
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f C
he

m
ic

al
 E

ng
in

ee
rin

g

Vinh Phuc Bui Nguyen

Application of Machine Learning in
Economic Optimization

Master’s thesis in Chemical Engineering
Supervisor: Johannes Jaeschke - Sigurd Skogestad
Co-supervisor: Jose Otavio Assumupcao Matias
June 2021

M
as

te
r’s

 th
es

is

Vinh Phuc Bui Nguyen

Application of Machine Learning in
Economic Optimization

Master’s thesis in Chemical Engineering
Supervisor: Johannes Jaeschke - Sigurd Skogestad
Co-supervisor: Jose Otavio Assumupcao Matias
June 2021

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Chemical Engineering

Contents

List of Figures iv

I Introduction 1

II Self-Optimizing Control 3

1 Self-Optimizing Control (SOC) 3

1.1 What is SOC and Why SOC? . 3

1.2 Methods to identify self-optimizing CVs 4

1.2.1 Polynomial zero loss method 4

1.2.2 Regression method . 5

1.2.3 Global approximation of controlled variables method 6

2 Genetic Programming 7

2.1 HEN problem description . 7

2.2 How to use GP to search for self-optimizing variables 9

2.2.1 Step 1 - CV representation, the terminal set, the function set,
and the primitive set in GP 10

2.2.2 Step 2 - Fitness . 12

2.2.3 Step 3 - Individual selection 12

2.2.4 Step 4 - Genetic operations 12

2.2.5 How to identify CV setpoint cs 13

2.3 Rationale behind the application of Genetic Programming in Self-
Optimizing CV searching . 13

3 Case study I: Toy Example 14

3.1 Problem description . 14

3.2 Analytical solutions . 15

3.3 Settings of Genetic Programming experiment 15

i

3.3.1 Fitness evaluation . 15

3.3.2 Identifying CV setpoints cs . 15

3.3.3 Parameters . 15

3.4 Results and Discussion . 16

4 Case Study II: The Heat Exchanger Network 16

4.1 Heat transfer modeling - Mean Temperature Difference: LMTD,
AMTD, and Chen’s approximation to LMTD 17

4.2 Analytical solutions: Jaeschke temperature and the self-optimizing CV 17

4.3 Questions to be addressed by GP . 18

4.4 Design of Experiments . 19

4.4.1 “Environment” . 19

4.4.2 Other details . 20

4.5 Results and Discussions . 22

4.5.1 Experiment 1 . 22

4.5.2 Experiment 2 . 22

4.5.3 Experiment 3 . 23

4.5.4 Experiment 4 . 24

4.6 Summary . 25

4.7 Further Study . 26

III Steady-state detection in SRTO using Convolutional
Neural Networks 27

5 Steady-state Real-Time Optimization (SRTO) 27

5.1 Components of SRTO . 27

5.2 Steady-state detection methods . 28

5.2.1 Method SSD1 . 29

5.2.2 Method SSD2 . 30

6 Convolutional Neural Network (CNN) and k-Means Clustering Al-

ii

gorithm 31

6.1 Convolutional Neural Network . 31

6.1.1 Convolutional Layer . 32

6.1.2 Pooling Layer . 34

6.1.3 VGGNet and its architecture 34

6.2 k-Means Clustering Algorithm . 36

6.3 Combining VGGNet and k-Means algorithm for image classification . 37

7 Methodology - Results and Discussions 38

7.1 Experiment 1 - Methodology . 38

7.2 Experiment 1 - Results . 41

7.3 Experiment 2 - Methodology . 42

7.4 Experiment 2 - Results . 43

7.5 Experiment 3 - Methodology . 44

7.6 Experiment 3 - Results . 48

7.7 Experiment 4 - Methodology . 50

7.8 Experiment 4 - Results . 51

7.9 Experiment 5 - Methodology . 52

7.10 Experiment 5 - Results . 53

8 Limitations and Further Study 53

IV Conclusion 55

9 References 56

iii

List of Figures

1 Network with 2 parallel countercurrent heat exchangers 7

2 The syntax tree of c = 0.5 ∗ Thin1 − 1 ∗ Tcin 10

3 Syntax trees of random CVs from the full and grow methods (max
depth of 2) . 11

4 SRTO diagram . 28

5 How a Convolutional Layer processes its input 32

6 Vertical edge detection by Convolutional Layer 33

7 How Max Pooling and Average Pooling layers process their input . . . 34

8 The architecture of VGGNet . 35

9 Examples of plots from Set SS and Set TS in Experiment 1 40

10 Procedure of Experiment 1 . 41

11 Results of Experiment 1 . 41

12 Examples of plots from Set SS and Set TS in Experiment 2 42

13 Results of Experiment 2 . 43

14 Plot of plant measurement in Experiment 3 without noise. 44

15 Procedure of Experiment 3 . 45

16 An example of subplots from a plot using sliding windows 46

17 Plot of plant measurement in Experiment 3 with white noise. 47

18 Results of Experiment 3 . 48

19 False detection instances of different methods in Experiment 3 (from
top to bottom: SSD1 - SSD2 - CNN) 49

iv

20 Plot of plant measurement in Experiment 4 with α-stable noise. . . . 50

21 Results of Experiment 4 . 51

22 False detection instances of different methods in Experiment 4 (from
top to bottom: SSD1 - SSD2 - CNN) 51

23 Plot of plant measurement in Experiment 5 with colored noise. 52

24 Results of Experiment 5 . 53

25 False detection instances of different methods in Experiment 5 (from
top to bottom: SSD1 - SSD2 - CNN) 53

v

Acknowledgement

It has always been my dream being able to create something scientifically new.
I guess I have achieved that dream in this Master’s thesis. It has been a long and
challenging journey, partly due to the pandemic. Fortunately, I have received all the
support I needed on the way.

I would like to thank my supervisors, Professor Johannes and Professor Sigurd,
for accepting to supervise my work and providing your great insights on the topic of
Self-Optimizing Control. Our discussions have helped to shape my thinking.

I wish to express my sincere gratitude towards my co-supervisor, Postdoc. Jose
Otavio Assumpcao Matias. All the support I have received from you would make an
infinitely long list. So, I will just say it briefly: Thank you for guiding me through
this tough journey, from the very beginning.

I also wish to thank my girlfriend, Dieu Thao, for always being here. I know
it was not easy. I owe my friends back home, Quoc Thai and Phuong Nguyen, for
the entertaining conversations. I also owe my friends here in Norway, Hoang Dam
Khanh and Mikhail Pedrovich, for their daily practical support.

vi

Abstract

In this thesis, we introduced two new applications of Machine Learning in the field
of Economic Optimization. The first application addresses the problem of searching
for global Self-Optimizing variables. We applied Genetic Programming (GP) to solve
this problem and demonstrated how powerful is the new GP-based search method.
In the second application, we used Convolutional Neural Networks (CNN) to develop
a vision-based steady-state detector (SSD) for steady-state Real-Time Optimizers.
It was our purpose to investigate if this vision-based SSD has higher accuracy than
established statistical SSD. We found that they have comparable performances, but
the CNN-based detector possesses certain advantages that the others do not have.

vii

Part I

Introduction
How to keep the operation profitable has always been a critical question to

chemical plants. Resolving this question becomes more and more challenging as
increasingly higher standards on the manufacturing and on the products are imposed.
As a result, interest in process optimization has surged, and many techniques have
been developed to address the issue.

Among these techniques, steady-state Real-Time Optimization (SRTO) is the
most widespread in the industry. SRTO calculates inputs u to improve plant
performance through solving an optimization problem as following:

min
u

J(u, x, d)

subject to: f(u, x, d) = 0

h(u, x, d) ≤ 0

(1)

where x represents states of the plant, d represents disturbances, J is the function
that we wish to optimize (such as the profit), f(u, x, d) = 0 is the steady-state
model of the plant, and the remaining constraints are other operating constraints.
To guarantee the optimality of the solutions, we must have accurate estimates of
disturbances d, which must be based on steady-state measurements only. If transient
data is fitted to a steady-state model, the d estimates are prone to be incorrect and
can significantly affect the accuracy of the solution of the problem in Equation 1.
Steady-state detector (SSD) is the component of SRTO that determines whether
a measurement satisfies the steady-state requirement and should be used for d
estimation or not. Thus, SSD has a significant impact on the performance of SRTO.

Although there are many SSD methods, they all rely on numerical statistical
tests [1] and require appropriate tuning of their parameters, which is far from trivial.
In this thesis we have developed a graphical-based SSD method with easier tuning of
parameters. The method uses Convolutional Neural Network (CNN) to investigate
plots of measurements to evaluate if they are stationary or not. This method is
shown to have comparable performance to numerical methods.

Another approach to process optimization that has recently received significant

1

attention is Self-Optimizing Control (SOC). It can be defined through the concept
of self-optimizing variables (SOC-CVs), which has been stated in [2] as: ”A set of
controlled variables is called self-optimizing if, when it is kept at constant setpoints,
the process is operated with an acceptable loss with respect to the chosen objective
function (also when disturbances occur).”

SOC can be complimentary to SRTO [3]. As discussed, in an SRTO implemen-
tation, the economic optimization is not triggered until the process is stationary.
Hence, if the disturbances affecting the process change frequently, SRTO cannot
update the process inputs to the new optimal levels. As a result, the process operates
suboptimally during the transient periods. Now, assume that we have integrated SOC
variables into SRTO. Controlling these variables to their setpoints will automatically
lead to near-optimal operation of the plant during transients, even though the SRTO
is still inactive. Thus, combining SOC and SRTO helps to increase the plant profit
even more than using SRTO alone.

It is clear that searching for SOC-CVs is the core problem of SOC, especially
”global” SOC-CVs - ones that have acceptable loss over a wide range of operating
conditions. There are only 3 ”global” searching methods so far, which are: polynomial
zero loss method, regression approach, and global approximation of controlled vari-
ables [4]. We introduce here a new search method that utilizes Genetic Programming
(GP) to ”evolve” random CVs into SOC-CVs. In our case studies, GP has discovered
SOC-CVs with better performances and larger operating ranges than SOC-CVs found
by other methods.

This thesis consists of three parts. The first part is this introduction. In the
second part, we discuss the application of Genetic Programming in self-optimizing
variables search. We devote the third part to the application of CNN in SRTO.

2

Part II

Self-Optimizing Control

1 Self-Optimizing Control (SOC)

1.1 What is SOC and Why SOC?

We have already mentioned the definitions of SOC and self-optimizing variables
in the Introduction. Here we discuss an example of SOC to illustrate the concepts
more clearly.

Consider a runner who wants to finish two races. The distances in the first and
second races are 100 m and 15 km, respectively. The objective is to finish the runs
as soon as possible. The question here is how he/she should run to achieve his/her
goals or, in terms of Process System Engineering, what to control. The answer is
straightforward in the first case: keep his/her speed close to the maximum. The
answer in the second case is not as clear, but keeping his/her heart rate constant
is a good solution. If he/she runs at a “high” speed and let the heart rate increase
continuously to its maximum, he/she risks himself/herself being too exhausted to
finish the run. In contrast, if he/she runs at a “low” speed, the run takes considerably
longer than the shortest time possible. Maintaining the heart rate at a fixed level
helps the runner avoid both scenarios and achieve a good result. Furthermore, it
does that without the need for the runner to frequently adjust the heart rate setpoint
based on external factors such as wind speed and slope of the current running path.
Thus, the heart rate here is a self-optimizing variable.

The idea of SOC in a chemical process is similar. We wish to identify variables
such that when controlling them to a few predetermined setpoints, the process
performance automatically gets closer to the optimal. This process optimization is
traditionally achieved by the use of RTO, which requires solving an optimization
problem repeatedly in real-time. The solving process must be sufficiently quick, or
the found solutions can become obsolete otherwise. Thus, RTO methods have a high
demand for computational power and can be infeasible for large, complex processes.
SOC, in contrast, does not have this requirement and can play an important role
in optimizing these processes. However, it is not clear and intuitive which variables

3

are self-optimizing and how good are their performances (or how close is the process
performance to the optimal performances when controlling each CV). We need
methods to search for and evaluate them.

1.2 Methods to identify self-optimizing CVs

Many methods have been developed to identify self-optimizing variables. Here
we only discuss methods for continuous processes. We can divide these methods into
model-based and model-free approaches. In the model-based domain, there are three
groups: brute force method, local methods, and global methods.

The brute force method is the earliest and also the simplest [4]. The idea
is to evaluate the loss of all possible controlled variables (CVs) under all possible
operating conditions. The loss of a self-optimizing variable is the difference between
its performance and the optimal performance. Each operating condition is an unique
combination of values of disturbances and noise. As the name suggests, the brute
force method is not efficient and may be impractical for large-scale problems.

Local methods, such as the Null-space method [5], result in CVs with good
performance in the proximity of the nominal operating conditions. We must evaluate
them again to select a CV that performs well in a different operating region. Moreover,
they do not work in operating conditions in which the set of active constraints has
changed. Since we focus on searching for global SOC CVs in our method, we will not
discuss the local methods in detail here. For more information, please refer to [4].

The global methods group consists of 3 approaches. These are the polynomial
zero loss method [6], the regression method [7], and the global approximation of
controlled variables [8]. As the name of this group implied, CVs found by these
methods can work in larger operating ranges instead of only in the proximity of a
certain condition. However, it should be noted that the set of active constraints must
remain unchanged throughout these ranges, as in the case of local methods.

1.2.1 Polynomial zero loss method

Assume we can approximate the objective function and the steady-state model of
the plant as polynomials J̄(u, x, d) and ḡ(u, x, d) of u, x, and d. Here u and x represent
the inputs and the states of the plant, while d represents the disturbances. We also
have the outputs of the plant as polynomial functions of u, x, and d, y = m(u, x, d).

4

At each condition of d, we can find the optimal input u? by solving:

min
u

J̄(u, x, d)

subject to: ḡ(u, x, d) = 0
(2)

In the region around the optimum, if the linear independence constraint qualifications
(LICQ) and the sufficient secondary conditions for optimality hold, then the first-order
necessary optimality conditions (NCO) are satisfied at the optimum:

∇J̄(u?, x?, d) +∇ḡ(u?, x?, d) · λ? = 0

ḡ(u?, x?, d) = 0
(3)

The method shows that it is possible to analytically eliminate λ?, x?, and d

from the NCO to obtain equations Rk(u?, y?) = 0. The functions Rk(u, y) of the
measurable variables u and y are equal to zero if and only if the NCO is satisfied.
Controlling them to 0 automatically leads to optimal performance of the plant under
different operating conditions. Thus, Rk(u, y) are self-optimizing variables.

As the elimination process does not depend on specific values of x and d, the
self-optimizing CVs can work in a wide range of operating conditions. However, if the
plant is in a region where polynomial functions do not approximate its true behavior
well, the CVs’ performances deteriorate. We can see this in a case study later. The
method also has another limitation: the computed CVs may be too complex to be of
any practical use.

1.2.2 Regression method

The regression method attempts to find functions of measurements c = h(y)
and their setpoints cs to approximate the NCO and minimize the loss over many
operating conditions. Jaeschke and Skogestad [9] proved that the loss at an operating
point when we control a CV c = h(y) to its setpoint cs is:

L = 1
2 ||J

−1/2
uu · (Ju − (h(y)− cs))||22 (4)

where, || ||2 denotes the L2 norm, Juu and Ju are the reduced Hessian and the
gradient of the objective function J , respectively. Therefore, the average loss at N

5

operating points can be calculated as:

θ = 1
2N

N∑
i=1
||J (i)

uu

−1/2 · (J (i)
u − (h(y(i))− cs))||22 (5)

In the regression method, h(y) are usually simple functions of the measurements,
for example, h(y) = H · y. The method tries to find H and cs such that θ is minimal.
To accomplish this, it needs numerical values of the reduced Hessian J (i)

uu , the gradient
J (i)
u , and the measurement y(i) at each operating point {u(i), d(i), n(i)} (n(i) represents

values of noise in output measurements). These are obtained by simulating the
process under N operating conditions.

One limitation of the regression approach is the need for a CV adaptation
scheme. Since the CVs c = h(y) have the form of simple functions, their regions of
adequate performance are relatively narrow. Therefore, when the process enters a
region where the current CV does not work well, we need the adaptation scheme to
switch to better CVs.

1.2.3 Global approximation of controlled variables method

As in the regression approach, this method also attempts to find a CV c = H · y
that minimizes an average loss function over N operating points. H could be obtained
by solving the following optimization problem:

min
H

1
N

N∑
i=1

(L(i)
d + L(i)

n)

subject to: HGy
nom = Juu,nom

L
(i)
d = 1

2y
∗(i)THTJ (i)

cc Hy
∗(i)

L(i)
n = 1

2trace(W
2HTJ (i)

cc H)

J (i)
cc = (HGy,(i))−1J (i)

uu(HGy,(i))−1

(6)

where L
(i)
d and L(i)

n are the losses due to disturbances and due to noise, and
W = E(nnT) for independent noise. Details and meanings of the quantities in
the optimization problem can be found in [8]. But, to complete the problem for-
mulation, we need information about the optimal output value - y∗(i), the gain of y
for u - Gy,(i), and J (i)

uu at each disturbance condition d(i). Therefore, in this method,
we have to run the process simulation at N disturbance conditions and record this

6

information.

The main limitation of this method: it is not easy to find a solution to minimize
the loss function due to the non-convexity of the optimization problem.

2 Genetic Programming

In this thesis, we have developed a new method to search for SOC variables
based on Genetic Programming. Therefore, in this section, we will illustrate Genetic
Programming and its concepts by describing its application in one of our case studies,
the heat exchanger network (HEN).

2.1 HEN problem description

Figure 1: Network with 2 parallel countercurrent heat exchangers

Assume that we have a system of two countercurrent heat exchangers HX1 and
HX2 as shown in Figure 1. The HXs are in parallel. Their heat transfer properties are
characterized by UA1 and UA2. A cold stream F0 with flowrate ωc and temperature
Tcin is split into two. Each of these two streams is heated up in a heat exchanger. The
proportions of F0 to HX1 and HX2 are u1 and u2, respectively. The hot streams F1
and F2 to HX1 and HX2 have flow rates, inlet temperatures, and outlet temperatures
denoted by ωhi, Thini , and Thouti (i ∈ {1, 2}) . Temperatures of the cold streams at
the outlets of the heat exchangers are Tcout1 and Tcout2 . The two heated streams are

7

then mixed, resulting in a stream at temperature T. Units of the temperatures and
the flow rates are °C and kg

s
, respectively. Unit of UA1 and UA2 is kW

°C

Assume that the fluids do not change phase and the specific heat capacities
cp (kW ·s

kg·°C) of all streams are known, identical, and do not change with temperature.
The disturbances in the system are {Tcin, ωc, Thin1 , Thin2 , ωh1, ωh2, UA1, UA2}. The
manipulated variables (MVs) are u1 and u2. We have 5 available measurements,
which are {Tcin, T cout1 , T cout2 , Thin1 , Th

in
2 }.

The model equations are:

f1 : u1 + u2 − 1 = 0

f2 : u1 · Tcout1 + u2 · Tcout2 − 1 · T = 0

f3, f4 : Thini − Thouti − ui · (Tcouti − Tcin) · ωc
ωhi

= 0 (i ∈ {1, 2})

f5, f6 : Tcin − Tcouti + UAi ·∆Ti
ui · ωc · cp

= 0 (i ∈ {1, 2})

where, f1 is the cold side mass conservation equation. f2, f3, f4 are the energy balance
equations. The control volume of f2 is the mixing point of the two cold streams, while
the control volumes of f3 and f4 are HX1 and HX2, respectively. f5 and f6 model
the heat transfer within HX1 and HX2, in which ∆Ti are the mean temperature
differences, i.e. the heat transfer driving force. We will discuss the mean temperature
differences in more details in Section 4.1.

In each operating condition, values of 8 disturbances are given. Thus, there
are 7 remaining variables {Thout1 , Thout2 , T cout1 , T cout2 , T, u1, u2} but only 6 equations.
Thus, the system has one degree of freedom (DOF). Assume that we select u2 as the
DOF. If we specify the value of u2, the system is fully determined.

Our objective is to maximize T in all operating condition. Let Topt denotes the
highest possible value of T in each condition. We can achieve T = Topt by controlling
u2 to its optimal value u2,opt. u2,opt in each condition can be obtained by formulating
and solving the following optimization problem:

min
u2

−1 · T

subject to: f1, f2, f3, f4, f5, f6

8

Alternatively, we can use u2 to control a self-optimizing variable c = h(y) to
its setpoint cs. The system is also fully determined in this case. The value of
T when controlling c to cs can be determined by solving the system of equations
{f1, f2, f3, f4, f5, f6, f7}, where f7 is the equation c = cs. Note that T ≤ Topt ∀c
in all operating conditions.

2.2 How to use GP to search for self-optimizing variables

Here we will use GP to search for self-optimizing variables. GP is an evolution-
inspired algorithm. It starts with a “population” of N “individuals”/ “programs”. In
our case, an individual is a CV, which can be a single measurement or a combination
of different measurements. These individuals are later subjected to selection and
modification by genetic operations to create the next generation of the population.
The selection process is based on individuals’ fitnesses, i.e. the performances of CVs,
whose definition is in Section 1.1. A CV that has a greater fitness has a higher chance
to be selected and become the base to create the next CV generation. CVs in the new
generation are again evaluated, selected, and modified to create another generation.
GP continues to form new generations until it finds a CV with an acceptable fitness
or the limit of generation number Ngeneration has been reached.

Algorithm 1 shows the pseudocode of GP. We will now explain concepts and
details that are essential to understand the steps in this pseudocode.

Algorithm 1: Pseudocode of GP algorithm (adapted from [10])

1: Randomly create an initial population of individuals from the available
primitives

while an acceptable solution is not found and maximum number of generations
is not reached do

2: Execute each individual and ascertain its fitness
3: Select one or two individual(s) from the population with a

probability based on fitness to participate in genetic operations
4: Create new individuals by applying genetic operations with specified

probabilities

end

5: Return the best-so-far individual

9

2.2.1 Step 1 - CV representation, the terminal set, the function set, and

the primitive set in GP

Figure 2: The syntax tree of c = 0.5 ∗ Thin1 − 1 ∗ Tcin

Consider an arbitrary CV, such as c = 0.5 ∗ Thin1 − 1 ∗ Tcin. Its representation
in GP is a syntax tree with many nodes and a root node as depicted in Figure 2.
Each node is represented as a circle or a square and contains a component of the CV.
The syntax tree has two branches: left and right. It also has many “smaller” trees,
each radiating from one of its nodes. For example, the left branch is a tree with 3
nodes radiating from the root node “ ∗ ”, and the left branch of the left branch is a
tree with 1 nodes radiating from the root node “0.5” . Any ”smaller” trees are called
as subtrees of the original tree. Note that the tree is a subtree of itself.

Components of a CV fall into 1 of the following 3 categories: a scalar (“0.5”, “1”),
a measurement (“Thin1 ”, “Tcin”), or an arithmetic operation (“-”, “*”). These three
components are the basic ingredients to construct any CV. GP has a “function set”
containing all arithmetic operations and a “terminal set” containing all measurements
and scalars (actually, the set contains a random real number generator instead of
multiple scalars). These two sets, ”function” and ”terminal”, together form the
“primitive set” mentioned in Step 1.

Population initialization

Another concept has been mentioned in Step 1 is the initial population. How to
construct the initial population? There are two basic methods to create individuals
in this population, or more precisely, their random syntax trees. These are are

10

the full method and the grow method. Understanding these requires the following
definitions: depth of a node, depth of a tree, and tree size. The depth of a node is
the number of edges from itself to the root node. The depth of a tree is taken as
the depth of its deepest node. Tree size the total number of nodes in the tree. For
example, consider the tree in Figure 2. The depth of the node containing the scalar
0.5 is 2, the depth of the tree is 2, and the tree size is 7.

The two mentioned initialization methods have many similarities: both syn-
thesize trees node-by-node and require users to specify a maximum depth depthmax.
Moreover, they always assign randomly elements in the “function set” to the root
nodes and elements in the “terminal set” to the nodes at the maximum depth. But
what they do to the nodes between depth zero and the maximum depth are different.
The grow method randomly picks elements from the whole “primitive” set to fill in
these nodes, while the full only picks elements of the “function” set. As a result,
trees generated by the full method have constant-length branches assume that the
operators in the “function” set are all binary (operate on two elements), which makes
their size and shape more uniform than those from the grow method.

Consider the example in Figure 3. The random tree on the left is from the full
method, while the right one is from the grow method. They both have a max depth
of 2. As it is possible for the grow method to select components from both “terminal”
and “function” sets at depth 1 and 2, we see that the right branch of the tree on the
right terminates at depth 1 while the left branch terminates at depth 3. In contrast,
both branches of the “full” tree must terminate at depth 3 since only arithmetic
operators could present in nodes at depth 1 and 2 and the branches cannot terminate
earlier.

Figure 3: Syntax trees of random CVs from the full and grow methods (max depth
of 2)

11

In practice, the two methods are used in combination as they help to diversify
the trees’ morphology. This enables a broader range of CVs to be represented and
considered in GP so it has a higher chance to find a good solution.

2.2.2 Step 2 - Fitness

In biology and GP, fitness represents how well an individual adapts to its
surrounding “environment”. In our application, we wish to obtain a CV that results in
as high as possible values of T in all disturbance conditions. So the “environment” here
is the disturbance conditions. But since it is impossible to consider an infinite number
of situations, our “environment” must be a set of a finite number of conditions instead.
We use the symbol D to denote a disturbance condition and S = {D1, D2, ..., Dn} to
denote a set of n disturbance conditions (n ∈ Z+).

Assume that we have a CV c and its setpoint cs. We denote the value of T
obtained when controlling c to cs in a disturbance condition Di by TDi

. A better
CV should have higher values of TDi

(∀Di ∈ S), or equivalently, a higher value of
T̄ , where T̄ = mean(TDi

). Therefore, in this application, we can define the fitness
of a CV as T̄ . Let Topt,Di

be the optimal value of T in Di and T̄opt = mean(Topt,Di
)

(∀Di ∈ S). An optimal CV should have its fitness T̄ equal to T̄opt. Details in how to
solve for T and Topt in each disturbance condition Di have been discussed in Section
2.1.

2.2.3 Step 3 - Individual selection

A question in Step 3 is how individuals are selected here. To do this, GP uses a
2-step mechanism called tournament selection. In the first step, each tournament
randomly picks up a small number of individuals, ncandidate, from the population.
For example, let us take ncandidate = 5. Then, the best individual among these five is
picked up and fed to Step 4 in the algorithm. As the first selection step is random,
individuals other than the best one could still be chosen. This helps maintain the
diversity of the populations.

2.2.4 Step 4 - Genetic operations

There are 2 genetic operations in GP: mutation and crossover. Their role is to
generate new CVs from existing CVs.

Mutation: Note that we just describe one type of mutation here - subtree
mutation. Although there are other types, such as point mutation, subtree mutation

12

is the most common choice in GP [10]. When a tree undergoes mutation, one of its
nodes is selected randomly. Then, the subtree radiated from this node is replaced
with a random tree. This tree is generated by the methods used in Step 1. As a
result, we get a new random CV from an old CV through mutation.

Crossover: In contrast to mutation, we obtain two new CVs from two parental
CVs. Here, we also have 2 randomly selected subtrees, each from a parental CV.
They are also replaced, not with randomly generated trees as in mutation, but with
each other. This means that after crossover, parts of parent 1 are transferred to
parent 2, and vice versa. As crossover requires 2 individuals, 2 tournament selections
have to be carried out in advance.

In practice, to determine which nodes in a CV to conduct genetic operations,
the algorithm first assigns a random number r ∈ [0, 1] to each node. Then it
compares these numbers r to the probability thresholds specified by the users (PXO
and Pmutation for crossover and mutation, respectively). Starting from the top of the
tree, if we encounter a node whose associated number is smaller than the thresholds,
that node is selected for conducting genetic operations.

2.2.5 How to identify CV setpoint cs

This problem is unique to the application of GP in SOC. There are two ways
to determine the cs value corresponds to a CV generated by GP. We can set cs to 0
and GP will then find CVs that give (near) optimal process performance when being
controlled to 0, i.e. approximations of the gradient Ju. A more general approach is
to define a nominal operating condition, and let the setpoint cs of a CV c = h(y)
to be equal to c?s,nom = h(y?nom), value of c under the optimal operation at the
nominal condition. The latter strategy makes it easier for GP to search and is more
appropriate for difficult search problems.

2.3 Rationale behind the application of Genetic Program-

ming in Self-Optimizing CV searching

GP has myriads of applications developed over time. One most recent example
that proved GP’s power could be found in [11]. Despite working on an enormous
search space, GP successfully rediscovered Deep Learning algorithms from basic
arithmetic operations. The established applications enable researchers to study
and summarize the properties of a potential problem for GP. [10] has listed a few

13

examples of these, including:
• The sizes and shapes of solutions (solutions’ syntax trees, more precisely) are
unknown
• Analytic solutions by mathematical analysis are not available
• Approximate solutions can be accepted
• It is challenging to obtain good solutions but easy to evaluate and test the
performance of a candidate
• There is a significant amount of testing data

Choosing self-optimizing variables is non-intuitive, as well as determining which
measurements should be combined to combine them and the complexity of these
combinations. Also, given that a plant model is available, we can evaluate and
test the performance of a CV by repeatedly solving the fully determined system
of equations at many operating conditions, as discussed in Section 2.2.2. These
properties suggest that GP is a potential method to find self-optimizing CVs.

Moreover, it is hypothesized that “biological systems by natural selection through
millions of years must have developed simple self-optimizing control strategies” [12].
This hypothesis, if true, means that natural selection could result in sophisticated
and effective SOC strategies. Therefore, it further motivates us to apply GP, a
natural selection-inspired algorithm, to search for self-optimizing variables.

3 Case study I: Toy Example

Instead of starting with the mentioned HX example, we use a toy case study to
illustrate the capabilities of GP in identifying SOC variables. This toy case study,
adapted from [5], has relatively simple “global” self-optimizing: these are in the form
of linear combinations of the measurements.

3.1 Problem description

There are one unconstrained degree of freedom u, and one disturbance d in our
process. At the nominal condition, d = 0. There are also 2 available measurements
y1 and y2, where y1 = 0.9 · u+ 0.1 · d and y2 = 0.5 · u− d. Our goal is to minimize
the objective function J(u, d) when d changes, where:

J(u, d) = (u− d)2 (7)

14

3.2 Analytical solutions

Alstad and Skogestad have shown in [5] that the “global” CVs are in the form
of c = h1 · y1 + h2 · y2 (where h1, h2 are real numbers and h1 = 0.5 · h2. Controlling
these variables to their setpoints cs = 0 gives optimal operation under all conditions.

3.3 Settings of Genetic Programming experiment

3.3.1 Fitness evaluation

Our goal is to minimize J(u, d) at all d conditions. Therefore, the lower the
loss sum ∑

∀d J(u, d) when controlling a CV, the higher its fitness. Thus, we define
fitness of a CV as:

1
0.5 + ∑

∀d J(u, d) (8)

The scalar 0.5 in the denominator helps prevent division by zero from occurring
when GP finds an ideal CV with ∑

∀d J(u, d) = 0. This ideal CV has a fitness of 2.

Knowing that the ideal CVs are in the form of linear combinations, we use only
2 operating points, d = 0 (nominal condition) and d = 0.2, to evaluate the fitness of
each CV h(y1, y2). Thus, we have ∑

∀d J(u, d) = J1 + J2, where J1 = J(u, d = 0)
and J2 = J(u, d = 0.2). At each point, we substitute the value of d into the equation
h(y1, y2) = 0 and solve it to find u. Then, we substitute this value of u into J(u, d)
to obtain the loss at this point.

3.3.2 Identifying CV setpoints cs

Here we wish to find SOC variables that give near-optimal performance when
being controlled to 0. Thus, we set the setpoint cs of all CVs found by GP to 0 by
default.

3.3.3 Parameters

Table 1 represents values of GP parameters used in Case Study I. These values
are determined using trial-and-error. They are actually values in our first trial. As
they give good results and GP is quite robust to parameters’ values [10], we do not
tune them further.

15

Table 1: Values of GP parameters used in Case Study I

Terminal set Sterminal {y1, y2}

Function set Sfunction {+,−, ∗}
Number of individuals per generation N 60
Max number of generations Ngeneration 250
Max tree depth in the 0th generation
depthmax

5

No. of candidates in tournament selection
(1st step) ncandidate

5

Cross-over probability PXO 0.8
Mutation threshold Pmutation 0.2

3.4 Results and Discussion

The problem in interest is indeed easy as GP often finds the optimal solutions
after a few generations (even after only one generation). However, it is interesting to
see the abstract syntax tree representation of these solutions. An example is:

(((((y2 · y2) + (y1 + y1)) + y2) + (y2 + y2)) + y2)− (y2 · y2) (9)

Although it seems more complex, it is actually equal to 2 · y1 + 4 · y2. That means
there are redundant parts in the syntax tree. These parts increase the complexity
rapidly but have no impact on the performance of solutions. This phenomenon,
usually known as “bloating”, is common in GP. It poses a challenge in implementing
GP as over-complex solutions, may require a huge amount of computing resources
to evaluate their fitnesses while not helping the search. This challenge has to be
addressed for GP to find useful solutions in more complex processes.

4 Case Study II: The Heat Exchanger Network

The second process that we apply GP to is the heat exchanger network described
in Section 2.1. It has an elegant self-optimizing CV found by the polynomial zero
loss method. The availability of the analytical solution and insights on the process
provides us a base to evaluate GP’s performance.

16

4.1 Heat transfer modeling - Mean Temperature Difference:

LMTD, AMTD, and Chen’s approximation to LMTD

Please refer to Section 2.1 for a detailed description of the process and the
problem. Here we only discuss details about the mean temperature difference ∆Ti in
the heat transfer equations.

∆T in a countercurrent heat exchanger is usually taken as the logarithmic
mean temperature difference. However, as the logarithmic term in LMTD may cause
numerical difficulties, many approximations have been developed as alternatives.
Among them, the approximation suggested by Chen is probably the best [13] [14].
This Chen’s approximation to LMTD is calculated as:

∆T = (1
2 ·∆T1 ·∆T2 · (∆T1 + ∆T2)) 1

3

where: ∆T1 = Thout − Tcin,∆T2 = Thin − Tcout
(10)

The arithmetic mean temperature difference (AMTD) is another popular ap-
proximation to LMTD. However, it is not as accurate as Chen’s approximation [14].
The AMTD of a heat exchanger is defined as:

∆T = (Thin + Thout)− (Tcin + Tcout)
2 (11)

AMTD is a good approximation to LMTD if the heat capacity of the hot and the
cold streams are not significantly different.

In this Case Study, we will use GP to find SOC variables for both AMTD-based
and Chen’s approximation-based heat exchanger networks.

4.2 Analytical solutions: Jaeschke temperature and the self-

optimizing CV

Jaeschke and Skogestad [15] have applied the polynomial zero loss method to
find self-optimizing CVs for an identical network system. The self-optimizing CV
found is based on a quantity called “Jaeschke temperature”. For each branch i in the
network, the Jaeschke temperature TJi is defined as:

TJi = (Tcouti − Tcini)2

Thini − Tcini
(12)

17

Since the HEN in interest has 2 branches, there are TJ1 and TJ2. The self-optimizing
CV c is the difference between these two: c = TJ1 − TJ2. The setpoint cs of c is 0.
For convinience, from now on we use the symbol ∆TJ to refer to the CV.

The basic assumption behind the derivation of ∆TJ is that we could describe
the driving forces in HXs by AMTD. Thus, controlling ∆TJ to 0 would result in
optimal operation in these cases.

Interestingly, ∆TJ also gives a good performance, even though not optimal,
when used in an LMTD-based process. But this applies only if the process is in a
region where AMTD approximates LMTD well, i.e. similar heat capacity in both
streams. We will use the term “normal” region to refer to this high-performance
region.

But there are 2 regions in which the use of AMTD is inappropriate and ∆TJ
does not perform well, as stated in [16]. In the first region, which we call “extreme”
region I, we have ωh1 >> ωh2 and UA1 >> UA2. While in the second one, or
“extreme” region II, we also have ωh1 >> ωh2 but UA1 ≈ UA2 here. Controlling ∆TJ
to 0 in region I results in a large loss in T , and it is impossible for ∆TJ to be 0 in
region II.

4.3 Questions to be addressed by GP

Having the analytical CV ∆TJ , its advantages and limitations as references,
there are a few questions that we would like to address using GP. These questions
can be organized into 4 groups. The first group focuses on the AMTD-based HEN,
while the remaining concern the Chen’s approximation-based HEN. The groups and
their questions have been shown in Table 2.

18

Table 2: Groups of questions to be addressed by GP

Questions

Group 1: Could GP rediscover ∆TJ when applied to the AMTD-based HEN?
If not, how large are the differences between GP solutions’ perfor-
mance and that of ∆TJ?

Group 2: As ∆TJ can only give near-optimal T in the normal region, could
GP find CVs with better performance and/or fewer measurements
required? How do these CVs perform in extreme regions?

Group 3: Could GP find CVs that perform well in extreme regions?
If yes, do these CVs still work in the normal region?

Group 4: Could GP discover “global” self-optimizing variables, ones that have
good performance both in normal and extreme regions?

4.4 Design of Experiments

We have designed and run four experiments, each to address one group of
questions mentioned above. We will now discuss the details of these experiments. A
summary of these details can be found in Table 4 after Section 4.4.2.

4.4.1 “Environment”

It has been discussed in Section 2.2.2 that each GP experiment requires an
“environment” - a set S of operating conditions. That is also the region of operating
conditions that we wish CVs to have a high performance in. As in the table of
experiment details, there are 3 sets of operating conditions used (SI, SII, and SIII).
Set SI represents normal region, while Set SII represents the extreme regions. Set
SIII is designed to cover both normal and extreme regions. The ranges of these
regions have been determined through trial-and-error and are shown in Table 3. The
sets are created by sampling points from these ranges using the Latin hypercube
sampling method.

As discussed in Section 2.1, for each operating condition, if we specify the
value of u2, the system is fully determined and we can solve for T . Thus, T can be
written as a function f of u2 and d. As shown in [15], the curve T = f(u2, d) in each
operating condition d is flat. That means, for each operating condition d, varying
u2 results in only slight changes in T . Thus, each set should cover a wide range of

19

Table 3: Center points and Ranges of Sets SI, SII, and SIII

Region of SI Region of SII Region of SIII
Center
point Range Center

point Range Center
point Range

Tcin 60 ±20 60 ±20 60 ±20
ωc 100 ±20 100 ±20 100 ±20
Thin1 120 ±20 120 ±20 120 ±20
Thin2 220 ±20 220 ±20 220 ±20
ωh1 30 ±20 400 ±20 250 ±185
ωh2 50 ±20 100 ±20 115 ±25
UA1 50 ±20 600 ±100 365 ±275
UA2 80 ±20 600 ±100 380 ±260

operating conditions for the nonlinearity in f(u2, d) to be significant and the fitness
evaluation of CVs to be accurate. This requirement, in turn, calls for more sampling
points in each set such that they are representative of their corresponding regions.
We have chosen the number of points in each set to be 50 including the nominal
point. Therefore, to create a set, we sample 49 points from its range and then add
the nominal point.

4.4.2 Other details

We reuse the GP parameters from Case Study I in Case Study II. However, since
the problems here are relatively more complex than that in Case I, two important
parameters have been increased to provide GP with more time and “diversity” in
each generation to search. These are the number of individuals in population N and
the maximum number of generations Ngeneration. Through trial-and-error, we select
the values of these parameters to be 360 and 300, respectively.

Since each run of the GP code requires around 24-36 hours, each experiment
is repeated only three times and the best result among them is taken. The only
exception is Experiment 1, which we run 6 times to increase the probability of GP
discovering ∆TJ . In each experiment, we also record the optimal fitness T̄opt and the
fitness T̄ of ∆TJ (denoted as T̄Jaeschke). These provide references to compare the
performances of CVs that GP found. How to compute T̄opt has been discussed in
Section 2.1. To compute T̄ of ∆TJ , we treat ∆TJ as a CV and use the procedure to
compute CVs’ fitnesses described in Sections 2.1 and 2.2.2. .

In these experiments, we set the setpoints of the CVs found to c?s,nom, their
value in optimal operation under the nominal condition (the centre point of the sets

20

in each experiment). This is the second strategy mentioned in Section 2.2.4.

Finally, we have modified the GP algorithm to prevent “bloating”, which has
been mentioned in the first case study. As an individual in the next generation is
created, its tree size is checked. It is accepted to the new population only if the size
is not larger than a threshold or the algorithm must repeat the steps of selection
and mutation to create another CV otherwise. Setting a size limit is not a major
problem in our application because we may prefer simple CVs with slightly worse
performance over high-performing but overcomplex ones. We have taken the tree
size of ∆TJ as a reference. As the size of ∆TJ is 21, we set the size threshold at
31, slightly higher than the reference. This setting enables GP to have more CV
candidates to consider.

Table 4: A summary of details of the experiments in Case Study II

Exp. Exp. Exp. Exp.

for for for for

Group 1 Group 2 Group 3 Group 4

(Exp. 1) (Exp. 2) (Exp. 3) (Exp. 4)

“Environment” Set SI Set SI Set SII Set SIII
Process Model AMTD Chen’s Chen’s Chen’s

approx. approx. approx.
Optimal fitness T̄opt 88.3226 88.2706 160.4240 144.7455
Fitness of ∆TJ 88.3226 88.2691 Not avail. Not avail.
Number of experiment repeats 6 3 3 3
Number of individuals per gen-
eration N

360

Max number of generations
Ngeneration

300

Max tree depth in the 0th gen-
eration depthmax

5

No. of candidates in tour-
nament selection (1st step)
ncandidate

5

Cross-over probability PXO 0.8
Mutation threshold Pmutation 0.2

21

4.5 Results and Discussions

4.5.1 Experiment 1

Values of T̄opt and T̄Jaeschke confirm the best performance of ∆TJ in the AMTD-
based process. GP did not find ∆TJ in the 6 runs done. However, the best CV that
GP found has a fitness T̄ of 88.3225, quite close to the optimal fitness of 88.3226
already. It has a complex form:

(4 · Tcin − Thin2)− (((Thin2 − Thin1) · (Tcin − Tcout1))

− ((3 · Thin1 − 2 · Tcout1) · (Tcout1 − Tcout2))) (13)

It is no surprise that GP could not find ∆TJ . The number of CVs with the
same syntax tree size as ∆TJ is enormous. As GP is a stochastic search algorithm,
the probability that it finds ∆TJ among all these CVs is not high. But this may not
be a problem since it can find other CVs with performances not so different from the
optimum.

For extra information, GP has indeed found ∆TJ in one of our preliminary
experiments, even though we have used Chen’s approximation to LMTD in heat
transfer equations in that experiment.

4.5.2 Experiment 2

It could be seen that the fitness of ∆TJ is smaller than the optimal (88.2691
versus 88.2706), although the difference is insignificant. In this experiment, GP
found CVs with fitnesses slightly higher than that of ∆TJ . The three best CVs found,
in order of decreasing fitness, are:

(((Tcout1 −Tcin) · (Tcout1 ·Thin2))− (Tcout1 + ((Tcout1 −Tcout2) · (((((Tcout1 −88) +Thin1)

− (Tcout1 − Thin1)) · (Tcin − (2 · Thin1)))− Tcout2)))) (14)

and

(((Tcout1 − Tcin) · (Tcin · Thin2))− (Tcin + ((Tcout1 − Tcout2) · (((((Tcin − 88) + Thin1)

− (Tcout1 − Thin1)) · (Tcout1 − (2 · Thin1)))− Tcout2)))) (15)

22

and

(((Tcout1 − Tcin) · (Tcin · Thin2))− (Thin1 + ((Tcout1 − Tcout2) · (((((Tcin− 88) + Thin1)

− (Tcout1 − Thin1)) · (Tcout1 − (2 · Thin1)))− Tcout2)))) (16)

Their fitnesses are 88.2695, 88.2693, and 88.2693, respectively. Among them,
we choose only the best CV to investigate its performance further on Set SII. But it
does not perform well on Set SII. Similar to ∆TJ , controlling the CV to its setpoint
gives a loss as large as 3-5 °C in some operating conditions or is impossible in the
others.

There are 5 measurements in the CV mentioned. We also ran experiments with
only 3 measurements in the terminal set to see if GP can find SOC CVs with fewer
measurements. The best 3-measurements CV found has a fitness of 88.24, lower than
that of ∆TJ . It seems challenging to find CVs that are as good as ∆TJ with less
than 5 measurements. Therefore, we always include 5 measurements in Experiments
3 and 4.

4.5.3 Experiment 3

∆TJ does not perform well in conditions in Set SII. Among these 50 conditions,
there are 19 in which it is impossible to control ∆TJ to 0. In the 31 cases remaining,
this is possible but results in large losses (range from 2-5 °C in each case). The
fitness of ∆TJ in this set of 31 points is 155.5979

GP found CVs that have good performances here. The three best CVs found,
in order of decreasing fitness, are:

(((Tcout1 − Thin2) ∗ (2 ∗ Thin1)) + (((37 ∗ Tcout1) ∗ (Thin2 − Tcout2))

+ (Thin2 ∗ ((((Tcout1 − Thin2)− Thin2)− Thin2)− ((Tcout2 − Tcout1)− Tcout1))))) (17)

and

(((87 ∗ Tcout1) + (Tcout1 − Thin1)) + (((37 ∗ Tcout1) ∗ (Thin2 − Tcout2))

+ (Thin2 ∗ ((((Tcout1 − Thin2)− Thin2)− Thin2)− ((Tcout2 − Tcout1)− Tcout1))))) (18)

23

and

(((87 ∗ Tcout1) + (Thin2 − Thin1)) + (((37 ∗ Tcout1) ∗ (Thin2 − Tcout2))

+ (Thin2 ∗ ((((Tcout1 − Thin2)− Thin2)− Thin2)− ((Tcout2 − Tcout1)− Tcout1))))) (19)

Their fitnesses in 50 points of Set SII are 160.3415, 160.3389, and 160.3388,
respectively. These are close to the total optimal in this 50-points region, 160.4240.
We select the best CV to investigate further. This CV can be driven to its setpoint in
all cases of Set SII. In the region of 31 points where controlling ∆TJ to 0 is feasible,
its fitness is 159.3127. This is significantly better than the fitness of ∆TJ and
approaches the optimal in this region (159.3985). However, it has a poor performance
in conditions in Set SI. The loss in each case varies from 1 to 4 °C.

4.5.4 Experiment 4

Results from Experiments 2 and 3 suggest that we must include both normal
and extreme regions in GP’s “environment” to search for “global” CVs. It is what
we have done in Experiment 4. With Set SIII as the “environment”, GP found CVs
with good performance in both normal and extreme operating conditions. The three
best CVs found, in order of decreasing fitness, are:

(((18 ∗ Thin1)− (7 ∗ Thin1)) + ((((Tcin − Thin1) ∗ (Thin2 − Tcout1))− (Thin1 ∗ Thin2))

+ ((Thin1 + (48− Tcout1)) ∗ ((7 ∗ Tcout2)− Tcout1)))) (20)

and

(((24 ∗ (Thin2 − Tcout1)) + Tcin) + ((((Tcin − Thin1) ∗ (Thin2 − Tcout1))

− (Thin1 ∗ Thin2)) + ((Thin1 + (48− Tcout1)) ∗ ((7 ∗ Tcout2)− Tcout1)))) (21)

and

(((17 ∗ (Thin2 + Tcin)) + ((((Tcin − Thin1) ∗ (Thin2 − Tcout1))

− (Thin1 ∗ Thin2)) + ((Thin1 + (48− Tcout1)) ∗ ((7 ∗ Tcout2)− Tcout1)))) (22)

Their fitnesses are 144.7291, 144.7290, and 144.7289, respectively. These are
close to the optimal fitness of 144.7455. We do not compare with the fitness of ∆TJ

24

in Set SIII since controlling ∆TJ to 0 is infeasible in some conditions.

We select the best CV to check how it performs in Set SI and Set Set SII. In
Set SI, its fitness is 87.9837, slightly lower than the optimal fitness and the fitness
of ∆TJ (88.2706 and 88.2691, respectively. In Set SII, its fitness is 160.3709, while
the optimal fitness is 160.4240 (including the points with infeasible control of ∆TJ).
These data suggest that the CV found has near-optimal performances in both normal
and extreme operating conditions.

4.6 Summary

The results of the conducted experiments are summarized in Table 5. The first
three columns in the table represent the properties of the best CV found by GP in
each experiment. The answers to the questions in Table 2 are shown in Table 6.

Through the conducted experiments, we have shown that GP is a potential
method for finding self-optimizing CVs. It is capable of searching for nonlinear CVs
that have good performance over a wide range of operating conditions. Moreover, it
does not require solving difficult optimization problems as in other data-driven SOC
variables searching methods. It also has the advantages of being highly automated
and requiring minimum human involvement, especially in specifying the form and
structure of the solutions.

Table 5: A summary of results in Case Study II

Fitness Fitness of The optimal

Search Can work in the ∆TJ fitness

sets in sets working in the in the

sets same sets same sets

Exp. 1 Set SI Set SI 88.3225 88.3226 88.3226
Exp. 2 Set SI Set SI 88.2695 88.2691 88.2706
Exp. 3 Set SII Set SII 160.3415 Not avail. 160.4240
Exp. 4 Set SIII Set SI 87.9837 88.2691 88.2706

Set SII 160.3709 Not avail. 160.4240
Set SIII 144.7291 Not avail. 144.7455

25

Table 6: The answers to the questions in Table 2

Questions

Group 1: GP did not rediscover ∆TJ when applied to the AMTD-based HEN.
The differences between GP solutions’ performance and that of ∆TJ
were small (83.3225 versus 83.3226).

Group 2: GP found CVs with better performances than that of ∆TJ , but
not with fewer measurements. These CVs did not perform well in
extreme regions.

Group 3: GP found CVs that perform well in extreme regions. These CVs did
not work in the normal region.

Group 4: GP discovered “global” self-optimizing variables, ones that have
good performance both in normal and extreme regions.

4.7 Further Study

When applied to the HEN process, GP found CVs that have performances
comparable to the analytical solution ∆TJ . It also found CVs that can work in
both the normal and the extreme regions, in contrast to ∆TJ . However, noise in
the process has not been considered. It is interesting to see how GP performs when
adding noise to the process model. We have not investigated how changes in GP
affect its performance either. For example, does switching to another GP algorithm
or increasing the tree size limit improve the search?

There are questions regarding the method to be addressed. Most importantly,
can it find CVs that can handle active set changes automatically (if these exist) and
eliminate the need for CV switching? This would increase the industrial acceptance
of SOC and enable its applications in real systems [4]. It would also help to advance
the field of dynamic SOC. Then, can we reduce the amount of time it takes for GP
to find SOC variables? It took around 24 hours for each run in Case Study II in this
work, and to find good solutions may require 4-5 runs. It was a considerable amount
of time. Can we combine GP with other methods to improve its searching efficiency?
For example, using insights or results from the polynomial zero loss method to aid
GP in its search by modifying the terminal/function set. Finally, can we extract any
pattern from the high-performing CVs that GP found and learn from these patterns
to design better self-optimizing variables?

26

Part III

Steady-state detection in SRTO

using Convolutional Neural

Networks

5 Steady-state Real-Time Optimization (SRTO)

5.1 Components of SRTO

As mentioned in the Introduction, to find inputs that improve the plant per-
formance, SRTO must repeatedly solve an economic optimization problem. Thus,
it needs a solver to fulfill this task. It also has two other crucial components: a
parameter estimator and a steady-state detector.

The parameter estimator is important to guarantee that the RTO model used
in the economic optimization layer is in synchronization with the plant. In the
parameter estimation step, selected model parameters are adapted such that the
model captures the current system disturbances. Since these disturbances are rarely
measured, averaged process measurements are used for representing their effect in
the system.

What types of measurements can be used by the estimator depends on the
model employed in the RTO method. For example, while dynamic RTO can utilize
both steady-state and transient measurements, steady-state RTO can only use steady-
state ones. Thus, it is important to determine accurately whether the plant is at
steady-state or not and SRTO relies on SSD for this task.

Figure 4 shows how the three main components of SRTO coordinate. Assume
that the process has just reached a steady-state and the true current disturbance
values are d. SSD detects this event through measurements y and activates the
parameter estimator. The estimator then updates the optimization problem with
new disturbance values destimated. The economic optimization solves for the new
optimal input setpoints usp and send these to lower control layers for implementation
ending the SRTO cycle. The next cycle would starts when the process becomes

27

stationary again.

Figure 4: SRTO diagram

SSD is a critical component of SRTO as it determines when to trigger the system.
If it has a high false positive rate (declaring steady-state while the process is not yet
stable), the estimator will use transient data to update the steady-state model, which
results in inaccurate estimates of disturbances. Solutions found with inaccurate
disturbance values can become sub-optimal, or even worsen the plant performance
[17]. In contrast, if SSD has a high false negative rate (declaring transient while the
process is already stable), RTO activation only happens long after the plant has been
at steady-state. This increases the intervals during which the process is operating in
sub-optimal regions. Despite often overlooked in the SRTO literature, the accuracy
of the steady state detector has a significant impact on the SRTO performance. Thus,
more attention should be paid to investigating SSD methods in realistic situations.

5.2 Steady-state detection methods

According to [1], all existing SSD methods belong to one of these four groups:
•Group A: These methods employ linear regression over a data window, following
by a t-test on the regression slope. The t-test is used for inferring if the slope does
deviate significantly from 0 or not. The plant is considered to be at steady state if
the slope is not statistically different from 0.
•Group B: In these methods, the means of the two most recent data windows are
calculated. A t-test is then used to assert if these two means are different or not. The
plant is considered to be at steady state if the two mean values are not statistically
different.

28

•Group C: In these methods, the standard deviation is calculated over the most
recent data window. The plant is considered to be at steady state if the standard
deviation is statistically smaller than a threshold.
•Group D: These methods employ two different approaches to calculate the variance
of the same dataset, following by an F-test on the ratio of the two variance values.
The t-test is used for inferring if the two variances are significantly different. The
plant is considered to be at steady state if the two variances are not statistically
different.

In this thesis, we have selected two existing SSD methods as the base to evaluate
the performance of our new method. The first method, which we refer to by the
name SSD1, is proposed by Cao and Rhinehart in [18] and belongs to group D. The
second method, which we call SSD2, is from Kelly and Hedengren [17] and belongs
to group A. To the best of our knowledge, there is no systematic comparison of the
performances of methods in different groups. Moreover, among the methods that we
found in the literature, SSD1 and SSD2 have the most detailed method descriptions.
They are also easy to understand and implement. Thus, we selected them to use in
this thesis. We will now introduce the algorithms in these two methods.

5.2.1 Method SSD1

To implement SSD1, at each time step t, we need to compute the filtered
measurement yf,t by applying the exponential moving average filter with filter factor
λ1 (0 ≤ λ1 ≤ 1) to the plant measurements yt as following:

yf,t = λ1 · yt + (1− λ1) · yf,t−1 (23)

We also need to compute the filtered variance s2
1,t of (yt − yf,t−1), the difference

between the current measurement yt and the filtered measurement at the previous
step yf,t−1, according to the following formula:

s2
1,t = λ2 · (yt − yf,t)2 + (1− λ2) · s2

1,t−1 (24)

where λ2 (0 ≤ λ2 ≤ 1) is the filter factor. Similarly, we compute the filtered
variance s2

2,t of (yt − yt−1), the difference between the two most recent consecutive
raw measurements, by the following formula:

s2
2,t = λ3 · (yt − yt−1)2 + (1− λ3) · s2

2,t−1 (25)

29

where λ3 (0 ≤ λ3 ≤ 1) is the filter factor. Then, the R-statistic is used for comparing
these two filtered variances, s2

1,t and s2
2,t. Intuitively, if the process is not at steady-

state, s2
1,t is much larger than s2

2,t [19]. Thus, we compute the variance ratio
Rt = (2−λ1)·s2

1,t

s2
2,t

and compare it with Rcrit
1. Rcrit is a tuning parameter, whose value

is in the same order of magnitude as 1 . If Rt > Rcrit then we conclude that the
plant is unlikely to be at steady-state.

The authors suggested to set the values of the filter factors λ1, λ2, λ3, Rcrit as
0.2, 0.1, 0.1, and 2, respectively. However, setting Rcrit = 2 is just a starting point
and the parameter can require further tuning.

For a multivariable system, we can apply the algorithm to each variable and
consider that the system is stationary if some of the variables, e.g. all of them, are
at steady-state.

5.2.2 Method SSD2

In SSD2, we assume that the plant measurements at time t can be written as:

yt = m · t+ µ+ at (26)

where the term m · t represents the deterministic drift component, µ represents
the mean of the hypothetical stationary process, and at represents the white noise
component with a zero mean and a standard deviation of σa.
Similarly, we have the plant measurements at time t− 1 as:

yt−1 = m · (t− 1) + µ+ at−1 (27)

From these equations, we have:

yt − yt−1 = m+ at − at−1 (28)

As the term at−at−1 has an expected value of 0, the slope value m is computed as the
arithmetic the differences yt − yt−1 over a data window containing n measurements.
We can then estimate µ and σa over the same data window as:

µ = 1
n
· (

n∑
t=1

yt −m ·
n∑
t=1

t) (29)

1The term (2− λ1) appears in the numerator of Rt as a consequence of applying filter on the
process measurements. Please refer to [18] for more details.

30

σa =
√√√√ 1
n− 2 ·

n∑
t=1

(yt −m · t− µ)2 (30)

One could perform a statistical test on m to check if it is significantly different from
zero. However, Kelly and Hedengren showed that performing a t-test on the absolute
difference between the measurement and µ (the mean of the hypothetical stationary
process) yields more accurate results. For each point yt in the data window, we
check whether |yt − µ| ≤ tcrit · σa, where tcrit is the Student’s t critical value at a
significance level α and a degrees-of-freedom n. If the absolute value of the difference
between the measurement and the mean of the hypothetical stationary process µ
is smaller than the specified threshold, we assign the value 1 to the corresponding
flag pt. Otherwise, pt is assigned 0. Finally, we calculate the probability of the plant
being at steady-state P =

∑n

t=1 pt

n
· 100% and compare it to the cut-off value to give

the final conclusion.

It should be noted that the cut-off value and the window length are application-
specific and have to be determined manually. The authors recommend to use a
window length that is three to five times larger than τ

τs
, where τ and τs are the time

constant of the plant and the sampling interval, respectively. The procedure to apply
the SSD2 method to multivariable systems is similar to that of the SSD1 method.

6 Convolutional Neural Network (CNN) and k-

Means Clustering Algorithm

6.1 Convolutional Neural Network

Convolutional Neural Network is a kind of neural networks specialized in
processing image-like data. They are renowned for their performance in computer
vision tasks such as image classification and object detection.

In image classification, we want the computer to classify images in preselected
categories. For example, to recognize dog photos and cat photos in a collection of
both animals’ photos. Object detection is quite similar to image classification. The
computer also has to recognize objects in images. But an image may contain many
objects from different categories instead of only one. The machine has to recognize
all these objects and locate them by drawing a box surrounding each object in the
image.

31

CNNs are built using multiple Fully onnected layers, similarly to other types of
neural networks. But they also have two types of layers that are unique to them:
the convolutional layers and the pooling layers [20].

6.1.1 Convolutional Layer

Figure 5: How a Convolutional Layer processes its input 2

Convolutional layers, or filters, are 2-D arrays of scalars. Figure 5 shows an
example convolutional layer and how it works when applied to an image. The input
image in Figure 5 is represented by a 2-D array of scalars 3, . The filter is also a 2-D
array of scalars. The scalars in the arrays of the example image and filter are shown
in Figure 5. It is usually the case that an image has larger size than a filter. In the
example, the image is a 5x5 array while the filter is a 3x3 array. Therefore, the filter
is applied first in the top-left 3x3 region of the image. The output is obtained by
taking the dot product between the two 3x3 arrays highlighted in green in Figure 5,
which is:

(9 · 0 + 4 · 2 + 1 · 1 + 1 · 4 + 1 · 1 + 1 · 0 + 1 · 1 + 2 · 0 + 1 · 1) = 16
2Adapted from: https://www.ibm.com/cloud/learn/convolutional-neural-networks
3If an image is represented by only one 2-D array of scalars, this indicates that the original

image is in black-and-white. Each pixel in an black-and-white image is represented as a scalar, thus
the image is represented as a 2-D array. Each scalar in the array represents how dark or bright its
corresponding pixel is. Colored images are also represented as 2-D arrays, but each image has more
than one array. For example, a RGB image is represented by three arrays, each represents red or
green or blue intensities of pixels of the image.

32

Figure 6: Vertical edge detection by Convolutional Layer 4

We then move the filter one column to the right and apply it again to the new region.
The process is repeated until we have applied the filter to the whole image.

The convolutional layers help CNNs to detect features in an image such as
straight lines, curves, corners or more abstract features, which is crucial for object
identification. Figure 6 represents how a filter detects vertical edges in an image.
From left to right, we have matrix representations of the input, the filter, and the
output, respectively. Below each array is its corresponding “image”. We can interpret
the input from the output as following: there are changes in the color of pixels when
we move horizontally in the input (0 to 30 to 0) but no change when moving vertically
(0 to 0, 30 to 30), thus there are vertical edges in the input. It is as if the filter has
detected and retained in its output information about the vertical edge in the input.

Values of the scalars in the filter array determines which feature of an image a
filter can detect. Thus, designing a filter is equivalent to determining its array scalars.
Traditionally, filters are designed manually to target specific image features, such as
the one in Figure 6. However, array scalars of the filters in CNN are not designed by
human experts but are learned by the CNN itself during training. Therefore, it is
not straightforward to interpret which features are detected by filters of CNNs.

4Adapted from: https://kharshit.github.io/blog/2018/12/14/filters-in-convolutional-neural-
networks

33

6.1.2 Pooling Layer

Figure 7: How Max Pooling and Average Pooling layers process their input 5

The function of the Pooling Layers is to reduce the dimensional (thus, the
complexity) of the output from its previous layer. Although Convolutional Layers
also reduce the size of their inputs, they do that significantly slower than Pooling
Layers.

Figure 7 shows the outputs obtained when applying 2x2 Max Pooling/Average
Pooling Layer to a 4x4 input. It can be seen that the size of Pooling Layers’ outputs
is just 2x2, smaller than that of the input. Similar to Convolutional Layers, Pooling
Layers also sweep through all regions of the input. However, they are different since
they just output the maximum or the average of all scalars in each region instead of
the dot product.

6.1.3 VGGNet and its architecture

There are multiple variants of CNN, such as AlexNet, VGGNet, GooLeNet,
and ResNet, to name a few. Although they all have the same three building blocks
mentioned (the convolutional, the pooling, and the fully connected layers), the
network architecture of each variant is different from each other and is specific to that
variant only. Since we have used VGGNet in this work, we would like to introduce
its architecture in more detail.

5Adapted from: https://laptrinhx.com/convolutional-neural-network-cnn-3713577170/

34

Figure 8: The architecture of VGGNet 6

Figure 8 shows VGGNet’s architecture, which could be divided into two parts.
In the first part, there are only Convolutional and Max Pooling Layers. The final
layer of this first part is a Max Pooling layer, whose outputs are in the form of
vectors. These vectors are usually called “feature vectors”. The second part consists
of Fully Connected Layers and a softmax layer. We have not discussed the softmax
layer, but it helps the CNN determine how likely an image belongs to each class or
category. Similar to the fully connected layer, the softmax layer is not specific to
CNNs and can be found also in other types of neural networks.

It is clear from Figure 8 that VGGNet has many layers and a large number of
parameters to be learned, which is also the case with other Convolutional Networks.
Therefore, training a CNN requires enormous amounts of data and resources (com-
putational power and time, for example). As a result, it is a common practice in the
field of Computer Vision to reuse and modify an established CNN architecture with
proven performance. To train an existing CNN for a new application, we usually
“freeze” the Convolutional and Pooling layers. That means we keep the configuration
and parameters of these layers unchanged during training with training data of the
new application. We only change the configuration of Fully-Connected layers (shown
in blue in Figure 8) and let the neural network to relearn parameters of these layers

6Adapted from: https://www.cs.toronto.edu/ frossard/post/vgg16/

35

during training, if necessary.

6.2 k-Means Clustering Algorithm

In this thesis, we combine CNN with the k-Means clustering algorithm to use
in steady-state detection. Thus, we will now introduce the clustering algorithm.

The k-Means clustering algorithm helps to partition an arbitrary number of data
points into k clusters. Each data point is in the form of a vector and it belongs to
one cluster only after the partition. The cluster assignment is based on the similarity
between points. Usually, the similarity between two arbitrary points is quantified
by the Euclidean distance between them. Each cluster has a corresponding cluster
centroid, which is the center of the cluster. Algorithm 2 represents the pseudocode
of the k-Means algorithm.

Algorithm 2: Pseudocode of the k-Means clustering algorithm (from [21])

Require: The number of clusters to find k

A dataset D containing n training instances {d1, ..., dn}
A distance measure, Dist, to compare instances to cluster centroids

1: Select k random cluster centroids, c1 to ck, each defined by values for each
descriptive feature, ci = (ci1, ..., cim)

while being in the first two iterations or there are still cluster reassignments in
the previous iteration do

2: Calculate the distance of each instance, di, to each cluster centroid, c1 to
ck, using Dist

3: Assign each instance di to belong to the cluster Ci, to whose cluster
centroid ci it is closest

4: Update each cluster centroid ci to the average of the descriptive feature
values of the instances that belong to cluster Ci

end

A major drawback of the k-Means algorithm is that k has to be specified by
the user in advance. But it does not hinder the use of the algorithm in this thesis
since knowledge about the number of image categories is usually available in our
application, as we will show later.

36

6.3 Combining VGGNet and k-Means algorithm for image

classification

To understand how we can combine VGGNet and the k-Means algorithm for
image classification, we must review the architecture of the VGGNet first. As
discussed in Section 6.1.3, there are 2 parts in the VGGNet. The first part is the part
that consists of Convolutional and Pooling layers only. Its function is to generate
feature vectors from input images. The second part consists of Fully Connected
and softmax layers. This part is basically a neural network whose function is to
determine the category of images through investigating their corresponding feature
vectors. It is also the part that needs to be retrained whenever we apply VGGNet to
a new application. However, we can replace this part with the k-Means clustering
algorithm to form a new CNN, which we refer to as the k-CNN.

The k-CNN is suitable for image clustering tasks. For example, when we show
it a mixture of 50 cat images and 50 dog images and tell it to sort these into two, it
will automatically sort the images into 1 group consisting of dog images and 1 group
consisting of cat images based on the similarities between their feature vectors. The
new CNN knows that there are two different types of images in the mixture and
which images belong to each type, but it does not know the name of each type.

Although image clustering and image classification are not identical, we can
easily modify the procedure to enable the k-CNN to carry out image classification.
We also let it sort a few samples of dog and cat images into two groups. Then we tell
the k-CNN the name of each group. To determine the category of a new image later,
it just needs to determine which sample group is the feature vector of that image
closest to and assign the corresponding group name to be the image’s category.

We have already mentioned in Section 6.1.3 that parameters in the first part of
VGGNet are fixed and do not have to be updated for new applications. Thus, we
do not have to retrain this part of VGGNet. The k-Means algorithm, by its nature,
does not require training either. As a result, the k-CNN is a plug-and-play algorithm
and does not require any training in both image clustering and image classification
tasks (although it needs a few examples for reference purposes in the latter case).

37

7 Methodology - Results and Discussions

The basic idea behind our method of using CNN in SSD is to show plots of plant
measurements to the CNN and let it identify whether the plant is at steady-state
or not. This mimics the process of steady state detection through plots in humans.
From now on, we will call our method the CNN method.

We have designed 5 experiments to investigate the performance of CNN as a
SSD method. The plant we studied in Experiments 1 and 2 is a first-order plus delay
process. The transfer function of this process is:

Gp(s) = 0.703 · e−10s

1.62s+ 1 (31)

The nominal operating point of the process is (unom, ynom) = (1.5, 7.5). The input
range is u ∈ [1.0, 4.0], corresponding to an output range of y ∈ [7.14, 9.26].

In Experiments 3, 4, and 5, we study how CNN method performs in typical
operating scenarios of a chemical plant and typical types of noises, including white
noise, colored noise, and noise follows a heavy-tailed distribution. The typical
operating scenarios are step response, short ramp response, long ramp response, and
steady-state intervals. We have created an output profile, the one represented in
Figure 14, that includes all these scenarios and used this profile in our experiments.
We also use SSD1 and SSD2 methods discussed in Section 5.2 to identify whether the
plant is at steady-state and to compare the performance of the new method with.

Unless stated otherwise, the process noise in the five experiments follows a
normal distribution with a mean of 0 and a variance of 0.01. Since each experiment is
developed based on the results of the previous one, we will describe the methodology
of Experiment 1 first, following by the results and result discussion of Experiment 1,
then move on to the methodology, results, and result discussion of Experiment 2,
and so on until Experiment 5.

7.1 Experiment 1 - Methodology

In the first experiment, we would like to know whether CNN can “see” the
differences between steady-state data plots and transient data plots. Therefore, we
generated 2 sets of data plots, the steady-state set (SS) and the transient set (TS).
Each set contains 50 plots.

38

In each plot, the x-axis and the y-axis represent time and output measurement,
respectively. The scales of these axes are extremely important for steady-state
detection. For example, if the scale of the y-axis is too small, such that it is
comparable to the magnitude of noise in the measurement, both SS and TS plots will
appear to represent non-stationary measurements to us (and the CNNs). Similarly,
if the scale of the x-axis is much larger than the number of data points in the plot,
the plot is “compressed”. Thus, we cannot observe clearly how the measurements
changed over time. As a result, we have to select appropriate scales for both axes.
We found that for Gp(s), with the input range of [1.0, 4.0] and the noise level that
we selected, the y-axis should range from 5.0 to 10.0. We also determined that the
number of data points T in each plot to be in the range of 15 to 50. We let T change
from plot to plot to see if the CNN can recognize the similarity between plots in the
same set even though they have different number of data points. We found that the
x-axis range of [0, 50] is appropriate for T ∈ [15, 50].

To create a plot in Set TS, we pick up a random input level u0 in the range
[1.0, 4.0], compute the corresponding steady-state output level ySS(u = u0), and
let y0 = ySS(u = u0). At each time step 0 < t < T , we randomly update ut using
a continuous uniform distribution in the range [1.0, 4.0]. Next, we compute the
new measurement yt using the transfer function Gp(s). When we already have T
measurements, we add noise to them and plot the noisy measurements. Creating a
SS plot is similar to creating a TS plot, except that we let ut = u0 (∀t ≤ T). Details
about the two image sets and their plots are summarized in the Table 7. Figure 9
represents examples of plots from Set SS and Set TS.

39

Table 7: Details about Set SS, Set TS, and their plots

Number of plots in each set 50
x-axis limit in each plot (time
axis)

0-50

y-axis limit in each plot (output
axis

5-10

Number of datapoints in each
plot (T)

Random integer in [15; 50]

Input level u0 at time t = 0 Select randomly in [1.0; 4.0]
Output level y0 at time t = 0 y0 = ySS(u=u0)

Input level ut at each time step
t (0 < t ≤ T)

ut = u0 (for Set SS)

Select randomly in [1.0; 4.0] (for Set TS)

Figure 9: Examples of plots from Set SS and Set TS in Experiment 1

The procedure of Experiment 1 has been shown in Figure 10. First, we present
the first part of VGGNet with plots from Set SS and Set TS. VGGNet generates
one feature vector for each plot. Therefore, we have a set of 100 feature vectors. We
hypothesize that plots in the two sets look different through the lens of the CNN,
and thus the feature vectors it generates will have the following property: feature
vectors from Set SS will, in the vector space, lie closer to each other than vectors
from Set TS. Thus, we predict that when subjected to partitioning by the k-Means

40

algorithm with k = 2, vectors from both sets will form 2 separate groups, each of
which mainly consists of vectors from one plot set. For example, group 1 mainly
consists of vectors from Set SS, while group 2 mainly consists of vectors from Set TS
and vice versa. Therefore, to verify our hypothesis, in the next step, we partition
100 generated feature vectors into two groups using the k-Means algorithm and
investigate how plots in Set SS and Set TS are distributed to the two groups. If the
actual distribution agrees with our prediction, we can accept our hypothesis about
the steady state detection capability of the CNN method.

Figure 10: Procedure of Experiment 1

7.2 Experiment 1 - Results

Figure 11: Results of Experiment 1

Results of Experiment 1 are shown in the confusion matrix in Figure 11. Each
cell shows the number of plots that are in the group represented by the cell’s column
and comes from the set represented by the cell’s row. For example, the top-left
cell tells us that there are 50 plots in Group 1 that come from Set SS, and the
bottom-right cell displays that there are 43 plots in Group 2 that come from Set
TS. These results suggest that, from the point of view of the CNN, plots of Set TS

41

look different from plots of Set SS. It implies that the CNN method can distinguish
between steady-state data and transient data plots and we should investigate its
performance further.

7.3 Experiment 2 - Methodology

Figure 12: Examples of plots from Set SS and Set TS in Experiment 2

The procedure of Experiment 2 is similar to that of Experiment 1. However,
there are 2 differences in the plots of Experiment 2. First, there are more data
points in each plot (100 instead of 15-50 like before). Therefore, the x-axis limit in
each plot has also been changed to [0; 100]. Secondly, plots in Experiment 2 have
more intervals than those in Experiment 1. For example, consider the SS plots from
Experiment 1 and 2 in Figure 9 and Figure 12, respectively. We can see that the
output in the SS plot in Figure 9 fluctuates slightly from t = 0 to t = 50. Thus, there
is only one interval, the steady-state interval, in this plot. In contrast, the SS plot
in Figure 12 has two intervals. The first transient interval is from t = 0 to t = 70,
in which the output changes significantly, and the second steady-state interval is
from t = 70 to t = 100, in which the output just fluctuates slightly. Plots from both
Set SS and Set TS of Experiment 2 have multiple intervals. We can classify a plot
by looking at its final interval. If the final interval consists of slightly fluctuated
measurements, the plot is from Set SS. Otherwise, the plot is from Set TS. Due to the
presence of multiple intervals, plots in Experiment 2 are closer to plant measurement
plots in real situations. Figure 12 represents examples of plots from Set SS and Set

42

TS used in Experiment 2.

7.4 Experiment 2 - Results

Figure 13: Results of Experiment 2

Results of Experiment 2 are shown in the confusion matrix in Figure 13. Plots
of Set SS are distributed evenly to Group 1 and Group 2 (26 versus 24). It is also
the case for plots of Set TS. These results indicate that the CNN method cannot
distinguish between images in Set SS and Set TS in this experiment.

This is quite unexpected since the method performs well in Experiment 1 and
the two experiments are highly similar. The only difference is that while plots in
Experiment 1 have only one interval (steady-state or transient), these in Experiment
2 have multiple. The operation of Pooling Layers may be one possible reason for
CNN’s poor performance here. As discussed previously, Pooling Layers help to reduce
the size and the complexity of input images. During this reduction process, Pooling
Layers may fuse information about different intervals of a plot, effectively making
plots in Set SS indistinguishable from ones in Set TS.

Results in Experiment 2 show that the method cannot detect whether a plant
is at steady-state or not if there are too many data points and intervals. Of course,
they cannot detect accurately either if there are too few data points. Therefore, we
have to tune the number of data points in plots shown to the CNN appropriately. It
is also the reason we use sliding windows in later experiments to generate sub-plots
with fewer data points from an original plot with many data points.

Detecting directly from a plot with many data points may be possible with
object-detection algorithms, such as R-CNN [22], which can automatically split input
images into smaller parts and detect objects within each part. Since such algorithms

43

are complex and this thesis concerned only about introducing CNN as a SSD method
and not exploring its full capabilities, we selected the simpler approach of sliding
windows and did not investigate this direction.

7.5 Experiment 3 - Methodology

Figure 14: Plot of plant measurement in Experiment 3 without noise.

In Experiment 3, we wish to check the performance of the CNN method in
situations that usually happen in plant control, which are step response, short ramp
response, long ramp response, short steady-state interval, long steady-state interval.
We include these scenarios in the 13-intervals measurement plot of Experiment 3,
Figure 14, in which:

• Step response intervals: segments 2, 12

• Short ramp response intervals: segments 4, 10

• Long ramp response intervals: segments 6, 8

• Short steady-state intervals: segments 1, 5, 9, 13

• Long steady-state intervals: segments 3, 7, 11

However, this plot in Figure 14 is not presented directly to the CNN. According to the
experimental procedure in Figure 15, Gaussian noise is added to the measurements
first, resulting in a noisy plot represented by Figure 17. A sliding window with a
window length of 20 and a step length of 1 slides through the noisy plot to generate
sub-plots that are presented to the CNN.

44

Figure 15: Procedure of Experiment 3

Figure 16 shows an example of generating subplots from a plot using a sliding
window with a window length of 6 and a step length of 1. It should be noted that
we take a plot with no noise as an example to illustrate how sliding windows work in
Figure 16. That is for visualization and explaining purposes only. In the experiment,
the sliding window slides through the noisy plot in Figure 17. Initially, the window
was in the position of the red square and covered a time interval from 25 to 30. 6
measurements during this interval yt (t ∈ [25; 30]) are taken and used for generating
the first sub-plot. However, each measurement must be processed before the transfer
as following:

yt = yt − (
∑30
t=25 yt

6 − 5 + 10
2)

The purpose of this signal processing is to center the measurements in the subplot.
Not only is the output modified but also the time. It can be seen that the time
axis in the subplot does not start from the start of the interval covered by the red
window, which is t = 25. It starts from t = 1 instead. These modifications help to
eliminate the possibility that CNN incorrectly focuses on details in the axes instead

45

of the measurement signals. After the subplot from the red window is generated, the
window moves one step forward. It is now represented by the green square. Another
subplot is generated from the green window before it moves forward again. The
process repeats until the window reaches the final data point in the original plot.

Figure 16: An example of subplots from a plot using sliding windows

Since there are 410 data-points in Figure 17 and the sliding window has a length
of 20 and a step of 1, there are 391 sub-plots generated. Details about these sub-plots
are represented in Table 8.

46

Table 8: Details about sub-plots generated by the sliding window in Experiment 3

x-axis limit in each plot
(time axis)

0-100

y-axis limit in each plot (out-
put axis)

5-10

Number of datapoints in 20
each plot (T) (Equal to the length of the sliding window)

Figure 17: Plot of plant measurement in Experiment 3 with white noise.

The feature vectors from the sub-plots are partitioned into 3 groups (Groups
1, 2, and 3) using the k-Means algorithm. We select k = 3 as we (conservatively)
consider there are three types of sub-plots. These types are sub-plots in step response
intervals, ramp response intervals, and steady-state intervals, respectively. Then we
identify a group that contains mostly sub-plots from steady-state intervals (if no such
group exists, it means the CNN method has a poor performance). We consider this
group as the steady-state group, and other groups as transient. Since we generated
the data synthetically and know which data points are static or transient, we check
how many sub-plots in the steady-state/transient groups are actually in the steady-
state/transient intervals to determine the number of false positive/false negative
cases. We use these numbers to evaluate the performance of the CNN method relative
to SSD1 and SSD2 methods. We also investigate the distribution pattern of the
errors made by each method to obtain a better understanding about their behaviors,
such as in which conditions that they are more likely to make mistakes in the plant

47

condition detection

7.6 Experiment 3 - Results

Figure 18: Results of Experiment 3

Results of Experiment 3 are represented in the confusion matrices in Figure 18.
From left to right, the matrices show the best performance achieved by SSD1, SSD2,
and CNN methods, respectively. Each column in a matrix represents the category
that the corresponding SSD method assigned to sub-plots in that column, while
each row represents the actual category of sub-plots in that row. For example, from
the bottom-left cell of the first matrix, we know that the SSD1 method, which
relies on filtered measurements and variances comparison for steady state detection,
mistakenly classified 30 TS sub-plots as SS. The top-right cell of the same matrix
tells us that there were 158 SS sub-plots classified as TS by SSD1. We can also
calculate the total number of errors that SSD1 made by taking the sum of numbers
in the two red cells, which is equal to 30 + 158 = 188. The total number of sub-plots
that SSD1 classified correctly can be computed by taking the sum of numbers in the
two blue cells - the top-left and bottom-right ones - which is equal to 103+100 = 203.
It is easy to recognize that the darker a cell gets, the greater the number inside is.

SSD1 actually has the worst performance among the three methods. The other
two methods have similar performances. SSD2, which determines whether the process
is stationary or not by comparing actual measurements to a hypothetical stationary
mean, has 101 false positive, 42 false negative, and 143 total errors. These numbers
in the case of the CNN method are 116, 27, and 143, respectively.

To evaluate the methods further, we have visualized the errors that each method
makes in the without-noise time-output plots as in Figure 19. These error instances

48

are represented as orange dots in the plots. At first glance, the distribution of errors
of SSD1 is different from that of SSD2 while being similar to CNN. The errors in
SSD2 are scattered all over the plot, while they are more concentrated in the other
two methods. However, the error distributions of SSD1 and CNN are also different
from each other. While the CNN’s errors are present in almost all intervals of the
plots, they usually appear only at the beginning of each interval (except for intervals
6, 8, and 10). In contrast, the SSD1’s errors are present only in a few intervals (e.g.,
intervals 3, 5, and 8), but the errors appear frequently and consistently throughout
these intervals. It is as if the SSD1 method misclassified the whole of each of these
intervals.

Figure 19: False detection instances of different methods in Experiment 3 (from
top to bottom: SSD1 - SSD2 - CNN)

The error distribution of SSD1 suggests that it responds slowly to the operating
profile changes. It incorrectly classifies intervals 3 and 5 as transient, seemingly
because their previous intervals, 2 and 4, are responses with a large magnitude of
measurement change. In contrast, it determines that interval 7 is at steady-state. In
prior to 7 is a long-ramp response interval, which has a magnitude of measurement
change highly similar to that of steady-state ones.

The errors at the beginning of each interval in the CNN method are expected
because it is possible to acknowledge an interval change only after it has happened
for a while. These also show that the CNN method is highly consistent: it has a
low probability to trigger RTO during a transient interval. This consistency of the
CNN is an advantage over the SSD2 method although, in general, both steady-state

49

detection methods have the same accuracy.

The error distributions have also shown that all three methods incorrectly
classify long-ramp intervals as steady-state intervals. This is expected because in
long ramps, the system state is changing slowly, and thus the system can almost be
seen as being in a quasi-steady state. However, this type of error probably does not
affect RTO performance significantly since it is usually reasonable to treat a slowly
changing system as being at steady-state.

7.7 Experiment 4 - Methodology

The procedure of Experiment 4 is similar to that of Experiment 3, except
that the process noise now follows a heavy-tailed distribution instead of the normal
distribution. The purpose of Experiment 4 is to investigate how the CNN method
performs when the probability of having outliers in measurements is higher.

We select the Stable distribution, also called the α-stable distribution, as our
heavy-tailed distribution. Noises that follows the Stable distribution are called
α-stable noises. The Stable distribution does not have an explicit probability density
function. Thus, we do not include the probability function here. For more details
about the Stable distribution, please refer to [23]. Values of the parameters of the
distribution are shown in Table 9.

Figure 20 is the plot of the measurements against time after noise following the
described Stable distribution has been added.

Figure 20: Plot of plant measurement in Experiment 4 with α-stable noise.

50

Table 9: Values of the parameters of the Stable distribution used in Experiment 4

α 1.5
β, δ 0
γ 0.0725

7.8 Experiment 4 - Results

Figure 21: Results of Experiment 4

The behaviors of the three methods in Experiment 4 are similar to those in
Experiment 3. The error statistics and error distribution of the three methods are
represented in Figure 21 and Figure 22, respectively.

Figure 22: False detection instances of different methods in Experiment 4 (from
top to bottom: SSD1 - SSD2 - CNN)

SSD1 is still the method with the worst performance, with 174 errors. CNN
performs slightly worse than SSD2 did, but the difference is small (152 versus

51

148 errors). The change of noise distribution from normal distribution to Stable
distribution seemingly does not affect the performance of SSD2 and CNN, although
SSD1 performs slightly better in the latter case. The distributions of errors of the
three methods remain unchanged. The CNN method retains its advantage of high
consistency over the SSD2 method.

7.9 Experiment 5 - Methodology

The procedure of Experiment 5 is similar to that of Experiment 3, except
that we have colored noise in the process instead of the white noise. Through this
experiment, we wish to evaluate the performance of the CNN method in systems
with fast measurement, i.e. high sampling frequency, in which Colored noise may
exist [24].

To create the colored noise, we generate a sequence S of T random numbers
S = {r1, r2, ..., rT} from the normal distribution N (0, 0.1). Then we create a filtered
sequence Sf with T elements to represent the colored noise realizations. This filtered
sequence is also the sequence of colored noise to be added to the original, without-
noise plot in Figure 14 to result in the plot represented in Figure 23. The elements
rf (t) (t ∈ [1, T]) of the filtered sequence are calculated from the elements of the
original sequence rt (t ∈ [1, T]) as following:

rf (t) = 0.1 · rf (t−1) + 0.9 · rt (with rf (0) = r0)

Figure 23: Plot of plant measurement in Experiment 5 with colored noise.

52

7.10 Experiment 5 - Results

Results from Experiment 5, as shown in Figure 24 and Figure 25, are not
different from those from Experiments 3 and 4. The change of noise distribution
again does not seem to affect the performance of the CNN method.

Figure 24: Results of Experiment 5

Figure 25: False detection instances of different methods in Experiment 5 (from
top to bottom: SSD1 - SSD2 - CNN)

8 Limitations and Further Study

We have studied CNN as a potential steady-state detection method. We have
shown that the CNN method has performance comparable to that of other numerical
SSD methods and seems to be robust to different types of noise distributions. It also
has an advantage over the SSD2 method: the high consistency in its detection, which

53

may positively affect the performance of SRTO systems. This hypothesis should be
validated and studied quantitatively in a complete system of SRTO in the future.

One important implementation aspect we have not considered is the computa-
tional time required for the CNN method. In this study, we implement the method
on GPUs (graphic processing units), which may not be readily available in com-
puter systems of chemical plants. Thus, we have no base to estimate the required
computational time when running on non-GPU systems. However, if the sampling
interval used in the SSD is on a scale of minutes, the computational time is unlikely
to cause any problems. It is also interesting to see how the method performs in
terms of accuracy and computational time when other popular Convolutional Neural
Networks are used instead of the VGGNet.

We did not investigate in details how the method’s parameters, which are the
scale of the y-axis and the sliding window length, impact its performance. The
impacts of these parameters on the performance of the CNN method should be
understood better and have a systematic tuning approach. We should also evaluate
the method’s performance further on data from real-life systems.

Finally, despite the way that CNN works is very intuitive and its performance is
comparable to that of other SSD methods, we acknowledge that its implementation
is not as easy. Moreover, coding a CNN is also more difficult than the other methods
and may need a much more specialized person to do it.

54

Part IV

Conclusion
In this thesis, we have developed two new applications of Machine Learning in

steady-state real-time optimization.

We have shown in the first application how powerful Genetic Programming is as
a SOC variables search method. It can find SOC variables that give small economic
losses over a large operating region. Interestingly, as GP can generate many SOC
variables with similar performances for a process, we may be able to study more
about SOC from these variables.

In the second application, we have demonstrated that Convolutional Neural
Networks can be a potential alternative to statistical SSD methods. This new CNN-
based method has an intuitive working mechanism and comparable performance to
other SSD methods. Moreover, it has shown a higher consistency in its detections,
which may be advantageous to the performance of SRTO.

Despite the results so far being promising, the thesis presents only proof-of-
concept studies, where both applications are applied to bechmark problems. There
are many aspects of both methods that need to be further explored and understood.
For example, can GP GP find dynamic SOC variables? Or how does the CNN
method perform on real-life data? Future work should concentrate on addressing
these questions.

55

9 References

[1] A. Mhamdi et al. Thermal Desalination Processes - Volume I, On-line Opti-
mization of MSF Desalination Plants. EOLSS Publishers Co. Ltd, 2000. isbn:
978-1-84826-425-0.

[2] S. Skogestad. “Plantwide control: The search for the self-optimizing control
structure”. In: Journal of Process Control 10 (2000), pp. 487–507.

[3] J. E. A. Graciano et al. “Integrating self-optimizing control and real-time
optimization using zone control MPC”. In: Journal of Process Control 34
(2015), pp. 35–48.

[4] J. Jaeschke, Y. Cao, and V. Kariwala. “Self-optimizing control - A survey”.
In: Annual Reviews in Control (2017). doi: http://dx.doi.org/10.1016/j.

arcontrol.2017.03.001.

[5] V. Alstad and S. Skogestad. “Null Space Method for Selecting Optimal Mea-
surement Combinations as Controlled Variables”. In: Ind. Eng. Chem. Res. 46
(3 2007). doi: https://doi.org/10.1021/ie060285+.

[6] J. Jaeschke and S. Skogestad. “Optimal controlled variables for polynomial
systems”. In: Journal of Process Control 22 (1 2012).

[7] L. Ye, Y. Cao, and Z. Song. “Approximating necessary conditions of optimality
as controlled variables”. In: Ind. Eng. Chem. Res. 52 (2 2013).

[8] L. Ye, Y. Cao, and X. Yuan. “Global approximation of self-optimizing controlled
variables with average loss minimization”. In: Ind. Eng. Chem. Res. 54 (2015).

[9] J. Jaeschke and S. Skogestad. “Optimal operation by controlling the gradient
to zero”. In: Proceedings IFAC orld congress, Milano, Italy (2011).

[10] R. Poli, W. Langdon, and N. McPhee. A Field Guide to Genetic Programming.
Lulu Enterprises, UK Ltd, 2008. isbn: 978-1409200734.

[11] E. Real et al. “AutoML-Zero: Evolving Machine Learning Algorithms From
Scratch”. In: arXiv:2003.03384 (2020).

[12] S. Skogestad. “Near-optimal operation by self-optimizing control: from pro-
cess control to marathon running and business systems”. In: Computers and
Chemical Engineering 29 (2004).

56

https://doi.org/http://dx.doi.org/10.1016/j.arcontrol.2017.03.001
https://doi.org/http://dx.doi.org/10.1016/j.arcontrol.2017.03.001
https://doi.org/https://doi.org/10.1021/ie060285+

[13] J. Chen. “Logarithmic mean: Chen’s approximation or explicit solution?” In:
Computers & Chemical Engineering 120 (2019).

[14] F. Petterson. “Heat exchanger network design using geometric mean tempera-
ture difference”. In: Computers & Chemical Engineering 32 (2008).

[15] J. Jaeschke and S. Skogestad. “Optimal operation of heat exchanger networks
with stream split: Only temperature measurements are required”. In: Computers
& Chemical Engineering 70 (2014).

[16] S. Aaltvedt. Optimal Operation of Parallel Heat Exchanger Networks. Master’s
thesis at the Norwegian University of Science and Technology (NTNU), 2013.

[17] “A steady-state detection (SSD) algorithm to detect non-stationary drifts in
processes”. In: Journal of Process Control 23 (2013).

[18] “An efficient method for on-line identification of steady state”. In: Journal of
Process Control 5 (1995).

[19] R. R. Rhinehart. “Automated steady and transient state identification in noisy
processes”. In: 2013 American Control Conference (2013). doi: 10.1109/ACC.

2013.6580530.

[20] Y. Bengio I. Goodfellow and A. Courville. Deep Learning. MIT Press, 2016.
url: http://www.deeplearningbook.org.

[21] J. D. Kelleher. Fundamentals of Machine Learning for Predictive Data Analytics
(1st edition). The MIT Press, 2015. isbn: 978-0262029445.

[22] R. Girshick et al. “Rich feature hierarchies for accurate object detection and
semantic segmentation”. In: (2013). doi: arXiv:1311.2524.

[23] url: https://www.mathworks.com/help/stats/stable-distribution.

html.

[24] A. Bryson and D. Johansen. “Linear filtering for time-varying systems using
measurements containing colored noise”. In: IEEE Transactions on Automatic
Control 10 (1 1965).

57

https://doi.org/10.1109/ACC.2013.6580530
https://doi.org/10.1109/ACC.2013.6580530
http://www.deeplearningbook.org
https://doi.org/arXiv:1311.2524
https://www.mathworks.com/help/stats/stable-distribution.html
https://www.mathworks.com/help/stats/stable-distribution.html

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f C
he

m
ic

al
 E

ng
in

ee
rin

g

Vinh Phuc Bui Nguyen

Application of Machine Learning in
Economic Optimization

Master’s thesis in Chemical Engineering
Supervisor: Johannes Jaeschke - Sigurd Skogestad
Co-supervisor: Jose Otavio Assumupcao Matias
June 2021

M
as

te
r’s

 th
es

is

	List of Figures
	I Introduction
	II Self-Optimizing Control
	Self-Optimizing Control (SOC)
	What is SOC and Why SOC?
	Methods to identify self-optimizing CVs
	Polynomial zero loss method
	Regression method
	Global approximation of controlled variables method

	Genetic Programming
	HEN problem description
	How to use GP to search for self-optimizing variables
	Step 1 - CV representation, the terminal set, the function set, and the primitive set in GP
	Step 2 - Fitness
	Step 3 - Individual selection
	Step 4 - Genetic operations
	How to identify CV setpoint cs

	Rationale behind the application of Genetic Programming in Self-Optimizing CV searching

	Case study I: Toy Example
	Problem description
	Analytical solutions
	Settings of Genetic Programming experiment
	Fitness evaluation
	Identifying CV setpoints cs
	Parameters

	Results and Discussion

	Case Study II: The Heat Exchanger Network
	Heat transfer modeling - Mean Temperature Difference: LMTD, AMTD, and Chen’s approximation to LMTD
	Analytical solutions: Jaeschke temperature and the self-optimizing CV
	Questions to be addressed by GP
	Design of Experiments
	“Environment”
	Other details

	Results and Discussions
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	Summary
	Further Study

	III Steady-state detection in SRTO using Convolutional Neural Networks
	Steady-state Real-Time Optimization (SRTO)
	Components of SRTO
	Steady-state detection methods
	Method SSD1
	Method SSD2

	Convolutional Neural Network (CNN) and k-Means Clustering Algorithm
	Convolutional Neural Network
	Convolutional Layer
	Pooling Layer
	VGGNet and its architecture

	k-Means Clustering Algorithm
	Combining VGGNet and k-Means algorithm for image classification

	Methodology - Results and Discussions
	Experiment 1 - Methodology
	Experiment 1 - Results
	Experiment 2 - Methodology
	Experiment 2 - Results
	Experiment 3 - Methodology
	Experiment 3 - Results
	Experiment 4 - Methodology
	Experiment 4 - Results
	Experiment 5 - Methodology
	Experiment 5 - Results

	Limitations and Further Study

	IV Conclusion
	References

