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Abstract 9 

A data homogenization method based on Singular Spectrum Analysis (SSA) was developed 10 

and tested on real and simulated datasets. The method identifies abrupt changes in the 11 

atmospheric time series derived from Global Navigation Satellite System (GNSS) 12 

observations. For simulation and verification purposes, we used the ERA-Interim reanalysis 13 

data. Our method of change detection is independently applied to the Precipitable Water Vapor 14 

(PWV) time series from GNSS, ERA-Interim and their difference. Then the detected offsets in 15 

the difference time series can be related to inconsistencies in the datasets or to abrupt changes 16 

due to climatic effects. The issue of missing data is also discussed and addressed using SSA. 17 

We appraised the performance of our method using a Monte Carlo simulation, which suggests 18 

a promising success rate of 81.1% for detecting mean shifts with values between 0.5 to 3 mm 19 

in PWV time series. A GNSS-derived PWV dataset, consisting of 214 stations in Germany, 20 

was investigated for possible inhomogeneities and systematic changes. We homogenized the 21 

dataset by identifying and correcting 96 inhomogeneous time series containing 134 detected 22 

and verified mean shifts from which 45 changes, accounting for approximately 34% of the 23 

offsets, were undocumented. The linear trends from the GNSS and ERA-Interim PWV datasets 24 

were estimated and compared, indicating a significant improvement after homogenization. The 25 

correlation between the trends was increased by 39% after correcting the mean shifts in the 26 

GNSS data. The method can be used to detect possible changes induced by climatic or 27 

meteorological effects. 28 
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 32 

Introduction 33 

Global Navigation Satellite System (GNSS) signals are affected by the earth’s atmosphere. The 34 

delayed signals limit the high-precision positioning and navigation applications, but the error 35 

can be exploited to study different parts of the atmosphere, including the water vapor. 36 

Monitoring the atmospheric water vapor is important since it is a major atmospheric 37 

greenhouse gas with significant impact on the earth’s radiative balance (Sinha and Harries 38 

1997). It can generally act as a warming amplifier so that the cycling rate of water vapor reduces 39 

with the warming climate (Schneider et al. 2010). High-temporal resolution observations and 40 

an increasing number of satellites have turned GNSS into a promising measuring tool for 41 

investigating the variability of the water vapor, especially in the presence of a dense network 42 

of permanent stations. 43 

Owing to the high temporal resolution, the accuracy of products, and the capability of 44 

making measurements even in severe weather conditions, the retrieved water vapor content of 45 

the atmosphere from ground-based GNSS observations has been identified as one of the 46 

reference data for GCOS (Global Climate Observing System) Reference Upper Air Network 47 

(GRUAN, Ning et al. 2016). Precipitable Water Vapor (PWV) from GNSS has increasingly 48 

been used for climate research (Gradinarsky et al. 2002; Nilsson and Elgered 2008; Wang J et 49 

al. 2016; Alshawaf et al. 2017). The accuracy of the estimated climatic trends using GNSS 50 

PWV depends on the homogeneity of the analyzed time series (Alshawaf et al. 2018; Klos et 51 

al. 2018). For different reasons such as hardware or software changes, the data might contain 52 

inhomogeneities (temporal jumps or offsets). Such artifacts should be detected and eliminated 53 

through a delicate homogenization process without affecting climatic abrupt changes. 54 

By definition, a homogeneous climate time series can only contain the variations caused 55 

by weather and climate (Venema et al. 2012). The main sources of inhomogeneity in GNSS-56 

derived PWV data are instrumental changes or software settings of the GNSS station, e.g., 57 

antenna change, radome installation or removal, and cut-off angle setting (Vey et al. 2009). 58 

Most of the changes stem from the technological advancements, which make it unavoidable to 59 

update the hardware in GNSS stations. Therefore, GNSS-derived PWV time series are likely 60 

to have inhomogeneities, especially in the longer time series that would be used for climate 61 
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studies. The changes are usually documented in the stations’ log files, but the documentation 62 

might be incomplete or missing for some of them. Change in the measurement conditions and 63 

the surrounding area of the station such as urbanization and growth or removal of vegetation 64 

might also affect the homogeneity of the time series. In the case of not using a reprocessed 65 

dataset, the change of processing software or procedure is another possible source of 66 

inhomogeneity. The external measurements that are used to obtain PWV from GNSS data 67 

processing, such as air pressure and temperature can pass their heterogeneity to the derived 68 

PWV time series. It should be noted that the mentioned reasons of inhomogeneity are generally 69 

not documented in the station's log file. Therefore, finding a pragmatic solution for detection 70 

and verification of undocumented changes during the homogenization process is inevitable. 71 

Different approaches have been introduced to check the homogeneity of GNSS 72 

products. For instance, Rodionov (2004) proposed a sequential algorithm which introduced a 73 

statistic entitled the Regime Shift Index (RSI) coupled with the Student’s t-test to enhance 74 

detection of a regime shift. The Penalized maximal T-test has widely been used for data 75 

homogenization (Jarušková 1996; Wang X et al. 2007; Ning et al. 2016; Balidakis et al. 2018). 76 

Wang X (2008), Ning et al. (2016), Klos et al. (2017), and Van Malderen et al. (2017), 77 

considered lag-1 autocorrelation in time series of first-order autoregressive noise. To support 78 

the detection of multiple change points in a time series, Wang X (2008) proposed an empirical 79 

approach based on a stepwise testing algorithm. Ning et al. (2016) applied an iterative adapted 80 

version of penalized maximal T-test to the monthly PWV time series, which helps in avoiding 81 

the difficulty of change point detection in the presence of high temporal variations and noise 82 

in the daily PWV data.  83 

The “Data homogenization” activity of the sub-working group WG3 of COST ES1206 84 

Action has assessed various statistical tools for homogenization using a synthetic benchmark 85 

dataset. The simulated dataset was based on the difference between GNSS-derived PWV time 86 

series and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis 87 

data (ERA-Interim) (Van Malderen et al. 2017). Using the difference time series can facilitate 88 

detecting slight changes, but it is difficult to interpret the origin of the detected changes. Ning 89 

et al. (2016) validated detected change points using more than one reference dataset (e.g., 90 

VLBI, DORIS). Therefore, the verification process is left inconclusive in the case of not having 91 

another reference data set for a station. The latter study shows the possibility of the presence 92 

of inhomogeneities in the ERA-Interim dataset. The study reveals the need for having an 93 

independent verification procedure of any reference data. Van Malderen et al. (2017) preferred 94 
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not to consider absolute statistical homogenization methods as practical approaches, owing to 95 

the problem of reliability, even though they confirm that ERA-interim might have its own 96 

inhomogeneities.  97 

We develop and apply an approach to detect abrupt changes in an undifferenced time 98 

series. GNSS-derived PWV time series, in addition to the probable inconsistencies, contain the 99 

effects of climate or meteorological variabilities. Therefore, at least one reference dataset is 100 

required, e.g., ERA-Interim, to distinguish whether the offsets are caused by climate or 101 

meteorological effects or by inhomogeneities. We developed a method of offset detection in 102 

PWV time series, which is independently applicable to GNSS and ERA-Interim PWV data as 103 

well as their difference. This is performed by analyzing the time series variations with respect 104 

to a representative model. For this purpose, we exploit the Singular Spectrum Analysis (SSA) 105 

as a subspace-based technique, which makes use of empirical functions derived from the data 106 

to model the time series in a pre-specified level of details. SSA is a non-parametric method that 107 

does not need any statistical assumptions such as stationarity of the series or normality of the 108 

residuals (Hassani and Thomakos 2010). Even in the presence of periodicity and noise, SSA 109 

can offer an adequate estimation of the time series based on setting a few arguments (such as 110 

window length). It can be used for trend extraction and extrapolation (Alexandrov 2008; Modiri 111 

et al. 2018), periodicity detection, seasonal adjustment, smoothing, noise reduction (Ghil et al. 112 

2001; Golyandina et al. 2001) as well as change point detection (Escott-Price and Zhigljavsky 113 

2003). 114 

After a brief description of the datasets in the next section, we sketch out the SSA 115 

technique at the beginning of the methodology section, which continues by introducing our 116 

approach for homogenization. That section also comprises details of the offset detection 117 

method, as well as preprocessing and verification procedures. The performance assessment 118 

based on applying the method to simulated data is followed by a real GNSS dataset 119 

homogenization in the results section. A summary of the conclusions of this study is provided 120 

in the last section. 121 

 122 

Dataset 123 

We use a PWV near real-time dataset produced by the German Research Centre for 124 

Geosciences (GFZ). The dataset has a temporal resolution of 15 minutes with a delay of about 125 

30 minutes and an accuracy of 1 to 2 mm (Li et al. 2014). The PWV time series are calculated 126 
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from the Zenith Total Delay (ZTD) derived at GNSS stations of the German SAPOS network 127 

in PPP mode.  128 

The GNSS-derived PWV can be obtained from the wet part of the ZTD, the Zenith Wet 129 

Delay (ZWD), via the conversion factor Q: 130 

     ZWD ZTD ZHD= −   (1) 131 

 
ZWD

PWV
Q

=   (2) 132 

where the ZHD is the Zenith Hydrostatic Delay (ZHD) estimated by the Saastamoinen model 133 

(Saastamoinen 1972) using measurements of surface pressure. The conversion factor is 134 

computed using (Askne and Nordius 1987): 135 

 6 3
210 w w

m

k
Q R k

T
−  

= + 
 

  (3) 136 

where w  and wR  are the density of liquid water and the specific gas constant for water vapor. 137 

The 2k   and 3k  are constants estimated from laboratory experiments (Bevis et al. 1994) and mT  138 

is the water vapor weighted mean temperature in Kelvin. 139 

Near real-time GNSS tropospheric time series are likely to contain more cases of 140 

inconsistencies compared to the time series from a post-processed dataset that utilizes a 141 

consistent strategy and settings for the processing. Therefore, choosing the near real-time 142 

dataset gives us the opportunity of encountering and addressing more cases of inhomogeneities. 143 

We apply our homogenization approach to a selected dataset of near real-time GNSS-derived 144 

PWV time series at 214 permanent GNSS stations from 2010 to 2016. See Fig. 10 for the 145 

location of the stations.  146 

The proposed homogenization method utilizes a reference dataset which contains a 147 

priori information about abrupt changes that are not inhomogeneities. Here we use ERA-148 

Interim PWV time series as the reference to provide the required information about climatic 149 

and meteorological effects. The ERA-Interim dataset, released by ECMWF, is a global 150 

atmospheric reanalysis product covering a time span of about 40 years from 1979 onwards. It 151 

provides gridded data products with a spatial resolution of approximately 79 km including a 152 

wealth of 3-hourly information of surface parameters describing weather, ocean-wave and 153 

land-surface conditions, as well as 6-hourly upper-air parameters covering the troposphere and 154 

stratosphere. The vertical resolution includes 60 model layers with the top of the atmosphere 155 
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located at 0.1 hPa (Dee et al. 2011). For verification of the detected inhomogeneities as well as 156 

performance assessment of the proposed method, we will also simulate a test dataset based on 157 

the ERA-Interim time series. 158 

The undifferenced PWV datasets, i.e. GNSS and ERA-Interim, compared to their 159 

difference exhibit different noise characteristics. Fig. 1 depicts the pattern of natural variability 160 

of PWV from GNSS, ERA-Interim, and the difference time series at a station in Berlin, 161 

Germany. For each day of this annual pattern, the standard deviation of PWV is calculated 162 

using the values of the same day in 15 years of GNSS, ERA-Interim, and the difference time 163 

series. As expected, during hot months the variations reach the maxima while lowest variations 164 

happen in the cold season. We have higher variability in the undifferenced time series 165 

compared to significantly lower variability in the difference time series. We will consider these 166 

aspects of the time series for selecting appropriate sensitivity threshold during offset detection.  167 

 168 

Fig. 1 PWV yearly variation pattern at a GNSS station in Berlin, Germany.  169 

 170 

Singular Spectrum Analysis 171 

In our homogenization approach, filling data gaps and method of change point detection are 172 

based on SSA. This technique is a general time series analysis tool, which has been used for a 173 

wide range of applications such as trend extraction, noise mitigation, forecasting and change-174 

point detection (Alexandrov 2008). For more information about SSA and its main steps, readers 175 

are referred to, e.g., Golyandina et al. (2001) and Ghil et al. (2001). 176 

To model the variations of a time series into a representative trend, we use the SSA 177 

technique. By the term trend, we mean a smoothed slowly-varying version of a time series that 178 

comprises long-term variations and periodicities. SSA builds a specific matrix using the time 179 
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series entries, then decomposes the matrix to its principal components and finally reconstructs 180 

the time series using the most important principal components of the matrix.  181 

Assuming the time series 1 2( , ,..., ), , 1,2,...,N iF f f f f i N=  = , SSA first forms a trajectory 182 

matrix ( X ) by moving a window over the entries of the time series, as follows: 183 

1 2 1 2, ,..., , , ,...,
window

L L L Nf f f f f f
→

+ +  184 

 ( )

1 2 3

2 3 4 1

,

3 4 5 2, 1

1 2

+

+=

+ +

= =

 
 
 
 
 
 
  

K

K

L K

ij Ki j

L L L N

f f f f

f f f f

x f f f f

f f f f

X   (4) 185 

where L  is the window length, 1K N L= − +  and 1 L K  . Next, the Singular Value 186 

Decomposition (SVD) is applied to the trajectory matrix, i.e., 187 

 = TX UΣV   (5) 188 

with the superscript T being the transpose operator. U  and V contain left and right singular 189 

vectors, respectively, and Σ  is a diagonal matrix containing the singular values ( i ) of X . 190 

Now, the trajectory matrix can be written as the sum of its uncorrelated components (
i

X ):  191 

 i=
T

1 2 d i i iX = X + X +...+ X , X U V   (6) 192 

By selecting a proper group of { , ,..., }
1 2 d

X X X , which is called the grouping step, we can create 193 

a representative estimation of the original trajectory matrix ( X ) that will finally be used for the 194 

trend extraction: 195 

 

,

, 1
ˆ( )L K

ij i jx =




trend 1 2 I

residual I+1 I+2 d

X = X + X + ... + X =

X = X + X + ... + X
  (7) 196 

The trend values are calculated by averaging the anti-diagonal entries of trend
X . Let L K , 197 

then the trend of time series 1 2( , ,..., )NG g g g=  is: 198 
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  (8) 199 

where ,
ˆ

i jx  is an estimation of the element 1i jf + −  of the original time series. 200 

 201 

Homogeneity check 202 

GNSS-derived tropospheric time series, e.g., PWV or ZTD, can generally be considered as a 203 

linear combination of different components. Assuming the time series 204 

1 2( , ,..., ), , 1,2,...,N iF f f f f i N=  =  is given by the sum of five components, i.e. 205 

 


= + + + +


= + + + −

t i c s n

t i c s SSA

F F F F F F

F F F F F
  (9) 206 

where tF , iF , cF , sF , and nF  represent the group of low to high-frequency components 207 

comprising secular trend, inhomogeneities (mean shifts), cyclic, seasonal, and noise 208 

components, respectively. The cyclic part involves fluctuations, e.g. due to extreme 209 

meteorological events, which might be repeated but cannot be called periodic. SSAF , the 210 

extracted SSA trend, estimates the sum of the first four components and leaves the residuals 211 

. We focus on detecting mean shifts stored in iF . Based on the occurrence rate of the 212 

documented changes in the log files of the GNSS stations, we consider iF  to be a non-periodic 213 

step function. Encountering periodic inhomogeneities with approximately similar magnitudes 214 

is considered as an unlikely situation and is not focused on in this study. The SSA trend, owing 215 

to its smoothing feature, would not perfectly model the step function in the immediate vicinity 216 

of jumps. We assume that by choosing an appropriate window length, singular values and 217 

corresponding singular vectors, the SSA can capture almost all the information stored in the 218 

first four components, except iF  in close proximity to the abrupt changes. We will use this 219 

assumption for detecting the position of change points.  220 

Fig. 2 shows a flowchart of the homogenization approach we have developed to detect 221 

change points and correct the GNSS tropospheric time series. It mainly comprises three stages. 222 
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The first stage, the preprocessing, starts with identifying and eliminating outliers followed by 223 

applying SSA to fill the gaps, and modeling and removing the seasonal component. In the next 224 

stage, we use the SSA-based method to detect change points. The last stage is devoted to the 225 

verification of detected change points and correcting the GNSS time series. 226 

 227 

Fig. 2 Homogenization workflow. 228 

 229 

Preprocessing 230 

Addressing data gaps is also performed using the SSA technique. The first step in applying 231 

SSA is the choice of the window length. According to Golyandina and Zhigljavsky (2013), the 232 

largest window length that would provide the most detailed decomposition is 2L N . For 233 

periodic time series with a dominant period of T , the smallest choice for the window length 234 

would be L T= . Selecting such a window length would maximize the correlation between the 235 

columns of the trajectory matrix. This, in turn, leads to a more efficient decomposition. For the 236 

window lengths larger than T , they suggest to choose L so that it is close to 2N , and L T  is 237 

an integer, although it dramatically increases the processing time. In the PWV time series with 238 

a dominant annual component, we use a 365-day window length that produces the maximum 239 

average correlation between columns of the trajectory matrix.  240 

Finding the change points is based on the assessment of variations with respect to the 241 

representative trend of the time series. Missing data might lead to an erroneous analysis of the 242 
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variations. Fig. 3, using a real PWV time series, gives an idea about how data gaps can make 243 

the estimated SSA trend unrepresentative. The time series shown in the figure contain a data 244 

gap of about one year. The top panel is produced just by taking out the missed values and 245 

applying SSA to the remaining data. It can clearly be seen that the trend of the time series 246 

around the gap area is wrong. The bottom panel is the result of filling the data gaps in the same 247 

PWV time series. To generate such a trend, we chose a 365-day window length in the 248 

embedding step and five singular values (and vectors) in the grouping step. The reasons for 249 

selecting this setting for the grouping step is discussed in the next section. 250 

 251 

Fig. 3 Effect of data gaps on the SSA trend extraction. The trend extraction ignoring data 252 

gaps (top), trend extraction after applying gap filling (bottom). The black line shows the 253 

Fourier series estimation of the time series, which is used as initial values for iterative SSA 254 

gap filling. 255 

 256 

We apply SSA iteratively to predict missing values based on the temporal correlation 257 

present in the data. Kondrashov and Ghil (2006) and Golyandina and Zhigljavsky (2013) 258 

provide more details about the application of SSA to gap filling. Before starting the iteration, 259 

the missing values are replaced by initial values calculated using a Fourier series containing 260 

bias, linear trend, annual and semi-annual terms which are shown in black line in 261 

Fig. 3 (bottom). Having the initial values calculated, we apply SSA to compute the trend from 262 

which new estimates of the missing values for the next iteration are extracted. In GNSS 263 

tropospheric products, the seasonal component dominates the behavior of the time series. 264 

Therefore, for detecting slight changes in the time series, dominant periodicities should be 265 

modeled and eliminated. 266 

 267 
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Detecting change points 268 

The reconstructed trajectory matrix in the grouping step contains useful entries that can indicate 269 

abrupt changes in the time series. Considering the chosen window length, up to L -adjacent 270 

columns of the trajectory matrix directly contribute to the calculation of the trend values. 271 

Fig. 4 (top) schematically highlights involving elements of 
trend

X  in calculation of the i-th trend 272 

value.  273 

 274 

Fig. 4  Involving elements of the reconstructed trajectory matrix in the calculation of the i-th 275 

trend value (top) and worsening estimation precision of the anti-diagonals of 
trend

X  in the 276 

vicinity of a change point at time index = 400 (bottom). 277 

 278 

The dispersion of the anti-diagonal elements of 
trend

X  can reveal the fluctuations of the 279 

time series around the trend. Therefore, we define the change point as a point at which the 280 

original distribution of the time series with respect to the trend in its vicinity is being changed. 281 

For this reason, a quantity is needed by which we can observe how the spread of anti-diagonal 282 

elements is being squeezed or stretched. The impact of a change on the anti-diagonal elements 283 

can be seen in Fig. 4 (bottom). Each anti-diagonal element is an estimation for the trend values. 284 

Therefore, more dispersion corresponds to more error in the estimation of the trend by each 285 

column of 
trend

X . Consequently, while the averages of anti-diagonals produce the trend values, 286 
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ig in (8), their standard deviations quantify the perturbations of the time series with respect to 287 

the trend and could be used as an indicator of a change point. 288 

We define the Change Magnitude Estimator (CME) index, represented by  , to 289 

evaluate the amount of change at every single epoch of the time series. Therefore, the local 290 

maxima of the CME diagram indicate the change points and their significance. The CME index 291 

is calculated using the entries of each anti-diagonal of 
trend

X  as: 292 
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  (10) 293 

To define a change point, we need the magnitude of change and the time index, i.e., the 294 

temporal location in the time series. Our first aim is to find the temporal location of the change 295 

points. It should be noted that properly timing the offsets is important. The timing uncertainty 296 

may affect the long-term linear trend determination. Particularly, shifts at the beginning and 297 

end of the time series will have more weight on the linear trend estimation (Williams 2003). 298 

The grouping step or selecting proper singular values and vectors for trend extraction 299 

has a significant impact on the results of change point detection. Including more singular values 300 

and vectors in the reconstruction of the trajectory matrix corresponds to more sensitivity to 301 

slight local variations of the time series and will result in false alarms, i.e. a point is reported 302 

as a change point by mistake. Including fewer singular values, however, would reduce the 303 

accuracy of finding the temporal location of change points. Therefore, we complete the 304 

procedure of selecting singular values in two steps. The first step is finding the region of 305 

maximum curvature in the singular values spectrum and the second step is selecting the 306 

singular values with a minimum 
T  value, defined as follows: 307 
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where 
T  is the overall CME calculable using the residual trajectory matrix, 

Δ
X , and 310 

sd is the standard deviation of all entries of the matrix. The matrix 
Δ

X  is formed by subtracting 311 

trend values (
ig ) from the corresponding anti-diagonals of

trend
X . We use 

T  to select a proper 312 

set of singular values and vectors. Fig. 5 illustrates the behavior of the CME index with and 313 

without having a change (mean shift) in a synthetic time series. Application of 
T as a threshold 314 

is shown in the figure. Its application in selecting singular values can be seen in Fig. 6. 315 

 316 

 317 

Fig. 5 Behavior of CME ( ) index for a synthetic time series: without any mean shift (top), 318 

with an artificial offset at time index = 400 (bottom). 319 
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 320 

Fig. 6 Selecting singular values for change point detection using the synthetic time series 321 

from Fig. 5.  Finding the maximum curvature region on the singular values spectrum (top), 322 

minimizing the overall CME that makes the extracted SSA trend representative (middle), the 323 

effect of selected singular values on the accuracy of detection and the number of false alarms 324 

(bottom).  325 

The residuals after the trend estimation might contain autoregressive noise, which in 326 

turn might affect the CME values. False alarms induced by this effect can be reduced by setting 327 

T  as a threshold. We then justify and enhance the estimated positions of our detected offsets 328 

by applying a t-test to symmetric intervals around the time index of the candidate change points.  329 

 330 

Verification and correction 331 

After detecting the position of mean shifts (jumps), we estimate the magnitude of the offsets in 332 

the three time series of each station, i.e., ERA-Interim, GNSS, and the difference time series. 333 

The magnitude of each offset is calculated using the difference between the mean values of the 334 

left and right sides of the offset. After manual verification of the detected offsets, we correct 335 



15 

 

the verified offsets within the GNSS time series by constructing and then subtracting the step 336 

function 
iF in (9). It should be noted that the step function does not change the overall mean 337 

value of the GNSS time series after the correction.  338 

The procedure of finding and verifying inhomogeneities is demonstrated using the real 339 

data of the station in Saarbrücken, Germany (Fig. 7). Data gaps, seasonality and outliers have 340 

been addressed in the three time series, and then we applied our SSA-based offset detection 341 

method to find the position of change points.  342 

 343 

Fig. 7 Sample result of change detection in the difference (top), ERA-Interim (middle) and 344 

real GNSS PWV (bottom) time series for the station in Saarbrücken, Germany (latitude = 345 

49.22o, longitude = 7.01o). The range of vertical axis for the difference time series (PWV) is 346 

reduced to improve the visibility. 347 

 348 
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As can be seen in Fig. 7, the time series contain three different cases of change points. 349 

The first case consists of the offsets, which are seen in the GNSS and the difference time series 350 

within a six-month time window with almost the same magnitude. If there is no shift in the 351 

ERA-Interim time series; we correct the GNSS time series using the time index and mean shift 352 

obtained from the difference time series. 353 

The second case includes the mean shifts, which are seen in GNSS and ERA-Interim 354 

with almost the same time index and magnitude. These shifts might be due to a phenomenon 355 

sensed by both datasets, e.g., climatic or meteorological effects. In this case, even if due to 356 

different sensitivities some slight changes are transferred to the difference time series, the 357 

GNSS data are left uncorrected.  358 

The third case is the changes which happen in all three time series (difference, GNSS 359 

and ERA-Interim) at approximately the same epochs with quite different mean shifts.  If the 360 

sum of the mean shifts in the GNSS and ERA-Interim data equals to the shift in the difference 361 

time series, the GNSS time series is corrected using the mean shift obtained from the GNSS. 362 

As a special case in this station, we have an antenna and radome change and, at the same time, 363 

a non-systematic event (maybe a climatic signal) has happened. In this case, we search for the 364 

same signal in the nearby stations. If we find the same signal, we correct the GNSS data using 365 

the shift obtained from the difference time series. 366 

 367 

Results 368 

We use a test and a real dataset to evaluate the developed method for detecting possible 369 

inconsistencies and homogenizing tropospheric products. The impact of homogenization of 370 

GNSS data is shown through a comparison of linear trends and internal consistency of datasets. 371 

 372 

Test dataset 373 

We performed a Monte Carlo simulation to evaluate the performance of our method. This 374 

simulation is based on the ERA-Interim dataset at 400 points distributed over Germany from 375 

2002 to 2017. This choice assumed that the ERA-Interim time series are less likely to contain 376 

inhomogeneities. We randomly inserted 52.1 10  offsets in 47 10  time series. To create new 377 

cases in each iteration, the time series were altered by adding newly generated random offsets. 378 

However, these time series contain possible abrupt changes due to climatic or meteorological 379 
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conditions. In every iteration process, about 200 time series out of 400 were randomly selected 380 

for imposing synthetic offsets and the remaining were left unchanged. We added in average 6 381 

offsets with a maximum of 10 offsets (upper limit) that randomly have different magnitudes 382 

between 0.5 to 3 mm with a negative or positive sign in every time series. The distribution of 383 

the inserted changes into the time series is done randomly such that separation between two 384 

successive changes is at least one year. Different classes are considered for summarizing the 385 

results. Based on these classes, the test results are arranged in Table 1. For each case, the Mean 386 

Absolute Error (MAE) of detection for the time index, MAE , and the mean shift, MAE , are 387 

estimated as follows:  388 
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  (13) 389 

where 
i  and 

i  are the true values, 
î  and ˆ

i  are the estimated values of the time index and 390 

the magnitude of mean shift, respectively. 
ie  and 

ie  denote the detection errors in terms of the 391 

time index and the magnitude, respectively, and n is the total number of successfully detected 392 

offsets. 393 

The left side of Table 1 explains how successful the method is in finding the time index 394 

of change points. Three criteria of 182, 91, and 30 days are chosen for the time index to 395 

calculate the number of successful detections. Beyond each chosen criterion, e.g. 30dayse   396 

for the detection criterion of 30 days, we define the method to be unsuccessful. It should be 397 

noted that the simulation study could not be carried out using the difference data. The difference 398 

time series contain much less background noise, which leads to higher accuracy in detecting 399 

mean shifts. Our goal for applying the method to the original dataset (ERA-Interim or GNSS) 400 

is to justify the detected mean shifts in the differenced time series. Table 1 shows a success rate 401 

of 81.1% with MAE of about 28 days in detecting time index and 0.26 mm for estimating mean 402 

shift. 403 

 404 

Table 1 Success rate of the proposed method based on different thresholds of detection. 405 
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Detection 

criterion (day) 

Success 

rate 

MAE

(day) 

MAE

(mm) 

 Detection 

criterion (mm) 

Success 

rate 

MAE

(day) 

MAE

(mm) 

182 e  81.1% 27.9 0.26  0.5 ≤  i
≤ 1 45.9% 51.5 0.23 

91 e  74.6% 18.8 0.25  1 <  i
≤ 2 86.0% 30.9 0.25 

30 e  62.0% 12.4 0.24  2 <  i
≤ 3 97.4% 18.7 0.27 

 406 

 407 

Fig. 8 Overview of the detection performance of the SSA-based method for detecting change 408 

points in PWV time series based on a Monte Carlo simulation. The mean absolute errors of the 409 

time index and the magnitude of the detected offsets, are marked with red dots on the axes and 410 

are associated with a success rate of 81.1%. The prominent peak of the histogram indicates the 411 

highest occurrence frequency of the simulation results with 0.05 e mm  and 13 e days .  412 

 413 

The right side of Table 1 shows how successful the method performs in estimating the 414 

magnitude of offsets. The method successfully detected most of the offsets bigger than 1 mm 415 

while about half of the inserted changes with a magnitude of 0.5 to 1 mm are retrieved. Fig. 8 416 

depicts a performance overview of the change detection method in terms of the magnitude and 417 

the time index of offsets.  418 

 419 

Real GNSS-derived PWV data 420 

We applied our homogenization method to a GNSS PWV dataset consisting of 214 stations in 421 

Germany over a 7-year timespan (2010 to 2016). We did not use a reprocessed dataset since 422 

we aimed to detect all possible different changes in the dataset. A sensitivity threshold for the 423 

detection procedure, which is the slightest change detectable by the method, can be chosen 424 
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based on the time series characteristics discussed in the dataset section. The sensitivity of 425 

detection has been set to 0.2 mm for the difference PWV time series and 0.5 mm for both ERA-426 

Interim and GNSS PWV time series. 427 

We first applied the method to identify all possible mean shifts in the GNSS, ERA-428 

Interim, and the difference time series (ERA-Interim minus GNSS) without considering 429 

stations log files. Then, the log files of the GNSS stations were checked to find any support for 430 

the detected changes. Next, we manually inspected the detected offsets and corrected GNSS 431 

time series using the verified offsets. As mentioned earlier, climatic or meteorological effects 432 

can also induce changes in the time series. This type of changes must be left uncorrected. If 433 

changes are detected at more than one station in the same sub-region, only those having a 434 

documented event in the log file, e.g., hardware change, are corrected. 435 

The detected change points and corresponding mean shifts are listed in the 436 

supplementary material. In total, 140 change points were detected of which 134 were related 437 

to the mean shifts in the GNSS time series and 6 shifts were more likely to be originating from 438 

ERA-Interim data. Amongst all detected changes in the GNSS dataset, 45 of them (~34%) are 439 

not supported by the documented changes in the station log files. The detection accuracy,440 

MAE , based on the documented changes in the GNSS dataset is approximately 30 days. 441 

 442 

Linear trends 443 

We apply linear regression to PWV time series of GNSS stations to evaluate the impact of 444 

homogenization on the trend value. It should be noted that the scope of this research is not the 445 

trends themselves; therefore, the readers are referred to e.g. Alshawaf et al. (2018) and Klos et 446 

al. (2018) for detailed discussion about trend estimation in GPS tropospheric time series. 447 

Estimations of the linear trends were carried out for homogenized and not-homogenized GNSS 448 

time series. Fig. 9 shows the trends before and after correction of mean shifts together with 449 

trends obtained from the ERA-Interim data. Note that no correction was implemented on the 450 

ERA-Interim dataset. The figure highlights a clear improvement in the consistency between 451 

the GNSS and ERA-Interim datasets after homogenization. The lower part of the figure shows 452 

the standard error of the linear regression. Lower improvements at some stations, e.g. station 453 

Hamburg with the index 154 (latitude=53.55o, longitude=9.98o), can be related to the remaining 454 

unverified changes specially at the beginning or the end of the time series or at vicinity of a 455 
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gap interval. The unverified changes are the offsets that are detected in the difference time 456 

series but could not be attributed to either of the GNSS or the reference time series. 457 

 458 

Fig. 9 Impact of homogenization on the fitting linear trends of the ERA-Interim and the 459 

GNSS PWV time series (before and after homogenization). 460 

 461 

Regional correlations of the stations were defined and calculated to be used for 462 

evaluating the internal consistency of the GNSS dataset after homogenization. The value of the 463 

regional correlation for each station is a weighted average of all the correlations with other 464 

stations. We used Inverse Distance Weighting (IDW) for calculating the correlations. Fig. 10 465 

reflects an improved internal consistency after the GNSS data is corrected for the mean shifts. 466 

A noticeable regional improvement can be seen over the southwest of Germany (the right panel 467 

of Fig. 10). It should be noted that the upgrade or maintenance procedure of adjacent stations 468 

in a GNSS network might be scheduled and performed consecutively within a short period. 469 

Thus, similar inhomogeneities might be introduced to the time series of nearby stations which 470 

could be misinterpreted as climatic effects if they are not documented. The zero-difference 471 

approach introduced in this study can avoid such a misinterpretation. 472 
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 473 

Fig. 10 Regional correlation of PWV time series for the ERA-Interim and the GNSS datasets 474 

before and after homogenization (left), regional correlation improvement for each GNSS 475 

station (right). 476 

Conclusion 477 

A homogenization method based on Singular Spectrum Analysis (SSA) for detecting and 478 

correcting temporal mean shifts (inhomogeneities) in GNSS-derived tropospheric time series 479 

was introduced. To assess the performance of the method, a Monte Carlo simulation was 480 

performed based on the ERA-Interim dataset. The result of the Monte Carlo process suggests 481 

an overall success rate of 81.1%. The simulation study estimates the precision of 28 days and 482 

0.26 mm for detecting the position of changes and the mean shifts in the undifferenced time 483 

series, respectively. 484 

We used the method to investigate the possible shifts in the Precipitable Water Vapor 485 

(PWV) time series of 214 GNSS stations in Germany. The data was obtained from near real-486 

time PPP processing over a 7-year time span (2010-2016). The method was independently 487 

applied to the GNSS, ERA-Interim and the difference (ERA-Interim minus GNSS) daily time 488 

series of each station to find and verify inconsistencies. In total, 96 GNSS stations were 489 

identified as inhomogeneous containing 134 mean shifts from which 45 changes (~34%) were 490 

undocumented in the stations' log files. 491 

The comparison between the retrieved linear trends from GNSS and ERA-Interim 492 

dataset indicates a significant improvement after homogenization. An increase in correlation 493 

of 39% is seen for the trends after correcting the mean shifts in the GNSS time series.  494 

The proposed method can successfully detect changes with and without reference 495 

dataset. Since using a reference dataset for homogeneity checking tries to make datasets look 496 

like each other, it might contaminate the target time series. Therefore, the homogenization 497 

approach discussed here would mitigate major inconsistencies and provide a more 498 
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homogenized GNSS time series. The homogenized GNSS datasets would be a promising data 499 

source for climatic applications. The capability of the method to find changes in the 500 

undifferenced time series would also make it a useful tool to detect climatic and meteorological 501 

signals. The proposed method can be applied to other regions and for other meteorological 502 

parameters such as pressure, temperature as well as GNSS coordinate time series.  503 
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