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Abstract

We consider a class of cosmological fluids that possess properties analogous to those of crystalline

solids undergoing isotropic deformations. Our research is based on a modified log-corrected power-

law equation of state in the presence of a bulk viscosity. This formalism represents a class of

so-called logotropic fluids, and allows explaining an accelerating late-time universe. In order to

obtain a more detailed picture of its evolution, we add in our model a coupling of the log-corrected

power-law fluid to dark matter, and study various interacting forms between them. We solve

the system of equations for a modified log-power-law fluid coupled to dark matter, and obtain

expressions for the log-corrected power-law energy density, and the energy density for dark matter.

A comparative analysis is made with the model of a nonviscous log-corrected power-law fluid

without interaction with dark matter.
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I. INTRODUCTION

One of the main tasks in cosmology is to explain the accelerated expansion of the uni-

verse [1–3]. According to astronomical observations, up to 73% of the energy density is a

component known as dark energy. The remaining 27% are cold dark matter (CDM), and

there is left only 4% in the form of ordinary baryonic matter concentrated in galaxies and

their clusters. Dark matter is necessary in cosmology to account for missing mass in the

galaxies, and to make the rotation curve flat.In the ΛCDM model, dark matter is pictured as

a pressure less fluid. Dark energy does not interact with ordinary matter, and is usually in-

terpreted as a cosmological constant (energy density of a vacuum). The present accelerating

expansion of the universe can be explained in terms of an exotic perfect fluid (dark energy)

with negative pressure which satisfies a barotropic equation of state [4, 5]. The most general

models of dark fluid can be described using an inhomogeneous equation of state [6–8].

As is known, the standard cold dark matter model (CDM) gives good results at the large

(cosmological) scale, but has problems at the small (galactic) scale. These problems are

related to the assumption that dark matter is pressure less. A description of the late-time

universe at a small scale can be done with the help of the log-corrected power-law equation

of state within the Debye approximation [9, 10]. In that model the pressure of the fluid is

modeled by an empirical formula for a pressure of deformed isotropic crystalline solids [11].

In order for the universe to change under the cosmological expansion, it is necessary that

the pressure of the fluid, described by the equation of state, is negative [12–14] (a negative

pressure is the same as a positive tensile stress). The negative pressure in the log-corrected

power-law model becomes dominant when the volume of the universe exceeds a certain

value. This scenario corresponds to the logotropic dark energy model (LDE) [15, 16]. There

are regimes in which log-corrected power-law dark energy is equivalent to logotropic dark

energy.

In the present work we will study the dynamic evolution of a late-time universe, applying

a modified log-corrected power-law equation of state in the presence of a bulk viscosity. We

assume a spatially flat Friedmann-Robertson-Walker space-time, and assume homogeneity

and isotropy at a large scale. To give a more detailed description of the acceleration of the
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late universe, we adopt a two-component coupled fluid model. The second fluid component

is pressure less dark matter weakly interacting with the log-corrected power-law fluid. We

analyze different types of interaction, and some variants of the bulk viscosity, and obtain

solutions of the gravitational equations.

II. MODIFIED EQUATION OF STATE FOR A LOG-CORRECTED POWER-

LAW VISCOUS FLUID

Our purpose is to study dark energy in terms of a log-corrected power-law fluid. The

equation of state has the form [17, 18]

p = A

(
ρ

ρ∗

)−l
ln

(
ρ

ρ∗

)
, (1)

where ρ∗ is a reference density, which is identified with the Planck density in [16]: ρp =

c5/~G2 ≈ 5.16 × 1099 g/m3. In the present notation, A > 0 represents the yje logotropic

temperature, while l = −1
6
−γG. For l = 0 we obtain the equation of state for the logotropic

cosmological model [16]. It is interesting to note that the equation of state (1) may have a

deep relationship to the equation of state considered in Refs. [10, 11].

Let us rewrite Eq. (1) using the notation of the LDE model. For this purpose we express

the volume in terms of the mass density, using the relation V ∼ ρ−1 [17, 18],

p(V ) = −β
(
V

V0

)−(1/6)−γG
ln

(
V

V0

)
, (2)

where V0 is a volume that distinguishes a barrier between the different signs of the pressure

p, β is the bulk modulus at V0, and γG is the dimensional Gruneisen parameter. The bulk

modulus shows how much the volume changes under the action of external forces. The

parameter γG, in the homogeneous and isotropic universe, is a free parameter in the theory.

If V < V0, the pressure is positive for a positive bulk modulus. If V > V0, the pressure

becomes negative for a positive bulk modulus.

If the pressure of the dark fluid satisfies Eq. (2), then in order to ensure the cosmological

acceleration the volume must overcome the barrier V ≈ V0. There are three different regimes

to be distinguished between [17]:

1. The region before passing the V0 barrier, when V < V0. In this region the pressure

is positive, and the universe is decelerating. This corresponds to the case of pressure less

matter in the ΛCDM model.
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2. The region where V ≈ V0. In this case there occurs a transition from deceleration to

acceleration.

3. The region after passing the V0 barrier, when V > V0. Then the pressure is negative

(positive tensile stress, as mentioned), and the fluid starts to accelerate.

Thus, in the log-corrected power-law model the dynamical evolution of the universe is

described by one single fluid, which accelerates the universe when its volume passes the

barrier V = V0. This allows us to apply this model to the description of the late universe.

We will now study the dynamical evolution of the universe in some detail, making use

of the equation of state (1). We assume the universe to be spatially flat, homogeneous and

isotropic, and assume there to be a bulk viscosity. We add the following term to the pressure,

ζ(H, t) = ξ1(t)(3H)n, (3)

where ζ(H, t) is the bulk viscosity, which depends on the Hubble parameter H and the

time t. From thermodynamical considerations it follows that ζ(H, t) > 0. Our augmented

equation of state for the log-corrected power-law fluid becomes

p = A

(
ρ

ρ∗

)−l
ln

(
ρ

ρ∗

)
− 3Hζ(H, t). (4)

This is a particular case of a generalized equation of state, analogous to the equation of

state for dark energy.

III. UNIVERSE FILLED WITH VISCOUS LOG-CORRECTED COUPLED

FLUID

In this section we will study the late-time universe using the formalism of two viscous

coupled fluids in a spatially flat Friedmann-Robertson-Walker space-time. We will study the

dynamics of the accelerating expansion using the log-corrected power-law equation of state

(4), coupled with dark matter.

Let us clarify the application of the log-corrected power-law model. In this model there

is only one single fluid, responsible for the accelerating universe, when the universe volume

passes the barrier V = V0. The model cannot describe the early universe, because the

temperature in this period is much higher than the Debye temperature for solids. In the

inflationary period, the fluid becomes pressure less as is the case of the LDE model [19],
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while at late times the pressure tends to a constant negative value similarly to the case when

the universe is filled with a dark fluid. In our approach where account is taken of viscosity,

we have the opportunity to a more accurate picture of the singular behavior of the universe

in the vicinity of the Big Rip type I [20–23], or types II, III and IV [24, 25], the classification

of which was first given in [26].

We consider a universe filled with two interacting components: a log-corrected power-law

component having viscosity, and a dark matter component, in a spatially flat Friedmann-

Robertson-Walker universe with scale factor a. The background equations are [26]

ρ̇+ 3H(p+ ρ) = −Q,

ρ̇1 + 3H(p1 + ρ1) = Q, (5)

and

Ḣ = −k
2

2
(p+ ρ+ p1 + ρ1). (6)

Here H(t) = ȧ(t)/a(t) is the Hubble function, and k2 = 8πG with G the Newton gravita-

tional constant, p, ρ and p1, ρ1 are the pressure and the energy density of the coupled fluids,

and Q is the interacting term. A dot denotes derivative with respect to the cosmic time t.

The cosmological constant Λ is set equal to zero.

We consider the line element

ds2 = −dt2 + a2(t)
∑
i

dx2i . (7)

The Friedmann for the Hubble parameter is [26]

H2 =
k2

3
(ρ+ ρ1). (8)

One of the unsolved problems in modern cosmology is the coincidence problem in the stan-

dard ΛCDM model. As the dark energy density and the matter energy density are of the

same order of magnitude in the present universe, it can be assumed that dark energy and

matter somewhat interact with each other. Accurate cosmological observations show that

r = ρ1/ρ is of order unity.

We suppose that the density ration r is constant (the fixed ratio is a consequence of the

ΛCDM model), whereby Eq. (7) is rewritten as

ρ =
3H2

k2(1 + r)
− (9)

Next, we will investigate cosmological models with various kinds of interaction.
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IV. MODEL WITH COUPLING TERM Q = 3λH(ρ+ ρ1) + γ(ρ̇+ ρ̇1)

We consider the coupling

Q = 3λH(ρ+ ρ1) + γ(ρ̇+ ρ̇1), (10)

where the parameters λ and γ are dimensionless constants. The interaction between the

fluid components thus depends on the sign of λ and γ. There is at present no fundamental

theory defines the functional form of the coupling; the present assumption is related to that

in Ref. [27].

We choose the viscosity to be proportional to the Hubble parameter,

ζ(H, t) = 3τH, (11)

where τ is a positive constant.

Using the first member of Eqs. (5) and Eqs. (4), (8), (9) and (10), we obtain the gravi-

tational equation for the viscous log-corrected power-law fluid,

γ̃ρ̇+ 3H

[
A

(
ρ

ρ∗

)−l
ln

(
ρ

ρ∗

)
+ θρ

]
= 0, (12)

where θ = 1− (1 + r)(λ− 3τk2) and γ̃ = 1 + γ(1 + r).

Let us suppose that ρ > ρ∗/2 (density of the log-corrected power-law fluid being higher

than the Planck density), and let us study the case l = −1. Then Eq. (12) simplifies to

γ̃ρ̇+
3H

ρ∗
[A(ρ− ρ∗) + θρρ∗] = 0. (13)

Using Friedmann’s equation (8) we can rewrite Eq. (9) in the form

γ̃Ḣ + dH2 − b = 0, (14)

where d = 3
2
(A+ θρ∗) and b = 1

2
A(1 + r)k2ρ∗.

The solution of Eq. (14) is

H(t) =

√
b

d

exp (γ̃−1
√
bd t) + C exp (−γ̃−1

√
bd t)

exp (γ̃−1
√
bd t)− C exp (−γ̃−1

√
bd t)

(15)

where C is an arbitrary constant.

In the particular case when C = 1 we obtain

H(t) =

√
b

d
coth(γ̃−1

√
bd t). (16)

7



Hence, since H > 0 the universe is expanding. We see that H diverges for t→ 0, implying

a Big Rip type singularity [26].

The scale factor is given by

a(t) = exp

[∫
H(t)dt

]
= a0 sinh(γ̃−1

√
bd t)γ̃d, (17)

where a0 an integration constant. We calculate the second derivative of a(t),

ä(t) = γ̃−2
b

d

cosh2(γ̃−1
√
bd t)− dγ̃−1

sinh2(γ̃−1
√
bd t)

a(t). (18)

Hence, ä(t) = 0 at t0 = 1
γ̃−1
√
bd

ln
(
γ̃−1/2

√
d+

√
γ̃−1d− 1

)
. In the case when d < γ̃ (i.e., if

A < 2γ̃/3− θρ∗), then the second derivative of the scale factor is positive, and the universe

experiences an accelerated expansion as is the case at present. On the other hand, in the

case when d > γ̃ for early times 0 < t < t0 the first derivative is positive but the second

derivative negative, meaning a decelerating expansion, while for t > t0 the universe enters

an accelerating era. In this way we are able to obtain a transition from a dominant matter

epoch to a dark energy epoch, in agreement wtth observations. Finally, we note that from

Eq. (16),

Ḣ(t) = − bγ̃−1

sinh2(γ̃−1
√
bd t)

, (19)

we deduce, since Ḣ < 0, that the universe does not super-accelerate (i.e., the equation-of-

state parameter is not phantom).Lastly, we mention that in the case of zero viscosity and

no interaction (i.e., for τ = 0 and λ = γ = 0) we obtain θ = γ̃ = 1 and so the above analysis

is significantly simplified.

WE close this subsection by studying the case of pressure less matter (p1 = 0). Then the

solution of (5) with the coupling term (10) and the Hubble function (15) takes the form

ρ1(t) =
C1[

sinh2(γ̃−1
√
bd t)

]λ̃γ̃/dγ̃∗ , (20)

where γ̃∗ = 1− λ(1 + 1/r), λ̃ = 1− λ(1 + 1/r) and C1 is an integration constant. Thus, at

late times when t→∞ we obtain ρ1(t)→ 0.

In summary, the model at hand can describe the universe evoluion with transition from

a matter epoch to a dark energy epoch, in agreement with observations. We stress that

we have not considered a cosmological constant, and thus the above behavior is due to the

model dynamics only. This is a significant advantage and one of the main results of the

present subsection.
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V. INTERACTING MODEL WITH COUPLING TERM Q = 3αH ρρ1
(ρ+ρ1)

Let us suppose that the interaction between the fluid components has the form

Q = 3αH
ρρ1

(ρ+ ρ1)
, (21)

where the parameter α is a dimensionless constant. In terms of the energy density ratio

r = ρ1/ρ, the interaction term can be written

Q =
3αr

1 + r
Hρ. (22)

Let us consider the expression (3) for the viscosity in the case n = 1, and choose the function

ξ1(t) to vary linearly with time,

ξ1(t) = ct+ b, (23)

with constant parameters c, b.Then the gravitational equation for the log-corrected power-

law coupled fluid in the presence of viscosity, under the condition ρ > ρ∗/2, will take the

form

ρ̇+ 3H

[
A

(
ρ

ρ∗

)−l
− A

(
ρ

ρ∗

)−l−1
+ (c̃t+ b̃)ρ

]
= 0, (24)

where c̃ = −3c(1 + r)k2 and b̃ = 1− 3b(1 + r)k2 + 3αr
1+r

.

In the case l = −1, using Friedmann’s equation (9), we can rewrite (24) as

2Ḣ + 3

(
c̃t+ b̃+

A

ρ∗

)
H2 = 0, (25)

whose solution is

H(t) =
4c̃

3
(
c̃t+ b̃+ A

ρ∗

)2
+ C2

, (26)

with C1 an integration constant. Without loss of generality we can focus on the case C1 = 0.

In this case H > 0 and thus the universe is expanding. Moreover, H diverges at a finite

time t0 = −1
c̃

(
b̃+ A

ρ∗

)
, and thus a Big Rip type singularity appears [26].

The scale factor is given by the expression

a(t) = a0 exp

[
−4

3

(
c̃t+ b̃+

A

ρ∗

)−1]
, (27)

where a0 is an integration constant.
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The time derivative of the scale factor is

ȧ(t) =
4/3(

t+ b̃
c̃

+ A
c̃ρ∗

)2a(t). (28)

The derivative is positive, meaning that the universe expands. The second derivative is

ä(t) =

[
1− 3

2

(
c̃t+ b̃+

A

ρ∗

)]
H2(t)a(t). (29)

Hence, ä(t) = 0 at t1 = 1
c̃

(
2
3c̃
− b̃− A

ρ∗

)
. Thus in the case c̃ > 0, for values t < t1, it turns

out that ä(t) > 0 and the universe transits to a late-time accelerated era.

Note that in the case of a non-viscous fluid without interaction with dark matter (pa-

rameters c = b = 0, and α = 0), in the case l = −1, we obtain

H(t) =
2/3(

1 + A
ρ∗

)
t+ C3

, (30)

where C3 is an integration constant.

In the particular case when C3 = 0 the time derivative of H(t) is

Ḣ(t) = − 2

3
(

1 + A
ρ∗

)
t2
. (31)

Since Ḣ < 0, the universe is decelerating.

The scale factor varies with time as

a(t) = a0t
2

3(1+A/ρ∗) , (32)

where a0 is an arbitrary constant.

The first derivative of the scale factor is

ȧ(t) =
2/3(

1 + A
ρ∗

)
t
a(t). (33)

The derivative is positive, so that the universe expands.

Thus, without taking into account the viscosity of the log-corrected power-law fluid and

its interaction with dark matter, we have obtained a cosmological model that does not

describe he accelerating universe expansion at present. This model is therefore less realistic.

10



The solution of the gravitational equation (5) for dark matter, with the coupling term

(22) and the Hubble function (26), has the form

ρ1(t) = ρ̃0 exp

[
A

c̃C4

(
αr

1 + r
− 1

)
arctan

(
c̃t+ b̃+ A

ρ∗

C4

)]
, (34)

where C4 6= 0 is an arbitrary constant and ρ̃0 = ρ1(0).

In the limit t→∞ for the late universe, we have ρ1 → ρ̃0 exp
[

2π
c̃C4

(
αr
r+1
− 1
)]

.

In summary, the recent model can describe the evolution of the universe in agreement

with observations, with a transition from a matter dominated era to a late-time accelerated

epoch. It should be observed that this behavior has been obtained without involving a

cosmological constant, what is a significant advantage and one of the main results of the

present subsection.

VI. CONCLUSIONS

In this article we have considered a dark energy model of the universe, based on the

log-corrected power-law modified equation of state, in the presence of bulk viscosity in a

homogeneous and isotropic spatially flat FRW space-time. The log-corrected power-law

fluid posses properties analogous to those of crystalline solids under isotropic deformations,

even in cases when the pressure is negative. Thisformalism allowsus to model and explain

the accelerating expansion of the late universe in terms of a logotropic dark fluid. To obtain

a more detailed description of the late universe, we modified the equation of state (1) by

including the bulk viscosity term. We considered also the coupling with dark matter and

obtained analytic expressions for the energy density of both fluids. Based on the expressions

for the scale factor a(t) and its first and second derivatives, we identified the regimes of

different behavior: either expansion with acceleration (as at the present time), or expansion

with deceleration. It was shown that in contrast to the non-viscous log-corrected power-law

fluid without interaction with dark matter, our model is more appropriate for the description

of the present universe.

It was previously shown [28] that the interaction between dark energy possessing fluid

viscosity, and dark matter, will affect the character of singularities of various types. This

circumstance served as a motivation for the present work.
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We showed that a cosmological scenario with coupled dark fluids can give rise to a universe

that experiences a transition from a matter dominated era to a late-time acceleration era.

The agreement with observational data, in particular the Supernovae type Ia (Sn Ia) and the

Hubble function, as confirmed in Ref. [29, 30], is a consequence of the logarithmic correction

and the viscosity terms.

Thus, we have described the evolution of the late-time universe in terms of the log-

corrected power-law coupled fluid in the presence of a bulk viscosity, and have investigated

various regimes in the accelerated expansion. We conclude that the description of the late-

time universe through this form of coupled fluids may lead to interesting results.

In the future, it is of interest to study the thermodynamic aspects of the evolution of

the late-time universe [31], as well as the effect of thermal radiation on the formation of

singularity [32].
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