). Existing estimates typically rely on
default factors that approximate soil carbon from aboveground
biomass densities (Pan et al., 2011), but these factors highly vary
across ecosystems and climates (Piao et al., 2009; Duarte-Guardia
etal., 2019). For example, global and regional meta-analysis of field
measurements find that soil organic carbon can either increase,
decrease, or remain constant after afforestation, because the soil
carbon response is sensitive to the interactions of multiple local
factors, such as tree species, previous land use, initial soil carbon
content, stand age, climate and soil type (Hong et al., 2020). Our
analysis also treated all carbon losses from forest clearance as
instantaneous emissions, without considering potential storage of
carbon in harvested wood products or forest remaining forest after
the disturbance (i.e., forest management, which is common in the
Northern hemisphere) (Iordan et al., 2018; Ceccherini et al., 2020;
Cherubini et al., 2016). Alternative emission estimates require
assumptions about the fate of converted lands and biomass
harvested, which currently cannot be ascertained with statistical
confidence across the globe. If a robust method would allow for the
consideration of these data, the result would be a reduction in our
estimates of carbon losses.

Changes in land cover is the one of the main drivers of SE
(Borrelli et al., 2017), and a better understanding of trends and
spatial patterns of SE for different land uses can support local
policies aiming at maintaining soil quality and preventing land
degradation. We found high SE rates on agriculture land in the
tropics, where current agricultural practices are accelerating SE
due to unsustainable management practices, such as tillage and
over-grazing (Borrelli et al., 2017; Montgomery, 2007). More
conservation practices are needed in these countries to preserve
soil layers. Our findings of 5.2 Mg ha~! yr~! in 2012 of SE rates on
agricultural land are in line with Nearing et al. (2017a), which
reported a value of global average SE rate on cropland with
traditional tillage of 5.7 Mg ha~! yr—'. However, we found smaller
rates of SE than the findings of Borrelli et al. (2017), which
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estimated SE rates on cropland to be much higher than the global
average soil erosion rate. This might be due to different resolution
of the data used (25 km vs. 250 m), and to possible inconsistencies
in classification of land use types across the land use and the SE
datasets.

Land cover change is an indicator for assessing the threat to
biodiversity, even though the implications are highly dependent on
the local context (Uchida and Ushimaru, 2014; Strassburg et al.,
2020). Agriculture expansion on forest and other land covers
challenges biodiversity conservation, especially in biodiversity
hotspots and intact landscape (Betts et al., 2017). Our results reveal
that significant changes occurred at the borders of pristine areas,
such as the Amazon rainforest, the tropical forests of Central-east
Africa, and the Brazilian Cerrado (shrubland), with high potential
risks for species loss (Hu et al., 2020). This trend calls for global
attention to make the today’s agri-food sector more efficient and to
adopt more sustainable diets, so to alleviate pressure from
deforestation and prevent further habitat conversion (Folberth
et al., 2020; McElwee et al., 2020). Otherwise, the expected rising
demands for food and feed for an always increasing population will
continue to drive expansion of agriculture land at expenses of
natural areas (IPCC, 2019).

5. Conclusions

We combined the ESA—CCI land cover product with the newly
released C3S-CDS land cover product to study their representation
of recent historical land cover dynamics by retaining the original
high spatial resolution (300 m) of the datasets. We further
integrated these products with global datasets of biomass carbon
density and SE rate to answer the research questions raised in the
introduction section.

e We found that 5.5 % of the total ice-free land surface transitioned
to a different land cover from 1992 to 2018. The major expansions
are registered for settlements (+44 Mha, the largest relative
increase) and agriculture (+79 Mha), while declines are observed
for wetland (—11 Mha, the largest relative decrease), forests (-45
Mha), shrubland (—33 Mha) and bare land (-29 Mha). Declines in
forest areas mostly occurred before 1999, but they are still
ongoing today (although net changes are small because of
contrasting trends of forest expansion). The main transitions
involved are expansion of agricultural land into forestland or
shrubland, afforestation of agricultural land or shrubland,
greening of bare land and wetland drying to forests or sparse
vegetation. Most of these transitions are the results of
anthropogenic activities, either directly through land use (i.e.,
deforestation for agricultural expansion) or indirectly via well-
known climate change feedbacks (i.e., vegetation enhancement
or wetland drying in boreal ecosystems).
Clear spatial patterns emerged for the major historical land
transitions. For example, agriculture expansion at expenses of
forests or shrubland mainly happened at the borders of the
Amazon basin, in Southeast Asia, Eastern Asia, US, and Central
Africa. Afforestation is mainly found in association with either
cropland abandonment due to socio-economic reasons, such as
in Eastern Europe, or for ecological restoration to contrast land
degradation, such as in coastal Brazil and China. Settlement
expansion mostly occurred in Eastern China, India, US, and
Western Europe. In northern or mountainous ecosystems, we
found that climate feedbacks are favoring the transition of sparse
vegetation to forests, greening of bare land, and wetland drying.
e We found important contributions from recent land use and land
cover changes to key global environmental processes, such as
gross carbon losses from vegetation clearance and effects on soil
erosion rates. Between 2010 and 2018, we estimated that an
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average of 11.7 GtC are emitted from deforestation driven by
agriculture expansion, and 0.33 GtC are released from conversion
of forest to settlements. There has been increases in soil erosion
rates at a global level (from 5.0 Mg ha~! yr'! in 2001 to 5.2 Mg ha
Tyr'in 2012), but with large differences by type of land use and
land transition. The transition from forest to agriculture showed
the largest soil erosion rates, while forest areas have the smallest
rates of soil loss. Agricultural land that remained agriculture had
approximately one third of the erosion rate per hectare of
deforested land, but it had the largest total soil loss due to the
large areas of cultivated land on the planet. Afforestation
resulted as an effective measure to decrease rates of soil erosion.

The results of this study show a human-dominated Earth system.
Direct human-induced land use and land cover changes are observed
over large areas on every continent, with implications for main-
taining ecosystem services. The well documented indirect human-
induced effects on land cover are also found to be the driver of large-
scale regional land dynamics, which include greening processes,
woody encroachment in boreal and montane systems, wetland
drying and vegetation loss in semi-arid areas. These ongoing trends
in land-use change and the increasing contributions of climate
change in altering land covers requires expanding efforts for
monitoring the Earth’s land surface and better understanding its
interlinkages with key environmental processes.

In addition to further increase the accuracy of datasets of land
cover classes (Bayer et al., 2020), possible extensions of this work
include the possibility to integrate maps of land covers with other
datasets of environmental attributes, as here exemplified with
biomass carbon and SE, as well as support the prediction of future
land cover dynamics based on historical trends, ideally by coupling
with key indicators of socio-economic development and climate
change (Chen et al., 2020; Hurtt et al., 2020). Overall, a better
understanding of land cover dynamics and their interlinkages to
key environmental mechanisms ultimately helps shaping benefi-
cial land use strategies that contribute to achieve synergies among
different Sustainable Development Goals, such as “Climate Action”,
“Life on Land”, “Clean water and sanitation”, and “Zero Hunger”.
For example, the bottom-up approach used in this work showed
accelerated rates of SE due to agriculture activities in several
developing countries, which can lead to soil degradation, farmer
income insecurity and deforestation for establishing new crop
plantations in more fertile soils. The successful identification of
areas at risks of soil erosion and possible mitigation measures thus
requires integrated policies at the interface of geography, climate
and social sciences.
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