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Abstract

Inductive bias refers to architectural choices made when designing a deep
learning model in order to facilitate the model learning on a particular kind
of data. In particular, one makes assumptions about the structure of the data
and designs a suitable model accordingly. Examples of architectures are
convolutional neural networks for image data, graph-convolutional neural
networks for graph data, and recurrent neural networks for sequential data.

The information bottleneck method arose to quantify the optimal trade-off
between compression and accuracy when summarizing a random variable
X . As applied to neural networks, one considers each successive
representation Z i , Z i+1, . . . as functions of the input X , and one can thus
compute the mutual information I (X , Z i ) between the representation and
the input, or I (Y , Z i ) for the mutual information between the representation
and the output. The main idea is that as the input is processed deeper in the
network, the representations will lose information about the input X and
gain information about the output Y . This means that the network is able to
generalize away unnecessary variance in X , and only retain the parts
relevant for predicting Y .

Using the information bottleneck, we seek to elucidate the training
procedure and learning capabilities of different neural architectures.
Previous works have mainly applied the method on synthetic datasets and
architectures not commonly found in practical applications. In this work,
we will be comparing the performance and information bottleneck for three
different architectures of neural networks to their fully-connected
counterparts. First, we will compare a graph neural network and a
fully-connected network trained on the Cora citation dataset [1]. Then we
compare a recurrent neural network and a fully-connected network on a
dataset consisting of names from different languages [2], with the task of
classifying the correct language for each name. Finally, we compare a
convolutional neural network with a fully-connected network on the MNIST
dataset [3].



Sammendrag

Induktiv bias referer til forskjellige arkitekturvalg som gjøres når man
designer modeller for dyp læring. Spesielt så handler det om hvilke
antakelser som gjøres om inngangsdataen, noe som i sin tur påvirker
arkitekturvalget. Eksempler på forskjellige nevrale arkitekturer er
konvolusjonale nevrale nett for bildedata, grafkonvolusjonale nevrale nett
for grafdata og rekurrente nevrale nett for sekvensiell data.

Informasjonsflaskehalsmetoden søker å kvantifisere en optimal balanse
mellom kompresjon og presisjon for å beskrive en tilfeldig variabel X . For
nevrale nettverk betrakter man påfølgende representasjoner Z i , Z i+1, . . .
som funksjoner av inngangsdataen X , og dermed kan man beregne den
gjensidige informasjonen I (X , Z i ), eller beregne I (Y , Z i ) for den gjensidige
informasjonen mellom representasjonen Z i og målvariabelen Y .
Hovedideen er at jo dypere i nettverket man kommer, så vil
representasjonene Z i få mindre informasjon om inngangsdataen X , og mer
med målvariabelen Y . Dette kan tolkes som at nettverket er i stand til å
fjerne unødvendig informasjon i inngangsvariabelen X , og er i stand til å
generalisere ved å kun beholde informasjon som er relevant for å predikere
Y .

Ved å bruke informasjonsflaskehalsmetoden ønsker vi å belyse
treningsprosedyren og læringsevnen til forskjellige nevrale arkitekturer.
Tidligere arbeid har i hovedsak betraktet syntetiske datasett og nevrale
strukturer som ikke brukes i praktiske anvendelser. I dette arbeidet så
kommer vi til å benytte informasjonsflaskehalsmetoden for å sammenligne
tre forskjellige nevrale arkitekturer med deres fulltilkoblede alternativer,
sammen med sammenligninger av deres ytelsesevner. Vi begynner med å
sammenligne et grafkonvolusjonalt nevralt nett med et fulltilkoblet nettverk
trent på Cora [1] datasettet. Deretter sammenligner vi et rekurrent nevralt
nettverk med et fulltilkoblet nettverk på et datasett som inneholder navn fra
forskjellige språk, der oppgaven er å klassifisere navn til riktige språk [2]. Til
slutt sammenligner vi et konvolusjonsnettverk med et fulltikoblet nettverk
på MNIST datasettet [3].



Introduction

Modern deep learning algorithms have brought enormous progress to a
wide variety of fields [4]. Examples of this include completing sentences [5],
generating images [6, 7], or more traditional classification and regression
tasks [8]. Their success is based on being adaptable to a variety of problem
formulations and data formats by adapting their architecture. An
abundance of data and processing power has also been a key enabler for
deep learning technologies [9]. A key feature of deep learning is that of
representation learning. In order to reason across different types of data, it is
required to bring different data into a common representation to compare
and reason about them. An example of this is designing a neural network for
text data and another for image data. To be able to reason about them, one
can compress both data types into a common vector representation.

Another benefit of representation learning is that of dimensionality
reduction. In the case of predicting the correct digit on the MNIST dataset
[3] of handwritten numbers, the input image has 28 · 28 = 784 features
(pixels). However, there are only ten classes. Deep neural networks are
trained to produce a new representation of the images that are subsequently
linearly separated into ten classes.

This thesis is concerned with how to analyze the representations produced
by different deep learning networks. Different architectures yield different
performance in terms of predictive accuracy, which can be attributed to
them learning different representations of the same data. Identical
representations would yield identical performance. One property that all
neural networks share in common is that they sequentially produce a new
representation Z i+1 from their previous representation Z i , with the initial
representation being the input data X = Z 0. The information bottleneck
method [10, 11] proposes to elucidate neural networks’ training progress
and their learning and generalization capabilities by recording the shared
information between sequential representations, Z i .
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In this thesis, we will only consider classification problems. The networks
are trained on data (X ,Y ) of features X and are tasked with predicting the
correct class contained in the label Y . Classification problems arise
naturally in several real-life applications. In an industrial plant there are
several sensors, and a machine learning system may be used to detect
irregularities in the plant from the sensor measurements. Self-driving
vehicles need to classify and interpret what kind of objects they see, which
may range from a person to a traffic light. Even though the problems of
detecting irregularities in an industrial plant and that of detecting
pedestrians may seem very different, they are primarily so due to the data
input, X , being different. One can use a very similar model in both cases and
a very similar setup too. The difference is in what features X [12] and labels
Y [12] to choose for the particular problem. Whether one should use a
similar model and setup in both cases is an entirely different question, and
will be the main emphasis of my thesis.

In computer vision problems, the input data X are images. The task Y which
the model needs to solve can be numerous, for instance classifying a part of
or the whole image, or segmenting away different parts of the image. In the
industrial plant example, the sensor measurements in X are usually not as
related to each other as the pixels in an image. An image also has the notion
of locality, i.e., that pixels that are close to each other are related to each
other. Both problems can be treated similarly if one flattens the image into a
long vector of numbers. This would obviously destroy a lot of information
inherent in the image, most notably locality. Intuitively and practically,
methods that preserve the locality information, like convolutions, are more
efficient on image data than the flattening. However, there are no standard
way of quantifying this increased efficiency.

Neural networks can be used to solve various tasks on many different
datasets. Nevertheless, interpreting neural networks proves challenging,
since each task preferably requires its own specific neural architecture and
training progress. In an attempt to analyze different network architectures
in terms of representation learning and performance, we will be using the
information bottleneck method [10].

The information bottleneck method from Tishby et.al [10] relies upon
tracking the representations generated by neural networks during training
and subsequently plotting them in an information plane. The axes of the
information plane are the information the representation has about the
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input and output, plotted on the horizontal and vertical scales, respectively.
By analyzing these plots of different models we seek to elucidate why and
how different models’ representations differ. In doing this, we differ from
the more common approach of gauging model fit from the validation or test
accuracy [12]. While these are good metrics, it may be possible to also gain
insight into the model itself by analyzing the information plane. In addition,
accuracy does not measure to which degree the model is exploiting the
available information in the data. Maybe it would be possible to train a
model with a different architecture to the same precision using less data?

The information measure is the mutual information I (A,B) between two
random variables A and B . The mutual information I (A,B) is a symmetric
quantity that quantifies how much of the variation in A can be explained by
B and vice-versa. Mutual information is defined in terms of probability
distributions of the variables A and B , however, these distributions are
unknown in practical applications, and hence approximation methods are
necessary. The method we will be using is from Kolchinsky et al. [13]. Other
mutual information estimation methods were attempted [14, 15], but they
yielded significantly subpar performance compared to the method of
Kolchinsky [13].

There were three main research questions when starting this thesis:

1. The first is if one can use the information bottleneck method in order
to measure the inductive bias of different neural network architectures.
Inductive bias is a term used to signify that a model is particularly well-
suited to work on a specific kind of data.

2. The second question is if the information bottleneck method can be
used in order to gauge model fit, for example, to visualize and compare
the information planes of several models trained on the same data with
different sampling rates.

3. The third research question was if the information bottleneck method
could be used in conjunction with hyperparameter optimization in
order to find an optimal model.

In order to address the research questions, background information on
neural networks and different neural architectures are presented in
Chapter 1. Their training procedure is explained in Chapter 2. Chapter 3
introduces the information bottleneck method together with methods for
estimating mutual estimation. This was all put together in terms of a
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framework, which will be explained in Chapter 4.

It was found that the mutual information estimation method, while it
performed well on the test examples in the literature, struggled when
presented with new datasets and neural architectures. As such, answering
the second and third research questions proved difficult. In this thesis, we
will, as far as it is possible, answer the first research question in Section 5.1,
together with analyzing the failure modes of the estimation method
from [13] in Section 5.2. The mutual information method from [15] (MINE)
was numerically unstable, and the Rényi estimation method [14] had
prohibitive computational costs associated, even for smaller problems. The
MINE method worked on the example dataset in the paper by Tishby
et.al [10], but diverged on more complicated data and architectural patterns.
The MINE method will be described in Section 3.2, and for information on
the Rényi method we refer to [14]. Possible future avenues of approach will
be discussed in Chapter 6.
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Chapter 1
Neural Networks

While the term “neural” in neural networks comes from comparisons
between the structure of a neural network and the human brain, the
comparison is not quite accurate. As stated in [8], “While the kinds of neural
networks used for machine learning have sometimes been used to
understand brain function, they are generally not designed to be realistic
models of biological function.” As such, we prefer to explain different kinds
of neural networks in terms of mathematical operations and structures
rather than being explained through analogies to the human brain.

In this thesis, we will consider four different types of neural network
architectures. They are fully-connected neural networks, convolutional
neural networks, recurrent neural networks, and graph-convolutional
neural networks. Except for the fully-connected networks, the other three
networks are specialized at handling different kinds of data X . Recurrent
neural networks are suited for sequential data, like text or time series.
Convolutional networks are designed for image-like data, and
graph-convolutional neural networks are suited for graph structured data.
The same kind of data can be interpreted in several ways; for instance, one
can interpret an image as a sequence of pixels or as a graph where
neighboring pixels are connected (this is usually not done). The three
models are specialized due to there being additional processing steps in the
model, in addition to learning the parameters of the model. When a neural
architecture is well-suited for a particular kind of data, we say that the
neural architecture has an inductive bias towards that kind of data. In this
chapter we will present all four of these neural network models, together
with how they work and their strengths and weaknesses.
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1.1 Fully-Connected Neural Networks

Neural networks were first proposed as having a single layer, or matrix,
connecting the input X to the predicted output Ŷ . Some theoretical
measures on their performance were also established early. The universal
approximation theorem was first derived by Kolmogorov [16] in 1957. The
theorem states that any multivariate continuous function can be
approximated by a single-layer neural network with arbitrary accuracy.
However, it was also established that a single-layer neural network is unable
to learn the XOR function (exclusive or function) [17]. Single-layer neural
networks are rather uninteresting for modern applications due to neural
networks relying on scale and having available training data. The scale
comes from stacking multiple layers together in order to form a ”deep”
neural network. A single-layer neural network is not much different from
linear regression [18].

In order to train deep neural networks, it is common practice to use the
backpropagation algorithm to find the gradients by which to update the
network. The backpropagation algorithm is explained in Chapter 2, and
according to [18] the first application of the backpropagation algorithm to
neural networks was in 1981 by Werbos [19]. Recent research has also tried
to train neural networks without using backpropagation [20], with many
prominent researchers seeking methods that resemble the human brain
more than backpropagation does [21].

Modern advancements within computing technology have also allowed
neural networks to be larger in size, which has enabled them to tackle
greater problems with more accuracy [18]. Several improvements over the
vanilla "backprop" algorithm have also been developed. For more
information, we refer to [18].

A fully-connected neural network (FCN) operates on data X with
dimensions N × D , where N is the number of examples (samples) in the
dataset, and D is the number of features used to describe each example. The
fully-connected network has L weight matrices {W l }L

l=1 with weight matrix
W l having dimension H l × H l−1. H l−1 is the number of features in the
previous layer and H l the number of features in the current layer.

A FCN revolves around applying linear transformations to the data followed
by nonlinear functions, also called activation functions. The most common
activation function used is the rectified linear unit (ReLU), defined as
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ReLU(x) =σ(x) = max(0, x). (1.1)

A plot of the ReLU function can be found in Figure 1.2. If x is a matrix, σ(·)
operates elementwise, and element i , j in the output is zi , j =σ(0, xi , j ).

An example illustration of a neural network is shown in Figure 1.1. There are
three input features in green, followed by four sets of hidden layers in blue,
each with a hidden size of four. There are two output classes in red. The
arrows between different layers are the trainable connections in the network.
The arrows are in practice elements of a matrix. The first matrix W 1 will have
dimension 4×3 since the input has three features and the first hidden layer
has four features. Subsequent weight matrices will have dimension 4×4 until
the last prediction layer W 5 has a weight matrix with dimensions 2×4. It is
these connections, or matrices, that are learned in deep learning. Different
neural architectures will have different structures for the weight matrices W l .
For a FCN, the matrices W l are dense, where each element W l

i , j is adjusted to
relate the output feature at index i and the input feature at index j .

Figure 1.1: A neural network with four hidden states, colored in blue. There are three input features
(green) and two classes in red. The arrows indicates connections between diferent layers. In practice,
the arrows are the elements of a matrix. Image credit: [22]

The core part of what makes neural networks and deep learning special is that
one applies several of the linear transformations {W l }L

l=1 after one another,
with a nonlinear function in between. The layer-wise propagation rule for a
FCN is

Z l+1 =σ(Z lW l ), (1.2)

where Z 0 = X and Z L = Ŷ , with Ŷ being the prediction of Y , and 1 ≤ l ≤ L.
The output Ŷ has dimension N ×C for a classification task with C classes
or N ×1 for a one-dimensional regression task. When training the networks,
the elements in the weight matrix W l are optimized in order to reduce the
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training loss. The ”learning” part in deep learning comes from finding the
gradients ∇W l for all layers l , which is done through the backpropagation
algorithm. More on neural network training in Chapter 2.

The advantage of a FCN is that they are very general since they work on data
represented by a feature vector of length D . The downside is that if the
number of features D becomes very large, it forces there to be many
parameters in the model. For example, image data usually have a very large
number of features (pixels) D .

1.1.1 Activation Functions in Deep Learning

The ReLU function defined in (1.1) is the most commonly used activation
function for modern deep learning architectures [8]. The ReLU function is
very close to a linear function, and as such, it preserves several properties of
linear models which make them easy to optimize through gradient
descent [8]. Other notable activation functions are the sigmoid and tanh
activation functions, defined as follows

tanh(x) = ex −e−x

ex +e−x
, (1.3)

sigmoid(x) = 1

1+e−x
. (1.4)

A plot of the tanh, ReLU, and sigmoid activation functions are shown in
Figure 1.2. The output of tanh is always in the interval (−1,1) whilst the
output of the ReLU function is in the interval [0,∞). The output of the
sigmoid is always in the interval (0,1). Note that the tanh and sigmoid
function saturates when its input is far away from zero, leading to a
derivative that is close to zero. When the derivative is close to zero, it is
harder for the network to learn, which is part of the motivation for using the
ReLU nonlinearity instead.

The prediction layer Ŷ usually also has an activation function. For a
classification problem one usually uses the softmax function [18]. Let p be a
vector of length C , where the i’th element of p is pi . The softmax function is
defined as follows

softmax(p)i = epi∑C
j=1 ep j

. (1.5)
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Figure 1.2: The tanh, ReLU and sigmoid activation functions plotted on the interval [−2,2]. The
output of tanh is always in the interval (−1,1) whilst the output of the ReLU function is in the interval
[0,∞). The output of the sigmoid is in the interval (0,1).

The softmax function is a way to normalize an unnormalized score vector p,
in this case, into a vector with a probability of each class C . If the problem
only contains two classes, one may also use the sigmoid (1.4) activation
function, where a classification of ”1” designates one class and ”0” the other
class. For regular regression problems, no activation function on the output
is usually needed, since the number Y need not be bounded.

1.2 Convolutional Neural Networks

First appearing as the Neocognitron in 1980 [23] and later applied to
handwritten digits in 1998 [24], Convolutional Neural Networks (CNNs)
have seen a resurgence from 2013 when a CNN [25] trained on the
ImageNet [26] dataset was able to substantially increase the precision
compared to traditional computer-vision (CV) methods. Figure 1.3 from [27]
shows the prediction accuracy of different machine learning models from
2011 to May 2021. The top-1 accuracy on the vertical axis is the percentage
of times the most probable class predicted by the model was the correct
class. Another metric is the top-5 accuracy, which is the percentage of times
the correct class is within the top five most probable classes predicted by the
model. The first CNN model in the figure from 2013 is the AlexNet
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structure [25]. All the subsequent state-of-the-art models have been neural
networks. The traditional method from 2011 uses Scale-Invariant Feature
Transform (SIFT) [28] and the Fisher Vector (FV), which is a special case of
the Fisher kernel [29]. The increase in computing power and model size has
played a role in the increase of accuracy from 63.3% for AlexNet with 60
million parameters to 90.2% for the Meta Pseudo Labels [30] model with 480
million parameters [27]. The number of parameters is certainly not the only
factor, as for instance the ResNeXt-101 model [31] from 2018 has 829 million
parameters whilst obtaining an accuracy of 85.4% [27]. The architectural
nuances in the more advanced convolutional network models in Figure 1.3
are not relevant for this thesis, and we refer to [27] for a comprehensive list
of different models used for the ImageNet [26] classification task. However,
we note that all but one [32] of the state-of-the-art models are based on
CNNs and exploit their inductive bias towards image data. The paper [32] is
based on the transformer architecture [33], but has since been surpassed by
CNN architectures [30, 34]. The authors of [32] note that one of the reasons
their model had the state-of-the-art performance was due to them being
able to pre-train on an enormous dataset of labeled images before
fine-tuning their model on the actual ImageNet dataset [32]. The dataset
they pre-trained on is the JFT-300M dataset owned by Google, containing
300 million images with associated (noisy) labels [35].

TO
P 1

 A
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UR
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Y

SIFT + FVsSIFT + FVs

AlexNetAlexNet
Five Base + Five HiResFive Base + Five HiRes

SPPNetSPPNet

Inception V3Inception V3
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FixResNeXt-101 32x48dFixResNeXt-101 32x48d
Meta Pseudo Labels (EfficientNet-L2)Meta Pseudo Labels (EfficientNet-L2)

Other models State-of-the-art models
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Figure 1.3: The Top-1 accuracy of different computer vision models from 2011 to May 2021. Top-
1 accuracy is the percentage of times the most probable class predicted by the model is the correct
class. Image credit: [27]

The basic operation of CNNs is the convolution operation. Equation (1.8)
shows an example of a convolution operation. The input Z l is usually the
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input image. There are some different equations for the two-dimensional
convolution operation. They differ in whether the input dimensions are
retained or if they are reduced. If they are retained, the filter W l will also
multiply elements at negative indices, i.e. outside the input matrix. The
”imaginary” elements outside of the input matrix will not contribute to the
final output. However, the common implementation found in our machine
learning framework [36] does not operate this way. Instead, the convolution
operator is going to reduce the input dimensions depending on the
dimension of the filter.

For a 3×3 filter, it will reduce the input dimension by two for both rows and
columns. For a 5× 5 filter both input dimensions will be reduced by four.
This is due to the filter stopping at the edges of the input matrix, and not
multiplying elements outside of it. Examples are shown in equations (1.6)
and (1.7), where the input matrices with dimensions 3×3 are reduced to 1×
1 scalars after applying a convolution filter with dimension 3× 3. Note the
subscripts in equations (1.6) and (1.7), for instance Z l

1:3,1:3 denotes the upper
left 3×3 submatrix of Z l .

When the filter has been applied across an entire row, it moves one row down
and does the same process for the rest of the input matrix in equation (1.8).

Z l
1:3,1:3 1 1 1

1 1 1
1 1 1

 ~

W l 1 0 −1
1 0 −1
1 0 −1

 = 0 (1.6)

Z l
1:3,2:4 1 1 0

1 1 0
1 1 0

 ~

W l 1 0 −1
1 0 −1
1 0 −1

 = 3 (1.7)

Z l

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0


~

W l 1 0 −1
1 0 −1
1 0 −1

 =

Z l+1
0 3 3 0
0 3 3 0
0 3 3 0
0 3 3 0

 (1.8)
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In the above example, the input matrix has only one channel. Usually
images have three channels, for red, blue and green. In equation (1.8), the
input is 1×9×9, where the leading one is the number of channels. The filter
shape is 1 × 3 × 3 × 1, where the leading number indicates the number of
channels in the input and the trailing one is the number of channels in the
output. Any number of output filters can be used, and the choice of output
channels is very similar to the choice of hidden layer size, H l , for
fully-connected networks.

Z l+1 in equation (1.8) is an example of a feature map from one channel. By
using more channels one will obtain more feature maps.

When working with the ImageNet dataset, one may resize the images into the
dimensions 3×256×256, with three color channels and 256 pixels in height
and width. If we assign the first convolutional layer to have 16 channels, and
a 5× 5 filter size, the dimension of the filter W 1 is then 3× 5× 5× 16, since
there are three input channels, filter size of five and 16 output channels.

The benefits of convolutional neural networks are that they are more
parameter-efficient when working with image data compared to their
fully-connected counterparts. In equation (1.8), the input Z l has 6 · 6 = 36
features, and the output Z l+1 has 4 ·4 = 16 features. In order to perform such
a transformation with a FCN, one would require a matrix with dimension
36×16. In comparison, the filter weight W l only contains 9 parameters.

The reason CNNs are able to perform well on image data are due to the
principles of locality and parameter sharing. Let us imagine we have a filter
W ∗. W ∗ is able to detect a paw. Now, it does not matter where in the input
image X the paw is located, since the convolution operation is applied on
the whole image with the same filter. The locality part stems from the filter
W ∗ being able to detect local attributes in the image, irrespective of where in
the image that attribute is. Parameter sharing is due to the fact that the
filters are applied across the whole input image. When translating the input
of a convolution operation, the output will be translated equivalently. The
technical term for this is that the convolution operation is equivariant to
translations [8, 37]. Equivariant means that if the input to the function is
transformed a certain way, the output will be transformed in a similar way.
For CNNs, this means that a translated input image will have a translated
output image after applying a convolution function.

Fully-connected neural networks, however, are not to robust to translations
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in the input image. If a FCN is trained on dog pictures, and the paws are
always in the bottom part of the image, the FCN will perform poorly if the
paws start appearing in the top part of the image. This will not happen to
the W ∗ filter, since it applies the same convolution operation over the whole
input, and so any translations in the input will result in an equivalent
translation in the output.

In summary, CNNs use the powerful mechanism of convolution in order to
use fewer parameters while still being able to generate meaningful
intermediate feature representations Z l . However, CNNs are somewhat
limited in terms of the data they can process, due to them necessitating the
input being in a structured format, like the grid structure of an image.

1.2.1 Example Datasets: The ImageNet And MNIST Datasets

The ImageNet dataset [26] has been one of the principal benchmarks for
computer vision in the last decade [27]. It contains images of several
different object categories, like birds, vehicles, apparel and household items.
Figure 1.4 shows a visualization of several images from the ImageNet
dataset. There are images of car tires, butterflies, owls, typewriters,
speedometers, baseball, and much more. There are a total of 1000 classes
spread among 14,197,122 images [38]. Human classifiers obtain an error rate
at about 5.1% [38], whilst the current best deep learning model has an error
rate of 9.55%[27, 7]. Figure 1.6 shows a visualization of a set of 11× 11× 3
filters of the AlexNet model [25]. We see that certain filters are trained to
recognize certain shapes, for instance horizontal or vertical edges, or
particular color patterns.

Some images from the MNIST dataset are shown in Figure 1.5. The MNIST
dataset contains 60,000 labeled images of handwritten digits from zero to
nine. The famous LeNet [24] architecture was used on the MNIST dataset.
The images are greyscale with a height and width of 28× 28. It is a rather
simple dataset, and most neural network models are able to perform well on
it.
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Figure 1.4: A collection of images from the ImageNet dataset. Image credit: [39]
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Figure 1.5: Some of the pictures from the MNIST dataset. Image credit: [40]
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Figure 1.6: Visualization of filters with dimension 11×11×3, which are part of the AlexNet [25] model.
Image credit: [41]

1.3 Recurrent Neural Networks

The origins of recurrent neural networks (RNNs) can be traced back to the
end of the 1980s, with papers like [42] using the newly-developed tools of
backpropagation in order to apply fully-connected networks on sequences.
The vanilla RNN operates in a very similar way as its fully-connected
counterpart, and takes in new information for each new element that it
processes in the sequence.

Figure 1.7 shows how a recurrent neural network processes an input
sequence with length Tx in order to produce the output ŷ . Following the
Figure 1.7, the propagation rule is based around how a<t+1> is generated
from a<t>, and how to finally produce ŷ . Using the ReLU activation function
σ(·) from subsection 1.1, we may write the update rule as follows

a<t+1> =σ(Waa a<t>+Wax x<t>). (1.9)
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The weight matrix Waa controls what infromation from the previous timestep
goes into the next one, and the weight matrix Wax controls what information
from the input goes into the current representation. This is a single-layer
neural network with hidden size H , and the dimension of the matrices are
Waa : H×H and Wax : H×D . Note that we omit the bias term as this is added
by the Pytorch framework [36] automatically, and it reduces the readability of
the definitions and equations.

By using the softmax function from section 1.1.1, the prediction rule for ŷ is

ŷ = softmax(Wy a a<Tx>)), (1.10)

where the dimension of Wy a is C ×H .

Figure 1.7: The many-to-one recurrent neural network structure. In this formulation, the only output
is at the last timestep, after all of the input sequence x<1> through x<Tx> has been processed. Image
credit: [22]

Recurrent neural networks are flexible, and can be used for a variety of tasks.
Figures 1.8 and 1.9 show that RNNs can be designed in different ways
depending on what kind of input data x and output y is desired. The setup
in Figure 1.8 can be used for named entity recognition, with the inputs at
time t , x<t>, being feature vectors for words. The output at time t , ŷ<t> is a
category for each word x<t>. The setup in Figure 1.9 can be used for
translation, where the input x is processed, and one successively generates
output ŷ<t> until finished. Usually a stopping symbol is also one of the
possible outputs in ŷ<t>, in order to know when to stop the output sentence.
A multi-layer RNN works by taking the output from the previous RNN as
input to the subsequent RNN. As a concrete example, say we have RNN A
and RNN B. RNN B takes the output of RNN A as input. Hence, after RNN A
has produced hidden states {a<At>}Tx

t=1, the features {a<At>}Tx
t=1 are used as
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input to RNN B, producing {a<B t>}Tx
t=1. RNN B can then predict output

tokens ŷ<t> depending on the task at hand. For more information regarding
RNNs we refer to the explanations on the website [22].

Figure 1.8: A many-to-many recurrent neural network, with predictions on every input timestep t .
Such a setup can be used for named entity recognition, i.e. recognizing names in a sentence. Image
credit: [22]

Figure 1.9: A many-to-many recurrent neural network, with predictions after all of the input sequence
x has been processed. Such a setup can be used for translating between languages. After having
processed the input sequence x in one language, one can have the output y be symbols for a different
language. Note that in order to know when to stop the translation, it is common to predict a stopword
in the output y . Image credit: [22]

1.3.1 Example Dataset: Name Classification Dataset

As a dataset example, we let the dataset X contain 1080 names from 18
different languages, with 60 names from each language. The dataset is taken
from [2]. Some example name and country combinations are listed below
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Arabic : Khoury, Gerges, Asghar, Maalouf

Russian : Katzarev, Dovgalev, Shahin, Zhdanko

Italian : Abate, Marchesi, Lazzari, Vitolo

Scottish : Russell, Muir, Hunter, Hamilton.

The dimension of the data X is N × S ×D = 1080× 12× 57, where N is the
number of examples in the data, S is the length of the longest name, and D is
the length of the feature vector for each letter. Hence we have Tx = S. There
are 57 different letters, and we have truncated the dataset in order for the
longest name to be 12 characters long. If one wants to use a fully-connected
network on this dataset instead, one could concatenate the feature vectors
for each letter at every postion. The resulting matrix would then have
dimension N × (S ·D) = 1080×684.

1.4 Graph-Convolutional Neural Networks

One of the fastest-growing new fields in machine learning is that of
graph-convolutional neural networks (GNNs). They are suited to work on
graph data, which could be a social network, where the nodes are user
profiles and the edges denotes which people are friends. It could also be a
molecule, where nodes are atoms and the edges are chemical bindings.
Figure 1.10 shows an example graph with six nodes and seven edges
connecting them. In order for graph neural networks to account for the
edges in their forward pass, they require information on the graph in form of
an edge matrix E . The dimension of the edge matrix E is 2×Ne , where Ne is
the number of edges in the graph. For the graph in Figure 1.10, the
corresponding edge matrix E is shown in equation (1.11).

Figure 1.10: A graph with 6 nodes and 7 edges. For our graph dataset, each node will be described by
a feature vector of length D . Image credit: [43].
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(
1 1 2 2 3 4 4
2 5 5 3 4 5 6

)
(1.11)

Graph neural networks thus are designed to operate on a graph, and take
both the feature matrix X and the edge matrix E as input. This is an example
of a model (GNN) desiged to work on non-euclidean data. Euclidean data is
data which can be represented in Rn. Examples of this is an image, or simply
a feature vector. A graph has edges however, and there is no way one can
represent both the feature vectors of each node and the edges in the graph in
Rn.

Recent interest in creating neural networks for non-euclidean data has
sparked a new view of interpreting neural networks. The Geometric Deep
Learning [37] community has created a taxonomy for understanding
different neural architectures, for instance CNNs, RNNs, GNNs and also the
transformer [33] architectures in terms of symmetries and invariants [37,
44]. The authors [44] state “We believe that the current state of affairs in the
field of deep (representation) learning is reminiscient of the situation of
geometry in the nineteenth century ... Geometric Deep Learning is an
umbrella term we introduced in [44] referring to recent attempts to come up
with a geometric unification of ML similar to Klein’s Erlangen Programme. It
serves two purposes: first, to provide a common mathematical framework to
derive the most successful neural network architectures, and second, give a
constructive procedure to build future architectures in a principled way.”
Note that the geometric deep learning programme of [37] is not entirely
related to graph neural networks, or vice versa. However, the recent work
of [37] can trace its history from earlier designs of graph neural networks
from the same authors [45]. To summarize, graph neural networks have
paved the way for a new way of understanding neural networks, where the
focus has shifted into creating models which by design satisfy symmetry
properties of the data [46, 37]. This has also been done in physics to create
neural networks invariant to different choices of gauges [47].

In this thesis we will use one of the simplest GNN architectures, namely the
GCN architecture from [48]. The learnable parameters for graph neural
networks are also weight matrices W l , but the weight matrices will take on a
different role than the fully-connected matrices in (1.2). A graph neural
network operates on a graph, so in addition to specifying X , edge
information is also required. Here we follow the notation from the Pytorch
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Geometric framework [49] where the edges between examples are
undirected and denote the similarity between the examples. The definition
of similarity depends on the dataset. For our example dataset in
Section 1.4.1, we have a dataset consisting of scientific articles, and
similarity between article A and B means that paper A cited paper B , paper
B cited paper A or both papers cited each other.

The propagation rule for the GCN architecture is as follows

Z l+1 =σ(
D̃− 1

2 ÃD̃− 1
2 Z lW l), (1.12)

where σ is a nonlinear function as in (1.2), Ã = A+ IN is the adjacency matrix
of the undirected graph with added self-connections, and D̃ is the diagonal
degree matrix of Ã, defined as D̃i i = ∑

j Ãi j . For the example edge matrix E
in (1.13) we will get the matrix Ã in (1.14).

(
1 3
2 1

)
(1.13)

1 1 1
1 1 0
1 0 1

 (1.14)

The ones along the diagonal in equation (1.14) come from the identity
matrix I3, and the off-diagonal elements represent the edges from the edge
matrix (1.13).

For the GCN architecture, each node’s updated representation in Z l+1 is an
aggregation of that node’s representation in Z l and of its neighbors. When
considering a single example n from the data, its updated representation
takes the form

Z l+1
n =σ


 ∑

j∈N (n)

1√
d̂ j d̂n

Z l
j

W l

 . (1.15)

The term N (n) is the set of all neighbors of node n in the graph including
itself, Z l

j is the previous representation of the j’th neighbor of n, and d̂i =∑
j∈N (i ) 1. So d̂i counts the number of neighbors of node i, including itself. We

recognize (1.15) as a fully-connected forward propagation (1.2), but having
replaced the previous representation Z l

n by the term in the inner parenthesis
in (1.15), which is a weighted mean of its own representation and that of its
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neighbors. For data that can be expressed as graphs, graph neural networks
often outperform fully-connected networks [48]. This is due to this graph-
specific summation term in their forward propagation rule. Note that the
dimensions of the Z i and W i ’s are the same as in the fully-connected case
but they are now also affected by the graph structure contained in Ã and D̃ .

Fully-connected networks can be applied on more varied problems than
graph neural networks since graph neural networks require that the edges
between the nodes are specified. However, if one has a dataset that contains
edges between nodes, for instance data about a social network or a
molecule, a graph network will generally be a more powerful
machine-learning method than a fully-connected network. Both the
fully-connected and the graph neural network require the node features
represented in the data X with dimension N ×D . However, the graph neural
network also requires the edge information E with dimension 2 × NE . In
doing so, the learnable weights W l in the graph neural network will learn
about each node and its neighbors. This is more powerful than learning
about each node by its own features, which fully-connected networks do.
Since the graph neural network is explicitly designed to operate on graph
data, we say that the graph neural network model contains an inductive bias
to operate on graph data. Our goal then is to investigate whether the
inductive bias of the graph neural network impacts the test-time accuracy
and whether the information bottleneck method explained in Section 3 can
provide intuition as to which architecture is able to generalize the most from
the features X .

1.4.1 Example Dataset: The Cora Citation Dataset

The Cora dataset is a graph-like dataset meaning that in addition to a feature
matrix X with dimensions N ×D where N is the number of examples and
D is the number of features, with the edge matrix E containing the edges of
the graph. The Cora dataset contains 2708 nodes and 5429 edges. The edges
in the Cora data describe citations. They are undirected so an edge between
nodes A and B means either paper A citing paper B , paper B citing paper A or
both citing each other. Moreover, each node in the Cora dataset is described
by a feature vector of length D = 1433 where each element of that vector is
the count of a predetermined word (bag-of-words feature vector). Each of
the 2708 articles has one of seven labels indicating which scientific field their
article comes from. As an example, let us choose to count the occurrence of
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the words ("like","movie","to","watch","game"). It is usual to just count the
word stems, which means that ”likes” and ”liked” will both be counted under
the word stem ”like”. Two example texts are provided in (1.16) and (1.17).

Robert likes to watch movies. Marie likes movies too.

(2,2,1,1,0) (1.16)

Mary also likes to watch football games

(1,0,1,1,1) (1.17)



Chapter 2
Backpropagation and Neural Network
Training

2.1 Backpropagation

Backpropagation is the manner in which all neural networks learn (adjust
the weights). Backpropagation relies on the sequential structure of neural
networks in order to compute gradients to update the parameters of the
network. The gradients are computed in a sequential manner, by using the
chain rule from calculus. Due to our method relying on analyzing the
training procedure for a neural network, it is worth understanding in-depth
how a neural network actually trains.

2.1.1 Single Hidden Layer Example

We start with an illustrating example, a single-layer neural network. Its
forward propagation rule is as follows

Ŷ =W 2σ(W 1X ), (2.1)

where X is the input, and σ(x) is an activation function, for instance the
ReLU function = max(0, x). We consider a regression objective, where the
loss function is

L(Y , Ŷ ) = 1

2
‖Y − Ŷ ‖2

2 (2.2)
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Our desire is to find the gradient of the loss function L(Y , Ŷ ) with respect to
the model parameters W 1 and W 2.

When dealing with neural networks, it is convenient to introduce the Einstein
summation method when interpreting matrix multiplications. The Einstein
summation convention states that repeated indices on the same side of an
equation is implicitly summed over. For instance, element (i , j ) of the matrix
multiplication A = BC is represented as

Ai , j = Bi ,kCk, j

which is equivalent to

Ai , j =
∑

k

Bi ,kCk, j .

The gradients we are looking for are

∂L

∂W 1

and
∂L

∂W 2
.

The chain rule of calculus can be applied when we have a chain of functions
P = f (g (Q)). We can denote Z = g (Q). The chain rule of calculus then states

dP

dQ
= d f

dQ
= d f

dZ

dZ

dQ
.

Hence, the chain rule of calculus has reduced the problem of finding d f
dQ into

finding the two derivatives d f
dZ and dZ

dQ .

We are going to be working with indices when finding gradients, and an
object that commonly appears is the Kronecker delta function, defined as

δi , j =
{

1, if i = j

0, otherwise
(2.3)

Note that for a matrix A, we have the relation
∂Ak,q

∂Ai , j
= δi ,k ·δq, j .
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Referring to our single-layer neural network (2.1), we denote Z = σ(W 1X ).
The gradients for W 1 and W 2 then take the form

∂L

∂W 2
= ∂L

∂Ŷ

∂Ŷ

∂W 2
(2.4)

and

∂L

∂W 1
= ∂L

∂Ŷ

∂Ŷ

∂W 1
= ∂L

∂Ŷ

∂Ŷ

∂Z

∂Z

∂W 1
. (2.5)

We begin by finding ∂L
∂Ŷ

.

∂L

∂Ŷi j

= 1

2

∂

∂Ŷi j

∑
k,q

(
Ŷkq −Ykq

)2

=∑
kq

(
Ŷkq −Ykq

)¯ ∂Ŷkq

∂Ŷi j

=∑
kq

(
Ŷkq −Ykq

)¯δi kδ j q

= Ŷi j −Yi j = ∂L

∂Ŷi j

In order to obtain the gradients for W 1 and W 2, we need the gradients ∂L
∂Ŷ

and
∂Ŷ
∂W 2 . We note that Ŷ =W 2Z . Since element i , j of Ŷ is Ŷi j =W 2

i s Zs j , we obtain

∂Ŷi j

∂W 2
pr

= ∂

∂W 2
pr

W 2
i s Zs j

= δi pδsr Zs j = δi p Zr j .

By the chain rule of calculus, the gradient ∂L
∂W 2 is thus

∂L

∂W 2
pr

= ∂L

∂Ŷi j

∂Ŷi j

∂W 2
pr

= (
Ŷi j −Yi j

)
δi p Zr j

= (
Ŷp j −Yp j

)
Zr j =

(
Ŷp j −Yp j

)
Z T

j r
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which in matrix form is

∂L

∂W 2
= (

Ŷ −Y
)

Z T . (2.6)

As for finding ∂L
∂W 1 , we decompose it into ∂L

∂W 1 = ∂L
∂Z

∂Z
∂W 1 .

As for the gradient of the ReLU function, σ(x) = max(0, x), it is

∂σ(x)

∂x i j
=

{
1, if xi j > 0

0, if xi j ≤ 0.

The gradient ∂L
∂Z is found as follows

∂L

∂Zi j
= ∂L

∂Ŷkp

∂Ŷkp

∂Zi j
= (

Ŷkp −Ykp

) ∂(
W 2

kr Zr p

)
∂Zi j

= (
Ŷkp −Ykp

)
W 2

krδi rδp j =
(
Ŷk j −Yk j

)
W 2

ki

= (W 2)T
i k

(
Ŷk j −Yk j

)
∂L

∂Z
= (W 2)T (

Ŷ −Y
)

Moreover, ∂Z
∂W 1 is found as follows

∂Zi j

∂Wpq
=σ′ (W 1X

)
i j

∂
(
W 1

i r Xr j

)
∂W 1

pq

=σ′ (W 1X
)

i j Xk jδi pδqr .

To find ∂L
∂W 1 , we compute

∂L

∂W 1
pq

= ∂L

∂Zi j

∂Zi j

∂W 1
pq

= [
(W 2)T

i k

(
Ŷk j −Yk j

)¯σ′(W 1X )i j

]
Xk jδi pδqr

= [
(W 2)T

pk

(
Ŷk j −Yk j

)¯σ′(W 1X )p j

]
Xq j

∂L

∂W 1
= [(

(W 2)T (Ŷ −Y )
)¯σ′(W 1X )

]
X T
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We have now found the gradients ∇W 1,∇W 2 for the parameters W 1 and W 2

in our model by using the backpropagation algorithm. We identify the key
part of the backpropagation algorithm as decomposing the gradient
computation ∂L

∂W 1 into ∂L
∂Z

∂Z
∂W 1 where Z = σ(W 1X ). By using the same

procedure as above, one can find the gradient for any layer W l in a deep

fully-connected network by using the chain rule ∂L
∂W l = ∂L

∂Z l
∂Z l

W l .

2.1.2 Backpropagation in PyTorch

The main motivation for using a framework like PyTorch [36] or
Tensorflow [50] is that it is sufficient to specify the forward pass of the model
which defines how to go from the input X to the prediction Ŷ . Having done
this, the frameworks are able to compute all the necessary gradients
{∇W l }L

l=1 for all the layers. The way this is achieved is through the backward
pass which uses backpropagation. Backpropagation is very similar to
reverse-mode autodifferentiation [51].

When working in PyTorch, all of the data is specified in terms of tensors.
Tensors are matrices, but can have multiple dimensions, not just two. The
tensor class of PyTorch has attributes such as requires_grad, which specifies
if a gradient for that tensor is required. If one has some constants in the
model, these would have requires_grad = False. Figure 2.1 shows an
example of a computational graph in PyTorch. The inputs are x and y, where
x has requires_grad = True. This forces the output z = x · y to have
requires_grad = True, since in order to compute the gradient for x we also
need to have the gradient for z since the gradients moves in the opposite
direction of the backward pass. If z had requires_grad = False we would have
no information about how to compmute the gradient for x. The is_leaf
attribute is simply to indicate that one does not have to continue the
backward pass after reaching that node.

When specifying a function in PyTorch, it is required to specify both the
forward and backward pass. PyTorch already has specifications for a wide
variety of functions, for instance the tanh, sigmoid and ReLU functions,
together with multiplication, addition and many more functions
documented at [52]. When we then apply those functions in our neural
networks, we use the forward pass of that function, and the PyTorch engine
can then access the backward pass for that function in order to compute
gradients.
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Figure 2.1: An example of a computational graph created by PyTorch. X and y are the inputs, where
x hasrequires_grad = True. The ”Mul” operator also has a defined MulBackward function, which
computes the gradients for x and y. Image credit: [53].

In Figure 2.1, backpropagation starts by calling the backward method of
tensor z. It tells the PyTorch engine, PyTorch Autograd, to start computing
the gradients of all the tensors involved in producing z which have
requires_grad = True. The MulBackward method specifies how to compute
the gradients ∂z

∂x and ∂z
∂y . Since y has requires_grad = False, however, the

MulBackward operation will not compute ∂z
∂y . Internally, MulBackward has

stored that ∂z
∂x = y = 2.0. Then the gradient for x is ∇x = 1.0 · ∂z

∂x = 1.0 ·2.0 = 2.0.
The number 1.0 comes from initializing the backward method of z with 1.0,
and can be used to scale the gradients if necessary.

The schematic in Figure 2.1 can be used to understand any neural network
model in PyTorch, albeit with different inputs x, y and functions. We note
that if one defines a function, g (·), where g is defined through other PyTorch
functions, g will also be considered a PyTorch function since PyTorch
Autograd can recursively decompose g into applications of functions which
have the PyTorch forward and backward pass defined.

We can draw several analogies from the backpropagation example in
Section 2.1.1 and Figure 2.1. By replacing x with Z l , y with W l and z with
Z l+1, one can use the gradient computation algorithm from Section 2.1.1 in
order to recursively compute the gradient for any hidden layer. Code
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listing 2.1 shows an example neural network with a single layer in PyTorch,
without any hidden layers. By calling the backward method of the tensor z,
PyTorch would perform the exact same operation as is done when finding
∂Z
∂W 1 in Section 2.1.1. Moreover, this backward function call can be
understood with analogies to Figure 2.1, where the weight W in the
nn.Linear object takes the spot of x, and x in Figure 2.1 takes the spot of y ,
since y does not require a gradient.

The backward operations required in order to compute ∂z
∂W will be the

backward method defined by the nn.Linear object and of the torch.relu
function.

1 import torch

2 import torch.nn as nn

3

4 class SingleLayerFCN(nn.Module):

5 def __init__(self, input_dim, output_dim):

6 super().__init__()

7 self.linear = nn.Linear(in_features=input_dim, out_features=output_dim)

8 def forward(self, x):

9 z = torch.relu(self.linear(x))

10 return z

Listing 2.1: Single-Layer Fully-Connected Network in PyTorch

2.2 Neural Network Training

2.2.1 Specifying the Training Procedure In Tensorflow and Keras

When doing deep learning, one commonly uses an already implemented
deep learning framework in order to be more efficient and write more
readable code (e.g., Tensorflow, PyTorch or Flux). In these frameworks it is
required that one specifies the forward pass that defines how to generate Ŷ
from X , which loss function to use, and which optimization algorithm to
use. The forward pass is specified by selecting the number of layers L in the
model and the dimensions of the matrices Wl ,1 ≤ l ≤ L. Larger matrices Wl

result in more parameters and a model able to learn more complex
relationships, however issues arise due to overfitting, explained in
Section 2.2.5. An example program for training a neural network with
TensorFlow [50] parsed through Keras [54] on 28 × 28 black-and-white
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images of numbers 0 through 9 is shown in the code code listing 2.2, taken
from their website (tensorflow.org/overview). The keras interface has many
high-level abstractions, which makes it suited for creating concise neural
network training setups. In TensorFlow, a fully-connected layer is called a
dense layer.

1 import tensorflow as tf

2 mnist = tf.keras.datasets.mnist

3

4 (x_train, y_train),(x_test, y_test) = mnist.load_data()

5 x_train, x_test = x_train / 255.0, x_test / 255.0

6

7 model = tf.keras.models.Sequential([

8 tf.keras.layers.Flatten(input_shape=(28, 28)),

9 tf.keras.layers.Dense(128, activation='relu'),

10 tf.keras.layers.Dropout(0.2),

11 tf.keras.layers.Dense(10, activation='softmax')

12 ])

13

14 model.compile(optimizer='adam',

15 loss='sparse_categorical_crossentropy',

16 metrics=['accuracy'])

17

18 model.fit(x_train, y_train, epochs=5)

19 model.evaluate(x_test, y_test)

Listing 2.2: Training a Model with Tensorflow

Lines 1 through 5 load the data and normalize it. The data X has dimensions
N × 28 × 28 with integer values in the range [0,255], which is the pixel
intensity at that location. Lines 7-12 define the forward pass of the model.
An input Xi of dimension 28×28 is first flattened into an array of dimension
784. Then follows matrix multiplication with the weight W1 of dimension
784×128, followed by a ReLU activation. The representation of Xi after this
ReLU layer is Z i

1 . The dropout layer randomly sets a proportion, in this case
0.2 = 20%, of the activations in Z i

1 to zero for a single pass. The dropout layer
consequently generates the output d(Z i

1). The output d(Z i
1) is not

considered as a representation of the data, since the dropout layer is only
used during training to help the network generalize. More on dropout in
Section 2.2.5. The final dense layer has a layer weight W2 of dimension
128 × 10 with a softmax activation and generates the prediction Ŷ . The
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softmax function is defined in Equation (1.5).

The optimizer keyword when compiling the model (line 14) specifies which
optimization algorithm to use. The optimizer specifies how the weights W1

and W2 in the network are updated when the model is trained during the
model fitting stage. A common choice is the adam optimizer [55] with
adaptive learning rates. For more on the adam optimizer we refer to
Section 2.2.4.

2.2.2 Measuring Model Fit Quality With Log Likelihood

Let (X ,Y ) be the given data, with yi ∈ {0,1, . . .K } and xi ∈ Ω where Ω ⊂ Rn,
with X = (x1, x2, . . . xN ). This is a classification problem with data in Rn

having K different classes. One considers each datapoint (xi , yi ) as a random
variable, and further assumes that all N random variables are independent
and identically distributed (iid). The distribution of the data is defined by
the unknown distribution p, where p(xi ) = yi . One can think of yi as either
being a number indicating the class, as in yi ∈ {0,1, . . .K }, or yi being a vector
indicating the location for the correct class, for instance yi = (0,1,0, . . . ,0) if
the correct class is 2. The likelihood and log-likelihood of the sample under
the distribution p is then

L(p) =
N∏

i=1

K∏
k=1

p
yi ,k

i ,k , (2.7)

1

N
logL(p) = 1

N

N∑
i=1

K∑
k=1

yi ,k log pi ,k . (2.8)

Here, we have scaled the log likelihood by 1
N in order to normalize the

magnitude of the loss. The domain of p is Ω, and p outputs a probability
density for each sample n, pn = (pn,1, pn,2, . . . pn,K ) with pn,1 +·· ·+pn,K = 1. If
the correct class for sample n is class 2, then yn = (0,1,0, . . .0). Knowing the
labeled pairs (xn, yn) allows us to train a probability density model pθ with
parameters θ such that pθ(xn) ≈ yn.

The neural network model pθ contains L layers with weights Wl , 1 ≤ l ≤ L,
where each gradient ∇Wl is found by backpropagation and optimized with
gradient descent. The whole training process relies upon choosing a set of L
weights {Wl }L

l=1 which yields an output pθ(X ) close to Y by minimizing the
loss function (2.7).
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2.2.3 Batching

The loss function (2.7) is a mean over all the examples in the dataset.
However, it is often the case that the whole dataset, including all the weights
Wl , the gradients ∇Wl and the activations Zl are too big to be stored in
memory. One can then randomly subsample the dataset X to create a batch
with fewer elements, say B . This results in nB = bN /Bc batches that must be
processed in order to iterate through the dataset once. One such iteration is
called an epoch. This process is repeated for as many epochs as necessary,
and the data is usually shuffled to obtain different batches on each epoch.
Hence for each epoch, the network will have been updated nB times.

Another reason for batching the data is that the gradients ∇Wl become
noisier since there are fewer datapoints in a batch B than in the whole
dataset N . Introducing this noise makes the network less prone to overfit on
the training data (X ,Y ) [8]. More on overfitting in Section 2.2.5.

2.2.4 Optimizing The Objective

After having obtained the gradients ∇Wl from backpropagation, one can
update the weights Wl . The simplest way is the following update rule, called
Stochastic Gradient Descent (SGD)

W k+1
l =W k

l −α∇W k
l . (2.9)

The iterator k will range through nB ·E numbers if E is the number of epochs
and nB is the number of batches in an epoch. The learning rate α gives the
step size of the optimization, and a common choice is setting α= 0.001 [56].
However each problem is different, and in more complicated models only a
certain range of values for α will work. Choosing α too small would yield no
training progress, whilst choosing α too large will produce numerical
instabilities and inability to converge to a local (or global) minima.

The layer weight Wl has dimension hl−1 × hl , where hl denotes the
representation at step l , with h0 = X . It could be that different elements in
the weight matrix Wl requires different learning rates in order to achieve
convergence. In Figure 2.2 there are two scalar parameters w1, w2 to
optimize. Also, Figure 2.2 is color coded such that larger values of the cost
function is darker. One sees that in the direction (1,1) from the red center
plot, the cost function changes rapidly. However, in the direction (1,−1), it is
almost constant. In order to optimize such objectives easier, the
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optimization method adam [55] proposes to track a running mean of the
gradient ∇Wl for each layer, and a running mean for the squared gradient,
(∇Wl )2. Let mk

l be the running mean for the gradient ∇Wl , and vk
l be the

running mean for the squared gradient (∇Wl )2, at step k. The update rule for
adam is then as follows

W k+1
l =W k

l −α · m̂k
l√

v̂k
l +ε

(2.10)

m̂k
l = mk

l

1−βk
1

v̂k
l = vk

l

1−βk
2

mk
l = (1−β1) ·∇W k

l +β1mk−1
l

vk
l = (1−β2) · (∇W k

l )2 +β2vk−1
l ,

where ε > 0 is used to avoid division by zero. The parameters β1,β2 for
calculating the running mean are usually chosen as β1 = 0.9 and β2 = 0.999.
The running mean mk

l for the gradient ∇Wl serves to alleviate the noise

introduced by batching (Section 2.2.3), and by dividing with
√

v̂k
l one

effectively ”normalizes” the optimization landscape in each direction,
yielding a more efficient optimization process [55]. For visualizations of
different optimization methods and how to implement them we refer to the
course website of CS231n [57].

Even though the update rule in (2.9) and (2.10) are different, the gradient at
step k, ∇W k

l , always follows from the backpropagation algorithm. The
methods differ in how they use the gradient information in order to
optimize the parameters.
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Figure 2.2: A heat plot of a two dimensional optimization problem with scalar parameters w1 and
w2. The darker regions indicate a higher loss. Image credit: [58]

2.2.5 Overfitting and Regularization

Figure 2.3 shows the training and validation accuracies over several epochs.
Since we are measuring the accuracy of our model we are considering a
classification problem. The accuracy, either train or validation, is the
percentage of correctly classified data points. When there is a small gap
between the training and validation accuracy curves, there is little
overfitting, which is good. If the gap between the training and validation
accuracy curves is large, it is beneficial to introduce a regularization of the
training.

Regularization serves to help the network generalize by enforcing penalties
when the network learns on the training data. In Section 2.2 we have used
dropout, which is a form of regularization. When using dropout, a random
subset of the activations in a layer l , Zl , are set to zero. The next layer thus
cannot use all the information in Zl since the dropout has set elements to
zero. When elements in Zl are set to zero they do not affect the next
representation Zl+1.

Dropout solves the problem of co-adaptation. With co-adaptation, the next
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Figure 2.3: A plot of the validation and training accuracies across epochs. It is straightforward to
identify if the neural network is overfitting or underfitting based on the distance between the training
accuracy curve and the validation accuracy curve. Image credit: [59].

representation Zl+1 is highly reliant on the previous representation Zl .
Co-adaptation appears in neural network since the input is sequentially
generated. A bad representation Zl could yield and even worse Zl+1. With
dropout however, the layer weight Wl+1 needs to be able to adapt to many
different Zl ’s during training, which makes the representation Zl+1 more
robust to different Zl .

Another form of regularization is adding a penalty for the magnitude of the
layer weights {Wl }L

l=1 to the loss function. In deep learning, the L2-norm is
most commonly used as a penalty. An example of an L2 regularized loss
function and resulting gradient is shown in equation (2.11) and (2.12),
respectively. The neural network with parameters θ is denoted as fθ where
Ŷ = fθ(X ) and Y are the correct labels from the data. The parameter λ
determines the weight put on the penalty term ‖Wl‖2

2. When using gradient
descent to minimize the objective (2.11), we are also going to minimize each
of the Wl ’s L2 norms, which forces the weights {Wl }L

l=1 closer to zero. When
the layer weights Wl are large in magnitude, they are able to change the
previous representation Zl−1 drastically. However, the large magnitude in
the elements of Wl means it becomes more sensitive to changes in Zl−1 and



CHAPTER 2. Backpropagation and Neural Network Training 33

Z0 = X . Since one seeks a neural network that is robust for different Zl−1 and
X , the layer weights Wl can be forced closer to zero by applying a penalty
such as the L2-norm penalty.

Lr eg ((X ,Y )|θ) = L(Ŷ ,Y )+ λ

2

L∑
i=1

‖Wi‖2
2 (2.11)

∇Wi = ∂L

∂Wi
+λWi (2.12)

Since deep neural networks have many parameters and are difficult to
optimize, the approach of adding a penalty (2.11) to the objective is used
instead of constraining the domains of the elements in the matrices {Wi }L

i=1.
The penalty will alter the obtained gradients with an additive term. Modern
neural networks can have millions of parameters, so setting up a
constrained optimization problem solver for so many parameters is
computationally infeasible. If a neural network fθ has a million parameters
it would require storing (106)2 values when optimizing the constraints [51].
However, some progress has been made for optimizing large networks while
enforcing hard constraints [60, 61].

Altering the gradients with additive terms is also commonly done in
physics-informed neural networks (PINN) [62]. PINN is an example of
adding expert knowledge in the system through creating custom loss
functions. The network is guided towards predictions that fulfill certain
criteria equations added to the loss function, and these act as a kind of
regularization [62].

Figure 2.4 shows level curves of an objective function, in red, together with
the constraint sets for the L1 (Left) and L2 (Right) norms shaded in cyan.
The optimal solution to the unconstrained problem is β̂ = (β̂1, β̂2). The L1
penalty is defined, for a matrix A, as ‖A‖1

1 =
∑

i , j |Ai , j | where |a| denotes the
absolute value of the scalar a. Figure 2.4 indicates that different constraints
will lead to different optimal solutions that satisfy those constraints, and
similarly different penalties will lead to different optimal solutions under
those penalties.



34 2.2. Neural Network Training

Figure 2.4: The constraint sets for the L1 penalty (Left) and L2 penalty (Right) are colored in
cyan, whilst level curves of the objective function is colored in red. The optimal solution to the
unconstrained problem is β̂ = (β̂1, β̂2). The constraint sets affect what the optimal solution of the
constrained problem will be. The areas in cyan are examples of hard constraints on the parameter
values (β1,β2) whereas a regularization term in the loss function will pull β̂ towards the edge of the
cyan regions. Image credit: [12].



Chapter 3
Information Bottleneck And Mutual
Information

3.1 The Information Bottleneck

The method relies on tracking the representations
from every layer during training, and finally to visualize a two-dimensional
information plane. The axes of the information plane is the mutual
information (3.1) between the input X and a representation Z l on the
first axis, and the mutual information between label Y and Z l on the second
axis. Note that we will be using superscripts for layer numbers. Figure
3.1 (taken from [63]) illustrates the information-plane for a five layer neural
network. The early layers contain the most information about the input data
and consequently also much information about the output Y . The arrows
from nodes A to E on the left in Figure 3.1 indicate the trajectory that layer
five follows during the training process. Each green line connects different
layers in the same epoch. Hence we see a tendency for the final layers
to increase their information about Y during training whilst keeping little
information about X , meaning they are able to generalize away unnecessary
features in X . Another part of the information bottleneck method
is that of tracking gradients during training. The method will be explained
in section 3.1.2, despite gradient tracking not being the focus of this thesis.

3.1.1 The Information Plane

The information plane in Figure 3.1 visualizes the representations learned
from each layer during the course of progress. The example in this figure is a



36 3.1. The Information Bottleneck

neural network with five hidden layers, labeled L1 through L5. L5 is the final
layer before the prediction layer Ŷ . There is compression in the network, in
the sense that L5 contains less information about the input data, but more
information about the output data. This is interpreted as the representation
learned by L5 is a generalization of the representations learned by earlier
layers, retaining information about the task Ŷ but discarding unnecessary
variance and information from the input X .

Figure 3.1: Visualization of the information-plane for a five layer neural network. Layer 1 is the first
layer, L2 the second layer, and L5 the last layer before the prediction Ŷ . The green line connecting the
colored points indicate that those points belong to the same epoch. Image credit: [63]

To quantify the amount of information, one uses the mutual information
between two random variables X and Y with densities p(x) and p(y). The
mutual information is defined as

I (X ;Y ) = ∑
x∈X ,y∈Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
= ∑

x∈X ,y∈Y

p(x, y) log

(
p(x|y)

p(x)

)
=− ∑

x∈X

log p(x)
∑
y∈Y

p(x|y)p(y)+ ∑
x∈X ,y∈Y

p(x|y)p(y) log
(
p(x|y)

)
=− ∑

x∈X

p(x) log p(x)+ ∑
y∈Y

p(y)

(∑
x∈X

p(x|y) log p(x|y)

)
= H(X )− ∑

y∈Y

p(y)H(X |Y = y)

= H(X )−H(X |Y ), (3.1)
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where H(X ) and H(X |Y ) are the entropy and conditional entropy defined as

H(X ) =− ∑
x∈X

p(x) log(p(x)), (3.2)

H(X |Y = y) =−
(∑

x∈X

p(x|y) log p(x|y)

)
. (3.3)

The entropy is a measure of the uncertainty of a random variable. Note that
if the value of X is completely determined by the value Y = y , the conditional
entropy H(X |Y = y) is zero, since there is no uncertainty left in X .

Figure 3.2 shows a fully-connected neural network for a two-class prediction
task (e.g. labelling pictures with cats or dogs). Here, Y and X are the data we
are given, with Y being either 1 or 0 depending on which class is associated
with the features X . The arrows in the figure represent matrix
multiplications (equation 1.2). For example, h1 is produced from X
following a matrix multiplication and an element-wise nonlinear function,
for instance, the function f (x) = max(0, x). In Figure 3.2, the representation
Z l is denoted as hl . There are no arrows between Y and X , since one
considers the data X being generated from Y by an unknown mechanism,
i.e., the data-generating process.1 The role of the neural network, then, is to
reverse this process and go from the features X to a prediction Ŷ as close as
possible to Y .

Consider the Markov chain X → Y → Z satisfying the distribution p(x, y, z) =
p(x)p(y |x)p(z|y). The Data Processing Inequality (DPI) [65] states that the
following relation holds on the mutual information between the variables:

I (X ;Y ) ≥ I (X ; Z ), (3.4)

since no function of Y can contain more information about X than Y itself.
By applying the DPI consecutively on the layers of the neural network, one
obtains the relations

I (X ;Y ) ≥ I (Z1;Y ) ≥ ·· · ≥ I (Z l ;Y ) ≥ I (Ŷ ;Y ) (3.5)

and

H(X ) ≥ I (X ; Z1) ≥ ·· · ≥ I (X ; Z l ) ≥ I (X ; Ŷ ). (3.6)

1This is best exemplified by the data X being images of real-world objects like cats, cars, dogs, ships, plants
or any other object. The dataset X is considered as a random sample from an underlying distribution or set.
This distribution could be the ”Set of all natural images”, natural indicating that they are photos of an actual
cat, not a photo of an image of a cat on a computer screen. The label Y is which category the photo belongs to.
Hence, one can consider each image x as a random variable, and when the layers of a neural network process
an image x, they will generate representations zi of that image. These representations will again be random
variables, since they are functions of the random variable x.
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Figure 3.2: Visualization of the hidden layers hi , the data X and Y and the final representation Ŷ of
a fully-connected deep neural network. In the figure the hidden representations are referred to as hi

instead of Z i . Image credit: [64].

Hence when interpreting information plane plots such as in Figure 3.1, one
expects the later layers to be down and to the left compared to previous
layers. As training progresses, however, the later layers would learn more
about the output Y .

The Information Bottleneck method thus relies on computing the mutual
information between each layer Z l and the data X and Y during the course
of training.

3.1.2 Gradient evolution

Another element of the information bottleneck method is to track the
gradients of the layers Z l during training. We briefly describe the idea here,
even though it is not the focus of the thesis. It is however complementary to
the information plane, and both methods have been implemented in the
framework described in Chapter 4. Note that each layer has a weight matrix
W l , and it is the gradient of this layer weight ∇W l that we store.

For this subsection we are going to denote layer numbers with subscripts, so
the representation from layer number l is denoted as Zl .

After having chosen a batch size B , one is left with nB = bN /Bc number of
batches in an epoch. Training over E epochs yields a total of K = nB · E
number of optimization steps. Hence for a neural network with L layers,
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Figure 3.3: Visualization of the gradient SNR for each of the five layers in the network from [10]. There
are five layers but six weight matrices, since the binary output Ŷ is not considered a layer.

there is in total L ·K different gradient matrices to store, one for each update
in every layer. Let us consider the visualization for a single layer l and its
gradient ∇Wl . Denote ∇W b,e

l as batch number b in epoch e, where
1 ≤ b ≤ nB and 1 ≤ e ≤ E . The mean and standard deviation for each epoch is
then defined as

Mean(∇W e
l ) = 1

nB

nB∑
b=1

∇W b,e
l (3.7)

STD(∇W e
l )2 = 1

nB

nB∑
b=1

(∇W b,e
l −Mean(∇W e

l )
)2

. (3.8)

The results from equations (3.7) and (3.8) are matrices. In order to obtain a
single scalar number, one takes the L2 norm of both matrices and divide by
the L2 norm of the layer weight at the end of each epoch:

‖Mean(∇W e
l )‖2

‖W nB ,e
l ‖2

and
‖STD(∇W e

l )‖2

‖W nB ,e
l ‖2

. (3.9)

By doing this procedure for every layer, one can visualize the gradient
signal-to-noise ratio (SNR) across every epoch for the whole network.
Figure 3.3 visualizes the gradient SNR-plane during the course of training
from the example data and network from [10].

In Figure 3.3, the standard deviation of the gradients increases whilst the
mean decreases as training progresses. In [10] this is interpreted as the
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network generalizing away unnecessary information. The early steps of the
optimization process decrease the loss function and require a large mean to
change the layer weights. When the network converges, the training signal
becomes more noisy, which is interpreted as the network generalizing away
unnecessary components of X (compressing the information). This claim is
however disputed, most notably by [66], which state that the compression
phase characteristic is due to the usage of tanh activation function, and not
a general feature of neural networks.

The information bottleneck method is used to investigate how the training
process of a neural network evolves, and can be used to evaluate the
convergence of deep networks. Small changes in network architecture can
lead to significant changes in convergence, and using the information
bottleneck visualizations could provide useful into investigating the
convergence of a neural network [67].

3.1.3 Optimal encoder and decoder

A key part of the information bottleneck method is understanding a neural
network as an encoder-decoder pair. This will be briefly explained in this
subsection.

An encoder is a function which encodes an input, in this case X , into a new
representation Z . An encoder can be understood in an
information-theoretic way as compressing data X into a representation Z
which has fewer bits. Then a decoder can be used to generate X or Y from
Z . For example, the data X could be a movie. One hour of movie streaming
at a resolution of 720× 480 uses about 1GB, according to Netflix [68]. If we
assume 30 images per second, this amounts to
(720× 480× 3× 30× 3600) bytes ≈ 112GB. Hence, Netflix is able to encode
112GB of movie information into a representation Z of 1GB. The
representation Z is thus transmitted instead of the data X . Optimality of Z
in this case requires that Z has the shortest bit-length for which the decoder
is able to reproduce X .

In the classification setting, the decoder is trained to generate Y from Z .
Figure 3.4 visualizes a neural network as multiple encoder-decoder pairs,
where the representation Z l is denoted by T l .

In the information bottleneck view, an optimal representation Z l is
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Figure 3.4: Visualization of a neural network as an encoder-decoder pair. The representation Z l is
denoted as Ti in the figure. Image credit: [64].

considered a solution to the following optimization problem

Z l = argmaxZ∈Z I (Y , Z ) s.t. I (X , Z ) ≤ R, (3.10)

where R is a compression threshold and Z is the domain of the
representation Z l . The domain Z is defined by the hidden layer sizes and
the activation function used. If the ReLU activation function is used with a
hidden layer size of 2, the domain is Z = R2

+, the set of non-negative real
numbers in the plane. Successfully training a neural network should thus
result in a final representation Z L which has a minimal I (X , Z L) but a
maximal I (Y , Z L), in essence being a compressed representation of X which
is able to provide sufficient information to classify Y correctly.

Early methods for computing the mutual information did not consider a
layer-wise optimization process as suggested by (3.10), but used (3.10) as a
theoretical tool to understand the representations Zi learned by a neural
network. However, recent work [69, 70] consider a layer-wise error term
based on the information bottleneck optimality (3.10). For estimating
mutual information, the probability density approach of Kolchinsky et.
al [71] described in Section 3.2 relies heavily upon the encoder-decoder
interpretation of neural networks in order to derive their estimation
method.

Equation (3.10) does not characterize what a representation Z l is, but rather
what it should be. So the IB method ranks a representation Z l based on how
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well it is able to fulfill equation (3.10). However, the representation Z l found
by optimizing a neural network through gradient descent does not actually
fulfill equation (3.10).

3.2 Mutual Information Estimation

The original article [11] uses a binning procedure to estimate p(z) for an
arbitrary activation z. This is possible since they use tanh as activation
function which has its output in the interval (−1,1). By selecting a certain
number of bins on the interval (−1,1) one can count the number of elements
in each bin, normalize, and then one obtains an approximation for p(z).

Due to the output of the ReLU function being in the interval [0,∞),
approaches for computing the mutual information based on binning the
output of a ReLU function perform poorly.

In an effort to alleviate these issues, the Nonlinear Information Bottleneck
(NIB) authors [71] rewrite the mutual information term to only include the
hidden layer representations Z , and are able to provide both upper and lower
bounds for both I (X , Z ) and I (Z ,Y )[71, 66].

3.2.1 Estimator Based on Pairwise-Distances

The main method we use is taken from [13] and [71]. The method assumes
that each data points representation is the mean of a normal distribution. In
turn, this creates a mixture distribution due to there being multiple data
points in the data set. The estimation of mutual information is thus reduced
to estimating the mutual information for this particular kind of mixture
distribution.

The authors of [13] and [71] mainly consider the case in which there is only
one bottleneck variable Z , but the same argument may be applied on any
hidden representation Z 1, Z 2, . . . Z L. The outset of their method is an
estimation rule of the form

Î (X , Z ) =−∑
i

ci ln
∑

j

c j e−D(pi ‖p j ), (3.11)

where ci is the weight of each mixture component, and D(pi‖p j ) is a
premetric, meaning it is nonnegative and D(pi‖p j ) = 0 if pi = p j . D is not
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assumed to be symmetric, nor to obey the triangle inequality. Note that even
if pi 6= p j , it may still be the case that D(pi‖p j ) = 0. The functions D(p, q) are
used to measure the distance between probability distributions p and q . An
example of such a function is the Kullback-Leibler (KL) - divergence [65],
defined as

KL(p‖q) =
ˆ

p(x) ln
p(x)

q(x)
dx. (3.12)

Let us compute the KL divergence between two normal distributions p and
q , where p ∼N (µ1,σ2

1) and q ∼N (µ2,σ2
2)

K L(p‖q) =
ˆ

p(x) ln
p(x)

q(x)
dx

=
ˆ

p(x)

(
−(x −µ1)2

2σ2
1

− 1

2
ln(2πσ2

1)

)
dx

−
ˆ

p(x)

(
−(x −µ2)2

2σ2
2

− 1

2
ln(2πσ2

2)

)
= ln

σ2

σ1
+
ˆ

p(x)

(
(x −µ2)2

2σ2
2

− (x −µ1)2

2σ2
1

)
= ln

σ2

σ1
− 1

2
+ 1

2σ2
2

ˆ
p(x)(x2 −µ2x +µ2

2)dx

= ln
σ2

σ1
− 1

2
+ 1

2σ2
2

(
σ2

1 +µ2
1 −2µ1µ2 +µ2

2

)
= ln

σ2

σ1
+ σ2

1 + (µ1 −µ2)2

2σ2
2

− 1

2
.

For the case when σ1 = σ2 = σ, this reduces to K L(p‖q) = (µ1−µ2)2

2σ2 . Using the
KL-divergence as a distance function then yields the upper bound

I (X , Z ) ≤ Î (X , Z ) =− 1

N

∑
i

log
1

N

∑
j

exp

(
−‖Zi −Z j‖2

2

2σ2

)
, (3.13)

where the subscripts on Zi and Z j refer to row number i and j of the hidden
representation Z . Z has the dimension N × H , where H is the hidden layer
dimension and N is the number of examples in the dataset. The mutual
information term I (Y , Z ) can be computed as [66]
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I (Y , Z ) = H(Z )−H(Z |Y ) (3.14)

≤− 1

N

∑
i

log
1

N

∑
j

exp

(
−‖Zi −Z j‖2

2

2σ2

)
(3.15)

−
C∑

c=1
pc

[
− 1

Nc

∑
{i |Yi=c}

log
1

Nc

∑
{ j |Y j=c}

exp

(
−‖Zi −Z j‖2

2

2σ2

)]
. (3.16)

Where Nc is the number of samples with the label Y = c,
∑C

c=1 Nc = N , and
pc = Nc

N .

Another choice of distance function is the Bhattacharyya distance (BD)
defined as [13]

BD(p‖q) =− ln

ˆ √
p(x)q(x)dx. (3.17)

For two normal distributions p ∼N (µ1,σ) and q ∼N (µ2,σ), we compute

BD(p‖q) =− ln

ˆ
x

1

σ
p

2π
exp

(
− 1

4σ2

(
(x −µ1)2 + (x −µ2)2))dx

=− ln

ˆ
x

1

σ
p

2π

(
exp

(
−(µ1 −µ2)2

8σ2

))
·exp

(
−(x −µ∗)2

2σ2

)
dx

=− lnexp−(µ1 −µ2)2

8σ2
= (µ1 −µ2)2

8σ2

where we define µ∗ = µ1+µ2

2 , and have used the relations

(x −µ1)2 + (x −µ2)2 = 2 · (x −µ∗)2 + 1

2
(µ1 −µ2)2

andˆ
x

exp

(
−(x −µ∗)2

2σ2

)
dx =σp2π.

The Bhattacharyya distance leads to lower bounds [13, 71], which are as
follows
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I (X , Z ) ≥− 1

N

∑
i

log
1

N

∑
j

exp

(
−‖Zi −Z j‖2

2

8σ2

)
(3.18)

I (Y , Z ) ≥− 1

N

∑
i

log
1

N

∑
j

exp

(
−‖Zi −Z j‖2

2

8σ2

)
(3.19)

−
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c=1
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[
− 1
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∑
{i |Yi=c}

log
1

Nc

∑
{ j |Y j=c}

exp

(
−‖Zi −Z j‖2

2

8σ2

)]
. (3.20)

In this thesis we will mainly be using the Bhattacharyya lower bound for
estimating mutual information.

3.2.2 Dual Formulation Approach

Equations (3.13) and (3.14) are derived by making assumptions on the form
of distribution of the hidden variables Z . The approach of MINE [15] is
different. Their approach does not yield a closed-form solution for their
estimates of the mutual information terms I (X , Z ) and I (Z ,Y ). Rather their
estimates come from an optimization process. By using principles of
duality [51] and several information-theoretic inequalities they obtain a
lower bound for the mutual information I . For more details we refer to the
MINE paper and related works [15, 72, 73, 51]. We note that the bounds
found by MINE are lower bounds. Denote a neural network with parameters
θ ∈ Θ as Fθ, with Fθ : D×Z → R, with D and Z the domains of D and Z ,
respectively. The space D can either be the space for the input X , X or the
space of the label Y , Y . The space Z denotes the space for the
representations Z . MINE then states that the mutual information I (D, Z )
can be approximated by the following optimization problem,

IΘ(D, Z ) = sup
θ∈Θ

EPD Z [Fθ(D, Z )]− log(EPD⊗PZ [eFθ(D,Z )]), (3.21)

with

I (D, Z ) ≥ Iθ(D, Z ),

where θ ∈ Θ is the parameter space for the neural network Fθ. The
expectation term EPD Z denotes that samples (d , z) are sampled from the
joint distribution PD Z , whilst EPD⊗PZ denotes samples (d , z), where d and z
come from the marginal distributions PD and PZ respectively.
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One note on sampling from PX ⊗PZi , where we have chosen D = X and layer
i for the representation Zi . The data X has N datapoints, (X1, X2, . . . XN ). The
graph neural network and fully-connected neural network trained on the
original problem will produce representations (ZG ,2, ZG ,2, . . . ZG ,N ) for the
graph network and (ZFC ,1, ZFC ,2 . . . ZFC ,N ) for the fully-connected network.
When sampling from the joint distribution PX Zi with Zi = ZG ,i or Zi = ZFC ,i ,
one samples batches of length B and obtains a batch(
(X1b, X2b, . . . XBb), (Z1b, Z2b, . . . ZBb)

)
where we have used indices i b for

element number i in the batch since the i’th element of the batch is not
necessarily the i’th element in the data X . When sampling from the joint
distribution, the representation Z1b is the representation of the input data
X1b. However, when sampling from the product of the marginal
distributions one shuffles the batch of representations {Zi b}B

i=1, obtaining a
batch

(
(X1b, X2b, . . . XBb), α(Z1b, Z2b, . . . ZBb)

)
where α(a,b,c, . . . ) is a function

yielding a random permutation of its arguments. This permutation
operation causes misaligned representations in the X batch and the Zi

batch, which together yields samples from the distribution PX ⊗PZi .

The MINE approach thus relies on a completely separate neural network Fθ
and training process in order to estimate the mutual information of the
problem-specific neural network. The MINE neural network Fθ is usually
chosen to be fully connected. Let ZG and ZF be representations obtained by
the graph and fully-connected network trained on the original problem, for
instance a classification problem. Then the same neural architecture Fθ can
be used to approximate the mutual information terms I (X , ZG), I (ZG ,Y ),
I (X , ZF ), I (ZF ,Y ). However, each term I (X , ZG) through I (ZF ,Y ) need their
own training process, requiring a total of 4 neural networks with the
architecture of Fθ to be trained. The training process for training a network
Fθ on data (D, Z ) is straightforward. Given the data (D, Z ) one computes the
output Fθ(D, Z ) in equation (3.21), and this objective is optimized through
gradient ascent. The output of the network is the mutual information,
Fθ(D, Z ) = Iθ(D, Z ), so we are directly optimizing the mutual information
lower bound. The pseudo code in Algorithm 1 shows an overview for
estimating the mutual information with MINE. The criterion ”not
converged” can be chosen in several ways, but the easiest is to choose a
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fixed (large) number of epochs E .

Algorithm 1: MINE procedure

Result: MINE estimate for Iθ(D, Z )
choose a fully-connected architecture for Fθ
while not converged do

sample batch (d, z) from data (D, Z)
objective = Fθ(d , z)− log(expFθ(d ,α(z)))
optimize parameters θ through gradient ascent on the objective

end
returnFθ(D, Z )

When training the classification network, each layer i will generate a
representation Z e

i of the input data X at epoch e. We let E be the number of
epochs, N the number of samples in the dataset and B the batch size. Even
though the network will be updated nB = bN /Bc times during an epoch E ,
the representation for an epoch e, Z e

i is just the concatenated
representations from batches in that epoch, zb,e

i where the dimension of zi is
B ×Hi where Hi is the hidden size of layer i . The dimension of Z e

i is N ×Hi .
Hence, when training is complete, we have a set Z e

i for 1 ≤ i ≤ L and
1 ≤ e ≤ E , where L is the number of layers in our network. We then use
Algorithm 1 to estimate Iθ(X , Z e

i ) and Iθ(Y , Z e
i ) for every epoch e and each

layer i .



Chapter 4
The Developed Framework

4.1 The Developed Framework

For this project, a framework for extracting gradients and activations of a
generic neural network has been developed in PyTorch [36] and can be
found on GitHub (github.com/mariusmcl/MasterProject). The framework
mainly revolves around PyTorch Module objects. A PyTorch Module object
contains parameters and the forward pass for a certain block of the neural
network. An example module object of a fully-connected neural network is
shown in the code listing 4.1. Lines 7 through 13 define the submodules we
want to use in our fully-connected neural network. We have ReLU activation
functions, and fully-connected linear layers. The forward method starting at
line 14 specifies how to compute a prediction ŷ given the input x. In order to
store the activations in the forward pass it is required that the activation
functions used in the forward pass are specified as attributes in the object
initialization. The nn.Module superclass contains methods for accessing
these object attributes, for example the submodules ”linear1” or ”relu1” in
listing 4.1.

Once our neural network is defined, we attach PyTorch hooks on the linear
and ReLU submodules from listing 4.1. There are two kinds of PyTorch
hooks: forward and backward hooks. The forward hooks stores the forward
pass of the model, which are the intermediate representations Z l produced
by a neural network. The backward hooks store the gradients ∇W l of the
parameters W l in the network. More details on forward and backward
hooks may be found at [74]. The main challenge when working with PyTorch
hooks is to identify which part of the PyTorch hook stores the necessary
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1 import torch.nn as nn

2 import torch

3

4 class LinearNetwork(nn.Module):

5 def __init__(self, input_size, hidden_size, num_classes):

6 super(LinearNetwork, self).__init__()

7 self.linear1 = nn.Linear(input_size, hidden_size)

8 self.relu1 = nn.ReLU()

9 self.linear2 = nn.Linear(hidden_size, hidden_size)

10 self.relu2 = nn.ReLU()

11 self.linear3 = nn.Linear(hidden_size, hidden_size)

12 self.relu3 = nn.ReLU()

13 self.linear4 = nn.Linear(hidden_size, num_classes)

14 def forward(self, x):

15 x = self.relu1(self.linear1(x))

16 x = self.relu2(self.linear2(x))

17 x = self.relu3(self.linear3(x))

18 x = self.linear4(x)

19 return x

Listing 4.1: A Fully-Connected Network In PyTorch As A Module Object

information, since this is organized differently for different types of neural
network layers. Code listing 4.2 shows an example training procedure when
using a ”tracker” to store the forward pass of the network. The
”register_new_epoch” method tells the tracker which modules to store the
activations for in this epoch. Then, the ”save” function saves the desired
activations for later use. When training is completed, the tracker object has
stored all the activations

(
{Z 1

e }E
e=1, {Z 2

e }E
e=1, . . . {Z L

e }E
e=1

)
for every layer l ,

1 ≤ l ≤ L and every epoch e during training. L is the number of layers and E
is the number of training epochs.

The novelty of the developed framework is that it is agnostic to what kind of
model architecture is specified, as long as every submodule to be tracked is
defined explicitly in the initialization method of the PyTorch module.
Instead of a nn.Linear layer, one could have a nn.Conv layer, or a nn.RNN
layer. The existing codebases from [10, 66] are well suited for their specific
neural architectures and setup, but they lack the flexibility of being easily
applied on different neural architectures. We will be using our framework to
track the representations of a graph neural network and a recurrent neural
network, which, as far as the author knows, has not been done before. Hence
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1 for epoch in range(num_epochs):

2 tracker.register_new_epoch(list(tracker.forward_hooks.keys()))

3 # forward_hooks.keys() contains 'relu1', 'linear1', 'relu2', ...

4 for x, y in train_loader:

5 optimizer.zero_grad()

6 out = linear_classifier(x)

7 loss = crossentropy_loss(out, y)

8 loss.backward()

9 optimizer.step()

10 tracker.save()

Listing 4.2: Example Training Loop Using The Data Tracker

we build on the gradient and representation tracking capabilities from [10,
66] and extend it by making it more suited for different neural architectures.

Another essential part of the framework is the mutual information
estimation method. We use the pairwise-distance method from Kolchinsky
et. al [13, 71], since this method was the most consistent of all the methods
we tried. The Rényi [14] estimation method was attempted, but it had
prohibitive computational costs associated with it. The MINE method had
numerical difficulties estimating the mutual information when the data X
had many features or was sparse. MINE also has other issues, due to the
requirement of a neural network and an additional training loop in the
estimation process. This adds extra hyperparameters which results in
another unnecessary layer of complexity in the estimation process.

The only hyperparameter in the Kolchinsky method is the noise variance σ2

of the assumed normal distribution. Different choices of σ2 produce
qualitatively different results, which will be shown in Section 5.1 and 5.2.

4.2 Validation of Framework

We begin by validating our framework on the same neural architecture and
dataset used in [10]. The neural architecture is a fully-connected network
with hidden layer sizes of 10, 7, 5, 4, and 3. There are 12 input features which
are to be classified into one of two categories. Figure 4.1 shows the
information-plane visualization of a neural network training procedure, by
using the pairwise-distance estimators from Kolchinsky et al [71, 13].
Figure 4.1 is obtained using the BD distance (left) and KL-divergence (right).
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Figure 4.1: The information-plane visualisation of the neural network layers. The leftmost figure
is attained using the BD distance, which yields a lower bound on the mutual information. The
rightmost figure uses the KL divergence, which is an upper bound. The neural architecture is a fully-
connected network with hidden layer sizes of 10-7-5-4-3. The annotated numbers denote which
layer the point corresponds to, with number 1 denoting the layer with a hidden size of 10. During
training, the last layers are able to attain a high performance for predicting the label Y while having
a low mutual information with X , meaning that the final representations are able to generalize well.

The BD distance is a lower bound, whilst the KL divergence yields an upper
bound. The gap between the lower and upper bound seems to decrease
during training. Each color corresponds to a particular epoch. The
annotated numbers denote the layer, with layer 1 having 10 activations,
layer 2 having 7 activations, and similarly for the remaining layers. The
x-axis is the mutual information between layer Z l and the data X , and the
y-axis is the mutual information between layer Z l and Y , where Z l is a layer
activation and the layer number l is annotated in the figure.

In Figure 4.1 we see that the mutual information that the final layers contain
about Y increases during training, while managing to maintain a low
mutual information with the features X . This is a sign that the network is
able to generalize away unnecessary information in X , whilst retaining
important information about Y . The original information plane from [10] is
shown in Figure 4.2. They have three plots, where they have used 5% (left),
45% (middle) and 85% (right) of the training data. There are some
differences for the estimated value of I (X , Z ) for the later layers compared to
our results, but this can be attributed to different learning rates and
frameworks. We also note that the results from [67] shown in Figure 4.3 are
neither able to precisely replicate the original results from [10]. Figure 4.3
shows the information plane on the original data from Tishby et.al [10] (left)
and the information plane for a fully-connected network with hidden layer
sizes of 1024 − 20 − 20 − 20 (right) trained on the MNIST [3] dataset. Our
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results using the same fully-connected architecture on the MNIST dataset is
shown in Figure 4.4.

Figure 4.2: The information-plane visualisation of the neural network layers from the original
paper [10]. The neural architecture is a fully-connected network with hidden layer sizes of 10-7-5-
4-3. The original authors have plotted the information plane using different proportions of avaiable
data. On the left - 5% of the data, middle -45% and the rightmost was trained on 85% of the data.

Figure 4.3: The information-plane visualisation from [67] with fully-connected networks on the
Tishby dataset (left) and the MNIST dataset (right). The hidden layer sizes are 10−7−5−4−3 and
1024−20−20−20, respectively.

Figure 4.4 shows our framework applied on the MNIST dataset [3], using the
BD distance. The MNIST dataset contains 60000 images of pictures with the
numbers 0 through 9 in them. The images are 28 × 28 greyscale pictures.
Hence this is a classification dataset, with 10 classes. We use the same
fully-connected neural network architecture as [67]. Our results differ from
theirs in that we obtain less compression in the final layers, as shown in
Figure 3 in [67]. It is unknown what training and test accuracy they attain
with this network, and they have trained for a total of 9000 epochs. In
Figure 4.4 we have trained for 600 epochs, obtaining a validation accuracy of
0.85 and training accuracy of 0.97. The difference is probably related to [67]
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Figure 4.4: The information-plane visualisation of the neural network layers for the FCN trained on
the MNIST dataset. The hidden layer sizes are 1024−20−20−20, as in [67]. The annotated numbers
denote which layer the point corresponds to, where number four being the final layer with a hidden
size of 20.

using a lower learning rate and training for more epochs but the details are
not specified in the paper. In Figure 4.4 we have used a learning rate of 10−5,
and learning rates below that were found to severely hinder training. On the
contrary, using a default 10−3 [56] learning rate yields equivalent results in
fewer training epoch, which makes it hard to justify a learning rate below
10−5.

Another part of the Information Bottleneck Method is to track the gradient
signal-to-noise (SNR) ratios during training. For this, we track the gradients
of each batch, and compute the mean and standard deviation across the
batches contained in the same epoch. We then normalize by the L2-norm of
the layer weight at the end of that epoch. Figure 4.5 shows our framework
tracking the means and standard deviations of the gradients during the
course of training. The most notable way in which our results differ from the
results in the original paper [10] shown in Figure 3.3 is that we obtain
standard deviations and means of similar magnitude in our framework,
whereas they are offset from each other in Figure 3.3. Moreover, the result in
Figure 3.3 is smoother since they have taken a mean over 50 runs.

The differences could be attributed to various causes, for instance the
learning rate, optimizer and initialization of the neural networks. The
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Figure 4.5: Normalised norms of the mean and standard deviations of the gradients during the course
of training. The data has 12 input features and the task is classification into 2 categories with a
fully connected neural network with layer sizes 10, 7, 5, 4, and 3. To be compared with the plot in
Figure 3.3. The difference is attributed to different learning rate, optimizer and initialization of the
neural networks.

normalization method could also differ. However, the most important point
for being able to use the method is the clear transition point which is
independent of scaling. In Figure 4.5 it is seen as the ’bump’ in the means,
which occurs after about 40 epochs in both plots.

In Figures 4.6 and 4.7, we show the results from training a graph neural
network and a fully-connected network on the Cora dataset. The citations of
each paper are included as edges in the graph. The fully-connected and
graph neural network differ only in that the graph-neural network uses the
edge information contained in the graph. Both the fully-connected and
graph neural network have the same number of neurons in every layer. In
Figure 4.6, both networks are trained on 140 examples and validated on 1000
examples, testing their generalization capability. In Figure 4.7, the networks
are trained on 1000 examples and validated on 140 examples.

The graph neural network significantly outperforms the fully-connected
network in terms of accuracy in both training regimes. Even the graph
neural model trained with fewer data points outperforms the
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Figure 4.6: The normalised gradient mean and standard deviation signal-to-noise ratios (upper
panels) and the validation accuracies during training on 140 examples and validated on 1000
examples from the Cora data set. The labels in the lower panels indicate the final accuracy. Given
the small training sample, the final accuracy of the fully connected network is rather poor. The left
column shows the results for the graph network and the right for the fully connected. We observe a
transition in the mean and standard deviations at approximately the same location as the validation
accuracy stabilizes.

fully-connected model trained with more data points. The gradient
SNR-plots, which are the top rows of Figures 4.6 and 4.7, indicate a clear
transition when the validation accuracy stabilizes. The validation accuracy
is a proxy measure for test accuracy. The 53% accuracy of the
fully-connected network is decent since there are seven different classes, so
a random classifier would yield about 16% accuracy. From this it seems
possible that the gradient SNR-plot can be used as a measure of test-time
performance metric when a test-time performance metric is unavailable or
difficult to define. For instance, in reinforcement learning [75], the notion of
a training, validation and test set is not widely used. Instead the goal is to
obtain as high performance as possible on a single problem, for instance
playing Pong [76] or the board game of Go [77]. Hence one could use the
gradient SNR plots to investigate whether a neural network attains such a
gradient transition phase during training. Overfitting of neural networks in
reinforcement learning has also been studied in [78].
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Figure 4.7: The normalised gradient mean and standard deviation signal-to-noise ratios (upper
panels) and the validation accuracies during training on 1000 examples and validated on 140
examples from the Cora data set. The labels in the lower panels indicate the final accuracy. The
large training sample allows for the models to generalise over a large amount of data, but due to the
smaller validation sample, the generalisation abilities are not really stress tested. The left column
shows the results for the graph network and the right for the fully connected. We observe a transition
in the mean and standard deviations at approximately the same location as the validation accuracy
stabilizes.
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Results and Discussion

5.1 Information Plane And Inductive Bias

In this section we are going to use the information plane from Section 3.1.1
in order to better understand why some models are better at modeling
certain kinds of data than others. Our first comparison is going to be
between a fully-connected and graph neural network on the Cora citation
dataset from Section 1.4.1.

5.1.1 Fully-connected and Graph Neural Networks The Cora Citation
Dataset

In this section we are going to compare a graph-convolutional network with
the GCN architecture [48] with a fully-connected network. Both networks
have three hidden layers, each with a hidden size of 200. We used a learning
rate of 0.001, and used the whole dataset on each update. The reason for this
is that it is difficult to split a graph dataset into batches, since the dataset
contains edges between nodes in the dataset. Figure 5.1 shows the training
accuracy in blue and validation accuracy in red for both the FCN (left) and
GCN (right) models. Unsurprisingly, the GCN is able to achieve a better
validation accuracy than the FCN model. We also see that the FCN model is
overfitting the data more severely than its GCN counterpart.

We have plotted the information plane for both models using two noise
levels, both σ2 = 0.1 and σ2 = 0.001. Figure 5.2 shows the information planes
for the FCN (left) and GCN (right) models when choosing σ2 = 0.001.
Figure 5.2 is one of the more interesting figures of the thesis. We noticed that
a flip occurred in the information plane plot for the GCN model, at about
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Figure 5.1: The training and validation accuracies for both the fully-connected and graph-
convolutional models on the cora dataset. Both the FCN and the GCN had three hidden layers with
200 neurons in each.

Figure 5.2: The information plane of the FCN and GCN models on the Cora dataset, with noise
parameter σ2 = 0.001.

the same epoch as the severe overfitting kick in.

The FCN information plane with σ2 = 0.001 is behaving as expected and
fulfilling the Data-Processing Inequality (DPI, Eqn. 3.4).

Our hypothesis was that one could identify certain behaviors of the model
by analyzing the information plane for different neural network
architectures. For instance, we would expect that since the GCN model is
better at generalizing to new data, its later layers would compress away
more information in X than the earlier layers. Unfortunately, this is not
visible either when estimating with σ2 = 0.001 or with σ2 = 0.1 as shown in
Figure 5.3.
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Figure 5.3: The information plane of the FCN and GCN models on the Cora dataset, with a noise
parameter of σ2 = 0.1.

The more unsettling fact is that the DPI (Eqn. 3.4) is violated when using
σ2 = 0.1 with the FCN model in Figure 5.3. This should not happen, since the
features Z l+1 are a deterministic function of Z l in the FCN model. The GCN
model would not be expected to fulfill the DPI, since Z l+1 is computed by
first averaging over all the neighboring representations Z l . It is not clear why
the DPI is violated, but the issue will be further discussed in Section 5.2.

5.1.2 Recurrent Neural Networks and Fully-Connected Networks on Text
Data

Due to RNNs being designed for sequential data, we are going to compare a
multi-layer RNN and a fully-connected network trained on the example
name-country dataset from section 1.3.1. The RNN is a stacked, multi-layer
RNN. As such, we are going to use the last hidden representations from each
layer of the RNN. Given the input of length S, there are going to be S hidden
representations for the first layer, Z<1>

1 , Z<2>
1 , . . . Z<S>

1 , where subscripts now
indicate layer number. Hence we are going to track Z<S>

1 , Z<S>
2 and Z<S>

3 .
Figure 5.4 shows the training and validation accuracy of the FCN (left) and
RNN (right) models on our text dataset from section 1.3.1. We note that the
RNN is able to achieve a higher validation accuracy, which is a sign of the
RNN being able to generalize better to unseen data as compared to the FCN
model.

The information plane plots are shown in Figure 5.5 and 5.6 where we have
chosen noise levels σ2 = 0.001 and σ2 = 0.1 respectively. We note that the
representations from the RNN model need not satisfy the data-processing
inequality, since the representation Z<S>

2 is not solely a function of Z<S>
1 but
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Figure 5.4: The training and validation accuracies for both the fully-connected (left) and recurrent
(right) models on the text dataset. Both the FCN and the RNN had three hidden layers with 200
neurons in each.

Figure 5.5: The information plane of the FCN and RNN models, with noise parameter σ2 = 0.001.

also a function of Z<S−1>
2 , and similarly for Z<S>

3 . When using σ2 = 0.1, we
obtain the most interpretable plot for the RNN model, with the final layer
containing the most information about both X and Y . It seems as though
the RNN model does not ”compress” as one would expect, but rather that the
increase in number of layers is able to capture more of the variation in the
data than it otherwise would, and can be used to create better predictions.
For the σ2 = 0.001 case, we see a similar qualitative pattern, where the later
layers have more information about both X and Y .

The plots for the FCN model in Figure 5.5 (left) and Figure 5.6 are not as
expected. The most glaring fault is that they violate the data-processing
inequality, by the later layers having more information about both X and Y
compared to the initial layers. Several different values for σ2 was attempted,
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Figure 5.6: The information plane of the FCN and RNN models, with a noise parameter of σ2 = 0.1.

but did not yield different qualitative behavior. The larger noise level
σ2 = 0.1 seems to help spread out the estimates of mutual information more
than when using σ2 = 0.001. A larger value of σ2 allows for more
representations i in layer l , Z l

i , to affect the mutual information equation, as

it can be interpreted as a bandwidth term in the exponential exp

(
‖Z l

i −Z l
j ‖2

2

8σ2

)
in

equation (3.18). Allowing more representations to contribute introduces
more variance in the estimation process but it does not alleviate the flip.

5.1.3 Convolutional Neural Networks and Fully-Connected Networks on
MNIST

Figure 5.7 shows the training and validation accuracy for a FCN model with
hidden layers of size 1024 − 20 − 20 − 20 (left) and the LeNet CNN
architecture [24] on the right. The LeNet architecture consists first of two
convolutional layers, with the the inital layer having 10 channels and the
subsequent layer having 20 channels, both using a ReLU activation function.
Max-pooling [8] is performed after each convolutional operation. This is
followed by a linear layer with hidden size of 50 and then the prediction
layer with 10 activations. Both the LeNet and FCN models are trained on a
subset of 4000 images from the MNIST [3] dataset. A subset is used due to
memory requirements. The FCN was trained with a learning rate of 1e− 5,
whilst LeNet was trained with a learning rate of 1e−3 for fewer epochs.

Figure 5.8 shows the information plane for the FCN and LeNet models, using
noise parameter σ2 = 0.1. The information plane for the FCN model is very
well behaved, and is similar to information planes from previous work [67].
The paper [67] also visualizes an information-plane plot for the LeNet model.
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However, it seems as if they only visualize the information plane for the two
linear layers, shown in (Figures 4c) and 4d) in [67]). Hence Figure 5.8 may be
the first plot actually visualizing the mutual information of the convolutional
representations. The authors of [67] also visualize the information plane for
a DenseNet [79] model, however it is not stated which activations they track.

The main issue with the mutual information estimates for the first
convolutional layer, labeled with a ”1” in Figure 5.8, is that they violate the
upper bound of the mutual information I (Y , Z ) ≤ H(Y ). This is a problem
since we use the Bhattacharyya distance, which yields an estimate for the
lower bound. In our case, we have H(Y ) = 3.32, which is lower than a
uniform distribution over ten classes which would have H∗(Y ) = 3.318,
where the entropy is computed by equation (3.2). The difference is likely
due to choosing an unsuitable σ2. However we note that choosing σ2 = 0.001
instead of 0.1 yielded a noisy information plane. In section 5.2 we are going
to employ a heuristic in order to determine different values of σ2 for each
layer in the network.

We surmise that the convolutional layers require different choices of σ2 than
linear layers since their parameters and transformation are inherently
different than for linear layers. This would create a difference in the
distribution of the pairwise distances, which the estimation method
depends upon, as presented in Section 3.2.1. Both the RNN and GCN use
regular matrix-multiplications with dense matrices in order to create their
representation, but the CNN is particular since it applies a convolution
operation.

5.1.4 Overfitting And The Information Plane

We would also like to note that in the cases where overfitting was present, it
was more likely for the information planes of the fully-connected networks to
have an abnormal behavior. This is apparent for the Cora dataset, where the
information plane for the FCN model flips by changing noise parameter σ2.
The information plane of the FCN model on the text dataset was also flipped,
in the sense that the later layers were up and to the right of the earlier layers,
violating the DPI. On the Tishby example data and for MNIST, there were not
any signs of the information plane flipping, and in both these cases the FCN
model did not overfit the training data in any appreciable way. The author
is uncertain as to how this can be used in practice, since very few modern
challenges in deep learning are solved with pure fully-connected networks,
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Figure 5.7: The training and validation accuracies of a FCN model with hidden sizes of 1024−20−
20−20 (left) and the LeNet [24] CNN architecture (right).

Figure 5.8: The information plane of the FCN and CNN models, both estimated using σ2 = 0.1.

however some recent work has tried replacing CNNs with FCNs for image
classification [80].

It does not seem that overfitting impacts the representations getting grouped
into a single point, as is apparent for the FCN trained on MNIST and the FCN
trained on the Cora dataset. If the representations adhered to the DPI before
converging to a cluster, they would also satisfy the DPI when they were tightly
grouped in the cluster, up to numerical estimation uncertainties, on the order
of 10−3 to 10−5 in both cases.



64 5.2. Analysis of Mutual Information Estimation

5.2 Analysis of Mutual Information Estimation

In this section we are going to investigate the representations of the FCN
trained on the Cora dataset and the representations of the CNN trained on
the MNIST dataset. The reason for this is that the information plane for the
FCN trained on the Cora dataset completely changed its qualitative behavior
when changing σ2, which is unexpected. The CNN trained on the MNIST
dataset also had an abnormal behavior in the information plane when
compared to any of the other models. When changing the noise level σ2

from 0.001 to 0.1 for the FCN, it resulted in an information plane plot which
violated the DPI. The estimate I (Y , Z ) for the CNN model also violates the
upper bound on the mutual information, which is the entropy H(Y ).

We are going to use the distribution over pairwise distances in order to
investigate if it can be used as a heuristic when determining σ2 for both the
CNN trained on MNIST and the FCN trained on the Cora dataset.

Figure 5.9 shows the distribution over distances for the FCN trained on the
Cora dataset. Each hidden layer has a hidden representation of length 200.
The x-axis is the computed distance, whilst the y-axis is the count of distances
in each bin. As a heuristic, we use the 90th percentile value and divide it
by 1000 to get our noise parameter. The percentile value is picked by eye
from the plot. Doing this, we get noise parameter values of 0.001,0.003 and
0.01 for layers one through three, respectively. Figure 5.10 shows the result of
using these noise levels when generating the information plane. We note that
by using the distance-dependent noise heuristic on this FCN the first layer
starts in the top-right corner of the plot, which resembles the behavior of the
information plane visualization on the data from Tishby [10] in Figure 4.1.

We do not observe a compression phase in this network, however this may
be attributed to the hidden layer structure of 200− 200− 200 that does not
force the network to compress into shorter-length features. Using the
distance distribution as a heuristic for choosing the noise level however
yields a much more interpretable information plane visualization. The
initial layer contains the most information about both the input X and
output Y , and the final layer, during training, learns the information that the
first layer contains.

Figure 5.11 and 5.12 shows the distance distributions for the LeNet model
and the fully-connected model on the MNIST dataset, respectively. Looking
at the first two layers of each model, we note that the convolutional layer
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Figure 5.9: The distribution over pairwise distances for each layer of the FCN trained on the Cora
dataset. The representations are from the final epoch of training. Each hidden layer has a hidden
representation length of 200. The x axis is the pairwise distance, and the y-axis is the proportion of
distances within a specified interval.

Figure 5.10: The information plane for the fully-connected network trained on the Cora dataset, using
layer-wise noise termsσ2 where layers one through three have noise levelsσ2 = 0.001, 0.003, and 0.01
respectively.
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Figure 5.11: The distribution over pairwise distances for the LeNet architecture trained on the MNIST
dataset. The representations are from the final epoch of training. The x-axis is the pairwise distance,
and the y-axis is the proportion of distances within a specified interval.

tends to have a much larger distance between different samples in the
dataset. The linear layers tend to group different samples closer than the
convolutional layers. We used the same heuristic as for the Cora model,
where we took the value at the 90th percentile and divided it by 1000 to
obtain σ. From Figure 5.11, this results in noise levels of 5,2,0.3, and 0.125
for layers one through four, respectively. Figure 5.13 shows the information
plane with this noise configuration. The major improvement here is that the
upper bound satisfies the technical bound I (Y , Z ) ≤ H(Y ) where H(Y ) is the
entropy of the labels, in our case H(Y ) = 3.32, measured in bits. The third
and fourth representations are tightly clustered, and we also note that the
third layer does not satisfy the DPI, in particular regards to Y . However,
Figure 5.13 is a considerable improvement over the previous visualization in
Figure 5.8 where the constant noise level σ2 = 0.1 was used.
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Figure 5.12: The distribution over pairwise distances for a FCN architecture with hidden layer sizes
1024− 20− 20− 20 trained on the MNIST dataset. The representations are from the final epoch of
training. The x-axis is the pairwise distance, and the y-axis is the proportion of distances within a
specified interval.

Figure 5.13: The information plane for the LeNet model trained on the MNIST dataset. For layers one
through four we have used noise levels σ2 = 5, 2, 0.3, and 0.125 respectively.



Chapter 6
Conclusion and Further Work

In this thesis, we have progressed from previous work [10, 64, 67, 66] and
created a more flexible framework for mutual information estimation that is
easily adapted to different neural network architectures. This has been
achieved through the ability to track any activations as long as the modules
are stored as submodules in a PyTorch model, which enables the tracking of
representations from both FCN, GCN, RNN and CNN models. Tracking the
hidden layer representations allowed for the first information plane plots of
GCN and RNN models as far as the author is aware of. As for the CNN
model, it seems as if the authors of [67] only tracked the activations from the
linear layers of LeNet, and not the convolutional layers. It is uncertain as to
which activations from DenseNet [79] they tracked.

The main motivation for this thesis was the possibility of using the
information plane to determine if certain neural network structures were
more suited for a particular kind of data than others. If so one could use the
information plane as a reliable alternative in order to gauge model fit, or to
evaluate if the model has generalized well. Unfortunately, there are two
main drawbacks for using the information-plane in order to compare
different neural structures. Firstly, the pairwise-distance estimation method
used by Kolchinsky et al. [71, 13] is sensitive to the choice of σ2, and also
sometimes violates the DPI. Secondly, not all neural model structures
necessarily satisfy the DPI, making comparisons difficult. A possible
solution would be to find an estimation method that works more reliably
without being required to tune any parameters. We tried applying the
MINE [15] estimation method, but it had numerical issues on for instance
the Cora dataset. The Rényi [14] estimation method was too time
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consuming in order to be practically feasible for extensive testing.

In conclusion, it seems as if methods of estimating mutual information are
not robust enough in order to tackle the vast variety of neural architectures
and the variety of data used for different deep learning applications. Further
work could be to analyze the failure modes of the estimation methods, and
propose a different estimation scheme. More analyzes can also be done in
order to understand if underfitting or overfitting produces different
behaviors in the information plane, and in particular if they are related to
the violation of the DPI.
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