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Background
Experts, policy makers and researchers worldwide are scrambling to keep up with 
the influx of potentially relevant COVID-19 studies. Research is being published at 
an unprecedented pace and in volumes never seen before. Whereas a traditional peer 
review- and journal-based publication process would take 6–12 months, research find-
ings now often find their way to readers in a matter of days or weeks. The use of preprint 
servers, with only cursory quality checks, is increasing. While this has had a positive 
impact on knowledge dissemination speed in the medical sciences, this arguably comes 
at a cost to quality, reliability and trustworthiness [1].
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The need for timely, informed and quality-assessed knowledge is widely recognised as 
crucial for handling the ongoing COVID-19 pandemic. One initiative to meet this need, 
known as the Living Evidence Map Project, was launched at the Norwegian Institute of 
Public Health (NIPH) within their Division for Health Services [2]. The NIPH has a large 
team of experienced review authors that regularly conducts systematic reviews of medi-
cal science research, this as part of their mandate to inform evidence-based decisions 
pertaining to prevention and infection control. Evidence maps provide a useful overview 
of the literature, but since many of the workflow steps overlap, they can be seen as a pre-
cursor towards the production of systematic reviews.

The challenge with the current approach to evidence mapping is that it is currently 
mostly manual and requires considerable amounts of expertise from the reviewers. 
This leads to a review and coding process that is already struggling to keep up with the 
volume of incoming publications and that is hard and costly to scale. We believe that 
technologies of medical language processing, knowledge extraction and machine learn-
ing have the potential to assist and amplify the expertise required to produce systematic 
reviews and evidence maps.

Automation was not introduced to synthesising medical evidence in the past since it 
was thought to be inadequate and would potentially only increase the amount of work 
needed, adding effort and time to check over machine results. We began with exploring 
past work that assessed the use of text mining to support systematic review workflows. 
Projects from years prior to COVID focused on the literature screening phase of the 
work process and some have been implemented in the current reviewing support sys-
tems [3].

Although the screening tools have been implemented into workflows, NIPH has no 
automated support that would speed up coding procedures. We have initiated a series 
of experiments to explore multi-label deep learning classification to help with this task. 
In this work, we conduct four experiments in order to assess the possibilities of using 
deep learning techniques in the evidence mapping workflow. Automated approaches are 
evaluated based on measurements of precision and recall, however, we know very lit-
tle about what this means to those who wish to implement automation into workflows 
where a high-quality knowledge product is expected as the result. We hope to learn 
more about acceptable error rates when applied to a real-life needs and workflows. 
Therefore, our research is centred around the question of whether it is possible to reduce 
manual efforts while at the same time maintaining high-quality evidence maps.

We received a set of training data from NIPH as a result of their manual coding to pro-
duce evidence maps for COVID-19, and we focused our research questions on explor-
ing the classification of publications for automated coding. Our main research question 
centres on performance when using deep learning models to classify the COVID-19 
research literature: Can we expect an accurate classification of clinical research topics, 
publication type, and data types using only publication titles and abstracts?

We believe that this work will provide the groundwork for understanding the imple-
mentation of machine learning and deep learning techniques in real-life clinical scenar-
ios and workflows. The Allen Institute for Artificial Intelligence put forth the CORD-19 
dataset [4] which is a set of scientific publications available related to COVID-19 as well 
as related historical coronavirus research, including SARS and MERS. We make use 
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of this dataset in our experiments, and seek to tie the challenges outlined to the needs 
related to evidence mapping and generation of systematic reviews.

The NIPH coding workflow

In the NIPH coding workflow, incoming articles that will be coded for inclusion in the 
evidence maps have been screened and quality controlled. In this context the term “cod-
ing” means manual classification of each article according to a predefined set of discrete 
categories, e.g. paper topic (diagnosis, etiology etc.) or data type (primary data, second-
ary data etc.), some of which will be discussed in more detail later. The articles include 
those that their collaborator, EPPI-Centre [5], has already screened (using a combination 
of machine learning and manual methods.) These are supplemented with studies from 
NIPH’s own searches. As of 15 July 2020, the map contains 6513 publications catego-
rised by topic, population, and publication type.

The categorisation process is labour-intensive. Depending on the study, it may take 
3–15 min to code a paper. Studies from the corpus are randomly allocated to two coders, 
a “core coder” and an “external coder”. The core coder has the ability to see the external 
coder’s coding. When the external coder codes first, the core coder can see those codes 
while coding themselves. The process is manual and is done to increase the speed of 
work for the core coder who has greater expertise.

The breadth of studies brings with it many publication types and topics that are not 
always easy to categorize. In the case of disagreement between coders, differences are 
discussed in a reconciliation meeting. This process usually means that the core coder’s 
codes are adopted as the final version, and sometimes with some extra codes added after 
input from the external. This is on-the-ground learning for the external coder, because 
it’s really the only time they see how a study “should” be coded. The benefit of this pro-
cess is a continuous overview over the consistency in the coding efforts. Differences in 
coding may be due to different viewpoints or human error, but were mostly resolved 
without the need of a third researcher to adjudicate.

NIPH has 28 coders in total, all with a research or medical background. There are 15 
external volunteers and 13 from the Norwegian Institute of Public Health. There is a 
programme to train new coders with the coding process, with an introduction to the 
necessary software and the NIPH coding manual. Following the training, new coders are 
then paired up with an experienced coder to continue training on-the-job, with weekly 
discussions for general questions or specific studies. During these discussion rounds, 
any disagreements in coding are discussed and reconciled. Currently coders are manag-
ing to code over 10 studies per hour.

NIPH has created its own coding system with an accompanying manual describing 
all codes in detail, this with the aim of reducing ambiguity. The NIPH coding manual 
has developed throughout the project to address the developing research. This dynamic 
approach has allowed for much-needed flexibility, but at times this can require consider-
able work to realign older codes.

Related work

Deep learning machine learning models are seeing increased use for a wide variety of 
natural language processing (NLP) tasks [6], motivated by the ability to produce results 
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that improve on the performance of previous-generation machine learning methods. 
For text classification, they have surpassed traditional methods for tasks such as senti-
ment analysis, news categorization and natural language inference [7]. In the medical 
domain, there has been a great deal of focus on deep learning for medical image process-
ing [8] but other avenues of research are continuously opening up. For example, it has 
been shown to perform well for identifying relevant publications from medical litera-
ture, especially when considering that less time is spent on e.g. feature engineering and 
MeSH term linking [9]. Convolutional neural networks, a particular deep learning archi-
tecture, have shown promising performance for tasks such as automated ICD-9 coding 
[10] and de-identification of clinical texts [11]. A recent study concluded that the use of 
deep learning methods has yet to fully penetrate clinical natural language processing but 
also that usage was increasing rapidly [12].

Production of evidence maps, systematic reviews as well as best practice guide-
lines have been discussed in terms of the ecosystem of healthcare system data. Con-
necting and reusing health data is an essential aspect to implementing precision 
medicine. The flow of data from patient care and clinical trials to published results 
and observations, and through the cycle of summarization and reuse to inform care 
has also been connected to the concept of learning healthcare systems. Even prior to 
the COVID-19 crisis, the issues and problems have been identified as evolving and 
cutting-edge research [13]. Recently published discussions on evidence ecosystems 
call for more coordinated and integrated synthesis that is relevant, trustworthy, and 
useful for decision making [14].

Recent publications and work from 2016 until the present time has originated from 
the group at the National Centre for Text Mining, University of Manchester. They 
focused their research on the literature screening phase of the systematic review 
process, with methods developed for prioritizing references [15], document cluster-
ing using a predictive network [16], and topic detection [17]. In addition, they built a 
prototype based on the sum of their work, Robot Analyst. The work was completed 
as part of a funded project titled Supporting Evidence-based Public Health Interven-
tions using Text Mining with collaboration of the University of Liverpool Machine 
Learning and Data Analytics group, and the National Institute for Health and Care 
Excellence (NICE). This group was influential and together with the EPPI systematic 
review tool developers at UCL, EPPI implemented screening functionality into their 
production system.

There are several other examples of research on reducing the manual effort asso-
ciated with classification of scientific literature. A 2006 study by Cohen et al. used 
machine learning for automated classification of document citations, this with the 
purpose of aiding experts in updating system reviews of drug class efficacy [18]. 
Moving beyone the medical domain, work has been done on e.g. classification of 
mathematical research [19] and on general research literature with the purpose of 
applying the correct Dewey Decimal Classification code [20]. While much work 
focuses on classification of English-language literature, examples of using machine 
learning methods for automated coding of scientific literature in the Russian lan-
guage [21]. Most approaches appear to be based on supervised learning but use of 
unsupervised learning also exists [20].
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Methods
The coding data was exported as a JSON file on May 4th, 2020, from the EPPI-Mapper 
[22] tool used by NIPH. It had two main sections, CodeSets and References, con-
taining respectively the coding definitions and the publications with the applied codes. 
To get a better feel for the type and volume of data available to us we analyzed the data 
coverage in the CodeSets and References sections.

The codes in the CodeSets section has a tree structure where each attribute node has 
an ID, a name, a description, a set ID, a set description and a type. Parent nodes also has 
a list of child attributes. In total there are 40 parent attributes and 223 leaf attributes.

There was a total of 1332 references. Each reference section had a number of metadata 
fields. Some of these, such as Abstract, Authors and Volume were directly related to the 
associated publication. The rest of the fields, such as Codes and Comments contained 
data that had been added by the coders during the publication coding process. Table 1 
shows an overview of how well these fields are covered in the dataset. We see that Codes 
coverage is complete, as could be expected, while Comments and Keywords are more 
sparsely used. As for bibliographic data, the publication Title is always present while 
some Abstract entries are missing. The journal or conference title is found in the Parent-
Title field which is absent in only 1 case. The ItemId field was confirmed to be unique. 
The Keywords value, if available, contains a newline separated list of coder-provided key-
words. In conversations with NIPH we learned that their coders did not add keywords 
and that the origin of this information is therefore of uncertain quality.

For 181 reference entries the abstract is missing, which means that very little textual 
data beyond the title, keywords and comments is available as classification features. To 
alleviate this we attempted to link the references without abstracts to the COVID-19 
Open Research Dataset (CORD-19) [4], specificially to the main metadata.csv file, 
using publication title and DOI as linking identifiers. The results can be seen in Table 2, 
showing that matching on DOI performed the best but even then only 33 missing 
abstracts could be found. We did not do any normalization on the link values apart from 
converting to lower case so it is possible that some links were missed this way. It is also 
possible that in many cases abstracts are simply not available. We decided to augment 
the data used for the experiments with the additional abstracts found from DOI match-
ing so as to maximize the amount of data available to us.

To get a feel for how the coding practice has evolved we looked closer at the DateCre-
ated (when a reference was imported into the system) and DateEdited (when a reference 
was coded) fields. Figure 1 shows how many references were imported and coded per 
week for the duration of the data sets. The number of coded references increase towards 
the latter half of the period. The team started with 4 coders and by week 14 this number 
had increased to 10, the majority of whom were part-time coders. Note that using this 
field to assess initial coding time is not entirely accurate as sometimes the post-coding 
quality control process would lead to a reference being recoded. There is also a chance 
that any administrative changes to other fields could impact the value of the DateEdited 
field.

We then looked at how the actual codes were distributed across the code hierarchy. 
Many of the codes had an associated AdditionalText field with comments made by the 
coder; coders were instructed to use this field to flag things for discussion during the 
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coding reconciliation process. Other than that there was no additional metadata. Table 3 
shows some key numbers regarding code use. Several of the code attribute IDs could not 
be found in the code set. For some reason some of the coded attribute IDs mapped to 
the attribute set IDs rather than the standard attribute IDs; this needs to be investigated 
further.

Table 1 Reference field coverage

Key # References Cov. (%)

Abstract 1151 86.41

Authors 1321 99.17

Availability 0 0.00

City 9 0.68

Codes 1332 100.00

Comments 689 51.73

Country 0 0.00

CreatedBy 1324 99.40

DOI 1216 91.29

DateCreated 1332 100.00

DateEdited 1332 100.00

EditedBy 1332 100.00

Edition 0 0.00

Institution 464 34.83

Issue 316 23.72

ItemId 1332 100.00

ItemStatus 1332 100.00

ItemStatusTooltip 1332 100.00

Keywords 446 33.48

Month 1 0.08

OldItemId 1332 100.00

Outcomes 0 0.00

Pages 513 38.51

ParentAuthors 0 0.00

ParentTitle 1331 99.92

Publisher 8 0.60

ShortTitle 1332 100.00

StandardNumber 506 37.99

Title 1332 100.00

TypeName 1332 100.00

URL 943 70.80

Volume 449 33.71

Year 1332 100.00

Table 2 Matching FHI data with CORD-19 data

Match element Matches Matches 
w/ abst.

Title 123 28

DOI 127 33
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For each code found in a reference we stored the reference ID so as to know how many 
references are available for a given code. Table  4 shows an overview of the top-level 
codes and for how many references in the full data set these codes have been applied, 
sorted by the number of coded references. Codes used only once or never are not shown. 
We see that data coverage is incomplete for all but the top 5 top-level codes. The more 

Fig. 1 Coded references per week

Table 3 Coding statistics

Number of codes 25,133

Avg. number of codes per ref. 18.9

Number of comments 265

Number of unknown codes 1234

Number of unique unknown codes 25

Table 4 Root code use

Class # Refs

Publication type, detailed 1332

Publication type 1332

Data type 1332

Population 1332

Topic 1332

Topic: Diagnosis 454

Topic: Aetiology 452

Topic: Prognosis 424

Topic: Prevalence 206

Topic: Interventions to treat the infected patient 162

Topic: Interventions targeted at system level to improve management of the pandemic 143

Topic: Experiences and perceptions; consequences; social, political, economic aspects 126

Topic: Infection prevention and control 119
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specific topic codes in the bottom half of the table contained more detailed drilldown 
into the various subtopics. In our experiments we ended up focusing on the Topic, Data 
Type and Population codes, the main reasons being that they all had single-level coding 
hierarchies and reasonably well distributed classes.

Results
For our experiments we made a selection of codes that we thought would be best suited 
as classification labels, with the selection criteria being the amount of data and over-
all class balance. All experiments were run using the Keras deep learning framework 
[23]. Keras was chosen because it is a popular and increasingly used framework which 
also provides several convenience functions to lessen the workload both for text pre-
processing and the general machine learning experiment workflow. We relied on the 
default TensorFlow [24] symbolic math library backend. The choice of deep learning 
machine learning methods is not only motivated by recent performance advances but 
also because they usually reduce the need for activities such as feature engineering [25]. 
For the rest of the discussion, we will refer to codes as labels given that this is a more 
common terminology for classification tasks.

Experiment 1: classifying topics from the publication title

For our initial experiment we wanted to build a classifier for the Topic label, as shown 
in Table 5. The goal is to correctly classify the topic based on information available to 
us, such as the publication title, the abstract, the publication outlet and so on. The total 
number of applied labels is 2084. Since this exceeds the number of references it follows 
that some of the references must be labelled with multiple topics, making this a multi-
label classification task. While some topics occur more often than others, there are no 
topics that are exceptionally scarce and the dataset is relatively balanced.

We first attempted to use only the publication title as input for our features. The 
primary benefit of using the title is that we know that it always will be present in the 
dataset. We put all titles into the Keras Tokenizer API, which splits on whitespace, 
removes punctuation, lowercases all tokens and outputs a bag-of-words-encoded fea-
ture matrix with a selected output mode. Each row in the matrix has a vector with the 
size of the vocabulary, with each word having its own position. In our case we relied 
on the count mode which means that the word frequency is used as a feature value. 

Table 5 Reference count (Topic)

Class # Refs

Topic 1332

Prevalence and incidence 205

Etiology 452

Diagnosis 454

Infection prevention and control 119

Interventions to treat the infected patient 162

Interventions targeted at system level 142

Prognosis 424

Experiences and perceptions; consequences; social, political, economic aspects 126
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For all experiments we set a maximum vocabulary size of the 1,000 most frequent 
words in the corpus.

We decided to start with the simplest possible neural network architecture, using 
a sequential model with three dense layers, each having 64 units. The number of lay-
ers was set after some initial experimentation to make sure that the model would not 
be lacking in representational power. The number of layers and units was motivated 
by similar classification examples as described by the creator of Keras [25] rather 
than previous experience. Each layer used the relu activation function. The fourth 
and final layer had 8 units, corresponding to the number of classes, and a sigmoid 
activiation function. As per recent best practices for this type of classification task 
we used the Adam optimization algorithm, a binary_crossentropy loss function 
and, since this was a multi-label classification problem, the categorical_accu-
racy evaluation metric. We also added precision and recall metrics as these would 
be more useful in practice for evaluation purposes. Batch size was set to 128. Since 
we had a fairly small amount of data to work with we used 4-fold cross validation for 
all experiments, averaging the results. The number of epochs was set by doing trial 
runs with 20% of the training data set aside for validation. We then observed the loss 
function output and chose the final number of epochs to roughly correspond with the 
loss function minimum, this to avoid overfitting. For the final run we used all avail-
able data for training and ignored validation. When evaluating on the data set aside 
for testing we would end up with a vector of values between 0.0 and 1.0. If the value 
was above a threshold of 0.5 we interpreted this as a positive prediction for the given 
class.

Table  6 shows the classification results for the Topic label in the form of average 
precision, recall and F1 metrics as well as the standard deviation. We see that pre-
cision is in general better than recall, while recall seems to be positively correlated 
with the amount of training data. For the classes with less data the precision standard 
deviation is high and results would fluctuate considerably between each run. The dif-
ference between precision and recall performance could be explained by the lack of 
data in the titles: the model picks up on commonly occurring words which makes for 
safe predictions while the majority of titles have too little information to make a good 
prediction.

Table 6 Topic classification results from title

Class Precision Recall F1

Diagnosis 0.71 (0.06) 0.61 (0.08) 0.66 (0.07)

Etiology 0.69 (0.04) 0.52 (0.08) 0.59 (0.04)

Experiences and perceptions; consequences; social, 
political, economic aspects

0.80 (0.10) 0.38 (0.07) 0.51 (0.07)

Infection prevention and control 0.72 (0.23) 0.11 (0.02) 0.18 (0.03)

Interventions targeted at system level 0.23 (0.27) 0.08 (0.12) 0.11 (0.17)

Interventions to treat the infected patient 0.73 (0.06) 0.39 (0.04) 0.51 (0.04)

Prevalence and incidence 0.63 (0.07) 0.28 (0.03) 0.39 (0.04)

Prognosis 0.73 (0.05) 0.61 (0.04) 0.66 (0.02)
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Experiment 2: classifying topics from the publication abstract

For the next experiment we stuck with the Topic coding from experiment 1 but switched 
the input data source from the title to the abstract. This would presumably give the deep 
learning model more data to work with. We kept all other tokenization parameters and 
model hyperparameters equal, including the network architecture.

Results from classifying the Topic label based on abstracts are found in Table 7. The 
most noticeable difference is that both precision and recall have improved for the classes 
that performed poorly in the previous experiment. The abstract will in most cases be 
substantially longer than the title and as such there is more information to work with for 
the neural network model, thus improved performance is as expected.

Experiment 3: classifying publication type from the publication abstract

We repeated the same experiment, using the abstracts as a basis for our features but this 
time attempting to classify for the Publication type label. The class distribution can be 
seen in Table 8. As before, this is a multi-label classification task but this time publica-
tions are much more likely to have a single label applied.

With all parameters from the previous experiments kept equal the results are shown in 
Table 9. Performance for the Studies and modelling class is best but this is also by far the 
most prevalent class.

Experiment 4: classifying data type from the publication abstract

This experiment was again similar to the previous one but now for the Data type label. 
This label says something about the kind of data, if any, that was used in the publication. 
Table  10 shows the class distribution and that most of the reviewed publications deal 
with primary data.

Results of this experiment can be seen in Table 11.

Table 7 Topic classification results from abstract

Class Precision Recall F1

Diagnosis 0.72 (0.09) 0.68 (0.06) 0.70 (0.03)

Etiology 0.69 (0.06) 0.50 (0.04) 0.58 (0.04)

Experiences and perceptions; consequences; social, 
political, economic aspects

0.79 (0.08) 0.45 (0.05) 0.57 (0.06)

Infection prevention and control 0.77 (0.13) 0.21 (0.05) 0.33 (0.07)

Interventions targeted at system level 0.65 (0.21) 0.15 (0.07) 0.23 (0.10)

Interventions to treat the infected patient 0.75 (0.08) 0.38 (0.04) 0.50 (0.04)

Prevalence and incidence 0.71 (0.06) 0.30 (0.06) 0.42 (0.05)

Prognosis 0.74 (0.02) 0.56 (0.06) 0.63 (0.03)

Table 8 Reference count (Publication type)

Class # Refs

Publication type 1332

Systematic reviews 156

Studies and modelling 1051

Non-systematic reviews and others 194
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Experiment 5: classifying topics from the publication abstract with CNN and pre‑trained 

word embeddings

The final experiment is a repeat of experiment 2 but this time with a more advanced 
architecture which is also supported by pre-trained word embeddings. We used the 
100-dimensional GloVe embeddings of 400K words which is based on data from Wiki-
pedia [26]. Individual words were mapped to known embeddings and then fed into an 
embedding layer. We also used the Keras Bidirectional, GRU , Conv1D, Globa-
lAveragePooling1D and GlobalMaxPooling1D layers, effectively implementing 
a bidirectional recurrent neural network.

Results from classifying the Topic label based on abstracts with this alternative archi-
tecture can be seen in Table 12. When compared with experiment 2 results are either 
equal or slightly worse. It is reasonable to assume that the lack of training data is a con-
tributing factor.

Discussion
A common issue with all experiments was lack of labeled data, which would definitely 
impact classification performance. Also, we only used the title or the abstract for fea-
tures, which would impact some of the experiments. Beyond sparse data we know 
from conversations with NIPH that some of the Topic labels are impossible to infer 
from the publication title alone, which may explain the performance improvement 

Table 9 Publication type classification results from abstract

Class Precision Recall F1

Non-systematic reviews and others 0.52 (0.41) 0.05 (0.06) 0.08 (0.11)

Studies and modelling 0.86 (0.02) 0.98 (0.01) 0.92 (0.01)

Systematic reviews 0.91 (0.07) 0.53 (0.08) 0.67 (0.07)

Table 10 Reference count (Data type)

Class # Refs

Data type 1332

Primary data 789

Secondary data 231

Modelled/computed 271

No data (i.e. comment, editorial) 74

Table 11 Data type classification results from abstract

Class Precision Recall F1

Modelled/computed 0.77 (0.09) 0.66 (0.05) 0.71 (0.04)

No data (i.e. comment, editorial) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Primary data 0.80 (0.02) 0.92 (0.02) 0.86 (0.01)

Secondary data 0.89 (0.04) 0.50 (0.01) 0.64 (0.01)
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in experiment 2 where the abstract was used instead of the title. At the same time, 
some of the other classes see no—or even a negative—boost to performance. The sim-
ple bag-of-words representation may be partly at fault. In addition, for some pub-
lications no abstract is available, even after augmenting with additional abstracts 
from the CORD-19 dataset. Finally, a key limitation is that we have no information 
on which parts of the abstract that lead the coders to make a coding decision. This 
makes the contribution of the abstract somewhat less precise. We do know, however, 
that the full text article has been consulted in cases where the coder was not able to 
make a decision from the abstract alone. We attempted to increase the vocabulary 
size to 10,000 words and observed some improvement to precision but typically at the 
expense of recall.

For experiment 3, classifying Publication type, we see that systematic reviews are 
much more likely to be both detected and classified correctly than non-systematic 
reviews; a reasonable explanation for this is that the former is much more likely to be 
explicitly named in the abstract than the latter, which is also a generic grouping cat-
egory for “everything else”.

A similar observation can be made for experiment 4. As with the previous experi-
ment, the No data class is likely to suffer from being implicit rather than explicit: 
from the reviewer’s point of view this label is applied in the absence rather than the 
presence of information.

A general source of error for all experiments is that the quality of the initial labeled 
publications is likely to fluctuate, especially for the earliest efforts. This is natural for 
any type of manual coding and classification project: it takes time for best practices to 
be established and knowledge to be disseminated among coders and the coding guide 
is likely to go through several revisions based on lessons learned during the coding 
process. Once more data is available this should become less of a problem.

When looking at ways to improve performance from a data point of view, an obvi-
ous activity would be to add additional training data. Since the evidence map project 
is still ongoing, additional coding data is being created and will provide a valuable 
basis for future experiments. Moreover, as the coders get more practice and experi-
ence the quality is likely to improve. Another possible effort is to improve the preci-
sion of the coding by having coders highlight the parts of the text that support their 
coding decision. This could improve the classifiers by allowing for more targeted 

Table 12 Topic classification results from abstract (bidirectional RNN)

Class Precision Recall F1

Diagnosis 0.78 (0.05) 0.58 (0.03) 0.67 (0.01)

Etiology 0.70 (0.03) 0.47 (0.06) 0.56 (0.03)

Experiences and perceptions; consequences; social, 
political, economic aspects

0.77 (0.11) 0.40 (0.05) 0.51 (0.02)

Infection prevention and control 0.53 (0.09) 0.19 (0.06) 0.28 (0.08)

Interventions targeted at system level 0.59 (0.07) 0.11 (0.08) 0.16 (0.12)

Interventions to treat the infected patient 0.76 (0.05) 0.29 (0.04) 0.41 (0.03)

Prevalence and incidence 0.54 (0.00) 0.28 (0.17) 0.34 (0.15)

Prognosis 0.67 (0.02) 0.55 (0.05) 0.61 (0.02)
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training. Since the full publication text has also been used, integrating full text where 
possible—or just indicating when this is the case—could make a positive difference. 
It is also worth noting that the code book specification has been simplified since our 
initial data export, which should make future classification easier.

Comparing the performance of our results with that of similar research on automated 
classification of scientific literature is not straightforward but some observations can be 
made. For example, in [21] we see F-scores of around 0.50 which is in the same area as 
our experiment 2, which had the largest number of classes. This study had a much larger 
training set but it is difficult to compare the complexity of the tasks. Often there are 
strict requirements that a high level of recall must be sustained, such as e.g. 0.95 in [18]. 
We have left considerations of what the acceptable recall—and the subsequent effect on 
workload reduction—for our task is for future work. In [19] the best F1 score was almost 
0.90 but again with a more training data to work with.

Conclusions
We wanted to investigate if it was possible to use machine learning, specifically deep 
learning-based neural network models, to replicate a coding and classification scheme 
applied by expert coders over a perid of several weeks to COVID-19-related publica-
tions. Our experiments showed that even with the simplest possible text representations 
and generic neural network architectures it was possible to get promising results.

To improve results further a natural place to start would be experimenting with deep 
learning architectures and best-practices that are better geared towards text classifica-
tion, not the least when it comes to making use of word context and embeddings rather 
than the simple one-hot encoding currently employed. We conducted one experiment 
using external pretrained embedding vectors but they did not provided any performance 
boost. Further experiments with more data are highly relevant. Also, for small data sets 
traditional approaches such as support-vector machines often exhibit comparable per-
formance to neural nets and thus warrants a comparison. Since both the evidence map 
project and the ensuing research collaboration came about in a rush we hope to address 
these improvements in future work. The aim of this paper is not methodological novelty 
but rather to highlight the potential of a unique handcrafted dataset.

The long-term goal is to build classifiers that can be used as a basis for coding process 
and decision support, thereby reducing the time spent and effort needed by the coders. 
While high classifier performance is a key requirement, the importance of user interface 
should not be forgotten. This is a particular challenge for applications where machine 
learning is a key component. The suggested codings will never be perfect and it is there-
fore crucial to establish a coder workbench that allows for both approving, modifying 
and rejecting the automated suggestions while at the same time allowing for manual 
review and oversight. Given that the coding will be an ongoing process, finding ways to 
iteratively improve the classifiers would be of particular interest. The history of health-
related decision support applications is both long and chequered—but with several les-
sons to learn from [27].

For our experiments in this paper a simple evaluation against the gold standard was 
sufficient. However, when applying the classifiers towards assisting the coding process 
different evaluation metrics must be considered, e.g. the time spent coding and changes 
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to inter-coder agreement. Automated approaches are evaluated based on measurements 
of precision and recall but we know very little about what this means to those who wish 
to implement automation into workflows where a high-quality knowledge product is 
expected as the result. More knowledge is needed about acceptable error rates when 
applying decision-support technology to real-life needs and workflows.

While these initial experiments show promise for automated coding it is unlikely 
that the need for manual verification will be completely eliminated. Nonetheless, the 
amplification of highly skilled manual labor will improve quality, timeliness and fre-
quency of updates by automating repetitive chores, new content detection, evidence 
integration, validation and consistency of results. Explainable artificial intelligence 
(AI) and explicit semantic reasoning in verifiable processes will allow experts to 
make predictable and trustable high-quality evidence maps. While we see immediate 
short-term potential in improving how knowledge is communicated for handling the 
COVID-19 crisis, the proposed technology can also have longer-term effects on med-
ical information dissemination and management. As research communities become 
more advanced, global and specialised, the need for handling information flow and 
establishing best practices is unlikely to subside.
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