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Abstract

Multiphase flow and the transient behavior of the dispersed phase is important to nu-
merous industrial applications. Predictive modeling of the dispersed phase would be
beneficial in designing, for example, phase separation equipment. A possible framework
for modeling of the dispersed phase is the population balance equation. As the dispersed
phase may undergo breakage, the breakage phenomena must be sufficiently understood
to formulate universally predictive models describing the breakage processes. However,
additional data from experimental investigations is required as the current understanding
of the breakage phenomena is not at the required level.

In this work, the breakage phenomena are investigated experimentally by high-speed
imaging of single octanol droplets in a turbulent water flow. A new experimental facility
has been designed and constructed to perform the investigation. To determine the design
criteria of the experimental facility the derivation of available turbulent breakage models
were examined. In addition, a review of previous experimental setups and a review of
isotropic turbulence facilities were performed. Four criteria were identified as critical for
experimental investigation of turbulent droplet breakage. One, single droplets should
be considered. Two, the entire breakage event must be observed by high-speed imaging
and the procedure for extracting data must be transparent and well defined. Three, the
experiments must be repeatable and reproducible as several experiments under the same
conditions are required. Four, the region of breakage should be defined by known local
flow conditions exhibiting low gradients in the turbulence level. To fulfill the determined
criteria, a facility utilizing channel flow was constructed.

A LDV investigation was performed to characterize the continuous flow conditions.
The resulting instantaneous velocity measurements were used to obtain the turbulent
kinetic energy. Taylor’s frozen hypothesis was used for estimating two-point correlations,
which were used to obtain the turbulent kinetic energy dissipation rate.

A well-defined image analysis procedure was defined, elucidating the procedure of
interpreting individual videos of breakage. Two interpretations of the breakage event,
the initial breakage event definition and the cascade breakage event definition, were
considered in the analysis.

To combine the information obtained from several videos, a clearly defined statistical
analysis procedure was provided. In the procedure a quantitative precision of the mea-
sured quantities were obtained using 95% confidence intervals. Based on the statistical
procedure it was determined that the number of investigations required for statistically
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relevant results were ∼ 30.
Single octanol droplet experiments were performed and investigated to elucidate the

breakage phenomena. The impact of both the mother drop size and the turbulence
characteristics could be investigated, as each breakage event was associated with known
local flow conditions from the LDV investigation. Known model concepts could be
fitted to the data for the breakage time and the breakage probability with reasonable
accuracy. However, the model coefficients were different from previous investigations,
thus the models can not be considered to be universal. The average number of daughters
and the daughter size distribution function exhibits behaviors which are not in agreement
with available model concepts.
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Chapter 1

Background

1.1 Introduction

Phase separation of oil, gas and water is critical for oil and gas production, where the
treatment of produced water is among the most important aspects. The amount of
water produced is increased as fields mature and may surpass the produced amount of
oil [1]. The produced water must either be discharged or re-injected into the reservoir.
For discharging, there is an upper limit to the amount of oil-in-water which is allowed
for pollution concerns [1]. The amount of oil-in-water is also important for re-injection
to avoid formation plugging or reduced injectivity [2]. Hence, the equipment for phase
separation is pivotal for efficient production of oil and gas.

1.1.1 Phase Separation

The separation of oil and water can be achieved in a horizontal three-phase gravity
separator. These separators consist of large cylindrical vessels with low fluid flow velocity
and long residence times. The working principle is that the difference in density between
the oil and water phases results in a buoyancy force on the dispersed phase. In turn, the
oil settles in a layer on top of the water when given sufficient time.

The important forces acting on a dispersed droplet in either phase is the buoyancy,
drag and gravity. The buoyancy can be given as

FB = gρcπD
3/6 (1.1)

where ρc is the density of the continuous phase, D is the diameter of the drop and g is
the gravitational constant. Similarly, the force of gravity can be given as

FG = gρdπD
3/6 (1.2)

where ρd is the density of the dispersed phase. For a rigid sphere in laminar flow and
very low Reynolds numbers (ReP � 1), Stokes showed that the drag force can be found
by theoretical analysis [3]

FD = 3πµcDurel (1.3)
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where µc is the viscosity of the continuous phase and urel is the velocity of the particle
relative to the continuous phase. ReP is given as

ReP =
utD

ν
(1.4)

where ν is the kinematic viscosity of the continuous phase and ut is a terminal velocity
which is achieved when the buoyancy, drag and gravity forces are in equilibrium. Sum-
ming the forces as FB − FG − FD = 0 the expression for the terminal velocity can be
given as

ut =
(ρc − ρd)D2 g

18µc
(1.5)

This classic expression is valid in the narrow range of ReP � 1. Larger droplet sizes fall
outside this range and a general drag force for these droplets can be given as

F ′D =
1

2
CDρcAu

2
rel (1.6)

where A = πD2/4 is the projected area normal to the relative velocity and CD is a drag
coefficient. The expression for the terminal velocity based on the general drag force (1.6)
becomes

ut =

√
4

3

(ρc − ρd)D g

ρc CD
(1.7)

From this expression, it can be seen that the terminal velocity is sensitive to the droplet
diameter and drag coefficient. However, the correct drag force on a droplet outside of the
Stokes law regime is complex. For example, a droplet may deform and exhibit internal
flow which affects the drag force [4, 5]. The following discussion of CD is limited to the
better understood drag coefficient of a rigid sphere in a steady uniform flow field. Under
these conditions, CD can be shown to be a function of ReP only [5] and can be given
by the standard drag curve, shown in Figure 1.1. As can be seen from the figure, CD
is at its maximum value for low ReP and decreases significantly as ReP increases until
ReP . 103. For larger ReP the drag coefficient increases slightly until ReP ∼ 105 where
the flow around the particle becomes turbulent [4], causing a sharp drop in the value of
CD.

Assuming that the drag coefficient of a rigid sphere can describe the drag coefficient
of a drop, it follows that larger drops have both a larger diameter and a lower drag
coefficient than smaller drops. The corresponding terminal velocity (1.7) of larger drops
is bigger than for smaller drops, thus larger drops require shorter residence times in the
separator for phase separation to be achieved. The design of phase separation equipment
should account for this effect of larger drops, and attempt to mitigate the amount of
breaking drops.

The specific design and internal components of individual gravity separators may vary
depending on design constraints, inlet conditions, etc. For example, offshore installations
have stricter size constraints than onshore installations [6]. Nevertheless, the general
design of a gravity separator remains the same, for which a simplified sketch is shown in

2



Figure 1.1: The standard drag curve; the drag coefficient of a rigid sphere in a steady
uniform flow as a function of ReP [4]

Figure 1.2. The critical parts are the inlet, separate outlets for each phase and a weir.
The three phases to be separated enters at the inlet. The gas phase outlet is placed at
the top of the separator, while the denser oil and water phases have their outlets at the
bottom of the separator. To separate the oil outlet from the water phase, the weir is
placed after the water outlet. The weir stops the flow of water, but as the top of the oil
layer reaches higher than the weir, the oil overflows into the section containing the oil
outlet.

Gravity separators are often equipped with an internal device designed to lower the
horizontal velocity, which increases the residence time. Traditionally, this device was
a plate facing normal to the inlet flow, called a momentum breaker. The momentum
breaker facilitates breakage of the dispersed phases due to the large forces required for
the abrupt negative acceleration of the flow. An improvement is the schoepentoeter
device which dampens the horizontal velocity more smoothly [6], reducing the amount
of breakage induced.

Phase separation could be improved by moving the separation equipment subsea.
When separation occurs closer to the well there is less agitation and mixing of the phases
as they are transported through fewer valves, chokes and other equipment. Additional
advantages are de-bottlenecking of topside separation facilities and increased production
[7]. On the other hand, subsea separation comes with a significant disadvantage; the
cost associated with installation, reparation and replacement is very high at remote
locations and great depths. Larger equipment such as phase separators further increases
the costs. The designed equipment must be robust as well as cost and size efficient for
subsea separation to be a viable concept.

3



Inlet
Gas Outlet

Water Outlet Oil Outlet

Figure 1.2: Schematic drawing of a horizontal gravity separator.

1.1.2 PBE and Breakage Modeling

Improved modeling of the multiphase flow is a promising approach for enhancing the
equipment design process. A model framework for phase separators must account for the
size distribution of the dispersed phase due to the importance of droplet size in phase
separation. One such framework is the population balance equation, PBE [8]. The PBE
dynamically describes the dispersed phase particles as they are transported, coalesc-
ing and breaking. In closing the PBE, the source terms representing coalescence and
breakage must be modeled. These source terms consists of underlying kernel functions,
shortened to kernel functions.

Several models have been developed for the source terms representing fluid particle
breakage, which have been reviewed by e.g. Lasheras et al. [9], Liao and Lucas [10]
and Solsvik et al. [11]. The current models for breakage in liquid-liquid dispersions
are not predictive as the complex breakage phenomena are not sufficiently elucidated
[12, 13]. The breakage models, e.g. Coulaloglou and Tavlarides [14], have traditionally
been validated with experimental data from dense dispersion studies. In these investi-
gations [14, 15, 16, 17] the dispersed phase is observed at separate time instances and
locations. The model parameters are subsequently adapted or fitted to the experimental
data, assuming that the model will predict the observed change in the dispersed phase.
The assumptions made in the model development are neither verified nor disproved in
this procedure as individual breakages are not observed. To elucidate the breakage phe-
nomena and verify model assumptions single droplet studies are required. Here, the
entire single droplet breakage events can be observed, allowing for insight into the mech-
anisms of breakage. For example, almost all models assume that breakup always results
in two daughters, but this assumption is contrary to what has been observed in several

4



experimental single droplet breakage studies [18, 19, 13, 20].

1.1.3 Single Droplet Breakage Studies

Several single droplet breakage studies are reported in the literature [18, 19, 21, 13,
20]. One issue is that these studies investigate only selected kernel functions and not
a complete set. Model validation based on these studies must rely on the results from
several studies to obtain all the experimental data required to investigate the breakage
phenomena. This approach based on several studies does not ensure consistency in the
set of experimental data as the different studies may utilize different equipment, system
properties or flow characteristics. Moreover, the interpretation of the observed breakage
events to describe the kernel functions is not trivial, but the interpretation procedure
employed is often vaguely described or not given. The flow field of the equipment
utilized may be an additional confounding factor. The equipment is often relevant for the
industry, such as a stirred tank reactor or an orifice flow. However, the region of droplet
breakage often exhibit large turbulence level and high viscous shear. This complicates
the interpretation of the results as both the turbulence level and the viscous shear are
hypothesized to give rise to important forces leading to breakage [11]. In addition, the
breakages may occur in close proximity to a wall, impeller, obstruction, etc., where wall
effects on the continuous phase flow or direct interaction with the solid surface may
impact the breakups. Hence, there is a need for single droplet studies that consider
breakage due to turbulence in low viscous shear regions without wall interference. These
single droplet studies should report a complete set of kernel functions from a well defined
procedure.

1.2 Research Goals and Objectives

The goal of this PhD work is to elucidate the phenomena of oil particle breakage in water
due to turbulent interactions. The breakage phenomena and the underlying mechanisms
should be elucidated by well planned experimental investigations. The experimental
data should help to investigate the kernel functions needed to close the breakage source
terms of the population balance equation. The following objectives have been identified
as required to achieve the outlined goal:

1. Design and construct an experimental facility for the investigation of single particle
breakage in turbulent flow.

2. Characterize the turbulence level of the continuous flow in the experimental facility.

3. Determine and outline a procedure for extracting information on the kernel func-
tions from the observed breakage events.

4. Perform experiments under different flow conditions, system conditions and dis-
persed phase properties.

5. Investigate the experimental data to elucidate the breakage phenomena.

5



1.3 Dissertation Structure

The structure of the dissertation chronologically covers the research objectives outlined
in the previous section.

The current chapter provides a short background for the research and outlines the aim
of the PhD work. The population balance equation is presented in detail in Chapter 2,
including an outline of breakage model concepts and the turbulence theory employed for
conventional model development. Previous experimental investigations of fluid particle
breakage are found in Chapter 3 and previous experimental investigations of isotropic
turbulence are found in Chapter 4. The Chapters 2, 3 and 4 provides the basis for
Chapter 5 where the design of the experimental facility is presented.

Paper 1 is presented in Chapter 6 and covers the determination of turbulent charac-
teristics in the continuous phase by LDV. This work provides the information required
for associating turbulent characteristics with the observed droplets breakages during the
subsequent single droplet experiments.

Paper 2 is presented in Chapter 7, describing the methodology of extracting data
on the kernel functions from individual videos obtained experimentally. The procedure
provides data associated with single experimental observations, which must be combined
and averaged to describe the kernel functions. The statistical framework employed in
the averaging procedure is shown in Paper 3, constituting Chapter 8. The statistical
analysis is extended to include considerations on the number of repetitions required for
adequate statistical precision.

Paper 3 also investigates the breakage phenomena by analyzing the experimental
data. The analysis is accompanied by a comparison with conventional model concepts.
This analysis is expanded with additional data in Paper 4, constituting Chapter 9, with
additional experiments and model concepts.

Finally, the overall conclusions of this work is presented in Chapter 10 and suggestions
to further work is given in Chapter 11.
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Chapter 2

Theoretical Background

2.1 Population Balance Equation

In the continuum mechanical approach the population balance equation can be formu-
lated in two ways [5], the macroscopic [14, 22] and microscopic [8] descriptions. This
work focuses on the microscopic approach as it is a fundamental approach and thus
considered to be more general [5].

General derivations of the microscopic formulation is readily available elsewhere [8, 5].
Hence, the PBE is presented here in a simplified form relevant to the current work on
single droplet breakage. Liquid-liquid dispersions may undergo coalescence, but this is
not relevant for single droplet experiments and outside the scope of the current work.
The simplified form of the PBE is limited to accumulation, convection in physical space
and breakup, and may be given as

∂fn
∂t

+∇ · [ufn] = BB −BD (2.1)

Here, the number density function fn denotes the number of drops of size D (1/m3[D])
and is a function of the drop size D, the space coordinate vector r and time t. Further-
more, u denotes the velocity vector and BB and BD denotes the source and sink terms
of breakage birth and breakage death, respectively. The breakage death term describes
the number of drops of size D which are removed due to breakage. It may be given as

BD = b fn (2.2)

where b is the breakage frequency, which represents the number fraction of drops breaking
per unit time. The breakage birth term describes the number of drops of size D which
are generated due to the breakup of larger drops. This term requires an integration over
all drops with sizes larger than D and may be given as

BB =

∫ Dmax

D
ν(D′) PDSD(D′, D) b(D′) fn(D′) dD′ (2.3)
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Here, D′ denotes the drop sizes of the larger drops. ν is the average number of daughter
drops generated upon breakage and PDSD is the daughter size distribution function,
which describes the probability of obtaining a drop of size D when a drop of size D′

breaks. The daughter size distribution function must be number conserving, which can
be formulated as ∫ D′

0
PDSD(D′, D) dD = 1 (2.4)

In addition, ν and PDSD are not really independent and may be combined to give the
breakage yield redistribution function as h(D′, D) = νPDSD(D′, D). h must be volume
conserving which may be expressed as∫ D′

0
D3 h(D′, D) dD = D′3 (2.5)

The breakage frequency b, the average number of daughter drops generated ν and
the daughter size distribution function PDSD are expected to be functions of D, the flow
conditions, fluid and system properties. To close the PBE, these kernel functions must
be modeled, which requires an fundamental understanding of the breakage phenomena.

2.2 Drop Breakage

The possible mechanisms of drop breakage can be classified into four categories: tur-
bulent motions and stresses, viscous shear stress, shearing-off processes and interfacial
instabilities [11]. The flow near a momentum breaker, and many other industrial ap-
plications, is highly turbulent. The breakage mechanism that dominate under these
conditions are the turbulent motions and stresses [23].

The investigations on fluid particle breakage in turbulent flow can be traced back
to the pioneering works of Kolmogorov [24] and Hinze [23]. They used the second
order structure function, δu2, to formulate an expression for the turbulent stresses. The
second order structure function is defined as the covariance of the difference in velocity
between two points in physical space [5]. Letting D denote this distance the second
order structure function can be written as

δu2(r, D) = [u(r +D)− u(r)]2 (2.6)

where r denotes the space coordinate vector. A formulation of the second order structure
function by the turbulent quantities may be found through isotropic turbulence theory.

2.3 Turbulence

The concept of eddies in turbulent flow is not rigorously defined [5]. Eddies are considered
to be coherent structures within the mean flow. These structures have different length
scales and exhibit vorticity and pressure fluctuations [25]. The turbulent kinetic energy
is passed continuously from larger to smaller scales, until it is dissipated to heat due to
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viscous effects at the smallest scales [26]. This energy distribution over the various eddy
scales can be described by the turbulent energy cascade which consists of the energy
containing subrange, the inertial subrange and the dissipating subrange of turbulence.

The largest scales of eddies are formed from velocity gradients in the mean flow [27]
and are in the energy containing subrange of turbulence. The turbulence in this subrange
is anisotropic and dependent on the production of turbulence occurring in the mean flow.
For scales smaller than the energy containing subrange of turbulence, Kolmogrov stated
that the turbulence is universal and isotropic [28]. In the dissipation subrange the very
smallest scales of turbulence are uniquely defined by the kinematic viscosity νc and the
turbulent energy dissipation rate ε. Based on these two parameters the Kolmogorov
length microscale η = (ν3

c /ε)
1/4 [5] can be expressed, describing the size of the smallest

eddies. Kolmogorov [28] also stated that a second universal subrange called the iner-
tial subrange of turbulence may exists between the energy containing and dissipation
subranges. The prerequisite is sufficiently high Reynolds numbers. As the energy is
expected to be dissipated by viscous effects in the dissipation range only, Kolmogorov
stated that the viscosity does not describe the inertial subrange of turbulence. Hence,
the inertial subrange of turbulence is described by ε only [28].

Pope [29] suggested approximate boundaries for the different subranges of turbulence.
The dissipating subrange contains the scales η < D < 60η, the inertial subrange occupies
the range 60η < D < L/6 and the energy containing subrange occupies the range
L/6 < D < 6L. Here D denotes the length scale of the eddy and L = k3/2/ε [29] is the
integral length scale where k is the turbulent kinetic energy.

Kolmogorov formulated an energy spectrum describing the kinetic energy of the
eddies in the inertial subrange of turbulence [28, 24]

E(κ) = Ckε
2/3κ−5/3 (2.7)

Here, κ is the wave number of the eddy, which is related to the eddy size D as κ = 2π/D.
Ck is a constant set to 1.5 [30]. There is an exact relationship between the energy
spectrum and the second order structure function [31]

δu2(D) =
4

3

∫ ∞
0

E(κ)

[
1− 3

{
sin(κD)

[κD]3
+

cos(κD)

[κD]2

}]
dκ (2.8)

Hence, the Kolmogorov structure function valid in the inertial subrange is given as
[28, 24]

δu2(D) = β(εD)2/3 (2.9)

in which the Kolmogorov constant β can be set to 2 [32]. In addition to only being valid
for values of D in the intertial subrange, this formulation is also limitied to very large
Reynolds numbers. Pope [29] later formulated a model energy spectrum valid in the
entire range of turbulence

E(κ) = Ckε
2/3κ−5/3fL(κL)fη(κη) (2.10)

9



where fL and fη are functions. The function fL(κL) is given as

fL(κL) =

[
κL

[(κL)2 + CL]1/2

]5/3+p0

(2.11)

and the function fη(κη) is given as

fη(κη) = exp
[
−βE [(κη)4 + C4

η ]1/4 − Cη
]

(2.12)

Here, p0 = 2 and βE = 5.2. The parameters CL and Cη depend on Reλ and Ck. For
Reλ in the range 102 to 105 the parameters can be estimated from [25]

CL(Reλ, Ck) = exp

[
−4.478 + 18.362Ck

Re1.075−0.070Ck
λ

]
− 1.913 + 2.169Ck (2.13)

Cη(Reλ, Ck) = exp

[
−14.043− 4.222Ck

Re1.986−0.363Ck
λ

]
− [0.089 + 0.339Ck] (2.14)

Reλ is the Taylor scale Reynolds number given as

Reλ =

√
20

3

k2

ενc
(2.15)

Based on the model spectrum by Pope [29] (2.10) and the transformation (2.8) Solsvik
and Jakobsen [27] proposed a semi-empirical formulation for the second order structure
function. This formulation is valid in the entire range of turbulence and for any turbulent
Reλ value. The expression can be given as [27]

δu2(D) =
4

3
k

(
D2

r2
d +D2

)2/3

· (1− [T1(D) + T2(T3(D)T4(D)− T5(D))]) (2.16)

where rd is a crossover length scale, which is related to the transition between the
dissipation subrange and the inertial subrange of turbulence. The expression for rd is
given by

rd = (15β)3/4η (2.17)

The different Tn expressions are given as

T1(D) =
2

[s(D)]2
F

((
−1

3

) 1
2

,

(
3

2

)∣∣∣∣∣ [s(D)]2

4

)
(2.18)

T2 = 33/2Γ

(
2

3

)
(2.19)

T3(D) = 27 · 21/3[s(D)]2/3Γ

(
2

3

)
(2.20)
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T4(D) =
1

352π
F

((
7

3

) 11
6

,

(
17

6

)∣∣∣∣∣ [s(D)]2

4

)
(2.21)

T5(D) =
22/3

2π[s(D)]2/3
K 4

3
(s(D)) (2.22)

in which F is the hypergeometric function, K is the Bessel function and Γ is the gamma
function. Finally, s(D) is found from

s(D) = D/(c
−1/2
L L) (2.23)

2.4 Modeling of Breakage due to Turbulence

Modeling the breakage kernel functions in the population balance equation framework
has been of interest to the chemical engineering community for a long time. An ideal
model should be predictive and universal, i.e. valid for all fluid flow characteristics,
fluid properties and system conditions. Several different models and model concepts
have been suggested for the breakage frequency b, average number of daughter drops
ν and daughter size distribution function PDSD. These models have been the subject
of several reviews [9, 10, 11]. A selected number of models and their derivation are
considered in the current study. The models for the breakage frequency is considered
and compared first. Models for the average number of daughter drops and the daughter
size distribution are discussed in the subsequent section.

2.4.1 Breakage Frequency

2.4.1.1 Coulaloglou and Tavlarides

Coulaloglou and Tavlarides [14] formulated a pioneering model for drop breakage. They
postulated that the breakage frequency b can be determined as the reciprocal of a break-
age time tB multiplied by the fraction of drops breaking ∆N

N . This fraction of drops
breaking is interpreted as the the probability that a drop will break PB, often referred
to as breakage probability. Formulated mathematically, the breakage frequency can be
given as

b(D) =
1

tB(D)

∆N(D)

N(D)
=

1

tB(D)
PB(D) (2.24)

In developing their model Coulaloglou and Tavlarides [14] assumed the drop size to
be within the inertial subrange of turbulence and the turbulence was assumed to be
locally isotropic. Local pressure fluctuations arising from the turbulence were assumed
to deform the drop and an oscillating deformed drop will break if the turbulent kinetic
energy transmitted to the droplet by turbulent eddies exceeds the drop surface energy [14].
The expression for the breakage probability is determined from the latter postulation.
The breakage probability was assumed proportional to the fraction of the turbulent
eddies that collides with the drop where the energy of the turbulent eddy is larger than
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the drop surface energy. Assuming random motion, this fraction of turbulent eddies was
described by the Maxwell-Boltzmann 2D energy distribution [11]. Furthermore, it was
assumed that the kinetic energy distribution of the drops is the same as the kinetic energy
distribution of the eddies. Hence, the energy distribution describes the fraction of drops
with kinetic energy larger than surface energy, which is also the breakage probability PB∫ ∞

Ec(D)
P (E(D))dE = exp

(
−Ec(D)

E(D)

)
= PB(D) (2.25)

in which E(D) is the turbulent energy associated with eddies of size D and Ec(D) is the
critical value that the turbulent energy E(D) must overcome. The critical energy was
assumed to be proportional to the surface energy

Ec(D) ∝ γD2 (2.26)

in which γ is the interfacial tension. The energy of the turbulent eddies was expressed
using the second order structure function of size D

E(D) ∝ ρdD3δu2(D) (2.27)

where ρd is the density of the dispersed phase. Here, it is assumed that eddies larger than
the drop only contributes transportation of the drop and does not contribute to breakup,
while eddies of the same size or smaller provide the required local strain. The concept
that large eddies transport drops and small eddies generate local strain may be traced
back to Taylors investigations into the spectrum of single phase turbulence [33], and this
concept is of importance for many model derivations. In the original formulation the
second order structure function was determined from Kolmogorov theory (2.9), yielding
the final expression of the breakage probability as

PB(D) = exp

(
− c1γ

ρdε2/3D5/3

)
(2.28)

in which c1 is a parameter.
Coulaloglou and Tavlarides [14] assumed that the motion of the eventual centers of

mass of the daughter drops could be described by the motion of two turbulent eddies,
which had previously been described by Batchelor [34]. A separation distance AB of
two eddies in the inertial subrange at time t is given as

[AB(t)]2 ∝ (AB0 ε)
2/3t2 (2.29)

Here AB0 is some initial separation distance, not further specified. Assuming both
AB0 and the distance at breakage to be proportional to the mother drop diameter, the
equation can be solved for tB as

tB(D) = c2D
2/3ε−1/3 (2.30)

in which c2 is a parameter. This expression is proportional to the eddy turnover time
(te(D) = D2/3ε−1/3) for eddies of size D [9, 11].
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The final expression for the breakage frequency can be found by inserting (2.30) and
(2.28) into (2.24)

b(D) = c−1
2 D−2/3ε1/3 exp

(
− c1γ

ρdε2/3D5/3

)
(2.31)

2.4.1.2 Modifications to the Model by Coulaloglou and Tavlarides by Solsvik and Jakobsen

Solsvik and Jakobsen [35] showed that the model of Coulaloglou and Tavlarides [14] can
be expanded to consider the full range of turbulence. In the derivation of the breakage
probability, the second order structure function valid in the entire range of turbulence
(2.16) can be used instead of the inertial subrange formulation (2.9). The expression for
the breakage probability becomes

PB(D) = exp

(
− c3γ

ρdDδu2(D)

)
(2.32)

Solsvik and Jakobsen [35] also recognized that the eddy turnover time could be approx-

imated as te(D) ≈ D/
√
δu2(Dm). Hence, the breakage time can be given as

tB(D) = c4
D√
δu2(D)

(2.33)

If the expression for δu2 is valid for the entire range of turbulence, the model of Coulaloglou
and Tavlarides [14] may be assumed valid in the entire range of turbulence.

2.4.1.3 Modifications to the Model by Coulaloglou and Tavlarides According to Chen et al.

Coulaloglou and Tavlarides [14] considered only the surface tension energy as a restoring
effect. However, the viscosity of the drop may also counteract breakage, as suggested by
Hinze [23]. Several authors, such as Chen et al. [36] and Vankova et al. [37] have added
a viscous stabilizing energy term to the critical energy (2.26) as Ec = Es + Ev, where
Es is the surface energy and Ev is the viscous energy. Ev can be given as

Ev = µdD
2
√
δu2(D) (2.34)

where µd is the dynamic viscosity of the dispersed phase. Following the same procedure
as Coulaloglou and Tavlarides [14], but accounting for the viscous stabilizing energy and
the formulation valid in the entire range of turbulence, the breakage frequency can be
given as

b(D) = c5

√
δu2(D)

D
exp

− c6γ

ρdDδu2(D)
− c7µd

ρdD

√
δu2(D)

 (2.35)
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2.4.1.4 Martinez-Bazan et al.

Although originally designed for gas-liquid systems, the model by Martinez-Bazan et al.
[38, 39, 40] and model adaptions [41, 11] have been found to provide good agreement
with data from liquid-liquid experiments. Some examples can be seen in the appendix of
Solsvik et al. [11]. An important novelty of the Martinez-Bazan et al. [38, 39, 40] model
is that it avoids the eddy concept. Instead, the fluid particle-turbulence interaction is
expressed in terms of the second order structure function directly.

In their model derivation Martinez-Bazan et al. [38, 39] adopted the common assump-
tions of locally isotropic turbulence and a bubble diameter within the inertial subrange
of turbulence. The main assumption is that a bubble deforms and breaks if the turbulent
stresses of the surrounding fluid flow is sufficiently large. The surface restoring stress
was given as

σs =
6Es(D)

πD3
= 6

γ

D
(2.36)

where Es(D) is the surface energy due to interfacial tension, defined as Ec(D) = πγD2.
The turbulent stress was estimated from the second order structure function directly

σt = 1/2ρcδu2(D) = 1/2ρcβ(εD)2/3 (2.37)

where ρc is the density of the continuous phase. Martinez-Bazan et al. [38, 39] argued
that when σt > σs breakup will eventually occur and conversely that breakup never
occurs for σt < σs. Further, they postulated that the rate of breakup is inversely
proportional to the difference σt − σs. Defining a characteristic breakup velocity as

vB =
√
σt − σs (2.38)

Then, the breakup time could be estimated as tB ∝ D/vB and the breakage frequency
as

b(D) = c6

√
δu2(D)− 12γ/(ρcD)

D
(2.39)

Or valid in the intertial subrange only

b(D) = Kg

√
β(εD)2/3 − 12γ/(ρcD)

D
(2.40)

Where Martinez-Bazan et al. [38, 39] experimentally determined the value of Kg as 0.25
and used the value of 8.2 for β.

2.4.1.5 Narsimhan et al. and Alopaeus et al.

Narsimhan et al. [42] proposed a breakage frequency model based on a stochastic mod-
eling concept. They assumed that breakage occur due to oscillations in the drop surface
and that these oscillations are the result of the relative velocity fluctuations in the turbu-
lent flow around the drop. Breakup occurs if the turbulent motions provides at least the
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minimum increase in the surface energy of the drop which is required for breakup. Fur-
thermore, Narsimhan et al. [42] adopted the common assumptions of drop sizes within
the inertial subrange and locally isotropic turbulence.

Narsimhan et al. [42] recognized that a droplet in turbulent flow may be bombarded
by eddies of different scales. Each eddy-drop collision causes the surface to oscillate.
Hence, there are two critical timescales; the time between bombarding eddies and the
time required for a single oscillation of the drop to dampen. Based on the classic assump-
tion that only eddies of the same size of the drop or lower can contribute to breakage
and the fact that the smallest eddies have the largest frequencies, Narsimhan et al. [42]
assumed that the timescale for dampening was the smallest. It follows that breakage
occurs when a single eddy of sufficient energy collides with the drop. Furthermore, this
is independent of previous eddy-drop collisions.

The eddy-drop collisions were assumed to form a Poisson process, where events hap-
pen continuously, independently and at a constant average rate. A parameter λ describes
the average number of eddies arriving on the drop surface per unit time. λ was expected
to depend on both D and ε, but assumed to be a constant during the model development.
Two events were formulated considering a small time interval ∆t:

• A: An eddy arrives on the surface of the drop.

• B: The arriving eddy has energy greater than or equal to the minimum increase in
the surface energy required to break the drop.

The expression for the probability of breakage occurring in the time interval ∆t is P (A)×
P (B|A). It follows from the definition of λ that P (A) = λ∆t. Narsimhan et al. [42]
then defined the breakage frequency b as

b(V ) =
P (A)× P (B|A)

∆t
= λP (B|A) (2.41)

here V denotes the volume of the drop. To approximate P (B|A), Narsimhan et al. [42]
first stated that the increase in the surface energy is at its minimum for binary equal
sized breakage. Alopaeus et al. [43] realized that this is erroneous, as binary equal sized
breakage corresponds to the largest possible increase in surface energy. Nevertheless,
the expression for the ”minimum” increase in surface energy became

Emin(V ) = (21/3 − 1)γπ1/362/3V 2/3 (2.42)

This energy must be overcome by the kinetic energy transferred to the drop interface,
given as Ek = 1/2ρcV u

2
e where ue is the velocity of the eddy colliding with the drop.

Setting Ek ≥ Emin yields an expression for the minimum velocity required as u2
e ≥

u2
min. The distribution of this velocity was assumed to fit a normal probability density

distribution function on the form

PN (ue) =
1√
2πσ

exp
[ ue

2σ2

]
(2.43)
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where the variance was assumed to be σ2 = δu2 and the second order structure function
was determined from (2.9). The required probability P (B|A) is interpreted as PN (u2

e ≥
u2
min) which may be determined from (2.43) by statistical definitions [11]. The final

expression for the breakage frequency in terms of diameter became [43]

b(D) = c7 erfc

(√
c8 γ

ρcε2/3D5/3

)
(2.44)

c7 has been substituted for λ to signify that this is a parameter. It is noted that c7 has
the units [1/s] and must be problem dependent.

Alopaeus et al. [43] later introduced a dependency of ε1/3 to c7. In addition, they
added the stabilizing effect of the drop viscosity to the minimum surface energy as
Emin = Es + Ev where Es is the original expression of Narsimhan et al. [42] and

Ev =
√

ρc
ρd
µdε1/3V 7/9. The resulting expression for the breakage frequency was

b(D) = c9ε
1/3 erfc

(√
c10 γ

ρcε2/3D5/3
+

c11 µd√
ρcρdε1/3D4/3

)
(2.45)

Which can be generalized with the second order structure function as

b(Dm) = c12ε
1/3 erfc

√√√√ c13 γ

ρcδu2(D)
D +

c14 µd√
ρcρdδu2(D)D

 (2.46)

As was the case for the model by Narsimhan et al. [42], the parameter c12 has dimensions
[m3/2], and is likely problem dependent. Alopaeus et al. [43] found no dependency of D
on c12 in their study.

2.4.1.6 Viscous Shear Force

Shinnar [44] recognized that fluid particles smaller than the Kolmogorov micro scale η
may break. He showed that in the dissipating subrange of turbulence the viscous shear
force of the smallest eddies dominate and inertial forces are negligible. Hence, droplets
smaller than η must be subject to a viscous stress exerted by the turbulent eddies of size
η. Shinnar [44] formulated a viscous shear stress as

σt,S = µcS̄ = µc
√
ε/νc (2.47)

where S̄ is the local rate of strain due to velocity gradients, expressed as the Kolmogorov
local rate of strain. A generalization of this strain rate has been proposed by H̊akansson

et al. [45] and Karimi and Andersson [46] formulated as S̄ =

√
δu2(D)/D. The viscous

shear stress using this formulation is assumed valid when the expression for the second
order structure function is valid and may be applied to all subranges of turbulence,
as an addition to the inertial stress. However, there is some ambiguity to the use of
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the second order structure function in this way. As seen in the model developments
presented in this chapter, the second order structure function is used to approximate
the velocity difference, pressure difference or stress across a particle in turbulent flow.
It is not obvious that the second order structure function may also describe a turbulent
viscous shear force.

The formulations of an additional force arising from the second order structure func-
tion appears to be based on the view of Walstra and Smulders [47]. They claimed that,
for all scales and ranges of turbulence, eddies of comparable size to the drop act by iner-
tial forces. This is in reasonable agreement with the already mentioned common model
assumption that large eddies transport drops and small eddies generate local strain,
which may be traced back to Taylor [33]. On the other hand, Walstra and Smulders [47]
claimed that eddies larger than the drops exert a shear stress. While this may be true,
it is clear that special care should be taken when including the viscous shear force in the
entire range of turbulence.

2.4.1.7 Summary of Breakage Frequency Models

The model by Coulaloglou and Tavlarides [14] provides a very useful formulation of
the breakage frequency as a function of breakage time and breakage probability. In
addition, the final model formulation is relatively simple and computationally cheap.
On the other hand, the model development relies on many assumptions of one quantity,
fraction or distribution to be proportional to another conceivably unrelated quantity,
fraction or distribution. The resulting model parameters are likely to include many
physical phenomena related to breakage. A distinct breakage criteria extendable to e.g.
a single droplet case is not possible.

The model by Narsimhan et al. [42] (and the adaption by Alopaeus et al. [43]) does
assume that a single eddy-drop collision is responsible for breakage. The advantage of
this model is that this assumption could be proved or disproved. However, the model
framework relies on a parameter with units, which by definition must include phenomena
related to the breakage in the given system.

The interpretation of the model framework by Martinez-Bazan et al. [38, 39, 40]
is quite clear as it avoids the eddy concept. Two possible challenges still arises. One,
no breakage occurs for particles below a system dependent maximum stable drop di-
ameter. In the framework by Martinez-Bazan et al. [38, 39, 40] this maximum stable
diameter is larger than proposed in other works [23]. Two, the breakage frequency rises
monotonously with both ε and D, which is not in agreement with experimental data
[21]. Solsvik et al. [48] adapted the model by adding a breakage probability to the
breakage frequency. As this was based on the model of Coulaloglou and Tavlarides [14],
the physically vague model parameters and the dependency on the eddy concept was
introduced.
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2.4.2 Average Number of Daughter Drops and the Daughter Size Distribution

As discussed in section 2.1, the daughter size distribution function PDSD and the aver-
age number of daughters ν must be number and volume conserving. Hence, the two
kernel functions are not independent which presents a challenge for model develop-
ment. With the exception of the binary breakage model of Dorao and Jakobsen [49],
no model frameworks consider the breakage yield redistribution function, h(D′, D) =
ν(D′)PDSD(D′, D). Instead, the model frameworks available in the literature solves the
challenge of the two dependent kernel functions by assuming ν to be known a priori. A
substantial amount of models assume binary breakage (ν = 2), which significantly sim-
plifies the development of the daughter size distribution function. Moreover, the shape
of PDSD is assumed to be universal. Formulated in terms of volume, the shape may
generally be classified as one of the following

• Normal distribution (Coulaloglou and Tavlarides [14])

• β distribution (Hsia and Tavlarides [50])

• Uniform distribution (Narsimhan et al. [42])

• U-shaped distribution (Luo and Svendsen [22])

• M-shaped distribution (Lehr et al. [51])

It is noted that the formulation of PDSD may dependent on system properties or the
turbulent characteristics, but the shape is universal.

2.4.2.1 Binary Breakage Models

Coulaloglou and Tavlarides [14] assumed the daughter size distribution to fit a normal
distribution. The variance was chosen such that > 99.6% of the daughter drops obtains
a size in the range [0 Vm], where Vm denotes the volume of the mother drop. The
expression becomes [14]

PDSD(Vm, Vd) =
2.4

Vm
exp

(
−4.5(2Vd − Vm)2

V 2
m

)
(2.48)

where Vd denotes the daughter drop volume.
In designing their daughter size distribution function, Martinez-Bazan et al. [38, 39]

considered the surplus stress associated with the two new drop diameters Dd,1 and Dd,2

formulated as

∆σ(Dd,n) =
1

2
ρcβ(εDd,n)2/3 − 6γ/Dm (2.49)

here, n is either 1 or 2 and Dm is the diameter of the mother drop. Martinez-Bazan
et al. [38, 39] then postulated that the probability of forming two drops of diameter
Dd,1 and Dd,2 is weighted by the product [∆σ(Dd,1)][∆σ(Dd,2)]. If the diameter of one
drop is determined, the diameter of the second drop is given from volume conservation.
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Thus, the original formulation for the probability of forming a drop of size D∗ = Dd/Dm

became

Pd(D
∗) ∝

(
1

2
ρcβ(εDm)2/3

)2 [
D∗2/3 − Λ5/3

] [
(1−D∗3)2/9 − Λ5/3

]
(2.50)

in which Λ = Dc/Dm and Dc is the diameter for which the turbulent stress is equal to
the surface restoring stress, i.e. Dc satisfies the equation σt = σs, seen in (2.36) and
(2.37). The final step was to determine a dimensionless daughter size distribution as
P ∗DSD = PDSD/Dm and utilize the number conserving property (2.4)

P ∗DSD(1, D∗) =
Pd(D

∗)∫ 1
0 Pd(D

∗)dD∗
(2.51)

This original formulation was not volume conserving. Later, Martinez-Bazan et al. [40]
updated (2.50) to be written on volume form. Following the same procedure, a volume
conserving P ∗DSD could be given as

P ∗DSD(1, V ∗) =
V ∗2[V ∗2/9 − Λ5/3][(1− V ∗)2/9 − Λ5/3]∫ V ∗max

V ∗min
V ∗2[V ∗2/9 − Λ5/3][(1− V ∗)2/9 − Λ5/3]dV ∗

(2.52)

The minimum volume Vmin is the smallest volume of a daughter drop which satisfies
σt = σs. The maximum volume Vmax is the complimentary volume that conserves the
mass of the mother drop. The dimensionless volumes are obtained as V ∗max = Vmax/Vm
and V ∗min = Vmin/Vm. Eq. (2.52) corresponds to normal distribution where equal sized
daughters are the most likely outcome of a breakage event.

Narsimhan et al. [42] assumed the daughter size distribution function to be uniform.
The simple expression became

PDSD(Vm, Vd) =
1

Vm
(2.53)

2.4.2.2 Non-Binary Breakage

An alternative to the binary breakage models is the framework of Han et al. [52, 53, 54]
and Solsvik et al. [55]. They proposed a set of kernel functions where the daughter
numbers are fixed at 2, 3 or 4. The corresponding shape of the daughter size distribution
function is specified by the daughter number only. Equal sized breakage is the most likely
outcome of a breakage event.

Another multiple daughter outcome alternative to the binary breakage models was
proposed by Diemer and Olson [56], where the average number of daughters can be any
positive number. This may be an important advantage as ν is the average of several
breakage events and not required to be an integer [8]. On the other hand, the model
system requires different shape factors to be adjusted to fulfill the number and volume
conservation requirements. Thus, also this model requires the shape of the daughter
size distribution function and the average number of daughters to be known a priori.
Finally, the model by Diemer and Olson [56] predicts equal sized breakage as the most
likely outcome of the breakage event.
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Chapter 3

Single Drop Breakage Investigations

3.1 The Breakage Event Definitions

As discussed in Chapter 1, single droplet experiments are required to validate the indi-
vidual kernel functions. A prerequisite for this statement to be valid is that the entire
breakage event is observed by high-speed imaging. Furthermore, the experimental values
corresponding to the kernel functions can not be directly measured and must be derived
from the obtained images. In this derivation there must be a procedure for the interpre-
tation of the images, requiring a definition of what constitutes a breakage event. Solsvik
et al. [57] recognized that formal definitions of the breakage event were not available
in the literature and postulated two breakage definitions applicable to breakage exper-
iments; the initial breakage event definition and the cascade breakage event definition.
In both definitions the breakage event starts when a spherical stable mother starts to
deform. The two definitions interpret the end of the breakage event differently:

• Breakage event end for the initial breakage event definition is when the initial
mother drop separates.

• Breakage event end for the cascade breakage event definition is when the final
intermediary daughter separates.

The difference between the two definitions is illustrated in Figure 3.1. For a binary
breakage the two breakage event definitions coincide. For more complex breakups, the
cascade breakage event definition yields a longer breakage time, a larger number of
daughter drops and smaller daughters than the initial breakage event definition.

3.2 Experimental Conditions and Kernel Functions Considered

The number of single droplet breakage studies available in the literature are few and
utilize varied equipment:

• Galinat et al. [18, 19] performed experiments in an orifice flow.
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Figure 3.1: Illustration showing a sequential breakage interpreted through the initial
and the cascade breakage event definitions. The figure is reproduced from Paper 2 [58]
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• Andersson and Andersson [12] observed breakages in a static mixer.

• Maaß et al. [59, 60], Zaccone et al. [61], Maaß and Kraume [21] and Nachtigall et
al. [62] investigated breakage in a channel flow designed to mimic a stirred tank.

• Solsvik and Jakobsen [13] utilized a stirred tank.

• Ashar et al. [20] investigated breakage in a rotor-stator mixer.

• Ji et al. [63] performed experiments in a head-on impinging microfluidic facility.

Further details on the experimental facility and experimental procedure are given in
Section 3.3. In addition to different experimental facilities, the studies reported in the
literature also vary with regard to the continuous and dispersed phase utilized. A sum-
mary of the fluids utilized and the resulting fluid and system properties is presented
in Table 3.1. As can be seen from the table, the interfacial tension and viscosity can
vary with several orders of magnitude between the studies. The investigated drop sizes
and turbulent energy dissipation rate also varies, shown in Figure 3.2 and Figure 3.3,
respectively. As can be seen from the figures, most of the studies have mother drop sizes
in the range 0.5-4 mm and turbulent kinetic energy dissipation rate in the range 0.3-12
m2/s3. The relatively recent studies by Ashar et al. [20] and Ji et al. [63] occupy a
different range of values. The two studies exhibit smaller drop sizes and significantly
larger dissipation rates compared to the older studies.

The comparison of fluid and system properties, drop size and turbulence level may
give the impression that experimental data is available for all these conditions. How-
ever, each study reported in the literature only investigates some of the kernel functions
required to close the PBE and these selected kernel functions are seldom investigated
for every considered drop size, turbulence level and dispersed phase considered in the
study. Galinat et al. [18, 19] investigated the breakage probability, daughter size dis-
tribution and average number of daughters. The results were reported by the Weber
number, combining the impact of both drop size and turbulence level. Therefore, the
individual impact of mother drop size or turbulence level on the kernel function can
not be investigated by the data reported by Galinat et al. [18, 19]. Andersson and
Andersson [12] reported the breakage time for different ε levels. They also reported the
daughter number distribution of dodecane drops for two of the ε levels. Maaß et al. [59]
and Zaccone et al. [61] investigated the daughter size distribution for different daughter
numbers and reported the daughter number distribution. Maaß et al. [60] and Maaß and
Kraume [21] investigated the daughter number distribution, breakage time and breakage
probability. Nachtigall et al. [62] investigated the breakage time with emphasis on the
deformation process. Solsvik and Jakobsen [13] reported the breakage time as a function
of the mother drop size and the distribution of daughter drop numbers for different drop
sizes. Ashar et al. [20] investigated the breakage probability and the average number
of daughters. The results were reported as functions of the Weber number. Finally, Ji
et al. [63] reported the breakage probability, breakage time and the average number of
daughters.
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Reference Continuous phase Dispersed phase γ x10−3 ρ µd x10−3

Galinat et al. [18] Tap water 996 0.82
Heptane 47 683.7 0.45
Colored heptane 23.6

Galinat et al. [19] Tap water with glycerin 1100
Colored heptane 24.4

Andersson and Unspecified water
Andersson [64, 12] Dodecane 53 750 1.5

Octanol 8.5 819 6.5
Maas et al. [59] and Petroleum 760 1.9
Zaccone et al. [61] Unspecified water 2

Colored water 28
Maaß et al. [60] and Unspecified water
Maaß and Kraume [21] Toluene 32 870 0.55

Petroleum 38.5 790 0.65
Nachtigall et al. [62] Petroleum 760 1.7

Unspecified water 43.2
Water with SDS* 5.9

Paraffin oil 861 127
Unspecified water 53.3
Water with SDS* 8.4

Solsvik and Distilled water
Jakobsen [13] Toluene 33 866.7 0.6

Petroleum 44.5 754 1.14
n-Dodecane 41.5 745 1.38
1-Octanol 8.4 822 7.52

Ashar et al. [20] Deionized water 988 1
Rapeseed oil 20 920 70

Ji et al. [63] Unspecified water N/A N/A
with 1% w.t. Tween20 Rapeseed oil N/A N/A N/A

Table 3.1: Fluid and system properties reported in the previous studies. The units
are given as [N/m], [kg/m3] and [kg/(m s)] for γ, ρ and µd, respectively. The table is
reproduced from Paper 3 [65]. * SDS denotes sodium dodecyl sulfate.
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Figure 3.2: Graphical comparison of the drop sizes investigated in the literature. Circles
denotes that the drop size is given as point values, while crosses connected by a line
denotes that the drop size is given as a range of drops.

In general, the differences in the studies given above makes it challenging to compare
the experimental results. Comparison is further complicated by the use of different
breakage event definitions. In the studies by Galinat et al. [18, 19], Andersson and
Andersson [12], Maaß et al. [59], Zaccone et al. [61] the breakage definition is not given
or is unclear. The initial breakage definition is employed in the studies by Maaß et al.
[60], Maaß and Kraume [21] and Nachtigall et al. [62]. Solsvik and Jakobsen [13], Ashar
et al. [20] and Ji et al. [63] utilized the cascade breakage event definition.

3.3 Experimental Procedures and Facilities

As turbulent breakage occurs under chaotic conditions, the studies on singe drop break-
age utilizes many repetitions and determine the experimental values corresponding to
the kernel functions as average values. Paper 3 [65] (Chapter 8) investigates the required
number of experiments for statistically relevant results. A short summary is provided
here to avoid excessive repetition of the introduction of Paper 3 [65]. The needed number
of repetitions are previously not well understood and no single droplet breakage inves-
tigates this issue using a statistical procedure. To obtain a single data point, i.e. an
average experimental value, the single droplet breakage studies rely on a significant num-
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Figure 3.3: Graphical comparison of the turbulent kinetic energy dissipation rates ε
investigated in the literature. Circles denotes that ε is given as point values, while
crosses connected by a line denotes that ε is given as a range.

ber of individual experiments. From ∼ 50 [12] breakage events to as many as ∼ 1000 [62]
events are reported. The amount of repetitions required are of paramount importance
as the interpretation of the high-speed images are manual labor intensive. Investigating
more experiments than statistically required may be the reason previous studies only
investigate selected kernel functions and not a complete set of them.

3.3.1 Galinat et al.

Galinat et al. [18] investigated single oil droplet breakage in an orifice flow. The dispersed
phase was heptane or heptane colored with red sudan and the continuous phase was tap
water (Table 3.1). The coloring of the dispersed phase improves the optical contrast
between the dispersed and continuous phase. Later, Galinat et al. [19] performed
additional experiments with water-glycerin as the continuous phase and colored heptane
as the dispersed phase. In both studies, the experimental facility (Figure 3.4) consisted
of a 1 m vertical cylindrical pipe 3 cm in diameter, where an orifice was located 0.4 m
from the base of the pipe. This orifice caused a pressure drop from which the average
turbulent kinetic energy dissipation rate level in the breakup region could be determined.
Upstream of the pipe, single dispersed droplets were injected using a capillary tube 1
mm in diameter. The capillary tube was mounted perpendicular to the continuous phase
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velocity and connected to an electrical syringe pump. To observe the breakages Galinat
et al. [18, 19] used a high-speed camera with 456.2 fps and 1024 x 256 pixels covering
a field of size 12 x 3 cm2. High-speed imaging requires sufficient lighting due to short
exposure times, thus the area was backlit by a halogen lamp (1000 W). The resulting
black-and-white images were treated in an imageprocessing algorithm designed in visilog
5. First, a reference image was subtracted. Second, a thresholding technique was used to
detect the drop contour. Third, the three geometric properties area, perimeter, moment
of inertia are obtained.

Figure 3.4: Orifice flow facility utilized in the experiments by Galinat et al. [18, 19]

3.3.2 Andersson and Andersson

Andersson and Andersson [12] studied single oil droplet breakage using dodecane or oc-
tanol as the dispersed phase and unspecified water as the continuous phase (Table 3.1).
The breakages were observed in a static mixer, which may be described as a channel
with significant obstructions protruding into the channel in a repeating pattern. The
internal design of the mixer is shown in Figure 3.5b. PIV-experiments and LES was
used to determine the volume averaged turbulent kinetic energy and turbulent kinetic
energy dissipation rate level in the mixer [66] and these investigations showed that the
turbulence was very homogeneous within each mixing element [12]. The dispersed phase
was inserted by an injection nozzle directly in front of an obstruction, some way down-
stream of the inlet where the continuous flow had reached steady state. The drops were
observed by a high-speed camera at 4000 fps with very short exposure times of 10-100
µs. A hybrid light technique where front-light was reflected back towards the camera
was used. The resolution of the video was given as 309,000 pixels/cm2. However, it is
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not clear how large the observed section of the static mixer was nor how the images were
investigated (manually, image analysis, etc.).

(a) Schematic overview [12]

(b) Geometry of breakage region [66]

Figure 3.5: Experimental facility utilized in the study by Andersson and Andersson [12]

3.3.3 Maaß et al., Zaccone et al. and Nachtigall et al.

Maaß et al. [59, 60], Zaccone et al. [61], Maaß and Kraume [21] and Nachtigall et al.
[62] investigated single oil drop breakage in the same experimental setup, seen in Figure
3.6. It consisted of a channel flow designed to mimic a stirred tank. A single blade
8 cm in diameter was fixed in a rectangular channel of cross-section of 30 mm x 30
mm x 60 mm [62]. Upstream of the channel a Hamilton dosing pump introduced the
dispersed phase droplet [67] by a glass cannula or metal needle [62]. The continuous
phase was water (with additives in Nachtigall et al. [62]) and the dispersed phase varied
across the different studies (Table 3.1). The dispersed phase was dyed to increase the
optical contrast between the dispersed and continuous phase. A volume averaged ε was
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determined from CFD simulations with a k-ε model [67].

Figure 3.6: Single blade-channel flow facility utilized in the experiments by Maaß et al.
[59, 60], Zaccone et al. [61], Maaß and Kraume [21] and Nachtigall et al. [62]. Figure
from Maaß et al.[67]

The use of camera and image analysis evolved and varied with the sequential studies.
Originally, Maaß et al. [59] and Zaccone et al. [61] used a flash camera downstream of
the blade to investigate the daughter size distribution. The area around the impeller
blade, where breakage happened, was observed with a high-speed camera utilizing 650
fps. However, the area observed and camera resolution employed are not given. Later,
only a high-speed camera was used, observing the whole channel (30 mm x 60 mm)
using 286 × 608 pixels [67] and 822 fps [60, 21]. The initial image analysis used the
commercial software ImagePro-Plus which identified number, size and center of mass
of all objects in each image [67]. This procedure was similar to that of Galinat et al.
[18, 19] where first a reference image was subtracted, then a grayscale threshold is set
to obtain fully black particles and a white background. Later, Maaß and Kraume [21]
developed a fully automatic image analysis in MATLAB, based on the same principles of
subtracting a reference image and grayscale thresholding. Details on the image analysis
are given Nachtigall et al. [62]. The illumination employed is not given, but in the
schematic of the experimental facility in Nachtigall et al. [62] it appears that some type
of illumination is providing back-light.

3.3.4 Solsvik and Jakobsen

Solsvik and Jakobsen [13] investigated single drop breakage in a stirred tank (Figure
3.7). Toluene, petroleum, n-dodecane or 1-octanol was used as the dispersed phase and
distilled water was used as the continuous phase. The volume averaged ε was determined
theoretically by the power number equation. A black and white high-speed video camera
was used with a resolution of 1024 x 1024 pixels and 1000 fps. In this configuration,
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the diameter of the smallest observable drop was about 0.1 mm. The dispersed phases
were dyed with Sudan Black to increase the optical contrast between the dispersed and
continuous phase. Halogen lamps with diffuser paper provided sufficient illumination for
high speed imaging. A commercial software (KLONK Image Measurments) was used
to measure the mother drop size, while the number of daughter drops and the breakage
time was determined manually.

Figure 3.7: Stirred tank employed by Solsvik and Jakobsen [13]

3.3.5 Ashar et al.

Ashar et al. [20] investigated single drop breakage in a rotor-stator mixer, shown in Fig-
ure 3.8. The dispersed phase were rapeseed oil and the continuous phase was deionized
water. The dispersed phase was injected through the bottom of the tank through a 0.4
mm diameter stainless steel capillary connected to a syringe pump. The rotor diameter
was 188 mm, which left a 0.5 mm clearance to the surrounding stator. The stator had
thickness of 5 mm and openings of 6 mm x 30 mm. The observed region was one of the
stator openings, as seen in Figure 3.8b. To provide illumination, Ashar et al. [20] used
five 50W halogen lamps in a front-light configuration, which was sufficient to perform the
experiments without a need to color the dispersed phase. They also tested fluorescent
tracer and laser illumination, but neither gave increased performance. This illumination

29



was sufficient for a 5 ms exposure time, which resulted in sharp images. The high-speed
camera recorded at 2800-3000 fps and the resolution was given as 25 µm/pixel. The
analysis of the videos were done manually, which was noted as time consuming. Finally,
the turbulent energy dissipation rate level was determined from a procedure arising from
PIV analysis, and given as a local average value of the volume near the impeller.

(a) Exploded view [20]

(b) Closeup of the location observed for breakage [20]

Figure 3.8: Experimental facility utilized in the study by Ashar et al. [20]
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3.3.6 Ji et al.

Ji et al. [63] performed experiments in a head-on impinging microfluidic facility, shown
in Figure 3.9. The facility consists of a four-way intersection where two inlet water
channel flows meet head-on, creating a region of sufficient turbulence for breakage. One
of the inlet flows transports rapeseed oil dispersion so dilute that only one oil drop enter
the intersection at a time, allowing for single drop breakage to be observed. The facility
has two configurations, one where all channels have an cross-section of 600 µm x 600
µm, and another where the dispersed phase inlet channel is smaller at 300 µm x 300
µm. The channel intersection and one of the outlet channels are observed by a high
speed camera recording at 300 kHz with a resolution of 2.2 µm/pixel. A 50 W Halogen
lamp provides back-light and the exposure time is set to the longest available (1/583,784
s). The turbulent energy dissipation rate was estimated as a channel average from a
theoretical expression, dependent on the momentum fluxes of the channel flows.

(a) Ji

(b) Ji

Figure 3.9: Microfluidic facility utilized in the study by Ji et al. [63]
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3.3.7 Overall Remarks

The experimental facilities discussed above share some similarities in the flow conditions
in the breakage region. The flow conditions all exhibit large gradients in the turbulence
level, which makes the actual conditions for breakage difficult to determine. Furthermore,
the breakage region exhibits large mean flow shear stresses and the droplet trajectories
are often in close proximity or even touching a wall, blade or other obstacles, which may
contribute to breakup.

In the use of high-speed camera, there is a requirement of strong illumination on two
accounts. First, short shutter speeds gives sharper images, but leaves less exposure time
of each image [20]. Second, illumination is required to provide sufficient optical contrast
between the continuous and dispersed phases. The required level of illumination may be
reduced by the use of coloring, which is primarily applied to the dispersed phase.

Droplets are commonly generated by cannulas connected to a syringe pump. In such
a setup, the flow conditions in the generation region is critical in order to obtain similar
drop sizes as well as spherical (and stable) droplets. Solsvik et al.[13] and Ashar et
al. [20] found it challenging to control the size of droplets generated in stirred tanks.
Spherical droplets are easier to obtain when the generation is performed in less turbulent
conditions, as found downstream of the breakage region in channel flow. Galinat et al.[18]
reported some variation in the droplet size, while Maaß et al. [67] claimed their similar
setup was very precise.
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Chapter 4

Experimental Investigations of Isotropic
Turbulence

As discussed in Chapter 2 the turbulent breakage models developed to close the PBE
are based on isotropic turbulence theory. The studies intended to validate the breakage
models should ideally perform experiments in isotropic turbulence. Facilities capable of
generating isotropic turbulence have previously been studied in the field of turbulence
and fluid dynamics. Two experimental facilities from the field of isotropic turbulence
have been considered and is presented in this chapter.

4.1 French washing machine

The ”French washing machine” was investigated by PIV measurements in the studies
by Lawson and Dawson [68, 69]. The machine consists of a cylinder 2 m high and 2
m in diameter, with 1.6 m diameter impellers at the top and bottom. The impellers
counter-rotate slowly creating a very small region of isotropic turbulence in the center
of the cylinder. In the studies by Lawson and Dawson [68, 69] the measured volume
was ∼120 mm x ∼ 120 mm x ∼ 20 mm and the whole measured volume was not fully
isotropic. The volume average value of ε in the measured volume was estimated to be in
the range 0.89 - 1.41 m2/s3, which is sufficient for single droplet studies. However, the
Kolmogorov micro length scale η, denoting the scale of the smallest turbulent vortices,
was determined to be 0.93 mm, which is on the same scale as the droplets commonly
investigated in single droplet studies. In conclusion, the ”French washing machine”
creates too large turbulent structures in a too small volume to be viable in single droplet
studies studying turbulent breakage.

4.2 Oscillating grid

Experimental facilities utilizing a single oscillating grid have been shown to produce
regions of nearly isotropic turbulence and no-shear flow [70, 71, 72, 73, 74]. In this
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type of facility, a grid is oscillating in one end of a rectangular box typically filled with
water. At some distance (dependent on grid geometry and fluid properties) from the
oscillating grid the jets and flow structures induced by the grid movement is dissipated.
The turbulence at this distance and further from the grid exhibit a 2D isotropy in the
plane parallel to the grid. Moreover, the generated turbulent kinetic energy k decreases
with the distance from the grid z in the form of a power law, k ∝ z−n, where n has been
found to be in the range 0.8 to 2 [72, 73]. Hence, the sensitivity of the turbulence on z
is reduced with increasing z and near isotropic turbulence is obtained for larger values
of z.

Shy et al. [72] constructed a facility utilizing two oscillating grids, one grid placed
in each end of an rectangular box. The facility can be seen in Figure 4.1. Two boxes
were tested, with dimensions 30× 15× 15 cm3 and 60× 30× 30 cm3, which gave similar
results. The oscillating grids were designed with bars of diameter d arranged in a square
array with a mesh size of M , such that M/d = 5. The resulting grid solidity is ∼36.9%,
which is less than the limit of 40% where secondary motions are possible [73]. Secondary
motions were also found by Shy et al. [72] for frequencies fHz larger than 8 Hz. Hence,
there is an upper limit to both grid solidity and frequency in oscillating grid experiments.
Shy et al. [72] operated with a fixed stroke length S set to 2 cm.

Shy et al. [72] found a region of near isotropic turbulence around the midpoint be-
tween the two oscillating grids. Denoting the distance between the two grids (oscillation
midpoint to oscillation midpoint) as H, an empirical relation for the height h of the near
isotropic region was found as h = 0.48H − 1.5. Here, both h and H is given in cm and
the equation is valid for H > 6 cm and fHz in the range 1-8 Hz. In the near isotropic
turbulence region the turbulent intensity q was found to be given by [72]

q = C∗fHzS
1.5M0.5H−n (4.1)

where C∗ = 0.89 cm1/2 and n = 1.5. Eq. (4.1) provides a good estimate for the
conditions: 4 ≤ H/M ≤ 6, S = 2cm, M/d = 5 and fHz = 1− 8 Hz [72]. The turbulent
intensity q is defined as

q =

√√√√ 1

N

N∑
i=1

(u′i)
2 + (v′i)

2 + (w′i)
2

3
(4.2)

where u′, v′ and w′ denotes the turbulent fluctuations. The turbulent intensity can
describe the turbulent kinetic energy dissipation rate in isotropic turbulence by [75]

ε = A
q

L
(4.3)

where A ∼ 1 at high Reynolds number turbulence [76] and L is the integral length scale.
In the near isotropic region the integral length scale in dual oscillating grid experiments
can be estimated as L ≈ 0.1H/2 [70]. Employing the Eqs. (4.1) and (4.3) with the
values L = 0.1H/2, M = 10 cm, H = 30 cm, fHz = 8 Hz, C∗ = A = 1, n = 1 and
S = 5 cm the corresponding turbulent energy dissipation rate is ε ≈ 0.055 m2/s3. This
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Figure 4.1: Dual oscillating grid facility employed in the study by Shy et al. [72]

turbulence level is quite low for single drop breakage experiments and it is noted that
the estimate is questionable, as the values employed are outside of the range for which
(4.1) was validated. The low turbulence level and additional reasons for not designing a
dual grid facility are discussed in section 5.1.1.
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Chapter 5

Experimental Design Procedure

This chapter describes the process of designing the experimental facility based on the
information presented in the previous chapters. The experimental facility itself and the
operating procedure is well described in the papers. A detailed handbook for operating
the facility was provided in the master thesis by Ingeborg Dahl [77], which may be
relevant for subsequent operators of the experimental facility.

5.1 Design Parameters

The main objective was to construct an experimental facility for the investigation of
the complete set of kernel functions. In order to validate the results against previous
investigations, similar experimental conditions to that of the previous investigations are
required. Moreover, expanded experimental conditions would be advantageous, including
experimental conditions which are representative for separation equipment. The target
conditions for the initial design process were defined as droplet sizes of 0.5-2 mm in
diameter and a turbulent energy dissipation rate of ∼ 1 m2/s3. The possibility to expand
the range of experimental conditions beyond these values is important. In addition to the
experimental conditions, three general points were identified as critical for experimental
facilities intended to study single droplet breakage:

1. High-speed imaging of the entire breakage event

The entire event is important to obtain a complete set of the kernel functions, as
discussed previously (Chapters 1 and 3).

2. Repeatable and reproducible experiments

Single droplet breakage studies require a significant number of drops to be assessed
under the same conditions, but the exact number of drops required for statistically
relevant results is unknown. To ensure that enough data can be obtained within a
reasonable timeframe, the experimental facility should be able to efficiently repeat
the experimental runs. In other words, the need for manual work between the
experimental runs should be at a minimum.
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The injection of the dispersed phase drops is particularly impacted by the require-
ment of repeatable and reproducible experiments. For reproducibility, the size
of the drops should be consistent. Additionally, the drops entering the region of
breakage should not be deformed nor otherwise affected by the droplet generation
and the flow conditions upstream of the region of breakage. For an efficient pro-
cedure, the generation of drops must reliably occur with minimal manual input.
An efficient procedure also requires the removal of the dispersed phase after each
single experiment to be automatic, not require manual cleaning.

3. Known local flow conditions

Many previous studies determine the flow conditions by a volume averaged turbu-
lent energy dissipation rate. The regions of breakage exhibit large gradients in the
turbulence level, large mean flow shear force and close proximity to an obstacle or
wall, which may lead to wall interactions. An ideal setup investigates breakup in
isotropic turbulence, but an experimental facility where the local turbulent charac-
teristics are known and associated with the breakage events would also constitute
an improvement. The latter is especially true if the region of breakage exhibit low
shear force, small gradients in the turbulence level and low probability of wall or
obstacle interaction.

5.1.1 Isotropic Turbulence Facilities

A dual oscillating grids facility is unlikely to produce the turbulence level required for
droplet breakage experiments. The practical limitations to grid solidity, stroke length
and oscillation frequency are too large. The required turbulence level is probably only
achievable under conditions that also generates jets or other large flow structures that
may significantly impact droplet breakage. At the very least, additional work on the
turbulence generated in dual oscillating grid experiments is required to determine the
feasibility in single droplet breakage studies.

Droplet generation and removal are other challenges. In a setup where the grids are
oscillating in a horizontal direction, the droplets could conceivably be generated in a
chamber or channel below the box, to be transported by buoyancy or a channel flow.
This chamber or channel can be expected to have an impact on the flow pattern in
box. More pertinent, the automatic removal of droplets has no clear solution. If the
droplets are interacting with the turbulence, they can be expected to exhibit horizontal
movement. Hence, if the droplets are to be transported out of the box by buoyancy,
a large channel must be placed in the top of the box, which again can be expected to
have an impact on the flow pattern in the box. Instead, manual cleaning or removal
of the drop is likely required, which is not a feasible approach to single drop breakage
experiments. Droplet generation and removal are also the major challenges with utilizing
a french washing machine, if the problem of size of the turbulent structures could be
circumvented.

As a final note, an oscillating grids facility is a challenging setup mechanically. The
oscillating grids are connected to rods which provide the oscillating motion. These rods
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must go through the box walls and the opening must be sealed such that the liquid in
the box does not leak, without hindering the motion of the rods.

5.2 Experimental Facility

As discussed above, the method of injection of the dispersed phase drops is critical for
the performance of the experimental facility. The facilities utilized by Galinat et al.
[18, 19] and Maaß et al. [59, 67, 60, 21] have similar setups for droplet generation and
both facilities produced drops of consistent sizes. These drops also entered the region
of breakage undeformed. The setup of Maaß et al. [59, 67, 60, 21] generated droplets
in volumes of different cross-sectional areas and claimed to have a controllable and very
narrow distribution of drop sizes. Hence, it was decided to construct a facility utilizing
a channel flow with a cannula placed transverse to the flow direction.

A significant advantage of channel flow is that it can be part of a loop setup. In a loop
setup the drops can be transported from the region of breakage by the continuous phase.
Downstream of the region of breakage a gravity separator can separate the dispersed
phase, allowing the continuous phase to be reused. This means the consumption of
continuous phase is relatively low. A more noteworthy advantage is that the cleaning,
or other reasons for downtime, between individual experiments is virtually non-existent.

The requirement for known local flow conditions is critical for the design of the break-
age region of the facility. Having decided on utilizing a loop design in the experimental
facility, some type of channel flow is required to create the wanted breakage conditions.
Turbulent pipe flow has a uniform velocity profile in the center of the channel [5], which
means there is low mean flow viscous shear in this region. A channel flow, i.e. square
cross section, is assumed to exhibit similar conditions. For drops traveling along the
channel centerline, there is a significant distance to the wall and no other obstacles.
Hence, two of the desired flow characteristics are achieved by utilizing a channel flow.
Turbulence is naturally generated at the walls at high enough Reynolds numbers. There
will likely be significant gradients in the turbulence level in the transversal direction,
but low gradients in the streamwise direction.

A schematic of the final facility can be seen in Figure 5.1. It consists of a loop
utilizing a large tank for dispersed phase separation, a positive displacement pump, a
droplet generation section and a breakage section. As aforementioned, additional details
are given in the articles in the following chapters. The droplet generation section was
constructed with three regions of different cross-sectional area. Hence, for each mean
flow condition in the breakage channel, three different flow conditions are available for
droplet generation. Each droplet generation region was equipped with two opposing
walls of glass, allowing high-speed imaging of the droplet generation with illumination
by backlight. The high-speed cameras and the lamps providing the illumination can
be moved to observe either the generation of droplets or the breakage channel. The
breakage section of 30 mm x 30 mm x 1 m was constructed with two opposing walls of
metal and two opposing walls of glass. In the same way as for the droplet generation
section, the glass walls allow the droplet breakage to be observed by the high-speed cam-
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eras with backlight illumination. The two metal walls were constructed with significant
protrusions to induce more turbulence than a smooth wall. A symmetrical 2D pattern
of the protrusions ensures a symmetrical flow profile. The estimation of the protrusion
length is discussed in the following section.

6 7 8

1

2 3

4
5

Figure 5.1: Schematic drawing of the experimental setup. 1. Water tank and phase
separator, 2. water pump, 3. flow meter, 4. droplet generation section, 5. oil syringe
pump, 6. two cameras, 7. breakage section, 8. illumination.

5.2.1 Turbulent Energy Dissipation Rate Estimation

The pressure drop in a pipe due to wall friction can be given as [5]

∆P = 2fρ
L

Dp
u2 (5.1)

where ∆P is the pressure drop, f is the Fanning friction factor, ρ is the fluid density,
L is the distance for which the pressure drop is considered, Dp is the diameter of the
pipe and u is the cross sectional averaged fluid velocity in the channel. The pressure
drop corresponds to a loss in kinetic energy which is dissipated to heat. The average
turbulent kinetic energy dissipation rate can be given as

ε̄ =
∆P

ρL
u =

2fu3

Dp
(5.2)
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The right hand side expression was used by Hesketh et al. [78] to estimate the dissipation
rate in pipe flow during single bubble experiments. The friction factor f can be estimated
by the Haaland equation [79]

1√
f

= −3.6 log

[
6.9

Re
+

(
ε/D

3.7

)1.11
]

(5.3)

where ε is the characteristic length of the wall roughness. Solving for ε/D, this ratio is
determined to be ∼ 0.05. However, the relationship between the characteristic length of
the wall roughness ε and the length of large protrusions placed in a repeating pattern
is not known. It was assumed that the protrusion would need to be larger than the
estimated characteristic length, and the protrusions were set to 10% of the channel di-
ameter. Obviously, the flow characteristics and dissipation rate of this channel geometry
required a more thorough investigation, hence the LDV investigations in Paper 1 was
performed. Before the LDV investigation of the channel, changing the channel geometry
represented a minor inconvenience both economically and practically. Thus, some initial
oil particle experiments were performed. As these initial experiments showed breakup,
the channel geometry was known to produce sufficient turbulence for breakage.

5.3 Challenges and Adaptions

5.3.1 Pressure fluctuations

The first attempted droplet generation section is shown in Figure 5.2. A glass cannula
could be inserted at the red caps, allowing the droplet generation to take place in different
area averaged velocities. The droplet generation in this setup was challenging, as the
flow exhibited a recirculation and secondary flow pattern in this region. Moreover, the
positive displacement pump induced rapid pressure fluctuations in the flow. The flow
conditions caused the pressure where the droplets were generated to dynamically change.
This pressure change caused the oil/water interface in the cannula to move, possibly due
to elasticity in the tube connecting the cannula to the syringe pump. The result was
jetting of oil and limited control of the size and number of droplets generated. The
design of the cannula was adapted to account for this challenge and the final cannula
design is shown in Figure 5.3. A small inner diameter caused the pressure fluctuations to
have less of an impact on droplet generation, probably due to higher capillary pressure
in the cannula. Another improvement was achieved by exchanging the tube connected
to the syringe pump for a tube with a smaller diameter and made from a more rigid
material. The resulting system provided reasonable stable drop sizes.

In addition to designing a better injection system, four components were installed
in the loop to dampen the pressure fluctuations upstream of the section for droplet
generation. The impact was not quantified, but collectively the components dampened
the pressure fluctuations to a level which did not affect droplet generation. Three of
the installed components may be seen in Figure 5.4. As large pressure drops causes the
fluctuations in the pressure to dampen, a valve was installed. This valve appears to have
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Figure 5.2: First version of the droplet generation section.

Figure 5.3: Final cannula design with important features highlighted. (1) denotes the
small rigid tube connected to the syringe pump, (2) denotes the small inner diameter
and (3) denotes a small outer diameter at the tip.
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had the smallest impact of the four components considered. A better approach was to
install a grid in the flow, inducing an significant amount of turbulence which smoothed
the flow and the pressure downstream of the grid. The two remaining components
installed were less intrusive. A section of tube in the loop was exchanged for a less rigid
tube placed in a spiral. The combination of spiral form and ductile material dampened
pressure fluctuations by allowing the spiral to contract and expand with the pressure
variances. A pressure dampener was also considered, but commercial equipment was
not available at this low level of pressure oscillation. Thus, a stand pipe filled with air
was installed. At high pressures, water is stored in the stand pipe, while the water exits
the pipe at low pressures. The result is a more even flow of water with less pressure
fluctuations.

Despite the improvements made to dampen the pressure fluctuations, the droplet
generation section needed to be redesigned to obtain consistent sizes of the droplets
generated. The final design can be seen in Figure 5.5. This new design still relied
on three different cross sectional areas for droplet generation, but the upstream design
was significantly changed. The tube from the pump was connected to a channel of
much larger cross-section, causing a recirculation area where the flow was redistributed.
The large cross-section channel is long, allowing the flow to achieve steady state before
reaching the droplet generation section. While the pressure fluctuations are still present,
they are now so small that they no longer impact the droplet generation.

5.3.2 Maintenance

The new droplet generation section solved the challenge of pressure fluctuations, but
also provided a new challenge. The new design did not allow for the entire facility
to be drained of water. Eventually, algae started growing on the walls in the droplet
generation section and upstream. The algae affected visibility through the glass and
detached from the walls to impact the system and flow conditions. Attempts to remove
the algae by chemical agents did not work and thus the experimental facility had to
be adapted. By constructing large openings, brushes could be introduced to remove
the algae mechanically. To avoid further algae buildup, additional holes were added
to completely drain the droplet generation section when the facility was not in use.
The modifications allowed the droplet generation section to fully dry every day, which
significantly inhibited the algae generation.

The stainless steel tank utilized as a gravity separator exhibits no algae problems,
hence the aluminum used in the new droplet generation section is likely a critical com-
ponent of the algae generation.
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Figure 5.4: Several components for dampening of pressure fluctuations. (1) denotes a
valve which causes a pressure drop. (2) denotes a tube in a spiral where the combination
of spiral form and ductile material causes pressure fluctuations to be dampened. (3)
denotes a stand pipe in which functions as a general pressure dampener.
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Figure 5.5: Final droplet generation section
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a b s t r a c t

An experimental study of turbulent flow concerning the characterization of turbulence by two-point cor-
relation and estimations of the turbulent dissipation rate is presented. The fluid used is deionized water
and the test section used was a square shaped channel of 24 mm by 30 mm on the cross section with a
length of 1 m. The test section also presented periodic baffle structure at two of the walls for enhancing
and maintaining turbulence. The study consisted in the measurement of the velocities at different posi-
tions of the channel using Laser Doppler Velocimetry instrument (LDV), the velocity measurement
obtained were used for estimating two point correlations using the Taylor’s frozen hypothesis. Finally,
the results from the two-point correlation were used for estimating the turbulent dissipation rate.
Considering the difference in the methods for calculating the dissipation rate, a comparison of the accu-
racy of each method is presented. It was found that the methods presented in this work showed similar
results and trends of the dissipation rate with respect to changes in flow condition and distance to the
channel walls. However, better accuracy was obtained by estimating the dissipation rate using the second
order structure function and the Kolmogorov’s two-third law.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Turbulence flow are present in many industrial processes, and
have become a key parameter in the study of phase interaction
in multiphase flows. One particular case of importance for the oil
industry is the study of breakage and coalescence of oil droplets
in turbulent water. In this case, models for droplets breakage and
coalescence are used for the design and modeling of separation
processes. While these models concentrate in the evolution of
the different phases in the mixture, one key parameter is related
to the characterization of the turbulence. Nevertheless, due to
the stochastic behavior of the turbulent phenomena the interaction

between phases can be difficult to model. As a consequence, most
models are based on the statistical probability measured through
larger amounts of individual measurement.

A review of droplet breakage mechanisms in static mixer can be
found in the work of Lemenand et al. (2013), where shear, elonga-
tion and turbulent fluctuation mechanisms are discussed and com-
pared. One important contribution to the modelling of dispersed
phase distribution in multiphase flow was presented by Coulalo-
glou and Tavlarides work (Coulaloglou and Tavlarides, 1976), in
which the foundation for models of droplet breakage and coales-
cence in turbulent flow for use with Population Balance Equation
(PBE) was established. The phenomenological model was derived
from a theoretical perspective and validated with the available
experimental data where the breakage frequency and coalescence
frequency were related to an estimated turbulent dissipation rate.
While the model proposed presented good agreement with exper-
imental observations, the authors also concluded that in order to
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improve the model more measurements with uniform turbulent
condition and where coalescence and breakage could be observed
independently were needed. Following the same principle, Azizi
and Al Taweel (2011) investigated breakage in a mixer where the
volume-average dissipation rate was estimated frommeasurement
of pressure drop in combination with a model for describing the
spatial variation of dissipation rate. More recently, models for drop
breakage derived in term of the turbulence energy spectrum has
been proposed. Han et al. (2014) suggested that the breakage fre-
quency is parent drop size dependant, and thus influenced by the
entire energy spectrum distribution using the energy spectrum
models proposed by Pope (2000) and by Hinze (1975). The authors
found a good agreement between their model predictions and the
experimental data of Andersson and Andersson (2006b) and Maaß
and Kraume (2012). Solsvik and Jakobsen (2016a,b) proposed a
model for the second order structure function based on Pope’s
energy spectrummodel which allowed the evaluation of the break-
age and coalescence for the entire energy spectrum range. More
recent, Gong et al. (2018) proposed a model for studying the coa-
lescence of droplet in turbulent flow by considering the contribu-
tion of multiscale turbulent eddies. The structure function model
for turbulence were compared with data from direct numerical
simulation and with previous models, where the authors claim to
have obtained a better accuracy in representing the second order
structure function compared to the model of Han et al. (2014)
and Solsvik and Jakobsen (2016a,b). Nevertheless, none of these
models were compared with experimental measurement.

While different approaches are available for relating the turbu-
lent phenomena to breakage and coalescence in multiphase flows,
there is still lack of accurate experimental data regarding the tur-
bulence characteristics and, as a result, models for turbulence
had been used instead. In addition, these models require input of
turbulent parameters such as the dissipation rate and the turbulent
kinetic energy. However, the turbulent dissipation rate, kinetic
energy and energy spectrum are not variables that can be directly
measured, and must be experimentally determined which in most
cases result in determining two-point correlation from the velocity
fluctuation (Pope, 2000; Davidson, 2015). These correlations
require measurement of the velocity fluctuation at two points
while varying the distance between them. This procedure requires
the use of multiple instruments, however, simplification can be
made by adopting the Taylor’s frozen hypothesis (Taylor, 1938)
for constructing two-point correlation based on measurements
from a single point.

While the amount of experimental data available in the litera-
ture is low, the focus is on models of breakage and coalescence
with less focus on the turbulent characterization. Bouaifi et al.
(2004) used PIV measurements and CFD simulations using the
commercial software Fluent. They compared the commercial soft-
ware predictions for the axial velocity component with the velocity
measured with the PIV and concluded that the low-Reynolds num-
ber k� � turbulence model presented a good agreement with the
experiments. Nevertheless, this comparison would only reveal
the ability of the model to reproduce the velocity field and not
the velocity fluctuation that are required for the turbulence charac-
terization. This work was continued by Andersson et al. (2004)
where measurements and simulations of breakage and coalescence
were investigated. Here the authors used the PIV technique for
obtaining the turbulent kinetic energy and the turbulent dissipa-
tion rate which were obtained by direct calculation through the
velocity gradients obtained by the PIV method, however the accu-
racy of the results were not presented. Andersson and Andersson
(2006a) investigated and discussed breakup mechanisms and the
dynamics of fluid particle deformation by means of high speed
camera and using CFD simulations and PIV method for characteriz-

ing the turbulence. Andersson and Andersson (2006b) proposed a
model for fluid particle breakage using the dissipation rate esti-
mated by CFD simulations. Maaß et al. (2012a) used the commer-
cial software STAR-CD for estimating the local dissipation rate in a
stirred tank for studying breakage phenomena. The model used
was based on a k� � model which showed better prediction at
higher flow velocities. Maaß et al. (2010) used the Population Bal-
ance Equation (PBE) for investigating the prediction of drop size in
stirred tanks. In the PBE model, the authors used the agitation
power to calculate the power number accounting the average tur-
bulence dissipation rate. Maaß et al. (2012b) studied the prediction
of droplet size distribution in breakage dominated stirred systems
by hindering the coalescence phenomena. In this case, the dissipa-
tion rate was calculated by CFD simulations. Maaß and Kraume
(2012), performed experimental investigations of single drop
breakage where the dissipation rate were calculated as in Maaß
et al. (2012a). Håkansson et al. (2017), performed experimental
investigation to estimate local fragmenting stresses in rotor-
stator mixer using two different approach based on PIV measure-
ments. While both methods can provide valuable information, both
approaches presented disadvantages related with the low resolu-
tion of the PIV method. Mortensen et al. (2018), experimentally
study the effects of slot width on the local dissipation rate of tur-
bulent kinetic energy using a PIV method coupled with a sub-
resolution modelling for studying breakage phenomena in roto-
stator mixer.

Very few works acknowledged the importance and difficulties
in estimating the turbulence parameters. In the work of de Jong
et al. (2009), seven different methods for estimating the dissipation
rate has been compared using a PIV instrument for the character-
ization. The uncorrected results obtained using second and third
order structure function and the scaling argument presented sim-
ilar results. However, the uncorrected results obtained using the
direct method (measuring the velocity derivatives from the PIV
experiments) and the large-eddy PIV method developed by Sheng
et al. (2000) results in larger values. The results obtained from
the spectral fitting resulted larger values that the second and third
structure function methods and the scaling argument but the val-
ues were lower than the direct and large-eddy PIV methods. The
large-eddy PIV is similar to the direct method but employs the
Smagorinsky model (Smagorinsky, 1963) for estimating the sub-
grid stress Tij. In particular, these two methods require a good
approximation of the velocity derivatives which can be affected
by the spatial resolution of the PIV method. The results were cor-
rected using models obtained from literature that allowed a reduc-
tion in the gap between different methods. The corrections
diminished the values obtained by the direct method and large-
eddy PIV and increased slightly the values from the second and
third order structure function method and the scaling argument.
Vejraẑka et al. (2017) performed experimental measurement of
the breakage of air bubbles in a turbulent water flow. The turbulent
flow was characterized through the use of the dissipation rate by
measuring the velocity field by a PIV system. The local dissipation
rate was estimated using a large-eddy PIV technique, a second
order structure function method and a scaling argument. The
results from the measurement of the dissipation rate from the dif-
ferent techniques presented similar trends with the variation of
the flow rate and distances, nevertheless there was a large discrep-
ancy in the values obtained, in which the second order structure
function presented systematically lower values for the dissipation
rate followed by the large-eddy PIV and finally by the scaling
argument.

Lemenand et al. (2017a), performed experimental investigation
of micro-mixing by chemical probe in homogeneous and isotropic
turbulence. The turbulent characteristic was generated by means
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of an oscillating grid, where the dissipation rate was estimated
using a scaling argument based on a three axis LDV measurements.
The authors compared the dissipation rate obtained with two dif-
ferent models, showing that the scaling argument used underesti-
mate the dissipation rate compared to the models used. They
conclude that the constant of the scaling argument could be
greater. In the work of Lemenand et al. (2017b), the turbulent dis-
sipation rate was obtained by linear fitting of the energy spectrum
model for the inertial sub-range of Kolmogorov (1941) using a
reconstruction of the energy spectrum based on LDV
measurements.

In this paper, measurement of different statistical parameter for
characterizing the turbulence in a square channel is presented. It is
focused on providing accurate measurements for characterizing
the evolution of the turbulence in the channel under different flow
conditions. Different parameters were studied; including the tur-
bulent dissipation rate, the second order structure function, third
order structure function and the longitudinal autocorrelation func-
tion. Several methods are available for estimating dissipation rate
from these correlations. These methods will be presented and com-
pared considering the method accuracy and the statistical error in
each case.

The design of the experimental apparatus used in this work
were previously presented in Shi et al. (2017), where the design
of the wall structures for the turbulence enhancing were investi-
gated using Large Eddy Simulation method using the commercial
software Fluent. The experimental apparatus was designed to
study the breakage probability of oil droplet in turbulent flow.
More recent, measurement for fully developed turbulent flow were
presented and compared with the results from the simulations
(Herø et al., 2018). The results from the simulations and the dissi-
pation rate estimated from the measurements presented a good
agreement. Nevertheless, the injection of oil droplet in a fully
developed turbulent flow is difficult to achieve with this design,
as a consequence the turbulence needed to be characterized for
the entire channel in order to account the evolution of the turbu-
lent flow around the channel inlet.

2. Turbulent flow characterization

Turbulent flow are characterized by the fluctuating behavior of
the velocity field. This means that prediction of the flow condition
at any time becomes a difficult task. The use of time average or
ensemble average operators over the velocity field can provide
information on the magnitude and energy of the turbulence fluctu-
ations which can be used for constructing two-points correlations
and for estimating turbulent dissipation rate (Pope, 2000;
Davidson, 2015). Here, the velocity of a particular spatial point
can be separated in a mean velocity component and a fluctuation
component:

U �x; tð Þ ¼ U �xð Þ þ U0 �x; tð Þ ð1Þ
where U �x; tð Þ is the instantaneous velocity, U �xð Þ is a time average
mean velocity and U0 �x; tð Þ is the velocity fluctuation.

The evolution of turbulence can be represented by correlating
the velocity fluctuations at two different spatial positions. The cor-
relation between spatial positions is stronger when the position is
close and tends to vanish as the distance between points increases.
This dependence on the position can be used in estimating the tur-
bulent dissipation rate. The calculation of the correlations requires
the simultaneous measurements of the velocities at two different
positions. While the measurement at two different positions can
be obtained using two instruments, the simultaneous condition
can be difficult to achieve. An alternative approach is to use the

Taylor’s frozen hypothesis (Taylor, 1938), which assumes that the
turbulent fluctuations of the velocity advect with the fluid. This
means that the velocity at a different position in the stream-wise
direction can be estimated from the conversion from velocity mea-
surements at one position but differents times. The velocity at the
new position can be expressed as:

Ux xþ r; t0ð Þ ¼ Ux x; t0 � r= �Ux
� � ð2Þ

where Ux is the velocity in the stream-wise direction, x is the posi-
tion in the stream-wise direction, r is the distance between the two
points in the stream-wise direction, t0 is the initial time, and r= �Ux

corresponds to the time that the flow takes to advect the velocity
fluctuation. Different two-point correlations can be used for charac-
terizing the turbulent flow. The longitudinal correlation function is
based in the product of the velocities at different positions in the
stream-wise direction. An ensemble average is used with the pro-
duct of the two velocities in order to construct the auto correlation
matrix:

Qij �x;�r; tð Þ ¼< U0
i
�x; tð ÞU0

j
�xþ �r; tð Þ > ð3Þ

If Qij does not depend on time, then it is said that the turbulence
is statistically steady. In addition, if it is independent of the posi-
tion �x, then it is said that the turbulence is statistically homoge-
neous. If the flow condition does not change over time, it can be
assumed that the flow is statistically steady. Nevertheless, the con-
dition for statistically homogeneous is more difficult to achieve
specially at flows with turbulence generated at the walls (Pope,
2000).

It should be noted that at large �r;Qii �xð Þ tends to 0. Moreover,
when the distance �r approaches 0, then this result in:

Qii �x; tð Þ ¼< U0
i �x; tð Þ2 >¼ U02

i;rms ð4Þ
With this property, a dimensionless form can be found, which

for the particular case of the stream wise direction this leads to
the longitudinal auto correlation function:

f rð Þ ¼ Qxx rð Þ=U02
x;rms ð5Þ

Where f rð Þ is the longitudinal auto correlation function. This
dimensionless function can be used to estimate the integral length
scale:

l ¼
Z 1

0
f rð Þdr ð6Þ

¼ 1
U02

x;rms

Z 1

0
Qxx rð Þdr

This parameter gives an estimation of the region in which the
velocities are appreciably correlated.

A different approach is to construct the second and third order
longitudinal structure function:

Dv rð Þ½ �2
D E

¼ U0
x xþ rð Þ � U0

x xð Þ� �2D E
ð7Þ

Dv rð Þ½ �3
D E

¼ U0
x xþ rð Þ � U0

x xð Þ� �3D E
ð8Þ

In the case of the second order structure function, the correla-
tion approaches 0 when r tends to 0 and start developing until it

reach its maximum value < Dv rð Þ½ �2 >� 2U02
x;rms. It is normally

interpreted as a measure of the cumulative kinetic energy con-
tained in eddies of size r and less (Pope, 2000).

A relation between longitudinal auto correlation and the second
order structure function can be given as:

Dv rð Þ½ �2
D E

¼ 2u02 1� f rð Þð Þ ð9Þ
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Another approach is to work in the wavenumber space where
the energy spectrum can be interpreted as the distribution of
energy of the different vortex size, and the energy is transmitted
from the larger scales to the smaller scales where the dissipation
of energy takes place. Different sub-ranges can be identified; the
dissipation sub range, the inertial sub range and the energy con-
taining eddies sub range. Early breakage and coalescence models
like Coulaloglou and Tavlarides (1976) assumed a particular rela-
tion between the interaction of turbulent energy and droplet size
by accounting the contribution of the inertial sub range of the
energy spectrum. In the inertial sub range, the turbulence can be
described in terms of the turbulent dissipation rate by means of
the well-known Kolmogorov’s two-thirds law (Kolmogorov,
1941) and the Kolmogorov’s four-fifths law (Kolmogorov, 1962),
which relates the evolution of second order structure function
and the third order structure function to the dissipation rate.

The Kolmogorov’s two-third law can be described by:

Dv rð Þ½ �2
D E

¼ b�2=3r2=3 ð10Þ

where b ¼ 2. And the Kolmogorov’s four-fifth law can be expressed
as:

Dv rð Þ½ �3
D E

¼ �4=5�r ð11Þ

The model for the energy spectrum of Kolmogorov for the iner-
tial sub range follows:

E jð Þ ¼ C�2=3j�5=3 ð12Þ
where j is the wavenumber j ¼ 2p=r. By measuring these two-
point correlations, the value of the dissipation rate can be obtained.

The dissipation rate follows from calculating the rate works of
viscous stress on Navier-Stokes equation for a Newtonian fluid
(Davidson, 2015):

_W ¼
Z

ui TijdSj
� � ¼ Z @

@xj
uiTij
� �

dV ð13Þ

where _W is the rate of work, Tij is the stress tensor, dS is a surface
differential and dV is a volume differential. The stress tensor for
Newtonian fluids can be defined as:

Tij ¼ qm
@ui

@xj
þ @uj

@xi

� �
¼ 2qmSij ð14Þ

where Sij is defined as the stress tensor:

Sij ¼ 1
2

@ui

@xj
þ @uj

@xi

� �
ð15Þ

here it can be seen that Sij and in consequence Tij are symmetric. Eq.
(13) can then be decomposed in:

@

@xj
uiTij
� � ¼ @Tij

@xj
ui þ Tij

@ui

@xj

� �
ð16Þ

where the first term is related with the net work of viscous force
f iuið Þ, and the second term correspond to the rate of change of inter-
nal energy of the fluid. Using this relation, the dissipation rate can
be defined as:

� ¼ TijSij
q

¼ 2mSijSij ð17Þ

The calculation of the dissipation rate through Eq. (17) is called
the direct method. Measurement using PIV instruments can pro-
vide information on a two-dimensional velocity field from which
the velocity derivatives can be extracted in order to apply the
direct method. The third velocity field in PIV can be estimated
for using this method. Nevertheless, the accurate estimation of

the velocity derivatives requires a very fine spatial resolution in
order to resolve the turbulent dissipation scales. The large-eddy
PIV method developed by Sheng et al. (2000) uses the Smagorinsky
model (Smagorinsky, 1963) for estimating the unresolved smaller
scales through the calculation of the sub grid stress Tij in Eq. (17).

LDV methods provides measurement of velocity in one spatial
position, however, by means of the Taylor’s frozen hypothesis,
information on the velocity in the stream wise direction can be
obtained. The estimation of the velocity can be used to obtain
the velocity derivative for the stream-wise direction. In order to
solve the direct method, assumptions must be used for the remain-
ing unknown velocity derivatives. One common approximation is
to assume isotropic flow, from which the equation of the dissipa-
tion rate for isotropic flow can be simplified (Taylor, 1935):

� ¼ 2mSijSij ¼ 15m
@ux

@x

� �2

ð18Þ

nevertheless, the error in estimating the velocity derivative can still
be large depending on the spatial resolution for each experiment.

A different approximation is based on a scaling argument where
it is assumed the turbulent dissipation rate equals the energy
passed down the cascade from largest eddies to smaller eddies,
and since viscous dissipation is concentrated at smaller scales this
leads to the following approximation:

G � � � u02
rms

u0
rms

l
¼ u03

rms

l
ð19Þ

where G is the generation of turbulence, u02
rms is a measure of the

kinetic energy and l=u0
rms is a measure of the turnover time of the

largest eddies. Then the estimation of the dissipation rate from
the scaling argument follows:

� ¼ Au03
rms

l
ð20Þ

where the prefactor A is a constant parameter with value (A � 1).
As mentioned before, the use of the turbulent dissipation rate in

the classical breakage and coalescence models were related to the
inertial sub range solely. However, more recent developments on
breakage and coalescence modeling include the effects from the
entire energy spectrum (Han et al., 2014; Solsvik and Jakobsen,
2016a). In this case, the entire energy spectrum cannot be
described only in terms of the turbulent dissipation rate. Several
models for energy spectrum have been reviewed in the work of
Solsvik and Jakobsen (2016b). In particular, Pope (2000) proposed
an empirical model for the entire energy spectrum:

E jð Þ ¼ C�2=3j�5=3f L jLð Þf g gjð Þ ð21Þ
where f L and f g are non-dimensional functions, C is the Kol-
mogorov’s constant (C ¼ 1:62), and L is the integral scale defined as:

L ¼ k3=2

�
ð22Þ

where k is the turbulent kinetic energy:

k ¼ 3
2
u02
rms ð23Þ

The function f L and f g follows:

f L jLð Þ ¼ jL

jLð Þ2 þ cL
h i1=2

0
B@

1
CA

5=3þp0

ð24Þ

f g jgð Þ ¼ e�b jgð Þ4þc4g½ �1=4�cg
� �

ð25Þ
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where (p0 ¼ 2; b ¼ 5:2), cL and cg are positives parameter, and g is
the Kolmogorov’s micro length scale defined in Tennekes and
Lumley (1972) as:

g ¼ m3

�

� �1=4

ð26Þ

where m is the kinematic viscosity. The function f g concern the
micro scale as is related with the fluid viscosity, while the function
f L is related to the energy containing sub range by accounting the
turbulent kinetic energy k through the integral length scale L. It
should be noted that the energy spectrum proposed by Kolmogorov
for the inertial sub range has contribution on the entire energy
range in the model proposed by Pope, where it follows that the dis-
sipation rate could be considered as the main parameter affecting
the entire energy spectrum.

The estimation of the values for CL and Cg has been proposed in
the work of Solsvik (2017), where the parameters are presented as
functions of the Kolmogorov’s constant C:

cg Rek;Cð Þ ¼ exp
14:043� 4:222C

Re1:986�0:363C
k

 !
� 0:089þ 0:339C½ � ð27Þ

cL Rek;Cð Þ ¼ exp �4:478þ 18:362C
Re1:075�0:07C

k

� 1:342þ 2:024C

 !

� 1:913þ 2:169C ð28Þ
where Rek is the Taylor-scale Reynolds number which is related
with the integral scale Reynolds number ReL:

Rek ¼
ffiffiffiffiffiffi
20
3

r
Re1=2L ð29Þ

ReL ¼ k2

�m
ð30Þ

Based on Pope’s model, Solsvik and Jakobsen (2016a) presented
an analytical solution for the second order structure function con-
sidering the energy spectrum model from Pope in the energy con-
taining range and inertial sub-range, and then extended to the
dissipation range by including a semi empirical formula proposed
by Sawford and Hunt (1986):

Dv rð Þ½ �2
D E

¼4
3
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r2

r2dþr2

� �2=3

1� T1 rð ÞþT2 T3 rð ÞT4 rð Þ�T5 rð Þð Þ½ �ð Þ
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; 3

2j
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T2¼33=2C 2=3ð Þ
T3 rð Þ¼27�21=3 s rð Þ½ �2=3C 2=3ð Þ
T4 rð Þ¼ 1

352pF
7
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� �11=6
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T5 rð Þ¼ 22=3

2p s rð Þ½ �2=3K4=3 s rð Þð Þ
s rð Þ¼ jr

C�1=2
L

jL

cL¼ C�1:262ð Þ3
rd¼ 15CKð Þ3=4

where CK ¼ 2; F is the hypergeometric function, K is the Bessel func-
tion, and C is the gamma function.

More recently, Gong et al. (2018) proposed an alternative
empirical model for the second order structure function for the
entire energy spectrum:

Dv rð Þ½ �2
D E

¼
CK

r2

r2þr2
d

� �
�rð Þ2=3f L jLð Þ for r 6 L

CK
L2

L2þr2
d

� �
�Lð Þ2=3f L jLð Þ for r > L

8>>><
>>>:

ð32Þ

where f L is given by Eq. (24). The parameter cL was taken from Eq.
(28).

In addition, the second order structure function can be obtained
by integrating the energy spectrum model from Pope (2000). The
integration follows (Davidson, 2015):

Dv rð Þ½ �2
D E

¼ 4
3

Z 1

0
E jð Þ 1� 3

sin jrð Þ
jrð Þ3 þ 3

cos jrð Þ
jrð Þ2

" #
dj ð33Þ

3. Experimental setup

The experimental setup was developed in order to study the
breakage of oil droplets in turbulent water flow. The design pre-
sents a baffle structure on the channel walls for enhancing the tur-
bulence generation. The design of these structures was simulated
using the Fluent software, where the Large Eddy Simulation model
was employed. The details of this numerical simulation can be
found in the work of Shi et al. (2017).

The experimental setup is presented in Fig. 1. It is a closed loop
circuit using destilled water as continuous phase. The fluid is dri-
ven from a reservoir tank by a mechanical pump (model MDL-
0670 from SPX Flow Technology), then pass through a flow meter
(model SITRANS F M MAG 5000 from Siemens) connected to an
acquisition card (NI USB-6221 from national instrument) which
has a sampling frequency of 250 kHz. Before reaching the measure-
ment section the flow pass through three sections with different
cross-sectional areas. The first section presents the largest area
while the third section presents the smallest area. Finally, the flow
circulates the test section and is recovered in the reservoir tank.

The test section presents a rectangular cross section were two
walls are made with glass and the other two walls presents a peri-
odic squared shaped structure for enhancing and sustain the tur-
bulence. The two walls with glass allows the visualization of the
fluid flow and the utilization of the Laser Doppler Velocimetry
(LDV) measurement. The cross sectional evolution of the three
reduction section before the test section help to avoid turbulence
before the test section, meaning that turbulence should be gener-
ated in the channel walls at the beginning of the test section. In
Fig. 2 a view of the test section can be observed along its main
dimension, the structures at the wall for creating and enhancing
turbulence are presented in black.

The experiments consisted in measurements of the velocity of
the fluid at different positions of the channel using a laser Doppler
velocimetry (LDV) instrument. Using this technique, the mean
value and velocity fluctuation are measured at different points in
space. Then the different two-point correlations were calculated.
Finally, the dissipation rate was estimated using the different rela-
tions presented in the previous section.

Fig. 1. Schematic drawing of experimental setup. 1. Water tank, 2. Pump, 3.
Flowmeter, 4. Droplet generation channel, 5. Breakage channel, 6. Syringe pump
with oil, 7. Camera, 8. Illumination.
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In the present paper, oil droplets were not used during the tur-
bulent characterization. However, when experiments involves the
use of oil droplets these are separated by gravity in the water
reservoir. The volume of water in the reservoir is approximately
around 800–900 liters, and the amount of oil used during experi-
ments is small which means that the oil can be separated by grav-
ity and collected at the top of the water tank where it is removed
manually.

3.1. Laser Doppler Velocimetry

A laser Doppler velocimetry (LDV) model Fiberflow from Dan-
tec Dynamics was used for the measurements. The instrument

measures single point velocities by the Doppler Shift of laser
beams reflected by seeding particles in the fluid media. With
two pairs of laser beams, it was possible to get two velocity
directions, stream-wise and normal to the baffled walls. To
map a plane in the center between the two glass sides the probe
emitting the laser beams was mounted on an automatic traverse
system such that it could move stream wise and between the
baffled channel sides. In each point, a dataset of velocities was
obtained.

3.2. Experimental procedure

The measurement procedure consisted in selecting the flow
condition (flow rate). Then, using the measurement from the
flow-meter, the pump was adjusted to achieve the targeted condi-
tion. Then using two motorized stages, the laser were positioned at
different locations of the channel. The positioning of the laser were
performed in order to map the entire visible area of the channel.
For this reason, a grid of points were constructed and measure-
ments were performed at each point.

The grid of points were constructed using 17 points in the
stream axis and 11 points in the perpendicular direction (wall dis-
tance). The first point in the stream wise direction was located at
100mm from the channel entrance and the last point at 900mm.
The points perpendicular to the wall were measured in term of
the distance to the wall starting at 0:5mm of distance and to the
middle of the channel at a distance of 12mm from the wall.

Fig. 3. Velocity correlation function for different flow conditions at 600mm from the channel inlet. The different measurements correspond to different distances to the
channel wall.

Fig. 2. The section view.
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3.3. Instrument error

The flow condition was measured using a flow meter that has
an accuracy of 0:4% of the measured flow rate. The measurements
of the flow presented also a statistical error which could be related
to pump oscillations and instrument fluctuations of �15mm=s.
This value was approximately constant at the different flow condi-
tions, meaning that the relative error in the flow is larger for lower
flow rate. Nevertheless, the error of the mean diminishes with the
number of sampling, where with a sampling frequency of 250 kHz,
the error of the mean results 500 times smaller for the mean value
with a sampling period of one second. Finally, considering that the
minimum flow rate used corresponded to a mean cross sectional
velocity of 1:0 m=s, the statistical error can be neglected in com-
parison with the instrument accuracy.

Using the accuracy in the flow measurements, the error in the
measurement of the mean flow follows:

dU
U

� 0:004 ð34Þ

here U is the mean cross sectional velocity.
The error in the velocity measurements is related with the accu-

racy of the LDV instrument. Systematics error can be improved
with calibration of the LDV instruments (Iyer and Woodmansee,
2005). However, since no calibration were done an uncertainty of
10% will be used for estimating the errors. Nevertheless, the focus
of this study is on the velocity fluctuations, and since systematic

errors affects the mean value, then it is expected that systematic
errors would not affect the measurements of the velocity
fluctuation.

du
u

¼ 0:1 ð35Þ

The error in the estimation of the distance between two mea-
surement points r necessary for estimating two points correlations
is related with the fluid velocity at each position and the time
interval between particles detected by the LDV system:

r ¼ Dt
u

ð36Þ

where u is the mean velocity at a given position. Considering that
the uncertainties from the time measurement and the mean veloc-
ity measurement are random and independent, we can apply the
square root of sum of squares of relative error for the error propa-
gation of r:

dr
r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dDt
Dt

2

þ du
u

2
s

ð37Þ

For estimating the error on the time interval, we considered the
precision in which the LDV measured time. At the maximum fluid
velocities used (2:5 m=s), the maximum frequency for particle
detection were approximately 2000 particles per second, which

Fig. 4. Second order structure function for different flow conditions at 600mm from the channel inlet. The different measurements correspond to different distances to the
channel wall.
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gives on average 0:5 ms between particles. Considering that the
instrument can report time interval with a 1 ls resolution, it was
consider this as the instrument error and therefore:

dDt
Dt

<
1 ls

500 ls
¼ 0:002 ð38Þ

It should be noted that at lower pumping speed, the time
between particles increase and therefore the error in the detection
of time interval decreases. The error for r from Eq. (37) results:

dr
r
¼ 0:1 ð39Þ

4. Measurements

The measurements consisted in acquiring the velocity fluctua-
tion for different flow conditions and at different positions in the
channel. The flow conditions are expressed in terms of the average
cross sectional velocity of the flow. The velocity used were
1:0 m=s;1:5 m=s;2:0 m=s and 2:5 m=s. From the measured instan-
taneous average velocity at each position, the root mean square
of the velocity was computed, which was later used for estimating
the dissipation rate. For each position, the amount of samples used
for the averaging procedure were N ¼ 200;000.

4.1. Velocity fluctuation

The velocity fluctuation is a statistical quantity that is com-
puted as an average of many samples. Since the mean value of
the velocity fluctuation is zero, then it can be related with the mea-
surement of the standard deviation of the velocity measurement:

u0
rms

� �2 ¼ u02� � ¼ r2 ð40Þ

where r is the standard deviation of the measurement of the veloc-
ity. The error of the estimation of u02� �

follows the error estimation
of the standard deviation (Taylor, 1997):

dr ¼ r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 N � 1ð Þp ð41Þ

where N is the number of samples used in the averaging procedure
(N ¼ 200;000). Using this relation, then the relative error of u0

rms

follows:

du0
rms

u0
rms

¼ dr
r

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 N � 1ð Þp ¼ 0:0016 ð42Þ

In Fig. 20 in Appendix A, the root mean square of the velocity
fluctuations are presented for different flow conditions and posi-
tions in the channel. It can be observed that the velocity fluctua-
tions start developing at the walls and increases from the start of
the channel until approximately the middle of the channel. Then

Fig. 5. Third order structure function for different flow conditions at 600mm from the channel inlet. The different measurements correspond to different positions along the
channel length.
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it appears to be independent with the distance to the channel inlet,
and close to the end of the channel (at distance 900 mm), it
decreases slightly.

Another source of error in the velocity fluctuations is produced
by the abrupt change in the mean velocity profile close to the chan-
nel wall. The LDV instrument measures the instantaneous veloci-
ties of seeding particles that pass through the laser beam. The
seeding particles that are detected in each measurement can be
associated to a volume around the measurement point defined
by the laser beam size, and since the velocity field close to the wall
has large velocity gradient, then the velocity measurement of the
LDV will be affected by the large velocity distribution inside the
volume of detection, resulting in overestimation of the root mean
square of velocity fluctuation. In addition, since the amount of par-
ticles detected is correlated with the traveling velocity of these
particles, the distribution of velocities may not be homogeneous
inside the measuring volume. These two sources of error will be
translated in larger estimation of the mean velocity and the veloc-
ity fluctuation close to the channel wall, resulting in overestima-
tion of the turbulent dissipation rate estimated by the scaling
argument.

4.2. Longitudinal autocorrelation function

The values for the longitudinal autocorrelations function result
from the ensemble average over a large set of data. The data
obtained is separated according to the distance r calculated using

the Taylor’s Frozen hypothesis. First, a value for r is calculated
according to the time between the velocity measurements. Then
with this set of velocity and distances, the distances were grouped
into smaller regions in order to obtain an average value. Each
group were selected using a distance between points of
Dr ¼ 0:5 mm, this value was selected taking into consideration
the amount of samples to be averaged in each group and the accu-
racy in resolving the given direction. On one hand, narrower
groups could lead to higher position accuracy at the expense of
decreasing in the accuracy of the averaged velocity fluctuation
measurement. On the other hand, wider groups provide more sam-
ples to increase the accuracy of the averaged velocity fluctuations
while the position accuracy decreases.

In Fig. 3, an example of the relation between distance and the
autocorrelation function Qxx is shown for different flow conditions
and distances to the channel wall. The flow selected corresponds to
a fully developed flow situated approximately in the middle of the
channel at a distance of 600 mm from the inlet of the channel.
From this measurement, it can be observed that the correlation is
larger for those positions closer to the channel wall, and it can be
observed that the fluctuation of the correlation is also larger for
these cases. This last observation could be related with the abrupt
change in the velocity profile close to the channel wall.

The standard deviation of the mean value of Qxx can be esti-
mated as Taylor (1997):

dQxx rð Þ ¼ dQxx rð Þffiffiffiffiffiffiffiffiffiffiffi
Nr rð Þp ð43Þ

Fig. 6. Integral length scale for different flow conditions. The different measurements correspond to different positions along the channel length.
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where dQxx denotes the error of the mean value, dQxx rð Þ can be esti-
mated through the standard deviation of the averaging procedure
performed in each group of r, and Nr rð Þ is the number of samples
used in the averaging procedure, where different samples number
correspond to different values of r.

4.3. Second order structure function measurements

Using the same procedure as for the longitudinal autocorrela-
tion function, an ensemble average of the difference between
velocities at two different points in the same stream-wise direction
was calculated using a set of data grouped in sections of
Dr ¼ 0:5mm. The results for the case with fully develop flow at a
distance of 600mm from the inlet of the channel is shown in
Fig. 4. It can be seen that in line with the previous case, the turbu-
lence intensity is larger closer to the channel walls, with larger
fluctuation of the correlation for the same case.

4.4. Third order structure function measurements

The measurement of the third order structure function can be
observed in Fig. 5. Here the observed fluctuation in the measured
values of the correlation are larger than for the previous two cases,
and therefore the expected accuracy that can be obtained from
using this correlation should be lower than using the second order
structure function measurements. In addition, the data fluctuation
that can be observe for low velocities would make it more difficult

to perform a curve fitting of the data. Nevertheless, it can be
observed that at higher velocities the dependency of the third
order structure function with the distance is more clear and in par-
ticular closer to the channel wall where it is expected to observe
stronger turbulence intensities, showing that the third order struc-
ture function can still be a useful tool for the characterization of
the turbulence.

5. Integral length scale estimation

The integral length scale has been estimated to be used in Eq.
(20) to compute the turbulent dissipation rate. The integral length
scale is obtained by integration of the velocity autocorrelation
function according to Eq. (6), using the estimation of Qxx and
u0
rms. The values obtained can be observed in Fig. 6 for different

positions of the channel and different flow conditions. It can be
observed that the values are in the same range and with very little
variation at different velocities or distance to the wall, presenting
minimum values close to the channel wall and the middle of the
channel. Lower value of the integral length scale close to the chan-
nel wall could be due to the presence of smaller turbulent struc-
tures. When these structures moves into the flow, they interacts
with other structure and as a result, they could increase their size.
This could explains why the integral length scale measurements
shows first an increase with the distance to the channel wall. The
decrease of the integral length scale close to the middle of the
channel could be related with the loss of energy due to dissipation.

Fig. 7. Estimated error for the integral length scale for different flow conditions. The different measurements correspond to different positions along the channel length.
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In addition, entrance effects affect the integral length scale estima-
tion in the middle of the channel, since the turbulence levels are
smaller in the middle of the channel close to the entrance of the
test section. This last hypothesis is sustained by the fact that this
effect is observed greater for the channel position closer to the
entrance of the test section.

Since the integral length scale (l) is an estimated parameter, it is
of great importance to discuss the error propagation in detail. In
particular, the error propagation accounts for the error produced
by the integration procedure, in which the values of Qxx rð Þ were
estimated over several measurements, and presents an error esti-
mation for each value of r. The error estimation for the integration
of a generic function f can be expressed as:

d
Z

f xð Þdx
� �

� d
X

f xið ÞDxi
	 


ð44Þ

However, in order to simplify the error estimation, the error for
each point will be assumed to be uncorrelated and similar. With
these assumptions, the error of the integration can be estimated as:

d
R
f xð Þdx� � � Dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
dfð Þ2

q
� Dx

ffiffiffiffiffiffi
Nx

p
df

ð45Þ

where Dx is the discretization in the longitudinal direction r;Nx is
the amount of integration points and df is the assumed constant

error of the function f at each integration point. Applying this
assumptions to the error propagation of Eq. (6) and assuming a limit
for the numerical integration at a distance of approximately 10
times the integral length scale, then we obtain the following
relation:

d�l
�l
¼ 2

du0
rms

u0
rms

þ 10
dQxx

u02
rms

ffiffiffiffiffiffi
Nx

p ð46Þ

Here Qxx is the constant value used as the estimation of the
error of Qxx rð Þ for the different values of r. The contribution from
the velocity fluctuation can be neglected compared to the error
contribution from Qxx. The results from applying Eq. (46) can be
seen in Fig. 7. It can be observed that the error in the estimation
of the integral length scale is considerable.

6. Dissipation rate calculations and error estimation

The dissipation rate can be estimated using different methods
as presented in Section 2. First, we estimated the turbulent dissipa-
tion using the scaling argument presented in Eq. (20). The results
from estimating the dissipation rate are presents in Fig. 8, where
it can be observed that the dissipation rate is larger closer to the
channel wall where the turbulent flow is generated by the struc-
tures at the wall, and decreases with the distance to the wall as
the turbulent flow propagates through the flow. It can also be
observed some increase along the center of the channel (wall

Fig. 8. Dissipation rate estimated using the integral length scale (scaling argument) for different flow conditions. The different measurements correspond to different
positions along the channel length.
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distance of 12 mm) as the effects of the entrance effects reduces
and the turbulent flow becomes more developed. As expected, it
can be observed that the turbulent dissipation rate increase with
the mean flow rate.

The error propagation of Eq. (20) results in:

d�
�

¼ 3
du0

rms

u0
rms

þ dl
l

ð47Þ

The error in the estimation of the velocity fluctuation term is
negligible compared with the error in the estimation of the integral
length scale. However, as we have acknowledged in Section 4.1 the
estimation of the velocity fluctuation could be overestimated, and
since a power law relates the velocity fluctuation with the turbu-
lent dissipation rate, then we expect the calculation of this to be
overestimated close to the channel walls. Fig. 9 shows the error
estimated for the turbulent dissipation rate constructed using Eq.
(47) for different flow conditions, channel positions and distances
to the wall, where it can be observed a larger error closer to the
channel walls.

In addition, the scaling argument presents another source of
error through the constant parameter A. This parameter value
should be in the range 1—1:2. However, many researchers use this
as an adjustment parameter and use values outside this range. In
this work, the value adopted correspond to A ¼ 1:1� 0:1, meaning
that the method present an error of 10% given by the range of A.

Another method for obtaining the dissipation rate uses the sec-
ond order structure function. Considering the turbulent inertial

subrange, the dissipation rate can be calculated using the Kol-
mogorov’s two-third law presented in Eq. (10). The approach con-
sists in performing a linear fitting of the second order structure
function versus r2=3 for the measurement points that correspond
to the inertial subrange. The results from the linear fitting provides

Fig. 9. Estimated error for the dissipation rate calculated using the integral length scale (scaling argument) for different flow conditions. The different measurements
correspond to different positions along the channel length.

Fig. 10. Linear fitting example using the second order structure function in the
inertial sub range. The measurement correspond to the center line of the channel at
a distance of 600mm from the channel inlet. The mean cross sectional velocity was
2:0 m=s.
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the value of b�2=3, from which the value of the dissipation rate can
be easily obtained. An example of this procedure can be seen in
Fig. 10, here the measurements were performed at the center line
of the channel, from a distance of 600mm from the inlet of the test
section and with a mean cross sectional velocity of 2:0 m=s.

Considered the following a linear representation:

y ¼ aþ bx ð48Þ
Then, using the least squares linear fitting (Taylor, 1997), the

coefficients a and b can be obtained. In addition, information of
the statistical error of the coefficient a and b can be obtained in
the form of ra and rb respectively.

a ¼
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ð49Þ
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ð51Þ

The error on the coefficient follows:

ry ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 2

r X
yi � a� bxið Þ2 ð52Þ
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ffiffiffiffiffiffiffiffiffiffiffiP
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r
ð53Þ

rb ¼ ry

ffiffiffiffi
N
D

r
ð54Þ

Here rb reflects the estimated error from the linear fitting from

the y coordinate which in this case is the error of Dv rð Þ½ �2
D E

. Nev-

ertheless, an error was estimated for this quantity since each point
is based in an average procedure over several measurements from
where a standard deviation was obtained. Then the largest error of
these two method were selected. In Fig. 11, the dissipation rate are
presented for different flow conditions and channel positions,
where it can be observed that the results obtained with this
method are in the same range than the measurements obtained
with the scaling argument presented in Fig. 8. Nevertheless, from
the comparison between the two methods it can be observe that
with this method, the effects of the entrance length are more
clearly represented. Here, the turbulent dissipation rate for those
positions closer to the entrance presents smaller values close to
the middle of the channel (wall distance of 12 mm), and as the dis-
tance to the entrance increases, the turbulent dissipation rate con-
verges approximately to the same value.

Using the error estimation from the linear fitting presented in
Eq. (54), the relative error of the dissipation rate from Eq. (10)
follows:

d�
�

¼ 3
2
rB ð55Þ

The results from applying Eq. (55) can be observed in Fig. 12.
It can be observed that with this method the relative error is lar-
ger in the center of the channel. This effect is related with the
lower turbulence intensities at the middle of the channel that

Fig. 11. Dissipation rate estimated using the second order structure function for different flow conditions. The different measurements correspond to different positions
along the channel length.
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contribute to an increase in the relative error of the turbulent dis-
sipation rate. This effect is more evident for the positions close to
the entrance of the channel where the dissipation rate presents
lower values. The error produced with this method is consider-
able smaller than the error obtained using the integral length
scale, due to the error produced in the integration of Qxx which
is considerable.

A similar method consists in using the third order longitudinal
structure function, from which the dissipation rate can be obtained
through Kolmogorov’s four-fifth law presented in Eq. (11). A linear
fitting is employed as presented in Eq. (48), in which the parameter
y correspond to the third order structure function and the param-
eter x to the position. An example of fitting the data with this pro-
cedure is presented in Fig. 13, where the measurements were
performed at the center line of the channel, from a distance of
600mm from the inlet of the test section and with a mean cross
sectional velocity of 2:0 m=s. From the linear fitting we obtain
the coefficient a; b and ra rb using the same procedure as with
the second order structure function. The dissipation rate obtained
are shown in Fig. 14. Here it can be observed the effects of the
higher fluctuations of the third order structure function (see
Fig. 5) in the estimation of the turbulent dissipation rate. While
the values of turbulent dissipation rate obtained are in the same
range with the other two methods, it can be clearly see that the
results from the second order structure function presents less fluc-
tuation and with a smoother transition between the data gener-

ated at different flow conditions and channel position. While this
effect can be observed for the different flow condition, it is more
evident at lower velocities.

Fig. 12. Error estimation for the dissipation rate estimated using the second order structure function for different flow conditions. The different measurements correspond to
different positions along the channel length.

Fig. 13. Linear fitting example using the third order structure function in the
inertial sub range. The measurement correspond to the center line of the channel at
a distance of 600mm from the channel inlet. The mean cross sectional velocity was
2:0 m=s.
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Similarly as with previous case, the coefficient rb obtained from
the linear fitting was compared with the estimated error of the
third order structure function and the larger value was then used
for estimating the error of the dissipation rate:

d�
�

¼ 5
4
rb ð56Þ

The estimated error can be seen in Fig. 15. In this case the rel-
ative error is larger than using the second order structure function
and apparently slightly better that the error from the scaling argu-
ment methods. Here the larger fluctuation of the third order struc-
ture function contributed to the increase in the error of the
estimation of the dissipation rate by mean of the error propagation.
This effects is more pronounced at lower velocities and closer to
the center of the channel where the turbulent intensity are lower
and where it was observed higher fluctuation of the third order
structure function presented in Fig. 5.

7. Second order structure function models

In Section 2 different methods for turbulent characterization
were presented, where the second order structure function was
introduced as a mean for obtaining the turbulent dissipation rate.
In order to obtain the turbulent dissipation rate the second order
structure function was used in the inertial sub range using Kol-

mogorov’s two-third law presented in Eq. (10). Nevertheless, the
second order structure function presents information on the entire
energy spectrum, which can be used in the development of models
for breakage and coalescence that included the contribution from
the entire spectrum of turbulence. In Fig. 16, a comparison
obtained frommeasurement of the second order structure function
and the models from Solsvik and Jakobsen (2016a), Gong et al.
(2018) and from the numerical integration of Pope’s energy spec-
trum (Pope, 2000) is presented for different flow conditions. The
measurement were performed at the centerline of the test section
and at a distance of 600mm from the inlet of the channel. The
models were evaluated using the dissipation rate measured using
Eq. (10) and using an estimation for the turbulent kinetic energy
presented in Eq. (23) based on the measurement of u0

rms. With
the estimation of k, then integral scale was obtained using Eq.
(22). It can be observed that the methods describe fairly well the
evolution of the structure function. At higher correlation distances
(r > 20mm), it can be observed that the measurements are better
described by Solsvik and Jakobsen model and by the numerical
integration of Pope’s energy spectrum presented in Eq. (33), with
the model of Gong et al. over predicting the measurements. How-
ever, in the inertial sub-range, the model from Gong et al. and the
model from Solsvik and Jakobsen presents similar results which
also approximate the measurements better than the numerical
integration of the energy spectrum.

Fig. 14. Dissipation rate estimated using the third order structure function for different flow conditions. The different measurements correspond to different positions along
the channel length.
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8. Results

In Section 4, measurement of the dissipation rate were pre-
sented for different methods where the error for each case was dis-
cussed. Based on the results obtained, it was found that the
estimation of the dissipation rate using the second order structure
function presented the smallest uncertainty.

Nevertheless, the other two methods provided results in the
same range of values predicting with similar trend the evolution
of the turbulent dissipation rate for different wall distance and
flow condition. These results are summarized in Fig. 17, where
the results from the different methods are presented for different
flow conditions and at a distance of 600mm from the inlet of the
channel. Here, the measurement from the different method shows
similar results at the middle of the channel. However, closer to the
channel wall, the dissipation rate calculated from the scaling argu-
ment presented deviation compared to the other two methods
which presents similar results in this region. This observation
was addressed in Section 4.1 where it was discussed that the veloc-
ity fluctuation was overestimated close to the channel walls and
this is reflected in an overestimation of the dissipation rate using
the scaling argument. It can also be observed than the estimations
using the third order structure function presents a little more fluc-
tuation than the other two methods, nevertheless it is expected
considering the larger uncertainty obtained with this method com-
pared with the second order structure function.

Measurement of the turbulent dissipation rate were performed
for different positions in the channel and flow conditions. The
methods used corresponded to the second order structure function
presented in Eq. (10). The methods was chosen due to presenting
the best accuracy from the methods reviewed in this work. The
results are presented in Fig. 18, where the dissipation rate is pre-
sented for different flow conditions and positions in the test sec-
tion. It can be observed that the dissipation rate intensity is
stronger at the channel walls and propagates into the flow as the
distance to the inlet of the channel increases.

The dependence of the dissipation rate with the distance to the
channel wall was observed in Fig. 17 where the logarithm of the
dissipation rate presented a linear behavior with the distance to
the channel wall. Using these observation, an empirical correlation
for the turbulent dissipation rate and the turbulent kinetic energy
was found for different flow conditions and distance to the channel
walls. The correlation was obtained for the measurement at a dis-
tance of 600mm where we assume a turbulent flow fully devel-
oped since the effects that the distance to the channel entrance
has on the turbulent dissipation rate can be neglected (see
Fig. 18). The correlation obtained follows:

� dw;Redð Þ ¼ exp
�32:2972�5:42 dw

dh

h i	 

Re3:114d ð57Þ

k dw;Redð Þ ¼ exp
�23:1252�3:77 dw

dh

h i	 

Re2d ð58Þ

Fig. 15. Error estimation for the dissipation rate determined using the third order structure function for different flow conditions. The different measurements correspond to
different positions along the channel length.

174 N. La Forgia et al. / Chemical Engineering Science 195 (2019) 159–178



where dw is the distance from the channel walls, dh is the hydraulic
diameter, and Red is the Reynolds number based on the hydraulic
diameter:

Red ¼ Udh

m
ð59Þ

A comparison between the measured data and the results from
the empirical correlation is presented in Fig. 19, where it can be
observed that the error of this method is in the range of �20%.

9. Conclusions

We have presented measurements of the turbulent dissipation
rate for a rectangular channel using Laser Doppler Velocimetry
for direct velocity measurements. The estimation of the dissipation
rate presented contains a comparison between the Kolmogorov’s
two-thirds law, the Kolmogorov’s four-fifths law and a scaling
argument. We have considered the statistical nature of turbulent
flow and performed an uncertainty analysis of each method where
we showed the dependence of each method with the measure-
ments statistics. With several available methods for calculating
the dissipation rate, it is important to note the uncertainty in the
value presented, such that later modeling attempts may treat the
information correctly.

The methods for estimating the turbulent dissipation rate are
statistical methods that required the use of two-points correla-

tions. These were obtained by using direct velocity measurement
with the LDV and by applying the Taylor’s frozen hypothesis for
transforming a time dependent velocity into a spatial velocity field
required for the calculation of two-point correlation. The two point
correlation used were the velocity autocorrelation function, the
second order structure function and the third order structure
function.

We observed that the methods presented in this work showed
similar results and trends with respect to changes in flow condition
and distance to the channel walls. It was also observed that a sig-
nificant larger increase in the estimated turbulent dissipation rate
was observed close to the channel wall in the scaling argument
method compared to the other methods. However, the deviation
in this estimation could be explained by acknowledging the uncer-
tainty of the velocity fluctuation measurements close to the chan-
nel wall, which greatly affects the estimation of the scaling
argument. The comparison between the uncertainties in the esti-
mation for each method also showed that by using the Kol-
mogorov’s two-thirds law a smaller statistical uncertainty was
achieved.

The measurement of the second order structure function were
compared with the models from Solsvik and Jakobsen (2016a)
and Gong et al. (2018). The relevance of these two models is
founded in the possibility of implementing breakage and coales-
cence models for the entire energy spectrum. The results from
the comparison showed a good agreement with both methods for

Fig. 16. Second order structure function model comparison at different flow conditions at a distance to the channel inlet of 600mm. The measurement were obtained at the
centerline of the channel.
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the inertial and energy containing sub-range. The accuracy
required for the comparison between measurement of the second
order structure function and the models from Solsvik and

Jakobsen (2016a) and Gong et al. (2018) for the dissipation sub-
range was not achieved, and as a consequence the validity of this
two models in this sub-range were not discussed in this work.

Fig. 17. Comparison of the dissipation rate obtained from the different methods for different flow conditions at a distance of 600mm from the channel inlet.

Fig. 18. Dissipation rate estimated using the second order structure function for different flow condition.
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Finally, an empirical correlation for the dissipation rate for fully
developed turbulent flow was presented. A comparison between
measurement and the empirical correlation presented an esti-
mated error in the range of �20%.
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Fig. 20. Velocity fluctuations for different flow conditions. The different measurements correspond to different positions along the channel length.
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Determination of Breakage Parameters in
Turbulent Fluid-Fluid Breakage

Numerous sets of single-particle breakage experiments are required in order to
provide a sufficient database for improving the modeling of fluid particle breakage
mechanisms. This work focuses on the interpretation of the physical breakage
events captured on video. In order to extract the necessary information required
for modeling the mechanisms of the fluid particle breakage events in turbulent
flows, a well-defined image analysis procedure is necessary. Two breakage event
definitions are considered, namely, initial breakup and cascade breakup. The
reported breakage time, the number of daughter particles created, and the daugh-
ter size distribution are significantly affected by the definition used. For each
breakage event definition, an image analysis procedure is presented.

Keywords: Droplet breakage, Image analysis, Multiphase flow, Population balance equation,
Turbulence
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1 Introduction

Several industries are interested in dispersed-phase properties.
In the oil and gas industry, one of the challenges is separation
of phases in a liquid-liquid system, e.g., oil in water. Many of
the separators use gravity, buoyancy, or other forces related to
dispersed-phase size, with larger drops separated faster than
smaller drops. In the simulation of these systems, a framework
able to predict the dispersed-phase droplet size distribution is
required. The population balance equation (PBE) [1, 2] dynam-
ically describes the change of the dispersed-phase particles as
they are transported, coalescing and breaking. The present
study focuses on breakage events in turbulent flow.

For an overview of the PBE and fluid-particle breakage, the
reader is referred to the Supporting Information. In summary,
the parameters needed from experimental investigations are
mother drop size D1), breakage probability Pb, breakage time tb,
average number of daughters n, and daughter size distribution
function PD, as well as the continuous-phase flow properties, in
particular the turbulent kinetic energy dissipation rate e. Fur-
thermore, it is important to know the fluid properties of both
the dispersed phase and continuous phase, and system proper-
ties, e.g., densities and interfacial tension.

The existing experimental work on the breakage event can
be divided into macroscopic dispersed-phase analysis, e.g.,
Coulaloglou and Tavlarides [3], and single-fluid particle analy-
sis. Macroscopic investigations provide little information about
local breakage functions [4], while the number of single fluid
particle experiments is relatively scarce. Further complicating
matters, many authors reporting fluid-particle experiments

provide no clear definition of the measured parameters, i.e.,
how the parameters are actually interpreted and measured in
the experiments. Identifying the parameters, from a video or
otherwise, is not a trivial task and different procedures give rise
to deviating values. An overview is given in Tab. 1, although
the variation may be partly explained by the difference in ex-
perimental setups.

Several of the recent experimental investigations reported
utilize high-speed imaging to capture the breakage event.
Examples include Galinat et al. [5, 6], who conducted breakage
experiments with single oil drops in a channel with an orifice
using 1.5–3 mm diameter n-heptane drops. Data on the drop-
lets were extracted from video through commercial software,
using the pixels in the contour of the droplets. The breakage
probability, daughter size, and daughter distribution were pre-
sented and correlated to the Weber number. Unfortunately, the
different parameters determined were not specifically defined
in the article.

Similarly, Andersson and Andersson [7] did not specify their
definition of the breakage parameters when they studied a sin-
gle oil drop, 1 mm dodecane or octanol, passing through a stat-
ic mixer. Neither did they specify how they identified the mea-
sured breakage parameters from images. The turbulence energy
dissipation rate was found by computational fluid dynamics
(CFD), with a large eddy simulation, and experimentally by
particle image velocimetry. The volume average dissipation
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rate, found to be 1.3–16.4 m2s–3 depending on the continuous
phase flow rate, was presented.

In the work of Maaß and co-workers (e.g., [8–10]), single oil
drops were investigated in a stirred tank and a channel with a
single blade inducing turbulence, mimicking the flow around
an impeller in a stirred tank. The videos were analyzed with
commercial software [8] through an unknown procedure. The
size of the mother drops, toluene or petroleum, were reported
from 0.54–3.1 mm. The breakup events were linked to the vol-
ume average turbulent energy dissipation rate of 0.3–1.8 m2s–3

and the local maximum of 3.4–91.1 m2s–3. Maaß et al. [9] do
indirectly define the parameters determined, stating that suc-
cessive breakups are not considered. In addition, Maaß and
Kraume [10] provided a decent attempt at statistical treatment
of several breakage parameters. For the single-blade setup, the
breakage time was counted from the instant the drop passed
the blade until the instance of fragmentation [10].

Nachtigall et al. [11] continued the work with an increased
focus on statistical analysis. MATLAB was used to automati-
cally extract the droplets’ projected area and perimeter and the
shape and axes of drops were investigated. In addition, the
breakage time was defined in two separate ways, i.e., deforma-
tion and oscillation time. The deformation time is defined as
starting with the last instance of a spherical mother drop and
ending with the instance of fragmentation. In the oscillation
time, the start is instead defined as the instance in which the
mother drop passes the stirrer blade.

Solsvik and Jakobsen [12] investigated single fluid particle
breakage in a stirred tank using several oils, i.e., toluene, petro-
leum, n-dodecane, and 1-octanol, with sizes ranging from 0.6
to 4.0 mm. The videos were manually investigated for extrac-
tion of mother drop size, daughter numbers, and breakage
time. The breakup events were linked to the volume average
dissipation rate, being 1.14 m2s–3. Solsvik and Jakobsen [12]
considered a breakup cascade to be a single event, thus the defi-
nition of the reported parameters deviate from that of Maaß
and co-workers [8–10] and Nachtigall et al. [11].

From the literature, two clear definitions of the breakage
event exist, namely, the initial breakup, e.g., Maaß et al. [9],
and the breakup cascade, as originally suggested by Solsvik et
al. [13]. In the initial breakage definition, the event ends at the
initial instantaneous breakup of the mother drop and the possi-
ble breakup cascade of the daughter drops are not considered.
Thus, the breakage time, daughter size, and daughter number
are only dependent on the first breakup. Conversely, in the
breakup cascade, the breakup event can be a sequence of break-
ups. When deformed daughters undergo breakup, they are con-
sidered dependent on the breakup of the initial mother drop.

The definition adopted significantly affects the reported values
for the breakage time, the daughter size distribution, and the
average number of daughters. Therefore, the present work aims
to outline an algorithm for the extraction of the breakage
parameters from video.

2 Experimental Setup

In order to investigate single-droplet breakage, an experimental
facility has been constructed. A schematic is displayed in Fig. 1.
The main part of the setup is a square channel, hereafter
referred to as the breakage channel, which is 1 m long with a
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Table 1. Selected single-drop experiments in literature.

Reference Experimental setup Breakage definition Average number of daughter drops Breakage time [ms]

Galinat et al. [5, 6] Orifice pipe flow Unknown 2–11.5 45–65

Andersson and Andersson [7] Static mixer Unknown 2–9 4–11

Maass et al. [9, 10] Mimic stirred tank Initial breakup 2–2.4 12–35

Solsvik and Jakobsen [12] Stirred tank Breakup cascade 2–9+ 5–160

Figure 1. Schematic drawing of the experimental setup. 1.
Water inlet, 2. droplet generation section, 3. oil syringe pump, 4.
illumination, 5. breakage channel, 6. two cameras, 7. water out-
let.
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cross section of 30 mm by 30 mm. It consists of two sides of
glass and two sides of metal. The two glass sides allow the
breakage event to be observed by two high-speed cameras of
the type Photron FASTCAM Mini AX100 540K M3 and illumi-
nated by backlight. The two metal sides are equipped with
transverse square rods to increase the turbulence generated at
the wall, which in turn intensify the general turbulence level in
the channel. The rods are of size 3 mm by 3 mm and placed
with a centerline distance of 10 mm.

An example of a breakage event in one camera can be seen
in Fig. 2, in which the rods on the channel walls are visible. The
geometry allows for a flow pattern in the center of the channel
with low shear and high turbulence intensity, which have been
experimentally investigated and mapped by laser Doppler
velocimetry and are presented in La Forgia et al. [14].

Directly downstream of the breakage channel is a section for
generating single oil droplets, hereafter referred to as the drop-
let generation section, which is similar to the setup used by
Maaß and co-workers, e.g., in [9]. The droplet generation sec-
tion has three different regions, each with different cross-
sectional areas. This allows for three different flow conditions
for drop generation for each mean flow condition, i.e., turbu-
lence level, in the breakage channel. For the creation of an oil
droplet, a glass cylinder with a needle tip is inserted in one of
the three regions. The size of the oil drop generated is deter-
mined by the size of the tip and the flow conditions of the sec-
tion. Further, the glass cylinder is connected to a syringe pump
with a 10-mL syringe.

Single 1-octanol drops are investigated with the algorithm
proposed in the following section. The oil is dyed with black
sudan, a non-water-soluble dye, for increased contrast in the
images. The resulting properties are as follows: density r,
825 kg m–3; interfacial tension sI, 8.20 mN m–1; dynamic viscos-
ity m, 9.09 mPa s. The continuous phase is clean reverse-osmo-
sis water at an area average flow speed of 1.5 m s–1. The two
cameras each have a resolution of 1024 ·1024 and record at
4000 frames per second. Together they cover a region from 191
to 535 mm downstream of the inlet of the breakage channel,
for a total length of 344 mm. The smallest drops detectable
with this setup are about 0.17 mm, provided the contrast
between the drop and continuous phase is high enough.

3 Image Analysis

The image analysis considers both of the breakup event defini-
tions suggested in literature, i.e., the initial breakage definition
and the cascade breakage definition. In order to compare the
two definitions, each observed breakup event is interpreted
through both the initial and the cascade breakage definition.
Thus, the image analysis returns two separate sets of breakage
parameters, one for each definition.

In order to establish the start of a breakage event, consider
an initially stable drop. At this instance in time, it has a spheri-
cal shape. Then, the energy needed for breakup to occur is
obtained by, e.g., collision with a turbulent eddy. The drop goes
through a continuous deformation process and breaks into
smaller drops stable at the new energy level. Thus, in either of
the breakage event definitions, the start of the event is consid-
ered the instant of mother drop deformation, provided this
deformation leads to a breakup. In the initial breakage defini-
tion, the event ends at initial breakup, i.e., the first instant of
more than one drop. Possible successive breakups of the
daughter drops are considered separate and independent
breakage events.

In the cascade breakage definition, on the other hand, the
breakage event is considered finished at final breakup of inter-
mediary daughters. In order for a daughter to be considered
intermediary, it must undergo a continuous deformation or, in
other terms, it must not obtain a spherical and stable shape.
The difference of the two definitions is illustrated in Fig. 3.
From the start instant of the breakage event, the continuous-
phase flow properties are found, while the size and number of
daughter drops are observed from the end instance. Further,
the breakage time is the time between the two instants.

To extract the breakage parameters from 2D video, the fol-
lowing algorithm is applied. Each frame is subtracted an image
without a drop, i.e., the value of each pixel is subtracted the val-
ue of the corresponding pixel in an image with no drop. In the
resulting image, each pixel without a drop present has a low
greyscale value, while the pixels containing a drop have a high-
er greyscale value. Then, every pixel above a given greyscale
value, dependent on light intensity in the video, is considered
part of a drop. The procedure is illustrated in Fig. 4. Connected
pixels are considered part of the same drop, and the area and
position of the drops in the image are found from the pixels
they occupy. In order to investigate the shape, the perimeter of
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Figure 2. Collage of part of a breakup event observed by one
camera.
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the area is computed, as well as the minor axis and major axis
of an ellipse with the same normalized second central moments
as the area.

The shape of the drop from the image is 2D, while the real
shape of the drops is 3D. In order to determine the drop as sta-
ble or not stable, i.e., spherical or not spherical, the 2D shape is
first determined to be circular or not circular, as the projected
area of a sphere is a circle. Two criteria are tested to identify
circularity: first, the major and minor axes of the shape should
be equal; second, the actual perimeter of the drop shape is
compared to the circumference of a circle with the same area
as the drop. These two measures should be equal as well. If
both the criteria are fulfilled, the drop is assumed circular in
the plane. Yet, the drop may still be deformed in the third
dimension and not spherical. However, as this deformation is
unlikely to be stable in time, the drop is assumed spherical if it
is found to be circular and it has the same area and perimeter
for a few, e.g., five consecutive frames.

The start of the breakage event is taken to be the first frame
in which the mother drop is deformed by a deformation that
eventually leads to breakup. Thus, the start of the breakage
event is a frame of a deformed, i.e., not spherical drop which
has been found to be circular for a number of the previous

frames, e.g., five. In the initial breakage definition, the breakage
end is taken to be the first frame with more than one drop, i.e.,
the first frame with countable pixels between daughter drops,
and further breakups are not considered. However, in the cas-
cade breakage definition, the breakage end is the frame of the
last intermediary daughter breakup. Daughter drops are con-
sidered intermediary if they are deformed, i.e., not considered
spherical, between the breakup of the mother drop and the
breakup of the daughter drop itself.

From the breakage start and breakage end instants, the
breakage time is calculated from the number of frames in
between and the frame rate of the video. The number of daugh-
ters is the number of distinct drops at breakage end, i.e., the
number of different regions of connected pixels. An example is
demonstrated in Fig. 5, where the difference in breakage time tb

and number of daughter particles n due to the breakage event
definition is illustrated. Further, determining daughter sizes
poses a significant challenge. A simplified and uncertain size
determination is made from the ratio of the individual daugh-
ter’s area to the total area of all daughter drops. For example, if
a daughter makes up half of the collective drop areas in the
image, it is assumed to be half the size of the mother drop.

The turbulent energy dissipation rate is found from the con-
tinuous-phase average value at the position of the mother drop
at breakage start. In the cases that the mother drop travels
through large gradients in turbulence level, e.g., traveling close
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Figure 3. Illustration of the breakup cascade definition versus
the initial breakup definition.

Figure 4. Image analysis; original grayscale image, subtracting
background in grayscale and binary image.

Figure 5. Output from image analysis and illustration of how
the definition of the breakup event affects breakage time tb and
number of daughter particles n. Cascade breakup is denoted by
subscript c and initial breakup is denoted by subscript i.
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to the wall, the initial turbulent energy dissipation rate may not
be representative. Thus, in such cases, a trajectory maximum
value of the turbulent energy dissipation rate is also reported.

The breakage probability is determined from a set of experi-
ments. The outcome of every single drop experiment is catego-
rized as either a breakup event or no breakup event. After the
whole series of experiments have been characterized in this
way, the breakage probability is determined from the ratio of
breakup events to the total number of drops observed.

4 Results and Discussion

Although the use of high-speed cameras is common in the
experimental work on droplet breakage reported in the litera-
ture, the interpretation of breakage parameters from the images
is generally not provided or described in a vague manner.
Sect. 3 outlines the framework used for extracting the breakage
parameters from the video of the physical events in this work.
In this section, the application of the image analysis to the cur-
rent setup is discussed.

A single binary breakage event is depicted in Fig. 6. Each
image is a region of 50 pixels by 50 pixels taken from the full
image. First, a spherical mother drop undergoes a continuous
deformation, starting at 0.25 ms, until separating after 37.5 ms.
Then the daughters obtain a spherical shape and the further
development is not considered. In this special case, due to no
daughters undergoing further breakage before becoming spher-
ical, the cascade breakage definition coincides with the initial
breakage definition and the breakage parameters obtained are
the same. The breakage start is taken to be the start of deforma-
tion, i.e., 0.25 ms, and breakage end at separation, i.e., 37.5 ms,
which gives a breakage time of 37.25 ms. From the breakage
end image, the daughter number is found to be 2. Finally, the
mother drop size follows from the time instance before defor-
mation start, in which it was determined to be spherical. The
daughter sizes are then found from their relative projected area
of 62 % and 38 %, and taken to be 62 % and 38 % of the mother
drop size.

Conversely, Fig. 7 demonstrates an event of in
which the breakage parameters of the two breakage
definitions are significantly different. In order to
highlight the determined information in each im-
age, the binary image of the image algorithm is pre-
sented alongside. An originally spherical mother
drop starts to deform at 0.25 ms. At 18 ms, the first
separation into multiple drops is observed and this
time instance taken to be the end of the breakage
event in the initial breakage definition. However,
several of the drops are still significantly deformed

and found to break up until 28.25 ms. Thus, this time instance
is taken to be the end of the breakage event in the cascade
breakage definition. Further, in the initial breakage event defi-
nition, this event has a breakage time of 17.25 ms and four
daughters, while in the cascade breakage event definition, this
event has a breakage time of 28 ms and nine daughters.

Ideally, the breakage events are checked for volume conser-
vation. In order to do so, the daughter sizes must be deter-
mined exclusively from the information available after breakup.
In one possible method, the daughters are assumed spherical
and their projected area assumed circular. Then, from the pro-
jected area of the daughter, the diameter of an area equivalent
circle is found, which is taken to be the size of the daughter. In
the event that the daughter drops are observable at a stable and
spherical shape, this method provides a better estimation of the
daughter sizes compared with the method suggested in Sect. 3.
However, in the initial breakage event definition, the daughter
drops may have a significantly deformed shape, as seen in
Fig. 7.

Additionally, the deformed daughter drops undergoing fur-
ther breakage may not ever obtain a spherical shape. Thus, this
method of determining daughter sizes is particularly challeng-
ing and may lead to significantly deviating values of volume
conservation. On the other hand, in the cascade breakage event
definition, the assumption that the daughters are spherical is
more realistic. Furthermore, near-spherical daughters may be
identified from images after breakage end.

The resolution, both spatial and temporal, is an important
factor determining the experimental uncertainty of the image
analysis process. Firstly, at 4000 frames per second, there is a
gap of 0.25 ms between each observation of the event. Subse-
quently, the instance of breakage start or breakage end may be
determined to be almost 0.25 ms after the true value. Further-
more, the spatial resolution represents a tradeoff: on the one
hand, it is beneficial to observe as much of the channel as pos-
sible to capture the whole cascade of all events; on the other
hand, the two cameras have a set resolution of 1024 ·1024 pix-
els, which means that a certain zoom is required to capture the
details of the breakage event.

At low spatial resolution, detection and identification of the
correct breakage end are further challenged, due to each pixel
being considered either a drop or not, e.g., two drops might be
separated, but this is not detectable in the image. Furthermore,
very small daughters of approximately 1 pixel in size may not
be detectable continuously in subsequent images, due to
changes in light intensity or due to the drop occupying only a
small part of each pixel, in turn leading to a greyscale value
below the threshold of detection.
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Figure 6. Sequence of images of an event leading to binary
breakage.

Figure 7. Sequence of images of an event leading to multiple breakage.
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Additionally, special care must be taken if the drop moves
towards the wall. While the channel flow allows for a predict-
able turbulence level and low streamwise gradients in the tur-
bulent energy dissipation rate in the center section of the chan-
nel, drops moving close to the wall experience an increase in
both shear and turbulence intensity. Thus, drops not broken
before entering a region 1.5 mm from the rods on the wall are
not considered to break from the turbulence alone, and while
the events are recorded, they are not considered compatible
with the events of drops broken outside of this region. In the
particular event of a breakage in the center channel region, in
which a possible intermediary daughter drop of the breakage
cascade is transported into the wall region, no further breakage
of the daughter drop is considered.

Further, special care is also taken for a deforming drop leav-
ing the field of view of the cameras. In such cases, the event is
either considered finished or disregarded. If the drop leaving is
a mother drop, it is considered to be an event with no breakage.
On the other hand, if the drop is a possible intermediary
daughter in the cascade breakage definition, the daughter is
only considered finished breaking if it has been observed for at
least 10 ms. When it has been observed less, the event is not
considered for the cascade breakage, yet still counted in the ini-
tial breakage dataset.

Ideally, a program could interpret each event automatically.
Unfortunately, daughter drops not detectable in continuous
images, due to overlap or small size, make automatic determi-
nation of the breakage cascade particularly challenging.

5 Conclusions

The image analysis of fluid particle breakage videos has been
discussed. Specific definitions and physical interpretation of
the breakage parameters are given, and the procedure for
extracting the parameters from a series of images is elucidated.

The choice of breakage event definition, i.e., initial breakup
or cascade breakup, is of significant importance to the reported
values of breakup time, daughter distribution size, and average
number of daughters. While two definitions of the breakage
event are considered in the literature, the experimental investi-
gation should aim to provide the breakage parameters of both
definitions. The accuracy of the experimental data is dependent
on being extracted from the correct definition of the breakage
event, and as such, both sets of data are relevant until one of
the definitions of the breakage event can be reconciled with the
physical breakage phenomena.

The determination of daughter sizes is a particular challenge.
In the initial breakage event definition, the available informa-
tion of each drop obtainable from 2D imaging is limited. Thus,
coarse assumptions must be made. Conversely, while the cas-
cade breakage event definition is challenging to implement au-
tomatically, it has the advantage of observing each daughter
drop in a stable state, allowing volume conservation verifica-
tion.
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Symbols used

D [m] droplet diameter
Pb [–] breakage probability
PD [m–1] daughter size distribution function
tb [s] breakage time

Greek letters

e [m2s–3] turbulent kinetic energy dissipation
rate

m [mPa s] dynamic viscosity
n [–] average number of daughters
r [kg m–3] density
sI [mN m–1] interfacial tension

Abbreviation

PBE population balance equation
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a b s t r a c t

To improve breakage models in the population balance framework, single octanol droplet experiments
have been performed in a channel flow and recorded by high-speed camera. The study investigates
impact of mother drop size on the breakage time, breakage probability, average number of daughters
and the daughter size distribution for known turbulence characteristics. Each breakage event is associ-
ated with an individual turbulence level, based on the local flow characteristics. A clearly defined statis-
tical analysis is presented. Using 95% confidence intervals, the precision of each of the determined
properties is described quantitatively. Furthermore, the confidence intervals are a tool for determining
whether an increased number of experiments will yield a significant increase in the precision, considered
against the sources of error. It is found that 35–50 breakage events are sufficient to obtain confidence
intervals of desired precision.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under theCCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

The dispersed phase properties in multiphase flows are of inter-
est for several fields of industry. Some examples of industrial appli-
cations of low turbulence level flows are channel or pipe flow, bio-
and chemical-reactor flows, as well as phase separation equipment
like gravity separators. To determine the separation of a dispersed
phase, or to determine the interfacial mass transfer of a system,
information on the size distribution of the dispersed phase is crit-
ical. The transient breakage phenomenon must be well understood
for predictive simulation of such systems. Even so, the knowledge
of the turbulent breakage phenomenon is scarce, likely owing to
technological limitations and labor intensive experimental
procedures.

One simulation tool available for multiphase flow systems is the
population balance equation, PBE. There is a need for experiments
on single fluid particle breakage in order to improve or validate
breakage models within this framework. This need has previously
been acknowledged by e.g. Andersson and Andersson (2006b) and
Solsvik and Jakobsen (2015). The experimental data is needed on
the source term constitutive equations, which are given here as:

� The breakage frequency b Dmð Þ. Which is found through
investigating:
– The breakage time tB Dmð Þ, which is the time it takes for a

drop of size Dm to break.

– The breakage probability PB Dmð Þ, which is the probability
that a drop of size Dm will break.

� The average number of daughter drops m Dmð Þ, which is the aver-
age number of drops produced upon the breakup of a drop of
size Dm.

� The daughter size distribution function PDSD Dm;Ddð Þ, which is
the probability that a drop of size Dd is produced upon breakup
of a drop of size Dm.

Here, Dm is the diameter of the mother drop, i.e. the breaking
drop, and Dd is the diameter of a daughter drop. In the context of
this article, a mother drop may also refer to a drop not breaking.
For simplicity, the source term constitutive equations are written
as functions of the drop diameters only. Additionally, they may
depend on the turbulent kinetic energy dissipation rate, TDR, �,
the viscosity, l, the density, q, of each phase, the interfacial ten-
sion, c, and the turbulent kinetic energy, TKE, k, in addition to other
parameters.

Experiments on breakage in dense dispersions, in which many
fluid particles are investigated simultaneously, are challenging or
impossible to use in validation of local breakage functions
(Solsvik et al., 2013). Unfortunately, the number of studies on sin-
gle fluid particle breakage is low. In addition, the use of different
experimental setups and different procedures makes it difficult
to compare the available experimental data. The studies in the lit-
erature vary in the number of considered events, the statistical
procedure employed, the turbulence level and the method of
determination of the turbulence level. The studies also use differ-
ent oils as the dispersed phase and use either tap or distilled water
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for the continuous phase, which results in different fluid and sys-
tem properties. In particular, both the interpretation of the studies
and the comparison between the studies are challenging due to dif-
ferent or unclear definitions of the breakage event. Partly, this is
due to a controversy in the literature regarding the breakage event
definition. Solsvik et al. (2016a) outlined two definitions of the
breakage event. One is the initial breakage definition, in which
the breakage event is considered to end at the first fragmentation.
This is employed in the studies of Maaß et al. (2011); Maaß and
Kraume (2012) and Nachtigall et al. (2016). The other breakage
event definition is the breakage cascade definition, in which the
breakage event end at the final fragmentation of intermediate
daughter drops. The cascade breakage definition is used in the
investigation of Solsvik and Jakobsen (2015) and seemingly also
in the daughter size distribution investigations of Maaß et al.
(2007). The breakage definition employed has a significant impact
on the breakage time, the number of daughters and their size dis-
tribution, as the cascade breakage definition considers the time
after initial breakage.

Furthermore, the studies in literature investigate different phe-
nomena of the breakage event. Galinat et al. (2005) investigated
the breakage probability, daughter size distribution and average
number of daughters of single oil droplet breakage in an orifice
flow. The number of experiments performed is unclear, but at least
50 to 80 drops where observed for each of the twelve flow condi-
tions. These different flow conditions were obtained by changing
the orifice opening and the continuous phase velocity. Further,
Galinat et al. (2005) used single drops of heptane or heptane col-
ored with red sudan as the dispersed phase, while the continuous
phase was tap water. Due to fluctuations in the diameter of the
generated mother drop under the same experimental conditions,
the mother drops were divided into classes. The mother drop
diameters were between 1:5 to 3 mm and the classes had a width
of 0:25 mm. From these mother drop diameter groups, groups
based on a Weber number was constructed, where the Weber
number was expressed as We ¼ DPDm=c. Here, DP is the pressure
drop over the orifice, from which the TDR levels can be found to
be between 1 and 20 m2/s3, depending on the flow condition, while

Nomenclature

Latin Letters
�b estimated breakage frequency [1/s]
�x mean value
r space coordinate vector [m]
vr velocity vector [m/s]
DN number of breaking drops
DNB true number of drops breaking
DP Pressure drop [Pa]
DPDSD0 discrete daughter size distribution function [1/m3]
DPDSD� dimensionless discrete daughter size distribution func-

tion [-]
DVd daughter size range
P̂ true probability of a favorable outcome
AB separation distance [m]
b breakage frequency [1/s]
BB birth due to breakage [1/(m3 m s)]
BD death due to breakage [1/(m3 m s)]
c parameter
cL model parameter
D� Dimensionless daughter diameter
D�max dimensionless drop, complimentary to D�min in (24)
D�min dimensionless smallest drop breaking in (24)
Dc critical diameter [m]
Dd daughter drop diameter [m]
Dm mother drop diameter [m]
Dmax in (3), largest drop size present [m]
E energy [J]
Ec critical energy [J]
Es Surface energy [J]
F hypergeometric function
f n number density function [1/(m3 m)]
h breakage yield distribution function [1/m]
K Bessel function
k turbulent kinetic energy [m2/s2]
L integral length scale [m]
N number of observations
N total number of drops
P� estimated probability
PB breakage probability
PDSD daughter size distribution function [1/m]
PDSD� Dimensionless daughter size distribution function
Q true probability of an unfavorable outcome

rd model distance [m]
S standard deviation
s function
t time [s]
tB breakage time [s]
Tn function, n = 1, 2, 3, 4, 5
uB characteristic breakup velocity [m/s]
Vd daughter drop volume [m3]
Vm mother drop volume [m3]
za=2 normal distribution coefficient
Rek Taylor scale Reynolds number
We Weber number

Greek Letters
a confidence interval size
b Komogorov constant
Dr surplus stress [Pa/m2]
� turbulent energy dissipation rate [m2/s3]
g Kolmogorov micro scale [m]
C gamma function
c interfacial tension [N/m]
K dimensionless critical diameter [m]
l dynamic viscosity [kg/(m s)]
l true mean
m average number of daughters
m kinematic viscosity, in Section 2.5 [m2/s]
x confidence interval limit
du2 second order longitudinal velocity structure function

[m2/s2]
q fluid density [kg/m3]
qc continouos phase density [kg/m3]
qd dispersed phase density [kg/m3]
r standard deviation
rs surface restoring stress [Pa/m2]
rt turbulent stress [Pa/m2]

Abbreviations
CFD Computational Fluid Dynamics
PBE Population Balance Equation
TDR Turbulent Kinetic Energy Dissipation Rate
TKE Turbulent Kinetic Energy
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no TKE values or relations were given. Finally, the results are pre-
sented as functions of the Weber number, although the number of
experiments within each Weber number group is not given. The
breakage probability was also linked directly to the mother drop
size for four different flow conditions. No statistical analysis was
presented for the daughter size distribution and the breakage
probability, but the average number of daughters are presented
as average values with standard deviation. Later, Galinat et al.
(2007) performed additional experiments with water-glycerin as
the continuous phase, and colored heptane as the dispersed phase.
70 experiments where performed for each of the twelve flow con-
ditions, with the TDR level varying between 0:9 and 2:5 m2/s3. In
the study, the mother drop diameter was between 1:4 to 2:0
mm. No breakage definition was given in either studies by
Galinat et al. (2005, 2007). The reported fluid and system proper-
ties of all the considered studies can be seen in Table 1 and a sim-
plified overview of selected studies can be seen in Table 2.

Andersson and Andersson (2006a,b) studied single oil dodecane
or octanol drop breakage in a static mixer. The continuous phase
was water, for which the properties was not specified. In their
study, the breakage time was reported as a function of the TDR
level, and presented as an average value with standard deviation.
However, no further statistical analysis was presented. In addition,
the daughter number distribution of dodecane drops was pre-
sented for two different TDR levels. For each reported value,
approximately 50 breakage events were considered and the
mother drop diameter was kept constant at 1 mm 1. PIV-
experiments and Large Eddy Simulation was used to determine the
turbulent characteristics. Depending on the continuous phase flow
rate, the volume average the TDR levels was found to be 1:13;3:69
and 8:54 m2/s3, while the TKE level was found to be 17;37 and
64 m2/s2. Finally, the employed breakage definition is not
mentioned.

Maaß et al. (2007) and Zaccone et al. (2007) investigated oil
drop breakage in a channel flow with an impeller blade, mimicking
stirred tank flow. They investigated the daughter size distribution

for different daughter numbers and reported the daughter number
distribution. The dispersed phase was petroleum and the continu-
ous phase was an unspecified type of water, with and without col-
oring by sudan-black. Further, the TDE was determined from CFD
simulations with a k-� model, where the local maximum near
the impeller was found to be 26:1 m2/s3. The TKE was not given.
For each of the mother drop diameters 0:56;1 and 2 mm, the num-
ber of investigated events are given as 284;503 and 184. In addi-
tion, a required number of events were reported, however, it is
not clear what the significance of this number is or how it was
determined. Later, Maaß et al. (2011) and Maaß and Kraume
(2012) used the same setup to investigate the daughter number
distribution and breakage frequency, the latter as breakage time
and breakage probability. The mother drops were toluene with
diameters of 0:62;1:0;2:0 and 3:0 mm, as well as petroleum drops
of 0:54;0:7;1:0;1:3;1:9 and 3:1 mm. For each of the mother drop
sizes, the number of total events where between � 750 and
� 1320, of which the number of breakage were between � 240
and � 780. The results on breakage time and breakage probability
were presented with average values and standard deviation. Addi-
tionally, the development of the mean value with the number of
experiments were investigated. This showed that the values were
stable, thus there were more than enough experiments performed.
Later, and in the same setup, Nachtigall et al. (2016) investigated
the breakage time with emphasis on the deformation process.
The mother drops where all 1 mm in diameter and either petro-
leum or paraffin oil, while the continuous phase was either water
or water mixed with sodium dodecyl sulfate. The different combi-
nations of dispersed and continuous phases allowed for the impact
of the interfacial tension to be investigated. In the study, the num-
ber of events with breakage was between 364 and 917, while the
total number of events was between 1021 and 1486. Furthermore,
the experimental results are presented as whisker-and-box plots,
but no further statistical analysis was presented.

Solsvik and Jakobsen (2015) investigated single oil droplet
breakage in a stirred tank. In their study, the breakage time was
presented as function of the mother drop size, along with the dis-
tribution of daughter drop numbers. Toluene, petroleum, n-

Table 1
Fluid and system properties reported in previous studies.

Reference Continuous phase Dispersed phase c x10�3 [N/m] q [kg/m3] l x10�3 [kg/(m s)]

Galinat et al. (2005) Tap water 996 0.82
Heptane 47 683.7 0.45
Colored heptane 23.6

Galinat et al. (2007) Tap water with glycerin 1100
Colored heptane 24.4

Andersson and Andersson (2006a,b) Dodecane 53 750 1.5
Octanol 8.5 819 6.5

Maaß et al. (2007) and Petroleum 760 1.9
Zaccone et al. (2007) Unspecified water 2

Colored water 28
Maaß et al. (2011) and Unspecified water
Maaß and Kraume (2012) Toluene 32 870 0.55

Petroleum 38.5 790 0.65
Nachtigall et al. (2016) Petroleum 760 1.7

Unspecified water 43.2
Water with SDS 5.9

Paraffin oil 861 127
Unspecified water 53.3
Water with SDS 8.4

Solsvik and Jakobsen (2015) Distilled water
Toluene 33 866.7 0.6
Petroleum 44.5 754 1.14
n-Dodecane 41.5 745 1.38
1-Octanol 8.4 822 7.52

Ashar et al. (2018) Deionized water 988 1
Rapeseed oil 20 920 70

1 Personal communication
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dodecane and 1-octanol was used as the dispersed phase and dis-
tilled water was used as the continuous phase. The diameter of the
mother drops was varying between 0:6 to 4 mm, and thus divided
into groups with a width of 0:5 mm. There were between 180 to
250 breakage events for each oil, but greatly varying in numbers
within each mother drop group. Here, the number of breakage
events were between 1 and 71. The TDR level was determined from
the power input and given as a volume average of the entire tank,
at 1:14 m2/s3. No information on the TKE was given. Furthermore,
no statistical method was presented.

Ashar et al. (2018) studied single droplet breakage in a stirred
tank and investigated the breakage probability and the average
number of daughters. The results were reported as functions of a
turbulent Weber number and presented as average values with
uncertainty. However, the statistical procedure was not given. A
deformation time was also presented, which was defined as the
time from turbulent vortex interaction until the maximum defor-
mation. This is believed to be the time of energy transfer from
the turbulent vortex to the breaking drop. As this maximum defor-
mation occurs at an earlier time instance than the instance of first
fragmentation, the deformation time is shorter than the initial
breakage time. While not explicitly defined, the daughter number
appears to be calculated according to the cascade breakage defini-
tion. In the study, the mother drops were rapeseed oil drops with a
diameter between 0:07 and 0:55 mm, and deionized water was
used as the continuous phase. In total, 285 breakage events were
investigated for two different TDR levels, 535 and 2480 m2/s3.
The TDR level was determined from a procedure arising from PIV
analysis, and given as a local average value of the volume near
the impeller. The TKE is not given.

Although it may initially appear otherwise, the studies pre-
sented above follow a similar procedure when reporting their
results. An investigated parameter, e.g. breakage probability, is
plotted against another variable, e.g. mother drop diameter. The
other variables are assumed constant, where the TDR level is taken
to be that of the single phase flow field of the continuous phase. It
should be noted that when reporting the results by Weber number
instead of the drop diameter, it is not possible to regain the depen-
dency on � and Dm, except if either � or Dm is kept constant. Thus,
the data cannot be used to validate most of the currently available
models.

Based on the studies presented here, some generalizations of
the status of single fluid particle breakage investigations are possi-
ble. Firstly, no investigation covers all of the information needed to
model the terms in the PBE. That is, information on the breakage
frequency, b, average number of daughters, m, and daughter size
distribution, PDSD, have not all simultaneously been extracted from
the same experimental data set. Consequently, subsequent model
validation must rely on experimental data from different experi-

mental setups and procedures, a strategy which does not ensure
consistency.

Second, most of the previous studies employ a volume average
TDR level, while the breakage models are developed considering
local turbulence characteristics. The regions of breakage in the
employed experimental facilities have large gradients in the turbu-
lence level, thus the difference in local and average turbulence
level may be significant. In turn, the reported turbulence character-
istics may not be sufficiently accurate to represent the turbulence
characteristics responsible for the breakage event. Additionally,
there are two other weaknesses related to the flow conditions.
Weakness one, the regions of breakage have a significant presence
of mean flow shear, which possible impact on the breakage cannot
be distinguished from the impact of the level of turbulence. Weak-
ness two, no value of the TKE is associated with the breakage. Thus,
the impact of the entire range of turbulence cannot be computed,
only the impact of the inertial subrange of turbulence. How to
model the entire range of turbulence has been shown by Solsvik
and Jakobsen (2016a), and a summary is shown in Section 2.5.

Finally, the studies commonly presented the determined aver-
age value with a standard deviation, and no clear statistical analy-
sis is available. As experimental procedures are subject to many
sources of error, the statistical analysis, along with a discussion
on uncertainty, is important in regards to the accuracy and preci-
sion of the results. Accuracy and precision are considered to be dif-
ferent concepts within uncertainty analysis, and the difference is
shown graphically in Fig. 1. If measurements are repeated, a high
accuracy yields values that are near the true value, while a high
precision yields nearly the same value from each measurement.
The statistical analysis, when resulting in a 95% confidence inter-
val, is a tool for describing the precision of the data. However, it
does not address the accuracy. This can be better understood by
considering the plausible errors sources, which are usually divided
into random errors and systematic errors. Random errors are lar-
gely due to changing initial conditions between each experiment.
As the name implies, random errors are considered to be randomly
applied. Systematic errors, on the other hand, arise from the exper-
imental procedure and assumptions, and are generally not consid-
ered to be randomly applied. In a simplified view, the random
errors may be assumed to be accounted for by the statistical anal-
ysis, while the systematic errors are not accounted for. Thus, sys-
tematic errors may skew the data in such a way that the
confidence interval does not contain the true value. That is, while
the experimentally determined value may be precise, it does not
need to be accurate. It is possible to account for systematic errors
if the impact on the results is known and quantified. Unfortunately,
quantification of the systematic errors is rarely possible in complex
experimental procedures. Nevertheless, performing a statistical
analysis is particularly important due to the labor intensive

Table 2
Overview of selected single drop experimental studies. *Standard deviation is only shown when determining an average value, e.g. not for breakage probability or daughter size
distributions.

Reference Investigated Mother Drop TDR Statistical Treatment
values Diameter, Dm [mm] � [m2/s3]

Galinat et al. (2005, 2007) PB; m; PDSD 1.5–3 ~1–20 Average values with
standard deviation*

Maaß et al. (2007) PDSD 0.56–2 26:1 None
Maaß and Kraume (2012) tB; PB 0.54–3.1 ~ 2.3–12.3 Analysis of the development

in the mean value
Andersson and Andersson (2006a,b) tB; m 1 1.13–8.54 Average values with

standard deviation*
Solsvik and Jakobsen (2015) tB; m 0.6–4.0 1.14 None
Ashar et al. (2018) PB; m 0.07–0.55 535–2480 Average values with

uncertainty
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methodology of the state of the art single droplet breakage exper-
iments. The gain in precision from additional experiments must be
considered against the increased workload. An increased number
of experiments may lead to only a small increase in the precision,
but may lead to additional aspects of the breakage phenomenon
not being investigated. This may be part of the reason that no
investigation covers all the information needed to model the
source term constitutive equations in the PBE.

The purpose of this work is to obtain data on and elucidate the
breakage phenomenon in general, and the impact of mother drop
size in particular. An experimental facility has been constructed
with a design that offers low gradients in the turbulence level of
the continuous phase. As the local turbulence level is known, due
to the investigation by La Forgia et al. (2018), each breakage event
may be associated with relevant and local turbulent characteris-
tics. This allows for a quantified difference in turbulence level
between investigated events. Furthermore, the design allows for
video capture of the entire breakage event, such that the videos
may be investigated according to the procedure outlined in Herø
et al. (2019). The resulting data should be consistent, as the break-
age frequency, b, the average number of daughters, m, and the
daughter size distribution PDSD are determined from the same
events. Furthermore, this study employs a transparent statistical
methodology as a tool to discuss the precision of the data. This sta-
tistical procedure is also used to identify whether additional exper-
iments are beneficial.

2. Turbulent breakage models

The PBE is a common and powerful simulation tool. It is a
framework that dynamically describes the change in the number
density distribution of the dispersed phase (Ramkrishna, 2000).
Simplified to consider only accumulation, convection and breakup,
the PBE in terms of the number density function, f n, can be written
as (Jakobsen, 2014)

@f n Dm; r; tð Þ
@t

þr � v r r;Dm; tð Þf n Dm; r; tð Þ½ �
¼ �BD Dm; r; tð Þ þ BB Dm; r; tð Þ ð1Þ

BD Dmð Þ ¼ b Dmð Þf n Dmð Þ ð2Þ

BB Dmð Þ ¼
Z Dmax

Dm

mPDSD Dm;Ddð Þb Ddð Þf n Ddð ÞdDd ð3Þ

Here, r is the space coordinate vector, t is the time, v r is the velocity
vector and Dm and Dd are denoting the drop diameters of the mother
and daughter drop. Further, b is the breakage frequency, m is the
average number of daughter particles and PDSD is the daughter size
distribution function. The two latter quantities may be combined to
the breakage yield redistribution function, h. Finally, the terms on
the right hand side of (1) are the sink and source terms that repre-
sent the breakage death, (2), and breakage birth of drops, (3), of
diameter Dm due to breakage events.

In order to use the PBE in simulations, e.g. coupled with compu-
tational fluid dynamics, the terms of (2) and (3) must be modeled.
If experimental data are to improve these models, it is critical to
consider how the models are developed. The mechanisms consid-
ered and the model interpretation of the breakage phenomenon
should coincide with the interpretation of the data from physical
experiments. Thus, two classic and commonly used models are
presented in this section.

2.1. Coulaloglou and Tavlarides

In developing their model, Coulaloglou and Tavlarides (1977)
assumed a drop would break due to local pressure fluctuations
only. Further, they assumed binary breakage, locally isotropic tur-
bulence and that the size of the droplet diameter falls within in the
inertial subrange of turbulence. The basic assumption is that a
breakup occurs if a drop collides with a turbulent eddy of sufficient
energy. The breakage frequency, b Dmð Þ, which is required in both
(2) and (3), is determined as the reciprocal of a breakage time,
tB Dmð Þ, multiplied by the fraction of drops breaking, DN Dmð Þ

N Dmð Þ . This

fraction of drops breaking is interpreted as the breakage probabil-
ity PB Dmð Þ, i.e. the probability that a drop will break. Thus, the
breakage frequency relation becomes

b Dmð Þ ¼ 1
tB Dmð Þ

DN Dmð Þ
N Dmð Þ ¼ 1

tB Dmð Þ PB Dmð Þ ð4Þ

The breakage probability is assumed proportional to the fraction of
the turbulent eddies that collides with the drop, where the energy
of the turbulent eddy is larger than the drop surface energy. Further,
this fraction of turbulent eddies is assumed to be described by the
Maxwell–Boltzmann 2D energy distribution, thus

PB Dmð Þ ¼
Z 1

Ec Dmð Þ
P E Dmð Þð ÞdE ¼ exp � Ec Dmð Þ

E Dmð Þ
� �

ð5Þ

in which E Dmð Þ is the turbulent energy associated with eddies of
size Dm and Ec Dmð Þ is the critical value that the turbulent energy
E Dmð Þ must overcome. Ec Dmð Þ is taken as the surface energy

Ec Dmð Þ / cD2
m ð6Þ

in which c is the interfacial tension and Dm is the diameter of the
drop. The energy of the turbulent eddies is taken to be

E Dmð Þ / qdD
3
mdu2 Dmð Þ ð7Þ

where qd is the density of the dispersed phase. The second order

longitudinal velocity structure function, du2 Dmð Þ, is determined
from Kolmogorov theory

du2 Dmð Þ ¼ ju r þ Dm; tð Þ � u r; tð Þj2 ¼ b �Dmð Þ2=3 ð8Þ
Thus, inserting (6) and (7) in (5) the expression becomes

Fig. 1. The difference between accurate and precise experimental techniques.
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PB Dmð Þ ¼ exp � c1c
qd�2=3D

5=3
m

 !
ð9Þ

in which c1 is a parameter. The breakage time was estimated by
assuming the eventual centers of mass of the daughter drops behave
like two turbulent eddies. If AB is the initial separation distance, the
separation distance AB0 of the two masses at time t are given as

AB0 tð Þ½ �2 / AB �ð Þ2=3t2 ð10Þ
Further, if both AB and the distance at breakage are proportional to
the mother drop diameter, the equation can be solved for tB as

tB Dmð Þ ¼ c2D
2=3
m ��1=3 ð11Þ

in which c2 is a parameter. Finally, the breakage frequency was
determined from (4) by combining expressions for the breakage
time, (11), and the fraction of drops breaking, (9)

b Dmð Þ ¼ c�1
2 D�2=3

m �1=3 exp � c1c
qd�2=3D

5=3
m

 !
ð12Þ

In the source term, (3), two additional functions are required;
the average number of daughters, m, and the daughter size distribu-
tion function, PDSD Dm;Ddð Þ. As aforementioned, binary breakage is
assumed, thus the average number of daughters are known. Fur-
ther, the daughter size distribution function is assumed to fit a nor-
mal distribution in which the variance is set so that > 99:6%of
droplets formed lie in the volume range 0 to Dm. The resulting nor-
mal distribution has a maximum for equal sized daughter drops
and a low probability for a significant size difference. In terms of
diameter the expression becomes (Solsvik et al., 2013)

PDSD Dm;Ddð Þ ¼ 2:4
D3

m

exp �
4:5 2D3

d � D3
m

� �2
D6

m

0
B@

1
CA3D2

d ð13Þ

While in terms of volume, the expression becomes (Coulaloglou and
Tavlarides, 1977)

PDSD Vm;Vdð Þ ¼ 2:4
Vm

exp �4:5 2Vd � Vmð Þ2
V2

m

 !
ð14Þ

2.2. Martinez-Bazan et al.

The Martínez-Bazán et al. (1999a,b) breakage frequency model
represents a novel attempt to represent the fluid particle-
turbulence interaction in terms of the directly measurable turbulent
stress quantity, i.e. the second order structure function. Most of the
predecessor breakage frequency models rely on the more abstract
drop-eddy collision or interactions frequencies which are difficult
to validate due to the vague definition of the eddy concept. The
MB model avoids the eddy concept. Thus, the model may be consid-
ered more fundamental in nature. In developing their model,
Martínez-Bazán et al. (1999a,b) assumed that a bubble deforms
and breaks if the turbulent stresses of the surrounding fluid flow is
sufficiently large. That is, this stress, rt , has to be at least larger than
the bubble surface restoring stress, rs. They assumed locally isotropic
turbulence, that the bubble diameter falls within the inertial sub-
range of turbulence, and binary breakage. As such, the model shares
similarities with the model of Coulaloglou and Tavlarides (1977). The
breakage frequency is given as

b Dmð Þ / 1
tB Dmð Þ ð15Þ

that is, compared to Coulaloglou and Tavlarides (1977), the break-
age frequency is purely determined from the inverse of an expres-
sion for breakage time. This breakage time is defined as

tB Dmð Þ / Dm

uB
ð16Þ

in which Dm is the bubble size and uB is a characteristic breakup
velocity. This velocity is assumed proportional to the square root
of the difference between the turbulent stress, rt and the bubble
surface restoring stress rs as

uB / ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rt � rs

p ð17Þ
in which rt is found as

rt ¼ 1=2qcdu2 Dmð Þ ¼ 1=2qcb �Dmð Þ2=3 ð18Þ
where qc is the density of the continuous phase. Further, rs is found
as

rs ¼ 6Es Dmð Þ
pD3

m

¼ 6
c
Dm

ð19Þ

where Es Dmð Þ is the surface energy defined as Ec Dmð Þ ¼ pcD2
m. Thus,

the expression for the breakage time becomes:

tB Dmð Þ / Dmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b �Dmð Þ2=3 � 12c= qcDmð Þ

q ð20Þ

and finally the expression for breakage frequency becomes:

b Dmð Þ ¼ c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b �Dmð Þ2=3 � 12c= qcDmð Þ

q
Dm

ð21Þ

In the event that the bubble surface restoring stress, rs, is larger or
equal to the turbulent stress, rt , breakup is assumed not to occur
and the breakage frequency is set to zero. Thus, for a given system
there is a critical diameter, Dc , where the bubble surface stress is
equal to the turbulent stress. From (18) and (19)

Dc ¼ 12c
bqc

� �3=5

��2=5 ð22Þ

Due to the assumption of binary breakage the only remaining
expression required in (3) is the daughter size distribution func-
tion, PDSD. Martínez-Bazán et al. (1999a,b) postulated that the prob-
ability of forming two bubbles of diameter Dd;1 and Dd;2 is weighted
by the product of the surplus stress associated with the diameters
Dd;1 and Dd;2, defined as

Dr Dd;n

� � ¼ 1
2
qcb �Dd;n

� �2=3 � 6c=Dm ð23Þ

in which n is either 1 or 2 and Dm is the diameter of the mother bub-
ble. If a bubble of diameter Dd;1 is formed, the diameter of the sec-
ond bubble is given from volume conservation. The original
daughter size distribution function was not volume conserving,
thus it was later updated by Martínez-Bazán et al. (2010). Written
in dimensionless form, such that P�

DSD 1;D�ð Þ � Dm ¼ PDSD Dm;Ddð Þ,
the updated daughter size distribution function is given as

P�
DSD 1;D�ð Þ ¼

D�2 D�2=3 �K5=3
h i

1� D�3
� �2=9

�K5=3
	 


R D�
max

D�
min

D�2 D�2=3 �K5=3
h i

1� D�3
� �2=9

�K5=3
	 


dD�

ð24Þ
in which D� ¼ Dd=Dmand K ¼ Dc=Dm. The minimum diameter, Dmin,
is the smallest diameter of a daughter bubble for which the turbu-
lent stress is equal to the restoring surface pressure, i.e.
rt Dminð Þ ¼ rs Dminð Þ. The maximum diameter, Dmax, is the compli-
mentary diameter that conserves the mass of the mother bubble.
From this, the dimensionless quantities are obtained as
D�

max ¼ Dmax=Dm and D�
min ¼ Dmin=Dm. The resulting daughter size dis-

tribution function behave similarly to the model of Coulaloglou and
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Tavlarides (1977) in which equal sizes daughters are the most likely
outcome of a breakage event.

The model of Martínez-Bazán et al. (1999a,b, 2010) were origi-
nally designed considering very high Reynolds number flows, thus
breakage was frequent and PB Dmð Þ � 1. Solsvik et al. (2017) sug-
gested to add a breakage probability to the breakage frequency,
analogous to the model of Coulaloglou and Tavlarides (1977), in
order to expand the model to be valid also for lower Reynolds
number flows. The breakage probability was defined as a shifted
version of (5):

PB Dmð Þ ¼ exp �Ec Dm � Dcð Þ
E Dm � Dcð Þ

� �
ð25Þ

in which Ec and E are defined by (6) and (7), respectively. For bub-
bles smaller than the critical diameter Dc , the breakage probability
was set to zero.

The model of Martínez-Bazán et al. (1999a,b, 2010) was origi-
nally designed considering a gas–liquid system. Later, Eastwood
et al. (2004) investigated liquid–liquid breakage in the same exper-
imental setup. They found that the breakage frequency was under-
predicted for fluid particles with non-negligible density and
viscosity at low Weber numbers. However, model adaptions, e.g.
Revuelta et al. (2006) and Solsvik et al. (2013), have been found
to provide good agreement with data from liquid–liquid experi-
ments. Some examples can be seen in the appendix of Solsvik
et al. (2013).

2.3. Model constraints

In the models of Coulaloglou and Tavlarides (1977) and
Martínez-Bazán et al. (1999a,b, 2010) the breakage frequency goes
trough a maximum for increasing mother drop diameter. This
behavior was criticized by for example Tsouris and Tavlarides
(1994), who argued that the breakage frequency should increase
monotonously. Later, experimental data have suggested that this
maximum is possible, e.g. Maaß and Kraume (2012). Subsequently,
the behavior of the breakage frequency is still a matter of debate.
Further, both the model of Coulaloglou and Tavlarides (1977) and
the model of Martínez-Bazán et al. (1999a,b, 2010) assume binary
breakage. As this assumption is possibly erroneous, other authors
have considered a different average number of daughters in their
model derivations, e.g. Konno et al. (1983) and Han et al. (2011,
2013, 2015). Of particular interest is the framework proposed by
Diemer and Olson (2002) which allows for any average number
of daughters, also non-integers. The main drawbacks of the frame-
work are the prediction of equal sized daughters, which might be
erroneous, and the need for fitting of model parameters to the
specific system in order to be volume and number conserving.

In the available frameworks, the average number of daughters,
m, needs to be known a priori in order to design the daughter size
distribution function, PDSD. The constraints on the daughter size
distribution function must satisfy the normality or number conser-
vation condition

Z Dm

0
PDSD Dm;Ddð ÞdDd ¼ 1 ð26Þ

I.e. all daughters exists in the interval 0;Dm½ �. Further, the breakage
yield redistribution function, h Dm;Ddð Þ ¼ mPDSD Dm;Ddð Þ, should be
volume conserving;

Z Dm

0
D3

dh Dm;Ddð ÞdDd ¼ D3
m ð27Þ

which is mass conserving given constant density.

2.4. Other models

Several adaptations of the model of Coulaloglou and Tavlarides
(1977)(e.g. Konno et al., 1983; Vankova et al., 2007; Maaß and
Kraume, 2012) and the model of Martínez-Bazán et al. (1999a,b,
2010)(e.g. Håkansson et al., 2009; Solsvik et al., 2013) exist. While
the models change parameters values, add some criteria for break-
age or otherwise modify the originally proposed models, they do
not change the concepts and breakage event definition. Thus, the
experimental data needed for validation of the original models
proposed by Coulaloglou and Tavlarides (1977) and Martínez-
Bazán et al. (1999a,b, 2010) may also be used for validation of
the adapted models.

Furthermore, another group of models within the PBM frame-
work exists. Instead of (1), the PBM is formulated considering sec-
tions of the internal coordinate, in what is often referred to
sectional models. Of particular relevance are the models proposed
by Luo and Svendsen (1996) and Andersson and Andersson
(2006b), and recently Xing et al. (2015) and Liao et al. (2018). Spe-
cial care should be taken as to what framework the models are
based on as the models are not directly interchangeable. While
the models are possible to reformulate, the procedure is not trivial.
Interested readers are referred to Lasheras et al. (2002), Mitre et al.
(2010) or Solsvik et al. (2013). However, the if more fundamental
form of the breakage frequency, b, average number of daughters,
m, and daughter size distribution PDSD are investigated experimen-
tally, the results can be used in validating models of both
frameworks.

Reviews of most of the available breakage models have been
published by Lasheras et al. (2002), Liao and Lucas (2009) and
Solsvik et al. (2013).

2.5. Coulaloglou and Tavlarides in the entire range of the turbulence
spectrum

Recently, some authors (e.g. Solsvik and Jakobsen, 2016a,b;
Solsvik et al. 2017; Karimi and Andersson, 2018, 2019) have pre-
sented methods to expand several models from only considering
the inertial subrange of turbulence, into considering the entire
range of the turbulence spectrum. This change in modeling of tur-
bulent stress is of critical importance when comparing model
results with experimental data, in particular when the droplet size
falls outside of the inertial subrange of turbulence.

Solsvik and Jakobsen (2016a) showed that the model of
Coulaloglou and Tavlarides (1977) could be expanded to consider
the full range of turbulence. First, they recognized that the expres-
sion for breakage time, (11), could be written as

tB Dmð Þ ¼ c4
Dmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

du2 Dmð Þ
q ð28Þ

Thus, the breakage time depends on the expression for the second
order longitudinal structure function. The expression for breakage
probability, (9), already depend on the second order longitudinal
structure function through (7). Similarly, the resulting expression
for breakage probability becomes

PB Dmð Þ ¼ exp � c5c
qdDmdu2 Dmð Þ

 !
ð29Þ

Thus, the expressions for breakage time and breakage probability,
and subsequently the breakage frequency, can be expanded to be
valid for the entire range of turbulence if the expression for the sec-
ond order longitudinal structure function is valid in the entire range
of turbulence. Such an expression can be given as, Solsvik and
Jakobsen (2016b),
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du2 Dmð Þ ¼ 4
3
k

D2
m

r2d þ D2
m

 !2=3

� 1� T1 Dmð Þ þ T2 T3 Dmð ÞT4 Dmð Þ � T5 Dmð Þð Þ½ �ð Þ ð30Þ
where k is the TKE and rd is given by

rd ¼ 15bð Þ3=4g ð31Þ
where b is the Kolmogorov constant and g ¼ m=�ð Þ1=4 is the Kol-
mogorov micro scale, in which m is the kinematic viscosity. The dif-
ferent Tn expressions are given as:

T1 Dmð Þ ¼ 2

s Dmð Þ½ �2
F �1

3

� �1
2

;
3
2

� ������ s Dmð Þ½ �2
4

 !
ð32Þ

T2 ¼ 33=2C
2
3

� �
ð33Þ

T3 Dmð Þ ¼ 27 � 21=3 s Dmð Þ½ �2=3C 2
3

� �
ð34Þ

T4 Dmð Þ ¼ 1
352p

F
7
3

� �11
6

;
17
6

� ������ s Dmð Þ½ �2
4

 !
ð35Þ

T5 Dmð Þ ¼ 22=3

2p s Dmð Þ½ �2=3
K4

3
s Dmð Þð Þ ð36Þ

in which F is the hypergeometric function, K is the Bessel function
and C is the gamma function. Further,

s Dmð Þ ¼ Dm= c�1=2
L L

� �
ð37Þ

where cL is a model parameter value which can be estimated from,
Solsvik (2017),

cL Rekð Þ ¼ exp �4:478þ 18:362b
Re1:075�0:070b

k

" #
� 1:913þ 2:169b ð38Þ

Finally, L ¼ k3=2

� is the integral length scale and Rek is the Taylor scale
Reynolds number given as;

Rek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
20
3

k2

�m

s
ð39Þ

3. Experimental setup and procedure

An experimental facility has been constructed to investigate
turbulent breakage of oil droplets in water, as previously described
in La Forgia et al. (2018) and Herøet al. (2019). The facility is con-
structed as a loop, as can be seen from Fig. 2. A pump (numbered 2
in the sketch) is placed downstream from a water tank (1) and
upstream of a droplet generation section 4. In the droplet genera-
tion section, a single oil droplet can be produced, which travels
downstream into the main test section (7), or breakage section.
In the end, the water and oil drop return to the tank, which also
serves as a gravity separator.

The breakage section consists of a square vertical channel in
which droplets may be observed by two cameras (6). To facilitate
this observation, the channel consists of two glass walls. The two
remaining walls have periodic rods in order to increase the turbu-
lence level. The channel itself is 1 m long and has a cross-sectional
area of 30 mm x 30 mm. The rods have a cross-sectional area of
3 mm x 3 mm and are placed every 10 mm in the channel. The
resulting flow pattern and turbulence level has been investigated
using laser doppler velocimetry in La Forgia et al. (2018). In the

droplet generation section, downstream of the breakage section,
single spherical 1-octanol (Sigma–Aldrich, product number
472328) droplets are generated from a glass cannula connected
to a syringe pump (5) of the type KDS Legato 180. The oil is dyed
with Sudan Black B (RAL Diagnostics) and the resulting properties
are density q ¼ 825 kg/m3, dynamic viscosity l ¼ 9:09 � 10�3 kg/
(m s) and interfacial tension c ¼ 8:20mN/m. The continuous phase
is clean reverse-osmosis water, where the water pump of type
MDL-0670 from SPX Flow Technology provides an area average
velocity of 1 m/s.

The two cameras are of the type Photron FASTCAM Mini AX100
540 K M3, which have a maximum resolution of 1024 x 1024, which
is only fully used in one direction. The two cameras record from
40 mm to 400 mm above the channel entry for a total section length
of 360 mm, i.e. the full channel length is not recorded. Further, the
two cameras are connected and synchronized in time. The resulting
images are overlapping in a small area and semi-automatically con-
verted to one image through MATLAB. The resolution gives the pixel
size as 0:175 mm by 0:175 mm, thus a drop at 1 mm diameter has
almost 6 pixels covering its diameter. Moving with a speed of 1 m/
s, the centroid of a drop moves 0.25 mm, or � 1:4 pixel side lengths,
between two frames. The cameras records at 4000 frames per second
and this high framerate is beneficial on several accounts. Firstly, the
accuracy of the determined breakage times is dependent on the
frame rate. Secondly, the average number of daughters and the
daughter size distribution in the initial breakage definition can only
be accurately determined at high framerates. Solsvik et al. (2016a)
showed that the number of daughters in the initial breakage defini-
tion was tending towards two for increasing framerate. However,
their setup did not allow for more than 1450 frames per second,
which was not enough to discern exactly two daughters per break-
age. Finally, post processing the images automatically is simpler
when the drops travel a short distance between the frames. There
is often a trade-off between the resolution selected and the framerate
of the camera. In the current study, the framerate at maximum res-
olution was considered sufficient for the accuracy required. At this
framerate, the initial breakage definition always results in two
daughters. Thus, the tradeoff between framerate and resolution has
not been further analyzed.

Three LED lamps, of the type Multiled LT-V9-15 by GS Vitec,
provide the illumination required. The lamps are run continuously,
i.e. not synchronized with the cameras. The light is diffused by opa-
que paper in order to obtain a more even light distribution.

The size of the droplet generated in the generation section is
dependent on cannula tip surface area and the continuous flow
past the cannula tip. Due to fluctuations in the latter, the droplets
are generated with some variation in their size. Such behavior has
previously been reported in comparable setups, e.g. Galinat et al.
(2005) and Maaß et al. (2009). Due to this fluctuation in size, it
was in the present work necessary to divide the experimental data
into four size groups based on the mother drop diameter after the
experiments have been performed. In this way, the impact of
mother drop size on breakage time, tB, breakage probability, PB,
average number of daughters, m, and the daughter size distribution
PDSD, can be investigated. As such, the standard deviation is not as
much an error as it is a measurement of how similar the grouped
drops are. As the smallest drop sizes are most difficult to produce
consistently, as well as the drops that have the lowest breakage
probability, this group is made with the largest size range. The
resulting mean diameter and number of events of each group can
be seen in Table 3. As the number of breakage events are different
in each mother drop size group, the impact of this number on the
statistical precision can be investigated. Furthermore, the number
of breakage events are comparable to the studies discussed in
Section 1.
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All events are interpreted through both initial breakage defini-
tion and cascade breakage definition, as outlined in the following
Sections 3.1 and 3.2. Thus, two sets of interpreted data are pro-
duced from the same experimental raw data. In order to discrimi-
nate between breakup in the center of the channel and the high
shear region near the walls, a region of wall breakage is defined
as drops breaking with their centroid within a horizontal distance
of 1:5 mm from the tip of a rod. The value of 1.5 mm is an estima-
tion based on two criteria. Mainly, a distance of 1.5 mm is 5% of the
channel width. Thus, the two regions, one on each side of the chan-
nel, cover a total of 10% of the channel. Additionally, a spherical
drop with its centroid at the 1.5 mm line would not touch the baf-
fle, unless the drop is 3 mm or larger in diameter. Drops of this size
is much larger than the biggest drops considered in this study. The
breakage events in this region are not included in the data, as the
number of events were too few and the impact of shear forces on
the breakage events cannot be discerned from that of the turbu-
lence level. When interpreting an event through the cascade break-
age definition some daughter drops may enter the wall breakage
region. In this case, any proceeding breakups of this particular
daughter are not considered to be part of the breakage event.
The event is otherwise interpreted following the proposed proce-
dure. Similarly, when a deformed daughter drop leave the field of
view, the breakage event is assumed to have ended for this
daughter.

3.1. Image analysis

The procedure for extracting data from high speed videos have
been described in detail by Herøet al. (2019). In this work, the pro-
cedure is employed with a minor modification in the determina-
tion of daughter drop sizes. This difference is described and

discussed further in Section 4.9, in which a short discussion on
the determination of the breakage event start is included. The pro-
cedure may be outlined as follows. Each frame of the high speed
video is subtracted an image in which there is no drop and the
resulting image is converted to a binary image by a gray-level
threshold. From the pixels of the binary image, the position, sizes
and number of drops in each image can be found. The procedure
is implemented and performed in MATLAB, requiring substantial
manual input.

The image analysis considers both the initial breakage defini-
tion and the cascade breakage definition. First, the start and end
instances of the breakage event must be determined;

� Breakage event start is when a spherical mother drop starts to
deform, and this deformation process is directly related to a
fragmentation of the drop.

� Breakage event end for the initial breakage definition is when
the mother drop fragments.

� Breakage event end for the cascade breakage definition is when
the final intermediary daughter fragments.

When these two instances are known for a breakage event, the
breakage time can be computed as the time period between them.
The number of daughters and their sizes are found at the breakage
end instance. The TDR level is assumed equal to that of the contin-
uous phase. This TDR level has previously been determined by
laser doppler velocimetry, see La Forgia et al. (2018), such that each
position of the channel is associated with a local turbulence level.
In the case of breakage, the TDR level is taken to be that of the posi-
tion at breakage start. Thus, it is assumed that a single turbulent
vortex-drop interaction is occurring at this position and time
instance. For the cases where the drop did not break, the TDR level
is taken as the maximum TDR level along the recorded drop path.

It is noted that, by the breakage event definitions applied in this
study, the breakage end instance is not an equilibrium state. Both
broken and unbroken drops may break, in new independent break-
age events, after leaving the test section.

As an example of the breakage definitions applied, Fig. 3 shows
an image sequence of a binary breakage, in which a mother drop is
broken into two unequal sized drops. In this case the end criteria of
the initial breakage definition and cascade breakage definitions
coincide, and subsequently the determined breakage time, daugh-
ter number and daughter sizes are equal.

Fig. 2. Schematic drawing of the experimental setup. 1. Water tank and phase separator, 2. water pump, 3. flow meter, 4. droplet generation section, 5. oil syringe pump, 6.
two cameras, 7. breakage section, 8. illumination.

Table 3
Mother diameter with standard deviation and number of events investigated.

Mother diameter
[mm]

Total number of
events

Number of events with
breakage

1:0� 0:2 284 35
1:48� 0:08 379 115
1:87� 0:05 148 53
2:23� 0:06 154 83
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Conversely, Fig. 4 shows an example of a sequence of breakups.
The initial mother drop is deformed with a long thin thread
between two forming daughters, this thread later breaking up into
several small daughters. In turn, as the two breakage event defini-
tions differ in the interpretation of the end instance, the resulting
breakage time, daughter number and daughter size distribution
are different. It should be noted that the two definitions always
coincide with regard to the breakage probability.

For completeness, Fig. 5 shows an equal sized breakage, which
is a common outcome of the experiments. As above, the two break-
age definitions differ in the interpretation of the end instance. In
the interpretation according to the initial breakage definition, there
are two near equal sized droplets. In the cascade breakage defini-
tion, there are still two near equal sized daughters, but also an
additional small droplet.

3.2. Interpretation of image analysis data

After the individual videos have been analyzed, the breakage
time, tB, breakage probability, PB, average number of daughters,
m, and the daughter size distribution PDSD must be determined from
the resulting set of data. In this study, these values are determined
for each of the mother size groups seen in Table 3. The breakage
time is found as the average value of all the drops breaking, while
the breakage probability is determined from the fraction of drops
breaking to the total number of drops in the mother size group,
also those not breaking. Afterwards, the determined breakage time
and breakage probability values are combined to the breakage fre-
quency according to (4), i.e. the breakage frequency is not explic-
itly determined. The number of daughter particles are found as
the average number of daughters that are produced from the
breakage events of the corresponding mother drop size group.
Thus, in this procedure, the breakage time, the breakage probabil-
ity and the number of daughter particles are a single average value
for each mother drop size group. The procedure of obtaining the
daughter size distribution function from the experimental data
set is not immediately obvious. The first step is to approximate
the probability of a daughter appearing in a particular daughter
size range with a width of DVd;

DP�
DSD Vm;Vdð Þ ¼ Number of particles in range Vd � DVd=2; Vd þ DVd=2½ �

Total number of particles in range 0; Vm½ �
ð40Þ

Following this procedure, the discrete variable DP�
DSD Vm;Vdð Þ should

sum to one. In order to fulfill the constraints in Section 2.3, (40)
must be divided by the daughter size range, DVd to obtain another
discrete function, DP0DSD Vm;Vdð Þ;

DP0DSD Vm;Vdð Þ ¼ DP�
DSD Vm;Vdð Þ � 1

DVd
ð41Þ

Finally, a continuous function should be fitted to the discrete
DP0DSD Vm;Vdð Þ values to obtain a continuous PDSD Vm;Vdð Þ. It follows
that to compare (40) directly with a PDSD, e.g. a PDSD computed from
a model, the PDSD must be multiplied by DVd. Here, and for the rest
of this work, the daughter size distribution is considered by volume
instead of diameter for two reasons. Firstly, the shape of the daugh-
ter size distribution is in the literature generally discussed on vol-
ume form. Secondly, daughter size distributions by volume are
significantly more intuitive. Two drops each at 50% of the volume
of the mother drop, would correspond two drops both at � 80%
of the diameter of the mother drop. If the daughter size distribution
function is desired as a function of diameter, it may be obtained
through the fundamental relation given by:

PDSD Dm;Ddð Þ dD ¼ PDSD Vm;Vdð Þ dV ð42Þ
which is given in e.g. Martínez-Bazán et al. (2010).

3.3. Statistical data treatment

The state of the art single fluid particle experiments are relying
on manual and often extremely time consuming approaches. Thus,
the statistical treatment of the different parameters are of critical
importance. Historically, statistic relevance are attributed experi-
mental investigations with a high number of repetitions, e.g.
Maaß and Kraume (2012). Obviously, larger data sets provides an
increased precision in the estimates of the quantity investigated,
yet this precision is seldom quantified. While the standard devia-
tion provide much information of the nature of the experimental
data, models and their validation rely on the statistical mean val-
ues. The true mean can be more accurately described by specifying
a suitable confidence interval. Moreover, the statistical treatment
of the data is seldom discussed in previous works, thus the inter-
pretation of error bars and uncertainties are not clear.

In the following procedure, all of the parameters that the esti-
mated quantities may depend on are assumed constant. The

Fig. 3. Binary breakup resulting in two daughters of different size. The mother drop was 0.91 mm in diameter.

Fig. 4. Breakup resulting several daughters after cascading breakages. The mother drop was 0.89 mm in diameter.
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mother drop size, the turbulence level, the interfacial tension, etc.,
are considered constant for each mother drop size group. The con-
cepts applied can be found in text books on experimental statistics
(e.g., Box et al., 2005; Wheeler and Ganji, 2010). Breakage time and
the average number of daughter drops are average values, thus the
mean, �x, and standard deviation, S, of the data sets may be calcu-
lated through the well known relations:

�x ¼

XN
i¼1

xi

N
ð43Þ

S ¼

XN
i¼1

xi � �xð Þ2

N � 1

0
BBBB@

1
CCCCA

1=2

ð44Þ

in which xi is the value determined in each individual experiment
and N is the number of experiments with breakage events. The
mean can be assumed to be randomly sampled and belong to a nor-
mal distribution of means. That is, the raw data itself may not be
normally distributed, but the mean value is assumed to be normally
distributed. If the standard deviation in the raw data, often denoted
r, is approximated as S, the standard deviation of the distribution of
means are given by Sffiffiffi

N
p . Finally, the 1� a confidence interval can be

found as

l ¼ �x� za=2
Sffiffiffiffi
N

p ð45Þ

In which l is the true mean value and za=2 is a constant denoting
the size of the confidence interval. In a two sided 95%-confidence
interval the value of za=2 is z2:5 ¼ 1:96. In other words, the 95%
confidence interval limits, denoted x, can be computed according
to

x ¼ �z2:5
Sffiffiffiffi
N

p ð46Þ

Breakage probability is a binomial distribution as each experi-
ment is either breaking or not. The mean of a binomial distribution

is l ¼ NbP and the standard deviation is

r ¼
ffiffiffiffiffiffiffiffiffiffiffi
NbPQq

ð47Þ

in which N is the number of experiments, including those without

breakage events, bP is the true probability of breakage occurring

and Q ¼ bP � 1 is the probability of no breakage. At large N and

when bP is not near either of the extrema 0 or 1, the binomial distri-
bution may be approximated by a normal distribution. Assuming
that the calculated experimental probability P� can be used as an

estimate of the true probability bP in the standard deviation, the con-

fidence interval of the true number of drops breaking, DNB, can be
given as

DNB ¼ NP� � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NP� 1� P�ð Þ

p
ffiffiffiffi
N

p ð48Þ

which, divided by N yields the confidence interval of the breakage
probability;

bP ¼ P� � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P� 1� P�ð Þp

N
ð49Þ

Thus, the probability estimate is computed as

P� ¼ Number of favorable outcomes
Total number of experiments

ð50Þ

and the 95% confidence interval limits as

xP� ¼ �z2:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P� 1� P�ð Þp

N
ð51Þ

The estimated breakage frequency can be determined according
to (4) by the use of the mean value for breakage time and the esti-
mated breakage probability:

�b ¼ 1
tB
P� ð52Þ

Then, the 95% confidence interval limits can be determined from the
confidence interval limits of both the breakage time and the break-
age probability. Denoting the interval limits as x, the expression
becomes:

xb

�b
¼ xtB

tB

� �2

þ xP�

P�
� �2" #1=2

ð53Þ

Investigating the daughter size distribution function can be
done in the same way as the breakage probability. If each daughter
size range is considered individually, then the probability that a
daughter will appear in the considered daughter size range is bino-
mial. Thus, (50) and (51) can be applied to the results from (40). In
this procedure, the sample size N is the number of observed
daughters.

In summation, the average breakage time and average number
of daughters are computed according to (43), while the standard
deviation is computed according to (44). Finally, the confidence
interval limits are computed according to (46). The breakage prob-
ability and the probability of a daughter appearing in each of the
daughter size ranges are computed according to (50), with confi-
dence intervals computed from (51).

4. Results and discussion

4.1. Turbulent quantities

As discussed in Section 3, each experimental run must be asso-
ciated with the local TDR level in order to validate the model con-

Fig. 5. Breakup sequence resulting two near equal sized daughters and a small drop. The mother drop was 0.99 mm in diameter.

E.H. Herø, N. La Forgia, J. Solsvik et al. Chemical Engineering Science: X 8 (2020) 100082

11



cepts. With the continuous phase area average velocity of 1 m/s,
the corresponding TDR characteristic for the mother drop diameter
groups, as defined in Table 3, are given in Table 4. Table 4 classifies
the TDR level into average of all events, the average of breakage
events and the average of events where the drops are not breaking.
It can be seen that, within each mother drop size group, the TDR
level associated with the breaking drops are comparable to the
TDR level associated with non-breaking. Thus, the average TDR
level of all events within each mother drop size group are hereafter
taken as representative values of the TDR level for the entire group.
It should be noted that the largest mother size group has the lar-
gest difference in the associated TDR level with breaking and
non-breaking drops. The TKE level, found through the same proce-
dure as the TDR level, can be seen in Table 5.

When comparing with models the average turbulence charac-
teristics of each group is of interest, which should be at the highest
precision available. Thus, (46) have been employed on the TDR
level and the TKE level to obtain the average values and confidence
intervals shown in Table 6. While the experimental conditions are
clearer shown in Table 4 and Table 5, the values shown in Table 6
are better suited for comparison with models. The increased preci-
sion allows to discriminate between the value of 0.15 or 0.2, etc.,
which lead to significantly different model results.

To investigate the turbulent stress, rt , compared to the surface
restoring stress, rs, a Weber number, i.e. a dimensionless group,
may be defined as;

We ¼ rt

rs
ð54Þ

in which the turbulent stress may be approximated through the

second order structure function, du2, as:

rt 	 qcdu2 Dmð Þ ð55Þ
where qc is the continuous phase density. In the inertial subrange of
turbulence the second order structure function can be approxi-
mated through the relation:

du2 Dmð Þ 	 b �Dmð Þ2=3 ð56Þ
where b ¼ 2. To account for the entire range of turbulence, the sec-
ond order structure function may instead be approximated by the
expression (30) presented in Section 2.5. Finally, the surface restor-
ing stress can be defined as

rs ¼ c=Dm ð57Þ
where c is the interfacial tension. The Weber numbers of each
mother drop size group, as presented in Table 3, are shown in
Table 7, which considers both the inertial range and the entire spec-
trum of turbulence. To compute the entire spectrum as described by
Solsvik and Jakobsen (2016a) the TKE is needed, as shown in Table 6.
As can be seen from Table 7, the two procedures for determining the
turbulent stress results in relatively similar Weber numbers in the
current setup. Thus, it is likely that the drop sizes are close to the
inertial subrange of turbulence.

Considering that there are breakage events in each mother drop
size group, see Table 3, it can be seen that there are breakages for
Weber numbers below 1. Some models, like that of Martínez-

Bazán et al. (1999a,b, 2010) in Section 2.2, predict no breakage in
this case. Thus, it is not possible to compare the model prediction
of the breakage time, tB, the breakage probability, PB, the average
number of daughters, m, and the daughter size distribution PDSD

with the experimental results. It is noted that the model of
Martínez-Bazán et al. (1999a,b, 2010) is developed considering
very high TDR levels, in the region of 100� 3000 m2/s3. Thus, it
is not unexpected that the model does not accurately predict
breakage behavior in the low turbulence level of this study. Never-
theless, the data presented in Table 7 show that breakage takes
place also when We < 1. Hence, a breakage model for these fluid
and flow conditions should also predict this outcome.

It is noted that investigations of the Weber number should be
considered an order of magnitude analysis and not an exact limit.
I.e., at large Weber numbers breakage is likely to be prominent,
while less common for lowWeber numbers. It does not follow that
no breakage occurs for We < 1. This can be further illustrated by
considering that the expressions for rt and rs given above are
not universal. As an example, the expression for rs could have a
prefactor of 1, 2, 4 or 6 depending on the derivation, see e.g.
Solsvik et al. (2013).

The continuous phase turbulence characteristics are time aver-
aged in this analysis. Thus, the real dynamic interaction between
the drop and the turbulent vortex is lost. In transient flows, the
TDR level and TKE level experience fluctuations that may be rela-
tively large. In turn, the turbulence level causing breakup may be
higher than the averaged values reported in this article. However,
experimental investigations of the actual dynamic turbulence-
droplet interactions are extremely challenging. An option may be
to employ direct numerical simulations, as suggested by
Andersson and Helmi (2014). Nevertheless, determining the break-
age frequency, b, the average number of daughters, m, and daughter
size distribution, PDSD, based on the local time average turbulence
characteristics are certainly of value for development and valida-
tion of CFD-PBE simulations. Especially as commonly employed
turbulence models, such as Reynolds Averaged Navier–Stokes
models, determine time averaged turbulence characteristics. Even
with the use of Unsteady Reynolds Averaged Navier–Stokes, the
turbulence characteristics are averaged over some time period.

It is noted that the standard deviation within each group of tur-
bulence level in Table 6 is large, thus uncertainty is introduced
when employing the average value as the turbulence level. This
uncertainty is likely also present in previous experimental studies,
where the average TDR level of a finite volume is taken as the tur-
bulence level of all experiments. It is further noted that some

Table 4
TDR level and standard deviation associated with the droplet size groups. The area
average velocity of the continuous phase is 1 m/s.

Mother Drop TDR TDR Breaking TDR Not Breaking
Diameter [mm] [m2/s3] [m2/s3] [m2/s3]

1.0 � 0.2 0.2 � 0.1 0.19 � 0.09 0.2 � 0.1
1.48 � 0.08 0.1 � 0.1 0.14 � 0.09 0.1 � 0.1
1.87 � 0.05 0.10 � 0.07 0.09 � 0.08 0.10 � 0.07
2.23 � 0.06 0.09 � 0.08 0.06 � 0.07 0.12 � 0.09

Table 5
TKE level and standard deviation associated with the droplet size groups. The area
average velocity of the continuous phase is 1 m/s.

Mother Drop TKE TKE Breaking TKE Not Breaking
Diameter [mm] [m2/s2] [m2/s2] [m2/s2]

1.0 � 0.2 0.02 � 0.01 0.024 � 0.009 0.02 � 0.01
1.48 � 0.08 0.02 � 0.01 0.02 � 0.01 0.02 � 0.01
1.87 � 0.05 0.016 � 0.007 0.015 � 0.009 0.016 � 0.008
2.23 � 0.06 0.01 � 0.01 0.010 � 0.008 0.019 � 0.01

Table 6
TDR level and TKE level, both with 95% confidence intervals. The area average
velocity of the continuous phase is 1 m/s.

Mother Drop TDR TKE
Diameter [mm] [m2/s3] [m2/s2]

1.0 � 0.2 0.15 � 0.03 0.022 � 0.004
1.48 � 0.08 0.13 � 0.02 0.020 � 0.002
1.87 � 0.05 0.10 � 0.02 0.016 � 0.002
2.23 � 0.06 0.09 � 0.02 0.014 � 0.002
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authors, e.g. Foroushan and Jakobsen (2020), have investigated the
breakage phenomenon through an instability analysis. That is,
instead of considering a single turbulent vortex-droplet interac-
tion, the breakage event is considered to be due to a series of inter-
actions. While this treatment leads to an increased complexity, it
might be the correct interpretation of the turbulence-droplet inter-
action. If that is the case, the determined turbulence characteristics
in this study might not be sufficient to explain the relation
between the turbulence level and the breakage phenomenon.

4.2. Breakage time

Only a limited number of experimental single droplet studies
report breakage time, tB, fewer yet investigate the impact of
mother drop size, Dm. Currently, the effect of mother drop size
on average breakage time is not sufficiently validated by single
drop experiments. A selection of representative values from the
study of Solsvik and Jakobsen (2015) are presented in Table 8. In
their investigation of breakup in a stirred tank, they found that,
for a given stirrer speed and oil, the breakage time is increasing
with increasing mother drop size. This trend is consistent with
the models presented in Section 2. On the other hand, when
Maaß and Kraume (2012) investigated channel flow around a stir-
rer blade, they did not observe a clear trend. Some representative
values from the latter study are given in Table 9. Interestingly, they
found that the longest average breakage times were for the small-
est drop sizes, contrary to the model concepts in Section 2 and to
the results of Solsvik and Jakobsen (2015). Maaß and Kraume
(2012) employed the initial breakage definition with a slight mod-
ification. In their procedure, the breakage event start instance was
taken as the instance of the drop passing the stirrer blade. How-
ever, this instance does not necessarily correspond to the instance
of the beginning of a breakage, see Section 3.1. Due to a recirculat-
ing flow pattern behind the stirrer blade, a drop could pass the stir-
rer blade and stay spherical, before breaking at a later time
instance. Maaß and Kraume (2012) recognized the weakness
themselves. Based on the interpreted videos, it was stated the phe-
nomenon of recirculating drops was more frequent in experiments
on the smallest drop sizes, which was given as the explanation for
why the smallest drop sizes had the longest average breakage
times. Maaß and Kraume (2012) claimed that the distribution of
breakage time was a b-distribution. Thus, the problem of the aver-
age value being saturated by long breakage time was avoided by
utilizing the peak of the b-distribution as the breakage time mea-
surement. This breakage time estimate did follow the trend of
increasing breakage time with increasing mother drop size. In
summary, there is a general belief that, for a given system, an
increase in mother drop size should increase the breakage time.
As noted in Section 1, it is challenging with direct and quantitative
comparison between different experimental studies due to differ-

ences in the experimental setup, such as flow condition, dispersed
phase and breakage event definition.

In this study, the average breakage time of each mother drop
group, see Table 3, has been determined for both the initial break-
age definition and the cascade breakage definition. The results are
shown in Fig. 6 and Fig. 7, respectively. As expected, due to the cas-
cade breakage definition including the time after the initial break-
age definition, the cascade breakage times are significantly longer
than the initial breakage times.

By both the breakage event definitions, the average breakage
time show a trend of increasing breakage time with increasing
mother drop diameter. This is consistent with the cascade break-
age results of Solsvik and Jakobsen (2015), although the breakage
times of this study are longer. The difference in the determined
breakage time may be dependent on mainly two factors. First,
the discrepancy with the petroleum results may be partly due to
different system properties when working with different oils. Sec-
ondly, Solsvik and Jakobsen (2015) used a stirrer with an volume
average TDR level at 1 m2/s3, which is higher than the values seen
in Table 6 by a factor of approximately 5 to 10. Additionally, the
TDR level in the breakup region near the impeller blade is likely
much higher than 1 m2/s3 (Solsvik and Jakobsen, 2015), as the
TDR level is not uniform in the stirrer. Thus, some of the difference
may be due to the turbulent intensity of the setup in this study
being significantly lower than that of Solsvik and Jakobsen
(2015). This may have an impact on the results, as it is likely that
the breakage time decreases with increasing turbulence levels, as
shown by e.g. Andersson and Andersson (2006a) and consistent
with (11) and (20) of Section 2.

In order to compare the model of Coulaloglou and Tavlarides
(1977) with the experimental results of this study, (11) is com-
puted. First, the mother drop size and TDR level is taken from
Table 6. Then, the parameter c2 is fitted to a linear equation, with
the constant term set to zero. The procedure is performed in
MATLAB by using the fit function and the ”poly1” method. This
yields the value of c2 as 1.54 when employing the initial breakage
definition. This is close to the value determined by Maaß and
Kraume (2012), who found the value of c2 to be � 1:1. Their break-
age definition was similar to the initial breakage definition. When
employing the cascade breakage definition instead, the value of c2
was found to be 2.39. Coulaloglou and Tavlarides (1977) found the
original value of c2 to be � 2:98, when comparing with data from
dense dispersion experiments. As such, neither of the parameter
values are very different from previously determined values.

Additionally, the data is compared to the Coulaloglou and
Tavlarides model adaption of Solsvik and Jakobsen (2016a), which
is valid for the entire range of turbulence. Fitting the parameter c4
in (28) using the same procedure as described above, yields the
values of c4 as 2.30 and 3.57 for the initial and cascade breakage
definitions, respectively. The value of c4 is determined experimen-
tally for the first time. However, Solsvik and Jakobsen (2016a)
showed that the value of c4 is not equal to the value of c2, which
is in line with the present results.

From the Fig. 6 it can be seen that the predictions of the model
of Coulaloglou and Tavlarides (1977) and the model adaption of
Solsvik and Jakobsen (2016a), plotted as triangles and circles
respectively, are very similar. Additionally, the model predictions
are in reasonable agreement with the experimentally determined
initial breakage time. However, the predicted breakage time of
the largest mother drop size group is significantly lower than the
average value of the experimental results. While the predicted
breakage time is within the standard deviation, it is outside the
95% confidence interval. This mother drop size group had a large
difference in the turbulence level associated with breakage events
and non breakage events. Thus, it is possible that the discrepancy
between model prediction and experimental value of the largest

Table 7
Turbulent Weber number associated with the droplet size groups.

Mother drop diameter [mm] 1.0 1.48 1.87 2.23
We - Inertial Range 0.34 0.60 0.75 0.93
We - Entire Spectrum 0.35 0.68 0.84 1.04

Table 8
Selected cascade breakage times taken from regressional fit of the data in Solsvik and
Jakobsen (2015).

Mother drop diameter 1 mm 1:5 mm 2 mm
Petroleum � 10 ms � 20 ms � 35 ms
Octanol � 20 ms � 40 ms � 60 ms
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mother drop size group is partly due to the procedure employed
when associating turbulence level with the mother drop size
groups. In light of this, an additional model fitting is performed
in which the turbulence level associated with breakage events only
is employed, instead of the average turbulence level of all events.
As such, different values for c2 and c4 are obtained. Considering

the initial breakage definition values, the value of c2 is found to
be 1.46 and the value of c4 is 2.15. The resulting model predictions
are plotted as squares and exes in Fig. 6. As can be seen from the
figure, this provides a much better fit to every point on the graph.

For the breakage time determined considering the cascade
breakage definition, Fig. 7, the predictions of the model of
Coulaloglou and Tavlarides (1977) and the model adaption of
Solsvik and Jakobsen (2016a) are plotted as triangles and circles.
It can be seen from the figure that the model predictions are sim-
ilar to each other. However, the model predictions are in general
less accurate than for the initial breakage time, as seen in Fig. 6.
In the same procedure as above, the model parameters are fitted
to the turbulence level associated with the breakage events only.
The following model predictions are plotted as squares and exes.
It can be seen from the figure, that these model predictions repre-
sent a better parameter estimation. In this procedure, the value of
c2 is determined to be 2.26 and the value of c4 is found to be 3.35.

Unfortunately, it is not clear how the turbulence level associ-
ated with the breakage events only can be associated with the
breakage probability. The determination of breakage probability
requires consideration of both the events with breakage and the
events in which breakage does not occur. While it is intuitive that
the breakage time is dependent on the turbulence level causing
breakage, a consistent model for the breakage frequency uses only
one turbulence level, i.e. the same turbulence value for both break-
age time and breakage probability. Thus, the turbulence level asso-
ciated with the breakage events only is not further employed in
this study. The good fit obtained when parameter fitting with this
turbulence level may be an indication of a need for improvement of
the procedure, which may warrant further study.

4.3. Breakage probability

The breakage probabilities determined from (50) are shown in
Fig. 8, with the 95%-confidence interval included in red. The stan-
dard deviation from (47) is not shown, as the breakage probability
is determined from the number of drops breaking divided by the
number of experiments. Thus, the standard deviation does not pro-
vide additional insight into the probability investigated. As can be
seen from Fig. 8, the breakage probability is increasing monoto-
nously with droplet diameter. This general trend is in agreement
with previous experimental investigations. Both Galinat et al.
(2005, 2007), for an orifice flow, and Ashar et al. (2018), for a stir-
red tank, showed that there exists a critical Weber number below
which there is no breakage and that the probability increases
monotonously with increasing Weber number. In their experimen-
tal setups, increasing the Weber number translates to either
increasing the diameter of the mother drop or increasing the aver-
age flow conditions, i.e. continuous phase volume flow or stirrer
speed. Maaß and Kraume (2012) reported the same trend; for pet-
roleum the breakage probability was � 0:55 and � 0:8 for mother
drop diameter of 1 mm and 2 mm, respectively, while the breakage
probabilities for toluene drops of the same size were � 0:6 and
� 0:75.

The predicted breakage probability of the models of Coulaloglou
and Tavlarides (1977), given by (9), and Solsvik and Jakobsen
(2016a), given by (29), is also shown in Fig. 8. Following the same

Table 9
Selected average breakage times from Maaß and Kraume (2012).

Mother drop diameter 0:65 mm 1:0 mm 2:0 mm 3:0 mm

Toluene 19:7 ms 12:4 ms 14:3 ms 16:1 ms
Mother drop diameter 0:535 mm 1:0 mm 1:9 mm 3:1 mm
Petroleum 34:0 ms 16:0 ms 13:9 ms 16:6 ms

Fig. 6. Average breakage time considering the initial breakage definition plotted
with 95%-confidence interval in blue and standard deviation in red. The confidence
interval is computed according to (46). The model predictions are computed using
(11) by Coulaloglou and Tavlarides (1977) and (28) by Solsvik and Jakobsen
(2016a). BT denotes model predictions utilizing the turbulence associated with
breakage events only.

Fig. 7. Average breakage time considering the cascade breakage definition plotted
with 95%-confidence interval in blue and standard deviation in red. The confidence
interval is computed according to (46). The model predictions are computed using
(11) by Coulaloglou and Tavlarides (1977) and (28) by Solsvik and Jakobsen
(2016a). BT denotes model predictions utilizing the turbulence associated with
breakage events only.
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procedure as in the previous section, the parameter c1 is fitted in
MATLAB, yielding the value 0.59. Previously, Maaß and Kraume
(2012) found the value of c1 to be 0.39, while Coulaloglou and
Tavlarides (1977) found the value to be 0.106. The fitted value of
c5 in (29) is 1.25. The value of c5 is determined experimentally
for the first time. However, Solsvik and Jakobsen (2016a) showed
that the value of c5 is not equal to the value of c1. It can be seen
from Fig. 8 that the model predictions are reasonable for the two
smallest mother drop sizes, but less accurate for the two largest
ones. The reason for this behavior is not clear.

4.4. Breakage frequency function

Even though the breakage frequency, b, is what is used in mod-
eling the breakage death and breakage birth terms of the PBE, the
only single droplet study previously investigating this value is the
study by Maaß and Kraume (2012). In general, their results sug-
gests that when increasing the mother drop size, the breakage fre-
quency trends to rapidly increase at first, before going through a
maximum value and slowly decrease. This was assumed to happen
under the same turbulence conditions. Some representative break-
age frequency values from the study by Maaß and Kraume (2012)
are � 175 s�1 and � 75 s�1 for toluene mother drop sizes of 1 mm
and 2 mm, respectively, and for petroleum the breakage frequency
was determined as � 120 s�1 and � 80 s�1.

The breakage frequency estimated in this study, computed
using (52), can be seen in Fig. 9. Compared to that of Maaß and
Kraume (2012), the breakage frequency is significantly lower.
Which is expected, as the breakage time of this study is longer, Sec-
tion 4.2, and the breakage probability is lower, Section 4.3. This can
likely be attributed to the different flow conditions and fluid prop-
erties employed in this study.

From Fig. 9 it can also be seen that the breakage frequency
based on the cascade breakage time is lower than the frequency
based on the initial breakage time, which is due to the cascade
breakage time by definition being larger than the initial breakage
time. Furthermore, it appears that the breakage frequency is
increasing at first, before it stabilizes or slightly declines, which
in turn is a similar to the trend reported by Maaß and Kraume
(2012). Considering the initial breakage definition, the experimen-
tal results are also in reasonable agreement with the model predic-

tions of Coulaloglou and Tavlarides (1977) and the model
predictions of Solsvik and Jakobsen (2016a).

Although the breakage time and breakage probability estimates
of the largest mother drop size group was both predicted inaccu-
rately, the breakage frequency of this size group is well predicted.
Of course, this may be a coincidence. Nevertheless, the different
experimental breakage frequency data are well predicted by the
models. A possible reason for the high accuracy is the association
of the local turbulence level with the breakage event instead of a
volume average approach. From the data based on the local turbu-
lence level approach, the disruptive turbulent force is accurately
modeled and the resulting model prediction is close to the mea-
sured values. This result highlights the importance of associating
the turbulence level with local values, even for a low gradient sys-
tem as employed in this study.

4.5. Average number of daughters

Similarly to the breakage time, the average number of daughter
drops produced from a breakage event, m, is significantly depen-
dent on the breakage definition employed. In the current study,
the number of daughters for the initial breakage definition was
always determined to be two. I.e. due to the high frame rate used
in the experiments, it was always possible to identify a frame in
which a drop was broken into two daughters, before possibly con-
tinuing the breakage process. Solsvik et al. (2016a) suggested that
the number of daughters of the initial breakage would tend to two
as the framerate increased, which appears to be supported by the
data presented in this work.

In the cascade breakage definition the average number of
daughters depend on the mother drop diameter, as seen in
Fig. 10. Both the average number of daughters and the standard
deviation is increasing with increasing mother drop diameter.
Interestingly, the number is significantly larger than the binary
outcome determined from the initial breakage definition, even
for the smallest mother drop diameters. The trend of this study
correspond to that of the previous investigations of Galinat et al.
(2005, 2007) and Ashar et al. (2018). Even though these authors
report significantly higher turbulence levels in their setups,

Fig. 8. Breakage probability plotted in blue. The 95%-confidence interval, computed
according to (49), is plotted in red. The model predictions are computed using (9) by
Coulaloglou and Tavlarides (1977) and (29) by Solsvik and Jakobsen (2016a).

Fig. 9. Breakage frequency, computed using (52), plotted with an estimated 95%-
confidence interval, computed using (53). ‘‘IB definition” and ‘‘CB definition”
denotes the breakage frequency determined with breakage time from the initial
breakage definition and the cascade breakage definition, respectively. The model
predictions are computed using (12) by Coulaloglou and Tavlarides (1977), denoted
as ”Original C&T”, and according to the procedure of Solsvik and Jakobsen (2016a),
as presented in 2.5, denoted as ‘‘Ent. Range of Turb.”.
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Galinat et al. (2005, 2007) found the average number daughters to
be � 3 to � 8 and Ashar et al. (2018) found it to be � 3 to � 7.
Galinat et al. (2005) also reported a high standard deviation, which
is increasing with increasing mother drop size.

In the models available in the literature, the average number of
daughter drops produced upon breakage is a constant which must
be given before any simulations are performed. While the binary
breakage assumption appears to hold for the initial breakage
framework, it does not hold for the cascade breakage framework.
If the cascade breakage definition is advantageous in order to
describe the breakage phenomenon, then the breakage models
should determine the average number of daughters as a function
dependent on the mother drop size, the local flow conditions and
the system properties. Additionally, the models should be able to
predict non-integer values for average number of daughters.

The underlying probability distribution of daughter numbers is
of interest in order to elucidate the resulting average number of
daughters and the high standard deviation. Fig. 11 shows the prob-
ability of daughter number for each mother drop diameter. For the
smallest mother drop diameter binary, tertiary and quaternary
breakage are the most frequent outcome and there are no events
of seven or more daughters. As the mother drop increases, cases
with higher number of daughters appear and the curve is flattened
while binary and tertiary breakage are still the most common out-
come of any breakage event. The same trends, i.e. distribution of
daughter number dependent on mother drop size, are previously
reported by Solsvik and Jakobsen (2015) and Solsvik et al.
(2016a). In those studies, all but the smallest drop sizes have an
even distribution in the range 2 to 11 daughter drops.

4.6. Daughter size distribution

In contrast to the breakage frequency and the daughter number,
the daughter size distribution function is not only an average
value, but a function for each mother drop size. The shape of the
daughter size distribution is usually considered from a theoretical
point of view with the assumption of binary breakage. Depending
the strategy employed in model derivation, the daughter size dis-
tribution can be considered to have a variety of shapes. Considered
on volume form, some of the common shapes include bell-, U-,
bimodal- or uniformly-shaped. The discussion of the shape is sig-
nificantly influenced by the binary breakage assumption and few
alternative formulations exists. One alternative is the model by

Diemer and Olson (2002), in which any average number of daugh-
ters is possible and the daughters are most likely to be near equal
in size. Other models have been proposed by Han et al. (2011,
2013, 2015) and Solsvik et al. (2016b), in which the daughter num-
ber may be 2, 3 or 4. Also for these models, the daughters are most
likely to be near equal in size.

As with the breakage time and average number of daughters,
the choice of breakage definition greatly impacts the experimen-
tally determined daughter size distribution. First, the initial break-
age definition is considered, and the resulting daughter size
distributions, calculated according to (40), is shown in Fig. 12.
The smallest mother drop size group, Fig. 12a has the highest like-
lihood of equal breakage, but otherwise a near uniform distribu-
tion. Then the two middle size groups, Fig. 12b and c, have
nearly uniform distributions. Finally, the largest mother drop size
group, Fig. 12d, show that it is more likely with a small and a large
drop, i.e. a U-shape. Generalized, the trend in the daughter size dis-
tribution, as the mother drop size increases, appears to be a uni-
form distribution with a weak preference of equal breakage, then
a uniform distribution before eventually obtaining a relatively
small preference for the U-shape. Also from the Fig. 12, it can be
seen that for every mother drop size group there is no daughter
size that is not apparent. The biggest difference is found for the
U-shape of the largest mother drop size group, Fig. 12d, where
the least common outcome is � 6% and the most common out-
come is � 19%.

The model predictions from (14) by Coulaloglou and Tavlarides
(1977) are included in the Fig. 12 for completeness. According to
the procedure in Section 3.2, the model predicted daughter size
distribution function is computed from (41). The model framework
assumes two daughters, which coincides with the experimental
results. However, the assumption of equal sized breakage dominat-
ing is not accurate. While equal sized breakage obviously is present
to obtain a uniform distribution, it is not more frequent than
unequal sized breakage. As such, the model is not accurately pre-
dicting any of the experimentally determined distributions. The
best fit is obtained for the shape of the smallest mother drop size
group and becomes worse for increasing mother drop size. This
behavior is expected based on the discussion above.

The resulting daughter size distributions of the cascade break-
age definition, Fig. 13, are very different from the initial breakage
definition. For each mother drop size group, there is a large prob-
ability of obtaining the smallest class of drops. This probability is
the lowest for the smallest mother drop size group and increases
as the mother drop size increases, which is also related to an
increase in the average number of daughters. Such a large probabil-
ity of small drops are previously not reported in literature(e.g.
Galinat et al., 2005, 2007; Maaß et al., 2007). From the investigated
videos, it appears that breaking drops often deforms into a dumb-
bell shape, with two soon-to-be daughter drops connected by a
thin thread. As the breakup progresses, this results in two larger
drops and a number of smaller drops originating from the thread.
In some cases, the larger daughter drops undergo the process
again, yielding even more small drops.

As for the initial breakage definition, the model predictions
from (14) by Coulaloglou and Tavlarides (1977) are included in
the Fig. 13. For the cascade breakage definition, the discrepancy
between the assumed binary breakage of the model and the exper-
imental data is large. As such, the model fails to predict the exper-
imental data. This is due to the small size of many of the daughter
drops, which is considered unlikely to be produced by the model
prediction. Thus, a different breakage model is needed to deter-
mine the daughter size distribution function in the cascade break-
age event definition. Currently, there are no existing models that
predict multiple unequal sized breakage events. However, such a
model is needed in order to predict the current experimental data.

Fig. 10. Cascade breakage average number of daughters with a 95%-confidence
interval in blue, computed using (46), and standard deviation in red.
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Fig. 11. Distribution of number of daughters in the cascade breakage definition.

Fig. 12. Daughter size distributions, calculated according to (40) and utilizing the initial breakage definition. Confidence interval calculated from (51). The model predictions
are computed from (14) by Coulaloglou and Tavlarides (1977), in accordance with (41).
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Neither the initial breakage definition, nor the cascade breakage
definition has one general daughter size distribution curve valid for
all of the mother drop size groups. Considering the cascade break-
age definition the probability of the smallest drops is increasing
significantly with increasing mother drop size. Which is obvious
considering that the average number of daughters is increasing sig-
nificantly, thus the number of smaller drops increase simultane-
ously. Contrary to these experimental data, breakage models give
the shape of the daughter size distribution before any simulations
are performed. However, the shape of the daughter size distribu-
tion is likely dependent on the mother drop size, the local flow
conditions and the system properties. A predictive breakage model
should account for these dependencies.

It is noted that the currently employed procedure for determin-
ing the daughter size distribution is different from previous inves-
tigations. Maaß et al. (2007) grouped the breakage events by the
number of daughters produced upon breakage. As such, one
daughter size distribution function is determined for binary break-
age, one for tertiary breakage, and so on. Thus, Maaß et al. (2007)
obtained unique daughter size distribution functions for each inte-
ger value of the average number of daughters. This approach could

be used to validate models such as Han et al. (2011, 2013, 2015),
where unique equal size daughter size distribution functions are
available for the average number of daughters as 2, 3 or 4. How-
ever, for a given system, different daughter numbers and sizes
may be the outcome of different breakage events, i.e. there is a
presence of binary breakage, tertiary breakage, quartary breakage
and so on, each with a different daughter size distribution. It is
not clear how the different daughter size distribution functions
of Maaß et al. (2007) should be combined to obtain the daughter
size distribution function corresponding to the average number
of daughters.

In the present study, all daughter drops produced from break-
age events of the given mother drop size group is considered col-
lectively, regardless of whether a given daughter originated from
a binary breakage, tertiary breakage, etc. This results in one daugh-
ter size distribution per mother drop size group. As such, the pres-
ence of different outcomes of the breakage event is incorporated in
the determined distribution function. The current procedure is
similar to that of Galinat et al. (2005), although they did not use
single droplet experiments for this determination.

Fig. 13. Daughter size distributions, calculated according to (40) and utilizing the cascade breakage definition. Confidence interval calculated from (51). The model
predictions are computed from (14) by Coulaloglou and Tavlarides (1977), in accordance with (41).
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4.7. Statistical treatment

The experimental data might be subject to a number of sources
of error. This may include experimental lab procedure, data pro-
cessing or assumptions, among others. Random errors contributes
to the standard deviation in the experimental data and increases
the size of the confidence interval. Systematic errors are present
regardless of the individual experiment and usually considered
not to be randomly applied. For example, if the thread of oil
between two soon-to-be daughter drops is very thin, the thread
might not be visible by the camera and the breakage assumed to
have ended. Subsequently, some breakage times may be predicted
to be shorter than the true value, but none are predicted to be
longer. As such, it mostly impacts the determined mean value
and not the standard deviation. If the impact of systematic errors
is large enough, the true mean may fall outside the confidence
interval from the statistical analysis. It follows that the employ-
ment of the statistical analysis is no guarantee that the true mean
value is within the confidence interval. Furthermore, performing a
very large number of experiments in order to obtain a small confi-
dence interval is, in most experimental studies, not beneficial. At a
certain number of experiments, the statistical precision is close to
the total uncertainty arising from the experimental procedure,
thus repeating the experiment under the same conditions, e.g. drop
size, oil type and flow conditions, provides limited additional infor-
mation. Instead, other aspects of the breakage phenomenon should
be investigated.

Before investigating the determined statistical uncertainty, a
short discussion on the uncertainties in the experimental proce-
dure is required. While the models are defined as point values,
the experimental data is taken from a volume. Ideally, the experi-
mental data should be determined as representative for points,
which would translate to a very small experimental volumes. This
is practically impossible on several accounts. First, there are prac-
tical limitations. Due to fluctuations in the channel flow and in the
droplet generation channel, the droplets will have an almost ran-
dom horizontal motion. Thus, the droplets are traveling along dif-
ferent trajectories despite having nearly equal initial conditions.
The amount of experiments needed to be able to validate every sin-
gle point would be extremely large. This is even further compli-
cated by the randomness of the turbulence level, which means
that breakage can happen at different vertical positions, even for
droplets transported along the same trajectory. Second, the associ-
ation of each breakage with a single location is disputable, as each
experimental breakage event clearly has a duration in which the
droplet or droplets are transported. While it appears to be natural
to associate the breakage with the position at the breakage event
start instance, this is not determined from the PBE model frame-
work considered. In summation, the procedure of considering a lar-
ger volume is a necessary simplification. It does, however, include
some uncertainty which cannot be quantified.

4.7.1. Breakage time
From the figure showing the initial breakage time, Fig. 6, and

the figure showing the cascade breakage time, Fig. 7, it can be seen
that the standard deviation in breakage time for each mother drop
size group is significant. This is expected, as each mother drop
within each group might be slightly different in size, break in dif-
ferent positions, i.e. turbulence level, or experience different
instantaneous turbulent conditions. On the other hand, the confi-
dence intervals are fairly small. As the trends are similar for the ini-
tial breakage definition and the cascade breakage definition, only
the cascade breakage definition will be considered in the following
discussion. The standard deviation in the breakage time, as seen in
Fig. 7, is 40%;47%;63% and 50% when given in relative values. In
contrast, the 95% confidence intervals are 14%;9%;13% and 10%.

Thus, the mean values are more precisely determined statistically,
than what appears to be the case when only considering the stan-
dard deviation. Furthermore, it does not appear beneficial to deter-
mine the statistical uncertainty below� 10� 15%with the current
procedure, when considering the large variation in TDR level and
the uncertainties discussed in the start of this section. As such,
additional experiments under the same conditions are not
required. This decision is also influenced by the feasibility of
improving the confidence intervals.

From (46) it can be seen that the size of the confidence interval
limits is dependent on the standard deviation and the number of
experiments. When performing experiments, the standard devia-
tion approaches a constant value. When this constant value is
obtained, the confidence interval is only dependent on the factor
N�1=2, which has a diminishing effect on the confidence interval
limits as N increases. For example, at N ¼ 30, the value of N�1=2 is
� 0:18, while at N ¼ 40, the value of N�1=2 is � 0:16. Assuming that
the standard deviation was constant at 30 experiments, the ten
additional experiments from 30 to 40 experiments only shortened
the confidence interval limits by � 2% of the value of the standard
deviation. This is shown graphically in Fig. 14, which shows the
mean value, standard deviation and confidence interval of the cas-
cade breakage time plotted as a function of the number of experi-
ments performed for the 1.48 mm mother drop size group. As can
be seen from the figure, the mean value appears to be relatively
stable after 20 experiments. However, it is possible to improve
the standard deviation by performing approximately 10 additional
experiments. From this point onward, the standard deviation is
near constant. The confidence interval can still be improved with
additional experiments, but this does have a diminishing effect
per experiment performed, as explained above. The mean value
does experience some oscillation after 20 experiments, but this is
within even the final confidence interval limits.

4.7.2. Breakage probability
Breakage probability, Fig. 8, is the only function in the expres-

sion for breakage frequency that requires data of the drops not
breaking. As such, the experimental value is determined from a lar-
ger set of data than e.g. breakage time. It is therefore expected that
the confidence intervals for the breakage probability are smaller

Fig. 14. Plot of the cascade breakage time of the 1.48 mm mother drop size group
from Table 3. It shows the development in determined mean value, standard
deviation and confidence interval of the cascade breakage time, by the number of
experiments performed. The values are calculated for every two experiments from
the first until the final 115.
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than the confidence intervals for the breakage times, i.e. the break-
age probability is more precise from a purely statistical point of
view. The small confidence interval is a strong indication that the
determined breakage probability is unlikely to change significantly
if an increased number of experiments are performed.

4.7.3. Breakage frequency
The breakage frequency is not determined directly, rather it is

determined from the breakage time and breakage probability.
The same is true for the uncertainty in the breakage frequency. It
is directly related to the uncertainty in the breakage time and
breakage probability by (53). As such, it is not necessary with an
additional discussion of the uncertainty in the breakage frequency
when the uncertainty in both breakage time and breakage proba-
bility have been discussed extensively.

4.7.4. Average number of daughters
In the Fig. 10, showing the average number of daughters, there

are sizeable standard deviations and subsequently large confidence
intervals. Which, from Fig. 11 is reasonable, as there is a rather flat
distribution for most of the mother drop sizes. The standard devi-
ation in a flat distribution is always large. Thus, it follows that
additional experiments are not likely to significantly improve the
statistical precision of the average number of daughters. Instead,
different aspects of the breakage phenomenon should be
investigated.

4.7.5. Daughter size distribution
The daughter size distribution is a special case, as it is a distri-

bution for each mother drop size group instead of an average value.
Due to the presentation of the distribution in bins, as in Fig. 12 and
in Fig. 13, there are two precisions to consider; the number of bins
and the confidence interval of each bin. As such, when deciding
whether to continue with the same experimental conditions or
change, one must also consider whether the number of bins is suf-
ficient. As for the breakage time, breakage probability and daugh-
ter number, the choice of precision must be weighted against the
error sources in the experimental work.

In comparison to the initial breakage, the cascade breakage
daughter sizes have increased precision due to the daughters often
being observed in a near spherical shape, as the sequence of break-
ages normally has ended. For the cases where the cascade ends in
many daughters, the determination of the size of the initial break-
age daughters is very challenging, as the initial breakage daughters
often are severely deformed in the few video frames they are visi-
ble. In short, in the current experimental procedure, the initial
breakage definition is not optimal to determine the daughter size
distribution when successive breakages are common. On the other
hand, the procedure of scaled volume, as outlined in Section 4.9, is
accurate if the initial breakage daughter drops of a single breakage
can be assumed to deform in a similar manner. Unfortunately,
based on the investigated videos, this is a course, and not quanti-
fied, assumption.

From the Fig. 13, showing the daughter size distribution when
considering the cascade breakage definition, it can be seen that
the confidence intervals are very small. With the nine bins used
in this study, the statistical precision cannot be meaningfully
improved by additional experiments. With this number of bins,
near equal and equal size breakage end up in the same bin and
the size of each bin is � 11% of the mother drop size, a reasonable
precision considering the uncertainties and error sources discussed
above.

4.8. Experimental setup design

A survey on the design process of the current experimental
facility is included here to elucidate the main challenges in design-
ing the facility. The facility was designed to obtain experimental
data for increased physical understanding of the breakage process
and validation of breakage models in the PBE framework. A sys-
tematic study of previous experimental facilities, both within dro-
plet breakage experiments and homogeneous turbulence, was
performed. Three main points were identified as critical in order
to obtain the required quality and quantity of data.

1. Observation of the entire breakage event
The entire breakup should be continuously observed for two
reasons. First, this ensures that the breakage definitions are cor-
rectly applied. Second, the obtained experimental results cover
all of the necessary data to validate the breakage time, tB, the
breakage probability, PB, the average number of daughters, m,
and the daughter size distribution PDSD. Thus ensuring a coher-
ent dataset that may be used for validate breakage models.

2. Known local turbulence level
From Section 2 it can be seen that the breakage models rely on
the impact of the local turbulence level. Thus, in order to asso-
ciate the breakages with a representative turbulence character-
istic, the facility should have known local turbulence levels.
Additionally, the accuracy of the determined turbulence level
is increased with low gradients in the turbulence level. In an
ideal facility for investigating turbulent breakage, the breakup
would happen in homogeneous and isotropic turbulence. How-
ever, 3D isotropic turbulence is not experimentally feasible. In
setups with 2D isotropic turbulence, e.g. after static mixer
(Azizi and Al Taweel, 2011) or near oscillating grids (Shy
et al., 1997; Yan et al., 2007), the turbulence level is rapidly
decaying in the third direction. The setups also has high shear
forces in the area generating the turbulence. In conclusion, it
is challenging to inject a droplet into a region of sufficiently
high turbulence level. As an added challenge, the facility would
be challenging to automate.

3. Repeatable and reproducible
In order to obtain enough data within a reasonable time, the
experimental runs should be easily repeatable. Firstly, the facility
operation should be automated. In order to obtain this automa-
tion, it is critical to ensure a reliable injection of dispersed phase
drops. The criterion of repeatability also means that designs
which require substantial cleaning between one or few experi-
ments are disregarded. Likewise, designs in which the continuous
phase cannot be reused, which will lead to a very large consump-
tion of the continuous phase, are disregarded.

Considering only points 1 and 2 above, it would be beneficial to
also observe the breakage in the third dimension. However, this is
challenging due to increased complexity in the facility design,
automation and image analysis. In turn, this significantly increases
the time required to perform each experiment. However, it is noted
that observation of all three dimensions has been performed, for
gas bubbles in a stirred tank, by Krakau and Kraume (2019).

Some important lessons has been learned from the operation of
the facility. First, the facility is designed as a loop with a 1000 liter
tank functioning as both continuous phase storage and gravity sep-
arator, separating the small oil droplets from the water. While the
separation works as intended, the inlet generated air bubbles.
Despite the size of the tank, these bubbles reentered the loop
and interfered with the image analysis. The situation was remedied
by installing a partially holed plate near the inlet of the tank, which
acts as a momentum breaker and redistributes the inlet flow over a
larger area.
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In order to create the continuous phase flow, the setup uses a
positive displacement pump. This gives a reasonably stable mass
flow, but also give rise to pressure fluctuations. These fluctuations
manly interfere with the size of the injected droplets, giving rise to
a fluctuation in the generated droplet size. The problem can be
mitigated by geometric considerations in the design of the facility,
as some flow patterns dampen pressure fluctuations. In this partic-
ular case, a sudden expansion of the cross sectional area was
installed before the droplet generation section. Additional solu-
tions include installation of a pressure dampener, although no
commercial pressure dampeners are available at such low pressure
levels. A simple solution is to implement a T-section which allows
a volume of air to be compressed. Additionally, an adjustment that
may mitigate pressure fluctuations is to implement a coiled tube in
the loop. As the flow is going through the coil, the pressure fluctu-
ations are dampened by the oscillation of the coil.

The droplet size is also influenced by the surface finish of the
cannula tip area, where a courser surface finish yields a larger fluc-
tuation in the droplet size generated. Due to this dependence on
surface finish, less fluctuation in droplet size is experienced with
regular cleaning of the cannula tip.

Finally, still water is an excellent breeding grounds of algae. In
particular when high intensity light is present, as is the case in high
speed imaging facilities. Thus, it is critical to have a procedure for
easy cleaning of the setup, as well as easy exchanging of water. As
algae settles on the walls, the ability to drain the experimental sec-
tion of water is highly advantageous to avoid algae buildup on the
wall during periods in which the facility is not in use.

4.9. Image analysis algorithm

As mentioned in Section 3.1, the procedure employed in this
paper differentiate from the algorithm presented in Herø et al.
(2019) on the determination of daughter drop sizes. Daughter
drops are often recorded with irregular shapes. Thus, calculating
the diameter from the projected area, assuming the drop to be
spherical, and calculating the volume from this diameter can lead
to a total volume which is larger than the volume of the original
mother drop. In a few extreme cases, this estimated volume is
100% larger than the mother drop volume in the initial breakage
definition, and 50% larger in the cascade breakage definition. In
order to determine the daughter sizes, the daughter drops are asso-
ciated with a fraction, which is subsequently associated to the
mother drop size. In Herø et al. (2019), it was suggested obtain this
fraction from the projected area of each daughter drop divided by
the total projected area of daughter drops. In this work the daugh-
ter drop size is estimated by a volume fraction instead, as volume
scales differently than area and it is the volume that is to be con-
served. For each daughter drop, the projected area is assumed cir-
cular and a diameter is calculated, then this diameter is used to
estimate the volume of the corresponding daughter drop, assuming
it to be spherical. From this, the volume fraction of a particular
daughter drop relative to all the daughter drops is found. Subse-
quently, the daughter drop volume is approximated as the same
fraction of the mother drop volume.

The determination of the breakage event start instance is essen-
tially an attempt to determine the instance of a single critical tur-
bulent vortex-drop interaction, or the start of this interaction. The
application of the described procedure is elucidated here in order
to increase the readers understanding of the video interpretation
process. The procedure is based on determining the start instance
of the oscillation in the projected area, normal to the camera, that
is related to the breakage event. In practice, the determination of
the breakage event start is performed after the determination that
a breakage event has taken place. From the instance of fragmenta-
tion, i.e. when two drops can be discerned, one can move back-

wards in time on the video until a near spherical drop is
detected. In this procedure, oscillations denote changes to the pro-
jected drop area where the drop is significantly deformed from
spherical, i.e. becoming ellipsoidal or irregularly shaped. Thus, very
small perturbations of near spherical mothers are not considered.
As an example, consider a low complexity breakage event in which
a non-oscillating mother drop starts to deform and break. Such a
breakage event can be seen in Fig. 15. The figure shows the mother
drop projected area, normalized by the initial mother drop pro-
jected area, frame by frame leading up to a breakage of the drop.
The arrow indicates the determined breakage event start instance.
The small changes in projected area before the arrow are not con-
sidered to be related to the breakage event. These oscillations are
assumed either to be due to very small perturbations in the pro-
jected area of the drop, artifacts from the image analysis or a com-
bination of the two effects.

However, in many breakage events, the mother drop is going
through several smaller oscillations before undergoing a signifi-
cantly larger deformation directly before breakage. Subsequently,
the determination of the instance of one vortex-drop interaction

Fig. 15. A breakage event with only one oscillation before breakage. The arrow
denotes the instance of the start of breakage. The mother drop area is normalized by
the area of the mother drop in the first frame.

Fig. 16. A breakage event with several oscillations before breakage. The arrow
denotes the instance of the start of breakage. The mother drop area is normalized by
the area of the mother drop in the first frame.
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is less clear. Dampened oscillations are not considered part of the
vortex-drop interaction, as the energy appears to be dissipated.
Thus, another vortex-drop interaction is considered responsible
for the breakage event. An example of such an event may be seen
in Fig. 16. The first oscillations are seemingly dampened, hence
they are considered unrelated to the breakage event, as the drop
undergoes a significantly larger deformation during the breakage
event. This large deformation is assumed to be due to a single
vortex-droplet interaction, therefore the breakage event start
instance is assumed to be at the instance before this deformation.
In Fig. 16 this instance is indicated by the arrow. This breakage
event start instance is also an instance of spherical mother drop,
which ideally, but not always, has been spherical for several
frames. It is noted that the drop in Fig. 16 is visibly oscillating from
around frame 150 until the breakage event takes place.

5. Conclusions

Single octanol drop breakage experiments in turbulent flow
have been performed. The droplets were inserted into a channel
flow and the following breakage events were captured by high
speed cameras. The videos obtained were interpreted by adopting
both the initial breakage definition and cascade breakage defini-
tion. Furthermore, the design of the channel allows for breakage
events to occur in a turbulent flow with low gradients.

The impact of mother drop size on the breakage phenomenon
were investigated. While the flow considered is characterized by
a level of turbulence that is lower than for comparable breakage
investigations previously reported in literature, the results show
similar trends. With a specified constant flow rate in the channel,
an increase in mother drop size induces an increase in breakage
time and breakage probability. Considering the initial breakage
definition, the number of daughter drops was always two and
the daughter size distribution was close to uniform. However,
when considering the cascade breakage definition, the number of
daughters increased with increasing mother drop size. The corre-
sponding daughter size distributions had a large probability of very
small drops which only increase with increased number of daugh-
ters. Due to the various shapes of the daughter size distribution for
the different mother drop size groups, breakage models should
determine the shape of the daughter size distribution dependent
on the mother drop size, the local flow conditions and the system
properties. For the cascade breakage definition, also the average
number of daughters should be determined in this way.

A statistical analysis have been employed in order to quantify
the quality of the data and to address the requirement of statisti-
cally valid data. In particular, the analysis show that adequate sta-
tistical precision could be obtained, in this study, with as few as 35
to 50 breakage events. Due to the uncertainties inherent in the
experimental procedure, further increasing the statistical preci-
sion, i.e. increase the number of investigated events, is not cost
effective. Instead, investigations should focus on obtaining data
with different system properties or, if possible, increase the accu-
racy and precision of the experimental procedure. Furthermore,
the statistical analysis show that, for this study, the breakage prob-
ability is determined with lower uncertainty than the breakage
time, while the average number of daughters is less precise than
the daughter size distribution functions.

Each breakage event is associated with a local turbulence level.
As data from different experiments are combined in order to obtain
the average breakage time, the breakage probability, the average
number of daughter and the daughter size distributions, the result-
ing average turbulence level is relevant to the events considered.
Furthermore, the turbulence level has a quantified standard devia-
tion that can be used to describe the uncertainty of the procedure.

In general, more single drop breakage data from experiments is
still needed to elucidate the breakage phenomenon. In the experi-
mental facility, different fluid and system properties might be
investigated. For example, investigating different continuous flow
velocities, i.e. turbulence level, or different oils. In addition, efforts
should be made into determining whether the initial breakage def-
inition or the cascade breakage definition best describes the break-
age phenomenon. Finally, the data should be used for
discriminating between breakage models.

Each mother drop size group has a different turbulent kinetic
energy dissipation rate levels associated with it, and the difference
in turbulence level between two events can be large. This may have
an impact on the results and subsequently the investigated trends.
Thus, the impact of mother drop size might warrant further study.
Possibly, the problem could be mitigated by investigating a smaller
volume, such that the breakages happen under less varying condi-
tions. However, decreasing the volume would lead to an increase in
the needed number of experiments, as each volume would need
enough data to be statistically relevant.
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a b s t r a c t

Single octanol droplet fragmentations in channel flow have been investigated by use of high speed imag-
ing. The resulting raw data have been analyzed, interpreted and used to elucidate the fluid particle break-
age phenomena, enabling improved understanding and motivating development of more universal
population balance equation closures. The breakage kernel functions considered are the breakage time,
the breakage probability, the average number of daughters and the daughter size distribution. These
functions have been determined from the same set of data ensure consistency. The impact of the drop
size and the turbulent energy dissipation rate on the different kernel functions were investigated. The
breakage probability and average number of daughters functions correlate reasonably with the Weber
number. Similarly, the breakage time correlates adequately with known model concepts. However, the
correlations may not be considered universal as the parameter values obtained are not in agreement with
values reported in the literature.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Multiphase flow is important for many industrial applications.
For the relevant industries, predictive modeling of the dispersed
phase transient behavior would be beneficial, e.g. when designing
new equipment. Modeling of the dispersed phase is possible
through the population balance equation, PBE, framework. How-
ever, as the underlying mechanisms of the dispersed phase break-
age phenomena are not well understood, available models do not
exhibit the required predictiveness. Large amounts of experimental
data are required in order to improve the understanding of the
breakage phenomena and enable the development of more univer-
sal breakage models. In this study, the breakup phenomena are
investigated in a liquid-liquid system by observing single octanol
drops in a turbulent channel flow of water.

1.1. PBE modeling

In the PBE, constitutive equations are required for the source
and sink terms. These constitutive equations comprise of underly-
ing kernel functions, hereafter referred to as kernel functions. The
kernel functions relevant for breakage is the breakage frequency, b,
the average number of daughter drops, m, and the daughter size

distribution function, PDSD. The breakage frequency is generally
determined by the breakage time, tB, and the breakage probability,
PB. The kernel functions may depend on the drop properties, such
as the diameter of the mother drop, Dm, the different physical prop-
erties of the phases, such as the viscosity, l, and the density, q, the
system properties, such as the interfacial tension, c, and flow char-
acteristics such as the turbulent kinetic energy dissipation rate, �,
and the turbulent kinetic energy, k.

The PBE describes the change in the number density distribu-
tion function of the dispersed phase (Ramkrishna, 2000). On a sim-
plified form, the PBE in terms of the number density function, f n,
can be given as (Jakobsen, 2014)

@f n Dm; r; tð Þ
@t

þr � v r r;Dm; tð Þf n Dm; r; tð Þ½ �
¼ �BD Dm; r; tð Þ þ BB Dm; r; tð Þ ð1Þ

In which r is the place vector, t is the time, v r is the velocity vector
and Dm denotes the drop diameter of the mother drop. BD and BB

denote the sink and source terms for breakage death and breakage
birth, respectively. These sink and source terms may be expressed
as:

BD Dmð Þ ¼ b Dmð Þf n Dmð Þ ð2Þ

BB Dmð Þ ¼
Z Dmax

Dm

mPDSD Dm;Ddð Þb Ddð Þf n Ddð ÞdDd ð3Þ

https://doi.org/10.1016/j.cesx.2021.100111
2590-1400/� 2021 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail address: eirik.h.hero@ntnu.no (E.H. Herø).

Chemical Engineering Science: X 12 (2021) 100111

Contents lists available at ScienceDirect

Chemical Engineering Science: X

journal homepage: www.elsevier .com/locate /cesx



For convenience, the kernel functions are expressed as functions of
droplet sizes only. The kernel functions must be modeled to close
the PBE and many breakage model concepts and adaptions exists
in the literature. For an extensive overview, interested readers are
refereed to the reviews by Lasheras et al. (2002), Liao and Lucas
(2009) and Solsvik et al. (2013).

To describe the turbulent energy, Pope (2000) formulated a
model energy spectrum as

E jð Þ ¼ Ck�2=3j�5=3f L jLð Þf g jgð Þ ð4Þ

where Ck ¼ 1:5;j is the wavenumber, L ¼ k3=2

� is the integral length

scale, g ¼ m3c =�
� �1=4 is the Kolmogorov micro scale and mc is the kine-

matic viscosity. The function f L jLð Þ is given as

f L jLð Þ ¼ jL

jLð Þ2 þ CL

h i1=2
2
64

3
75

5=3þp0

ð5Þ

and the function f g jgð Þ is given as

f g jgð Þ ¼ exp �bE jgð Þ4 þ C4
g

h i1=4
� Cg

� �
ð6Þ

Here, p0 ¼ 2 and bE ¼ 5:2. CL and Cg are parameters that can be esti-
mated from (Solsvik, 2017)

CL Rek;Ckð Þ ¼ exp �4:478þ 18:362Ck

Re1:075�0:070Ck
k

" #
� 1:913þ 2:169Ck ð7Þ

Cg Rek;Ckð Þ ¼ exp �14:043� 4:222Ck

Re1:986�0:363Ck
k

" #
� 0:089þ 0:339Ck½ � ð8Þ

For Rek in the range 102 to 105. Rek is the Taylor scale Reynolds
number given as

Rek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20
3

k2

�mc

s
ð9Þ

The second order structure function can be determined from
the energy spectrum, Davidson (2004), and is often used in order
to approximate the turbulent stress or force acting on a droplet.
An underlying assumption is that only vortices of the same size
as the droplet contribute to the breakup of the droplet. In the iner-
tial subrange of turbulence, the Kolmogorov structure function is
given as

du2 Dmð Þ ¼ b �Dmð Þ2=3 ð10Þ
in which the Kolmogorov constant b can be set to 2, Batchelor
(1951). This formulation of du2 is limited to very large Taylor scale
Reynolds numbers, Rek. Even then, it is only valid for droplet sizes in

Nomenclature

Latin letters
�S Rate of strain [1/s]
r space coordinate vector [m]
vr velocity vector [m/s]
DP pressure drop [Pa]
DP�

DSD dimensionless discrete daughter size distribution func-
tion [–]

DVd daughter size range
DVd range in daughter size [m3]
Dx displacement from channel centerline [m]
b breakage frequency [1/s]
BB birth due to breakage [1/(m3 m s)]
BD death due to breakage [1/(m3 m s)]
c parameter
Ck Kolmogorv constant
cL model parameter
Dd daughter drop diameter [m]
Dm mother drop diameter [m]
Dcrit Hinze critical diameter [m]
E Energy Spectrum [m2 s3]
F hypergeometric function
f L; f g Pope’s model spectrum functions
f n number density function [1/(m3 m)]
K Bessel function
k turbulent kinetic energy [m2/s2]
L integral length scale [m]
NB number of breaking drops
Ntot total number of drops
p0 Pope’s model spectrum constant
PB breakage probability
PDSD daughter size distribution function [1/m]
P�
DSD dimensionless daughter size distribution function

rd model distance [m]
s function
t time [s]
tB breakage time [s]

Tn function, n = 1, 2, 3, 4, 5
Vd daughter drop volume [m3]
Vm mother drop volume [m3]
Rek Taylor scale Reynolds number
U velocity during experiments [m/s]
WeS Weber number formulated with the second order struc-

ture function

Greek letters
b Komogorov constant
bE Pope’s model spectrum constant
� turbulent energy dissipation rate [m2/s3]
g Kolmogorov micro scale [m]
C gamma function
c interfacial tension [N/m]
j Wave number [1/m]
lc continuous phase dynamic viscosity [kg/(m s)]
ld dispersed phase dynamic viscosity [kg/(m s)]
m average number of daughters
mc continuous phase kinematic viscosity [m2/s]
md dispersed phase kinematic viscosity [m2/s]
du2 second order longitudinal velocity structure function

[m2/s2]
qc continuous phase density [kg/m3]
qd dispersed phase density [kg/m3]
rs surface restoring stress [Pa/m2]
rt turbulent stress [Pa/m2]
rs;v stabilizing viscous stress [Pa/m2]
rt;S turbulent shear stress [Pa/m2]

Abbreviations
CB Cascade Breakage Definition
CI Confidence Interval Limits
IB Initial Breakage Definition
PBE Population Balance Equation
SD Standard Deviation
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the intertial subrange of turbulence. Therefore, (10) may not accu-
rately describe du2 in low Rek applications. Solsvik and Jakobsen
(2016a) proposed a semi-empirical formulation for du2 valid for
the entire range of turbulence and any turbulent Rek, based on
the model energy spectra by Pope (2000). The expression was given
as

du2 Dmð Þ ¼ 4
3
k

D2
m

r2d þ D2
m

 !2=3

� 1� T1 Dmð Þ þ T2 T3 Dmð ÞT4 Dmð Þ � T5 Dmð Þð Þ½ �ð Þ ð11Þ
where rd is a crossover length scale, which is related to the transi-
tion between the dissipation subrange and the inertial subrange
of turbulence. The expression for rd is given by

rd ¼ 15bð Þ3=4g ð12Þ
The different Tn expressions are given as

T1 Dmð Þ ¼ 2

s Dmð Þ½ �2
F �1

3

� �1
2

;
3
2

� �					 s Dmð Þ½ �2
4

 !
ð13Þ

T2 ¼ 33=2C
2
3

� �
ð14Þ

T3 Dmð Þ ¼ 27 � 21=3 s Dmð Þ½ �2=3C 2
3

� �
ð15Þ

T4 Dmð Þ ¼ 1
352p

F
7
3

� �11
6

;
17
6

� �					 s Dmð Þ½ �2
4

 !
ð16Þ

T5 Dmð Þ ¼ 22=3

2p s Dmð Þ½ �2=3
K4

3
s Dmð Þð Þ ð17Þ

in which F is the hypergeometric function, K is the Bessel function
and C is the gamma function. Finally, s Dmð Þ is found from

s Dmð Þ ¼ Dm= c�1=2
L L


 �
ð18Þ

From the expression for du2, e.g. Eq. (11), a turbulent inertial
stress or disruptive force is defined as

rt ¼ qcdu2 Dmð Þ ð19Þ
The restoring surface stress of a drop is defined as

rs ¼ c=Dm ð20Þ
The two stresses can be combined to a turbulent Weber number
(Hinze, 1955)

WeS ¼ rt

rs
¼ qcdu2 Dmð ÞDm

c
ð21Þ

It should be noted that the derivation of a turbulent Weber number
is not universal, as both (19) and (20) has been given with different
prefactors. Eq. (19) can be found with a prefactor of 1, e.g. Galinat
et al. (2005), or 1/2, e.g. Andersson and Andersson (2006). Eq. (20)
have been expressed in several variations, with 1 in Hinze (1955),
2 in Karimi and Andersson (2019), 4 in Ashar et al. (2018) and 6
in Martínez-Bazán et al. (1999a,b).

Shinnar (1961) formulated a viscous shear stress as

rt;S ¼ lc
�S ð22Þ

where �S is the local rate of strain due to velocity gradients. The
shear stress is considered as an additional stress to the conventional
turbulent inertial stress (19). For the dissipating subrange of turbu-
lence, Shinnar (1961) expressed �S as the Kolmogorov local rate of

strain, �S ¼ ffiffiffiffiffiffiffiffiffiffi
�=mc

p
. Later, Håkansson et al. (2009) and Karimi and

Andersson (2019) generalized the strain rate as �S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du2 Dmð Þ

q
=Dm.

Then, the expression for the shear stress becomes

rt;S ¼ lc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du2 Dmð Þ

q
Dm

ð23Þ

which is assumed valid when the expression for du2 Dmð Þ, e.g. Eq.
(11), is valid. Both Shinnar (1961) and Karimi and Andersson
(2019) noted that this stress is dominating around the Kolmogorov
microscale and lower, but is otherwise small.

Hinze (1955) argued that the drop viscosity contributes a stabi-
lizing effect, adversely affecting breakage. A stabilizing viscous
stress may be formulated as (Calabrese et al., 1986)

rs;v ¼ ld

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qc=qd

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du2 Dmð Þ

q
Dm

ð24Þ

Hinze (1955) argued that this effect was usually small, but could be
critical in systems with particularly viscous dispersed phase. Later,
Alopaeus et al. (2002) and Vankova et al. (2007) both achieved bet-
ter model fits to experimental data by including the stabilizing
effect of viscosity.

It is noted that alternative breakage phenomena have been
investigated. Recently, Foroushan and Jakobsen (2020) published
a review on the concept of energy accumulation and decay rates.
In this view, droplets may break due to a series of interactions.
Drop surface energy is both accumulated through vortex interac-
tions and decaying through dampening oscillations, either until
enough energy for breakage is achieved or no breakage take place
due to a relatively large decay rate. It is possible that this phe-
nomenon is relevant for the breakup mechanisms.

1.2. Breakage frequency models

1.2.1. Coulaloglou and Tavlarides
A well known model was proposed by Coulaloglou and

Tavlarides (1977). They proposed the idea that the breakage fre-
quency could be determined from breakage time, tB, and breakage
probability, PB,

b �;Dmð Þ ¼ 1
tB �;Dmð Þ PB �;Dmð Þ ð25Þ

The probability of breakage was assumed proportional to the frac-
tion of turbulent eddies, which has energy larger than the drop sur-
face energy, that collide with the drop. The resulting expression
became

PB Dmð Þ ¼ exp � c1c
qd�2=3D

5=3
m

 !
ð26Þ

in which c1 is a parameter, c is the interfacial tension and qd is the
dispersed phase density. Further, Coulaloglou and Tavlarides (1977)
determined the breakage time in the inertial range of turbulence as

tB ¼ c2D
2=3
m ��1=3 ð27Þ

As shown by Solsvik and Jakobsen (2016b), the model of
Coulaloglou and Tavlarides (1977) can be expanded to consider
the full range of turbulence. The expression for breakage time, Eq.
(27), can be written as

tB Dmð Þ ¼ c3
Dmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

du2 Dmð Þ
q ð28Þ

In addition, the expression for breakage probability, Eq. (26), can be
written as
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PB Dmð Þ ¼ exp � c4c
qdDmdu2 Dmð Þ

 !
ð29Þ

Thus, if the expression for du2 is valid for the entire range of turbu-
lence, then the breakage probability is assumed valid for the entire
range of turbulence.

1.2.2. Coulaloglou and Tavlarides with viscous stabilization
Several authors, e.g. Chen et al. (1998) and Vankova et al.

(2007), have added the drop viscosity as a stabilizing effect to
the model of Coulaloglou and Tavlarides (1977). Following the

same procedure and setting rs;v ¼ ld

ffiffiffiffiffiffiffiffiffiffiffiffi
du2 Dmð Þ

p
Dm

, the following
expression is obtained

b Dmð Þ ¼ c5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du2 Dmð Þ

q
Dm

� exp � c6c
qdDmdu2 Dmð Þ �

c7ld

qdDm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du2 Dmð Þ

q
0
B@

1
CA ð30Þ

In this formulation, the original model of Coulaloglou and
Tavlarides (1977) is recovered for c7 ¼ 0, i.e. no viscous stabiliza-
tion. In this model derivation, the surface tension and the drop vis-
cosity are both assumed to be effects adversely affecting breakage.
c6 and c7 must be non-negative parameters for this assumption to
be valid.

1.2.3. Alopaeus et al.
Narsimhan et al. (1979) formulated a breakage frequency model

where the breakages occurred due to oscillations resulting from
relative velocity fluctuations. The eddy-drop collisions were
assumed to form a Poisson process, and droplet breakage takes
place when an eddy of sufficient energy collides with the drop.
Written in terms of diameter their model took the form,
Alopaeus et al. (2002)

b Dmð Þ ¼ c8 erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c9 c

qc�2=3D
5=3
m

s !
ð31Þ

The parameter c8 has dimensions [1/s] and Narsimhan et al. (1979)
expected it to depend on both Dm and �. However, without suffi-
cient experimental data, Narsimhan et al. (1979) assumed c8 to be
independent of the two variables for the model development. Later,
Alopaeus et al. (2002) introduced a dependency of �1=3 to c8. In addi-
tion, they added the stabilizing effect of the drop viscosity (24). The
resulting expression was

b Dmð Þ ¼ c10�1=3 erfc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c11 c
qc�2=3D

5=3
m

þ c12 ldffiffiffiffiffiffiffiffiffiffiffiqcqd
p

�1=3D4=3
m

s !
ð32Þ

Which can generalized with the second order structure function as

b Dmð Þ ¼ c13�1=3 erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c14 c

qcdu2 Dmð ÞDm þ c15 ldffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qcqddu2 Dmð Þ

q
Dm

vuut
0
B@

1
CA ð33Þ

As for the original model, the parameter c13 has dimensions, [m3/2],
and is likely problem dependent. In their study, Alopaeus et al.
(2002) found no dependency of c13 on Dm.

1.3. Daughter size distribution functions

The product of the daughter size distribution and the average
number of daughters must be number and volume conserving,
Solsvik et al. (2013). In the model frameworks available in the lit-

erature, the common procedure is to assume the average number
of daughters to be known a priori. Then, the daughter size distribu-
tion is designed.

For their model, Coulaloglou and Tavlarides (1977) assumed
binary breakage. Then, the daughter size distribution was assumed
to fit a normal distribution. In terms of volume, the expression for
the daughter size distribution becomes (Coulaloglou and
Tavlarides, 1977)

PDSD Vm;Vdð Þ ¼ 2:4
Vm

exp �4:5 2Vd � Vmð Þ2
V2

m

 !
ð34Þ

This procedure is commonly used; the model derivation
assumes binary breakage and a universal shape of the daughter
size distribution. Critically, it is assumed that the general shape
of the daughter size distribution is neither dependent on the sys-
tem properties nor the turbulent characteristics. That is, while
the daughter size distribution may dependent on system proper-
ties or the turbulent characteristics, the shape may usually still
be classified as a general shape such as the normal distribution
given above. Other examples in the literature are the b distribution,
e.g. Hsia and Tavlarides (1983), uniform, e.g. Narsimhan et al.
(1979), U-shaped, e.g. Luo and Svendsen (1996) or M-shaped, e.g.
Lehr et al. (2002).

Very few models allow for other outcomes than a binary break-
age. One alternative is the model of Diemer and Olson (2002),
where the average number of daughters can be any number,
including non-integers. The model predicts equal size breakage
as the most likely outcome of the breakage event. The drawback
of this model system is that the daughter size distribution must
be adjusted with shape factors to fulfill the number and volume
conservation requirements. A few similar models have been pro-
posed by Han et al. (2011, 2013, 2015) and Solsvik et al. (2016a).
In these closures the daughter numbers are fixed at 2, 3 or 4. For
each daughter number, the daughter size distribution is predeter-
mined and not dependent on system properties or flow character-
istics. Equal size breakage is the most likely outcome of the
breakage event.

1.4. Previous experimental investigations

In the literature there are many dense dispersion experiments
reported, considering many drops of the dispersed phase simulta-
neously. These studies rely on observing a dense dispersed phase at
different time instances, sometimes also different space coordi-
nates. From the resulting data it is possible to validate the results
of a PBE simulation spanning the same time and space. However,
the kernel functions can not be validated individually. For valida-
tion of the individual kernel functions, single droplet experiments
are required. In such experiments, the entire breakage event of sin-
gle droplets are observed by high speed imaging.

The number of single droplet studies available in the literature
are few. In addition, the results are challenging to compare due to
the use of different dispersed phases, continuous phase, experi-
mental setup, determination of turbulence, etc. Moreover, in most
of these studies only one or very few kernel functions are investi-
gated simultaneously. That is, no study covers all the required ker-
nel functions from the same breakage events simultaneously, with
the exception of the study of Herø et al. (2020). Obtaining all the
information needed to model the terms in the PBE simultaneously
is an advantage, as model validation relying on experimental data
from different experimental setups, procedures and breakage
events does not ensure consistency.

A fundamental difference between these studies is the defini-
tions employed when interpreting the data from an observed
breakage event. As first outlined by Solsvik et al. (2016b), the def-
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initions employed can be classified into either the initial breakage
event definition or the cascade breakage event definition. The two
definitions differ in what physical configuration is defined as the
end of a breakage event. In the initial breakage event definition,
the breakage event is considered ended when the breaking mother
drop first separates. On the other hand, in the cascade breakage
event definition the breakage event is considered ended when only
stable daughter drops are formed. A more detailed explanation is
given in Section 2.2. The choice of breakage definition greatly
impacts the resulting breakage time, average number of daughters
and daughter size distribution, as shown by Herø et al. (2020).

In the literature, only five studies investigate single drop break-
age for different turbulence level under otherwise equal experi-
mental conditions (Andersson and Andersson, 2006; Maaß and
Kraume, 2012; Galinat et al., 2005; Galinat et al., 2007; Ashar
et al., 2018). Thus, little experimental data is available to investigate
the impact of the turbulence level on the breakage phenomena.

In the study by Andersson and Andersson (2006), breakup was
observed in a static mixer. Investigating mother drops of 1 mm in
diameter, the breakage time was determined for dodecane drops as
10.9 and 5.6 ms for � at 1.13 and 3.69 m2/s3, respectively. When
investigating octanol drops, the breakage time was determined to
be 7.6 and 4.2 ms for � at 3.69 and 8.54 m2/s3, respectively. The
continuous phase in this study was tap water. In their work, no
breakage definition is explicitly given.

Maaß and Kraume (2012) observed breakup in a channel flow
around an impeller blade, mimicking a stirred tank reactor. The ini-
tial breakage event definition was employed in the study. To inves-
tigate the impact of �, mother drops of 1 mm in diameter were
observed at � values of 2.3, 6.0 and 12.5 m2/s3. For toluene drops
this resulted in a breakage time of 6.0, 4.7 and 3.7 ms, while for
petroleum drops the breakage times were 4.4, 3.4 and 2.8 ms.
Based on this, Maaß and Kraume (2012) showed that the breakage
time for a given mother drop size agrees well with the model by
Coulaloglou and Tavlarides (1977), Eq. (27). In their study, Maaß
and Kraume (2012) also studied the impact of mother drop size
on breakage time and breakage probability. The mother drops were
toluene with diameters of 0.62, 1.0, 2.0 and 3.0 mm, as well as pet-
roleum drops of 0.54, 0.7, 1.0, 1.3, 1.9 and 3.1 mm. The continuous
phase in the study was water. In the same system, Maaß et al.
(2011) investigated the impact of the mother drop diameter on
the daughter number distribution. They also showed two daughter
size distributions for binary breakages. Also in this study, the initial
breakage event definition was employed.

The remaining three studies investigating varying turbulence
levels, the results are only reported by the Weber number value
(Galinat et al., 2005; Galinat et al., 2007; Ashar et al., 2018). As
the studies have varying properties such as e.g. Dm; � and c, the
experimental results dependence on � can not be discerned from
the other variables. This further complicates comparison of data
obtained in the different studies.

Galinat et al. (2005) investigated single droplet breakage when
transporting oil droplets through an orifice. In their setup, twelve
flow conditions were obtained by varying either orifice opening
or continuous phase velocity. Each flow condition was related to
the theoretical pressure drop over the orifice. From this pressure
drop, the � can be found to be between 1 and 20 m2/s3. The oil
drops were heptane with diameters between 1.5 and 3 mm, with
and without red sudan for coloring. The continuous phase was
tap water. Galinat et al. (2005) investigated the breakage probabil-
ity, average number of daughters and daughter size distribution.
Galinat et al. (2007) performed additional experiments in the same
setup with water-glycerin as the continuous phase. Neither of the
studies by Galinat et al. (2005, 2007) defined the breakage defini-
tion employed.

Ashar et al. (2018) investigated single droplet breakage in a stir-
red tank, where the breakage probability and the average number
of daughters were reported as functions of the Weber number
value. The dispersed phase were rapeseed oil and the continuous
phase was deionized water. The mother drops had a diameter
between 0.07 and 0.55 mm, and the experiments were run at � val-
ues of 535 and 2480 m2/s3. The breakage event definition is not
explicitly defined, but the daughter number appears to be calcu-
lated according to the cascade breakage event definition.

Other single drop studies in the literature vary other parame-
ters than �. Several of these studies are from the same setup as
used by Maaß and Kraume (2012). Maaß et al. (2007) and
Zaccone et al. (2007) investigated the daughter size distribution
for different daughter numbers and reported the daughter number
distribution for mother drop diameters of 0.56, 1 and 2 mm. The
continuous phase was water, with and without sudan-black for
coloring. The oil drops were petroleum. Nachtigall et al. (2016)
investigated the deformation process and breakage time when
combining different dispersed and continuous phases. In this
way, they could investigate the impact of interfacial tension. The
oils investigated were petroleum and paraffin oil, while the contin-
uous phase was water with or without sodium dodecyl sulfate. The
mother drops were 1 mm in diameter.

Solsvik and Jakobsen (2015) investigated the breakage time as a
function of the mother drop size. Single toluene, petroleum, n-
dodecane and 1-octanol drops were injected into a stirred tank
filled with distilled water. The diameter of the mother drops were
between 0.6 and 4 mm. Using a volume average value for the tank,
� was determined as 1.14 m2/s3. The cascade breakage definition
was employed in this study.

In the study by Herø et al. (2020), all kernel functions were
investigated as functions of mother drop size. The setup consist of
a rectangular channel, with baffles for increased turbulence level.
The dispersed phase was octanol drops with diameters between
1.0 and 2.23 mm and the continuous phase was distilled water.
As �was associated with individual breakages, the different � levels
were determined to be between 0.15 and 0.09 m2/s3, although all
experiments were performed at an area averaged velocity of
1 m/s. Both the initial and the cascade breakage event definitions
was employed, resulting in two separate sets of experimental data.

Although the experimentally determined kernel functions are
difficult to directly compare between the studies, there are some
general results. An increase in the mother drop size leads to an
increase in the breakage time, the breakage probability and the
average number of daughters, as well as a change in the daughter
size distribution. On the other hand, an increase in � decreases the
breakage time. Finally, an increase in the Weber number value
leads to an increase in the breakage probability and the average
number of daughters, with a corresponding change in the daughter
size distribution.

In this study single octanol drops are observed in a channel
flow. Three different turbulence levels are investigated by chang-
ing the continuous phase mean flow. Analyzing the experimental
data, the impact of � on the breakage phenomena is investigated.

2. Experimental setup and procedure

2.1. Experimental facility

An experimental facility has been constructed to investigate
breakage of oil droplets in water. A schematic drawing of the facil-
ity can be seen in Fig. 1. The facility has previously been described
by La Forgia et al. (2018) and Herø et al. (2019, 2020).
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To perform an experiment, a single oil drop (1-octanol, Sigma-
Aldrich, product number 472328) is generated by a glass cannula
connected to a syringe pump (KDS Legato 180). Next, the oil drop
is transported by the continuous phase (reverse osmosis tap water)
into the breakage section. Here, breakage events may be observed
by two cameras (Photron FASTCAM Mini AX100 540 K M3) as two
of the walls in the breakage channel is constructed in glass. The
two remaining sides have periodic rods for increased turbulence
generation. The channel is 1 m long with a cross-section of
30 mm by 30 mm and the rods are 3 mm by 3 mm spaced evenly
every 10 mm. After the breakage channel, the oil and water is
transported to a large tank that also serves as a gravity separator.
The continuous phase flow is produced by a positive displacement
pump (MDL-0670, SPX Flow Technology).

Each camera has a maximum resolution of 1024 x 1024, which
is fully utilized only in the streamwise direction. The entire chan-
nel length is not observed. The cameras observe a region of the
breakage channel which is 40 mm to 400 mm above the channel
entry for a total length of 360 mm. The resolution gives the pixel
size as 0.175 mm by 0.175 mm. The cameras are synchronized in
time and record at 4000 frames per second. The observed region
is backlit by three LED lamps (Multiled LT-V9-15 by GS Vitec). To
obtain sufficient contrast of the oil drops in the images, the oil is
dyed with Sudan Black B (RAL Diagnostics). The resulting proper-
ties are given in Table 1.

After the high-speed videos have been obtained, the videos
must be processed to extract the data needed to validate the kernel
functions. The full details of this procedure can be found in Herø
et al. (2019, 2020) and a summary is given here. Through auto-
matic image processing, the images of the video are individually
treated to determine which pixels are part of a drop. Subsequently,
the projected two-dimensional areas size, shape and position of
the visible drops in each image are determined. Finally, the infor-
mation from the individual images are combined to obtain contin-
uous information of the drops. The procedure is executed in
MATLAB, with several manual steps. Including manually observing
the video to verify the MATLAB code, as well as determining the
breakage event start and end instances according to the breakage
event definitions given in the following section.

The turbulent characteristics were determined using laser dop-
pler velocimetry, LDV, the procedure of which have previously

been reported by La Forgia et al. (2018). In short, the channel
was mapped every 50 mm in the streamwise direction. For the
transverse direction, symmetry meant only half the channel
needed to be characterized. Hence, the velocity was measured
every 0.5 mm from the center of the channel to 0.5 mm from the
baffle. As an LDV provides instantaneous velocities, k and � must
be calculated as time averaged values. Thus, the impact of the
dynamics and intermittency of turbulence can not be investigated
directly from this data. An error estimation of the turbulent quan-
tities can be found in La Forgia et al. (2018).

2.2. Breakage event definitions

The breakage events are interpreted by use of both the initial
breakage event definition and the cascade breakage event defini-
tion. The definitions differ in the interpretation of the breakage
event end time instance:

� Breakage event end for the initial breakage definition is when
the mother drop fragments.

� Breakage event end for the cascade breakage definition is when
the final intermediary daughter fragments.

Neither of the definitions of the breakage event end instances
corresponds to an equilibrium state of the channel. The breakage
event start is when a spherical mother drop starts to deform, and
this deformation process is directly related to a fragmentation of
the drop. The latter distinction is important as some mother drops
undergoes small and dampening oscillations before a much larger
deformations leads directly to breakage. These occasional oscilla-
tions are not considered to be part of the breakage, which may
be an inaccurate according to the concept of energy accumulation
and decay rates (Foroushan and Jakobsen (2020)). In the current
interpretation and procedure, the breakage event start instance is

6 7 8

1

2 3

4
5

Fig. 1. Schematic drawing of the experimental setup. 1. Water tank and phase separator, 2. water pump, 3. flow meter, 4. droplet generation section, 5. oil syringe pump, 6.
two cameras, 7. breakage section, 8. illumination.

Table 1
Properties of 1-octanol dyed with Sudan Black.

Density, q Dynamic Viscosity, l Interfacial Tension, c

825 kg/m3
9.09 �10�3 kg/(m s) 8.20 mN/m.
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assumed to occur at the instance of a single droplet-turbulent vor-
tex interaction. This procedure was elucidated in Herø et al. (2020,
Section 4.9, P. 21). At the breakage event end instance the number
of daughters and their size distribution can be determined. The
breakage time is determined as the time period between the start
and end instances. � and k is determined from the position at the
breakage start. This position is associated with the time averaged
continuous phase characteristics, which have been determined as
described in Section 2.1.

The two breakage event definitions may result in different
breakage time, average number of daughters and daughter size dis-
tribution as these are dependent on the breakage event end
instance. On the other hand, the breakage probability coincides
for the two definitions, as the determination of breakage probabil-
ity is not dependent on the breakage event end instance.

Fig. 2 shows an image sequence of a breakage event. First, an
initially spherical drop is deformed and breaks into two near equal
daughters. At this instance, the breakage is ended according to the
initial breakage event definition. One of the daughters continue
with a deformation process and an additional smaller drop is pro-
duced. At this instance the event is considered ended in the cas-
cade breakage event definition, as no more breakages occur.

2.3. Determination of data points

Several measurements under the same experimental conditions
are required to investigate the kernel functions. The breakage
probability is by definition a ratio with information from several
experiments, which is also the case for the average number of
daughters. The daughter size distribution is determined from the
same events as the average number of daughters. Theoretically,
the breakage time could be determined from a single breakage
event. However, the effect of the instantaneous turbulence cannot
be accounted for in the current procedure, as time averaged turbu-
lence properties are employed. For this reason, several measure-
ments are required to investigate the breakage time as well. It is
noted that the instantaneous turbulence level probably has an
effect on all the kernel functions. In the current study, experiments
are grouped by their Dm value and the continuous phase area aver-
age velocity in the breakage channel during the experiments. These
groups or size intervals are hereafter referred to as data points.

The data points investigated in this study, with values deter-
mined as described in Sections 2.1 and 2.2, can be seen in Table 2.
In this work, every kernel function is determined through both the
initial breakage definition and cascade breakage definition, for
each data point. In Table 2, the data points have been given refer-
ence numbers for convenience. The data points collected at a cross
sectional area averaged velocity of 1.0 m/s have previously been
reported by Herø et al. (2020). The data points at 1.5 m/s and
2.0 m/s are not previously reported. As can be seen from the table,
the data points have a varying number of assessed drops. This vari-
ation is found both in the drops undergoing breakage and the drops

not breaking, NB and Ntot - NB, respectively. The variation in the
number of assessed drops undergoing breakage is the result of a
demand to obtain a reasonable statistical precision, rather than
obtaining a predetermined number. It follows that the total
amount of assessed drops in each data point varies as the probabil-
ity of breakage varies for the data points.

While it is possible to quickly obtain videos where each video
contains an observation of a single drop, the interpretation of the
videos is time consuming and labor intensive. In particular, videos
containing a breakage event require substantial manual input.
Thus, the choice of the considered number of drops undergoing
breakage is an important step in determining the individual data
points. The data points obtained at 1.0 m/s were investigated to
determine the number of experiments required for a reasonable
statistical precision, in addition to investigate the general breakage
phenomena. This number of experiments were found in the previ-
ous study by Herø et al. (2020) to be less than 35 drops undergoing
breakage.

The procedure for determining the required number of assessed
drops undergoing breakage for the data points at velocities 1.5 m/s
and 2.0 m/s was based on the statistical analysis in Herø et al.
(2020, P.19). In that study, it was shown that for this experimental
system the largest confidence interval limits are found for the
breakage times. This is especially due to large standard deviations
in these values. When the number of assessed drops undergoing
breakage approached 30, the standard deviation was stable and a
significant increase in the precision in the confidence interval lim-
its is time consuming. Hence, the procedure for the data points at
velocities 1.5 m/s and 2.0 m/s required the confidence interval lim-
its for the breakage time, according to the initial breakage event
definition, to be K15%. This condition was checked when the
number of assessed drops undergoing breakage investigated was
more than 20. The resulting number of assessed drops required
for the velocities 1.5 m/s and 2.0 m/s were lower than the data
points obtained at 1.0 m/s.

As can be seen in Table 2, each data point is associated with
unique Dm and � values. Both Dm and � are independent variables
in the kernel functions. The experimentally determined kernel
function values for the data points are compared in the results
and discussion section. For this purpose the experimental data in
Table 2 have been divided into three groups numbered A to C.
Group A consists of the data points 1, 6 and 8, as these points have
Dm values in the narrow range �1 to �1.1 mm. Similarly, group B
consists of the two data points 5 and 7, which have intermediate
Dm values in the narrow range of 0.86 and 0.87 mm. Group C con-
sists of the data points 1, 2, 3 and 4, which have relatively low �
values in a narrow range of 0:09� 0:15 m2=s3.

Another way of comparing data is to account for simultaneous
changes in both Dm and � by observing changes in the kernel func-
tion values with respect to variations in the Weber number value.
In this study, the Weber number value is computed according to
(21), where du2 is determined using the full turbulent spectrum

Fig. 2. Images from a breakage sequence of a 0.99 mm in diameter drop. The breakup results in two near equal sized daughters and one small daughter.
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(11). c is found in Table 1 and the continuous phase density is set
as 1000 kg/m3.

It is noted that the standard deviation and confidence interval
limits of Table 2 are not measurements of the uncertainty in the
conventional sense. In the procedure of this study, the Dm; � and
k are determined for each breakage event individually. In particu-
lar, each assessed drop is assigned individual turbulent character-
istics values based on its trajectory in the experimental region.
Hence, there may be some variation between the individually
assessed drops, and between the average of breaking and the aver-
age of non-breaking drops. When the individual values are grouped
into data points, the standard deviation and confidence interval
limits are measurements of how similar the grouped variables are.

2.4. Interpretation of kernel functions

The kernel functions are determined according to the procedure
given by Herø et al. (2019, 2020). In short, the breakage time and
the average number of daughters is taken as the respective aver-
ages of the set of values determined from the individual experi-
ments. Breakage probability is taken as the ratio of videos with
breakage to the total number of videos. Hence, videos without
breakage are required to determine the breakage probability. To
associate a turbulence level with the experiments without break-
age, the maximum � level along the recorded drop path is taken.
The breakage frequency is determined from the breakage probabil-
ity and breakage time according to (25). The daughter size distribu-
tion is determined from:

DP�
DSD Vm;Vdð Þ ¼ Number of particles in range Vd � DVd=2; Vd þ DVd=2½ �

Total number of particles in range 0; Vm½ �
ð35Þ

in which DVd is a range in the daughter sizes. DP�
DSD is a discrete and

dimensionless daughter size distribution, which has one value for
each range of daughter sizes considered. Each determined value of
DP�

DSD corresponds to the integral of the kernel function PDSD over
the daughter size range, Vd � DVd=2; Vd þ DVd=2½ � as seen above.

While the models are formulated in a Eulerian framework, the
experimental data is essentially determined in an Langrangian
framework, taken from a larger volume. This is a practically neces-
sary simplification, the impact of which was discussed in Herø
et al. (2020, P.19). It is noted that the breakage frequency is deter-
mined from the breakage time and the breakage probability. The
breakage time is determined from local values associated with
each breakage event while the breakage probability is determined
as an average value of the whole test section. The limiting accuracy
of the breakage probability function might require improvements,
thus other approaches for determining this kernel function have

been suggested in the literature (Vejražka et al. (2018),
Håkansson (2020)).

3. Results and discussion

3.1. Turbulent forces

In this section, the three formulations of the turbulent stress, as
described in Section 1.1, are investigated. The turbulent inertial
stress (19) is computed using both formulations of the second
order structure function, du2. That is, the inertial subrange formu-
lation (10) and the formulation valid for the entire range of turbu-
lence (11). In addition, the formulation valid in the entire range of
turbulence is used to compute a turbulent shear stress according to
(23). The stresses are computed for each data point using the val-
ues in Table 2. The results are shown in Fig. 3, plotted against the
determined � of the data point. Note that the lines connecting the
data points are introduced for ease of comparison. As the turbulent
characteristics and Dm varies for each point, a first approach is to
identify trends in the data.

From Fig. 3 it is clear that the shear stress (23), marked with
stars, is very small compared to the inertial stresses (19). The value
of the shear stress (23) is about 1% of the value of the inertial stress
valid for the entire range of turbulence (19) and (11), marked with
triangles, for each data point. As can be seen in the following sec-
tions, the 95% confidence interval limits of the kernel functions are
significantly larger than 1%. Thus, the impact of the shear stress on
the breakage phenomena is considered negligible in this study.

It can also be seen from Fig. 3 that the two formulations of du2

results in different stresses. When considering the entire range of
turbulence (11) the stresses are lower than when considering only
the inertial subrange of turbulence (10). This indicates that the
droplet sizes are not in the inertial subrange and the expression
of du2 is important for accurate determination of the turbulent
stress.

This indication can be confirmed by computing the energy spec-
trum (4) and comparing with the droplet size. The resulting energy
spectrum, and the drop position with respect to the inertial range,
are similar for all data points. Data point 6 is chosen for visualiza-
tion, and the energy spectrum for this point is shown in Fig. 4. As
can be seen from the figure, the energy spectrum has a small iner-
tial range (blue shaded area) and the droplet falls some value
below this range, near the largest scales of the dissipation
subrange.

In addition, Fig. 4 illustrates why the shear forces computed
from (23) are very small. These forces are dominant from g and
smaller scales, but the mother drop size is significantly larger
than g.

Table 2
The experimentally determined data points. # denotes an reference number for the given data point. U is the cross sectional area averaged velocity during the experiments, Dm is
the mother drop diameter, NB is the number of assessed drops undergoing breakage, Ntot is the total number of assessed drops, � is the turbulent kinetic energy dissipation rate, k
is the turbulent kinetic energy and WeS is the Weber number value according to (21) and (11). SD denotes the standard deviation and CI denotes the 95% confidence interval
limits.

# U [m/s] Dm 	 SD [mm] NB / Ntot � 	 CI [m2=s3] k 	 CI [m2=s2] WeS

1 1.0 1.0 	 0.2 35/ 284 0.15 	 0.03 0.022 	 0.004 0.530
2 1.48 	 0.08 115/ 379 0.13 	 0.02 0.02 	 0.002 1.02
3 1.87 	 0.05 53/ 148 0.1 	 0.02 0.016 	 0.002 1.29
4 2.23 	 0.06 83/ 154 0.09 	 0.02 0.014 	 0.002 1.61
5 1.5 0.87 	 0.04 25/ 26 0.41 	 0.09 0.038 	 0.006 0.858
6 1.13 	 0.01 30/ 64 0.38 	 0.07 0.038 	 0.005 1.35
7 2.0 0.86 	 0.03 30/ 34 0.9 	 0.3 0.07 	 0.01 1.52
8 1.02 	 0.02 30/ 51 0.6 	 0.2 0.06 	 0.01 1.57
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Fig. 3. Computed turbulent stresses, rt , for the different data points plotted against the determined � of the data point. The numbers represent the reference number found in
Table 2. The vertical lines separates the data points obtained under different area averaged velocities, denoted U in Table 2.
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Fig. 4. Energy spectrum for data point 6 in Table 2, computed using (4). Dm denotes the wavenumber of the mother drop, while g denotes the wavenumber of the Kolmogorov
micro scale. The blue shaded area is the inertial range, which according to Pope (2000), denotes the range from L=6 to 60g.
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A final note on the turbulent forces; it was shown in Herø et al.
(2020) that the model framework by Martínez-Bazán et al. (1999a,
b, 2010) does not predict breakage for this low levels of turbulence.

3.2. Average number of daughters

When considering the initial breakage event definition, the
average number of daughters, m, is always determined to be two.
Thus, the average number of daughters is not a function of the sys-
tem properties or turbulent characteristics. This result is in line
with the work of Herø et al. (2020), Maaß et al. (2011) and
Solsvik et al. (2016b). The two latter studies suggested that for
the initial breakage definition the average number of daughters
will tend to two for high video frame rates. This result is also in line
with the assumption that two drops are produced upon breakage.
This assumption is commonly adopted when developing the break-
age source term closure.

On the other hand, the average number of daughters according
to the cascade breakage definition varies for the different data
points. The average number of daughters formed after breakage
is never two for any data point. However, binary breakage is
observed in 10 out of 35 breakages (i.e. 10/35), 28/115, 16/53,
23/83, 5/25, 13/30, 8/30 and 5/30 for the data points 1 through
8, respectively. The determined average number of daughters can
be seen plotted by the Weber number value in Fig. 5. The Weber
number is used because the average number of daughters show a
dependency on both Dm and �. The combined effect appears to be
well described by theWeber number value, as seen from the figure.
It can also be seen that there is a very large standard deviation for
each data point. This is due to the large number of possible

outcomes of individual breakage events, as investigated in Herø
et al. (2020). Similarly large standard deviations have previously
been reported by Galinat et al. (2005).

In the study by Galinat et al. (2005), the average number of
daughters ranged between �3–8 for Weber number values ranging
between �17–65. Another study reporting the average number of
daughters for different mean flow conditions is Ashar et al.
(2018). For Weber number values in the range 0–8, the average
number of daughters were 3, while for Weber number values lar-
ger than 32, the average number of daughters were 7. Note that
the Weber number values in Ashar et al. (2018) have been multi-
plied by 4 when reported in this study. This is to account for the
prefactor of 4 used by Ashar et al. (2018) in the surface stress
(20) that results in a Weber number formulation which is 1/4 of
the formulation in this study (21).

The data from these three studies imply that a similar range of
average number of daughters are obtained in the breakage events,
from �3 to �8, but for very different Weber number values. These
Weber number value differences probably occur because the
Weber number only contains some of the variables and physical
properties having an impact on the average number of daughters.
In particular, the Weber number definition does not include the
dispersed phase viscosity, ld. As discussed in the introduction,
the dispersed phase viscosity may be stabilizing deforming dro-
plets. The difference in the dispersed phase viscosity for the three
experimental studies mentioned above are significant, with the
dispersed phase viscosities given as 4.5 � 104 kg/(m s), 9.09 � 103
kg/(m s) and 70 � 103 kg/(m s) for Galinat et al. (2005), the current
study and Ashar et al. (2018), respectively. However, as will later
be shown in Section 3.6, the dispersed phase viscosity does not
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affect the breakage frequency. While this is not conclusive on the
viscosity’s impact on the average number of daughters, alternative
explanations may need to be considered.

An alternative reason for the differences in the Weber number
values is the differences in the experimental setup and approxima-
tion of the disruptive force (19) in these studies:

� Based on the theoretical pressure drop in orifice flow (Galinat
et al. (2005))

� Based on the rotor speed and PIV-measurements in a static
mixer (Ashar et al. (2018))

� Based on LDV-measurements in a channel flow (this study)

Based on the results shown in Fig. 5, there appears to be a cor-
relation between the average number of daughters and the Weber
number value of the data point. Galinat et al. (2005) suggested that
the correlation is on the form

m WeSð Þ ¼ aWeS þ 1ð Þ3 ð36Þ
where a was suggested to be 0.016, based on their results. In this
study, a has been fitted in MATLAB using the fit function, yielding
a value of 0.50. The resulting model prediction is plotted in Fig. 5
as a solid line.

As can be seen from the figure, the fit is reasonable, but less
accurate for the lowest Weber number values. It should be noted
that the model fit of (36) was less accurate for the small Weber
number values also in the original study of Galinat et al. (2005).
In this study, a linear function has been fitted to the results

m WeSð Þ ¼ aWeS þ b ð37Þ
Here a was determined to be 1.64 and b to be 2.59. The resulting
model prediction is shown as a dashed and dotted line in Fig. 5. This
relation appears to provide a reasonable fit, although a rigorous
mechanistic model development would probably be more
universal.

3.3. Daughter size distribution function

3.3.1. Initial breakage event definition
The daughter size distributions according to the initial breakage

event definition, for the four novel data points of this study, are
shown in Fig. 6. The bell shaped model prediction of (34) by
Coulaloglou and Tavlarides (1977) is included in Fig. 6 for compar-
ison purposes. While other models may fit an individual distribu-
tion more accurately, no single model framework can describe all
the distributions.

The only W-distribution, when considering both the data given
by Herø et al. (2020) and Fig. 6, can be seen in Fig. 6a. Here, the
most frequent daughter volume fraction is equal sized. In addition
it is common to observe one large and one smaller drop, when the
volume fraction of the larger drop is at least 0.77. Other volume
fractions are rarely produced upon breakage.

The daughter size distribution in Fig. 6b has an irregular shape
where equal sized breakage is seldom observed. The lack of equal
sized breakage is a significant difference from the other data
points. The most common outcome is one drop of a size corre-
sponding to the largest bin size and one complimentary small drop,
while the remaining daughter size bins show a nearly uniform
distribution.

Contrary to the two data points considered above, the daughter
size distributions shown in the Figs. 6c and 6d have similar shapes.
These daughter size distributions both exhibit a large frequency of
one large and one small drop. Otherwise, the distributions are uni-
form with a small increase in the frequency of equal sized
daughters.

The data points 1, 2 and 3 of Table 2 were all shown to have
near uniform distributions in Herø et al. (2020). Data point number
4 was also more uniform than the distributions shown in Fig. 6.

From these results, it can be seen that the shape of the daughter
size distribution function may change locally. This change may be
due to variations in �;Dm, Weber number value, system properties,
etc. However, no pattern or correlation between the changing
shape and these parameters have been identified.

A possible explanation for the lack of clear patterns in the
daughter size distributions could be found in the experimental
setup and procedure. The average number of daughters in the cas-
cade breakage event definition is �4–5 for all data points, as dis-
cussed in Section 3.2. Thus, the initial daughters are often having
irregular shapes, as these daughters undergo further deformation
and breakup. When recording the projected 2D area of these
shapes, an inaccuracy is introduced. The effect of this inaccuracy
on the daughter size distribution is unknown. Conversely, it may
be argued that the initial breakage definition is not able to describe
the physical phenomena, as the initial breakage daughter drops are
not stable drops produced upon breakage. Rather, the daughter
drops are unstable intermediary daughters in a sequence, or cas-
cade, of breakages. The view that the initial breakage definition
could not correspond to the observed breakage phenomena was
first reported by Solsvik et al. (2016b).

Maaß et al. (2007, 2011) has previously reported the daughter
size distributions of binary breakages according to the initial
breakage. In Maaß et al. (2007), one distribution is given by diam-
eter, which complicates the discussion of shape. However, there
appears to be a preference for droplet sizes of non-dimensional
diameter of 0.8 or higher, which corresponds to volume fractions
of 0.5 or higher. In Maaß et al. (2011) two daughter size distribu-
tions are given, each with a 1000 samples and 50 bins, for Dm val-
ues of 0.64 mm and 1.0 mm. Even at this accuracy, the
distributions were not equal. Moreover, neighboring bins showed
significant variations in height, as seen in the current study.
Finally, the distribution of the largest Dm was best described by a
U-distribution and the smallest Dm was best described by a uni-
form distribution.

3.3.2. Cascade breakage event definition
The daughter size distributions according to the cascade break-

age event definition determined in this study are shown in Fig. 7.
As can be seen from the figure, there are similar shapes for all of
the data points. For the smallest daughters there is a large proba-
bility. Then, the probability lowers for increasing volume fraction
of the daughter drop. The curve flattens and approaches an asymp-
totic value, such that the larger daughter droplet sizes have a near
uniform distribution. The distributions vary in the probability of
the smallest drops, the rate at which the distribution approaches
the uniform distribution and the probability of the near uniform
distribution of the largest daughter drop sizes. These results are
very similar to the results for data points 1, 2, 3 and 4, given by
Herø et al. (2020).

The distribution must be closely linked to or depend on the
average number of daughters, such that the system is number
and volume conserving. Given that the average number of daugh-
ters vary for each data point, as discussed in Section 3.2, the daugh-
ter size distributions should vary for the different data points. This
can be seen in Fig. 7. Consider first Figs. 7a and 7b, where m is 4.2
and 4, respectively. Here, the probability that a given daughter
drop corresponds to the smallest bin is less than 0.5. In Fig. 7c,
where m is 4.5, the probability increases to above 0.5. Then, the
probability that a given daughter drop corresponds to the smallest
bin is further increased for m equal to 5, as seen in Fig. 7d, where
the probability is approaching 0.6. In addition, it can be seen that
for all the distributions, the probability of a daughter drop size

E.H. Herø, N. La Forgia, J. Solsvik et al. Chemical Engineering Science: X 12 (2021) 100111

11



Fig. 6. Daughter size distributions, calculated according to (35) and utilizing the initial breakage definition. The model predictions are computed from (34) by Coulaloglou
and Tavlarides (1977).
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corresponding to the second smallest bin stays approximately the
same for all m. As the bins sum to 1, it follows that the rest of the
bins decrease with increasing m.

The impact of m on the daughter size distribution can be com-
pared over a wider range of m by comparing the daughter size dis-
tributions of the data points numbered 1, 4, 6 and 8 in Table 2. This

Fig. 6 (continued)
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is shown in Fig. 8. Note that data points 1 and 4 are not given in
Fig. 7, they were given in Herø et al. (2020). To obtain the plots
shown in Fig. 8, the bins of the histograms are converted to points.

For each bin, the height is taken as the y-coordinate of the corre-
sponding point. The x-coordinate is found from the horizontal mid-
point of the bin. The resulting points are plotted with straight lines

Fig. 7. Daughter size distributions, calculated according to (35) and utilizing the cascade breakage definition.
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Fig. 7 (continued)
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between the points for ease of comparison. The procedure is
repeated for each of the four data points investigated.

From Fig. 8 it is clear that an increase in m leads to an increase in
the probability of the smallest daughter drop size bin. That is,
when a larger number of daughters are produced upon breakage,
the additional daughters are mainly of the smallest drop size. This
trend is in agreement with the experimental observations, where it
is commonly observed that small daughter drops are formed from
the thread between two larger daughter drops. For the remaining
larger bins, the probability approach a uniform distribution. Possi-
bly, there is a lower probability of obtaining the largest bin. How-
ever, Fig. 8 is not conclusive on this point.

To the authors knowledge, none of the existing models for the
daughter size distribution predicts the general shape found in this
study. Which is an obvious result for the models considering bin-
ary breakage, but also true for the few model concepts allowing
for non-binary breakage. Moreover, the existing models do not
account for differences in the shape due to different flow condi-
tions. This may be explained partly by the lack of experimental
data on the daughter size distribution. Apart from the study by
Herø et al. (2020), the daughter size distribution function is seldom
reported for single drop experiments in which the cascade break-
age event definition has been employed. The one known example
is the study by Galinat et al. (2005). In their study, the results
are grouped in large groups byWeber number values, which makes
comparison difficult. Additionally, their Weber number values are
much larger than those reported in this study.

3.3.3. Average daughter size
For completion, the average daughter size is computed and

shown in Table 3. As there are two breakage event definitions there
are also two average daughter sizes, one for each definition. From
the Table 3 it can be seen that the daughter sizes exhibit large stan-

dard deviations. These standard deviations are expected, as a large
variety of different daughter sizes are observed, as seen in the pre-
vious sections.

For the average daughter sizes them self, the results are as
expected. The initial breakage event definition always results in
binary breakage. Hence, the average daughter size is about half
the mother drop size. For the cascade breakage event definition,
the range of average daughter sizes is narrow, 0.2–0.4 mm for all
data points. This is also expected as all data points exhibit a large
number of very small drops, as seen in Fig. 7.

3.4. Breakage time

3.4.1. Initial breakage event definition
The initial breakage time, the breakage time determined

according to the initial breakage definition, is shown in Fig. 9.
The breakage time is plotted against the � values of the data points.
Herø et al. (2020) found that the Dm value has a significant impact

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Daughter Volume Fraction [-]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
P

ro
ba

bi
lit

y 
[-]

# 4,  = 6.2
# 8,  = 5.0
# 6,  = 4.0
# 1,  = 3.4

Fig. 8. Daughter size distributions of the data points numbered 1, 4, 6 and 8 in Table 2. The average number of daughters of the data point are shown in the legend.

Table 3
The average daughter size occurring after a breakage. IB denotes the Initial Breakage
Event Definition and CB denotes the Cascade Breakage Event Definition. SD denotes
the Standard Deviation.

Data
point

Mother Drop
Size [mm]

Average daughter size
IB 	 SD [mm]

Average daughter size
CB 	 SD [mm]

1 1.0 0.5 	 0.3 0.2 	 0.3
2 1.48 0.7 	 0.4 0.3 	 0.4
3 1.87 0.9 	 0.6 0.4 	 0.5
4 2.23 1.1 	 0.7 0.4 	 0.6
5 0.87 0.4 	 0.3 0.2 	 0.2
6 1.13 0.6 	 0.4 0.3 	 0.3
7 0.86 0.4 	 0.3 0.2 	 0.2
8 1.02 0.5 	 0.3 0.2 	 0.2

E.H. Herø, N. La Forgia, J. Solsvik et al. Chemical Engineering Science: X 12 (2021) 100111

16



on the breakage time for similar � values. The corresponding data
points are Group C, which was defined in Section 2.3 as data points
1, 2, 3 and 4. In Fig. 9, these data points are in a descending order
with respect to the Dm values. That is, data point 4 has the largest
Dm value and data point 1 has the smallest Dm value. Thus, it can be
seen that the breakage time decreases with decreasing Dm value.

In other words, to investigate the impact of � on the breakage
time, it is important to compare data points of similar Dm values.
The data points in Group A are marked with an x in Fig. 9. These
points are the three data points 1, 6 and 8, which all have a Dm val-
ues in the range 1.0 to 1.13 mm. Similarly, Group B is the two data
points 5 and 7 which have Dm values in the range 0.86 to 0.87 mm.
These two points are marked by a circle in the figure. Both sets of
data points show a weak trend of decreasing breakage time with
increasing � values.

Model fitting is performed to further investigate the relation-
ship between breakage time, � and Dm. The parameter c3 in (28),
using the expression of du2 valid in the entire range of turbulence
(11) is fitted to the experimentally determined breakage time for
seven of the eight data points. Data point 4 is not used in this fit-
ting procedure. For this point, the � associated with breakage
events is significantly lower than the � associated with non-
breaking events, as shown by Herø et al. (2020). This is possible
as each assed drop is assigned an individual � value based on its
trajectory in the experimental region, as discussed in Section 2.3.
Due to the sensitivity of (28) to �, including data point 4 would lead
to a less accurate model fit for the seven remaining data points, for
which this anomalous behavior is not present.

The fitting procedure is performed in MATLAB by using a linear
equation on the form y ¼ ax. Here, y is the experimentally

determined breakage time of the data point and a is the parameter
c3. x is the expression Dmffiffiffiffiffiffiffiffiffiffiffiffi

du2 Dmð Þ
p in (28), using (11) for du2 and com-

puted with the �; k and Dm values of the data point.
The value of the parameter c3 found from the fitting procedure

described above is 1.86. The value found by Herø et al. (2020) was
2.15. Other experimentally determined values of the parameter c3
are not available in the literature. For comparison, the parameter in
the inertial range formulation (27) is fitted to the same data using
the same procedure as given above. The value of the parameter c2
is found to be 1.43, which is very close to the value of 1.46 found by
Herø et al. (2020). Maaß and Kraume (2012) found the value of this
parameter to be �1.1. The value of c2 found in this study is thus in
line with previous investigations.

The predictions of the fitted relations (27) and (28) are very
similar for all data points. This is despite the different magnitude
of the turbulent stresses, as discussed in Section 3.1. Thus, only
the fitted (28) is included in Fig. 9. These model predictions are
shown as squares with a dashed and dotted line. As can be seen
from the figure, all predictions are within or close to the 95% con-
fidence interval limits for the seven fitted data points. Hence, both
models adequately describes the impact of � on the breakage time
for the given data points. The two models also account for the
impact of the Dm value.

Few studies in the literature have determined the breakage
time for different turbulence levels. Andersson and Andersson
(2006) and Maaß and Kraume (2012) investigated drops of 1 mm
in diameter. The area averaged � was varied by changing the cross
sectional area averaged velocity. Andersson and Andersson (2006)
found that octanol drops have a breakage time of 10.9 and 5.6 ms
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for � values of 1.13 and 3.69 m2/s3, respectively. For dodecane
drops the breakage time was 7.6 and 4.2 ms for � values of 3.69
and 8.54 m2/s3. Maaß and Kraume (2012) performed experiments
with three different cross sectional area averaged velocities, giving
� values of 2.3, 6.0 and 12.5 m2/s3, respectively. This resulted in
breakage times for toluene drops of 6.0, 4.7 and 3.7 ms and for pet-
roleum drops the breakage times were 4.4, 3.4 and 2.8 ms.

The breakage times in this study are significantly longer than
those found by Andersson and Andersson (2006) and Maaß and
Kraume (2012). This is likely due to the lower � considered in this
study, as well as different fluid and system properties. Moreover,
the studies have further differences, such as different setups,
breakage event definitions, etc. Due to these differences, it is diffi-
cult to directly compare the results and draw firm conclusions. Yet,
it is clear that breakage time decreases as � increases, in accor-
dance with the model by Coulaloglou and Tavlarides (1977).

3.4.2. Cascade breakage event definition
The cascade breakage time, the breakage time determined

according to the cascade breakage event definition, is shown in
Fig. 10. Compared to the initial breakage time, each data point
exhibits a longer breakage time when considering the cascade
breakage event definition. This result is to be expected when con-
sidering the breakage event definitions as presented in Section 2.2.
As was the case for the initial breakage time, Herø et al. (2020)
showed that the cascade breakage time was significantly depen-
dent on the Dm value. The corresponding data points are Group
C, which was defined in Section 2.3 as data points 1, 2, 3 and 4.
These data points have Dm values in the range 1.0–2.2 mm, where
point 4 has the largest Dm value and point 1 has the smallest Dm

value. Thus, it can be seen that the breakage time decreases with
decreasing Dm value.

Due to the dependence of the breakage time on the Dm value,
data points of similar Dm values must be considered when investi-
gating the impact of � on the breakage time directly from Fig. 10.
Group A are marked by an x in the figure. These are the data points
1, 6 and 8, which have a Dm values in the range 1.0 to 1.13 mm. The
data points in Group A could indicate a slightly decreasing trend of
the breakage time with increasing �. On the other hand, when con-
sidering the value of the 95% confidence interval limits, there may
be no change in the data.

Group B contains the data points with Dm values in the range
0.86–0.87 mm and consists of the data points 5 and 7 from Table 2.
This group is marked by circles in Fig. 10. These data points indi-
cate the same trend in the data as Group A above; a very slight
decrease or no change for the breakage time with increasing �.

As was done for the initial breakage time, model fitting is per-
formed to further investigate the relationship between breakage
time, � and Dm. The procedure is the same as described in Sec-
tion 3.4.1. For c3, the parameter found in (28), the value is deter-
mined to be 2.90. The value found by Herø et al. (2020) was
3.35. For the inertial range formulation (27) the parameter value
of c2 was determined to be 2.24. This is close to the value of 2.26
found by Herø et al. (2020). In the original study by Coulaloglou
and Tavlarides (1977) this parameter value was found to be
�6.33, when fitted to data from dense dispersion experiments.

The fitted relations (27) and (28) give very similar predictions
for all data points. Thus, only the fit of (28) to the experimental
data is included in Fig. 10, shown as squares with a dotted line.
In general, the model predictions are in reasonable agreement with
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the experimental data for the seven fitted data points, 1–3 and 5–8.
However, the model predictions of the cascade breakage time are
less accurate than the corresponding model predictions of the ini-
tial breakage time. For the cascade breakage time, three predic-
tions of data points 1, 5 and 8 are outside the 95% confidence
interval of the experimental data values. On the other hand, only
the data point 5 was outside the confidence interval for the initial
breakage time. It appears that the models do not accurately
describe the change in breakage time with the changes the � val-
ues. The expression (28) is better suited for determining the initial
breakage time, than for the full breakup process in the cascade
breakage event definition.

3.5. Breakage probability

The experimentally determined breakage probability is shown
in Fig. 11. The breakage probability is the only source term consti-
tutive equation that coincides for both the initial and the cascade
breakage event definitions. While the breakage probability is plot-
ted against the � of the data point only, there is still a significant
dependence on the Dm value. The Dm value of each data point
may be seen in Table 2. For the four points in Group C, point 1,
2, 3 and 4, Herø et al. (2020) found that the breakage probability
increased for increasing Dm value.

As was done for the breakage time, the impact of � on the break-
age probability can be investigated by considering data points with
similar Dm value. Group A, marked by x in Fig. 11, contains the data
points 1, 6 and 8 which all have Dm values in the range 1.0 to
1.13 mm. From these data points, it can be seen that there is a clear
trend that increasing � leads to increased probability. These result

are in line with the current understanding of the breakage proba-
bility reported in the literature.

Very different results can be seen from Group B, representing
the two data points 5 and 7 where the Dm values are in the range
0.86 to 0.87 mm. These data points are marked by a circle in
Fig. 11. These data points exhibit much higher breakage probabil-
ities than the other data points. This is despite the fact that these
data points have the smallest droplet sizes, which is generally
associated with a lower breakage probability. In addition, there is
a trend of slightly decreasing breakage probability for increasing
�. Hence, the probabilities obtained for the data points in Group
B do not follow the expected behavior for � and Dm. These anoma-
lous data points will be further discussed in Section 3.5.2.

The predictions of the model of Coulaloglou and Tavlarides
(1977) were in reasonable agreement with the experimental data
presented by Herø et al. (2020). Hence, the probability data is com-
pared with the model to confirm that the anomalies of this study
are not in line with expected behavior. That is, the results cannot
be explained by the different combinations of Dm and � for the dif-
ferent data points. Both the model version valid in the inertial sub-
range of turbulence (26) and the model version valid in the entire
range of turbulence (29) are examined. To fit a linear function to
the data in MATLAB, the natural logarithm is taken of the expres-
sions in (26) and (29). The results are two equations on the form
y ¼ ax where y is the logarithm of the experimentally determined
breakage probability. x is the expression in the exponential of
either (26) and (29), except the parameter which is denoted by a.
The value of x is computed with the �; k and Dm values of the cor-
responding data point, and the qd and c given in Section 2.

The value of c1 is found to be 0.45 when fitting to all of the
experimental data. This value is significantly different from the
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value 0.59 found by Herø et al. (2020). Furthermore, including the
anomalous data in the fitting provides generally poor fits to the
experimental results. Instead, the parameters are fitted to the 6
non anomalous data points only, which are data points 1, 2, 3, 4,
6 and 8. This yields the parameter value of c1 as 0.57. For c4, the
parameter value obtained when fitting the 6 remaining data points
is 0.92, while the value of 1.25 was determined in Herø et al.
(2020). It is noted that the parameter value of c1 is debated in
the literature. Previously, Maaß and Kraume (2012) reported a
parameter value of c1 to be 0.39, while Coulaloglou and
Tavlarides (1977) found the value to be �0.182.

The predictions of the two fitted models are similar for each
individual data point. Hence, only the fitted model predictions of
(29) are shown in Fig. 11 as squares with a dotted line. The model
predictions are higher than the experimental results for the two
lowest breakage probabilities given by the data points 2 and 3.
For the highest breakage probabilities, data points 4 and 5 through
8, the model predictions are lower than the experimental results.
Nevertheless, the predictions are in reasonable agreement with
the experimental data of the 6 fitted points. For the two anomalies,
data points 5 and 7, the two models predict much lower breakage
probabilities than the experimental results. The different behavior
of these two data points are not explained by the physics repre-
sented by the models. A manual verification of the image analysis,
and evaluations of alternative models, did not provide further
understanding of the two data points.

3.5.1. Breakage probability by weber number values
The breakage probability has not previously been reported for

varying �. However, Galinat et al. (2005, 2007) and Ashar et al.
(2018) reported the breakage probability against the Weber
number values in studies where � was one of the varying param-
eters. To compare to the data reported in these studies and to
investigate the impact of the Weber number value on the break-
age probability, the breakage probability has been plotted as a
function of the Weber number value in Fig. 12. As above, the
two data points corresponding to the smallest Dm values (data
points 5 and 7) exhibit a different behavior than the other data
points.

As can be seen from Fig. 12, the Weber number values of this
study are in the range 0.6–2.2. Compared to the studies by
Galinat et al. (2005, 2007) and Ashar et al. (2018), the breakage
probability is high for such low Weber number values. In Galinat
et al. (2005), the smallest Weber number value of � 7.5 had very
low probability of breakage. The breakage probability raised stea-
dily and reached 1 for a Weber number value close to 50. Ashar
et al. (2018) had similar results for lowWeber number values, with
the lowest data point at Weber number values equal to 0.8–3.2
exhibiting no breakages. With Weber number values in the range
3.2–6.4, the breakage probability was �0.09, rising to 0.6 for
Weber number values in the range 16–24. Note that the Weber
number values of Ashar et al. (2018) have been multiplied by 4,
as discussed in Section 3.2. In general, the three studies agree that
the breakage probability increases with increased Weber number
value. On the other hand, similar Weber number values are not
associated with similar breakage probability in the different stud-
ies. As discussed in Section 3.2, these deviations in Weber number
values are probably due to the differences in the physical proper-
ties, ld in particular, or due to the differences in the experimental
setup and approximation of the disruptive force (19) in these
studies.

As shown by Galinat et al. (2005), the breakage probability of
the model by Coulaloglou and Tavlarides (1977) (26) can be writ-
ten as a function of the Weber number

PB WeSð Þ ¼ a1 exp � b1

WeS

� �
ð38Þ

where a1 and b1 are parameters. Galinat et al. (2005) also suggested
to multiply the exponent termwith theWeber number raised to the
power of a parameter

PB WeSð Þ ¼ Wea2S exp � b2

WeS

� �
ð39Þ

where a2 and b2 are parameters. However, the results of this study,
as seen in Fig. 12, appears to be close to linear. That is

PB WeSð Þ ¼ a3WeS þ b3 ð40Þ
where a3 and b3 are parameters. These three functions have been
fitted in MATLAB to the six data points that appears to be close to
linear, data points 1, 2, 3, 4, 6 and 8. The resulting parameters can
be seen in Table 4, along with the parameters determined by
Galinat et al. (2005). Due to the significant differences in the exper-
imental setup and procedure, the parameter values are very differ-
ent for the two studies. The resulting model predictions have been
plotted in Fig. 12. As can be seen from the figure, all of the models
provide a similar fit, which is reasonable for the system. Any of the
three models employed may describe the current system with rea-
sonable accuracy.

3.5.2. Investigation of anomalies
We summarize the current findings before investigating the

two data points referred to as anomalies. Firstly, the anomalous
behavior is likely not due to viscous effects, as these forces are very
small, as shown in Section 3.1. Secondly, if a data point is an anom-
aly when considering the breakage probability, it does not impact
the other source term constitutive equations determined. As dis-
cussed previously, the breakage probability is the only source term
constitutive equation determined from non-breaking drops. Any
inaccuracies introduced by considering the non-breaking drops
has no impact on the kernel functions determined from breaking
drops only; m; PDSD and tB.

Finally, in the experimental procedure employed in this study,
the only changes between the different experimental conditions
are the continuous phase velocity and the size of the glass cannula
used in generating the oil droplets. When determining a data point,
the experiments under the same continuous phase velocity are
considered. Then, the Dm value is measured when the drop enters
the observed region of the breakage channel. Next, experiments
with similar Dm values are considered collectively as a data point.
In this procedure, different cannula sizes may be used within the
same data point. However, the different cannulas are not likely
to be the reason for the anomalous behavior. For the two data
points at 2.0 m/s, data points 7 and 8 in Table 2, one point is an
anomaly and the other point is not, even though the experimental
conditions are very similar. Moreover, the individual experiments
in these data points are from the same sequence of experiments
in the lab. That is, the size of the continuously generated drops
alternated between corresponding to data point 7 and correspond-
ing to data point 8.

If the two anomalies are due to a experimental error or an inac-
curacy introduced in the experimental procedure, it is natural to
assume this would be linked to the methodology of determining
breakage probability. In the PBE, as given on the form in (1), the
breakage probability is a single point value. However, a large sec-
tion of the channel is observed in the experimental procedure.
The breakage probability is determined as the ratio of the number
of drops breaking in this section to the total number of drops
entering the section. Each mother drop observed in the considered
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test section volume has an individual path. This means that the
absolute transverse distance from the centerline of the channel
may be different for the individual drops observed. Some drops
may travel closer to the wall. This horizontal distance from the
centerline is hereafter referred to as Dx. It is speculated that this
distance to the wall impacts the probability of breakage.

In the investigation of Dx, each individual mother drop path for
the four data points at U equal to 1.5 m/s and 2.0 m/s have been
considered. For the drops undergoing breakage, Dx is found from
the position at the breakage event start instance, as defined in Sec-
tion 2.2. For the drops not undergoing breakage, Dx is found as the
maximum recorded horizontal displacement of the entire observed
trajectory of the drop. The resulting mean and median Dx for the
data points are shown in Table 5. From the table, it is clear that
the data points on average exhibit some displacement from the
center of the channel. In the procedure of manually verifying each
video containing an experimental sample, it has been observed
that drops frequently exhibit some horizontal movement in the
observed region of the breakage channel. The values in Table 5
are in line with these observations.

As can be seen from Table 5, the data points that exhibit
expected breakage probabilities, 6 and 8, have a difference in the
average Dx between breaking and non breaking drops of �1 mm.
That is, the breaking drops travel, on average, �1 mm closer to
the wall. Compared to the channel width of 30 mm, 1 mm is not

a big difference. Conversely, the breaking drops of data point 8 tra-
vel �1 mm further from the wall than the breaking drops of data
point 7, yet exhibits higher breakage probabilities.

For the data points considered anomalies, 5 and 7, Table 5
shows that there are only minor differences in the average Dx.
For both breaking and non breaking drops, the mean values are
in the range 7.2 to 7.5 mm. Compared to data points 6 and 8, the
Dx of the data points 5 and 7 are �2–3 mm closer to the wall. It
is not clear whether these differences in Dx between anomalous
and not anomalous data points are large enough to explain the sig-
nificant difference in breakage probability. If the breakage proba-
bility is very sensitive to the Dx, this is a systematic error in the
procedure of determining the breakage probability. It is noted that
the recorded � of each experimental sample is dependent on the
droplet trajectory, as described in Section 2.3. Thus, if a significant
number of drops travel close to the wall, this is reflected in the cor-
responding � of the data point. Moreover, the data point 5 does
exhibit a similar variation in � from the start point to the instance
of first separation as the data point 6. The same is the case compar-
ing the data points 7 and 8. Additionally, if there is a sensitivity to
Dx instead of �, it could be argued that none of the data points
should agree with the model by Coulaloglou and Tavlarides
(1977). As discussed previously, the model shows reasonable
agreement with the experimental results for the data points 1, 2,
3, 4, 6 and 8.
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Fig. 12. Breakage probability plotted against the Weber number calculated from the entire range of turbulence, as seen in Table 2. The solid errorbars denote the 95%
confidence interval limits. The point marker of the data point symbolizes the cross sectional area averaged velocity during the experiments. Additionally, fitted model
predictions are shown for ()()()(38)–(40).

Table 4
Parameters determined when fitting the breakage probability to (38)–(40).

a1 b1 a2 b2 a3 b3

This study 1.46 1.57 0.357 1.22 0.415 �0.113
Galinat et al. (2005) 2.6 11.2 0.29 55
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As mentioned, the size of the continuously generated drops
alternated between corresponding to data point 7 and correspond-
ing to data point 8, and it is further noted that these two data
points exhibit different Dx. To investigate whether this may be
due to the process of generating droplets, the displacement at
the first observed position, Dx0, is investigated for the data points
5, 6, 7 and 8. The determined Dx0 for the data points are 6.4 mm,
3.2 mm, 6.4 mm and 2.8 mm, respectively. From this information,
it is seen that the larger Dx of the data points 5 and 7, compared to
data points 6 and 8, might be caused by the larger displacement of
the drops at their first observed position. This may be due to an
observed, but not quantified phenomena during droplet genera-
tion. Droplets form on the tip of the glass cannula, and detaches
due to the continuous fluid flow past the cannula tip. After the
detachment, the drops exhibit a transverse movement to the low
pressure area downstream of the cannula, possibly due to a can-
nula wake effect. It is speculated that this transverse movement
of the drops is larger for the smaller drop sizes.

Tomiyama et al. (2002) investigated the path and deformation
of air bubbles in stagnant water. These bubbles were generated
by vertically placed cannulas. In the study, Tomiyama et al.
(2002) showed that the bubble generation caused an initial defor-
mation, and that this deformation was critical for the following
bubble path through the stagnant liquid. While drops are generally
less deformed than bubbles, the initial deformation may be an
effect during the droplet generation in the current study. In combi-
nation with a cannula wake effect, this initial deformation effect
could explain why data points 7 and 8 exhibit different Dx and Dx0.

It is proposed that the history of the drop motion, which is
affected by the droplet generation, may be relevant to the breakage
probability. It follows that the history of the drop motion may be
relevant to all aspects of the breakage phenomena. This view is
not compatible with the assumption that a breakage event is solely
dependent on a single turbulent vortex-droplet interaction. In this
interpretation, the mother drop is in equilibrium before it is inter-
acting with the vortex. Moreover, this interaction is only contain-
ing sufficient energy for breakup when the vortex has similar
size as the drop. However, the single vortex assumption has
received criticism. One example is Andersson and Helmi (2014),
who used large eddy and volume of fluid simulations to show that
a droplet may interact with vortices of different sizes and more
than one vortex simultaneously. A different argument was pre-
sented by Foroushan and Jakobsen (2020). They argued that dro-
plets break due to a series of interactions rather than a single
interaction. In this view, drop surface energy is both accumulated
through vortex interactions and decaying through dampening
oscillations, either until enough energy for breakage is achieved
or no breakage take place due to a relative large decay rate. In this
case, the initial deformation, as described by Tomiyama et al.
(2002), and the wake effect described above may contribute with
energy relevant to the breakup.

Obviously, the outliers may be due to a still undiscovered mech-
anism. As these data points correspond to the smallest Dm values,
this means that the diameter of the mother drop is critical for
the breakage probability. Further elucidation of the phenomena

discussed in this section is required to draw firm conclusions on
the anomalous data in this work.

3.5.3. Maximum stable drop size
Hinze (1955) formulated an expression for a theoretical maxi-

mum stable drop diameter, Dcrit , in a system. First, the disruptive
force (19) was set equal to the stabilizing force (20) multiplied
by a constant CH;1

rt ¼ CH;1rs ð41Þ
Using the second order structure function valid in the inertial sub-
range (10) the expression for Dcrit was found to be

Dcrit ¼ CH;2 c=qcð Þ3=5��2=5 ð42Þ
Where Hinze (1955) found the value of CH;2 to be 0.725. As seen in
Section 3.1, the inertial subrange formulation is not accurate in the
current study. Therefore, (41) is in this work solved with the second
order structure function valid in the entire turbulent range (11). It

can be shown that CH;1 ¼ b CH;2ð Þ5=3 � 1:17, which can be used in
solving the more complex formulation of (41) using (11) numeri-
cally. This is done in MATLAB using the function fminsearch. The
resulting maximum stable drop sizes are seen in Table 6.

From Table 6 and Fig. 11, it can be seen that mother drops larger
than the maximum stable drop size has an increased probability of
breakage compared to drops smaller than the maximum stable
drop size. From the data points 1–4, it may appear that the break-
age probability is linked to the difference in maximum stable drop
size and mother drop size. However, data points 6 and 8 exhibits
higher breakage probabilities than expected according to this
theory.

It is noted that the anomalous behavior of data points 5 and 7
are not further elucidated by this procedure. Moreover, as given
in Section 2.2, neither of the definitions of the breakage event
end instances corresponds to an equilibrium state of the channel.

3.6. Breakage frequency

The breakage frequency is determined by combining the previ-
ously discussed breakage time, Section 3.4, and breakage probabil-
ity, Section 3.5, according to (25). The results are affected by the
same factors as when discussing the breakage time and breakage

Table 5
The mean and median of the critical horizontal distance from channel center. For breakage events, subscripted B, the distance is defined horizontal displacement at the breakage
event start instance. For experiments without breakage, subscripted N, the distance is defined as the maximum displacement observed.

# Dm U Mean DxB Median DxB Mean DxN Median DxN

5 0.87 mm 1.5 m/s 7.5 mm 7.3 mm 7.5 mm 7.5 mm
6 1.13 mm 1.5 m/s 5.8 mm 6.2 mm 4.5 mm 3.8 mm
7 0.86 mm 2.0 m/s 7.4 mm 7.3 mm 7.2 mm 6.1 mm
8 1.02 mm 2.0 m/s 4.7 mm 5.3 mm 3.7 mm 2.8 mm

Table 6
Maximum stable drop sizes according to (41).

Data
Point

Mother drop size,
Dm mm½ �

Maximum stable drop
size, Dcrit mm½ �

Difference, Dcrit-
Dm [mm]

1 1 1.5 0.5
2 1.48 1.6 0.12
3 1.87 1.75 �0.12
4 2.23 1.85 �0.38
5 0.87 1.0 0.13
6 1.13 1.05 �0.08
7 0.86 1.0 0.14
8 1.02 1.0 �0.02
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probability individually. As there are two sets of breakage times,
one set for each breakage event definition, there are two breakage
frequencies. Note that the inverse of the breakage time is used in
(25), thus the impact of � and Dm is also inverted. For example,
the breakage frequency according to the initial breakage event def-
inition is higher than that of the cascade breakage event definition,
because the initial breakage time is shorter than the cascade break-
age time.

The breakage frequencies determined in this study is shown in
Fig. 13. Fig. 13a shows the breakage frequency determined accord-
ing to the initial breakage event definition, and Fig. 13b shows the
breakage frequency determined according to the cascade breakage
event definition. It can clearly be seen from the figures that the
breakage frequency increases with increased �. This behavior is
expected, as increased � increases breakage probability and lowers
breakage time, as seen in the previous sections.

Fig. 13 also shows an unexpected result for the data points 1, 2,
3 and 4, defined as Group C in Section 2.3. For these data points the
Dm value is varied, but the breakage frequency is similar. These
points had very different breakage times and breakage probabili-
ties, as discussed in Section 3.4 and Section 3.5, respectively. That
is, while the Dm value was critical for both the breakage time and
breakage probabilities individually, it is not critical for the break-
age frequency for the given system properties and flow
characteristics.

The model by Coulaloglou and Tavlarides (1977) have been fit-
ted to both the breakage time and breakage probability in Sections
3.4 and 3.5. For the initial breakage time the parameter c3 was
determined as 1.86, while the cascade breakage time parameter
c3 was determined to be 2.9. The breakage probability parameter
c4 is the same for both definitions, i.e. 0.92. The fitted functions
for breakage time and breakage probability can be combined to
obtain the breakage frequency, according to (25). The resulting
model predictions for each data point are plotted in Fig. 13 as a
dotted line with square symbols. From the figure, it is clear that
the model predictions for the data points 5 and 7 are inaccurate.
This result is expected, due to the inaccurate breakage probability
for these data points. On the other hand, the model predictions for
the remaining data points are adequate for both breakage defini-
tions. In fact, the model predictions for the breakage frequency
appears to be better than the individual predictions of breakage
time and probability.

The model based on Coulaloglou and Tavlarides with viscous
stabilization (30) have been model fitted to the breakage frequency
using the fit function in MATLAB. In this procedure, du2 and Dm are
given as the independent variables in the model. The anomalous
data points are not included in the fitting procedure. The only con-
straint on the fitting is that the parameters must be non-negative.
This results in c7 being predicted to be zero and the original model
by Coulaloglou and Tavlarides is recovered.

Fitting the model of Alopaeus et al. (2002), Eq. (33), requires
du2;Dm and � to be given as independent variables. This is done
in the lsqnonlin function in MATLAB, where the residual of the
model prediction is subtracted the experimentally determined
breakage frequency values. The parameters are constrained to be
non-negative and the anomalous data points are not included. As
was the case for the viscous stabilization of Coulaloglou and
Tavlarides, the fit of (33) returns the parameter governing the vis-
cous stabilizing effect, c15, as zero. Hence, it is unlikely that the
drop viscosity is an important stabilizing force in this study. The
remaining parameters values were in the initial breakage case
determined to be 1.47 � 102 and 1.22 for c13 and c14, respectively.
For the cascade breakage case the values were determined to be
65.6 and 0.859. These values are debated in the literature;

Alopaeus et al. (2002) found the values to be c13 = 3.68,
c14 = 7.75 � 10�2, while the values reported by Maaß and Kraume
(2012) were c13 = 1.6 � 102 and c14 = 1.6 � 10�1.

The prediction of the fitted model of Alopaeus et al. (2002), Eq.
(33), can be seen in Fig. 13. The model reasonable accounts for the
impact of �, but appears to lack the dependency of Dm, as suspected
by Narsimhan et al. (1979). Hence, the model is less accurate than
the model by Coulaloglou and Tavlarides (1977), despite being
directly fitted to the breakage frequency.

3.7. Implications of modeling work

In this study, the breakage kernel functions are investigated
experimentally to elucidate the fluid particle breakage phenomena.
The aim is to enable improved understanding and motivating
development of more universal population balance equation clo-
sures and models. Hence, we summarize our findings on this sub-
ject in this section.

In the Sections 3.2, 3.4 and 3.5 model parameters were fitted to
the experimental results and compared to previously determined
parameter values. As these parameter values are different, it is
obvious that the model parameters are not universal. For example,
the model parameter c1 in the breakage probability (26) was deter-
mined in Section 3.5 as 0.57, while previous values were reported
as 0.39 and 0.182 by Maaß and Kraume (2012) and Coulaloglou
and Tavlarides (1977), respectively. Similar patterns can be seen
for all parameter values in this study. Nevertheless, reasonable
model predictions are achieved in the individual studies. It follows
that the parameters are reasonably constant for small variations in
the independent variables of the kernel functions, e.g. Dm and �. On
the other hand, large variations in Dm and � results in new param-
eter values.

Much work is needed before models such as the one proposed
by Coulaloglou and Tavlarides (1977) can be reformulated to be
mechanistically correct with universal parameters. It is proposed
as a first task that further experiments on the different kernel func-
tions are performed, where the independent variables �;Dm or k are
varied over a wider range of values. In the current work, signifi-
cantly changing these independent variables has proven difficult
due to practical limitations with the experimental setup. However,
if an independent variable is varied across a significant range, it
would be possible to investigate the universal sensitivity of the
kernel functions to the independent variable. The important inde-
pendent variables are mother drop diameter, turbulent kinetic
energy dissipation rate and turbulent kinetic energy. The ranges
for which these variables are of industrial interest may be

Dm 2 10�6 � 10�2
h i

mm and � 2 0:1� 10000½ � m2/s3, with consis-

tent values of k. For universal model development, experimental
data is also needed from different experimental designs, as well
as different fluid and system properties.

Based on the fitting of models to the breakage frequency, as
seen in Section 3.6, it is clear that the pertinent stresses in the cur-
rent system are the inertial stress (19) and restoring surface stress
(20). The viscous stabilizing stress (24) is not found to be impor-
tant, but it may be important for dispersed phases of higher viscos-
ity. The generalized viscous shear stress (23) is also negligible in
this study, as the drops are larger than the Kolmogorov microscale,
g. Currently, there is some ambiguity to the use of the second order
structure function in the formulation of the viscous shear stress.
Shinnar (1961) originally formulated the viscous shear stress con-
sidering droplets smaller than g, where there are small or no iner-
tial forces. For these droplets, the velocity gradient of the smallest
turbulent scales exerts a shear force, which is determined from �
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Fig. 13. Breakage frequency for both breakage event definitions for the data points in Table 2. The error bars denotes the 95% confidence interval limits and the point markers
represents the range of the mother drop size of the data point. The vertical lines separate the data points obtained under different cross sectional area averaged velocity. The
model predictions by Coulaloglou and Tavlarides (1977), Eq. (25), are indicated by the dotted line with square symbols. The model predictions of Alopaeus et al. (2002), Eq.
(33), are indicated by dotted and dashed line with diamond symbols.
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and viscosity only and valid in the viscous subrange of turbulence.
The extending of the viscous shear stress to all scales of turbulence
appears to be based on the view of Walstra and Smulders (1998).
They claimed that, for all scales and ranges of turbulence, eddies
of comparable size to the drop act by inertial forces, which is in
agreement with classical Kolmogorov theory. In addition, Walstra
and Smulders (1998) claimed that eddies larger than the drops
contribute by viscous mechanisms. While this may be true, it is
not clear how these larger viscous mechanisms may then be
described by the second order structure function for the same size
as the drop.

4. Conclusions

In this study it is shown that most of the source term kernel
functions are dependent on both Dm and �. Moreover, the
employed breakage event definition is critical to the results.

In the initial breakage definition the average number of daugh-
ters are always two. Contrary to most inherent model assumptions
for binary breakage models, the daughter size distribution changes
for different system and flow conditions. However, no clear depen-
dencies on Dm or � are found. For the cascade breakage definition
on the other hand, there is a clear dependence on the Weber num-
ber for both the average number of daughters and the daughter
size distribution. An increase in the Weber number is followed
by an increase in the average number of daughters, with a linear
correlation. Nevertheless, the general shape of the daughter size
distribution function remains similar for the average number of
daughters. An increase in the average number of daughters leads
to an increase in the number of the smallest daughter sizes, with
a corresponding decrease in several of the largest daughter sizes.
It is noted that the average number of daughters does not corre-
spond to binary breakage for any data point.

The breakage probability shows a clear dependency on the
Weber number, which may be either linear or exponential in nat-
ure. The exception is the two data points corresponding to the
smallest Dm values, which exhibit very high breakage probabilities.
No definite reason is found for these anomalies.

To model the breakage phenomena, predictive models must
account for the physical conditions during breakage, which
impacts every source term kernel function. The model of
Coulaloglou and Tavlarides (1977) is fitted to show a reasonable
agreement with the breakage time, breakage probability and ulti-
mately the breakage frequency. However, a different model frame-
work is required to model the average number of daughters and
the daughter size distribution. These kernel functions vary with
the physical system properties and flow characteristics, which
the model of Coulaloglou and Tavlarides (1977) does not account
for.

While the model may be fitted to predict the experimental
results, the parameter values are different from the values reported
in the literature. Hence, the models do not appear to be universal.
Additional experimental investigations are required in order to
obtain improved understanding and enabling development of
more predictive models. Preferably, these investigations should
cover a wider range in the independent variables. At present,
experimental investigations cover very narrow ranges in the
variables.
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Chapter 10

Concluding Remarks

This work focuses on experimental investigation of drop breakage with the aim to eluci-
date the breakage phenomena and obtain data for model validation. The research goals
were identified in Section 1.2 as:

• Design and construct an experimental facility for the investigation of single particle
breakage in turbulent flow.

• Characterize the turbulence level of the continuous flow in the experimental facility.

• Determine and outline a procedure for extracting information on the kernel func-
tions from the observed breakage events.

• Perform experiments under different flow conditions, system conditions and dis-
persed phase properties.

• Investigate the experimental data to elucidate the breakage phenomena.

In this section, the achieved results are summarized by the research goals. The discussion
is structured in a top-down approach, starting by considering the experimental results
and its impact on the understanding of the breakage phenomena. Then, the experimental
procedure is discussed before the design of the experimental facility is considered.

10.1 Characterize the Turbulence Level of the Continuous Liquid Flow
in the Experimental Facility

LDV-measurements were performed to obtain the turbulent characteristics of the con-
tinuous liquid flow. The procedure and results are described in Paper 1, Chapter 6.
By using LDV, one obtains the instantaneous velocities over a period of time of a very
small stationary volume, which may be considered a single point. The instantaneous
velocity values found in each point is time averaged to characterize the turbulence of the
continuous phase channel flow. The values utilized in the drop breakage investigations is
thus spatially well differentiated, but temporally course due to the averaging procedure.
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Hence, the effect of the instantaneous turbulence characteristics during the breakage
events are unknown.

10.2 Investigate the Experimental Data to Elucidate the Breakage Phe-
nomena

In Papers 3 and 4, Chapters 8 and 9, data on the breakage kernels are presented. From
these empirical data, conclusions on the breakage phenomena and the modeling of kernel
functions are reached.

10.2.1 Trends in the Kernel Functions

As an overall conclusion it can be said that the empirical data is in adequate agreement
with previous experimental investigations, as well as known model concepts. Hence, it
is concluded that the constructed experimental setup can be used to investigate fluid
particle breakage.

Direct comparisons of the kernel function values between this work and previous
works reported in the literature are challenging, due to differences in experimental setup
and procedure between the studies. On the other hand, the trends are interesting to
compare. The trends represented by the kernel functions are the general change in the
experimentally determined values when varying the mother drop size, ε or k. In this
work, the trends in breakage probability and breakage time are in reasonable agreement
with previous experimental investigations.

Some previous studies have reported the breakage probability and average number
of daughters by Weber number, and the current results show similar trends. However,
the use of Weber number may be generally criticized for obscuring the dependence on
the physical parameters and properties, which complicates comparisons.

10.2.2 Impact on Modeling

For the breakage time and breakage probability, known model concepts may be fitted
to achieve adequate predictions locally. In other words, the narrow variations of the
independent variables in this study allows for adequate model predictions. Nevertheless,
the determined model parameters are different from those found in previous experimental
investigations, although these parameters provided adequate model predictions in their
respective studies.

For the cascade breakage event definition the experimentally determined average
number of daughters vary for different flow characteristics and system properties. This
result is in contrast with the existing model frameworks. The available model frame-
works does not predict the average number of daughters, as discussed in Chapter 2.
Moreover, the experimentally determined average number of daughters are non-integer
values, which is currently only possible in the model framework of Diemer and Olson [56].
Conversely, the experimentally determined daughter size distribution function retains a
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general shape for changing flow characteristics and system properties, which is closer to
the assumptions employed in available model frameworks. The shape of the daughter
size distribution is exponential, where the smallest daughter sizes are always signifi-
cantly more common than other outcomes of breakage and the probability of obtaining
a daughter size is decreased as the daughter size increases.

For the initial breakage event definition the binary breakage assumption is in agree-
ment with the experimental results. However, the experimentally determined shapes
of the daughter size distributions changes for different flow characteristics and system
properties. No existing model framework predicts this behavior.

10.3 Determine and Outline a Procedure for Extracting Information on
the Kernel Functions From the Observed Breakage Events

The methodology for extracting breakage data from individual videos is defined and
described in Paper 2, Chapter 7. The methodology includes details on extracting data
from a single frame or image, such as obtaining the size of the drop, as well as extracting
data from several frames, such as obtaining the breakage time.

Contrary to previous investigations, both of the two breakage event definitions found
in the literature [57] are employed in this work. The advantage of the initial breakage
event definition is its simple formulation. The event is considered ended at the time
instance when the drop separates into two (still deformed) drops. In empirical work,
the size of these daughters is challenging to determined if the deformed daughter drops
undergo further breakage. Hence, the determined daughter size distributions may be
inaccurate. Moreover, while the initial breakage event definition is commonly employed,
it is unclear how the breakup of short-lived daughter drops can be considered indepen-
dent from the initial breakage event. Especially when a daughter drop breaks without
obtaining a spherical and stable shape, but instead undergoes continuous deformation.

On the other hand, interpretations through the cascade breakage event definition do
consider whether sequential breakups are dependent on the initial breakage. In this def-
inition the deformed daughter drops are observed until stabilizing in a spherical shape.
Due to the increased regularity of the shapes of the observed daughter drops, the de-
termination of their sizes is significantly more accurate than for the initial breakage
definition. That is not to say that the cascade breakage event definition is without
weaknesses. The intermediary daughters are observed for a longer time. It is possible
that some of the intermediary daughters interact with turbulent structures before the
breakage event is concluded. This potential daughter-turbulence interaction affects the
breakage process, but is impossible to account for in the current procedure. In addition,
as the intermediary daughters should be observed until a spherical shape is obtained,
daughters breaking at the wall presents a challenge. Currently, the breakage event is
considered finished for these particular daughters, but that is a necessary simplification
which may not be correct.

In Paper 3, Chapter 8, the methodology for determining the kernel functions is
described. This procedure covers how to combine and utilize data obtained from single
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experiments performed under similar conditions. The procedure is transparent and
well described. However, the procedure is applied to a large volume. The size of the
volume may impact the results as noted in Paper 4, Chapter 9; While the models are
formulated in a Eulerian framework, the experimental data is essentially determined in
an Langrangian framework, taken from a larger volume. This is a practically necessary
simplification, the impact of which was discussed in Herø et al. [65, P.19]. It is noted that
the breakage frequency is determined from the breakage time and the breakage probability.
The breakage time is determined from local values associated with each breakage event
while the breakage probability is determined as an average value of the whole test section.
The limiting accuracy of the breakage probability function might require improvements,
thus other approaches for determining this kernel function have been suggested in the
literature (Vejrazka et al. [80], H̊akansson [81]). Hence, a refinement of the procedure
or a refinement on how the procedure is applied may improve the accuracy of the results
obtained.

Paper 3 includes a description of the statistical analysis employed. The number of
experimental repetitions required was unknown when designing the facility and deciding
on the experimental procedure. The statistical analysis showed that a relatively low
number (∼30) of experiments where needed for statistically relevant results [65], which
has an impact on the subsequent experimental design as discussed in the following sec-
tion.

10.4 Design and Construct an Experimental Facility for the Investiga-
tion of Single Particle Breakage in Turbulent Flow

Review of previous experimental studies on fluid particle breakage and homogeneous
turbulence were given in Chapters 3 and 4. Based on these reviews, the critical func-
tionalities of an experimental facility were determined, Chapter 5, and the experimental
facility, Chapters 5, 6, 7, 8 and 9, was designed and constructed. As concluded in Sec-
tion 10.2.1, the experimental data confirms the facility can be used to investigate single
droplet breakage. Nevertheless, there are two important comments on the final design
of the experimental facility.

First, the number of experimental repetitions required were lower than the amount
accounted for during the experimental design phase. It follows that the requirement of
”Repeatable and reproducible experiments”, as discussed in Chapter 5, is less strict than
originally considered during the design process of the experimental facility. In particular,
the required automation for the repetition of experiments in the experimental facility is
lower than expected and less automated facilities may be practically viable.

Second, the continuous phase flow characteristics may impact the experimental re-
sults. The facility does not exhibit isotropic turbulence and the breakage events takes
place before the channel flow is fully developed. Hence, there are gradients in the tur-
bulent characteristics in the region of interest and along the drop trajectory during
breakage. Moreover, as the drops break in different positions, there are different initial
conditions for each individual breakage event.
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Chapter 11

Suggested Further Work

11.1 Modeling

As discussed in Section 10.2.2, there are discrepancies between the available model frame-
works and the experimentally determined average number of daughters and daughter size
distributions. Considering the results obtained with the initial breakage event definition
the binary breakage assumption is correct. On the other hand, the daughter size distri-
bution function must change shape with changing flow characteristics or changing fluid
or system properties. The dependencies of the shape of the daughter size distribution
function represents an unresolved challenge.

The experimental results obtained with the cascade breakage definition represents
a different challenge in modeling of the breakage phenomenon. The average number
of daughters can vary and can be non-integers. In simulations, the average number of
daughters must be predicted from the flow characteristics, fluid properties and system
properties. In turn, as the daughter size distribution function is not independent from the
average number of daughters, the daughter size distribution function must be predicted
such that volume and number conservation are achieved.

Two approaches for obtaining the required model framework is suggested here. The
first alternative is to formulate a framework where the average number of daughters is
predicted and a general form of the daughter size distribution function exists as a function
of the average number of daughters as well as fluid flow characteristics, fluid properties
and system properties. The drawback of this approach is that obtaining an expression
for the daughter size distribution which remains number and volume conserving is not
trivial.

The alternative approach is to combine daughter size distribution functions which are
valid for integer values of daughter numbers. As a simplified example, take a predicted
average number of daughters to be 2.5 and assume that half the breakage events results
in 2 daughters and the other half results in 3 daughters. Then, weighted use of two
different daughter size distribution functions, valid for 2 and 3 daughters respectively, in
the breakage birth source term could yield both number and volume conservation. In this
approach, the two daughter size distribution functions may be represent two different
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mechanisms of breakage. To the authors knowledge, the use of weighted kernel functions
is not previously reported in the literature. Theoretically, it is possible to combine
two different binary breakage kernel functions in a way that maintains number and
volume conservation. The drawback of this approach, where different kernel functions
are combined by weights to obtain a specific average number of daughters, is that several
distinct daughter numbers are possible results of a single breakage event. As seen in
Paper 3, Chapter 8, the number of daughters from a single breakage event ranges from
2 to ∼20. A larger number of daughters are expected for increased turbulent forces or
larger mother drop sizes. To weight different kernel functions every distinct daughter
number requires a corresponding daughter size distribution function. Each of these
daughter size distribution functions requires validation, which may not be experimentally
feasible due to the large number of distinct daughter size distribution functions and
the amount of manual labor required for experimental investigations of single droplet
breakage.

11.2 Experimental Facility

This section covers potential improvements to the experimental facility and procedure.
However, it is easier to define the issue that could be improved, than it is to formulate
a practical solution to the issue. Experimental work within fluid particle breakage is
challenging.

11.2.1 Independent Variables and System Properties

For improved understanding of the breakage phenomena, it is of interest to investigate a
wider range of independent variables and system properties. As seen in Chapter 3, the
experimental studies found in the literature consider ε in the range [0.1, 104] m2/s3. In
each individual study the value of ε is only varied to a very small degree. Ideally, the
entire range should be considered in the same experimental setup and procedure.

Expanding the range of ε in the experimental facility of the current work is a signif-
icant challenge. The capability of the continuous phase pump represents a limit to the
available continuous phase velocity. In addition, additional issues will likely arise should
a larger continuous phase velocity be achieved. The residence time of the drops in the
volume observed by the cameras will be shorter. In turn, there may not be enough time
for the entire breakage event to be observed. Alternatively, the breakage time may be
decreased to such a degree that higher framerates of the cameras are required for suf-
ficient temporal resolution. The framerate of the cameras utilized in the experimental
facility of the current work can not be increased further.

A higher continuous phase velocity may also affect the generation of the mother drop
sizes. In the experimental facility of the current work, the injected mother drop sizes are
significantly dependent on the continuous phase velocity. A different injection system
may generate droplets of consistent sizes independent of the continuous phase velocity,
representing an improvement on the current facility. As was the case for ε, it would be
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of interest to investigate a wider range of mother drop sizes in the same experimental
setup and procedure. Based on the studies presented in Chapter 3 the range of mother
drop sizes would be Dm ∈ [10−5, 10−2] m.

Different fluid properties of the continuous and dispersed phases and system prop-
erties should be considered, e.g. µ, ρ and γ. There may be some practical limitations
to the use of different oils in the experimental facility of the current work. The use of
octanol as the dispersed phase gives a relatively low interfacial tension for the system.
Changing to an oil that increases the surface tension is expected to lower the probability
of breakage for otherwise equal conditions. Hence, obtaining the required samples of
breakage might be challenging for systems of higher surface tension. Breakage may also
be inhibited by higher viscosity in the dispersed phase, further complicating obtaining
sufficient samples of breakage. Finally, it is noted that toxic chemicals complicates HSE
measures and may create challenges associated with the preparation of experiments,
performing the experiments or the clean-up and disposing of used chemicals.

11.2.2 Continuous Phase Flow

As noted in Chapter 5, the droplet breakages should take place in homogeneous, or near
homogeneous, turbulence. However, as discussed in Chapter 4 and Chapter 5, there
are practical limitations to performing droplet breakage experiments in such setups.
Nevertheless, the continuous phase flow in the experimental facility utilized in this work
could be improved.

One area of improvement originates from the drops breaking in different positions.
Equal continuous phase conditions for the breaking drops would be advantageous. To
obtain such conditions, the gradients in the turbulence level should be minimized. More-
over, the impact of mean flow viscous shear should be avoided by avoiding breakage in
regions of mean flow gradients such as the boundary layer.

11.2.3 Image Analysis

As discussed in the Papers 2, 3 and 4 (Chapters 7, 8 and 9), interpreting the videos
obtained during the experiments requires substantial manual labor. A fully automated
image analysis program would significantly improve the amount of experimental results
obtained in a given time by eliminating the manual labor. However, creating an auto-
mated image analysis program is not trivial.

The current image analysis program can automatically extract information from
individual frames to a reasonable degree. That is, the number of drops, their size, etc.
are adequately extracted. The issue is to automatically associate this extracted data
with the real droplets. That is, to automatically identify whether it is the same drop in
two consecutive frames or whether a breakage has taken place is difficult. Although not
quantified in this work, it appears that the automatic image analysis is more accurate
with larger than smaller drops. Hence, a possible improvement may be achieved with a
finer spatial and temporal resolution of the video. The resulting video would have less
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differences between consecutive frames and the drops would occupy a larger number of
pixels.

Machine learning could potentially be applied to obtain an automatic image analysis.
However, machine learning requires sufficient data for training and validation, which
requires many videos to be manually interpreted before the machine learning algorithm
can be applied. Due to this prerequisite, the gain of employing machine learning may
be limited. Especially as the machine learning algorithm must be retrained to account
for new experimental operating conditions, such as liquid flow rate.

11.2.4 Experimental Procedure

Improving the experimental procedure may be a way to provide more accurate exper-
imental results. By considering a smaller observed volume the difference between the
Langrarian experimental results and Eulerian model formulation would be smaller. In
particular, a smaller volume would improve the determination of the breakage proba-
bility, which in turn improves the breakage frequency. A smaller volume also results in
similar continuous phase flow conditions associated with each breakage.

The major challenge of employing smaller volumes is that neither the droplet trajec-
tories nor the position of breakage can be controlled. Moreover, it is currently impossible
to know where the breakage events begin before performing the manual interpretation
of the breakage events. In turn, many breakage events must be interpreted to obtain a
statistically sufficient number of breakages for each volume considered. Several of these
interpretations may be unnecessary as the volume of breakage may either have sufficient
data beforehand or not enough data at the end of processing. The resulting procedure
would be significantly more manual labor intensive.

Another possibility to improve the experimental procedure may be to interpret the
breakage frequency by use of a different approach. According to the recent review by
H̊akanson [81] the breakage frequency can not be separated into breakage time and
breakage probability. Instead, it should be calculated directly with the procedures sug-
gested by Martinez-Bazan et al. [38] or Vejrazka et al. [80]. Martinez-Bazan et al. [38]
suggested that the breakage frequency of a given volume could be determined from

b = − 1

N(D)

∂(UN(D))

∂x
(11.1)

where N(D) is the number of fluid particles of size D in a given volume, U is the velocity
of the fluid particle and x is the spatial coordinate in the velocity direction. Vejrazka et
al. [80] calculated the breakage frequency of a given volume by

b =
number of breakages of fluid particles with size D in the volume

total time spent by fluid particles of size D in the volume
(11.2)

The two approaches requires a change to the experimental procedure, where the number
of drops must be measured at different positions. In addition, either the velocity of the
drop or the residence time of the drops must be measured depending on which of the two
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approaches is selected. Hence, these approaches require smaller volumes to be considered,
with the drawbacks as described above. The advantage of these two approaches is that
they avoid the issue previously described; the breakage time is determined from local
values associated with each breakage event while the breakage probability is determined
as an average value of the whole test section [65].

11.2.5 Three-Dimensional Analysis

In this work the droplets are measured in 2D, which does not provide information on
the drop in the third dimension. The breakage phenomena are a 3D phenomena which
ideally should be observed in all three dimensions. However, 3D imaging is associated
with significantly larger complexity. The experimental facility must accommodate the
field of view from another direction, where the illumination and focus depth required
must be accounted for. The complexity of the experimental procedure increases as it
must handle data originating from the different field of views. Nevertheless, observing
the breaking droplets in 3D constitutes an improvement in the data obtained.
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