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Summary

In the estimation of long-term extreme responses of a structure, the method of Full

Integration is often recognized as the most accurate approach. However, challenges arise

when complex structures such as floating bridges are to be investigated. Despite the

accuracy of the method, the computational expense and run-time of this approach cannot

be ignored. Therefore, in this thesis alternative methods for estimation of long-term

extreme responses for floating bridges are compared to the Full Integration approach. In

this comparison, emphasis is laid on both the accuracy and efficiency of these methods.

Among the considered methods in this project are the Inverse First-Order Reliability

Method (IFORM), the Environmental Contour Method (ECM) and Monte Carlo

Simulation (MCS) with Importance Sampling (IS). Finally, the potential application of

Gaussian Process Regression (GPR) in performing long-term structural response

analysis is investigated. For demonstration, all these methods are applied in long-term

analyses of a simplified floating bridge model. This model resembles the Bergsøysund

Bridge, located between Aspøya and Bergsøya in the north-western part of Norway.

The modelling and analysis of the waterborne pontoons are carried out in GenieE and

HydroD, both being software solutions developed by Det Norske Veritas (DNV). The

simplified finite element model of the bridge superstructure including the pontoon data

from HydroD is generated and analysed in Abaqus from which the undamped natural

frequencies and the mass normalized modal vectors are retrieved. By use of the

WAWI-toolbox developed at the Department of Structural Engineering at NTNU the

response spectrum of the structure is calculated.

Regarding the methods for long-term analysis, both IFORM and ECM showed quite

high accuracy with a maximum deviation of less than 5.7 % towards the conservative

side when compared to Full Integration. This modest deviation is also to a certain

degree compensated by the high efficiency of these methods. Monte Carlo Simulation

with Importance Sampling based on the results obtained from IFORM overestimated the

response but showed in general sufficient accuracy as well as efficiency.
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Sammendrag

Ved beregning av langtids ekstremrespons for en gitt konstruksjon er som oftest metoden

kalt Full Integrasjon anerkjent som den mest nøyaktige. Enkelte utfordringer kan likevel

oppst̊a n̊ar komplekse konstruksjoner slik som flytebruer skal undersøkes. Til tross for

metodens høye nøyaktighet kan hverken beregningskostnaden eller kjøretiden for denne

metoden ignoreres. I denne avhandlingen blir derfor alternative metoder for estimering av

langtids ekstremrespons av flytebruer undersøkt og sammenlignet med Full Integrasjon-

tilnærmingen. I sammenligningen rettes fokuset b̊ade p̊a nøyaktigheten og effektiviteten

til disse alternative metodene.

Blant de undersøkte metodene i dette prosjektet er den s̊akalte Inverse First-Order

Reliability Method (IFORM), Environmental Contour Method (ECM) og Monte Carlo

Simulering (MCS) med Importance Sampling (IP). I tillegg undersøkes potensialet til

Gaussian Process Regression (GPR) for bruk i forbindelse med langtids responsanalyse.

Alle de undersøkte metodene er eksemplifisert ved bruk av en forenklet flytebrumodell.

Modellen er basert p̊a parametere fra Bergsøysundbrua, en bru som ligger mellom

Aspøya og Bergsøya p̊a nordvestlandet. Modelleringen og analysen av bruas pongtonger

er utført i GenieE og HydroD, som begge er programvareløsninger utviklet av Det

Norske Veritas (DNV). Den forenklede elementmodellen av bruas bæresystem inkludert

pongtongdata fra HydroD er generert og analysert i Abaqus. Derfra hentes de

udempede naturlige frekvensene og de massenormaliserte modevektorene. Ved hjelp av

WAWI-pakken utviklet ved institutt for konstruksjonsteknikk ved NTNU blir

responsspekteret for konstruksjonen beregnet.

N̊ar det gjelder metodene for langtidsanalyse viste b̊ade IFORM og ECM høy grad av

nøyaktighet med et maksimalt avvik p̊a mindre enn 5.7 % mot den konservative siden,

sammenlignet med Full Integrasjon. Dette beskjedne avviket kompenseres dessuten til

en viss grad av den høye effektiviteten til disse metodene. Monte Carlo Simulering med

Importance Sampling basert p̊a resultatene fra IFORM overestimerte responsen, men

viste generelt tilstrekkelig nøyaktighet og effektivitet.
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Abbreviations and Symbols

The following lists describe the abbreviations used throughout the whole thesis, as well

as the symbols used in each section.

Abbreviations

NTNU Norwegian University of Science and Technology

PDF Probability Density Function

CDF Cumulative Distribution Function

FORM First-Order Reliability Method

IFORM Inverse First-Order Reliability Method

ECM Environmental Contour Method

FEM Finite Element Method

DOFs Degrees-of-Freedom

MCS Monte Carlo Simulation

DNV Det Norske Veritas

GPR Gaussian Process Regression

IS Importance Sampling

JONSWAP Joint North Sea Wave Project

WADAM Wave Analysis by Diffraction and Morison Theory

ISMCS Importance Sampled Monte Carlo Simulation

SINTEF The Foundation for Scientific and Industrial Research at the Norwegian

Institute of Technology
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Symbols

Stochastic Loading and Random Vibrations

xi(t) Stochastic realization of load or response process

ti Time variable for a given time series i

Rxi Auto-correlation function for the stochastic process xi

E[·] Expected value operator

τ Time lag

Rxixj Cross-correlation function for the stochastic processes xi and xj

Fourier Transform and Frequency Analysis

x(t) Stochastic process in the time domain

x(ω) Stochastic process in the frequency domain

i Imaginary unit

Modal Analysis

M Mass matrix

K Stiffness matrix

ü Acceleration vector

u Displacement vector

u0 Displacement amplitude

t Time variable

ω Frequency variable

n Number of DOFs in considered structural system

ωi Eigenfrequency corresponding to mode i

u0,i Eigenvector corresponding to mode i

φi Mass normalized mode shape vector for mode i
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α Mass normalization scaling factor

The Frequency Response Method

p(t) Load vector

u̇(t) Velocity vector

ω2
n Squared natural frequency

ξ Damping ratio

β Frequency ratio

H(ω) Frequency response function

θ Phase angle

y0 Response amplitude

x0 Load amplitude

Spectral Densities and Moments

Sxi Two-sided auto-spectral density for the stochastic process xi

Sxixj Two-sided cross-spectral density for the stochastic process xi and xj

µn n-th order two-sided spectral moment

ẋi(t) Time derivative of the stochastic process xi(t)

ẍi(t) Double time derivative of the stochastic process xi(t)

x
(n)
i (t) n-th order time derivative of the stochastic process xi(t)

Gxi One-sided auto-spectral density for the stochastic process xi

mn n-th order one-sided spectral moment

Short-Term Extreme Values

T̃ Short-term period

X(t) Stochastic response process

r Response parameter
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νX(r) Upcrossing rate of the stochastic process X(t) for a response level r

ẋ Time derivative of the response realization x of the stochastic process X(t)

fXẊ(r, ẋ) Joint probability density function of the stochastic response process X and

its time derivative Ẋ

νX(0) Zero-crossing rate of the stochastic process X(t)

NX Average number of upcrossings

T Time period

Xp(t) Stochastic process describing the peaks of the stochastic process X(t)

FXp Cumulative distribution function for stochastic peak process

fXp Probability density function for stochastic peak process

mX Mean value of stochastic process X(t)

σX Standard deviation of the stochastic process X(t)

mẊ Mean value of the stochastic process Ẋ(t)

σẊ Standard deviation of the stochastic process Ẋ(t)

M(T̃ ) Maximum value of X(t) during the short-term period T̃

FR̃(r) Cumulative distribution function of the random number of upcrossings of

level r

W Stochastic environmental parameters

w Realization of stochastic environmental parameters

FR̃|W (r|w) Cumulative distribution function for the short-term extreme response R̃

given the environmental parameters W

ν(r|w) Upcrossing rate of the response process r given the environmental parameters

w

σR(w) Standard deviation of the response process R

σṘ(w) Standard deviation of the time derivative of the response process R
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Long-Term Extreme Values

FR̃LT (r) Cumulative distribution function for long-term extreme response

FR̃p(r) Long-term cumulative distribution function of the response peak R̃p

T Long-term period

ν(0) Long-term mean frequency of zero-upcrossings

ν(0|w) Zero-upcrossing rate given the environmental parameters w

fW (w) Joint probability density function over the environmental parameters w

FR̃p|W (r|w) Cumulative distribution of peaks given short-term environmental parameters

FR̃p(r) Approximate formulation for the cumulative distribution function over long-

term peaks

R̃ Maximum response value during the short-term period T̃

Ñ Number of short-term periods considered for long-term extreme response

analysis

FR̃(r) Exact long-term cumulative distribution function for the short-term extreme

values

F̄R̃(r) Approximate long-term cumulative distribution function for the short-term

extreme values

M(T ) Maximum value of X(t) during the long-term period T

νX(r) Mean value of the upcrossing rate of level r for a long-term period

νX(r|w) Mean upcrossing rate for an entire long-term period given the environmental

parameters w

q Annual exceedance probability

rq Characteristic response value for a given exceedance probability q
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Environmental Parameters

Hs Stochastic variable representing the significant wave height

fHs Probability density function for the significant wave height

α Scale parameter of the Weibull distribution

β Shape parameter of the Weibull distribution

γ Location parameter of the Weibull distribution

FHs Cumulative distribution function for the significant wave height

h Stochastic realization of the significant wave height

Tz Stochastic variable representing the zero-crossing period

fTz |Hs(t|h) Probability density function for the wave zero-crossing period Tz given the

significant wave height Hs

t Stochastic realization of the zero-crossing period

µ(h) Lognormal distribution parameter

σ(h) Lognormal distribution parameter

ai Coefficients for the lognormal distribution parameter µ

bi Coefficients for the lognormal distribution parameter σ

FTz |Hs(t|h) Cumulative distribution function for the zero-crossing period given the

significant wave height

erf[·] Error function

Stochastic Dynamic Behaviour of Sea Surfaces

ω Wave angular frequency

κ(ω) Wave number as a function of angular wave frequency ω

d Water depth

g Gravitational constant

η(x, y, t) Sea elevation process at position (x, y) and at time t
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L Wave length

θ Wave angle relative to the considered structure

Sη(ω, θ) Cross-spectral density as a function of wave frequency ω and wave angle θ

D(ω, θ) Wave directional distribution as a function of the wave frequency ω and the

wave angle θ relative to the considered structure

D(θ) Wave directional distribution as a function of the wave angle θ

s Spreading parameter

C(s) Normalizing constant as a function of the spreading parameter s

θ0 Mean wave angle

Γ(·) Gamma function

∆x,∆y Spatial distance in the x- and y-direction between two considered points

Sηrηs Coherency between the wave height at point r and s

Sη(ω) Wave spectral density

A Coefficient in the expression for the basic form of the Pierson-Moskowitz

spectrum

B Coefficient in the expression for the basic form of the Pierson-Moskowitz

spectrum

α Phillips constant used in the definition of the Pierson-Moskowitz spectrum

ωp Peak frequency at which the Pierson-Moskowitz spectrum attains its

maximum value

γ Peak enhancement factor used in the definition of the JONSWAP spectrum

a(ω) Exponential factor used in the definition of the JONSWAP spectrum

σ̃ Spectral width parameter used in the definition of the JONSWAP spectrum

α̃ Factor used in the definition of the JONSWAP spectrum
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Fluid - Structure Interaction

M s Structural mass matrix

Cs Structural damping matrix

Ks Structural stiffness matrix

u(t) Displacement vector

u̇(t) Velocity vector

ü(t) Acceleration vector

ph Total hydrodynamic action vector

mh Hydrodynamic mass matrix

ch Hydrodynamic damping matrix

Kh Hydrodynamic stiffness matrix

p(t) Wave excitation forces vector

Mh(ω) Hydrodynamic mass matrix in the frequency domain

Ch(ω) Hydrodynamic damping matrix in the frequency domain

dZu(ω) Spectral process corresponding to the response vector

dZp(ω) Spectral process corresponding to the wave excitation force vector

M (ω) Frequency dependent total mass matrix

C(ω) Frequency dependent total damping matrix

K Total stiffness matrix

H(ω) Frequency response transfer function

Su(ω) Displacement response process spectral density

Sp(ω) Wave action process spectral density

H Hermittian operator (complex conjugate and matrix transpose)
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dZh(ω) Spectral process corresponding to the hydrodynamic forces acting on a

submerged body

dZη(ω, θ) Spectral process corresponding to the sea surface elevation

Sprps Cross-spectral density matrix corresponding to the wave action process

between the two points r and s

Qr(ω, θ) Hydrodynamic directional wave excitation transfer function for a given

element r

Qs(ω, θ) Hydrodynamic directional wave excitation transfer function for a given

element s

IFORM

R Stochastic variable representing structural resistance

S Stochastic variable representing external loads acting on a given structure

M Stochastic variable representing the safety margin for a given structure under

certain loading

β Reliability index

Var[·] Variance operator

g(X) Limit state function dependent on the random variables X defining the

failure surface

pf Probability of structural failure

Φ(·) Standard normal cumulative distribution function

µM Mean value of the safety margin M

σM Standard deviation of the safety margin M

V Vector of stochastic variables in the physical space describing the

environmental parameters W and the response R

fV (v) Joint probability density function over the environmental parameters and

the response in the physical space
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fR̃|W (r̃|w) Probability density function for the response R̃ given the environmental

parameters W

Gr(v) Limit state function dependent on the parameters v in the physical space

Y Stochastic response value

FY |W (y|w) Cumulative distribution function for the stochastic response variable Y given

the environmental parameters W

FR̃|W (y|w) Cumulative distribution function for the response R̃ given the environmental

parameters W

FY |W (r|w) Cumulative distribution function for the response variable Y given the

environmental parameters W

U Vector in the standard normal space

n Number of random variables in the vector V

FVi Cumulative distribution function for the i-th random variable in the physical

space

fU (u) Joint probability density function for the environmental parameters and

response in U-space

vn+1 Realization of the random variable V in the physical space

βr Reliability index corresponding to the minimum distance between the origin

and the limit state function in the IFORM-algorithm

u∗ Design point in the FORM/IFORM-algorithm

M Number of years in considered return period

rM Response value corresponding to a return period of M years

∇ Gradient operator

| · | Vector length operator

α Normal vector to the failure surface
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∇vn+1(u
∗) Gradient of vn+1 evaluated at the design point u∗ as part of the IFORM-

algorithm

c Proportionality constant in the backtracking approach in the

IFORM-algorithm

d Directional derivative in the backtracking approach in the IFORM-algorithm

αb Step length in the backtracking approach in the IFORM-algorithm

Environmental Contour Method

ŵ Design point in the Environmental Contour Method representing the most

unfavourable combination of the environmental parameters

pq Fractile value for the characteristic response rq

FR̃|W (rq|ŵ) Cumulative distribution function for the short-term extreme response at the

design point ŵ

Gaussian Process Regression

x Set of multivariate normal (Gaussian) distributed random variables

µ Mean vector for multivariate Gaussian probability distribution

Σ Covariance matrix for multivariate Gaussian probability distribution

Λ Precision matrix for multivariate Gaussian probability distribution

p(xi) Marginal Gaussian distribution over xi

p(xi|xj) Posterior distribution for xi given xj

µi|j Mean value of i given j

Σi|j Covariance of i given j

fi Known function value corresponding to known value xi

µ Mean value vector for function values in training set

K Covariance matrix for function values in training set

Kij Element of the covariance matrix given by relevant kernel function
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x∗ Test point

f∗ Test function value corresponding to the test point x∗

N Number of points in training set

N∗ Number of points in test set

D Number of data sets

µ∗ Mean value of function values in test set

σ∗ Standard deviation of function values in test set

σ2 Signal variance as a hyperparameter of the squared exponential kernel

l Length scale as hyperparameter of the squared exponential kernel

Monte Carlo Simulation and Importance Sampling

NM Number of simulated samples

hW (w) Importance density function

Modelling the Bergsøysund Bridge

A Cross-sectional area of the Bergsøysund Bridge’s superstructure

ρ Mass density of the Bergsøysund Bridge’s superstructure

Iy Second moment of area about the local y-axis of the Bergsøysund Bridge’s

superstructure

Iyz Product moment of area about y- and z-axis of the Bergsøysund Bridge’s

superstructure

Iz Second moment of area about the local z-axis of the Bergsøysund Bridge’s

superstructure

IT St. Venants torsional constant of the Bergsøysund Bridge’s superstructure

E Elasticity modulus

G Shear modulus

ν Poisson’s ratio
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M 0 Static mass matrix (inertia of pontoon)

K0 Restoring stiffness matrix

Mh Hydrodynamic mass matrix

Ch Hydrodynamic damping matrix

θ Wave heading angle

ω Frequency axis

Response Spectrum Calculation Structure

M̃
I

Modal mass matrix for substructure I

K̃
I

Modal stiffness matrix for substructure I

C̃
I

Modal damping matrix for substructure I

α Mass proportionality factor

β Stiffness proportionality factor

Qr(ω, θ) Hydrodynamic transfer function dependent on the frequency ω and the wave

direction θ

Sp(ω) Load spectral density matrix

Su(ω) Displacement spectral density matrix

M I Mass matrix for substructure I

M s Structural mass matrix

Mh0 Hydrodynamic mass matrix

KI Stiffness matrix for substructure I

Ks Structural stiffness matrix

Kh Hydrodynamic stiffness matrix

ΦI Mode vector for substructure I

ωIn Natural frequency for substructure I
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M II
i (ω) Frequency-dependent mass matrix for pontoon i

Mh,i(ω) Frequency-dependent hydrodynamic mass matrix for pontoon i

CII
i Frequency-dependent damping matrix for pontoon i

Ch,i(ω) Frequency-dependent hydrodynamic damping matrix for pontoon i

KII
i Stiffness matrix for pontoon i

Kh,i Hydrodynamic stiffness matrix for pontoon i

M II(ω) Global mass matrix for substructure II

CII(ω) Global damping matrix for substructure II

T i Transformation matrix for pontoon i

M̃
II

(ω) Frequency-dependent modal mass matrix for substructure II

C̃
II

(ω) Frequency-dependent modal damping matrix for substructure II

M̃ (ω) Total mass matrix

C̃(ω) Total damping matrix

K̃ Total stiffness matrix

Sη(ω) Cross-spectral density as function of the wave frequency ω

Spipj(ω) Load cross-spectral density matrix between pontoon i and j

S̃p(ω) Modal load spectral density matrix

H̃(ω) Modal frequency response transfer function

S̃u(ω) Modal displacement spectral density matrix
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Extreme Response Calculations

V3 Physical response value in the IFORM-algorithm

u Point in standard normal space

v Vector of environmental parameters and response in the physical space

h(u) Realization of significant wave height in the standard normal space

t(u) Realization of zero-crossing period in the standard normal space

v3(u) Realization of response in the standard normal space

y Short-term extreme response corresponding to an exact formulation

r̃ Short-term extreme response corresponding to an approximate formulation

u1 Initial point in the standard normal space for IFORM-algorithm

w∗ Environmental parameters at the design point obtained using IFORM

w∗i Environmental parameters at the design point obtained using IFORM for

sample i in importance sampled Monte Carlo Simulation

µi Mean value of sample i in importance sampled Monte Carlo Simulation

σi Standard deviation of sample i in importance sampled Monte Carlo

Simulation

Ns Number of random states drawn from the environmental model

d(xi, xj) The Euclidean distance between the points xi and xj

κν(·) Modified Bessel function

ν Parameter of the Matérn kernel controlling the smoothness of the resulting

function
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1. Introduction Floating Bridges

1.1 Floating Bridges

Floating bridges are used all over the world for crossing fjords and other bodies of

water. Although traditionally used for military and temporally emergency use,

permanent civilian applications has become more prevalent throughout the recent

decades. The purpose is then most often for highway traffic. While floating bridges are

not the most common type among bridges, they can provide a feasible solution in

situations where sailing heights are not a strict requirement and where land anchorage

is not sufficient to support long-span suspension bridges. As of today, only two floating

bridges exist in Norway. These are the Nordhordland Bridge and the Bergsøysund

Bridge, depicted in Figure 1.1.1 (a) and (b), respectively.

The Nordhordland Bridge is a 1614 meter long combined floating- and cable-stayed bridge

and is the second longest bridge in Norway (Monsrud, 2009). The floating part of the

bridge make up 1246 meters of the total length. The bridge connects the island of Flatøy

in the north with Hordvik in the south and is located north of the city of Bergen in the

western part of Norway. Traffic runs on a continuous concrete slab supported by a total

of 11 pontoons. The raised part of the bridge deck towards the cable-stayed segment is

supported by steel and concrete columns. The Nordhordland Bridge has no horizontal

mooring and is thereby the world’s longest floating bridge without this kind of anchoring

(Aas-Jacobsen, 2021).

The Bergsøysund Bridge is a 931 meter long floating bridge between Aspøya and Bergsøya

in the north-western part of Norway. Following an arched curve with a radius of 1300

meters, the main structural system consists of a steel pipe truss with welded connections.

Seven lightweight concrete pontoons in addition to the two end anchorages are used to

support this structure. Each of these end anchorages consists of a bolted-in-place steel

rod. Similar to the Nordhordland Bridge the Bergsøysund Bridge has no mooring making

them the only two bridges of this kind in the world (Kv̊ale and Petersen, 2018).

The ability of floating bridges to achieve long spans is likely to be utilized in Norway

in the near future. The ferry-free E39 project is to be conducted by the Norwegian

Public Roads Administration along the western coast of Norway to ensure ferry-free

transportation between the cities of Kristiansand and Trondheim. This project includes
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1. Introduction Background

several fjord-crossings where ferry transportation is to be replaced by bridges. The fjords

in these areas are both deep and wide and several bridge solutions have therefore been

proposed. Among these solutions are pontoon bridges and submerged tunnels. Some

combinations of these are also considered. Common for all these alternatives is that

structural dynamics will play a crucial role in their design.

(a) The Nordhordland Bridge (European Roads, 2014).

(b) The Bergsøysund Bridge (Kv̊ale, 2017).

Figure 1.1.1: Existing floating bridges in Norway.

1.2 Background

As the span of floating bridges increases, which will be the case in the ferry-free E39

project, efficient and accurate methods for computation of the long-term extreme response

of such bridges will become ever more important. Traditional methods for this kind of

long-term analyses such as numerical integration and Crude Monte Carlo Simulations

can be very time-consuming and computationally expensive. For such long-term extreme
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response calculations, a large number of short-term sea states are usually required. In

order to make these analyses less computationally demanding, the necessary number

of calculations will have to be reduced or these calculations should be performed more

efficiently.

As of today, one of the most common methods used for estimation of the long-term

extreme response of marine structures is the Environmental Contour Method (ECM).

For a prescribed probability of exceedance, corresponding to a given return period, this

method makes it possible to obtain reasonable long-term response estimates based on

only a few short-term sea states (Naess and Moan, 2013). Assuming that the sea state

can be completely described by the zero-crossing period and the significant wave height,

the Environmental Contour Method will be based on the joint probability density

function (PDF) of these two stochastic variables. This joint PDF is transformed into an

independent standard normal space. In this space the contour lines will be circles with

radiuses corresponding to given exceedance probabilities. Transforming the circles back

into the physical space gives the isoprobability contour lines. The most unfavourable

sea state along such a contour line is then identified. Finally, the long-term extreme

response estimate is taken as a predetermined fractile value of the short-term response

value corresponding to this identified sea state (Naess and Moan, 2013).

Another method which has gained some attention over the recent years is the Inverse

First-Order Reliability Method (IFORM). This is a reliability-based iterative method

which can be used to find the long-term extreme response of a structure given an annual

exceedance probability. Depending on the number n − 1 of environmental conditions

considered, this algorithm searches along a n-dimensional hypersphere to find a point

giving the maximum response as well as the corresponding environmental conditions.

The method is considered more effective than traditional methods for long-term extreme

response calculations and its implementation and accuracy are described and investigated

in more detail throughout this thesis.

4
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1.3 Previous Work

Even though floating bridges similar to modern ones were in traffic as early as in the

1940s, the dynamical simulation and modelling of such bridges is first explored in detail

in the late 1970s and early 1980s. These initial studies are conducted by research

groups at the University of Washington in the United States led by Billy Hartz (Hartz

and Mukherjee, 1977) and in Norway at NTNU and SINTEF led by Ivar Holand and

Ivar Langen (Holand and Langen, 1972). Leon Emry Borgman systematized the

methodology of time simulation of waves (Borgman, 1967), whereas Ivar Langen and

Ragnar Sigbjörnsson exemplified the methodology for dynamical analysis of floating

bridges with case studies of the Nordhordland Brigde, see Langen and Sigbjörnsson

(1979) and Langen and Sigbjörnsson (1980).

In the context of long-term extreme response analysis of floating bridges, Arvid Naess

and Torgeir Moan presented the methodology for the full long-term approach and the

Crude Monte Carlo Simulation method in their book with the title Stochastic Dynamics

of Marine Structures (Naess and Moan, 2013). In recent years, several algorithms for

more efficient long-term extreme response calculations have been developed based on

the observation that various environmental parameters contribute little or nothing to

the overall response. Such algorithms include the already mentioned IFORM-approach

presented by Sagrilo et al. (2011) where an Importance Sampled Monte Carlo

Simulation approach based on this IFORM-method is also proposed. Introduced by

Steven R. Winterstein and Sverre Haver in 1993 (Winterstein and Haver, 1993), the

ECM-method is also considered a highly efficient method for response analysis of

marine structures.

1.4 The Basis for the Thesis

Estimation of Long-Term Extreme Response of Floating Bridges is a broad topic with

contributions from a wide range of fields. This thesis merges and further exemplifies

the work of Finn-Idar Grøtta Giske (Giske, 2017) and Knut Andreas Kv̊ale (Kv̊ale et al.,

2016) in an effort to compare various methods for performing long-term extreme response

analysis on floating bridges.
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Finn-Idar Grøtta Giske’s doctoral thesis, Long-Term Extreme Response Analysis of

Marine Structures Using Inverse Reliability Methods, presented a new method for

efficient calculation of auto- and cross-spectral densities in the stochastic modelling of

ocean waves and wave loads. A new method was also proposed for the numerical

solution of the long-term extreme response of marine structures based on the

IFORM-algorithm. The developments were demonstrated for a theoretical long-span

pontoon bridge subjected to wave loads. The thesis concluded that the proposed new

methods indeed were able to estimate the long-term extreme response accurately and in

an efficient manner. The response appeared to only be slightly underestimated

compared to the traditional full long-term calculations. However, the required number

of short-term response calculations were greatly reduced.

Through his doctoral thesis with the title Dynamic Behaviour of Floating Bridges

Exposed to Wave Excitation, Knut Andreas Kv̊ale presented accurate methods for the

dynamical modelling of floating bridges. Measurements from the Bergsøysund Bridge

were compared with numerical finite element model predictions. This work provided

great insights into the dynamical characteristics of the Bergsøysund Bridge, as well as

into the numerical modelling of floating bridges in general. Due to the low correlation

between the wave excitation of each of the discrete pontoons, the wave spectral density

matrix could be approximated as block-diagonal. It was concluded that this

approximation had an insignificant effect on the resulting response spectral density

matrix but provided higher efficiency in the use of such matrices for dynamical

modelling.

The paper Sequential Sampling Method Using Gaussian Process Regression for

Estimating Extreme Structural Response by Gramstad et al. (2019) presented a method

for utilization of the machine learning technique known as Gaussian Process Regression

(GPR) for estimation of the extreme response of marine structures. The method

proposed in this paper used the GPR-approach to estimate the parameters of a

short-term response probability distribution. The proposed method was demonstrated

on the problem of estimating the long-term extreme bending moment on a theoretical

ship structure. It was concluded that a relatively small number of iterations were

needed to converge towards the ”exact” results provided by more traditional full

6
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long-term analyses. The method of Gaussian Process Regression provides an alternative

to the already mentioned methods such as IFORM, MCS and ECM.

1.5 The Scope of the Thesis

This thesis aims to further investigate the efficiency and accuracy of a selection of

numerical methods for estimation of the long-term extreme response of floating bridges.

A simplified finite element model based on the geometry and structural properties of

the Bergsøysund Bridge is generated. Based on this model a full long-term analysis is

conducted as an estimate for the ”exact” extreme response. The Environmental

Contour Method, Inverse First-Order Reliability Method, Monte Carlo Simulation with

Importance Sampling and Gaussian Process Regression are implemented based on the

short-term outputs of the bridge model. The goal is to evaluate the accuracy and

efficiency of each of these methods compared to the full long-term estimate obtained

using the more traditional method of Full Integration.

A natural extension of the Inverse First-Order Reliability Method is the Inverse Second -

Order Reliability Method. However, this method is not considered in this thesis due

to the similarity between the two methods and the relatively low gain in considering

a second order reliability problem over a first-order reliability problem. Furthermore,

the emphasis in this thesis is laid on the more theoretical considerations regarding the

employed methods rather than a very precise finite element model of the bridge. The

strengths and limitations of each of these methods are considered to be of more scientific

value than more comprehensive finite element modelling.

1.6 The Structure of the Thesis

The rest of this thesis is structured in the following way:

Chapter 2: Relevant theory for the thesis is presented. This includes an introduction

to stochastic loading and random vibrations. The Fourier transform is presented as it is

closely related to frequency domain analysis and spectral densities. Short- and long-term

analyses are described before the theory is narrowed down to consider the environmental

models used in the thesis as well as a description of the dynamical behaviour of sea

7
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surfaces and fluid-structure interaction. Lastly, the numerical methods to be investigated

are presented in detail.

Chapter 3: The methodology for the finite element modelling of the bridge is described in

detail. Details regarding the bridge deck, pontoons and the global model is discussed. The

procedure for the modelling and the relationship between the static and hydrodynamic

model is presented followed by a description of the software used in the modelling. The

implementation of each of the methods for the long-term extreme response analysis to be

conducted is also described.

Chapter 4: The results of the investigation are presented. Important limitations and

assumptions for the methods and their implementations are highlighted and justified.

Chapter 5: The results presented in Chapter 4 are evaluated and discussed. Possible

deviations from the expected results are discussed and the methods used are reviewed.

Chapter 6: Conclusions are drawn based on the discussions in Chapter 5. Proposals for

further work on the topic are given.

8



CHAPTER 2

Theory

This chapter is devoted to the theoretical background for the phenomena and methods

used throughout the project. The sections serve as a foundation for the choices and

assumptions made in the implementation of these methods. First, a basic introduction

to stochastic loading and random vibrations is given. Next, the Fourier transform is

introduced in the context of the frequency response method and spectral densities.

These general concepts are then employed in the description of short- and long-term

extreme response analysis. The stochastic dynamic behaviour of sea surfaces,

fluid-structure interaction, numerical methods, and Gaussian Process Regression are

also described.

9
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2.1 Stochastic Loading and Random Vibrations

In general, environmental loads acting on structures are rather unpredictable. It is in

general not possible to measure two identical time series of the same load effect. For

this reason, the loading on a structure will have to be described in terms of its statistical

properties rather than by actual realizations of the load itself. Furthermore, in order

to describe the response of a structure subjected to random loading the relationship

between the statistical properties of this loading and the response of the structure has to

be established.

As a measure of similarity between stochastic processes the auto- and cross-correlation

functions are often used. For a given load or response realization x1 measured over two

separate time series t1 and t2 the auto-correlation function is defined as (Newland, 2012):

Rx1(t1, t2) = E[x1(t1) · x1(t2)] (2.1.1)

Here E[·] denotes the expected value operator. It is important to note that the definition

given in Equation (2.1.1) is valid only for stationary processes. A stationary process is a

random process in which its statistical properties do not change over time. Furthermore, a

homogeneous process is a stochastic process which is stationary in space (Newland, 2012).

An important property of the auto-correlation function for a homogeneous stationary

process is that it is only dependent on the time lag τ between the two considered time

series t1 and t2 and not directly on these time series themselves. Using this information

Equation (2.1.1) can be written as:

Rx1(τ) = E[x1(t) · x1(t+ τ)] (2.1.2)

A concept related to the auto-correlation function is the cross-correlation function. The

cross-correlation between two different stochastic realizations x1 and x2 with mutual time

lag τ considered over a time period t is defined as:

Rx1x2(τ) = E[x1(t) · x2(t+ τ)] (2.1.3)

As can be seen when comparing Equation (2.1.2) and (2.1.3) the difference is that the

10
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auto-correlation quantifies the self-correlation of a single stochastic process, whereas the

cross-correlation gives information about the correlation between two separate stochastic

processes.

2.2 Fourier Transform and Frequency Analysis

In addition to the pure statistical properties of the loading and the response, the

frequency content is also of much importance for dynamical systems. In the transition

from stochastic loading to stochastic response several frequency-dependent quantities

are present. These quantities can complicate the differential equations governing the

dynamical system when considered in the time domain. For this reason, it can be useful

to transform the considered process from the time domain over to the frequency domain

where the problem can be solved using algebraic equations. The transformation of a

stochastic process x(t) in the time domain to a process in the frequency domain x(ω)

can be achieved through the use of the complex Fourier transform which is defined as:

x(ω) =
1

2π

∫ ∞
−∞

x(t)e−iωt dt (2.2.1)

In Equation (2.2.1) the letter i denotes the imaginary unit. In the frequency domain

the frequency-dependent algebraic equations are solved. The resulting stochastic process

is then transformed back into the time domain by use of the inverse complex Fourier

transform defined as:

x(t) =

∫ ∞
−∞

x(ω)eiωt dω (2.2.2)

The use of the factor 1/2π for the Fourier transform in Equation (2.2.1) represents the

most common formulation for the Fourier transform used in the theory of random

vibrations (Newland, 2012). However, the position of this factor tends to vary between

different fields of study. The factor may for example be incorporated in the expression

for the inverse Fourier transform. The fact that these formulations often vary may also

be reflected in this thesis.

Lastly, it should be noted that the Fourier transform only exists for stochastic processes

x(t) which decay to zero when the length of the considered time period approaches infinity.
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This condition can be expressed as (Newland, 2012):

∫ ∞
−∞
|x(t)| dt <∞ (2.2.3)

2.3 Modal Analysis

The equation of motion for a linear undamped dynamical system with mass matrix M

and stiffness matrix K can be written as (Williams, 2016):

Mü+Ku = 0 (2.3.1)

Here ü and u denotes the acceleration and displacement vector, respectively. The

displacement u, which is a function of both time and position, can be expressed as the

product of the space dependent amplitude u0 and a sine factor dependent on both the

time t and the frequency ω (Williams, 2016), yielding:

u = u0 sin(ωt) (2.3.2)

Differentiating this expression for u and introducing it into Equation (2.3.1) results in

the following characteristic equation for the dynamical system:

(
K − ω2M

)
u0 sin(ωt) = 0 (2.3.3)

From Equation (2.3.3) it can be observed that for the equation to be satisfied it is sufficient

that either u0 or sin(wt) is equal to zero, resulting in no vibration. Another option is

multiplying the equation by the inverse of (K−ω2M). However, this part of the equation

has no inverse, requiring its determinant to be zero to satisfy the equation. From this

the following eigenvalue problem can be established:

det
(
K − ω2M

)
= 0 (2.3.4)

The eigenvalue problem in Equation (2.3.4) can be solved for the natural frequencies ω.

For a given system with n DOFs this will result in n natural frequencies. Each such
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natural frequency ωi, where i = 1, 2, ..., n, can then be introduced into Equation (2.3.5)

in order to find its corresponding eigenvector u0,i. These eigenvectors u0,i also represent

the mode shapes of the system.

(
K − ω2M

)
u0 = 0 (2.3.5)

The mode shape vector u0 represents the amplitude of the displacement along the

considered structure given a particular natural vibration frequency. This amplitude

varies with time, but the ratio between the magnitudes of the displacement at the

various DOFs stays the same. It should be noted that the overall amplitude of the

vibration is dependent on both the boundary conditions of the system as well as on the

external loading (Williams, 2016).

For convenience, a mode shape vector can be mass normalized:

φTi Mφi = 1 (2.3.6)

Here φi denotes the mass normalized mode shape vector which can be expressed as:

φi = αu0,i (2.3.7)

α is referred to as the mass normalization scaling factor and can be calculated by inserting

Equation (2.3.6) into (2.3.7), yielding:

α =
1√

uT0,iMu0,i

(2.3.8)

2.4 The Frequency Response Method

For a more general structure subjected to a load p(t) the equation of motion is written

as:

Mü(t) +Cu̇(t) +Ku(t) = p(t) (2.4.1)

As before M , C and K represent the mass, damping and stiffness matrices, while ü(t),

u̇(t) and u(t) represent the acceleration, velocity and displacement of the structure,

13
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respectively.

The harmonic load of unit amplitude can be assumed to be on the form:

p(t) = eiωt (2.4.2)

Here i, ω and t denote the imaginary unit, the load frequency, and the time variable,

respectively. The equation of motion now takes the form:

Mü(t) +Cu̇(t) +Ku(t) = eiωt (2.4.3)

Furthermore, a new assumption is made. This time regarding the dynamical response of

the structure. The particular solution of Equation (2.4.3), or the steady-state response

of the structure, is expected to take the following form:

u = H(ω)eiωt (2.4.4)

Inserting this assumed solution into the equation of motion from Equation (2.4.3) and

solving for H(ω) results in the following expression:

H(ω) =
1

K − ω2M + iωC
(2.4.5)

Here it may be useful to introduce the relations of the squared natural frequency ω2
n, the

damping ratio ξ = and the frequency ratio β (Newland, 2012):

ω2
n =

K

M
(2.4.6a)

ξ =
C

2Mωn
(2.4.6b)

β =
ω

ωn
(2.4.6c)

Introducing these relations into the expression for H(ω) results in the following

expression:

H(ω) =
1

K (1− β2 + 2ξβi)
(2.4.7)

In order to cancel out the imaginary part in the denominator in this expression, both the
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denominator and the numerator are multiplied by its complex conjugate. Now introducing

the resulting expression for H(ω) into the assumed steady-state response solution gives:

u =
1

K
(
(1− β2)2 + (2ξβ)

) ((1− β2
)
− 2ξβi

)
︸ ︷︷ ︸

H(ω)

eiωt (2.4.8)

Here the expression for H(ω) is highlighted. This function is referred to as the (complex)

frequency response function. This is a single complex function used to represent both the

amplitude ratio y0/x0 and the phase angle θ. The former is defined as the ratio between

the amplitude of the response (y0) and the loading (x0), whereas the latter represents

the relative motion of the loading and the response (Newland, 2012). The frequency

response function is defined such that its magnitude is equal to the amplitude ratio and

the ratio between its imaginary and real part corresponds to the tangent of the phase

angle (Newland, 2012). This can be illustrated using an Argand diagram. In Figure 2.4.1

such a diagram is showed for both t = 0 and t 6= 0:

Re

Im

p(t)

|H(ω)|

θ
Im[H(ω)]

Re[H(ω)]

tan(θ) = Im[H(ω)]
Re[H(ω)]

(a) Argand diagram for t = 0.

Re

Im

p(t)

|H(ω)|θ
ωt

(b) Argand diagram for t 6= 0.

Figure 2.4.1: Argand diagrams for illustration of the frequency response function H(ω).
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2.5 Spectral Densities and Moments

As mentioned in Section 2.2 the auto- and cross-correlation functions give information

about the frequency content of the stochastic loading and response when considered in

the frequency domain. However, a given realization x(t) of a stochastic process is in

general not periodic and does not satisfy the condition in Equation (2.2.3). Thus, the

Fourier transform will not exist for such a realization. This problem can be overcome by

analysing the Fourier transform of the auto- and cross-correlation functions of the process

x(t), rather than of the actual process itself.

Assuming that the stochastic process has zero mean and no periodic components, the

auto- and cross-spectral densities are defined as the Fourier transform of the auto- and

cross-correlation functions, respectively:

Sx1(ω) =
1

2π

∫ ∞
−∞

Rx1(τ)e−iωτ dτ (2.5.1a)

Sx1x2(ω) =
1

2π

∫ ∞
−∞

Rx1x2(τ)e−iωτ dτ (2.5.1b)

The area under the auto-spectral density curve corresponds to the mean square value of

the stationary random process x1. Likewise, the area under the real part of the complex

cross-spectral density curve corresponds to the covariance of two separate stationary

random processes x1 and x2 (Newland, 2012). This is illustrated in Figure 2.5.1 (a) and

(b).

ω
0

Sx1(ω)

Area E[x21]

(a) Auto-spectral density curve.

ω
0

Sx1x2(ω)

Area E[x1x2]

(b) Cross-spectral density curve.

Figure 2.5.1: Relationship between area and spectral density curves (Newland, 2012).

The auto- and cross-spectral densities make up what is called a Fourier transform pair

with the auto- and cross-correlation functions. Thus, the inverse Fourier transform of the

auto- and cross-spectral densities corresponds to the auto- and cross-correlation functions,
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respectively:

Rx1(τ) =

∫ ∞
−∞

Sx1(ω)eiωτ dω (2.5.2a)

Rx1x2(τ) =

∫ ∞
−∞

Sx1x2(ω)eiωτ dω (2.5.2b)

Since the term eiωτ in Equation (2.5.2a) is real and even-valued, the expression for Rx1(τ)

can be rewritten as:

Rx1(τ) =

∫ ∞
−∞

Sx1(ω) cos(ωτ) dω (2.5.3)

The expression in Equation (2.5.3) can be considered a moment generating function

(Sweitzer et al., 2004). By differentiating the expression for Rx1(τ) several times with

respect to τ the following is obtained:

d

dτ
Rx1(τ) =

d

dt
Rx1(τ) = −

∫ ∞
−∞

ω Sx1(ω) sin(ωτ) dω (2.5.4a)

d2

dτ 2
Rx1(τ) = − d2

dt2
Rx1(τ) = −

∫ ∞
−∞

ω2 Sx1(ω) cos(ωτ) dω (2.5.4b)

d3

dτ 3
Rx1(τ) = − d3

dt3
Rx1(τ) =

∫ ∞
−∞

ω3 Sx1(ω) sin(ωτ) dω (2.5.4c)

d4

dτ 4
Rx1(τ) =

d4

dt4
Rx1(τ) =

∫ ∞
−∞

ω4 Sx1(ω) cos(ωτ) dω (2.5.4d)

...
...

Following the pattern in Equation (2.5.4a) through (2.5.4d) the following general

definition for the moments µn can be established when setting τ = 0:

µn =
dn

dτn
Rx1(0) =

dn

dtn
Rx1(0) =

∫ ∞
−∞

ωn Sx1(ω) dω (2.5.5)

The moments µn define how each of the processes x1(t), ẋ1(t), ẍ1(t), ..., x
(n)
1 (t) are

related to each other. µn denotes the moments for the two-sided spectra, i.e. the

spectra integrated from −∞ to ∞. The one-sided moments mn, i.e. for the spectra

integrated from 0 to ∞, can be found as:

µn =

∫ ∞
0

ωn 2Sx1(ω) dω =

∫ ∞
0

ωnGx1(ω) dω = mn (2.5.6)
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where:

Gx1 = 2Sx1 (2.5.7)

This implies that:

mn =

∫ ∞
0

ωnGx1(ω) dω (2.5.8)

Here mn denotes the one-sided n-th order moment of the stochastic variable x1. Setting

n = 0 yields the variance of a zero mean spectral density. Typically, the moments m1,

m2 and m4 are also calculated (Sweitzer et al., 2004).

2.6 Short-Term Extreme Values

The theory on stationary stochastic processes is essential in the design of marine

structures. For floating bridges, the environmental loads can be modelled as stationary

stochastic processes over a limited time period, referred to as a short-term period. The

duration of such a short-term period, denoted T̃ , is often chosen as three hours for

offshore structures subjected to wave loading (Naess and Moan, 2013). Assuming such

short-term conditions the short-term response of the structure can be calculated using

various statistical and dynamical methods. Such methods are outlined in the following

sections.

2.6.1 Distribution of Peaks

In the design of structures the stochastic distribution of peak values for an arbitrary

realization of the response process X(t) is of much interest (Naess and Moan, 2013).

A related measure in this regard is the upcrossing rate νX(r). This is a probabilistic

measure of the number of times the response value exceeds a given amplitude value r per

unit time and is given by Rice’s formula (Øiseth, 2020):

νX(r) =

∫ ∞
0

ẋfXẊ(r, ẋ) dẋ (2.6.1)

Here ẋ and fXẊ(r, ẋ) denote the time derivative of the response realization x and the joint

probability density function of this response process and its time derivative, respectively.

The integrand in Equation (2.6.1) can be interpreted as the probability that the response
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reaches the level r with a positive time derivative during a given time period. A special

case of the upcrossing rate is the zero-upcrossing rate νX(0), which is found for r = 0.

An illustration of the upcrossing rate νX(r) for a given level r is found in Figure 2.6.1:

x = r

x(t) = sin(t)

t

x(t)

Figure 2.6.1: Illustration of the upcrossing rate νX(r). Each red dot represents an
upcrossing of level r.

Assuming that the process is stationary, the average number of upcrossings NX is

proportional to the considered time period T :

NX(T ) = νX(r)T (2.6.2)

The idealized stochastic response process in Figure 2.6.1 is narrow-banded. This means

that only a very limited range of frequencies are dominating. For such processes, the

number of zero-crossings will be approximately equal to the number of peaks. Defining

the random variable Xp as the peaks of the stochastic process X(t), the probability of

exceeding the level r is given by (Øiseth, 2020):

Prob {Xp > r} =
νX(r)

νX(0)
(2.6.3)

Following the argumentation above, this is the same as dividing the number of upcrossings

of level r by the total number of peaks. The cumulative distribution function and the

probability density function of the peaks can now be expressed as:

Prob {Xp < r} = FXp(r) = 1− νX(r)

νX(0)
(2.6.4a)
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fXp(r) = − 1

νX(0)

dνX(r)

dr
(2.6.4b)

A stochastic variable and its time derivative are assumed independent for Gaussian

probability distributions. Thus, assuming that the stochastic process X(t) is Gaussian

gives the following expression for the joint probability distribution of these two

stochastic variables:

fXẊ(x, ẋ) = fX(x)fẊ(ẋ) =
1

2πσXσẊ
exp

{
−1

2

[(
x−mX

σX

)2

+

(
ẋ

σẊ

)2
]}

(2.6.5)

Here mX and σX denote the mean value and standard deviation of the stochastic process

X(t), respectively. Likewise, mẊ and σẊ denote the mean value and standard deviation

of the stochastic process Ẋ(t). Introducing the expression for fXẊ(x, ẋ) into the integral

in Equation (2.6.1) yields the following expression for the upcrossing rate:

νX(r) =
1

2π

σẊ
σX

exp

{
−1

2

(
r −mX

σX

)2
}

(2.6.6)

Assuming zero mean, mX = 0, gives:

νX(r) =
1

2π

σẊ
σX

exp

{
−1

2

(
r

σX

)2
}

(2.6.7)

Introducing this expression into Equation (2.6.4b) gives the following probability density

function for the distribution of the peaks:

fXp(r) =
r

σ2
X

exp

{
1

2

(
r

σX

)2
}

(2.6.8)

The expression in Equation (2.6.8) is known as the Rayleigh distribution of peaks (Øiseth,

2020).

2.6.2 Extreme Values

The largest value that the stochastic process X(t) assumes during a short-term period

T̃ can be denoted M(T̃ ). If peaks exceeding the level r are assumed to be independent

events, the random number of upcrossings during such a short-term period can be

described by a Poisson distribution with the following cumulative distribution function
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(Øiseth, 2020):

Prob
{
M(T̃ ) ≤ r

}
= FR̃(r) = exp

{
−νX(r)T̃

}
(2.6.9)

The loading on a given structure is generally caused by a wide range of environmental

conditions. Such conditions, or parameters, typically include the mean wind velocity

for suspension bridges or wave height and wave direction for floating bridges. Other

environmental parameters are also often relevant, as well as certain combinations of these.

Various environmental models and parameters are described in more detail in Section 2.8.

Nevertheless, assuming that the upcrossing rate is dependent on such environmental

parameters, denoted W , Equation (2.6.9) can be rewritten as the following conditional

cumulative distribution function of the short-term extreme response, FR̃|W (Giske, 2017):

FR̃|W (r|w) = exp
{
−ν(r|w)T̃

}
(2.6.10)

Here ν(r|w) denotes the upcrossing rate at the response level r given the environmental

parameters w. The expression for this conditional upcrossing rate can be written as:

ν(r|w) =
1

2π

σṘ(w)

σR(w)
exp

{
−1

2

(
r

σR(w)

)2
}

(2.6.11)

Here σR and σṘ denote the standard deviation of the response process R and its time

derivative, respectively. Introducing the expression in Equation (2.6.11) into

Equation (2.6.10) yields the following expression for the cumulative distribution

function for the short-term extreme response given the environmental parameters w:

FR̃|W (r|w) = exp

{
− T̃

2π

σṘ(w)

σR(w)
exp

{
−1

2

(
r

σR(w)

)2
}}

(2.6.12)

Here, the relations between σR(w) and σṘ(w) and the spectral moments defined in

Equation (2.5.8) are as follows:

• σR(w) =
√
m0

• σṘ(w) =
√
m2
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2.7 Long-Term Extreme Values

In this section the short-term formulations in the previous section are slightly adjusted

to account for long-term conditions. Additionally, a long-term formulation based on the

short-term upcrossing rate is introduced.

2.7.1 Short-Term Distribution of Peaks Model

Under the assumption that all short-term response peaks are independent events, the

cumulative distribution function for the long-term extreme response is given by (Giske,

2017):

FR̃LT (r) = FR̃p(r)
ν(0)T (2.7.1)

Here FR̃p(r) denotes the long-term cumulative distribution function of a response peak

R̃p, T is the long-term period while ν(0) represents the long-term mean frequency of

zero-upcrossings. The latter is defined as the integral of the zero-upcrossing rate given

the environmental parameters w weighted by the joint probability density function over

these same parameters:

ν(0) =

∫
w

ν(0|w)fW (w) dw (2.7.2)

Based on ν(0), the expected number of response peaks during the long-term period T is

found as the product ν(0)T . Furthermore, an approximate formulation for the cumulative

distribution function over the long-term peaks can be obtained. This formulation is based

on the distribution of peaks given short-term environmental conditions, FR̃p|W (r|w), and

is expressed as (Giske, 2017):

FR̃p(r) ≈
∫
w

FR̃p|W (r|w)fW (w) dw (2.7.3)

In Equation (2.7.3) it is assumed that the number of response peaks is the same for all

environmental parameters, which is generally not the case. To overcome this limitation

the integrand in Equation (2.7.3) is scaled by a factor representing the average zero-

upcrossing rate (Battjes, 1972):

FR̃p(r) =

∫
w

ν(0|w)

ν(0)
FR̃p|W (r|w)fW (w) dw (2.7.4)
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2.7.2 Short-Term Extreme Values Model

The maximum response value during the short-term period T̃ is denoted R̃. Assuming

that the extreme values of these short-term periods are independent events, the

cumulative distribution function for the long-term extreme values, FR̃LT (r), is obtained

as the product of Ñ long-term cumulative distributions of short-term extreme values,

FR̃(r) (Sagrilo et al., 2011):

FR̃LT (r) = FR̃(r)Ñ (2.7.5)

If the cumulative distribution function for the largest response peak given the

environmental parameters w is denoted FR̃|W (r|w), then the exact long-term

cumulative distribution function for the short-term extreme values is found as (Sagrilo

et al., 2011):

FR̃(r) = exp

{∫
w

ln
(
FR̃|W (r|w)

)
fW (w) dw

}
(2.7.6)

The formulation in Equation (2.7.6) is obtained using ergodic averaging. This means

that the mean value of a specific sample in the ensemble (a collection of samples from the

same stochastic process) coincides with the mean value for the whole ensemble. However,

using the population mean instead of the ergodic average yields the following approximate

formulation F̄R̃(r) (Naess and Moan, 2013):

F̄R̃(r) =

∫
w

FR̃|W (r|w)fW (w) dw (2.7.7)

Compared to the formulation in Equation (2.7.6), the formulation in Equation (2.7.7)

can be solved more efficiently as part of a reliability formulation. This is described in

greater detail in Section 2.11.

2.7.3 Short-Term Upcrossing Rate Model

When considering the long-term extreme values of the stochastic process X(t) the process

can no longer be considered stationary. This is because the mean value and standard

deviation of the process will vary as the various environmental parameters vary (Øiseth,

2020). For this reason, Equation (2.6.9) will have to be generalized in order to be valid

23



2. Theory Long-Term Extreme Values

for the long-term conditions. This is achieved through the following reformulation:

Prob {M(T ) ≤ r} = FR̃LT (r) = exp
{
−νX(r)T

}
(2.7.8)

In Equation (2.7.8) the short-term upcrossing rate νX(r) is replaced by its mean value

for the entire long-term period, νX(r). This mean value is given as:

νX(r) =
1

T

∫ T

0

νX(r, t) dt (2.7.9)

The long-term cumulative distribution function in Equation (2.7.8) can now be rewritten

as (Giske, 2017):

FR̃LT (r) = exp

{
−T

∫
w

νX(r|w)fW (w) dw

}
(2.7.10)

Here νX(r|w) denotes the mean upcrossing rate for the entire long-term period given the

environmental parameters w. Furthermore, fW (w) denotes the joint probability density

function over these environmental parameters.

Like in Equation (2.6.9), in the formulation in Equation (2.7.10) it is assumed that

upcrossings of high levels r are statistically independent. In other words, these high-level

upcrossings belong to a Poisson-distribution. Solving Equation (2.6.10) for the mean

upcrossing rate gives the following:

ν(r|w) = − 1

T̃
ln
(
FR̃|W (r|w)

)
(2.7.11)

Introducing this expression into Equation (2.7.10) yields (Sagrilo et al., 2011):

FR̃LT (r) = exp

{∫
w

ln
(
FR̃|W (r|w)

)
fW (w) dw

}T/T̃
= FR̃(r)Ñ (2.7.12)

Here the fact that T = Ñ T̃ is utilized. FR̃(r) is the long-term cumulative distribution

function over the short-term extreme values as given in Equation (2.7.6). This means

that the formulations in Equation (2.7.6) and (2.7.10) are equivalent to the assumption

of independent upcrossings of high levels being the only one required.
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2.7.4 Characteristic Values of the Extreme Response

The long-term extreme response can be connected to an annual exceedance probability q.

This specified failure probability corresponds to a specific characteristic response rq used

for design purposes. This response value rq can be found using the following requirement

for the long-term cumulative distribution function FR̃LT (Giske, 2017):

FR̃LT (rq) = 1− q (2.7.13)

The response value rq can also be approximated from the long-term cumulative

distribution function over the short-term extreme values by requiring the following:

FR̃(rq) = (1− q)1/Ñ ≈ 1− q

Ñ
(2.7.14)

In Equation (2.7.14) the variable Ñ denotes the number of short-term periods in one

year.

2.8 Environmental Parameters

In order to describe environmental loading on structures certain assumptions regarding

the probabilistic nature of the loads are necessary. Among such environmental loads are

the wind loading, the water current, the significant wave height and the zero-crossing

period. The two latter load types are here assumed to be the most relevant for floating

bridges, meaning that the wind loading and water current are not considered in this

thesis.

2.8.1 Significant Wave Height

The significant wave height is a statistical measure of wave height defined as the average

height of the highest third of all wave heights. When measurements are used to determine

the significant wave height, the waves are usually measured over a time period of twenty

minutes. The recommended probability density function to describe the significant wave

height Hs is the 3-parameter Weibull probability density function (Det Norske Veritas,
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2010):

fHs(h) =
β

α

(
h− γ
α

)β−1
exp

{
−
(
h− γ
α

)β}
(2.8.1)

In Equation (2.8.1) the parameters α, β and γ represent the scale, shape and location

parameters of the distribution, respectively. These parameters are usually fitted to actual

on-site measurements. However, due to the lack of such measurements in this project

more general numbers are assumed for the scale and shape parameters, whereas the

location parameter is assumed to be zero throughout this project.

The corresponding cumulative distribution function for the significant wave height is:

FHs(h) = 1− exp

{
−
(
h− γ
α

)β}
(2.8.2)

In Equation (2.8.1) and (2.8.2) h represents the stochastic realizations of the significant

wave height.

2.8.2 Zero-Crossing Period

The wave zero-crossing period is defined as the average time interval between two

consecutive upcrossings of the the mean sea level (Det Norske Veritas, 2010). The wave

zero-crossing period Tz dependent on the significant wave height Hs can be accurately

described using a lognormal distribution with the following probability density function

(Det Norske Veritas, 2010):

fTz |Hs(t|h) =
1

σt
√

2π
exp

{
−(ln (t)− µ)2

2σ2

}
(2.8.3)

Here t denotes the variable describing all stochastic realizations of the zero-crossing period

Tz. Furthermore, the distribution parameters µ and σ are functions of the significant wave

height and are defined as:

µ(h) = E[ln (Tz)] = a0 + a1h
a2 (2.8.4a)

σ(h) = std [ln (Tz)] = b0 + b1e
b2h (2.8.4b)
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The coefficients ai and bi need to be estimated from actual measured data. The

corresponding cumulative distribution function for the zero-crossing period, FTz |Hs is:

FTz |Hs(t|h) =
1

2
+

1

2
erf

[
ln (t)− µ√

2σ

]
(2.8.5)

In Equation (2.8.5) erf [·] denotes the error function.

2.9 Stochastic Dynamical Behaviour of Sea Surfaces

Under the assumption of linear wave theory, the wave number κ(ω) is a function of the

angular wave frequency ω defined implicitly through the following equation:

ω2 = κg tanh (κd) (2.9.1)

Here d denotes the water depth and g is the gravitational constant. For a given short-

term period T̃ the sea elevation can be modelled as a stationary homogeneous stochastic

process with zero mean. This process is denoted η(x, y, t), where x and y represent the

spatial variables and t the time variable. For deep water conditions, i.e. when the ratio

between the water depth d and the wave length L is greater than 0.5, the cross-spectral

density for the sea elevation process can be expressed as a function of the wave frequency

and -direction (Kv̊ale et al., 2016):

Sη(ω, θ) = Sη(ω)D(ω, θ) (2.9.2)

D(ω, θ) represents the directional distribution as a function of the wave frequency ω and

the wave angle θ relative to the considered structure. In an effort to make the directional

distribution more suitable for practical applications the approximation D(ω, θ) = D(θ)

is often adopted. That is, the frequency dependence is neglected (Naess and Moan,

2013). Under this assumption the following directional-dependent function is often used

for D(θ):

D(θ) = C(s)

(
cos

(
θ − θ0

2

))2s

(2.9.3)

The factor C(s) is a normalizing constant dependent on the spreading parameter s

ensuring that
∫
D(θ) dθ = 1 and θ0 is the mean wave angle. The normalizing constant
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can be found from:

C(s) =
1

2
√
π

Γ(s+ 1)

Γ(s+ 0.5)
(2.9.4)

where Γ denotes the Gamma function. The spreading parameter s controls the crest

length of the waves. In this thesis s is set constant equal to 13. However, this parameter

is in reality frequency dependent and may also be considered as such.

Assuming deep water conditions and that the wave directional distribution is independent

of the angular wave frequency for two given points r and s with mutual distances ∆x

and ∆y the integral in Equation (2.9.5) gives the coherency between the wave heights at

these points (Kv̊ale et al., 2016):

Sηrηs = Sη(ω)

∫ π

−π
D(θ) exp

{
−i |ω|ω

g
(∆x cos (θ) + ∆y sin (θ))

}
dθ (2.9.5)

Numerous methods are used to idealize and describe oceanography. One such method is

the use of wave spectral densities. An example is the Pierson-Moskowitz spectrum. This

spectrum constitutes the basic form of the class of spectral densities that describe fully

developed sea states. That is, sea states that are in equilibrium with the wind producing

the waves. The basic form of the Pierson-Moskowitz spectrum is written as:

Sη(ω) =
A

ω5
exp

{
− B
ω4

}
(2.9.6)

where A and B are constants given as A = αg2 and B = 1.25ω4
p. Here α = 0.0081 is the

Phillips constant, g is the gravitational constant and ωp is the peak frequency at which

Sη(ω) attains its maximum value.

The basic Pierson-Moskowitz spectrum can be modified to form several adjusted variants.

One such variant is simply referred to as the modified Pierson-Moskowitz spectrum. In

this case the coefficient A in Equation (2.9.6) is taken as A = 5
16
H2
s ω

4
p. Compared to

the original formulation, this formulation now introduces the significant wave height Hs

as an additional parameter.

Another widely used modification of the basic Pierson-Moskowitz spectrum is the Joint

North Sea Wave Project, or JONSWAP, spectrum. This spectrum is given by (Naess and
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Moan, 2013):

Sη(ω) =
α̃g2

ω5
exp

{
−1.25

ω4
p

ω4

}
· γa(ω) (2.9.7)

In this model the basic Pierson-Moskowitz spectrum from Equation (2.9.6) is multiplied

by a peak enhancement factor γ raised to a factor a(ω) which is expressed as:

a(ω) = exp

{
−(ω − ωp)2

2σ̃2ω2
p

}
(2.9.8)

where the spectral width parameter σ̃ is given by:

σ̃ =

σ̃a = 0.07, for ω ≤ ωp

σ̃b = 0.09, for ω > ωp

(2.9.9)

Additionally, the Phillips constant α in Equation (2.9.6) is replaced with the constant α̃

given by the following expression which is valid for offshore structures:

α̃ = 3.25 · 10−3H2
s ω

4
p (1− 0.287 ln (γ)) (2.9.10)

In Figure 2.9.1 the Pierson-Moskowitz, modified Pierson-Moskowitz and the JONSWAP

spectra are all plotted as functions of the frequency ratio ω/ωp for a peak enhancement

factor of γ = 3:
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ω/ωp

Sη(ω)

Pierson-Moskowitz
Modified Pierson-Moskowitz

JONSWAP

Figure 2.9.1: Pierson-Moskowitz, modified Pierson-Moskowitz and JONSWAP spectra
plotted against frequency ratio for a peak enhancement factor of γ = 3. Significant wave height
is taken as 5 meters and zero-crossing period as 10 seconds. Peak frequency is 0.6283 rad/s.
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2.10 Fluid - Structure Interaction

The equation of motion for a floating structure can be expressed as (Kv̊ale et al., 2016):

M sü(t) +Csu̇(t) +Ksu(t) = ph(t) (2.10.1)

Here t is the time variable and M s, Cs and Ks are the structural or rigid-body mass,

damping and stiffness matrices, respectively. u(t), u̇(t) and ü(t) are the displacement,

velocity and acceleration vectors, respectively. ph(t) denotes the total hydrodynamic

action containing both the fluid-structure interaction and the wave action as expressed

by the convolution integral in Equation (2.10.2):

ph(t) = −
∫ ∞
−∞
mh(t− τ)ü(t) dτ −

∫ ∞
−∞
ch(t− τ)u̇(t) dτ −Khu(t) + p(t) (2.10.2)

Here the subscript h indicates hydrodynamic properties and τ represents the time lag in

the convolution integral. mh(t) and ch(t) are the added hydrodynamic mass and

damping, respectively. Kh denotes the hydrodynamic stiffness, or buoyancy, of the

structure while p(t) denotes the wave excitation forces. In the time domain, these mass

and damping matrices can be described as the inverse Fourier transform of the

hydrodynamic mass and damping matrices from the frequency domain:

mh(t) =
1

2π

∫ ∞
−∞
Mh(ω)eiωt dω (2.10.3a)

ch(t) =
1

2π

∫ ∞
−∞
Ch(ω)eiωt dω (2.10.3b)

Assuming deep water conditions and moderate wave height, the response process exhibits

properties of both Gaussianity and homogeneity and can be expressed by a generalized

harmonic decomposition (Kv̊ale et al., 2016):

u(t) =

∫ ∞
−∞

eiωtdZu(ω) dω (2.10.4a)

p(t) =

∫ ∞
−∞

eiωtdZp(ω) dω (2.10.4b)
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Here dZu(ω) and dZp(ω) denote the spectral processes corresponding to the response

vector and the wave excitation force vector, respectively. The wave loading forces are

integrated pressure forces obtained from the solution of the diffraction potential

(pressure effects related to the spreading of waves around a structure) over the average

submerged surface of the structure. The equation of motion in Equation (2.10.1) can

now be expressed as (Naess and Moan, 2013):

(
−ω2M (ω) + iωC(ω) +K

)
dZu(ω) = dZp(ω) (2.10.5)

For a rigid floating structure, the inertia, damping and restoring forces as a result of the

fluid-structure interaction yield the following total system mass, stiffness and damping

matrices:

M(ω) = M s +Mh(ω) (2.10.6a)

C(ω) = Cs +Ch(ω) (2.10.6b)

K = Ks +Kh (2.10.6c)

Proceeding with the assumption of linear wave theory made in Section 2.9, it can be

stated that the response u belongs to a zero mean ergodic Gaussian process since

Equation (2.10.5) describes a linear system. The frequency response method described

in Section 2.4 is a direct approach to solve Equation (2.10.5). The method expresses the

spectral process of the response in terms of the wave loading process (Langen and

Sigbjörnsson, 1979):

dZu(ω) = H(ω)dZp(ω) (2.10.7)

where H(ω) denotes the frequency response transfer function:

H(ω) =
(
K − ω2M(ω) + iωC(ω)

)−1
(2.10.8)

The spectral densities of the displacement response and wave action can be expressed as

follows (Langen and Sigbjörnsson, 1979):

Su(ω) dω = E
[
dZu(ω) · dZu(ω)H

]
(2.10.9a)
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2. Theory Fluid - Structure Interaction

Sp(ω) dω = E
[
dZp(ω) · dZp(ω)H

]
(2.10.9b)

H denotes the Hermittian operator indicating a complex conjugate and matrix transpose

while E[·] denotes the expected value operator. Furthermore, the hydrodynamic forces

acting on a submerged body due to a stochastic wave elevation process can be described

as (Kv̊ale et al., 2016):

dZh(ω) = dZp(ω)−
(
−ω2Mh(ω) + iωCh(ω) +Kh

)
dZu(ω) (2.10.10)

Equation (2.10.10) describes the fluid-structure interaction and the wave action induced

by the defined sea state. The wave induced load process dZp(ω, θ) can be written as the

product of the hydrodynamic transfer function Qr(ω, θ) and the spectral process for the

sea surface elevation dZη(ω, θ):

dZp(ω, θ) = Qr(ω, θ)dZη(ω, θ) (2.10.11)

Qr(ω, θ) connects the forces caused by the waves with the wave amplitude process. The

index r refers to the spatial location of a point or a pontoon. The reader is referred

to the report with the title Frequency Domain Analysis of a Floating Bridge Exposed

to Irregular Short-Crested Waves by Ivar Langen and Ragnar Sigbjörnsson (Langen and

Sigbjörnsson, 1979) for a more detailed description of the this hydrodynamic transfer

function in the context of hydrodynamic action on floating bridges.

The cross-spectral density matrix corresponding to the wave action process between two

points r and s can be expressed as:

Sprps(ω) =

∫
θ

Qr(ω, θ)SηrηsQs(ω, θ)
H dθ (2.10.12)

Qr(ω, θ) and Qs(ω, θ) are the directional wave excitation transfer functions for element

r and s, respectively (Kv̊ale et al., 2016). Sηrηs is the cross-spectral density matrix

between the wave elevation process at the points r and s as defined in Equation (2.9.5).

By combining Equation (2.10.10) with Equation (2.10.9a) and (2.10.9b), the expression

relating the load spectrum to the response spectrum can be written as:

Su(ω) = H(ω)Sp(ω)H(ω)H (2.10.13)
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2.11 IFORM

The First-Order Reliability Method (FORM) is a widely known method in the field of

structural reliability. Given the resistance R of a structure and the external loads S

acting on this structure, the safety margin M is given as M = R − S. From this, the

corresponding reliability index β is given as:

β =
E[M ]

std[M ]
=

E[R]− E[S]√
Var[R] + Var[S]

=
µR − µS√
σ2
R + σ2

S

(2.11.1)

Here E[·], std[·] and Var[·] denote the expected value, standard deviation and variance

operators, respectively. Furthermore, µR and µS denote the mean value of the structural

resistance and of the loading while σR and σS represent the standard deviations of these

same quantities, respectively.

Structural failure occurs when the loading on the structure exceeds the structural

resistance, i.e. when R − S < 0. A limit state function g(X) dependent on the random

variables X describing the failure surface of the structural system can be defined as:

g(X) = R− S < 0 (2.11.2)

The probability of failure pf can then be expressed using the following cumulative

distribution formulation:

pf = P (g(X) ≤ 0) = P (M ≤ 0) = Φ(−β) (2.11.3)

Here Φ denotes the standard normal cumulative distribution function. Figure 2.11.1

shows a geometrical interpretation of the reliability index β when the loading on the

structure S and the structural resistance R are considered as two independent normal

distributed random variables:
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Figure 2.11.1: Definition of the reliability index β. The index defines the mean value of the
safety margin M as a function of its standard deviation σM : µM = βσM (Köhler, 2018).

A vector of random variables V = [W , R] is introduced together with the joint probability

density function fV (v) = fR̃|W (r̃|w)fW (w) over these variables. The vector V here

includes both the environmental parameters W and the response R of the structure.

The factor fR̃|W (r̃|w) represents the probability density function of the response given the

environmental parametersW while fW (w) represents the probability density function for

these variables themselves. From this the following reliability problem can be formulated:

F̄R̃(r) = 1−
∫
Gr(v)≤0

fV (v) dv = 1− pf (r) (2.11.4)

Gr(v) = r − r̃ represents the limit state function whereas pf (r) denotes the failure

probability for a given response value r. Equation (2.7.6) can be used to establish the

exact formulation for the cumulative distribution function for the long-term extreme

response as a reliability problem (Giske et al., 2017):

FR̃(r) = exp

{∫
w

(
1 + ln

(
FR̃|W (r|w)

))
fW (w) dw − 1

}
(2.11.5)

By introducing the stochastic response variable Y , the cumulative distribution function

can be written as:

FY |W (y|w) = max
{

1 + ln
(
FR̃|W (y|w)

)
, 0
}

(2.11.6)
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Equation (2.11.6) can then be used to express the short-term extreme response as:

FR̃(r) ≈ exp

{∫
w

FY |W (r|w)fW (w) dw − 1

}
(2.11.7)

Finally, Equation (2.11.7) can be written as a reliability problem as follows:

FR̃(r) ≈ exp

{
−
∫
Gr(v)≤0

fV (v) dv

}
= exp{−pf (r)} (2.11.8)

The approximate formulation for the cumulative distribution function for the long-term

extreme response in Equation (2.7.7) can also be rewritten as a reliability problem (Giske

et al., 2017):

F̄R̃(r) =

∫
w

FR̃|W (r|w)fW (w) dw =

∫
w

∫
r̃≤r

fR̃|W (r̃|w) dr̃fW (w) dw (2.11.9)

Using FORM the probability of failure pf (r) for a given response level r can be obtained.

The joint probability density function fV (v), which is a function of the random variable

V = [W , R] or V = [W , Y ] depending on if it is the exact or approximate expression

that is being used, should be transferred to a standard normal space. In this thesis, this

space is referred to as the U-space. This space has the three components described by

the vector U = [U1, U2, U3]. The transformation from V- to U-space is performed using

the Rosenblatt transformation (Köhler, 2018):

Φ(U1) = FV1(V1)

Φ(U2) = FV2|V1(V2|V1)
...

Φ(Ui) = FVi|V1,V2,...,Vi−1
(Vi|V1, V2, ...Vi−1), i = 1, 2, ..., n

Φ(Un+1) = FVn+1|V1,V2,...,Vn(Vn+1|V1, V2, ...Vn)

(2.11.10)

Here n is the number of random variables in the vector V . FVi is the cumulative

distribution function for the i-th random variable in the physical space. Φ(·) denotes

the cumulative standard normal distribution function. Furthermore, the expression for

the realization of the random variables V can be written in terms of standard normal
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distributed random variables in U-space as:

v1(u) = F−1V1
(Φ(u1))

v2(u) = F−1V2|V1(Φ(u2|v1(u)))

vi(u) = F−1Vi|V1,...,Vi−1
(Φ(ui|v1(u), v2(u), ..., vi−1(u))), i = 1, 2, ..., n

...

vn+1(u) = F−1Vn+1|V1,...,Vn(Φ(un+1|v1(u), v2(u), ..., vn(u)))

(2.11.11)

The failure probability can now be written using the joint probability density function in

U-space:

pf (r) =

∫
gr(u)≤0

fU (u) du = Φ(−β) (2.11.12)

where the limit state function is expressed as gr(u) = r − vn+1(u) with β being the

distance from the origin to the (n+ 1)-dimensional hyperplane defined by gr(u) = 0, also

known as the failure surface. vn+1(u) denotes the realization of the stochastic variable

V in the physical space. The reliability index β is calculated by solving the following

optimization problem (Giske et al., 2017):

β = min|u|; subject to gr(u) = 0 (2.11.13)

Equation (2.11.4) and (2.11.5) which express the approximate and exact formulation of

the reliability problem, respectively, can now be written as:

F̄R̃(r) ≈ 1− Φ(−β̄r) (2.11.14a)

FR̃(r) ≈ exp{−Φ(−βr)} (2.11.14b)

where βr is the reliability index that corresponds to the minimum distance between the

origin and the limit state function, mathematically expressed as:

βr = |u∗| (2.11.15)

Here u∗ is known as the design point. This point gives information about both the

environmental parameters giving the largest response value, as well as this response value
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itself. The limit state function is in general non-linear and is linearized at the design point

u∗ as seen in Figure 2.11.2. This linearization is the defining property of the first-order

reliability methods, FORM and IFORM (Haver et al., 2013).
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Figure 2.11.2: FORM-algorithm illustrated.

In the context of FORM the cumulative distribution functions F̄R̃(r) and FR̃(r) for the

short-term extreme response are evaluated for a given response value r. Nonetheless,

in structural design it is more common to go the other way around. The response r is

instead calculated from a predefined annual exceedance probability. When considering

the M -year extreme response rM , this probability of exceedance can be calculated by

requiring the following of the cumulative distribution function for the extreme response:

FR̃(rM) =

(
1− 1

M

) 1
Ñ

≈ 1− 1

MÑ
(2.11.16)

Here Ñ denotes the number of short-term periods in a year and is given by Ñ = 365 ·
(24/T̃ ), where T̃ is the duration of each short-term period given in hours. The fraction

24/T̃ then gives the number short-term periods in a day. Using Equation (2.11.14b) the

reliability index can now be calculated as:

β = −Φ−1(− ln (FR̃(rM))) (2.11.17)
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Given a probability of exceedance, the corresponding reliability index is calculated and

the design point u∗ is located in an iterative manner in order to satisfy the optimization

problem from Equation (2.11.13). The M -year response value rM should also satisfy the

limit state function grM (u) = rM−vn+1(u) = 0 where vn+1 is given in Equation (2.11.11).

This is summarized in the following expression:

rM = max {vn+1(u)} ; subject to |u| = β (2.11.18)

When applying the method of Lagrange multipliers (a technique for locating the local

maxima or minima of a function) the design point must satisfy the following recursive

expression (Xu et al., 2018):

u∗

|u∗| =
∇vn+1(u

∗)

|∇vn+1(u∗)|
= α (2.11.19)

Here ∇ and | · | are the gradient and vector length operators, respectively. Thus,

∇vn+1(u
∗) and |∇vn+1(u

∗)| denote the gradient of vn+1(u
∗) and the length of this

gradient, respectively. α is a normal vector to the failure surface as can be seen in

Figure 2.11.2. A solution which satisfies Equation (2.11.19) based on the steepest decent

method for minimization (Giske et al., 2017) is given by:

uk+1 = β
∇vn+1(u

k)

|∇vn+1(uk)|
(2.11.20)

Equation (2.11.20) may encounter convergence issues due to the fact that the gradient

∇vn+1(u) is assumed constant in the search direction. A backtracking approach proposed

by Giske (2017) aims to solve these convergence issues by requiring that the increase of

vn+1(u) is proportional to the step length and the directional derivative at the point uk

along the search direction (Giske, 2017). In applications this requirement is fulfilled by

ensuring that:

vn+1(u
k+1)− vn+1(u

k) ≥ cdαb (2.11.21)

Here c ∈ (0, 1) is a proportionality constant while d and αb denote the directional

derivative and the step length, respectively:

d =
1

β

√
β2|∇vn+1(uk)|2 − (uk · ∇vn+1(uk))2 (2.11.22a)
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αb = β arccos

(
uk · ∇vn+1(u

k)

β|∇vn+1(uk)|

)
(2.11.22b)

This iterative IFORM-procedure is initiated with an assumed initial value uk = u1 and

is repeated until the alleged design point is found and a pre-defined tolerance is met:

|uk+1 − uk|
|uk+1| < Tolerance (2.11.23)

2.12 The Environmental Contour Method

When structural problems are complex, it can be convenient to use methods which can

provide an approximate solution of the problem at hand in a computationally

inexpensive manner. The Environmental Contour Method (ECM) aims to decouple the

uncertainties related to the environmental loads and to the extreme response given

these loads (Winterstein and Haver, 1993). Given the joint probability density function

for the environmental parameters, fW (w), the environmental contour corresponding to

a pre-defined annual exceedance probability q is calculated without the structural

response taken into account. The most unfavourable combination of the environmental

parameters along this isoprobability contour is used as the design point and is denoted

ŵ. The median, or 0.5-fractile value, of the short-term distribution FR̃|W (r|w) attains

its maximum value at ŵ (Giske, 2017).

The assumption of independence between the environmental loads and the structural

response opens the possibility for regarding the structural response as deterministic. The

IFORM-algorithm can be utilized to solve for the design point ŵ through the optimization

problem defined in Equation (2.11.18). With the response regarded as deterministic, the

optimization problem would contain one less dimension leaving the reliability index β

expressed as (Winterstein and Haver, 1993):

β = |U | =
√
U2
1 + U2

2 + ...+ U2
n (2.12.1)

where U = [U1, U2, ..., Un] are the the environmental parameters in the standard normal

U-space. The β-value corresponding to the M -year extreme response can be calculated

from Equation (2.11.17).
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In order to take the stochastic behaviour of the short-term extreme response into account

the characteristic response value rq is found from a pq-fractile value of the short-term

extreme value distribution FR̃|W (rq|ŵ) at the design point ŵ (Haver et al., 2013). This

value is often chosen as pq > 0.5 and is used as a requirement in the following way:

pq = FR̃|W (rq|ŵ) (2.12.2)

2.13 Gaussian Process Regression

Gaussian Process Regression (GPR) is a machine learning technique with applications

in several different fields. These include, but are not limited to, algorithm configuration

and computer animations as well as weather forecasting (de Freitas, 2013). Based on

a few training points the method is able to predict estimates in areas with insufficient

prior data, while simultaneously estimating the error in these predictions. In this thesis

Gaussian Process Regression is used for prediction of long-term extreme response values

based on pre-simulated environmental parameters. More specifically, on realizations of

the significant wave height and zero-crossing period randomly drawn from their respective

probability distributions.

Consider a joint set of two multivariate normal (Gaussian) distributed random variables

x = (x1, x2). The parameters of this multivariate Gaussian can be expressed in terms of

the mean vector (µ), in addition to the covariance (Σ) and precision matrix (Λ):

µ =

µ1

µ2

 , Σ =

Σ11 Σ12

Σ21 Σ22

 , Λ = Σ−1 =

Λ11 Λ12

Λ21 Λ22

 (2.13.1)

From these parameters the marginal distribution over x1 and x2 can be expressed as:

p(x1) = N (x1|µ1,Σ11) (2.13.2a)

p(x2) = N (x2|µ2,Σ22) (2.13.2b)

The posterior conditional, i.e. the probability of observing x1 given x2, is expressed as:

p(x1|x2) = N
(
x1|µ1|2,Σ1|2

)
(2.13.3)
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where the conditional mean and covariance are given as (Murphy, 2007):

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2) (2.13.4a)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21 = Λ−111 (2.13.4b)

Here it is assumed that the matrix Σ is positive definite. Particularly, this means that

the matrix should be symmetric and have positive eigenvalues (Weisstein, 2021). These

expressions for the conditional mean and covariance will be revisited later in this section.

Gaussian Process Regression can be used to fit highly nonlinear functions to some set of

known data points. As an example, consider the three known values x1, x2 and x3. To

each of these three values, there exist three corresponding function values f1, f2 and f3.

This is illustrated in Figure 2.13.1 (a):

x1 x2 x3

f1

f2

f3

x

f(x)

(a) Training data.

x1 x2 x∗ x3

f1

f2

f∗

f3

x

f(x)

(b) Test data.

Figure 2.13.1: Data points for Gaussian Process Regression.

In order to model the function values f1, f2 and f3, one can start by assuming that these

function values come from a multivariate Gaussian distribution. This gives the following:
f1

f2

f3

 ∼ N (µ,K) = N



µ1

µ2

µ3

 ,

K11 K12 K13

K21 K22 K23

K31 K32 K33


 (2.13.5)

In Equation (2.13.5) the term µ represents a vector containing the mean value of each

of the functions and K denotes the covariance matrix for this same set of functions.
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2. Theory Gaussian Process Regression

The elements in the covariance matrix, Kij, each acts as a measure of similarity between

the values x1, x2 and x3. The diagonal terms give the variance while the off-diagonal

terms give the covariance between the points. In order to construct each of these matrix

elements one will have to use a function that returns the number 1 where i = j and a

number between 0 and 1 where i 6= j. A very common function used to achieve this is

the squared exponential kernel:

Kij = exp

{
−1

2
||xi − xj||2

}
=

0 when ||xi − xj|| → ∞

1 when xi = xj

(2.13.6)

As can be seen from Equation (2.13.6), as the distance between the considered points xi

and xj grows large the correlation between the points decreases accordingly. Likewise, as

the distance between the points decreases the correlation between the points increases.

For intermediate distances, the squared exponential kernel will return a value between 0

and 1, as desired.

Until now, only the three points x1, x2 and x3 have been considered. If another point x∗

is added, the corresponding function value f∗ can be estimated using Gaussian Process

Regression. This new point and its corresponding function value are depicted in

Figure 2.13.1 (b). As for f1, f2 and f3 the function value f∗ is also assumed to belong to

a Gaussian distribution:

f∗ ∼ N (µ∗, K∗∗) (2.13.7)

Here µ∗ represents the mean value of this new function value f∗, while K∗∗ represents

the covariance of this function. The known values x1, x2 and x3 and the corresponding

function values f1, f2 and f3 are referred to as training data. This comes from the fact

that this data set represents known points and is used to train or adjust the algorithm

to fit these values. For noiseless data, the training set of N points can be written in a

more compact way as (de Freitas, 2013):

D = {(xi, fi), i = 1 : N} , where fi = f(xi) (2.13.8)

The set of unknown values x∗ and the corresponding function values f∗ are on the other

hand referred to as test data. This data set are used to test the algorithm and contains
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2. Theory Gaussian Process Regression

estimated values. Given a test set x∗ of size N∗ × D the function outputs f∗ are to be

calculated. Since both the training data and the test data are assumed to belong to the

same probability distribution and also to be correlated, the total data set can be written

as: f
f∗

 ∼ N
µ

µ∗

 ,
 K K∗

K∗
T K∗∗

 (2.13.9)

Following the multivariate Gaussian theorem described in Equation (2.13.1) through

(2.13.4), the mean and variance for the test data f∗ can be found from:

µ∗ = E [f∗] = KT
∗ K

−1f (2.13.10a)

σ∗ = −KT
∗ K

−1K∗ +K∗∗ (2.13.10b)

Having derived the expressions for the mean and variance of the test points, it is now

possible to predict these quantities for any x∗. By predicting these quantities for a

large number of test points it is possible to approximate continuous curves, one curve

representing the mean value and another representing the variance. Each point on these

curves corresponds to a predicted mean value or a variance value. This is the main idea

in Gaussian Process Regression. The procedure is similar to a mathematical function

where test data x∗ are used as input and the mean and variance of this data are returned.

In other words, Gaussian Process Regression represents a distribution over functions.

x

f(x)

Figure 2.13.2: Estimated function using Gaussian Process Regression. The black points
represent the training points while the red points represent the test points. The resulting

confidence intervals are indicated by the blue bars.
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2. Theory Crude Monte Carlo Simulation and Importance Sampling

Figure 2.13.2 shows a mean curve fitted to the training and test data, along with

confidence intervals representing the variance of the test data. The confidence intervals

act as a measure of uncertainty. As seen from the figure this uncertainty will disappear

at the training data points. At these points the function value is known and therefore

no uncertainty is observed here. However, at the test data points there exist

uncertainty. An important observation to be made from Figure 2.13.2 is that where

there is data the uncertainty is low, while where there is no data the uncertainty will be

higher. Especially the rightmost point in the figure exhibits large uncertainty. Here the

mean curve will be extrapolated based on the training points. Figure 2.13.2 shows an

example of noiseless data. It is important to note that for data with noise the

uncertainty will not disappear completely, not even at points where there is data.

The kernel in Equation (2.13.6) can be modified through the use of hyperparameters.

Common hyperparameters are the signal variance σ2 and the length scale l. The signal

variance acts as a scaling factor defining the variation of the function values relative to

the mean value. In other words, it defines the width of the confidence intervals. On

the other hand, the length scale determines how rapidly the uncertainty will increase or

decrease when leaving or approaching a training point (de Freitas, 2013). In other words,

the length scale defines the smoothness of the function. Adding the signal variance and

the length scale to the expression in Equation (2.13.6) yields:

Kij = σ2 exp

{
− 1

2l2
||xi − xj||2

}
(2.13.11)

2.14 Crude Monte Carlo Simulation and Importance

Sampling

Crude Monte Carlo Simulation (CMCS) relies on repeated random sampling to obtain

numerical results. In this thesis CMCS is used to generate samples from given probability

distributions in an effort to simulate the real-world characteristics of extreme responses

and the randomness it exhibits. The short-term extreme response distribution in CMCS
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2. Theory Crude Monte Carlo Simulation and Importance Sampling

can be formulated as (Sagrilo et al., 2011):

FR(r) = exp

{
− T

NM

NM∑
i=1

νR(r|wi)

}
(2.14.1)

Here T denotes the long-term period whereas νR(r|wi) represents the upcrossing rate

given the environmental parameters wi which are sampled from their joint PDF given

by Equation (2.6.5). NM is the number of simulated samples. NM should be chosen as

a sufficiently high number for the simulation to converge and for facilitating unbiased

results. However, a high number of simulated samples contributes to making CMCS

rather computationally expensive (Sagrilo et al., 2011). One remedy for improving the

efficiency of the method is through the technique of Importance Sampling (Melchers and

Beck, 2008). This technique centers the generated environmental parameters around the

region in the joint PDF which contributes the most to the response. This is achieved by

assigning a weight to the conditional upcrossing rate as shown in Equation (2.14.2):

FR(r) = exp

−T
∫
w

νR(r|wi)
fW (w)

hW (w)︸ ︷︷ ︸
weight

hW (w) dw

 (2.14.2)

In discrete form this can be written as:

FR(r) = exp

−
T

NM

NM∑
i=1

νR(r|wi)
fW (w)

hW (w)︸ ︷︷ ︸
weight

 (2.14.3)

Here hW (w) denotes the importance density function.
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CHAPTER 3

Methodology

The long-term extreme response analysis is carried out using the different methods

presented. Their implementations along with the assumptions made are presented in

this chapter. As an illustration, the methods are applied to a simplified finite element

model based on the Bergsøysund Bridge.
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3. Methodology Modelling the Bergsøysund Bridge

3.1 Modelling the Bergsøysund Bridge

A simplified model based on the Bergsøysund Bridge is created using Abaqus, which is a

software solution for finite element analysis. The main purpose of this simplified model

is to exemplify the different approaches to long-term extreme response calculations and

not necessarily to simulate the exact extreme response of the bridge.

Python is used to develop an input file containing the bridge geometry and material

properties as well as the loading and boundary conditions for further analysis in Abaqus.

Hydrostatic mass and stiffness of the pontoons are introduced to the finite element model

from the hydrodynamic software solution named WADAM.

3.1.1 The Bridge Superstructure

The bridge deck is supported by an intricate truss structure which is quite complicated

to model and the need for several types of finite elements is inevitable. However, a highly

sophisticated finite element model is not considered feasible for the purpose of this project.

Therefore, the main load carrying system of the bridge is simplified. The bridge deck

is modelled using B31 Timoshenko beam elements. These three-dimensional elements

are defined from two nodes each with six degrees-of-freedom (DOFs), three translational

and three rotational (Abaqus, 2014). All elements are straight lines with a length of

105 meters each, namely one element between each pontoon. The geometrical properties

assigned to these beams are based on the work of Hermstad (2013) and Heuberger (2018).

In the former, the beam data are extracted from the actual cross-section of the bridge

deck including the mass of the asphalt layer. In the software Cross-X these properties are

merged into a single beam element. Lastly, the properties originating from the bridge deck

are added to the corresponding properties for the truss structure provided by Heuberger

(2018) to form the total values given in Table 3.1.1:
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3. Methodology Modelling the Bergsøysund Bridge

Table 3.1.1: Cross-sectional properties used for the bridge model. The properties originate
from both the bridge deck and main load-carrying system.

Area A [m2] 0.557

Mass ρ [kg/m] 6723

Second moment of area

Iy [m4] 5.85

Iyz [m4] 0

Iz [m4] 11.7

St. Venants torsional constant IT [m4] 15.1

The material properties used for the steel components in the model are given in

Table 3.1.2:

Table 3.1.2: Material properties used in the bridge model.

Elasticity modulus E [N/m2] 200 · 109

Shear modulus G [N/m2] 76.9 · 109

Poisson’s ratio ν [−] 0.3

3.1.2 Pontoons

Assuming that all the seven waterborne pontoons for the Bergsøysund Bridge are

identical, each pontoon is modelled as a rigid structure using Det Norske Veritas’

(DNV’s) GeniE software. Geometrical dimensions for pontoon 4 can be found in

Appendix A.1. The FEM-file containing the meshed finite element model of a

representative pontoon is exported to a WADAM-engine in the software HydroD for

further hydrodynamic simulations. WADAM is another product from DNV which in

this thesis is mainly used to obtain the hydrodynamic transfer functions as well as the

necessary hydrodynamic mass, stiffness and damping used to represent the properties

and behaviour of the pontoons. The discretization of the frequencies and wave angles

used in this project are presented in Table 3.1.3, where the angle is defined as the angle

between the positive local x-axis of the pontoon and the wave direction, see

Figure 3.1.1.
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x∗

y∗

Wave dire
cti

on

θ

Figure 3.1.1: Wave angle definition. The parallel blue lines represent the wave crests. The
wave angle θ is defined as the angle between the positive local x-axis of the pontoon and the

wave direction.

Table 3.1.3: Discretization of the wave frequencies ω and the wave angles θ used in the
hydrodynamic analysis.

Variable Range Increment Affected quantities

ω [rad/s] [7.5 · 10−2, 4] 7.5 · 10−2 Qr(ω, θ),Mh(ω),Ch(ω)

θ [◦] [0, 350] 10 Qr(ω, θ)

Only the submerged part of the pontoon is modelled and analysed. This is the preferred

practice of hydrodynamic modelling as the part above the waterline will only complicate

the modelling and not have any impact on the requested outputs. Figure 3.1.2 shows the

submerged part of the pontoon where the pink plane represents the water surface and

the red sphere is the augmented mass of the pontoon placed at the centre of gravity.
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3. Methodology Modelling the Bergsøysund Bridge

(a) Top view.

(b) Side view.

Figure 3.1.2: Pontoon model. Only the submerged part of the pontoon is modelled. The
augmented mass is placed at the centre of gravity.

The hydrodynamic properties extracted from the WADAM-analysis are presented in

Table 3.1.4.

Table 3.1.4: Output from the WADAM-analysis.

Properties Description Dimension

M 0 Static mass matrix (inertia of pontoon) 6× 6

K0 Restoring stiffness matrix 6× 6

Mh Hydrodynamic mass matrix 6× 6

Ch Hydrodynamic damping matrix 6× 6

θ Wave heading angle 1× 35

ω Frequency axis 1× 54

Qr Hydrodynamic transfer function 6× 35× 54

The dimensions of the mass, stiffness and damping matrices reflect the number of DOFs
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3. Methodology Modelling the Bergsøysund Bridge

used to describe the displacement of a pontoon. These six DOFs included three

translational and three rotational movements as illustrated in Figure 3.1.3.

x ∗
surge

y
∗ sw

ay

z∗ heave

yaw

pitch

roll

Figure 3.1.3: Illustration of pontoon movements. The axes represent the local coordinate
system for the pontoon. The translational DOFs are indicated in black while red represents

the rotational DOFs.

In the model the water depth is set to 300 meters to simulate deep-water conditions.

Figure 3.1.4 (a) shows the water depth profile across the strait, while Figure 3.1.4 (b)

shows the pontoon arrangement for the bridge. The pontoon numbering is shown in both

figures.
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3. Methodology Modelling the Bergsøysund Bridge

(a) Water depth profile across the strait.

(b) Overhead view of the Bergsøysund Bridge.

Figure 3.1.4: Water depth profile and bridge overview (Kv̊ale et al., 2016).

3.1.3 Full Bridge Model

The geometry of the pontoons is not included in the final finite element model in Abaqus

but is rather evaluated as nodes. In order to construct a full model of the bridge the

hydrostatic properties of the pontoons from the WADAM-analysis, which include pontoon

inertia and restoring stiffness, are introduced at these nodes. These properties are first

transformed to the global coordinate system such that the local x-axis of the pontoon is

perpendicular to the tangent of the bridge arch at each node. This angle transformation

had to take place prior to the actual finite element analysis as the local coordinate system

is not generated beforehand. The following Abaqus command is used to introduce the

pontoon properties to the rest of the finite element model:

*USER ELEMENT, LINEAR, NODES =’NODE NUMBER’, UNSYM, TYPE=’NAME’,

1,2,3,4,5,6

The keyword *USER ELEMENT is used to introduce a linear element using the additional
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command LINEAR. The keyword UNSYM indicates that the element matrix is not

symmetric so that Abaqus can initiate its asymmetric equation solving capability.

*MATRIX, TYPE=STIFFNESS or *MATRIX, TYPE=MASS is used to specify which element

matrix the property is to be assigned to. The numbers 1 to 6 represent the six

considered DOFs.

From this Abaqus analysis the global mass and stiffness matrices as well as the natural

frequencies and the modal vectors for the bridge are obtained. Figure 3.1.5 (a) and

3.1.5 (b) show the top and side view of the bridge model, respectively. In Figure 3.1.5 (a)

the nodes at which the pontoon properties are included are indicated in red. The orange

dots at both ends of the bridge model in Figure 3.1.5 (b) represent the pinned boundary

connections to the shore.

(a) Top view of the bridge model.

(b) Side view of the bridge model.

Figure 3.1.5: Top and side view of the bridge model.

Short and stiff beam elements are used to connect the main bridge beam elements to

the pontoon nodes. These connectors extend vertically between each pontoon node and

the nodes of each main bridge element. The connectors have a height of 4.72 meters.

The cross-sectional parameters used for these connectors are idealized. The values from

Table 3.1.1 are multiplied by a factor of 1000 in order to simulate rigid elements.

Figure 3.1.6 shows these connectors relative to the main bridge elements and the
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pontoon nodes.

Figure 3.1.6: Side view of the bridge model at the mid-span.
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3.2 Response Spectrum Calculation Structure

As already indicated the computational model can be divided into two submodels. One

of these submodels is a finite element model which takes the structural and inertial

contributions into account. The second submodel is a hydrodynamic model which handles

the hydrodynamic aspects. This approach is based on the work of Kv̊ale et al. (2016)

and more or less follows the same modelling procedure. The structural model is referred

to as substructure I, while the hydrodynamic model is referred to as substructure II.

The mass and stiffness matrices defining the structural system are extracted from the

structural submodel. Here the inertia contributions from the pontoons are also included,

in addition to the frequency-independent buoyancy. The latter is adding stiffness to

the model. This stiffness is added discretely for each pontoon and therefore needs to

be transformed to a global coordinate system and added. By doing this the different

orientation of each pontoon is taken care of. A modal analysis is now performed on the

model yielding the natural frequencies and modes. These modal quantities are used to

establish the modal system matrices. The modal mass and stiffness matrices are denoted

M̃
I

and K̃
I
, respectively. The corresponding modal damping matrix C̃

I
can now be

established by assuming Rayleigh damping:

C̃
I

= αM̃
I

+ βK̃
I

(3.2.1)

The mass and stiffness proportionality factors α and β are both assumed to be equal to

5 · 10−3 throughout this thesis.

For the simplified model considered in this thesis all seven pontoons are assumed to be

equal. The only thing that separates them is their orientations relative to the global

coordinate system, as mentioned earlier. In order to form the total contributions to

the mass and damping of the model the matrices for each pontoon is transformed into

global coordinates and summed. The resulting total matrices are now made modal by use

of the modal transformation matrix resulting from the modal analysis described above.

The two substructures can now be joined to form the complete bridge model. These

global modal matrices are used to form the modal frequency response function given in

Equation (2.10.8).
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Based on chosen models for the one-dimensional wave spectral density and the

spreading function the load model can now be established. In this thesis the

one-parameter Pierson-Moskowitz spectrum are chosen for the one-dimensional wave

spectral density while the spreading function are modelled using the cos-2s distribution,

both described in Section 2.9. From these, the hydrodynamic transfer function Qr(ω, θ)

is established. In order to find the cross-spectral density matrix corresponding to the

wave excitation between two selected points along the bridge the integral in

Equation (2.10.12) is calculated for all combinations of the pontoons.

Each of the matrices produced from Equation (2.10.12) are stacked to form a total load

spectral density matrix. This matrix Sp(ω) is then transformed into the modal space

defined by the mode vectors established for substructure I. This load spectral density

matrix can now be used to establish the displacement spectral densities Su(ω) by use of

the power spectral density method defined by Equation (2.10.13). As a final step, the

response spectral density matrix is transformed from modal to physical coordinates.

The complete calculation setup for the bridge modelling are summarized in the flowchart

in Figure 3.2.1:
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M I = M s +Mh0

KI = Ks +Kh

ΦI

ωIn

M̃
I

K̃
I

C̃
I

= αM̃
I

+ βK̃
I

Finite Element Model

M II
i (ω) = Mh,i(ω)

CII
i (ω) = Ch,i(ω)

KII
i = Kh,i −Kh,i = 0

M II(ω) =
∑7

i=1 T
T
i M

II
i (ω)T i

CII(ω) =
∑7

i=1 T
T
i C

II
i (ω)T i

M̃
II

(ω) = (ΦI)TM II(ω)ΦI

C̃
II

(ω) = (ΦI)TCII(ω)ΦI

Hydrodynamic Model

M̃ (ω) = M̃
I

+ M̃
II

(ω)

C̃(ω) = C̃
I

+ C̃
II

(ω)

K̃ = K̃
I

Qr(ω, θ)

Sprps(ω) =
∫
θ
Qr(ω, θ)Sη(ω, θ)Qr(ω, θ)

H dθ

Sη(ω, θ) = Sη(ω)D(θ)

Sp(ω) =


Sp1p1(ω) · · · Sp1p7(ω)

...
. . .

...

Sp7p1(ω) · · · Sp7p7(ω)



S̃p(ω) = (ΦI)TSp(ω)ΦI

Load Model

S̃u(ω) = H̃(ω)S̃p(ω)H̃(ω)H

Su(ω) = ΦIS̃u(ω)(ΦI)T

H̃(ω)

Figure 3.2.1: Flowchart for the calculation setup. Based on the work of Kv̊ale et al. (2016).
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3.3 Software

In this section the software used in this project are presented and discussed. This include

both single scripts written in MATLAB and Python, as well as analytical third-party

programs.

3.3.1 The WAWI-Toolbox

The WAWI-toolbox is provided by the Structural Dynamics Group at the Department of

Structural Engineering at NTNU with Knut Andreas Kv̊ale being the main contributor.

The toolbox contains several MATLAB scripts needed to establish the dynamical load

model presented in the flowchart in Figure 3.2.1. The main scripts included in the toolbox

are:

• importwadam.m: Fetches the hydrostatic and hydrodynamic system matrices,

the frequency and angle vectors as well as the transfer function matrix from the

report file generated in the WADAM-analysis.

• generate abaqus input.m: Takes the hydrostatic mass and stiffness matrix of the

pontoons as input and generates an input file for Abaqus containing the stiffness and

mass system matrices. This script also performs a rigid rotation transformation of

the matrices. The rotation angle is given according to the position of the pontoons

in relation to the global coordinate system of the bridge superstructure.

• cos2s center.m: Calculates the cos-2s directional distribution of the waves. This

function takes the spreading parameter and wave angles as inputs. The angle of

the mean wave direction θ0 is assumed to be zero. The spreading parameter is set

to s = 13 which is equivalent to s = 3 for cos 2s(θ) instead of cos 2s(θ/2). This

short-crested sea condition is claimed to be the most realistic according to on-site

observations (Kv̊ale et al., 2016).

• pmjons2.m: Calculates the one-dimensional wave spectral density based on the

JONSWAP spectrum. The inputs are the environmental parameters (significant

wave height and zero-crossing period), wave frequency and a peakedness factor

which is set equal to 2.05.
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• waveaction.m: Estimates the wave excitation cross-spectral density matrix

between two selected points. This corresponds to step 11 in the flowchart in

Figure 3.2.1. The main inputs are the hydrodynamic transfer function and the

cross-spectral density of the water elevation given by steps 8 and 9 in the

flowchart, respectively. Furthermore, the Cartesian coordinates of the pontoons

are given along with the angles of the pontoons and the water depth. The latter is

here set equal to infinity.

3.3.2 Analytical third-party programs

• GenieE: Software in which the pontoon model is generated as a rigid body

containing the correct geometries of the outer shell. Here the pontoon model is

meshed with a maximum mesh width of 1 meter. Finally, the model is exported as

a finite element model. This program is developed by DNV.

• HydroD: This program takes in the finite element shell model generated in

GenieE and carries out the hydrodynamic analysis using the built-in engine

WADAM. WADAM generates a report file containing the results of this analysis.

Besides the FEM-file, the user defines the discretization of the wave angle and

frequency, the submergence depth and the water properties, among other

hydrodynamically relevant properties. This program is also developed by DNV.

• Abaqus FEA: Finite element software used for the modal analysis of the bridge.

The outputs of interest are the natural frequencies, the modal vectors and the

normalized mass of the bridge. This program is developed by Abaqus Inc.

• Python: A programming language used to write the scripts needed to calculate

the long-term extreme responses. This program is developed by Python Software

Foundation.

• MATLAB: A programming language used to write the WAWI-toolbox as well as

the script which combines the results from the finite element model, the

hydrodynamic model and the load model in order to calculate the response

spectrum and the corresponding moments for the pontoon and DOF of interest.

This program is developed by MathWorks.
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3.4 Modal Analysis in Abaqus

The theory behind the modal analysis conducted in Abaqus is presented in Section 2.3.

Abaqus establishes the mass and stiffness matrices of the structure and solves the

eigenvalue problem given in Equation (2.3.5). The mode shapes obtained from this

analysis are mass normalized by default, see Equation (2.3.6). Furthermore, the number

of required eigenvalues is provided by the user which in this thesis is set to 42.

3.4.1 Natural Frequencies and Modes

The first ten undamped natural frequencies along with their periods and mode types

obtained from the modal analysis of the simplified finite element model are given in

Table 3.4.1. The direction in which the bridge would sway in each mode is also

identified by visual inspection of the deformation plots generated in Abaqus. For

further confirmation of these mode types, the effective modal mass is also studied. This

effective modal mass has units of mass and its summation over all modes equals the

total mass of the structure. The quantity indicates the amount of mass that responds in

a particular mode of vibration (Williams, 2016).

Table 3.4.1: Natural frequencies and periods along with the mode types of the 10 first modes
from Abaqus.

Mode number Mode type
Natural frequency

Natural period
[Hz] [rad/s]

1 Horizontal 0.096 0.605 10.380

2 Torsional 0.185 1.160 5.414

3 Horizontal 0.207 1.299 4.836

4 Vertical 0.269 1.691 3.715

5 Vertical 0.276 1.736 3.619

6 Vertical 0.311 1.955 3.214

7 Horizontal 0.323 2.027 3.100

8 Combined 0.387 2.431 2.584

9 Combined 0.397 2.493 2.521

10 Vertical 0.525 3.297 1.906
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Figure 3.4.1 (a) through (v) show the base state of the bridge along with the mode

types presented in Table 3.4.1 seen from both above and from the side. The eigenvectors

obtained from this modal analysis are used to establish the modal mass, stiffness and

damping matrices as well as transforming the load spectral density matrix to the modal

space and transforming the response spectral density from modal into physical DOFs as

illustrated in Figure 3.2.1.
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(a) Base state viewed from above. (b) Base state viewed from the side.

(c) Mode 1 viewed from above. (d) Mode 1 viewed from the side.

(e) Mode 2 viewed from above. (f) Mode 2 viewed from the side.

(g) Mode 3 viewed from above. (h) Mode 3 viewed from the side.

(i) Mode 4 viewed from above. (j) Mode 4 viewed from the side.

(k) Mode 5 viewed from above. (l) Mode 5 viewed from the side.

(m) Mode 6 viewed from above. (n) Mode 6 viewed from the side.

(o) Mode 7 viewed from above. (p) Mode 7 viewed from the side.

(q) Mode 8 viewed from above. (r) Mode 8 viewed from the side.

(s) Mode 9 viewed from above. (t) Mode 9 viewed from the side.

(u) Mode 10 viewed from above. (v) Mode 10 viewed from the side.

Figure 3.4.1: Base state and mode shapes for the Abaqus model.
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3.5 Extreme Response Calculations

The horizontal transverse displacement of pontoon number 4 in Figure 3.1.4 (b) is studied

in particular. This specific displacement corresponds to the second degree-of-freedom,

which is translation along the local x-axis of the pontoon as illustrated in Figure 3.1.3.

In the following this displacement is what will be referred to as the response. Furthermore,

the characteristic responses are calculated for return periods of M = 10, 100, 1000 years.

These choices for M are assumed to be sufficient in demonstrating the extreme situations

with acceptable spaced intervals. The long-term extreme response calculation methods

for which the methodology is presented in this chapter are listed below:

• Full Integration

• Inverse First-Order Reliability Method (IFORM)

• Environmental Contour Method (ECM)

• Importance Sampled Monte Carlo Simulation (ISMCS)

• Gaussian Process Regression (GPR)

3.5.1 Environmental Model Parameters

As stated in Section 2.8 the environmental model is described using two parameters, the

significant wave height Hs and the zero-crossing period Tz with their units in meters and

seconds, respectively. The distribution functions for these environmental parameters are

the Weibull distribution, see Equation (2.8.2), and a conditional lognormal distribution,

see Equation (2.8.5). The distribution parameters used are presented in Table 3.5.1.

Usually, these parameters are fitted to measured data. However, in this thesis the values

correspond to the ones presented in Finn-Idar Grøtta Giske’s doctoral thesis (Giske,

2017), which are assumed to be representative for sea states at the northwestern part of

Norway.
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Table 3.5.1: Distribution parameters used for the Weibull and lognormal distributions.

Weibull Lognormal

α β a0 a1 a2 b0 b1 b2

1.76 1.59 0.70 0.282 0.167 0.07 0.3449 −0.2073

3.5.2 Full Integration

The expressions for the long-term extreme response based on the short-term extreme

response and short-term upcrossing rate in Equation (2.7.6) and (2.7.10), respectively,

are solved in an approximate manner. Analytic integration over the environmental

parameters can not be conducted and the calculation is rather performed numerically

by choosing discrete values for the environmental parameters. To ensure inclusion of

environmental parameters with significant contribution to the integrand, the joint

probability density function of the environmental parameters is integrated numerically

and the limits for the environmental parameters as well as their step sizes are adjusted

in order to achieve: ∫
w

fw(w) dw = 1 (3.5.1)

A matrix of moments is calculated using Equation (2.5.8) with the environmental

parameters as presented in Table 3.5.2. Furthermore, a contour plot of the zeroth and

second order moments can be seen in Figure 3.5.1.

Table 3.5.2: Data used for the environmental parameters. This includes the lower and upper
limit for the parameters as well as the corresponding area under their joint probability density

function.

Environmental parameter Lower limit Upper limit Number of elements Area under joint PDF

h 0.001 9 655
0.999905

t 0.001 12.5 150
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Figure 3.5.1: Zeroth and second order moments for DOF 2 at pontoon 4.

The cumulative distribution function for the long-term extreme response is plotted as

the expressions in Equation (2.7.3) (2.7.6), (2.7.7) and (2.7.10) are solved numerically

by use of the trapezoidal rule for threshold response values of 0 to 5 meters and with

environmental parameters as defined in Table 3.5.2. The characteristic response is then

found by utilizing the expression for the exceedance probability in Equation (2.7.13).

3.5.3 IFORM

The first step when performing the long-term extreme response analysis using IFORM

is to formulate the vector V = [W , V3] = [Hs, Tz, V3]. This vector contains the

environmental parameters and the response value in U-space after transformation using

the Rosenblatt transformation as described in Section 2.11. Given a point in this

standard normal space, u = [u1, u2, u3], the corresponding components of the vector

v = [h(u), t(u), v3(u)] in the physical space are calculated as (Giske, 2017):

h(u) = F−1Hs
(Φ(u1)) = α[− ln(1− Φ(u1))]

1
β (3.5.2a)

t(u) = F−1Tz |Hs(Φ(u2)|h(u)) = exp{µ(h(u)) + σ(h(u))u2} (3.5.2b)

v3(u) = F−1V3|Hs,Tz(Φ(u3)|h(u), t(u)) (3.5.2c)

Here v3(u) is expressed in terms of the exact (y) and the approximate (r̃) formulations of

the short-term extreme response given in Equation (2.7.6) and (2.7.7), respectively. This
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yields:

v3(u) = y(u) =

√√√√−2m0(h(u), t(u)) ln

(
− 2π

T̃

√
m0(h(u), t(u))

m2(h(u), t(u))

)
ln Φ(u3) (3.5.3a)

v3(u) = r̃(u) =

√√√√2m0(h(u), t(u)) ln

(
− 2π

T̃

√
m0(h(u), t(u))

m2(h(u), t(u))

)
(1− Φ(u3)) (3.5.3b)

The long-term extreme response is calculated for return periods of 10, 100 and 1000

years. Table 3.5.3 shows the corresponding reliability index β calculated according to

Equation (2.11.17).

Table 3.5.3: Reliability indexes βM corresponding to the different return periods M .

M 10 100 1000

βM 3.98 4.49 4.97

The implementation of the IFORM-algorithm is carried out using Python. The tolerance

for convergence of the design point u∗ according to Equation (2.11.23) is set to 10−3. For

more stable iterations the implemented algorithm included the backtracking approach

proposed by Giske et al. (2017). Here the proportionality constant is chosen as c = 10−4,

see Equation (2.11.21). Numerical differentiation is used to calculate the gradient of v(u).

The iteration process is initiated using the initial point u1 = [0, 0, β].

3.5.4 Environmental Contour Method

The environmental parameters Hs and Tz with occurrence probability corresponding to

the contour with return period M is obtained using IFORM. This algorithm is

implemented in a similar fashion to what is described in Section 3.5.3. This time,

however, the response component is replaced by the joint probability density function

for the environmental parameters. The iterated environmental parameters in U-space

and the convergence pattern for the different return periods M can be seen in

Figure 3.5.2. The M -year equivalent iterated environmental parameters are also

presented in Table 3.5.4.

66



3. Methodology Extreme Response Calculations

3.90 3.92 3.94 3.96 3.98
u1

0.0

0.2

0.4

0.6

0.8

u
2

1

2

3

4

5
6789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101

Iteration points obtained in U-space

(a) Return period of 10 years.

4.42 4.44 4.46 4.48 4.50
u1

0.0

0.2

0.4

0.6

0.8

u
2

1

2

3

4

5
6789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101

Iteration points obtained in U-space

(b) Return period of 100 years.
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Figure 3.5.2: Iteration pattern for the M -year equivalent environmental parameters.

Table 3.5.4: M -year equivalent iterated environmental parameters.

M -year U-space [u1, u2] V-space [h, t] Number of iterated points

10 [3.98, 6.65 · 10−31] [7.62, 2.99] 102

100 [4.45, 6.63 · 10−31] [8.65, 3.02] 102

1000 [4.97, 6.59 · 10−31] [9.62, 3.04] 102

Furthermore, the short-term extreme response is calculated from Equation (2.6.12) for

various combinations of h- and t-values along the relevant contour. These contours can

be seen in Figure 3.5.3. The combination of h and t which results in the highest response

value is recognized as the design point.
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Figure 3.5.3: Joint PDF over the environmental parameters presented by their
isoprobability contour lines.

3.5.5 IFORM and ISMCS

The environmental parameters are sampled from their joint PDF given by

Equation (2.6.5) and the integrand in Equation (2.14.1) is calculated in a recursive

manner using Python. The characteristic M -year response is then identified according

to Equation (2.7.14). The number of samples for such a simulation is usually high.

However, in order to achieve a sufficiently accurate results within reasonable

computational expenses, the integrand is weighted such that it is biased towards known

design points. In this thesis the design points from IFORM are used. The following

Importance Sampling function was used for the Importance Sampled Monte Carlo

Simulation:

hw(w) =
n∏
i=1

1

σi
Φ(
wi − µi
σi

) (3.5.4)
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Here the importance density function hW (w) is centered on W = w∗, where

w∗ = [h∗, t∗] represents the design points obtained from IFORM. Furthermore, µi = w∗i

and Φ(·) represent the mean value and standard normal cumulative distribution

function, respectively. fW (w) is the joint PDF over the environmental parameters. The

standard deviation σi is set in the range of 0.15 - 0.3 times the standard deviation of

the marginal distributions over the environmental parameters. Given that the

environmental parameters are sampled in a biased manner, the number of samples is

reduced to Nm = 50.

3.5.6 Gaussian Process Regression

For this method the environmental parameters used as training points for establishing

the covariance matrix are randomly generated from the joint PDF, see Equation (2.6.5).

Ns = 8 random states of the environmental model are drawn as training points. For

each state of the environmental parameters the conditional short-term extreme response

given by Equation (2.6.10) is solved for different threshold response values, whereas the

characteristic M -year response is identified according to the fractile value given in

Equation (2.7.13). The training points for the extreme M -year response is then found

as: rMq = {r1, r2, ..., rNs}. Furthermore, the Matérn kernel is used to establish the

covariance matrix and is given by:

k(xi, xj) =
1

Γ(ν)2(ν−1)

(√2νd(xi, xj)

l

)ν
κν

(√2νd(xi, xj)

l

)
(3.5.5)

Here d(xi, xj) is the Euclidean distance between the points xi and xj, κν(·) is a modified

Bessel function and Γ(·) denotes the gamma function. Compared to the squared

exponential kernel described in Section 2.13 the Matérn kernel contains an additional

parameter ν . Together with the length scale parameter l, the parameter ν controls the

smoothness of the estimated function. The length scale parameter l defined here is the

same as the one introduced for the squared exponential kernel (Genton, 2001). In this

thesis good results are obtained with the parameters l and ν set to 0.15 and 2.5,

respectively. Although the Matérn kernel is the one chosen in this project, it is worth

mentioning that this kernel reduces to the squared exponential kernel for ν = 0.5.
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CHAPTER 4

Results

In this chapter the results and observations from the study conducted in the project are

presented. Effort is made into presenting these results in a short and informative manner,

leaving the main discussions and general considerations regarding the validity of these

results to the next chapter.
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4.1 Long-Term Response Predictions

In the following sections the predicted long-term response values from the investigated

methods are presented.

4.1.1 Full Integration

The CDFs for the long-term extreme response obtained from the Full Integration method

based on the exact formulation of the short-term upcrossing rate described in Section 2.7.3

for return periods of 10, 100 and 1000 years are shown in Figure 4.1.1, 4.1.2 and 4.1.3,

respectively. A horizontal line representing the exceedance probability is also present in

these figures.

Figure 4.1.1: Exact formulation of the cumulative distribution function based on the
short-term upcrossing rate for a return period of 10 years.
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Figure 4.1.2: Exact formulation of the cumulative distribution function based on the
short-term upcrossing rate for a return period of 100 years.
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Figure 4.1.3: Exact formulation of the cumulative distribution function based on the
short-term upcrossing rate for a return period of 1000 years.

Reading from the plots in Figure 4.1.1, 4.1.2 and 4.1.3 the characteristic response values

for the method of Full Integration based on the exact upcrossing rate formulation can be

found. These values are summarized in Table 4.1.1:

Table 4.1.1: Response values from the method of Full Integration based on the exact model
of the upcrossing rate.

M -year Characteristic response [m]

10 3.04

100 3.55

1000 4.06

Furthermore, Figure 4.1.4, 4.1.5 and 4.1.6 show plots of the approximate formulation of

the cumulative distribution function based on the short-term extreme values:

73



4. Results Long-Term Response Predictions

Figure 4.1.4: Approximate formulation of the cumulative distribution function based on the
short-term extreme values for a return period of 10 years.

Figure 4.1.5: Approximate formulation of the cumulative distribution function based on the
short-term extreme values for a return period of 100 years.
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Figure 4.1.6: Approximate formulation of the cumulative distribution function based on the
short-term extreme values for a return period of 1000 years.

Table 4.1.2 summarizes the characteristic responses obtained from the formulations of

the short-term peaks and the short-term extreme values as described in Section 2.7.1 and

2.7.2:

Table 4.1.2: Response values from the method of Full Integration based on models of the
short-term peaks and the short-term extreme values.

Characteristic response [m]

M -year Short-term peaks
Short-term extreme values

Exact Approximate

10 3.04 3.04 2.13

100 3.55 3.55 2.14

1000 4.06 4.06 2.35

For the defined resolutions of h and t (655×150 elements) the elapsed time for calculating

the moments m0 and m2 for a single DOF as well as for performing the Full Integration

are presented in Table 4.1.3. 100 elements of the response threshold r spanning from 0

to 5 meters are used to produce the smooth CDFs in Figure 4.1.1, 4.1.2 and 4.1.3.
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Table 4.1.3: Elapsed time for the Full Integration method.

Process Elapsed time [min]

Moments [m0,m2] 2200

Full Integration 275

Total 2475

4.1.2 IFORM

Table 4.1.4 and 4.1.5 contain the long-term extreme responses obtained from IFORM

for the exact and approximate formulations, respectively. Parameters that determine

the efficiency of the algorithm such as the elapsed time, the number of iterations nit

and the number of times the short-term response is calculated nst can be found in these

tables. Furthermore, the auto-spectral density of the response, see Equation (2.10.13),

which is calculated using the design points obtained from both the exact and approximate

formulations are plotted in Figure 4.1.7 and 4.1.8.

Table 4.1.4: Results from IFORM for the exact formulation. rq, nst and nit denote the
characteristic response value, the number of short-term calculations and the number of

iterations, respectively.

Exact

M -year Design points [h, t] rq nst nit Elapsed time [min]

10 [4.55, 5.52] 3.14 56 10 3.3

100 [5.21, 5.56] 3.73 61 10 3.3

1000 [5.69, 5.58] 4.29 86 15 3.3

Table 4.1.5: Results from IFORM for the approximate formulation. rq, nst and nit denote
the characteristic response value, the number of short-term calculations and the number of

iterations, respectively.

Approximate

M -year Design points [h, t] rq nst nit Elapsed time [min]

10 [4.56, 5.48] 3.12 35 6 2.7

100 [5.15, 5.54] 3.72 46 8 2.7

1000 [5.72, 5.56] 4.28 58 10 2.7
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Figure 4.1.7: The response spectrum for pontoon 4, DOF 2 obtained with the design points
from the exact IFORM-formulation.
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Figure 4.1.8: The response spectrum for pontoon 4, DOF 2 obtained with the design points
from the approximate IFORM-formulation.

Figure B.1.1, B.1.2 and B.1.3 in Appendix B.1 show the iterated points in U-space for

the exact formulation of IFORM. Likewise, the iterated points for the approximate

formulation and the convergence pattern towards the design points can be seen from

Figure B.2.1, B.2.2 and B.2.3 in Appendix B.2.

4.1.3 Environmental Contour Method (ECM)

The environmental parameters identified as the design points from ECM are presented

in Table 4.1.6 along with the elapsed time for running the algorithm in Python. These

sets of points gave the highest response along the M -year equivalent contours, as can be

seen from Figure 3.5.3 and Table 3.5.4.
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Table 4.1.6: Environmental parameters [h, t] at the design points obtained from ECM.

M -year Design points in physical space Elapsed time [min]

10 [4.65, 5.26] 3

100 [5.18, 5.52] 3

1000 [5.82, 5.60] 3

Furthermore, the auto-spectral density of the response as defined in Equation (2.10.13)

calculated with the design points obtained for the considered return periods is plotted in

Figure 4.1.9:
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M = 10: [h = 4.65, t = 5.26]

M = 100: [h = 5.18, t = 5.52]

M = 1000: [h = 5.82, t = 5.6]

Figure 4.1.9: The response spectrum of pontoon 4, DOF 2 obtained with the design points
from ECM.

The cumulative distribution functions for the long-term extreme response for a fractile

value of p = 0.80 are plotted in Figure 4.1.10, 4.1.11 and 4.1.12 for return periods of 10,

100 and 1000 years.
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Figure 4.1.10: CDF of the long-term extreme response from ECM for a fractile value of
p = 0.80 and return period M = 10 years.
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Figure 4.1.11: CDF of the long-term extreme response from ECM for a fractile value of
p = 0.80 and return period M = 100 years.
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Figure 4.1.12: CDF of the long-term extreme response from ECM for a fractile value of
p = 0.80 and return period M = 1000 years.

In Table 4.1.7 the characteristic responses for fractile values of 0.80, 0.85, 0.90 and 0.95

are summarized for the M -year return periods. The figures of the CDFs corresponding

to the fractile values of 0.85, 0.90 and 0.95 can be found in Appendix C.1.

Table 4.1.7: Characteristic long-term responses from ECM for exceedance probabilities
corresponding to return periods of M = 10, 100 and 100 years.

Characteristic response

M -year p = 0.80 p = 0.85 p = 0.90 p = 0.95

10 2.94 2.99 3.06 3.16

100 3.57 3.63 3.71 3.84

1000 4.09 4.16 4.25 4.40

4.1.4 IFORM and ISMCS

Figure 4.1.13, 4.1.14 and 4.1.15 show two CDFs for long-term extreme response. The

orange CDF represents the Crude Monte Carlo Simulation while the blue CDF is biased
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towards the design points obtained from IFORM. The exceedance probability

corresponding to a given return period is represented by the green horizontal line.

Furthermore, Table 4.1.8 contains the response value at the intersections between the

CDFs and the line representing the exceedance probability, identified by the blue and

red dots in the figures. The characteristic long-term extreme responses are read from

these points. Elapsed time for running the algorithm is also presented in this table.
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Figure 4.1.13: CDF of the long-term extreme response from Crude Monte Carlo Simulation
with and without Importance Sampling for a return period of M = 10 years.
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Figure 4.1.14: CDF of the long-term extreme response from Crude Monte Carlo Simulation
with and without Importance Sampling for a return period of M = 100 years.
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Figure 4.1.15: CDF of the long-term extreme response from Crude Monte Carlo Simulation
with and without Importance Sampling for a return period of M = 1000 years.
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4. Results Long-Term Response Predictions

Table 4.1.8: Characteristic long-term extreme responses from Crude Monte Carlo Simulation
with and without Importance Sampling for return periods of M = 10, 100 and 1000 years.

M-year Unbiased response [m] Biased response [m] Elapsed time [min]

10 1.83 3.11 5

100 1.81 3.97 5

1000 1.60 4.14 5

4.1.5 Gaussian Process Regression (GPR)

Figure 4.1.16 shows three groups of curves containing the training and test points where

the characteristic responses are both predicted and evaluated in order to demonstrate the

deviations between the two. Each group of curves contains the responses corresponding

to return periods of 10, 100 and 1000 years in relation to the significant wave height

h. The response values for the training points, predicted test points and evaluated test

points are presented in Table 4.1.9, 4.1.10 and 4.1.11, respectively.
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Figure 4.1.16: Characteristic responses for return periods of M = 10, 100 and 1000 years for
training points and test points in relation to the significant wave height h. Here Tp, Tse and
Tsp represent the training points, evaluated test points, and predicted test points, respectively.

Table 4.1.9: Characteristic response from the training points in GPR.

Training points

M=10 M=100 M=1000

0.32 0.34 0.35

0.09 0.09 0.10

0.03 0.03 0.03

0.80 0.85 0.88

0.11 0.12 0.12

0.07 0.08 0.08

0.60 0.63 0.66

4.06 4.31 4.49
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Table 4.1.10: Characteristic response from the predicted test points in GPR.

Predicted Test Points

M=10 M=100 M=1000

0.31 0.33 0.35

0.02 0.02 0.02

0.05 0.05 0.05

-0.17 -0.20 -0.21

0.90 0.95 0.99

1.09 1.16 1.21

3.25 3.45 3.60

4.03 4.28 4.45

Table 4.1.11: Characteristic response from the evaluated test points in GPR.

Evaluated Test Points

M=10 M=100 M=1000

0.01 0.01 0.01

0.06 0.06 0.06

0.42 0.45 0.46

0.33 0.35 0.36

1.37 1.45 1.51

0.23 0.24 0.25

0.59 0.63 0.65

1.04 1.11 1.15

The uncertainties related to the predicted characteristic response values are illustrated

by the grey variance area in Figure 4.1.17:
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Figure 4.1.17: Variance of the predicted characteristic response values from GPR.

Figure 4.1.18 shows the randomly generated environmental parameters used as training

and test points, as well as their position in the joint PDF. These points are also presented

in Table 4.1.12.
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Figure 4.1.18: Randomly generated environmental parameters h and t for the training and
test points.

Table 4.1.12: Randomly generated environmental parameters used as test and training
points. Here htp and ttp denote the training points, while hst and tst denote the test points for

the significant wave height h and the zero-crossing period t.

Training Points Test Points

htp ttp hst tst

0.43 4.91 0.45 1.80

0.72 3.20 0.91 2.77

1.56 2.05 1.12 4.08

2.68 3.88 1.86 3.47

3.26 2.44 3.10 4.25

3.30 2.21 3.52 2.79

3.63 3.42 3.96 3.35

4.29 5.45 4.28 3.72
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CHAPTER 5

Discussion

In this chapter the results presented in Chapter 4 are discussed and analysed. The effects

of the assumptions made are debated and any deviations from the expected results are

discussed. Consequences of any made presumption are also analysed and quantified.
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5.1 Bridge Model

The bridge model used for this project is highly simplified compared to what is

traditionally used for dynamical analysis of such a floating bridge, see for example

Hermstad (2013) and Kv̊ale et al. (2016). Firstly, the span between each pontoon is

modelled by a simple three-dimensional beam elements as opposed to a full truss

element model. It might be argued that this is an oversimplification. However, the

three-dimensional beam elements used are given mass and stiffness properties

corresponding to an average cross-section of the full truss structure.

Another simplification made in the model is concerned with the pontoons. The

Bergsøysund Bridge has three types of pontoons. The differences between these types of

pontoons emerge from different geometry and ballasting. The three pontoon types are

distributed such that the first type is located near the shore on each end of the bridge.

The next type of pontoons, also consisting of two pontoons, are located intermediately

between the shoreline and the middle of the bridge. Lastly, the third category of the

pontoons, containing three pontoons, are located near the middle of the bridge span. It

is these last types of pontoons which are used to represent all the pontoons in the

bridge model.

Whether the assumption made for the pontoon types as described in the previous

paragraph will have notable effects on the structural response may be subject for

discussion. While it is highly likely that some effect would be found, the magnitude of

this effect is not known. Since the pontoon type chosen in the model are the smallest of

the three types, the inertia and therefore also the natural frequency of the bridge model

will be less than for a more life-like model where also the bigger and heavier pontoons

would be included.

It should be emphasized that the purpose of the bridge model is merely to serve as an

example structure to which the considered calculation models can be applied. A more

complete model would likely give even finer results but would also be much more time

consuming and is therefore not prioritized in this project.
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5.2 Natural Frequencies and Modes

The values for the natural frequencies and the mode shapes presented in Table 3.4.1

correspond quite well to what is found in the literature for the Bergsøysund Bridge (Kv̊ale

et al., 2016). Natural frequencies and mode shapes are in general quite insensitive to the

resolution of the finite element model. This means that accurate results can be obtained

using a simplified finite element model, which is also observed here. This observation

acts as a form of validation of this simplified bridge model, confirming its applicability

for use as an exemplification for the long-term extreme response calculations conducted.

5.3 Discretization of Wave Angle and Frequency

Table 3.1.3 in Section 3.1.2 describes the discretization of the wave angles relative to

the pontoons and the frequency used for these waves in the WADAM-analysis. The

discretization used for these two quantities in the hydrodynamic modelling is important

for the accuracy of the resulting hydrodynamic transfer function as well as for the

hydrodynamic mass and damping matrices. This means that for the total analysis of

the bridge model to be sufficiently accurate these two quantities also need to be

accurately modelled.

Comparing the frequencies used for the hydrodynamic analysis with the natural

frequencies obtained for the bridge model a rather good agreement is found. The

natural frequencies shown in Table 3.4.1 are well within the frequency range for the

hydrodynamic analysis which run from 7.5 · 10−2 and up to 4 rad/s. The frequency

discretization itself also seem to fit quite well to the natural frequencies. For frequency

increments of 7.5 · 10−2 rad/s all the natural frequencies in Table 3.4.1 are captured

with sufficient accuracy.

When it comes to the discretization of the wave angles relative to the pontoons the

comparison with the natural modes of the bridge model may appear slightly unclear.

However, since the ten first modes in Table 3.4.1 are lateral, and not longitudinal, the

most important modes are the ones ranging from about 45 to 135 degrees, as well as their

180 degree equivalents. With a fixed increment size of 10 degrees the considered wave
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angle interval can be considered as sufficiently fine.

5.4 Full Integration

Section 3.5.2 shows that the Full Integration method is the most time-consuming method

considered in this thesis. This is also the main preposition of this thesis; to find more

efficient methods for full long-term analysis of extreme responses than Full Integration.

In other words, the results from Full Integration contribute to further emphasize the need

for more efficient calculation methods.

Although being both time-consuming and computationally expensive, the Full

Integration method is recognized as being exact regarding the response values it return.

This is because the approach takes into account sea states that contribute little or

nothing to the overall loading on the structure being considered (Naess and Moan,

2013). This is illustrated as the integral of the joint probability density function over

the environmental parameters of the significant wave height and the zero-crossing

period are found to be of the value 0.9999. To achieve this value, step sizes giving 655

elements for the significant wave height and 150 elements for the zero-crossing period

are chosen in the numerical integration conducted. With the integrated value being

very close to unity, the assumption of exactness for this method can be said to be

somehow valid. Therefore, the results from the other methods considered in this thesis

can be held against the results from the full long-term approach based on the

upcrossing rate model in order to evaluate their exactness.

As described in Section 2.6 both the exact and approximate formulations of the model

based on the short-term extreme values are used for the cumulative distribution

function. From Table 4.1.2 it is clear that the approximate formulation underestimates

the response. The deviations for the responses are presented in Table 5.4.1 where it can

be seen that the underestimation approaches 43.2 %. This is highly non-conservative.

This underestimation shows that the chosen resolution of the environmental parameters

for the approximate formulation should have been finer with a larger span. As for the

models based on the short-term peaks and the exact formulation of the short-term

extreme values, see Table 4.1.2, the results are quite similar to the model based on the

upcrossing rate.
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5. Discussion IFORM

Table 5.4.1: Deviation in the results obtained from Full Integration based on the upcrossing
rate model and the approximate formulation of the short-term extreme values model.

M -year Upcrossing rate
Short-term extreme values

(approximate)
Deviation

10 3.04 2.13 43.19 %

100 3.55 2.14 39.70 %

1000 4.06 2.35 42.12 %

5.5 IFORM

By considering Table 4.1.4 and 4.1.5 which present responses obtained from IFORM

using the exact and approximate formulation, one can observe that the responses from

the approximate formulation slightly falls on the non-conservative side when compared

to the exact formulation. The maximum underestimation is 0.64 % for M = 10 years.

On the contrary, the approximate formulation is slightly more efficient with one minute

less run time. This difference in run time can be explained when the number of iterations

nit and the number of times the short-term response is calculated nst are studied more

carefully. The approximate formulation needs fewer iterations and short-term response

evaluations in order to converge, resulting in a shorter run time.

5.6 Comparing Full Integration, IFORM and ECM

The characteristic extreme response values obtained from the methods of Full Integration,

IFORM and ECM are quite similar to each other. This is demonstrated in Table 5.6.1

where the response values from the exact formulation of the Full Integration method

based on the model of the upcrossing rate, the response values from ECM using a fractile

value of p = 0.8 and the response values from IFORM based on the exact formulation are

presented. By using the result from Full Integration as a basis, the deviations from these

response values compared to the response values from ECM and IFORM are presented

in percent in Table 5.6.1.
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Table 5.6.1: Deviation of the response values obtained from IFORM (exact) and ECM when
compared to the response values obtained for Full Integration (based on the upcrossing rate

formulation).

Characteristic

response values

Deviation from

Full Integration

M -year
Full Integration

(upcrossing rate)

IFORM

(exact)

ECM

(p=0.8)

IFORM

(exact)

ECM

(p=0.8)

10 3.05 3.14 2.94 2.95 % 3.6 %

100 3.55 3.73 3.57 5.07 % 0.56 %

1000 4.06 4.29 4.09 5.67 % 0.74 %

Comparing the design points obtained from the various methods is another way of

controlling the quality or correlation of the results. Figure 5.6.1, 5.6.2 and 5.6.3 show

the location of the design points from ECM and IFORM along with their M -year

equivalent contours on the joint PDF over the environmental parameters. The

contribution to the integrand in the Full Integration method is also plotted as a contour

for the threshold values close to the characteristic response. This contribution contour

is normalized, and the magnitude is given by the side bar in the figures.
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Figure 5.6.1: Location of the design points in the joint PDF over the environmental
parameters and a contour of the contribution to the integrand in the method of Full

Integration for a return period of M = 10 years.
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Figure 5.6.2: Location of the design points in the joint PDF over the environmental
parameters and a contour of the contribution to the integrand in the method of Full

Integration for a return period of M = 100 years.
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Figure 5.6.3: Location of the design points in the joint PDF over the environmental
parameters and a contour of the contribution to the integrand in the method of Full

Integration for a return period of M = 1000 years.

From the figures it can be seen that the location of the design points from ECM and

IFORM lay in the vicinity of the concentrated contribution to the integrand. It seems

reasonable that the design points are close to the areas where the contribution to the

overall response is the highest. This further substantiates the confidence that all the

considered methods have converged towards the actual response value.

The design points for return periods of M = 10, 100 and 1000 years obtained from IFORM

(exact and approximate formulations) as well as from ECM are averaged and summarized

in Table 5.6.2. Their probability of occurrence is also calculated from their joint PDF.

It can be observed that this probability of occurrence decreases as the duration of the

return period increases.
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Table 5.6.2: Averaged design points obtained from IFORM (exact and approximate
formulation) and ECM along with their respective probabilities of occurrence.

M -year
Averaged environmental

parameters [h, t]
Probability of occurrence

10 [4.59, 5.42] 5.05e−05

100 [5.18, 5.54] 7.45e−06

1000 [5.74, 5.58] 1.27e−06

Despite its accuracy, it is clear that the method of Full Integration is not the most efficient.

In this regard, Table 5.6.3 really shows the power of the other considered methods for

long-term extreme response analysis. Here the run time for each method is compared to

the run time for Full Integration. A considerable improvement in run time is found for

these alternative methods. The elapsed time for the Full Integration method is in this

table defined as the average run time for all the formulations used for Full Integration.

The deviation in run time between each of these formulations is ±3 minutes.

Table 5.6.3: Computational run time for all return periods M of the different methods
where the run time for the Full Integration is used as the basis for the comparison.

Method Elapsed time [min] Efficiency

Full Integration 2475 1

IFORM (exact) 10 248 × faster

IFORM (approximate) 8 310 × faster

ECM 9 275 × faster

CMCS 15 165 × faster

The considerable time consumption for Full Integration might be lowered by calculating

the CDF given by Equation (2.7.10) for a narrower and more relevant span of response

thresholds. Further optimization of the WAWI-toolbox used to calculate the response

spectrum might also be necessary. However, it can be argued that the method of Full

Integration is inherently slow since the methods ECM, IFORM, ISMCS and GPR are

also dependent on the same WAWI-toolbox while maintaining their efficiency. A general

observation is that the need for calculating the moments in a ”grid-like” manner is the

biggest disadvantage of Full Integration. On the contrary, this ”grid-like” approach
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considers every single environmental parameter, resulting in the superior accuracy.

The approximate formulation of IFORM is the fastest of the considered methods by being

310 times faster than the method of Full Integration. This is a quite good result when

the accuracy of this method is studied in relation to the Full Integration method based

on the upcrossing rate formulation, see Table 5.6.4. Here the maximum deviation lies

around 5.14 % for a return period of M = 1000 years. It is also worth noting that the

approximate formulation in general exhibits higher accuracy than the exact formulation

of IFORM when a similar quality control is conducted, see Table 5.6.1.

Table 5.6.4: Deviation of the responses obtained from the approximate formulation of
IFORM compared to the responses obtained from Full Integration based on the upcrossing

rate formulation for return periods of M = 10, 100 and 1000 years.

Characteristic response [m]
Deviation from

Full Integration

M -year
Full Integration

(upcrossing rate)

IFORM

(approximate)

IFORM

(approximate)

10 3.04 3.12 2.56 %

100 3.55 3.72 4.57 %

1000 4.06 4.28 5.14 %

5.7 IFORM and ISMCS

The Monte Carlo Simulation method biased towards the design points obtained from

IFORM is meant to accelerate the efficiency compared to the traditional Crude Monte

Carlo Simulation. The main disadvantage of this biased method is having to assume

that the design points from IFORM are available and that they are correct to begin

with. Apart from that, this method showed acceptable accuracy for only 50 generated

samples. The deviations compared to the characteristic responses from the method of

Full Integration using the exact formulation are presented in Table 5.7.1. The largest

deviation is 11.8 % for a return period of M = 100 years. This deviation is expected to

be lower as more points are sampled and should eventually converge towards the results

from IFORM given in Table 4.1.4.
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Table 5.7.1: Deviation between the characteristic responses obtained from the exact Full
Integration method and IFORM-based Monte Carlo Simulation for return periods of M = 10,

100 and 1000 years.

Characteristic response [m]
Deviation from

Full Integration

M -year
Full Integration

(exact)

IFORM and

ISMCS

IFORM

ISMCS

10 3.05 3.11 1.97 %

100 3.55 3.97 11.8 %

1000 4.06 4.14 1.93 %

5.8 Gaussian Process Regression (GPR)

The accuracy of the predicted values obtained from GPR are just as good as for the

training points. Even though this is as expected, it presented great challenges to

achieve reasonable training points with a fair amount of spreading and span such that

the predicted values would have lower variance. From a first look at the joint PDF of

the environmental parameters, see Figure 4.1.18, a somehow poor correlation between

the wave height h and the zero-crossing period t can be observed. This affects the

covariance matrix produced for the training and test points resulting in the massive

variances for the predicted values, which is seen in Figure 4.1.16.

It is observed that the red curves (predicted points) follow the green curves (training

points) rather accurately. Figure 5.8.1 shows this clearly. For the blue curves, which

represent the evaluated test points, the same environmental parameters are used as for

the predicted test points and therefore these are expected to exhibit some similarities.

However, in this case the predicted values deviate more from the expected results due to

big jumps in-between the randomly generated parameters used for the test and training

points. This can be seen from Figure 5.8.1 (b) and the points responsible for this jump

can be seen in Figure 5.8.1 (a):
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(a) Deviation between predicted and evaluated
points.

(b) Randomness of the environmental
parameters.

Figure 5.8.1: Effects of the poor correlation between the significant wave height h and the
zero-crossing period t.

The variance of the predicted points shown in Figure 4.1.17 tends to be strongly affected

by whether there exists a training point close by. This is seen from the same figure for

h ≈ 1.9 meters where there is a lack of training points in the location of the test points

and the variance is correspondingly bigger. On the contrary, the variance is significantly

narrower at h ≈ 3.5 meters where a training point is close to the test points. These

results, which are achieved with only 8 training points, demonstrate the potential of the

GPR-method in mapping the characteristic responses for different combinations of the

environmental parameters. The method appears efficient compared to carrying out a Full

Integration calculation or a Crude Monte Carlo Simulation.

5.9 Modelling the Environmental Parameters

The assumed probability density functions and their model parameters presented in

Table 3.5.1 are assumed to be representative for sea states at the northwestern part of

Norway. However, these models for the environmental parameters ought to be revisited

given the magnitude of the extreme response achieved for the various return periods.

The possibility of the models used in this thesis overestimating the actual

environmental loads should be entertained. For greater accuracy and validity, the model

for the environmental parameters should be developed from local measurements of the

sea state around the bridge over an extended time period.
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5.10 Magnitude of the Extreme Response

The extreme characteristic responses presented in Table 5.6.1 obtained from Full

Integration, IFORM and ECM span from 3.05 to 4.29 meters for the various return

periods. Although there are deviations between the methods, the responses are more or

less of the same magnitude. A displacement response around ±4 meters can be

considered as an extreme load for any structure, especially for a floating bridge. How

credible are these response values?

As discussed in Section 5.1, the simplification of the FE-model of the bridge might have

resulted in an overall weaker structure. This presumably weaker structure might have

lacked the resistance needed to withstand these extreme wave loads. For further

validation, the bridge is tested against lower external forces. The marginalized mean

values of the environmental parameters and their probability of occurrence presented in

Table 5.10.1 are used to calculate the extreme long-term responses shown in

Table 5.10.2. These responses are obtained by utilizing the conditional short-term

extreme response given in Equation (2.6.12) along with the requirement for the

characteristic response given by Equation (2.7.14).

Table 5.10.1: Marginalized mean values of the environmental parameters.

Marginal environmental

parameters [h, t]

Probability of

occurrence

[1.58, 2.87] 0.157

Table 5.10.2: Extreme responses obtained with marginalized mean values of the
environmental parameters.

M-year Extreme responses [m]

10 0.116

100 0.124

1000 0.130

It can be observed that the responses are considerably lower when smaller waves are taken

into account. The responses achieved with the marginalized environmental parameters
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5. Discussion Magnitude of the Extreme Response

span from 0.116 to 0.130 meters for the various return periods. This is approximately 96

% lower than the responses obtained with the design points from Full Integration, ECM

and IFORM presented in Table 5.6.1. Based on the observation that the magnitude

of the extreme response is affected to such a degree by the environmental parameters,

it can be argued that the FE-model of the bridge has sufficient strength. When the

probability of occurrence for the marginalized environmental parameters is compared

to that of the design points in Table 5.6.1, it is evident that the values in Table 5.6.1

represent extremely rare events with massive wave loads. Furthermore, the accuracy of

the environmental parameter representation as discussed in Section 5.9 will indeed affect

the response. Higher response will naturally be obtained for an overestimated sea state.
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6.1 Conclusion

This thesis has presented and demonstrated several methods for estimating the

long-term extreme response of floating bridges. Even though the primary objective is to

present these methods, they are exemplified using a simplified model based on the

Bergsøysund Bridge. The obtained lateral extreme responses are considered to be high

as a result of multiple simplifications of the bridge model and assumptions made around

the environmental parameters but also due to the magnitude of the assumed waves.

However, the similarity in the magnitude of the responses from the three main methods

(Full Integration, IFORM and ECM) together with the biased Monte Carlo Simulation

substantiates the statement that these methods can be considered as cross-checked.

Both the exact and approximate formulations of IFORM estimated the results from

Full Integration with high accuracy. One important observation is that the results from

the approximate formulation of IFORM falls on the non-conservative side compared to

the exact formulation while it overestimates the response when compared to the exact

Full Integration results. When it comes to efficiency, the approximate formulation of

IFORM is found to be superior. The approximate formulation of Full Integration based

on the short-term extreme values also underestimates the response in an exaggerated

manner and is therefore considered to be highly non-conservative. Regarding ECM, the

responses are quite conservative and a fractile value of p = 0.80 is found to be suitable

by comparison with the Full Integration and IFORM-results. Furthermore, the method

of GPR showed solid potential in predicting the long-term extreme response but still

exhibits some challenges with respect to stability.

6.2 Proposal for Further Work

Full Integration

• Environmental parameters: The limits and number of elements for the

environmental parameters used in this thesis are found to be sufficient for the

considered models except for the model based on the approximate formulation of

the short-term extreme values. Higher limits with more elements for the

104



6. Conclusions Proposal for Further Work

environmental parameters should be investigated to push the integral of their

joint PDF as close to unity as possible and study the effect it has on the accuracy.

• Efficiency: Table 4.1.3 shows that the calculation of both the response spectrum

and the spectral moments is very computationally expensive. A remedy for this

can be to use a regressive approach. The topography of the moments as can be

seen from Figure 3.5.1 is sufficiently well behaved to be fitted by for example GPR.

The computation time is expected to be drastically reduced as the moments are

calculated only at a few training points rather than in a ”grid-like” manner as

implemented in this thesis.

GPR

• Importance Sampling: In order to generate stable training points with high

relevance, an Importance Sampling technique similar to what is described in

Section 2.14 can be used. The environmental parameters generated are then

weighted such that the generated random samples are biased towards the region

that contributes the most to the response.

• Kernel types: The challenges related to the randomness and poor correlation of

the environmental parameters is one of the reasons for the large variance observed

for the predicted points. Besides increasing the amount of training points, different

kernel types with more flexibility should be investigated. This would be kernels with

more parameters than the Matérn kernel or even combinations of several kernels as

is discussed by Duvenaud (2014).

Environmental Parameters

• Modelling the Environmental Parameters: For a more accurate representation

of the sea state, local measurements around the bridge should be used to estimate

the environmental parameters.
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Appendix A

A.1 Dimensions of Mid-Span Pontoon

Figure A.1.1: Geometrical dimensions of pontoon 4 from the Bergøysund Bridge (Hermstad,
2013).
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Appendix B

B.1 Iteration Points in U-space for Exact IFORM-Formulation
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Figure B.1.1: 10-year return period.
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Figure B.1.2: 100-year return period.

B1



u1

1.5
2.0

2.5
3.0

3.5
4.0

4.5

u 2

−2

−1
0

1

2
3

4
5

u
3

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1

2

3

4

5

6
7

8

9

10

11

12
13

14

15
16

17

18

19

20

21
2223

24
25262728

29303132333435363738394041424344

Iteration points obtained in U-space for 1000 -year response

Figure B.1.3: 1000-year return period.
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B.2 Iteration Points in U-space for Approximate

IFORM-Formulation
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Figure B.2.1: 10-year return period.
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Figure B.2.2: 100-year return period.
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Appendix C

C.1 CDF for the Long-Term Extreme Response from ECM

Cumulative Distribution Functions from the Environmental Contour Method for the long-

term extreme response for various fractile values p and return periods M .
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Figure C.1.1: p = 0.85, M = 10.
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Figure C.1.2: p = 0.85, M = 100.
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Figure C.1.3: p = 0.85, M = 1000.
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Figure C.1.4: p = 0.90, M = 10.
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Figure C.1.6: p = 0.90, M = 1000.
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Figure C.1.8: p = 0.95, M = 100.
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