
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

Ø
rjan G

jernes Riise
Current Estim

ation for Autonom
ous U

nderw
ater Vehicle using Supervised Learning

Ørjan Gjernes Riise

Current Estimation for Autonomous
Underwater Vehicle using Supervised
Learning

Master’s thesis in Marine Cybernetics
Supervisor: Dong Trong Nguyen

June 2021M
as

te
r’s

 th
es

is

Ørjan Gjernes Riise

Current Estimation for Autonomous
Underwater Vehicle using Supervised
Learning

Master’s thesis in Marine Cybernetics
Supervisor: Dong Trong Nguyen
June 2021

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology

 NTNU Trondheim

 Norwegian University of Science and Technology

 Department of Marine Technology

PROJECT DESCRIPTION SHEET

Name of the candidate: Ørjan Gjernes Riise

Field of study: Marine Cybernetics

Thesis title (Norwegian): Estimering av havstrøm for autonome undervanns farkoster ved hjelp av

overvåket læring.

Thesis title (English): Current Estimation for Autonomous Underwater Vehicle using

Supervised Learning.

Background:

NTNU has established a research center in the underwater robot field; Applied Underwater Robotics

Laboratory (AUR-Lab). The AUR-Lab has a cross technology discipline including cybernetics, control

techniques, marine biology, underwater technique, etc. Underwater vehicles are used to perform

research for the AUR-Lab. Among these underwater vehicles, Remote Operated Vehicle (ROV) and

Autonomous Underwater Vehicle (AUV) are the most common. Several studies have been performed

on underwater vehicles by, among others, Msc-, PhD-students and professors. Simulation models in

Matlab/Simulink are forwarded from students and researchers to continuously do research on the

vehicles. The purpose of this master thesis is to develop a machine learning algorithm by using

Supervised Learning method to estimate the ocean current speed and direction. Another aspect is to

further develop the simulation model in Simulink by including a depth controller.

1. Work description Perform a background and literature review to provide information and relevant

references on:

 • Previous work on underwater vehicles

 • Machine learning in marine application

 • Mathematical modeling of AUVs

 • AUV in subsea operations

2. Propose a mathematical model of REMUS 100.

3. Develop machine learning algorithm for predicting current speed and direction for REMUS 100.

4. Develop a depth controller to handle vertical current.

5. Run simulations to verify and compare proposed algorithms and controller.

6. Conclude and propose ideas for further work

Specifications

The scope of work may prove to be larger than initially anticipated. By the approval from the supervisor,

described topics may be deleted or reduced in extent without consequences with regard to grading.

The candidate shall present personal contribution to the resolution of problems within the scope of work.

Theories and conclusions should be based on mathematical derivations and logic reasoning identifying the

various steps in the deduction.

The report shall be organized in a logical structure to give a clear exposition of background, results,

assessments, and conclusions. The text should be brief and to the point, with a clear language. Rigorous

mathematical deductions and illustrating figures are preferred over lengthy textual descriptions. The report

shall have font size 11 pts. and not be longer than 80 A4 pages, from introduction to conclusion, unless

otherwise agreed upon. It shall be written in English (preferably US) and contain the following elements:

Title page, abstract, project specification, list of symbols and acronyms, table of contents, introduction and

background, problem formulations, scope and delimitations, main body with derivations/developments and

results, conclusions with recommendations for further work, references, and optional appendices. All figures,

tables, and equations shall be numerated. The original contribution of the candidate and material taken from

 NTNU Faculty of Engineering Science and

Technology

 Norwegian University of Science and

Technology Department of Marine Technology

other sources shall be clearly identified. Work from other sources shall be properly acknowledged using

quotations and a Harvard citation style (e.g. natbib Latex package). The work is expected to be conducted in

an honest and ethical manner, without any sort of plagiarism and misconduct. Such practice is taken very

seriously by the university and will have consequences. NTNU can use the results freely in research and

teaching by proper referencing, unless otherwise agreed upon.

The thesis shall be submitted with a printed and electronic copy to the main supervisor, with the printed copy

signed by the candidate. The final revised version of this thesis description must be included after title page.

The report must be submitted according to NTNU procedures. Computer code, pictures, videos, data series,

and a PDF version of the report shall be included electronically with all submitted versions.

Start date: 15 January 2021 Due date: 21.06.2021

Supervisor: Dong Trong Nguyen

Trondheim, __________________

Dong Trong Nguyen

Supervisor

Preface

This thesis presents work done during TMR4930 Marine Technology - Master’s Thesis at
NTNU (30 ECTS), and represents the final delivery for a Master of Science within Marine
Cybernetics. The work is done from January to June 2021. The thesis has been written
entirely by Ørjan Gjernes Riise.

The work was motivated by improving estimation of ocean current for autonomous un-
derwater vehicle REMUS 100 by utilizing Supervised Learning. The aim was to make a
regression and classification algorithm capable of predicting the current speed and direc-
tion, respectively.

Further, the work was motivated by improving the existing simulator of REMUS 100.
The aim was to design a depth controller which is capable of withstand unknown vertical
current. Integral Line of Sight algorithm was combined with an existing PID controller
and implemented into the simulator.

The reader is expected to have some basic knowledge of marine engineering and control
systems, including the development and design of motion controllers. It is also beneficial
to have basic knowledge of machine learning. A good intuition from Calculus notation is
also beneficial.

i

ii

Acknowledgments

This master thesis is part of the Master of Science in Marine Technology at the Norwegian
University of Science and Technology (NTNU) with specialization in marine cybernetics.
I would like to thank my supervisor Dong Trong Nguyen for consulting me in this thesis.
Lastly i want to thank my fellow co students for good motivation and discussions through
the working process.

ØGR
June 21, 2021

iii

iv

Abstract

Navigation techniques for underwater vehicle depends on reliable velocity estimates. The
main uncertainty for velocity estimation is current speed, which also constitutes to the
main external disturbance. Doppler Velocity Log (DVL) is, as of today, the leading tech-
nology for calculating current speed. When operating low-cost and small Autonomous
Underwater Vehicles (AUV), DVL can be unnecessary large, expensive and contribute to
high energy consumption. Therefore, this thesis will investigate the potential machine
learning has to predict current speed and direction by using Supervised Learning in form
of regression and classification algorithms.

Datasets are developed in AUVsim, a simulation model developed by Petter Norgen in
Matlab/Simulink. Different variables, such as operating speed, current speed and direc-
tion, are altered. The output parameters from the internal controller are saved in .csv-
files and combined into larger datasets with variables from multiple operating condition.
Dataset is used to train each algorithm, and evaluation of the performance is measured by
Root Mean Squared Error (RMSE) and Accuracy score (ACC) for regression and classi-
fication algorithms, respectively. When algorithms are trained, holdout validation is used
due to significant size of dataset.

Comparison between Polynomial, Multiple Linear, Fine Decision Tree, Medium Decision
Tree, and Coarse Decision Tree Regression were conducted in a case study. Polynomial
Regression model provided best results for numeric estimation of current speed. Weighted
and Fine k-Nearest Neighbor (KNN) were compared to Fine and Medium Decision Tree
Classification in another case study, where Fine Decision Tree model performed on the
highest level.

AUVs must be able to operate in various environmental conditions. An important as-
pect of the control scheme is precise depth control. The main difficulties evolving precise
depth control are due to underactuated system of the AUV, and vertical current caused by
upwelling and downwelling. This thesis has therefore further investigated the potential a
depth controller has to withstand an unknown vertical current component. The controller
scheme includes a vertical Integral Line of Sight (ILOS) algorithm together with an exist-
ing PID controller. Simulations were conducted to compare the designed depth controller
with the original controller used in the simulator. The presented results are promising as
the designed controller was able to reach the desired depth point in both fixed and level
depth flight.

The thesis concludes that Supervised Learning method has large potential. The Poly-
nomial Regression model was able to predict the current speed in steady state condition
with perfect precision in all cases. The corresponding Fine Decision Tree Classification
model followed the same tendency in steady state condition and was able to predict the

v

current direction in 3/4 cases with perfect precision. The developed depth controller was
able to counteract the vertical current component and reach the desired depth point. This
indicates that machine learning has great potential to predict current speed and direction by
using Supervised Learning in form of regression and classification algorithms. Although,
the process is quite time consuming to achieve good results. This is due to the need of
high-quality data and significantly training time when dataset is large.

vi

Sammendrag

Navigasjonsteknikker for undervannsfartøy avhenger av pålitelige hastighetsestimater. Den
største usikkerheten for estimatene er havstrømninger, som utgjør den største eksterne
forstyrrelsen. DVL er per i dag den ledende teknologien for beregning av havstrømninger.
Ved små, lav budsjetterte AUV-er, kan DVL være unødvendig stort, dyr i drift og bidra
til høyt energiforbruk. Derfor vil denne oppgaven undersøke potensialet maskinlæring har
får å estimere hastighet og retning på havstrømninger ved bruk av overvåket opplæring i
form av regresjons- og klassifiseringsalgoritmer.

Datasett er utviklet i AUVsim, en simuleringsmodell utviklet av Petter Norgen i Mat-
lab/Simulink. Ulike variabler, som driftshastighet, havstrømning og retning, endres. Ut-
gangsparameterne fra den interne kontrolleren lagres i .csv -filer og kombineres i større
datasett med variabler fra flere driftsforhold. Datasett brukes til å trene hver algoritme,
og evaluering av ytelsen måles ved henholdsvis RMSE og ACC for regresjons- og klas-
sifiseringsalgoritmer. Når algoritmer blir trent, brukes tilbake-holdning av datasettet som
valideringsmetoden, grunnet betydelig størrelse på datasettet.

Sammenligning mellom polynom, multivariat lineær, fin-, middels- og grov-beslutningstre
regresjon ble utført i en casestudie. Polynomial regresjonsmodell ga de beste resultatene
for numerisk estimering av havstrømning. Vektet og fin KNN ble sammenlignet med
fin- og middels-beslutningstre klassifisering i en annen casestudie, hvor fin-beslutningstre
klassifisering oppnådde best resultat.

AUV-er må kunne operere under varierende miljøforhold, hvor presis dybdekontroll er en
avgjørende faktor. Vanskeligheter med å utvikle presis dybdekontroll skyldes AUV-enes
underaktiverte system og vertikal strøm forårsaket av opp- og nedtrekk. Av den grunn, har
denne oppgaven videre undersøkt potensialet en dybdekontroller har for å tåle en ukjent
vertikal strømkomponent. Kontrolleren inkluderer en ILOS-algoritme sammen med en ek-
sisterende PID-kontroller. Simuleringer ble gjennomført for å sammenligne den foreslåtte
dybdekontrolleren med den opprinnelige kontrolleren originalt brukt i simulatoren. Simu-
leringer indikerer lovende resultater hvor den foreslåtte kontrollere er i stand til å nå ønsket
dybdepunkt, både ved fast og varierende dybde.

Oppgaven konkluderer med at metoden for overvåket opplæring har stort potensiale. Poly-
nomial regresjonsmodellen var i stand til å forutsi gjeldende hastighet i stabil tilstand
med perfekt presisjon i alle tilfeller. Den tilsvarende fin-beslutningstre-modellen fulgte
den samme trenden i stabil tilstand og var i stand til å forutsi gjeldende retning i 3/4 til-
feller, med perfekt presisjon. Dybdekontrolleren foreslått i denne oppgaven var i stand
til å motvirke den vertikale strømkomponenten, og dermed nådde ønsket dybdepunkt.
Dette indikerer at maskinlæring har stort potensiale for å estimere hastighet og retning
på havstrømning ved bruk av overvåket opplæring i form av regresjons- og klassifiser-

vii

ingsalgoritmer. For å oppnå gode resultater, er prosessen imidlertid tidkrevende. Dette
skyldes behovet for data av høy kvalitet og betydelig opplæringstid når datasettet er stort.

viii

Table of Contents

Preface i

Acknowledgments iii

Abstract v

Sammendrag vii

Table of Contents xi

List of Tables xiii

List of Figures xvii

Abbreviations xviii

1 Introduction 1
1.1 Background . 1

1.1.1 Level of Autonomy . 2
1.1.2 REMUS 100 AUV . 3
1.1.3 AUVSim . 4

1.2 Motivation . 4
1.3 Literature Review . 4

1.3.1 Previous Work on Underwater Vehicles 4
1.3.2 Examples of Machine Learning 7
1.3.3 Current Estimation . 8
1.3.4 Control System . 9
1.3.5 Sensor Systems . 11

1.4 Objectives . 12
1.5 Contribution . 12
1.6 Organization of Project . 13

ix

2 Theory 15
2.1 Mathematical Modelling of Underwater Vehicle 15

2.1.1 Kinematics . 16
2.1.2 Kinetics . 17
2.1.3 Control Plant Model . 20

2.2 Generalized Forces . 20
2.2.1 Environmental Force . 20
2.2.2 Rudder and Fin . 21
2.2.3 Control Surfaces . 21
2.2.4 Thrust Force . 21

2.3 Control System for REMUS 100 . 22
2.3.1 Low Level Control System . 22
2.3.2 Guidance System . 22

2.4 Specifications of REMUS 100 . 23
2.5 Introduction to Machine Learning . 24

2.5.1 Different Methods of Machine Learning 24
2.5.2 Regression . 25
2.5.3 Classification . 29

2.6 How to Perform Machine Learning . 31
2.6.1 Validation of Data . 32
2.6.2 Evaluation of Models . 33
2.6.3 Overfitting and Underfitting . 35

3 Method 37
3.1 AUVsim . 37

3.1.1 Low Level Control . 40
3.1.2 Guidance System . 41

3.2 Depth Controller . 42
3.3 Current Estimation . 44

3.3.1 Dataset . 44
3.3.2 Validation . 44
3.3.3 Regression . 45
3.3.4 Classification . 45

3.4 Simulation Cases . 46

4 Result 47
4.1 Limitations . 47
4.2 Machine Learning Result and Discussion 48

4.2.1 Regression . 49
4.2.2 Classification . 55

4.3 Depth Controller Result and Discussion 63
4.3.1 Fixed Depth Path . 63
4.3.2 Various Depth Path . 65

5 Conclusion 67
5.1 Further Work . 68

x

Bibliography 69

A Coefficients I

B Python files III

C Regression result VII

D Confusion Matrix IX

E Attachments XIII

xi

xii

List of Tables

1.1 Main payload- and navigation sensors for AUV. 12

2.1 The notation of SNAME for marine craft (Fossen, 2021). 16
2.2 Sensors for REMUS 100 (Hydroid, 2012). 24
2.3 REMUS 100 specifications (Hydroid, 2012). 24
2.4 Classification algorithms and user defined parameters 29

3.1 Gains for different controllers . 40
3.2 Overview of tested regression models with RMSE score. A perfect fit

would give an RMSE score of 0. 45
3.3 Overview of tested Classification models with Accuracy score. 46
3.4 Overview of simulation cases with corresponding parameters for current

speed and direction, and desired speed of REMUS 100 (Uref). R and
C corresponds to regression and classification simulations, respectively.
Numeration corresponds to various current speed and direction. 46

4.1 Waypoints for straight line and constant depth. 48
4.2 Waypoints for straight line and constant depth. 63
4.3 Waypoints for straight lines and various depth. 65

xiii

xiv

List of Figures

1.1 Different categories of underwater vehicles divided into unmanned under-
water vehicles and human occupied vehicles (Cruz, 2011). 2

1.2 Performance of ROV, AUV and AUG with respect to maneuverability and
endurance (Cruz, 2011). 2

1.3 Illustration of the AUV REMUS 100 (Hydroid, 2012). 3
1.4 Overview of the modules for control system and there connections with

each other (Candeloro, 2016). 9

2.1 Illustration of the LOS guidance scheme (Norgren, 2018). 23
2.2 Artificial intelligence and different methods of machine learning (IBM

Cloud Education, 2020). 25
2.3 Linear Support Vector Regression (Rosenbaum et al., 2013). 27
2.4 Illustration of the decision tree structure given as a pseudo-code (Chiu

et al., 2016). 28
2.5 The machine learning cycle starting from identifying the data. 31
2.6 Example of dataset given as strings (a) manipulated into dataset given as

integer (b). 33
2.7 Illustration example of R-squared method as a function of (a) the sum of

residual SSres and (b) the total sum of squared error SStot (Eremenko
et al., 2015). 34

2.8 Example of confusion matrix. 34

3.1 Structure of AUVsim consisting of AUV model, low level controller and
guidance layer, extracted from Simulink. 38

3.2 Structure of the AUV model extracted from Simulink. 40
3.3 Structure of Low Level Control extracted from Simulink. 41
3.4 Structure of guidance system extracted from Simulink. 42
3.5 Line of sight (LOS) guidance scheme (Caharija et al., 2012). 43

xv

4.1 Polynomial and Multiple Linear Regression for Case R1 with real current
speed of 0.25 m/s. The Polynomial Regression model makes almost a
perfect fit, while the Multiple Linear Regression overestimates the current
speed to Vc = 0.32 m/s. 49

4.2 Fine, Medium and Coarse Decision Tree Regression for Case R1 with real
current speed of 0.25 m/s. Compared to Polynomial and Multiple Linear
Regression (Figure 4.1), these models perform significantly worse due to
variations in the independent variable and thereby considerably amount of
noises in the estimates. 50

4.3 Polynomial and Multiple Linear Regression for Case R2 with real current
speed of 0.50 m/s. The Polynomial Regression model makes a perfect fit
in accordance with Case R1 (Figure 4.1). The Multiple Linear Regression
has a smaller overestimate for current speed compared to Case R1. 51

4.4 Fine, Medium and Coarse Decision Tree Regression for Case R2 with real
current speed of 0.5 m/s. Compared to results presented for Case R1
(Figure 4.2), the results for Case R2 illustrates an almost perfect fit with
the same tendency with noisy prediction before steady state condition is
reached. 52

4.5 Polynomial and Multiple Linear Regression for Case R3 with real current
speed of 0.75 m/s. Both models perform well in steady state conditions,
while the Multiple Linear Regressions is superior before steady state con-
dition is reached. 53

4.6 Fine, Medium and Coarse Decision Tree Regression for Case R3 with real
current speed of 0.75m/s. Compared to Case R1 (Figure 4.2) and Case R2
(Figure 4.4), the noisy prediction still occurs before steady state condition
is reached, while in steady state the models illustrates perfect predictions. 54

4.7 Fine and Weighted KNN Classification for Case C1 with real current di-
rection of 0◦. Both models illustrates noisy estimates before steady state
condition, while they performs well when steady state is reached. 0◦ and
360◦ equals in practice the same direction. 55

4.8 Fine and Medium Decision Tree Classification for Case C1 with real cur-
rent direction of 0◦. Both models performs well and equally, with virtually
no noise compared to Case C1 (Figure 4.7). 56

4.9 Fine and Weighted KNN Classification for Case C2 with real current di-
rection of 90◦. Both models illustrate noise across the whole simulation
period. 57

4.10 Fine and Medium Decision Tree Classification for Case C2 with real cur-
rent direction of 90◦. Fine Tree Classification model illustrates a perfect
prediction, while the Medium Tree Classification model overestimates by
15◦. 58

4.11 Fine and Weighted KNN Classification models for Case C3 with real cur-
rent direction of 180◦. Both models illustrates poorly predictions of cur-
rent direction. 59

xvi

4.12 Fine and Medium Decision Tree Classification for Case C3 with real cur-
rent direction of 180◦. Both models illustrates poorly predictions with
selected current direction. 60

4.13 Fine and Weighted KNN Classification for Case C4 with real current di-
rection of 270◦. Compared to Case C2, these models illustrates improved
performance as the estimates are less noisy. Some small spikes of under-
and overestimation of 15◦ appears in steady state condition. 61

4.14 Fine and Medium Decision Tree Classification models for Case C4 with
real current direction of 270◦. The figure illustrates more consistent esti-
mates and less noise compared to KNN models in Figure 4.13. 62

4.15 The North-East position illustrates that the AVU are following a straight
line with minimal variations. Red crosses illustrated the waypoints pre-
sented in Table 4.2. With a distance of 100 meters towards north, the
variations is ± 0.25 m in east direction. 64

4.16 Comparison of original controller and designed depth controller with the
vertical ILOS algorithm conducting a fixed level flight. The original con-
troller are not able to counteract the current and therefore are not able to
reach the desired depth of 30 m. 64

4.17 North-East position av AUV in present of ocean vertical current of 0.2 m/s
with direction of 0◦. 65

4.18 Comparison with original controller and designed depth controller with
the vertical ILOS algorithm with various depth. 66

C.1 Polynomial and Multiple Linear Regression estimation in 90◦ current di-
rection . VII

C.2 Polynomial and Multiple Linear Regression estimation in 180◦ current di-
rection . VIII

C.3 Polynomial and Multiple Linear Regression estimation in 270◦ current di-
rection . VIII

D.1 Confusion matrix for Fine KNN Classification model IX
D.2 Confusion matrix for Weighted KNN Classification model X
D.3 Confusion matrix for Fine Decision Tree Classification model XI
D.4 Confusion matrix for Medium Decision Tree Classification model XII

xvii

Abbreviations

ACC = Accuracy
ADCP = Acoustic Doppler Current Profilers
AOI = Area Of Interest
APR = Average Precision
AUG = Autonomous Underwater Gliders
AUR-Lab = Applied Underwater Robotics Laboratory
AUV = Autonomous Underwater Vehicle
BEP = Breakeven Point
CACLA = Continuous Actor Critic Learning Automaton
CB = Centre of Buoyancy
CG = Center of Gravity
CO = Center of Origin
CNN = Convolutional Neural Network
EKF = Extended Kalman Filter
DOF = Degrees of Freedom
DP = Dynamic Positioning
DPSS = Differential Pressure Sensor Speedometer
DUNE = Unified Navigational Environment
DUSBL = Digital Ultra-short Baseline
DVL = Doppler Velocity Log
GNSS = Global Navigation Satellite System
GUI = Graphical User Ineterface
HGO = High Gain Observer
HiPAP = High Precision Acoustic Positioning
HMD = Head-Mounted-Display
HMI = Human-Machine-Interface
IMU = Inertial Measurement Unit
KNN = k-Nearest Neighbor
LBL = Long Baseline
LMI = Linear Matrix Inequality
LOS = Line Of Sight
ILOS = Integral Line-Of-Sight
LQG = Linear Quadratic Gaussian
LQR = Linear Quadratic Regulator
INS = Inertial Navigation System
MA-INS = Model Aided Inertial Navigation System
MR-EKF = Multi-Rate Extended Kalman Filter
NED = North-East-Down
NN = Neural Network
OOI = Object Of Interest

xviii

PID = Proportional Integral Derivative
RBF-NN = Radial Basis Function Neural Network
RMSE = Root Mean Squared Error
RNN = Recurrent Neural Network
ROV = Remote Operated Vehicle
SARSA = State–Action–Reward–State–Action
SLAM = Simultaneous Localization and Mapping
SMC = Sliding Mode Control
SNAME = Society of Naval Architects and Marine Engineers
SSS = Side Scan Sonar
SVM = Support Vector Machine
DUNE = Unified Navigation Environment

xix

xx

Chapter 1
Introduction

1.1 Background

NTNU has established a research center for underwater robot field; Applied Underwater
Robotics Laboratory (AUR-Lab). The AUR-Lab has a cross technology discipline includ-
ing cybernetics, control techniques, marine biology, underwater technique, etc. Under-
water vehicles are used to perform research for the AUR-Lab. Among these underwater
vehicles, Remote Operated Vehicle (ROV) and Autonomous Underwater Vehicle (AUV)
are the most common. Several studies have been performed on underwater vehicles by,
among others, master students, Doctor of Philosophy (PhD) and professors. Simulation
models in Matlab/Simulink are forwarded from students and researchers to continuously
do research on the vehicles.

Underwater vehicles can be divided into unmanned and human occupied vehicles as illus-
trated in Figure 1.1. Unmanned underwater vehicles can further be divided into three main
categories: ROVs, AUVs and Autonomous Underwater Gliders (AUGs). These categories
play an important role in monitoring the marine environment where they operated in dif-
ferent regimes. ROVs are characterized by remote operation and presence of a tether cable.
They are typical used for underwater operations unreachable for human operators such as
sampling of biological, chemical, geological objects of interests, deep-water archaeology,
pipeline survey, and sub-sea structure inspection, maintenance and repair (Candeloro et al.,
2012). AUVs are characterized by their autonomous behavior in absence of a tether cable
(Souza and Maruyama, 2007). They are propulsion driven torpedo shaped vehicles pro-
grammed to execute a specific mission without human interference. AUG is a special type
of AUV with the advantage of long spatial coverage. The glider can change its buoyancy
with a hydraulic pump and utilize lift from the wing to generate forward motion (Cruz,
2011).

1

Chapter 1. Introduction

Figure 1.1: Different categories of underwater vehicles divided into unmanned underwater vehicles
and human occupied vehicles (Cruz, 2011).

Figure 1.2 illustrate the performance of ROV, AUV and AUG with respect to maneuver-
ability and endurance. As the spatial coverage becomes larger, the spatial resolution be-
comes smaller. The AUG has low maneuverability which results in poor spatial resolution
of an area due to its inability to perform a fixed depth or level flight (Cruz, 2011). On the
other hand, ROV has high maneuverability and low spatial coverage. The performance of
the AUV fit in between the AUG and ROV.

Figure 1.2: Performance of ROV, AUV and AUG with respect to maneuverability and endurance
(Cruz, 2011).

1.1.1 Level of Autonomy
Due to autonomous system and operations being associated with unmanned systems, it is
important to distinguish between unmanned system and autonomy. The level of autonomy
is, according to Utne et al. (2017), divided into four levels: automatic operation (remote
control), management by consents, semi-autonomous operation or management by excep-
tion, and highly autonomous operation. The following paragraph explains the four levels
(Utne et al., 2017):

2

1.1 Background

• Automatic operation (remote control): The system operates automatically, where
the human operator directs and controls the high-level mission planning functions.
The mission is often programmed before executing the operation. The operator
is directly involved in the operation and is presented system states, environmental
conditions through a Human-Machine-Interface (HMI).

• Management by consents: The system automatically makes recommendations for
mission or process actions related to specific functions. The operator is given notifi-
cation when important decisions need to me made. The system has often a limitation
in communication bandwidth.

• Semi-autonomous operation: The system will execute mission-related functions
when response times from operator is too short. The system could be override or
channeled by operator within certain time frame.

• Highly autonomous operation: The system is highly sophisticated and could plan
and replan the mission process where the human may be informed by the progress.
This level of the system is classified as independent, and human is out if the loop.

1.1.2 REMUS 100 AUV

The REMUS 100 is a medium sized AUV driven by a single propeller, illustrated in Figure
1.3. REMUS 100 has two control surfaces consisting of two horizontal and two vertical
fins to control pitch and heading, respectively. The fins are unable to be controlled indi-
vidually, thus moves as one unit.

Figure 1.3: Illustration of the AUV REMUS 100 (Hydroid, 2012).

REMUS 100 takes part in several different operations, such as bathymetric mapping, sub-
strate identification, biomass assessments in the water column, water column character-
ization and environmental monitoring. Each of the operations require different payload
sensors and a sophisticated control system. The specifications and sensor configurations
are described in detail in Section 2.4.

3

Chapter 1. Introduction

1.1.3 AUVSim
All simulations in this thesis is performed using AUVSim. AUVSim is a simulator for
REMUS 100 created by previous PhD candidate Petter Norgren (Norgren and Skjetne,
2015). The simulator is implemented in Matlab and Simulink.

1.2 Motivation
The ocean covers more than 70% of the earth and contains a large amount of resources
(National Oceanic and Atmospheric Administration). The oil and gas industry are one of
the largest spenders of the ocean, both over and under water. Underwater vehicles play an
important role in mapping, monitoring, and repairing of structures and environment under
water. Since there is a constantly interest to investigate new and sustainable technolo-
gies for extracting resources from the ocean, further technology on underwater vehicles is
needed.

Mainly, the ROVs are used for inspection and maintenance which requires remote-control
operator and an umbilical tether from a support vessel (Zagatti et al., 2018). Thus, making
pipeline inceptions to an expensive operation. The costs can be significantly reduced, and
weather window extended, by replacing the ROVs with AUVs. AUVs are essential when
it comes to underwater mapping and inspections, but to be highly reliable they must be
able to handle various operating conditions. Therefore, the AUVs require a well develop
control system to be able to follow a predetermined path with the influence of external
disturbances. This motivates for a robust control system.

Ocean currents are one of the main challenges for underwater vehicles. One of the most
established navigation techniques is to integrate the velocity and acceleration to obtain
the position. The velocity is often obtained with a water speed sensor. The problem with
this technique, is that the current velocity is not captured and the current profile adds a
velocity component (Leonard et al., 1998). Accurate prediction of the current is therefore
necessary to establish trustworthy estimates.

1.3 Literature Review
This chapter firstly provides previous work on underwater vehicles in Section 1.3.1 and
machine learning in Section 1.3.2. Some of the presented studies are developed for ROVs,
but parallels can be drawn to AUVs. Various methods for current estimation are further
presented in Section 1.3.3, and a general description of control system in Section 1.3.4.
Some of the literature review is based on a project thesis from 2020 (Riise, 2020).

1.3.1 Previous Work on Underwater Vehicles
Within recent years, several studies have contributed to the AUR-Lab project. One of
the challenges regarding underwater navigation, is the lack of Global Navigation Satellite
System (GNSS). In 2010, Dukan (2014) started the work on ROV Dynamic Positioning

4

1.3 Literature Review

(DP) system where his PhD thesis focused on guidance and navigation, where a motion
control system was developed. A model based Kalman filter, both linearized and extended,
was developed and tested. The use of sensor-based state estimation was inspired by the
need of an observer that works during manipulation work and other uncertainties. An ex-
plicit complementary filter was adopted and modified to use as an altitude estimator. For
guidance module, a joystick in closed loop was made with reference models consisting of
straight-line movements from point A to B, and path tracking. In addition, altitude control
and terrain following were developed.

Candeloro (2016) studied various operation regime of the ROV, where a multi-objective
observer based on the nonlinear passive filter was developed. To the guidance aspect,
an ILOS algorithm was implemented and tested where the user was a part of the con-
trol chain. An innovative Human-Machine-Interface (HMI), based on the Head-Mounted-
Display (HMD) technology, was developed and implemented with the purpose of improv-
ing the state of the art of the ROV interface. The information from the camera technology
was used to make a prediction for the optimal direction of the vehicle. The idea was to
move towards the area with greater density of Object Of Interest (OOI).

Nornes (2018) further developed various aspect of the system after Dukan (2014) and
Candeloro (2016). Nornes considered development of the methods for motion control and
mapping systems for marine robotic with different level of autonomy. The thesis focus
on increasing the level of autonomy of the systems to reduce cost and the need for human
interaction. An automated relative motion control strategy was developed for mapping
underwater structures using a ROV. This method involves the use of a Doppler Velocity
Logger (DVL) in the direction of the camera, to be able to keep a constant distance to the
Area Of Interest (AOI). Through full scale experiments, the strategy showed that the ROV
was able to record high quality images of a challenging structure.

A study by Hegrenæs and Hallingstad (2011) evaluated the state of the art of Model Aided
Inertial Navigation System (MA-INS) for underwater vehicle. Hegrenæs and Hallingstad
(2011) stated that for all scenarios, the MA-INS is considerably more robust compared
to the system not including model aiding. Further, experimental results verified that the
MA-INS solution was superior to that obtained with the conventional Inertial Navigation
System (INS) when DVL measurements are unavailable.

A study considering the modelling, design and control of Kaxan ROV was performed
by Garcı́a-Valdovinos et al. (2014). The following aspect was done: a complete 6 De-
grees of Freedom (DOF), nonlinear hydrodynamic model with its parameters, the Kaxan
hardware/software architecture, numerical simulations in Matlab/Simulink platform of a
model-free second order sliding mode control along with ocean currents as disturbances
and thruster dynamics, a virtual environment to visualize the motion of the Kaxan ROV,
and experimental results of a 1 DOF underwater system. The study showed excellent re-
sult for the proposed sliding mode controller.

Norgren (2018) studied AUVs in arctic marine operations with the aim of using the ve-

5

Chapter 1. Introduction

hicle as a sensor platform when monitoring ice operations. Iceberg mapping was the main
focus with AUV used to generate trajectory models, as well as decision support in ice-
berg management. AUVsim was developed in Matlab/Simulink to represent the real AUV.
For estimation of the relative position and velocity between the iceberg and AUV, an Ex-
tended Kalman filter (EKF) was implemented with Simultaneous Localization and Map-
ping (SLAM) states as input.

Holsen (2015) implemented Unified Navigational Environment (DUNE) for developing
control system on REMUS 100. DUNE is an open-source framework implemented as an
interface with REMUS 100 to control the heading and altitude of the AUV. Simulations
and field tests showed that DUNE was suitable to control REMUS 100. For further re-
search, DUNE can be used as a development platform.

To prolong the operation regime of AUVs and reduce the hands on intervention of hu-
man before and after mission, Ruud (2016) studied and developed an autonomous home
docking algorithm. Simulations showed promising result together with Digital Ultra-short
Baseline (DUSBL) sensor. A particle filter with range-only data from Long Baseline
(LBL) sensor showed that docking was successfully.

The control aspect of AUVs is often divided into two separate systems; horizontally and
vertically control. Wang et al. (2011) developed a path following controller in the vertical
plane, where a backstepping method based on feedback gains was used. To compensate
for dynamics of the AUV, an adaptive Neural Network (NN) was introduced. The network
weight adaptation law was derived from the Lyapunov stability analysis. Validation of the
presented controller and Radial Basis Function NN (RBF-NN) was done through simula-
tions.

Line Of Sight (LOS) is a common guidance algorithm used for path following. If the
vehicle is exposed to external disturbances, such as current, integral action could be intro-
duced to the guidance level to counteract the unknown disturbance. Caharija et al. (2012)
modified three-dimensional LOS guidance with integral action (ILOS) together with three
adaptive feedback controllers to perform a horizontal path following in presence of ver-
tical irrotational ocean current. Through simulation the guidance law was tested, and the
closed loop dynamics gave explicit condition to guarantee asymptotic path following. Ye
et al. (2018) combined backstepping technique and ILOS guidance law to develop a diving
control for underactuated AUVs.

Østeby (2017) proposed a cable detection algorithm that uses the Side Scan Sonar (SSS)
on REMUS 100. A Multi-Rate Extended Kalman Filter (MR-EKF) with a cable model
was used to fusing measurements from multiple sensors with different sampling rates.
The cable position was estimated from the magnetometer and SSS. The state estimations
from MR-EKF are sent to the guidance law, which produce the wanted heading by a LOS
algorithm. A more detailed description can be found in Østeby (2017). To be able to
follow the seabed and do pipeline inspection, precise depth control of AUV is essential.
Difficulties involving depth control is mainly due to influence of vertical ocean currents

6

1.3 Literature Review

caused by upwelling and downwelling phenomena, and the fact that the system is under-
actuated (Ye et al., 2018).

Various control schemes have been developed to handle different operating conditions. To
guarantee a robust and trustworthy system, non-linear control is often chosen for AUVs
due to highly non-linear dynamics. Johansen (2020) proposed a Sliding Mode Control
(SMC) dealing with the highly coupled and non-linear dynamics in 6 DOF. Simulations
showed that the SMC was a suitable control scheme for underwater vehicles.

1.3.2 Examples of Machine Learning

Machine learning is a up growing field dealing with various aspects of algorithms, trying
to learn the relations between variables. People are exposed to machine learning every day
in the form of virtual personal assistants used in our smartphone, social media service used
for personalizing your news feed to better ads targeting, email spam and online customer
support, to mention some.

In marine applications, the use of machine learning has been implemented to identify the
unique sea state conditions and their impact on vessels, see Bailey et al. (2019) for more
information. Sclavounos and Ma (2018) introduced machine learning to study complex
potential and viscous flow problems in marine hydrodynamics with the use of Support
Vector Machine algorithm (SVM).

A study by Mak and Düz (2019) estimated the sea state characteristic from an in-service
ship motion by using data from a sampling period of 2 years. The input data needed to be
able to capture the relation between input channels and time dependence. Here, Convolu-
tional Neural Network (CNN) and Recurrent Neural Network (RNN) were used.

Sea state estimation with use of quadratic discriminant and partial least square regres-
sion was conducted by Arneson et al. (2019). The study used machine learning algorithms
instead of the vessel transfer function, and simply relied on estimating the sea state based
on a combination of parameters calculated using the vessel response in all its DOF. The
trained algorithm showed promising result when estimating wave directions. Estimation
of significant wave height and peak wave period provided the best result for lower sea
states.

One of the many operations AUV performers are pipeline inceptions. Fjerdingen et al.
(2010) studied the use of reinforcement learning techniques for continues state and ac-
tion spaces to pipeline following. The study looked at continuous space State Action
Reward State Action (SARSA) and Continuous Actor Critic Learning Automaton (CA-
CLA). These was extended into a supervised reinforcement learning architecture, and the
result was validated with simulations. The supervised CACLA was the best candidate as
it showed the ability to generalize the learned pipeline following strategy to new and un-
known pipe geometries. Fjerdingen et al. (2010) stated that reinforcement learning was
well suited to optimize pipeline following behavior for an AUV.

7

Chapter 1. Introduction

1.3.3 Current Estimation
Navigation of AUVs depends highly on the quality of the state estimates. Ocean cur-
rent contributes to the main uncertainty in navigation of AUVs. Reliable estimates of the
velocity are therefore important to provided trustworthy state estimations. State of the
art velocity estimation relies on expensive acoustic sensors with considerable energy re-
quirements and a large form factor, such as DVL and Acoustic Doppler Current Profilers
(ADCP) (Meurer et al., 2020).

Within resent years, several studies have been performed to optimize velocity estimations.
The sensor system for navigation is restricted by size, energy requirements, budgets and
operating conditions (Meurer et al., 2019). A study by Meurer et al. (2019) was con-
ducted on a Differential Pressure Sensor Speedometer (DPSS). The following points were
obtained during filed tests:

• DPSS and DVL experienced similarly effect by environmental disturbances.

• In open sea, with higher environmental disturbance, the DPSS showed a robust per-
formance. For lower velocities, the impact on disturbance was more significant for
the DPSS compared to the DVL.

• Hydrostatic correction algorithm produced a more accurate velocity estimation for
the DPSS in the beginning of filed trails, but further investigation is suggested re-
garding hydrodynamic effects in roll and pitch.

• Based on the two filed tests, Meurer et al. (2019) suggested that an autocalibration
to procedure individual offset should be done before each trail. This would lead to
an increased performance of the DPSS.

• In terrains with rough or unstructured surfaces, or in bottom lock, the DPSS showed
superior performance over the DVL.

In a study by Meurer et al. (2020), a low cost DPSSv2 sensor was introduced to estimate
the relative velocity of fluid in two-dimensional based on differential pressure. The sen-
sor was validated with field test in the Trondheim Fjord. There was conducted 14 trails
where the AUV followed a straight line with constant depth. Operating speed was set to
minimum 1.25 m/s for 6 trails, and 1.5 m/s for the remaining trails. Both cases executed
half of its trails against the main direction of the anticipated current, and the remaining in
the opposite direction. Through filed trails, the DPSSv2 sensors managed to estimate tidal
currents in situ with comparable accuracy to a DVL. The filed test also established that
in most of the cases, the DVL-WL and DPSSv2 estimates the speed with lower variance
then the ADCP. Meurer et al. (2020) stated that the DPSSv2 has the potential to reduce the
power requirements to 0.244W versus 1.3 W for the DVL.

Kim et al. (2020) studied the path following problem for AUV under nonuniform cur-
rent to estimate the three-dimensional current velocity along the AUV. A High Gain Ob-
server (HGO) was used and chosen as a nonlinear estimation algorithm. By solving the
estimation errors dynamics through a Linear Matrix Inequality (LMI), the observer gain

8

1.3 Literature Review

was computed. The current velocities were determined by calculating the differences be-
tween the measured absolute velocities of the vehicle and the estimated relative velocities
of the vehicle, predicted by the observer. To verify the HGO, numerical simulations were
performed with current compensation. The result showed that the AUV converged to the
desired path.

Different methods to compensate for the bias load in DP marine vessel was presented
in an article by Værnø et al. (2019). Four different methods were investigated: bias esti-
mates from an observer tuned to estimate the position and velocity, a wave-filtered version
of the bias load, one separated observer that was tuned specific for the bias load, and lastly,
a basic integral action on the tracking error. Værnø et al. (2019) stated that the best method
to compensate for bias load is using the bias estimated from the separated observer.

1.3.4 Control System

Control systems consist of several modules with different tasks. Figure 1.4 illustrate how
the modules are connected to each other. The modules will be presented in the following
subsections, with the intention to give the reader a brief overview.

Figure 1.4: Overview of the modules for control system and there connections with each other
(Candeloro, 2016).

9

Chapter 1. Introduction

Controller

The controller takes the system state as input and calculates the desired force in surge, sway
and heave, and moments in roll, pitch and yaw. The input to the controller consists of the
estimated and desired state from the observer and guidance module, respectively. There
exists a various type of controllers which can be divided into two main groups; linear and
nonlinear controllers. Linear controllers include Proportional Integral Derivative (PID),
Linear Quadratic Regulator (LQR) and linear Quadratic Gaussian (LQG) (Kokegei et al.,
2011; Reshmi and Priya, 2016; Naeem et al., 2003). Nonlinear include sliding mode, back-
stepping, adaptive control, predictive control, and fuzzy logic control (Johansen, 2020; Ye
et al., 2018; Liu et al., 2012). The controllers output is given in Equation 1.1.

τ = [τx, τy, τz, τφ, τθ, τψ]T (1.1)

Thrust Allocation

Thrust allocation module computes the desire force vector, τ , from the controller to the
corresponding force and direction commands, to each thruster device. The low level thrust
controller will control the propeller pitch, torque, speed and power, to satisfy the desired
thrust demands (Sørensen, 2018). An important task for this module is to optimize the
algorithm to minimize fuel and energy consumption.

Signal Processing

The signal processing module takes in raw signals for evaluation, before sending the sig-
nals to the observer. To detect failures, it is important to evaluate each signal. Different
methods to evaluate signals are (Sørensen, 2018):

• Signal range testing: If the signal is outside of the defined range, the signal is re-
jected.

• Variance testing: This gives an indication of the variations in amplitude and fre-
quency. For instance, high variance can indicate high level of process noise.

• Wild point testing: Wild points are indicated as a value that varies substantively
from the previously sample, and the measurement should therefore be rejected for
one sample.

For a redundant sensor or position reference system configuration, the signal process mod-
ule can do voting between the sensors. If two position reference system are available, the
module can detect drifting between the two sensors. Weighting between sensors is done
to decide which sensor gives the “best” measurement. More information can be found in
Sørensen (2018).

Observer

The main objective for the observer is to filter out unwanted noise and estimate various
states. Various states are needed to be estimated if there is a loss of signal, such that the

10

1.3 Literature Review

predicted estimates are used in the control loop. This is called dead reckoning. Another
feature of the observer is estimating the unmodelled and unmeasured slowly varying forces
and moments, mainly due to ocean current (Sørensen, 2018).

Guidance System

The guidance system gives the desired states as input to the controller. This could for
example be a constant set-point for the vessel in DP-mode. For an operation where the
desired state changes, it is important to include a reference model to get a smooth transition
to avoid jerk on the vessel (Johansen, 2020). A sophisticated guidance system involves
way-point tracking, path planning and weather routing. The guidance system could also
be interfaced to electric map system (Sørensen, 2018).

Graphical User Interface

Graphical User Interface (GUI) provide a graphical presentation of the computer program.
It enables communication between a person and a computer, and therefore makes connec-
tion between the system and the operator. The communication works through symbols,
visual metaphors and pointing device. GUI provide commands to the guidance system
and vice versa.

1.3.5 Sensor Systems
The aim of an AUV is to gather data of interest in underwater locations. This can include
geological data of surroundings, water column inspection, subsea operations, pipeline in-
spections, etc. This information could be of interest to academic research, commercial
players, private players, military or policy sectors. It is common to divide the sensors into
two groups: payload sensors and navigation sensors (Sørensen and Ludvigsen, 2015).

Payload senors generally involves the collection of data. An AUV can have different
sensor configuration depending on the mission. Navigation sensor measure the state of the
vehicle and are essential for the AUV such that it is able to perform a given task. The infor-
mation required for navigation is the direction, speed, and position of the vehicle (Nebot,
1999). Table 1.1 shows the main payload and navigation sensors for an AUV. Detailed
description on each sensor can be found in Ruud (2016).

11

Chapter 1. Introduction

Payload sensors Navigation sensors

Acoustic Doppler Current Profilers Acoustic Baseline Sensors:

Conductivity Temperature Depth sensors
- Long Baseline
- Short Baseline
- Super-Short Baseline

Syntetic Aperture Sonar Doppler Velocity Log
Side Scan Sonar Heading and Inertial sensors
Environmental Characterization Optics
Multiparameter Sonde

Table 1.1: Main payload- and navigation sensors for AUV.

1.4 Objectives
The aim of this master thesis is to investigate the potential machine learning has to estimate
ocean current for NTNUs Autonomous Underwater Vehicle (AUV) REMUS 100. Estima-
tion of ocean current speed and direction is done by using Supervised Learning in form
of regression and classification algorithms, which is validated with simulations in Mat-
lab/Simulink. Further an Integral Line-Of-Sight (ILOS) algorithm designed to produce
the desired theta angle, is combined with an existing PID controller to counteract vertical
ocean current. The field of machine learning is complex and consist of a large number of
algorithms. Therefore, a background research is necessary before the developing process
begins. The goals and research questions are comprised into the following objectives:

• Review a wide variety of literature regarding previous work on underwater vehicles,
machine learning in marine applications and current estimation. State relevant the-
ory regarding mathematical modelling of underwater vehicles and machine learning.

• Design a machine learning algorithm for predicting speed and current direction of
REMUS 100 by evaluating various regression and classification methods.

• Develop a depth controller that can handle vertical current.

• Run simulations in Simulink to verify and compare proposed algorithms and con-
troller.

1.5 Contribution
The main contribution is to estimate the current speed and direction for the AUV REMUS
100. Supervised learning is used due to the datasets being labeled. The aim is to predict
the numeric value of the current speed based on thrust force, fin and rudder angle, and
the surge speed of the AUV. Therefore, the regression method is chosen. The algorithms
are developed in Python by using the programming platform Spyder, and Matlabs build

12

1.6 Organization of Project

in app, Regression learner. Matlab is selected to investigate the potential with direct im-
plementation from Matlab to Simulink. To categorize the current direction, classification
algorithms are developed using the same input as for the regression. Several algorithms,
both regression and classification, are tested and compared to investigate the potential of
machine learning performing current estimation. Lastly, a depth controller is development
to counteract vertical current, which involves a ILOS algorithm in combination with an
existing PID controller.

1.6 Organization of Project
Chapter 2 presents a general mathematical modeling for underwater vehicles inspired
from marine vessel. Further, a basic introduction of machine learning with different meth-
ods and evaluation of algorithms, are presented. In Chapter 3 the simulation environment
is presented along with the method for generating the machine learning algorithms, and
vertical ILOS algorithm in the depth controller. The result from the algorithms and depth
controller are presented in Chapter 4 along with a discussion regarding the findings. Fi-
nally, the conclusion and further work are stated in Chapter 5.

13

Chapter 1. Introduction

14

Chapter 2
Theory

This chapter presents relevant theory about mathematical modelling of underwater vehi-
cles, control and guidance system for REMUS 100 and machine learning. The theory in
this Section 2.1 - 2.4 is based on previously PhDs, Master thesis, and the Handbook Of
Marine Craft Hydrodynamics And Motion Cotrol by Fossen (2011). There is therefore
none new contributions to the mathematical models and equations in these sections. In
Section 2.5, a brief introduction to machine learning are presented. Some of the theory is
based on a project thesis from 2020 (Riise, 2020).

2.1 Mathematical Modelling of Underwater Vehicle

An underwater vehicle usually consists of 6 Degrees of Freedom (DOF). When the body
has an accelerated motion, it refers to the dynamics. The dynamics is highly nonlinear
due to ridged body coupling and hydrodynamic forces on the vehicle. The mathematical
model is obtained through two models: the dynamic- and kinematic model (Sabiha and
Pushkin, 2018).

Dynamic model: The dynamic model uses Newton’s law to obtain the equation of trans-
lation and rotation. The model allows for the actual forces causing the motion and the
dynamical properties to be accounted for.

Kinematic model: The kinematic model does not take the force and the dynamical prop-
erties into account when computing the equation of motion. This model allows decoupling
of the vehicle dynamics from its movement.

The 6 DOF standard definition of Society of Naval Architects and Marine Engineers
(SNAME) for marine vessel is used, presented in Table 2.1.

15

Chapter 2. Theory

Forces and
moments

Linear and
angular velocities

Positions and
Euler angles

DOF
1 surge X u xn

2 sway Y v yn

3 heave Z w zn

4 roll K p φ
5 pitch M q θ
6 yaw N r ψ

Table 2.1: The notation of SNAME for marine craft (Fossen, 2021).

2.1.1 Kinematics

When analyzing motion of AUV, two reference frames are used: the North-East-Down
(NED) frame and the body frame. NED frame is denoted as {n} = (xn, yn, zn), where
xn axis’s point towards true north, and yn axis’s points towards east. zn axis’s points
downwards, normal to earth’s surface. The body frame is denoted as {b} = (xb, yb, zb).
The origin is a moving coordinate frame that is fixed to the AUV. The position and ori-
entation of the AUV is described relative to the inertial reference frame. The linear and
angular velocities are expressed in the body frame (Fossen, 2021). Equation 2.1a and 2.1b
presents the position and velocity vector, respectively.

η = [x, y, z, φ, θ, ψ]T (2.1a)

ν = [u, v, w, p, q, r]T (2.1b)

The generalized position, velocity and force vector is given is Equation 2.2, respectively.
The relation between NED and body frame are given in the kinematic Equation 2.3, and
the rotation matrices are given in Equation 2.4 and 2.5 (Fossen, 2021).

η =

[
pnnb
Θnb

]
, ν =

[
vbnb
ωbnb

]
, τ =

[
f bb
mb
b

]
(2.2)

η̇ = JΘ(η)ν (2.3a)[
ṗnnb
Θ̇nb

]
=

[
R (Θnb) 03×3

03×3 T (Θnb)

] [
vbnb
ωbnb

]
(2.3b)

Rn
b denotes the rotation matrix from body frame to NED frame, where c· = cos(·), s· =

sin(·), and t· = tan(·)

R (Θnb) =

 cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

 (2.4)

16

2.1 Mathematical Modelling of Underwater Vehicle

T (Θnb) is given by:

T (Θnb) =

 1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 (2.5)

2.1.2 Kinetics
Process plant model is a high-fidelity model which simulates as close as possible the real
physical aspect of the system dynamics, including process disturbance, sensor outputs and
control inputs. This type of model is for numerical analysis of the stability and perfor-
mance of the closed-loop system (Dong, 2005). The nonlinear 6 DOF body-fixed coupled
equation of the low frequency (LF) motions is given in Equation 2.6 (Sørensen, 2018).

Mν̇ + CRB(ν)ν + CA (νr) νr +D (κ, νr) + g(η) = τ + τwind + τwave (2.6)

M = MRB + MA ∈ R6x6, where MRB and MA denotes the ridged body inertia ma-
trix and the added mass matrix, respectively. CRB(ν)ν ∈ R6x6 denotes the ridged body
Coriolis matrix, and the added mass Coriolis matrix is given as CA(νr) ∈ R6x6. The
damping matrix consist of a linear and nonlinear part given as D (κ, νr) = DL (κ, νr) +
DNL (νr, γr) ∈ R6x6. g(η) ∈ R6x6 is the restoring matrix, ν ∈ R6. νr = ν − νc ∈ R6

where νc is the velocity vector of the fluid. The velocity and relative velocity vector are
given in body frame. τ ∈ R6 are the forces and moments produced by the thruster, rud-
der and fin system. τwind + τwave is the wind and wave forces. The current effects are
included in the relative velocity vector in the nonlinear damping term. Further description
can found in Sørensen (2018).

Riged-body Dynamics

MRB and CRB are the rigid body mass and Coriolis matrix. These are expressed in
Equation 2.7 (Dukan, 2014).

MCG
RB =

[
mI3×3 03×3
03×3 Ig

]
(2.7)

m denotes the mass of the AUV and Ig ∈ R3x3 the inertia matrix about Center of Gravity
(CG) as expressed in Equation 2.8.

Ig =

 Ix −Ixy −Ixz
−Iyx Iy −Iyz
−Izx −Izy Iz

 (2.8)

The diagonal in Equation 2.8 represent the moment about xb, yb and zb axis. Off diagonal
are the product of inertia defined as (Fossen, 2021):

Ix =
∫
V

(
y2 + z2

)
ρm dV ; Ixy =

∫
V
xyρm dV =

∫
V
yxρm dV = Iyx

Iy =
∫
V

(
x2 + z2

)
ρm dV ; Ixz =

∫
V
xzρm dV =

∫
V
zxρm dV = Izx

Iz =
∫
V

(
x2 + y2

)
ρm dV ; Iyz =

∫
V
yzρm dV =

∫
V
zyρm dV = Izy

(2.9)

17

Chapter 2. Theory

The rigid body Coriolis and centripetal matrix in CG is expressed in Equation 2.10.

CCG
RB =

 mS
(
ωbb/n

)
03×3

03×3 −S
(
Igω

b
b/n

) (2.10)

To transform the mass and Coriolis matrix to Center of Origin (CO), the transformation
matrix H(rbg) with respect to the vector from CG to CO is used, as expressed in Equation
2.11 (Fossen, 2021).

H
(
rbg
)

:=

[
I3 S>

(
rbg
)

03×3 I3

]
, H>

(
rbg
)

=

[
I3 03×3

S
(
rbg
)

I3

]
(2.11)

With the given Equation 2.11, MRB and CRB can be transformed to the CO as (Fossen,
2021):

MRB := H>
(
rbbg
)
MCG

RBH
(
rbbg
)

CRB := H>
(
rbbg
)
CCG
RBH

(
rbbg
) (2.12)

Hydrodynamic

The general 6 DOF hydrodynamic added mass matrix is given as (Fossen, 2021):

MA = −

Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ
Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ
Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

 (2.13)

The top-bottom and port-starboard symmetry for REMUS 100 imply that the added mass
matrix can be reduced to (Prestero, 2001):

MA =

Xu̇ 0 0 0 0 0
0 Yv̇ 0 0 0 Yr
0 0 Zẇ 0 Zq̇ 0
0 0 0 Kṗ 0 0
0 0 Mẇ 0 Mq̇ 0
0 Nv̇ 0 0 0 Nr

 (2.14)

Coriolis and Centripetal Forces

From (Fossen, 2021): “The hydrodynamic Coriolis and centripetal matrix CA for a
rigid body matrix moving through an ideal fluid can always be parametrized to be skew-
symmetric”:

CA(ν) = −CT
A(ν), ∀ν ∈ R6×1 (2.15)

18

2.1 Mathematical Modelling of Underwater Vehicle

CA(ν) =

[
03×3 −S (A11ν1 +A12ν2)

−S (A11ν1 +A12ν2) −S (A21ν1 +A22ν2)

]
(2.16)

Where Aij is defined as:

MA :=

[
A11 A12

A21 A22

]
(2.17)

Damping

For underwater vehicle, all wave related damping effects are neglected and the main con-
tribution to the damping are vortex shedding and skin friction (Dukan, 2014). The total
hydrodynamical damping is the sum of linear and nonlinear damping:

D (νr) = D +Dn (νr) (2.18)

For underwater vehicles moving at high speed, the effect of damping is highly nonlinear
(Norgren, 2018). The nonlinear and linear damping matrix is expressed in Equation 2.19
and 2.20, respectively.

Dn (νr) = −

X|u|u |ur| 0 0 0 0 0

0 Y|v|v |vr| 0 0 0 Y|r|r|r|
0 0 Z|w|w |wr| 0 Z|q|q|q| 0
0 0 0 K|p|p|p| 0 0
0 0 M|w|w |wr| 0 M|q|q|q| 0
0 N|v|v |vr| 0 0 0 N|r|r|r|

(2.19)

D = −

Xu 0 0 0 0 0
0 Yv 0 Yp 0 Yr
0 0 Zw 0 Zq 0
0 Kv 0 Kp 0 Kr

0 0 Mw 0 Mq 0
0 Nv 0 Np 0 Nr

 (2.20)

Hydrostatic and Restoring Force

The forces from the gravitation and buoyancy are refereed to as restoring force. The
submerged weight and buoyancy force are presented in Equation 2.21, respectively. The
gravitational force acts in CG, while the buoyancy force acts in Centre of Buoyancy (CB).

W = mg, B = ρg∇ (2.21)

19

Chapter 2. Theory

The restoring force vector (η) is expressed in body frame and presented in Equation 2.22
(Fossen, 2021).

g(η) =

(W −B) sin(θ)

−(W −B) cos(θ) sin(φ)
−(W −B) cos(θ) cos(φ)

− (ygW − ybB) cos(θ) cos(φ) + (zgW − zbB) cos(θ) sin(φ)
(zgW − zbB) sin(θ) + (xgW − xbB)cos(θ)cos(ψ)

− (xgW − xbB) cos(θ) sin(φ)− (xgW − xbB) cos(θ) cos(φ)

 (2.22)

2.1.3 Control Plant Model

The control plant model is a simplification of the process plant model. It is used for con-
troller design and analytical study of stability, such as in the sense of Lyapunov. Different
control plant models are necessary for different control objectives and operational regimes
of the vehicle. AUVs normally operates below the wave zone, therefore the wave excita-
tion and wind forces can be neglected. The shape of a typical AUV can often be assumed
symmetric around the port/starboard and top/bottom. The nonlinear 6 DOF in Equation
2.6 can therefore be reduced to (Fossen, 2021):

Mν̇ + C(ν)ν +D(ν)ν + g(η) = τ (2.23)

where M is the mass matrix. Coriolis matrix C(ν) is computed from M , and the higher
order of damping in D(ν) is neglected. The generalized force vector is given as τ .

2.2 Generalized Forces

The generalized forces that act on underwater vehicle are thruster forces, ocean current and
the force from control surfaces. The model for these forces is presented in the following
subsections.

2.2.1 Environmental Force

A large proportion of the AUVs mission is submerged, therefore wind and waves are not
taking into consideration. The main external environmental force is the ocean current
which is considered to be constant and irrotational. The ocean current is expressed in
the body frame. The resulting model from Norgren and Skjetne (2015) is presented in
Equation 2.24.

νc =
[
uc vc 0 0 0 0

]>
=
[
Vc cos (ψc) Vc sin (ψc) 0 0 0 0

]> (2.24)

20

2.2 Generalized Forces

2.2.2 Rudder and Fin

To control the attitude, steering fin and rudder are located at the stern to control the depth
and turning, respectively. These are controlled by a feedback control system to ensure the
rudder and fin angle becomes as close as possible to the commanded angles. The steering
machine containing the rudder angle has two important physical limitations: the maximum
rudder angle and rudder rate (Fossen, 2021).

In computer simulation, Van Amerongen (1984) suggested that the maximum rudder an-
gle and rudder rate was specified with certain values. The simplification is based on the
assumption that the steering machine dynamics is much faster than the saturated turning
rate commands generated by the autopilot. The maximum rudder angle and angle rate for
REMUS 100 are:

δRmax = 30(deg); 10(deg/s) ≤ δ̇Rmax

The steering fin follow the same assumption and the maximum fin angle and angle rate
are:

δSmax = 13.6(deg); 10(deg/s) ≤ δ̇Smax

2.2.3 Control Surfaces

REMUS 100 has two control surfaces: two horizontal fins to control the pitch, and two
vertical fins to control the heading. Each surface is controlled as one unit and therefore
cannot be controlled individually. The generalized force and moment generated by the
rudder and stern fins are presented in Equation 2.25 derived by Prestero (2001). Propeller
coefficients for REMUS 100 is estimated by Allen et al. (2000).

Yr = 1
2ρcLαSfin

[
u2δr − uv − xfin(ur)

]
Zs = − 1

2ρcLαSfin
[
u2δs − uw − xfin(uq)

]
Ms = 1

2ρcLαSfinxfin
[
u2δs − uw − xfin(uq)

]
Nr = 1

2ρcLαSfinxfin
[
u2δr − uv − xfin(ur)

] (2.25)

ρ is the density of the fluid the vehicle is moving in. cLα is the lift coefficient for the fin,
Sfin is the fin area, and xfin is the distance from the body-fixed origin to the fin position.
δs and δr are the stern fin and rudder angle, respectively, relative to the body’s x-axis.

2.2.4 Thrust Force

The force and moment produced by the propeller is given in Equation 2.26 derived by
Carlton (2007).

Xp = KT ρD
4n2

Kp = KQρD
5n2

(2.26)

21

Chapter 2. Theory

Trust and torque coefficients are given as KT and KQ, respectively. D is the diameter of
the propeller, and n is the revolution per second. Concluding the given information, the
generalized force and moments vector is given in Equation 2.27.

τ =
[
Xp Yr Zs Ms Nr Kp

]T
(2.27)

2.3 Control System for REMUS 100

2.3.1 Low Level Control System

The control system for REMUS 100 consists of a path planner that uses waypoints to de-
termine the path of the AUV, and a low level control system taking the set-points as input
to generate the desired speed, rudder and fin angle. Input to the AUV model is given as
three signals: speed, pitch, and heading. The control system is therefore divided into three
controllers.

The default control algorithm in the motion control system is a speed, depth and head-
ing controller. The speed controller consists of one PI controller which gives the desired
RPM. The depth of the AUV is changed by altering the pitch angle. The depth controller
consists of two loops where the first loop generates the desired theta angle from a PI con-
troller taking the depth error as input. The second loop is a PID controller that controls
the stern planes, further refereed to as pitch controller. The heading is regulated by a PID
controller that controls the rudder angle where the desired heading is produced by ILOS
guidance. The general equation for PID controller is shown in Equation 2.28.

τ = −(KP η̃ +KI

∫
η̃dt+KDη̇) (2.28)

2.3.2 Guidance System

One of the main mission planner for underwater vehicle consists of a set with three-
dimensional waypoints, WPk = [xk yk zk]T . The heading set-point for the vehicle
can be produced with a LOS guidance scheme. This is done by taking the intersection
point between the path and a look ahead distance, ∆. The desired course angle would be
the sum of path-tangential angle, χp, and the path-relative angle, χr, presented in Equation
2.29. Figure 2.1 illustrate the LOS guidance scheme (Norgren, 2018).

χd(e) = χp + χr(e) (2.29)

Path-tangential angle is given in Equation 2.30.

χp = αk = atan 2 (yk+1 − yk, xk+1 − xk) (2.30)

The last and next waypoint is given as (xk, yk) and (xk+1, yk+1), respectively. The
cross-track error, e, is computed from the current position of the vehicle, (x(t), y(t)), as

22

2.4 Specifications of REMUS 100

given in Equation 2.31.

e(t) = − [x(t)− xk] sin (αk) + [y(t)− yk] cos (αk) (2.31)

The path-relative angle is produced by including tuning parameters, Kp and Ki, to ensure
that the vehicle converges to the path.

χr(e) = arctan

(
−Kpe−Ki

∫ t

0

e(τ)dτ

)
(2.32)

The tuning parameters represent the same parameters as for a PI-controller. Integral action
is used to cancel ocean current. When tuning Ki, care must been taken to avoid overshoot
(Fossen, 2011). Set-point for the depth is set to the active waypoint. The speed set-point is
chosen by operator and is constant for the whole simulation. When switching to the next
waypoint, circle of acceptance, Racc, is often used. When the vehicle enters this circle,
the next waypoint is selected. Formula is given in Equation 2.33.

[xk+1 − x(t)]
2

+ [yk+1 − y(t)]
2 ≤ R2

acc (2.33)

Racc should not be chosen to small due to the chance of the vehicle not enter the circle of
acceptance, thereby resulting in an unstable guidance scheme (Fossen, 2011).

Figure 2.1: Illustration of the LOS guidance scheme (Norgren, 2018).

2.4 Specifications of REMUS 100
Remus 100 is equipped with different sensors. A High Precision Acoustic Positioning
(HiPAP) are connected with a LBL transponder mounted on the AUV. The transponder
gives the north and east coordinate (x, y) given in the NED frame. A depth sensor measures

23

Chapter 2. Theory

the pressure transformed to the depth values, z. The heading (ψ) is measured by the Inertial
Measurement Unit (IMU). The DVL measures the surge and sway velocity (u, v) relative
to the body frame. r is the yaw rate provided by the IMU. The full list of sensors are given
in Table 2.2.

Sensors

Oxygen Optode Sensor (Aanderaa 4831)
Neil Brown G-CTD Sensor (NBOSI)
ECO Puck (WetLabs Triplet)
LBL High Frequency Transducer
IMU (Honeywell HG1700AG58 with NavP)
ADCP/DVL (TD Explorer R100)
Sidescan Sonar (MSTL SF 900 kHz)
GPS
Iridium modem
Wi-Fi capabilities

Table 2.2: Sensors for REMUS 100 (Hydroid, 2012).

The specifications and physical characteristic for REMUS 100 are given in Table 2.3.

Physical/functional characteristics

Vehicle Diameter 19 cm
Weight in air 31 kg
Operating Depth Range 3 m to 100 m
Speed Range 0.25 m/s to 2.57 m/s
Maximum Operating Water Current 1 m/s
Typical Endurance 4 hours @ 4 knots

5 hours @ 3 knots

Table 2.3: REMUS 100 specifications (Hydroid, 2012).

2.5 Introduction to Machine Learning
Over the last years, the field of machine learning have received increased interest. Modern
processors have become more powerful and the density to performance ratio has improved
dramatically. The cost of storing and managing large amounts of data has decreased, and
the ability to distribute compute processing across cluster of computers, are some of the
main reasons for the enormous interest for machine learning (Sørensen, 2020).

2.5.1 Different Methods of Machine Learning
Within the field of machine learning there is multiple classes or methods. These are pre-
sented in Figure 2.2.

24

2.5 Introduction to Machine Learning

Figure 2.2: Artificial intelligence and different methods of machine learning (IBM Cloud Education,
2020).

A brief description of different methods is listed below.

• Supervised Learning: Uses a labeled dataset and needs to be supervised with labeled
data.

• Unsupervised Learning: Does not need any supervisory, is independent and works
on its own.

• Reinforcement Learning: Learns through trails and errors, and there is no labeled
dataset.

• Deep Learning: Based on neural networks where it uses an iterative method to learn.
This method is useful when you have an unstructured dataset.

For this thesis, the method of Supervised Learning is used. Supervised Learning can be
divided into classification and regression. Regression is used when estimating the numeric
value of the current speed, and classification when assigning a class to the estimated cur-
rent direction.

2.5.2 Regression
Regression predicts a numeric value of the dependent variable with respect to the inde-
pendent variables. Regression can again be divided into several algorithms. The main
algorithms concluding supervised regression will be described in the following subsec-
tion.

25

Chapter 2. Theory

Linear Regression

For Linear Regression, the aim is to predict a relationship between a dependent variable
(y) and one single independent variable (x). Linear Regression is given in Equation 2.34.
β0 is the intercept constant value where intersection between y-axis and the predicted line
takes place. β1 is the corresponding coefficient to the independent variable x.

yn = β0 + β1x1 (2.34)

Multiple Linear Regression

Multiple Linear Regression is an extension of the Linear Regression. It contains more
than one independent variable as illustrated in Equation 2.35, where βn correspond to the
independent variable xn. Because it is assumed that the dependent variable is directly
related to a linear combination of the independent variables, is it thereby called Multiple
Linear Regression (Tranmer et al., 2020).

yn = β0 + β1x1 + β2x2 + · · ·+ βnxn (2.35)

Polynomial Regression

The difference between Polynomial Regression and Multiple Linear Regression is the in-
dependent variable (x) which is in the n’th power. In other words, it will fit when there
are nonlinear relations between the dependent and independent variable. Equation 2.36
present the Polynomial Regression algorithm.

y = β0 + β1x+ β2x
2 + β3x

3 + · · ·+ βnx
n (2.36)

Support Vector Regression

Support Vector Regression (SVR) is an algorithm where the aim is to find a line that best
fits the data. The best fitted line is a hyperplane that contains most data points. A kernel is
used to find the hyperplane. An advantage of SVR is that dimensionality of the input space
does not affect the computational complexity. Further, SVR show excellent generalization
capability with high prediction accuracy (Awad and Khanna, 2015).

Linear Support Vector Regression is based on insensitive tube. The algorithm disregard
the error inside the tube while focusing on minimizing the distance of the slack variable
outside the tube. This is illustrated in Figure 2.3 (Eremenko et al., 2015).

26

2.5 Introduction to Machine Learning

Figure 2.3: Linear Support Vector Regression (Rosenbaum et al., 2013).

Linear one-dimension SVR can be written as stated in Equation 2.37.

y = f(x) =< w, x > +b =

M∑
j=1

wjxj + b, y, b ∈ R, x, w ∈ RM (2.37)

By extending multidimensional data, x is augmented by one. By including b in the w
vector to simply the mathematical notation, the Multivariate Regression is obtained (Awad
and Khanna, 2015) presented in Equation 2.38.

f(x) =

[
w
b

]T [
x
1

]
= wTx+ b x, w ∈ RM+1 (2.38)

Decision Tree Regression

Decision Tree Regression builds algorithms in the structure of a tree. It estimates by asking
several questions where the answer is either True or False. The order of questions and their
content is determined by the algorithm. An example of the structure in a pseudo-code
manner is illustrated in Figure 2.4.

27

Chapter 2. Theory

Figure 2.4: Illustration of the decision tree structure given as a pseudo-code (Chiu et al., 2016).

Random Forest Regression

Random Forest Regression is an extension of the Decision Tree Regression. It contains
several decisions trees, where each are trained by different datasets with own predictions.
A single output is then produced by the average of all predictions (Mwiti, 2020).

28

2.5 Introduction to Machine Learning

2.5.3 Classification
Classification assigned a label to the dependent variable. The labels are defined by the
training set. An example of classification is to give the algorithm several pictures where
it should tell if the picture contains a car or a train. Classification cloud be divided into
several algorithms, where the main ones are described in the following subsections. Table
2.4 presents the algorithms and user defined parameters.

Algorithm User-defined parameters

k-Nearest neighbour Number of neighbours considered (k)
Support Vector Machine (SVM) Cost or slack parameter (C)

Kernel SVM

Kernel type
Kernel-dependent parameters:
Polynomial: polynomial order (p)
Radial basis: gamma (γ)

Naive Bayes

Priors(n classes,):
Prior probabilities of the classes.
Var smoothingfloat (default=1e-9):
Portion of the largest variance of all
features that is added to variances for
calculation stability.

Decision Tree Classification Pruning parameters (cp)

Random Forest Classification

Number of trees (n)
Number of variables randomly
sampled as candidates at
each split (m)

Table 2.4: Classification algorithms and user defined parameters

k-Nearest Neighbor

The k-Nearest Neighbor (KNN) does not produce an algorithm, it simply compares the
unknown data to the original training data. The unknown data is assigned to the k training
sample that are nearest in the feature space to the unknown sample (Maxwell et al., 2018).
The complexity of the boundary layer depends on the k number, where a higher num-
ber result in greater generalization, and a lower number will produce a complex decision
boundary.

Support Vector Machine

Support Vector Machine (SVM) aims to find the optimal boundary between the support
vectors. SVM are binary and distinguish between two classes. For classes that are in-
herently not separable, soft margin could be introduced. This will lead to training points
being allowed to be on the inside of the boundary line. The feature is regulated with the
parameter C. Higher C values will result in a more complex decision boundary, and less
generalization (Maxwell et al., 2018).

29

Chapter 2. Theory

Kernel Support Vector Machine

At first, SVM was designed to identify class boundary. Under the assumption that a linear
boundary may exists in a higher dimensional feature space, the kernel trick could be used
to project to a higher dimensional feature space. There exists several kernels where the
most common is exponential and radial basis function kernels (Maxwell et al., 2018).

Naive Bayes

The Naive Bayes Classification is based on the Bayesian theorem. It calculates the prob-
ability for future events based on previously result. Naive Bayes Classification is well
suited when the dimensionality of the inputs are high (Islam et al., 2007). Bayes theorem
are given in Equation 2.39.

P (h | D) =
P (D | h)P (h))

P (D)
(2.39)

Where
P (h) : Prior probability of hypothesis h- Prior
P (D) : Prior probability of training data D-Evidence
P (D|h): Probability of D given h- Likelihood
P (h|D): Probability of h given D- Posterior probability

The Naive Bayes Classification assumes that observation of different events are the prod-
uct of the probability of each individual events (Rish, 2001).

Decision Tree Classification

Decision Tree Classification is based on the same concept as described in Decision Tree
Regression (2.5.2). A classification tree represents classes, while the regression tree repre-
sents numerical values. This method gives an intuitive understanding on how the algorithm
split the data. The classification is computational fast due to low mathematical complexity.
Problems with decision tree include the possibility of generating a non-optimal solution
and overfitting. To avoid overfitting, one possibility is to remove one layer of branches to
reduce the accuracy of the classifier (Maxwell et al., 2018).

Random Tree Classification

Random Tree Classification is an ensemble classifier where it uses multiple decision trees
to compensate for the weakness of one single tree. The majority “vote” of all trees is
used to assign a final class for each unknown (Maxwell et al., 2018). When reducing the
training data and variables, each individually tree will be less accurate. However, when
combining the trees, it will become more reliable.

30

2.6 How to Perform Machine Learning

2.6 How to Perform Machine Learning
If a machine learning algorithm is to perform in the best way, the input data must be of
high quality. This means that the data source needs to be accurate and meaningful when
combined (dependent and independent variable) with each other, such that the model be-
comes accurate and trustworthy (Hurwitz and Kirsch, 2018). The dataset also needs to be
cleaned and transformed in such way that the machine learning algorithm can understand
it.

The machine learning cycle is a continues process and the algorithm must be updated
once a while. The cycle of machine learning are presented in Figure 2.5 starting from
identifying the data. For more information see Hurwitz and Kirsch (2018).

Figure 2.5: The machine learning cycle starting from identifying the data.

When training a machine learning algorithm, the process can be split into three steps (Hur-
witz and Kirsch, 2018):

• Representation: To achieve the desired results, the algorithm creates a model to
transform the data. The algorithm will begin to learn the relationship between the
raw data and which data points are strong predictors for the desired outcome, as the
learning algorithm is exposed to more data.

• Evaluation: When multiple models are created, the human or the algorithm needs
to evaluate and score the models. The evaluation is done based on which model

31

Chapter 2. Theory

produces the most accurate predictions. After the model is operationalized, it will
be exposed to unknown data. Therefore, it is important to make sure the model is
generalized and not overfitted to the training data.

• Optimization: The best performing algorithm created, is selected. Further, as the
algorithm is exposed to diverse sets of input data, the most generalized model is
selected.

2.6.1 Validation of Data
It is important that the data used in machine learning is verified with regard to accuracy and
context to make the model accurate and trustworthy. This is a part of the machine learning
cycle of preparing the data. The human need to make sure that the dataset is making sense
when independent and dependent variables are combined. Sometimes datasets are given
with letters or names, but the machine learning algorithm needs to have the dataset in a
manner of numbers. Therefore, the algorithm uses a method called data preprocessing.
This is done by implementation of sickit-learn library in Python. A general way of data
preprocessing can be divided into three methods: replacing missing data, encoding and
feature scaling. If the dataset has missing data, the data can be replaced by the average,
the median or the most frequent data. The most commonly used, is to replace the missing
data with the average (Eremenko et al., 2015).

In Figure 2.6a an example of a dataset with animals and age is given as the indepen-
dent variables and raw food is given as the dependent variable. This could represent a case
where a raw food production wants to develop a machine learning algorithm to predict if
a given animal eats raw food by stating the type of animal and age. To implement this
dataset into a machine learning algorithm, one hot encoding and binary encoding has to
be done. The animal category uses one hot encoding to turn them into vectors and the
dependent variable, raw food, has to be encoded to a binary, see formulation below:

Dog = [1 0 0] Cat = [0 1 0] Lion = [0 0 1]

Y es = 1 No = 0

Figure 2.6 illustrates an example of dataset given as strings (Figure 2.6a) manipulated into
dataset of integer (Figure 2.6b). In this way, the machine learning algorithm is able to use
the data.

32

2.6 How to Perform Machine Learning

(a) Dataset with strings (b) Dataset with integer

Figure 2.6: Example of dataset given as strings (a) manipulated into dataset given as integer (b).

The last method for data preprocessing is feature scaling, which scales the features in the
same scale. This prevents one feature to dominate others. If this is not implemented, the
algorithm could weight the higher values more than the lower values.

2.6.2 Evaluation of Models

When the model is trained, it is important to evaluate the performance before deploying it.
Caruana and Niculescu-Mizil (2006) describes eight evaluation matrices divided into three
subgroups: threshold metrics, ordering/rank metrics and probability metrics. Threshold
matrices consist of accuracy (ACC), F-score and lift. Ordering/rank matrices consists of
area under the ROC curve (ROC), average precision (APR), and precision/recall breakeven
point (BEP). The probability matrices consist of squared error (RMS) and cross-entropy
(MXE). See Caruana and Niculescu-Mizil (2006) and Caruana and Niculescu-Mizil (2004)
for more information on evaluation matrices.

A validation method called R-squared, sates the proportion of the variance in the depen-
dent variable that is predictable from the independent variable (Eremenko et al., 2015).
R-squared produce a value between 0-1. The closer the method is to 1, the better the es-
timated line is. This means, if the R-squared equals one, the model accounts for 100% of
the variance by going through all the training points and perfectly explains the observed
data points. If R-squared equals zero, the model accounts for 0% of the variance by go-
ing through none of the training points and therefore explains precisely nothing about the
observed data. The mathematical formulation of the R-squared method is given in Equa-
tion 2.40 as a function of the residual sum of squared errors (SSred) and the total sum of
squared errors (SStot).

The sum of residual is presented in Equation 2.41. Figure 2.7a illustrate an example of
a linear regression model that visualize the training points in red and the estimated line in
black. The total sum of squared error is presented in Equation 2.42. Figure 2.7b illustrates
the total sum of squared error by using the same example as in Figure 2.7a. The black line
is the average value of the training set and are noted as yavg.

R2 = 1− SSres
SStot

(2.40)

33

Chapter 2. Theory

SSres = (yi − ŷi)2 (2.41)

SStot = (yi − yavg)2 (2.42)

(a) Sum of residual, SSres. (b) Total sum of squared error, SStot.

Figure 2.7: Illustration example ofR-squared method as a function of (a) the sum of residual SSres

and (b) the total sum of squared error SStot (Eremenko et al., 2015).

Another validation method is the Root Mean Squared Error (RMSE). It takes the square
root of the second power of the error between predicted and observed variable of interest.
RMSE is showed in Equation 2.43. A perfect fit would give an RMSE score of 0.√

mean((y − ŷ)2) (2.43)

To visualize the performance of classification models, confusion matrices can be used
(Figure 2.8). The matrices compare the wrongly classified data with the correct ones. This
is a nXn matrix where n is the number of classes defined for the dataset (Choudhary and
Gianey, 2017).

Figure 2.8: Example of confusion matrix.

From the confusion matrix in Figure 2.8, the corresponding rates of each cell can be cal-
culated as (Choudhary and Gianey, 2017):

True negative (TN): The proportion of the negative cases.

TN

TN + FP
(2.44)

34

2.6 How to Perform Machine Learning

False Positive (FP): The proportion of negative cases that were falsely classified as posi-
tive.

FP

TN + FP
(2.45)

False Negative (FN): The proportion of positive cases that were falsely classified as neg-
ative.

FN

FN + TP
(2.46)

True Positive (TP): The proportion of positive cases that were correctly classified.

TP

FN + TP
(2.47)

Given the confusion matrix, the accuracy score (ACC) can be found. ACC score denotes
proportion of correct predictions calculated as:

ACC =
TN + TP

TN + FP + FN + TP
(2.48)

2.6.3 Overfitting and Underfitting
Over- and underfitting are phenomenons that the algorithm needs to account for. Over-
fitting occur when the model is trained to well on a specific training dataset. When the
model makes new predictions, the estimation is poorly. An example of overfitting is when
predictions of the training dataset has a high accuracy (e.g. 99%) and the test set gives a
lower accuracy (e.g. 55%). Underfitting occur when the model cannot predict the training
dataset, or make new predictions on unseen data. When choosing the right model, a good
balance between over- and underfitting is needed, a task that is hard to perform.

There are several methods to find the sweet spot between over- and underfitting. For
instance, cross-validation is a commonly used method. It splits the dataset into multiple
training and testsets. The model will be trained on each individual trainingset, and vali-
dated on the corresponding testset unseen for the model (Hurwitz and Kirsch, 2018). Since
cross-validation uses multiple trainingsets, it require more computational power compared
to for example holdout method. The holdout method simply splits the dataset into a train-
ingset and a testset. For the holdout method, the split is often set to 80%, which correspond
to a testset of 20%. As this method requires less computational power, the method is useful
when large dataset is present.

35

Chapter 2. Theory

36

Chapter 3
Method

This chapter presents and describes the methods used to produce the results in Chapter 4.
Firstly, the simulation environment is described in Section 3.1. Further, a description of
the vertical ILOS algorithm developed in depth controller follows in Section 3.2. Lastly,
the method for producing the current estimation algorithms is described in Section 3.3.

3.1 AUVsim
AUVsim is a simulator developed by Norgren and Skjetne (2015) to replicate as close
as possible the real system of REMUS 100. The simulator is made in Matlab/Simulink.
Simulink provide graphical modulation and practical simulation, where the result can be
extracted to Matlab for further analysis. The main modules are guidance, controller and
AUV model. These has been modified to best fit the scope of this thesis. The original
model was made in discrete time. This has been altered to make the model run in time-
continues. The main modules are presented in Figure 3.1.

37

Chapter 3. Method

Figure 3.1: Structure of AUVsim consisting of AUV model, low level controller and guidance layer,
extracted from Simulink.

The AUV model describes the dynamics and kinetics of REMUS 100 which can be math-
ematically written as:

η̇ = JΘ(η)ν (3.1)

Mν̇ + CRB(ν)ν + CA (νr) νr +D (νr) νr + g(η) = τ (3.2)

The shape of REMUS 100 is assumed to be symmetric around top/bottom and port/star-
board. This leads to the following mass inertia matrix:

M =

31.4091 0 0 0 .5974 0

0 65.9791 0 −0.5974 0 −1.9300
0 0 65.9791 0 1.9300 0
0 −0.5974 0 0.2591 0 0

0.5974 0 1.9300 0 8.3417 0
0 −1.9300 0 0 0 8.3300

 kg (3.3)

Added mass Coriolis matrix is simplified to a skew-symmetric matrix, due to low speed
assumption and symmetric properties. The coefficients are calculated by Prestero (2001)
and can be found in Appendix A. Equation 3.4 presents the simplified added mass Coriolis
matrix.

CA (νr) =

0 0 0 0 −Zẇw Yv̇vr
0 0 0 Zẇw 0 −Xu̇ur
0 0 0 −Yv̇vv Xu̇ur 0
0 −Zẇw Yv̇vr 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇ur Nṙr 0 −Kṗp
−Yv̇vr Xu̇ur 0 −Mq̇q Kṗp 0

 (3.4)

38

3.1 AUVsim

When modeling the damping matrices, linear second order (or higher) and coupled damp-
ing terms, are neglected. For underwater vehicles moving at high speed, the effect of
damping is highly nonlinear (Norgren, 2018). The resulting damping matrix is expressed
in Equation 3.5.

D (νr) = −

X|u|u |ur| 0 0 0 0 0

0 Y|v|v |vr| 0 0 0 Y|r|r|r|
0 0 Z|w|w |wr| 0 Z|q|q|q| 0
0 0 0 K|p|p|p| 0 0
0 0 M|w|w |wr| 0 M|q|q|q| 0
0 N|v|v |vr| 0 0 0 N|r|r|r|

(3.5)

Equation 3.6 describes the CG and CB, respectively.

rbg =

 0
0
0.0196

 , rbb =

 0
0
0

 (3.6)

By taking the distance between CG and CB, and calculating the restoring force from equa-
tion 2.22, the g(η) becomes:

g(η) =

(W −B) sin(θ)

−(W −B) cos(θ) sin(φ)
−(W −B) cos(θ) cos(φ)

zgW cos(θ) sin(φ)
zgW sin(θ)

0

 (3.7)

The resulting environmental model from Norgren and Skjetne (2015) presented in Equa-
tion 2.24, has been modified to include a vertical component that acts perpendicular to the
surface. The ocean current velocity vector is than given as:

νc =
[
uc vc wc 0 0 0

]>
=
[
Vc cos (ψc) Vc sin (ψc) wc 0 0 0

]> (3.8)

Equations 3.3 - 3.8 are implemented into the AUV model in Simulink, presented in Figure
3.2. The generalized fore and moment vector is calculated as stated in Equation 2.25 and
2.26 described in Section 2.2. The coefficients can be found in Appendix A.

39

Chapter 3. Method

Figure 3.2: Structure of the AUV model extracted from Simulink.

3.1.1 Low Level Control
Low level control system for REMUS 100 is previous described in Section 2.3.1. The
tuning of each controller are found by trial and error, and the resulting gains are visualized
in Table 3.1.

Controller

Pitch Depth Heading Shaft Speed

P 0.8 0.05 0.9 200
I 0.1 0.003 0.05 60
D 0.9 0 1 0

Table 3.1: Gains for different controllers

The main controllers are presented in Figure 3.3, where the produced outputs are speed in
RPM, and heading and pitch angle in radian.

40

3.1 AUVsim

Figure 3.3: Structure of Low Level Control extracted from Simulink.

3.1.2 Guidance System
The guidance system takes the predefined waypoints consisting of north, east and depth
coordinates, as input. These are defined in conf.wplist and can be found in the attached
folder. Further, the guidance system calculates the desired heading (ψ) and theta (θ) with
respect to the current state x. Figure 3.4 presents the implementation in Simulink.

41

Chapter 3. Method

Figure 3.4: Structure of guidance system extracted from Simulink.

To make the guidance system stable when switching between points in wplist, the circle
of acceptance, previously described in Section 2.3.2, is chosen as Rv = 15 and Rz = 5.
This represents the accepted horizontal and vertical error, respectively.

3.2 Depth Controller
The aim for this depth controller is to counteract vertical current speed. This is done by
combining a vertical ILOS algorithm with the existing pitch controller in AUVsim. The
ILOS algorithm produce the desired theta angle (θd), which is send as the desired set-point
to the pitch controller. The ILOS algorithm for the vertical plane is an extension of the
horizontal LOS scheme described in Fossen (2011). Figure 3.5 illustrates the concept of
both vertical and horizontal LOS scheme.

42

3.2 Depth Controller

Figure 3.5: Line of sight (LOS) guidance scheme (Caharija et al., 2012).

The vertical cross-track error, zp, is calculated from the current position of the AUV,
(x(t), z(t)), with respect to the current waypoints (xk, zk) given as:

ze(t) = − [x(t)− xk] sin (αz) + [z(t)− zk] cos (αz) . (3.9)

where the path tangential angle is given as:

αz = atan 2 (−(zk+1 − zk), (xk+1 − xk)) (3.10)

and the resulting desired theta is fund by:

θd = αz + tan−1 (Kpz
p
e +Kiz

p
int) (3.11)

By integrating Equation 3.12, zpint is found.

żpint =
∆zpe√

∆2 + (zpe + κzpint)
2

(3.12)

Kp and Ki is found by altering the lookahead distance and scaling parameter k according
to Fossen (2011). ∆ = 12 and k = 0.115 is chosen, and the gains are calculated as:

Kp =
1

∆
, Ki = k ·Kp (3.13)

43

Chapter 3. Method

3.3 Current Estimation

In this section the method for current estimation is presented. Supervised Learning meth-
ods need to be trained on datasets to be able to predict values. The generation of the
trainingset and validation of the method are described in subsection 3.3.1 and 3.3.2, re-
spectively. Further, the development and training of regression and classification models
are respectively described in subsection 3.3.3 and 3.3.4.

3.3.1 Dataset

The result of machine learning models depends heavily on the trainingdata. For instance,
if the dataset contains wildpoints, too little datapoints, or the structure of data contain val-
ues outside the operating regime, the model will lead to poor prediction. When generating
the dataset, care must be taken to avoid producing to large trainingsets resulting in long
training time. The simulation is automatically stopped when the last waypoint is reached,
to avoid drift in trainingdata. In addition, the first 1000 datapoints is removed to avoid
spikes and data that are not correlated to operating state of the AUV.

Two dataset, one for estimating the current speed and one for estimating the current di-
rection, needs to be produced to be able to train the regression and classification models.
These will be generated through Matlab by running a for-loop with various simulation
parameters, such as operating speed of AUV (Uref), current speed and direction. For the
complete code see the attached Make csv file.m.

The dataset for current speed is generated by saving output parameters of the simulation
in multiple csv files consisting of RPM, rudder and fin angle, actual speed of the AUV, and
current speed. In this set, the current speed is the dependent variable while the remaining
are independent variables. The operating speed for REMUS 100 is set to between 1.0 to
2.4 m/s with increment of 0.1. The current speed is set between 0.1 to 0.8 m/s, with
increment of 0.02.

The dataset for current direction includes the same independent variables as for current
speed. The dependent variable in this dataset is, however, current direction. The proce-
dure is the same as described in the previous paragraph for current speed. Simulations are
run by altering the operating speed between 1.0 to 2.4 m/s with increment of 0.2, current
speed between 0.1 to 0.8 m/s with increment of 0.1, and current direction from 0 to 360
with increment of 15 degrees.

3.3.2 Validation

R-squared and RMSE method described in Section 2.6.2 are used to evaluate regression
models developed in both Python and Matlab. When the model is trained in Matlabs
classification app, the standard validation is given as an Accuracy as stated in Equation
2.48.

44

3.3 Current Estimation

3.3.3 Regression

When the dataset is generated, the data can be deployed to each algorithm and training can
begin. Various platforms with different programming languages can be used to develop
algorithms. One of the most used languages for machine learning, is Python, which has a
library specific developed for machine learning called scikitlearn. The Regression models
aim is to predict the current speed. Therefore, dataset with current speed as the dependent
variable is used. The equation-based method is developed in Python where the regression
coefficient and intercept values are extracted and implemented into Matalab. See attached
current dir estimation.m folder for the implementation of Polynomial and Multiple Linear
Regression equations. For more sophisticated regression models, such as Decision Three,
Matlabs regression app are used. Holdout validation was chosen where 80% was used as
trainingset. An overview of the algorithms with RMSE score are presented in Table 3.2
sorted from highest to lowest values.

Regression Models RMSE

Linear regression Not valid
Support vector regression 0.017595
Multiple linear regression 0.014561
Coarse tree regression 0.011655
Medium tree regression 0.011532
Fine tree regression 0.011495
Polynomial regression 0.000724

Table 3.2: Overview of tested regression models with RMSE score. A perfect fit would give an
RMSE score of 0.

When training phase is done, models need to be exported so prediction on new data can
take place. Models generated in Matlab are saved as .mat files (see attached folder) where
model parameters are stored. Python code for Polynomial and Multiple Linear Regression
can be found in Appendix B.

3.3.4 Classification

Classification algorithms are developed in Matlabs classification app. The trainingdata
consist of current direction as dependent variable. The aim for the classification algorithm
is to predict the current direction and categorize it to a label specified by trainingdata.

Before starting the training session in the app, protection for overfitting must be cho-
sen. Here, holdout validation is chosen to reduce the training time due to the size of the
datasets. The trainingset was chosen to 80%. Table 3.3 presents an overview of tested
classification models with accuracy score sorted from lowest to highest values.

45

Chapter 3. Method

Classification Models Accuracy

Gausian Naive Bayes Classification 17.0%
Medium Tree Classification 17.6%
Fine Tree Classification 23.9%
Weighted KNN Classification 87.9%
Fine KNN Classification 88.5%

Table 3.3: Overview of tested Classification models with Accuracy score.

When training phase is done, models need to be exported so prediction on new data can
take place. Models generated in Matlab are saved as .mat files (see attached folder) where
model parameters are stored.

3.4 Simulation Cases
Table 3.4 presents simulation cases with various regression and classification models. Each
case number has been categorized by R or C corresponding to simulation of regression and
classification, respectively. R1, R2 and R3 corresponds to different current speed, and C1,
C2, C3 and C4 corresponds to different current directions. Uref denotes desired speed of
REMUS 100.

Regression
Case nr. Current speed [m/s] Current Direction[◦] Uref [m/s]
R1 0.25 0 1.6
R2 0.5 0 1.6
R3 0.75 0 1.6

Classification
Case nr. Current speed [m/s] Current Direction[◦] Uref [m/s]
C1 0.25 0 1.6
C2 0.25 80 1.6
C3 0.25 180 1.6
C4 0.25 270 1.6

Table 3.4: Overview of simulation cases with corresponding parameters for current speed and direc-
tion, and desired speed of REMUS 100 (Uref). R and C corresponds to regression and classification
simulations, respectively. Numeration corresponds to various current speed and direction.

46

Chapter 4
Result

This chapter firstly presents limitations regarding machine learning in Section 4.1. The
result from regression and classification models are presented and discussed in Section 4.2.
A comparison of the original controller and designed depth controller for vertical plane is
presented in Section 4.3 along with discussion. All result are generated in AUVsim, and
the figures are processed and plotted in Matlab. All files that are used to produced the
result, along with unused developed algorithms in Python, can be found in the attached
folder.

4.1 Limitations
Computer power is one of the main limitations evolving machine learning and simulation.
When dataset for current speed and direction was develop, problem with Random Access
Memory (RAM) was occasionally experienced. To overcome this problem, the datasets
had to be reduced. Regression models was therefore trained on dataset consisting of var-
ious operating speed and head current speed. The first 1000 data points of the simulation
was removed, and the amount of simulation files were reduced. Prediction of current speed
when the AUV experienced current direction, was therefore neglected.

The classification models classifies the current direction according to the labels extracted
from the dependent variable in the training data. The prediction done by the classification
models are therefore only able to categorize the direction in classes of 15 degrees. Ex-
periments with more precise prediction was made, but lead to significantly longer training
time, and the process of the computer was not able to complete the training phase.

All classification and regression models was originally developed in Python. Due to
changes in project description, only two of these models could be used. Therefore, the
remaining models needed to be developed in Matlab.

47

Chapter 4. Result

4.2 Machine Learning Result and Discussion
The following result present regression and classification estimates of current speed and
current direction, respectively. The results are divided into subsections, and presented
according to case numbers given in Table 3.4. The AUV is set to follow a straight-line
with constant depth. The waypoint-list used to conduct the test is presented in Table 4.1,
with the initial position of the AUV given as x0 = [0, 0, 0, 0, 0, 0].

Waypoint-list

x y z

100 0 30
200 0 30
300 0 30
400 0 30

Table 4.1: Waypoints for straight line and constant depth.

48

4.2 Machine Learning Result and Discussion

4.2.1 Regression

Case R1 - Current speed 0.25 m/s

Figure 4.1 illustrates the estimated current performed by Polynomial and Multiple Linear
Regression model. The polynomial model makes almost a perfect fit after 100 seconds.
This is due to the AUV having reached its steady state condition and the variance of inde-
pendent variables are approximately zero. The same tendency is illustrated for the multi-
ple linear regression when steady state is reached. The Multiple Linear regression model,
however, overestimates the current speed to Vc = 0.32 m/s.

By looking into the Multiple Linear model, the intercept coefficient β0 = 0.3175. This
indicates that the Multiple Linear Regressing model is best suited for current estimation
of higher magnitude then what is tested in this case. See current dir estimation.m for
full implementation of the model.

0 50 100 150 200 250 300

Time [s]

-0.6

-0.4

-0.2

0

0.2

Polynomial Regression

Estimated Current

Real Current Speed 0.25 m/s

0 50 100 150 200 250 300

Time [s]

-0.6

-0.4

-0.2

0

0.2

Multiple Linear Regression

Estimated Current

Real Current Speed 0.25 m/s

E
st

im
at

ed
 C

u
rr

en
t

[m
/s

]

Figure 4.1: Polynomial and Multiple Linear Regression for Case R1 with real current speed of
0.25 m/s. The Polynomial Regression model makes almost a perfect fit, while the Multiple Linear
Regression overestimates the current speed to Vc = 0.32 m/s.

Figure 4.2 compare the Fine, Medium and Coarse Decision Tree Regression models. All
models perform significantly worse than the Polynomial and Multiple Linear Regression
models presented in Figure 4.1. Before steady state condition is reach, there is a consid-

49

Chapter 4. Result

erable amount of noise in the estimations. This is due to variations in the independent
variables.

0 50 100 150 200 250 300

Time [s]

0.1

0.2

0.3

Fine Decision Tree Regression

0 50 100 150 200 250 300

Time [s]

0.1

0.2

0.3

Medium Decision Tree Regression
Estimated Current Speed

Real Current Speed 0.25 m/s

0 50 100 150 200 250 300

Time [s]

0.1

0.2

0.3

Coarse Decision Tree RegressionE
st

im
at

ed
 C

u
rr

en
t

[m
/s

]

Figure 4.2: Fine, Medium and Coarse Decision Tree Regression for Case R1 with real current speed
of 0.25 m/s. Compared to Polynomial and Multiple Linear Regression (Figure 4.1), these models
perform significantly worse due to variations in the independent variable and thereby considerably
amount of noises in the estimates.

50

4.2 Machine Learning Result and Discussion

Case R2 - Current speed 0.50 m/s

Figure 4.3 illustrates the estimated current performed by Polynomial and Multiple Lin-
ear Regression. As the figure illustrates, the same tendency appears for Case R2 as for
Case R1 (Figure 4.1). The Polynomial Regression model makes a perfect fit after 100
seconds when steady state condition is reached. Comparing to Case 1, the Multiple Linear
regression performs better for Case R2 as the overestimate for current speed is smaller,
Vc = 0.53 m/s.

0 50 100 150 200 250 300

Time [s]

-0.4

-0.2

0

0.2

0.4

0.6
Polynomial Regression

Estimated Current

Real Current Speed 0.50 m/s

0 50 100 150 200 250 300

Time [s]

-0.4

-0.2

0

0.2

0.4

0.6
Multiple Linear Regression

Estimated Current

Real Current Speed 0.50 m/s

E
st

im
at

ed
 C

u
rr

en
t

[m
/s

]

Figure 4.3: Polynomial and Multiple Linear Regression for Case R2 with real current speed of 0.50
m/s. The Polynomial Regression model makes a perfect fit in accordance with Case R1 (Figure
4.1). The Multiple Linear Regression has a smaller overestimate for current speed compared to Case
R1.

Figure 4.4 compare the Fine, Medium and Coarse Decision Tree Regression models for
Case R2. The predictions made in steady state illustrate improvements compared to Case
R1 (Figure 4.2) with almost perfect estimates. Before steady state condition is reached,
the same tendency appear with noisy predictions.

51

Chapter 4. Result

0 50 100 150 200 250 300

Time [s]

0.2

0.4

0.6

Fine Decision Tree Regression

0 50 100 150 200 250 300

Time [s]

0.2

0.4

0.6

Medium Decision Tree Regression

Estimated Current Speed

Real Current Speed 0.50 m/s

0 50 100 150 200 250 300

Time [s]

0.2

0.4

0.6

Coarse Decision Tree RegressionE
s
ti

m
a
te

d
 C

u
r
r
e
n
t

[
m

/s
]

Figure 4.4: Fine, Medium and Coarse Decision Tree Regression for Case R2 with real current
speed of 0.5 m/s. Compared to results presented for Case R1 (Figure 4.2), the results for Case
R2 illustrates an almost perfect fit with the same tendency with noisy prediction before steady state
condition is reached.

52

4.2 Machine Learning Result and Discussion

Case R3 - Current speed 0.75 m/s

Figure 4.5 illustrates the estimated current performed by Polynomial and Multiple Linear
Regression. Both models perform well in steady state condition as the current speed of
0.75 m/s is reached after approximately 100 seconds. The Multiple Linear Regression
model however, performs better before steady state condition compared to the Polynomial
Regression model, due to smaller variation in estimated current speed.

0 50 100 150 200 250

Time [s]

-0.5

0

0.5

1
Polynomial Regression

Estimated Current

Real Current Speed 0.75 m/s

0 50 100 150 200 250

Time [s]

-0.5

0

0.5

1
Multiple Linear Regression

Estimated Current

Real Current Speed 0.75 m/s

E
st

im
at

ed
 C

u
rr

en
t

[m
/s

]

Figure 4.5: Polynomial and Multiple Linear Regression for Case R3 with real current speed of 0.75
m/s. Both models perform well in steady state conditions, while the Multiple Linear Regressions is
superior before steady state condition is reached.

Figure 4.6 compare the Fine, Medium and Coarse Decision Tree Regression models. The
same tendency with noisy predictions before steady state appearing in Case R1 (Figure
4.2) and Case R2 (Figure 4.4), is still present for Case R3. The estimated current speed in
steady state however, illustrates perfect predictions for both models.

53

Chapter 4. Result

0 50 100 150 200 250

Time [s]

0

0.5

1
Fine Decision Tree Regression

0 50 100 150 200 250

Time [s]

0

0.5

1
Medium Decision Tree Regression

Estimated Current Speed

Real Current Speed 0.75 m/s

0 50 100 150 200 250

Time [s]

0

0.5

1
Coarse Decision Tree RegressionE

st
im

at
ed

 C
u

rr
en

t
[m

/s
]

Figure 4.6: Fine, Medium and Coarse Decision Tree Regression for Case R3 with real current speed
of 0.75 m/s. Compared to Case R1 (Figure 4.2) and Case R2 (Figure 4.4), the noisy prediction still
occurs before steady state condition is reached, while in steady state the models illustrates perfect
predictions.

The presented regression results are performed with head current corresponding speed of
0.25, 0.50 and 0.75 m/s. Polynomial and Multiple Linear Regression, and Fine, Medium
and Coarse Decision Tree Regression models are compared. All models are within an
acceptable range with respect to RMSE (Table 3.2), where the Polynomial Regression
models scored the highest. This is consistent with result presented for Case R1, R2 and R3
which illustrates that the Polynomial Regression model overall performs on a higher level
compared to remaining models. This is due to less noise and perfect predictions in steady
state condition for all cases. The Polynomial Regression model can easily be implemented
in the real system due to the model consisting of equation with estimated coefficient. This
lead to high predicting speed, and can be deployed for real time analysis.

To produce more complex and larger dataset, a computer with better specifications is
needed. Alternatively, to get a more general regression model, smaller simulations with
less data could be run together with current direction at one specific operating speed. For
example, Uref = 1.6 m/s which is a normal operating speed for REMUS 100. Another
alternative is to produce more specific machine learning algorithms that operates at a cer-
tain range. For example, current speed from 0 to 0.3 m/s and 0.3 to 0.6 m/s, and so on.
Further, these could be combined into a hybrid system with some form of switching mech-
anism. See Xia et al. (2009) and Sang et al. (2018) for development of hybrid controller
for underwater vehicle.

Results from regression models when current direction is present, can be found in Ap-
pendix C. These are not included in the thesis due to results generated outside of the
training range of the models. Thereby, the models performs poorly.

54

4.2 Machine Learning Result and Discussion

4.2.2 Classification
Case C1 - Current direction 0◦

Estimation of current direction performed by Fine and Weighted KNN models are pre-
sented in Figure 4.7. The current direction from 0 to 25 seconds contains noisy estimates
for both methods. When steady state is reached, the Weighted KNN classifies the current
as 0◦, while Fine KNN as 360◦. This will in practice be the same direction, and will
therefore not affect the result. In steady state condition, both models performs well.

0 50 100 150 200 250 300

Time [s]

0

100

200

300

400
Weighted KNN Classification

Estimated Current Direction

Real Direction 0°

0 50 100 150 200 250 300

Time [s]

0

100

200

300

400
Fine KNN Classification

Estimated Current Direction

Real Direction 0°

E
st

im
a
te

d
 C

u
rr

e
n
t

D
ir

e
c
ti

o
n
 [

°]

Figure 4.7: Fine and Weighted KNN Classification for Case C1 with real current direction of 0◦.
Both models illustrates noisy estimates before steady state condition, while they performs well when
steady state is reached. 0◦ and 360◦ equals in practice the same direction.

Figure 4.8 illustrates the prediction for Fine and Medium Decision Tree Classification. The
models are identical and classifies the current at 360◦. Compared to the KNN methods in
Figure 4.7, the Fine and Medium Decision Tree Classification contains virtually no noise
before steady state is reached.

55

Chapter 4. Result

0 50 100 150 200 250 300

Time [s]

0

100

200

300

400
Fine Decision Tree Classification

Estimated Current Direction

Real Direction 0°

0 50 100 150 200 250 300

Time [s]

0

100

200

300

400
Medium Decision Tree Classification

Estimated Current Direction

Real Direction 0°

E
st

im
a
te

d
 C

u
rr

e
n
t

D
ir

e
c
ti

o
n
 [

°]

Figure 4.8: Fine and Medium Decision Tree Classification for Case C1 with real current direction
of 0◦. Both models performs well and equally, with virtually no noise compared to Case C1 (Figure
4.7).

56

4.2 Machine Learning Result and Discussion

Case C2 - Current direction 90◦

Figure 4.9 presents estimated results for Fine and Weighted Classification models. Com-
pared to Case C1 (Figure 4.7), the amount of noise across the whole simulation period
is significantly higher. However, the two models presented i Figure 4.9 illustrates similar
results.

0 50 100 150 200 250 300

Time [s]

0

100

200

300

400
Weighted KNN Classification

Estimated Current Direction

Real Direction 90°

0 50 100 150 200 250 300

Time [s]

0

100

200

300

400
Fine KNN Classification

Estimated Current Direction

Real Direction 90°

E
st

im
a
te

d
 C

u
rr

e
n
t

D
ir

e
c
ti

o
n
 [

°]

Figure 4.9: Fine and Weighted KNN Classification for Case C2 with real current direction of 90◦.
Both models illustrate noise across the whole simulation period.

The Fine and Medium Decision Tree Classification models, presented in Figure 4.10, il-
lustrates good prediction in steady state. The Fine Tree model makes a perfect prediction,
while the Medium Tree model overestimates by 15◦. Overall, Fine and Medium Tree
models produce less noise then KNN models for current direction presented in Case C1
(Figure 4.8).

57

Chapter 4. Result

0 50 100 150 200 250 300

Time [s]

0

100

200

300

400
Fine Decision Tree Classification

Estimated Current Direction

Real Direction 90°

0 50 100 150 200 250 300

Time [s]

0

100

200

300

400
Medium Decision Tree Classification

Estimated Current Direction

Real Direction 90°

E
st

im
a
te

d
 C

u
rr

e
n
t

D
ir

e
c
ti

o
n
 [

°]

Figure 4.10: Fine and Medium Decision Tree Classification for Case C2 with real current direc-
tion of 90◦. Fine Tree Classification model illustrates a perfect prediction, while the Medium Tree
Classification model overestimates by 15◦.

58

4.2 Machine Learning Result and Discussion

Case C3 - Current direction 180◦

Figure 4.11 illustrates the estimates from Fine and Weighted KNN Classification mod-
els. The estimation is noisy and the models preformed poorly when the AUV follow the
selected current direction.

0 50 100 150 200 250 300

Time [s]

0

100

200

300

400
Weighted KNN Classification

Estimated Current Direction

Real Direction 180°

0 50 100 150 200 250 300

Time [s]

0

100

200

300

400
Fine KNN Classification

Estimated Current Direction

Real Direction 180°

E
st

im
a
te

d
 C

u
rr

e
n
t

D
ir

e
c
ti

o
n
 [

°]

Figure 4.11: Fine and Weighted KNN Classification models for Case C3 with real current direction
of 180◦. Both models illustrates poorly predictions of current direction.

The Fine and Medium Decision Tree Classification models produce more or less noisy
predictions over the whole simulation period as illustrated in Figure 4.12. Compared to
previous Decision Tree Classification models for Case C1 and Case C2, Case C3 illustrates
significantly amount of noise and are not able to preform prediction with selected current
direction.

59

Chapter 4. Result

0 50 100 150 200 250 300

Time [s]

0

100

200

300

400
Fine Decision Tree Classification

0 50 100 150 200 250 300

Time [s]

0

100

200

300

400
Medium Decision Tree Classification

Estimated Current Direction

Real Direction 180°

E
st

im
a
te

d
 C

u
rr

e
n
t

D
ir

e
c
ti

o
n
 [

°]

Figure 4.12: Fine and Medium Decision Tree Classification for Case C3 with real current direction
of 180◦. Both models illustrates poorly predictions with selected current direction.

60

4.2 Machine Learning Result and Discussion

Case C4 - Current direction 270 ◦

Figure 4.13 illustrates the predictions for Weighted and Fine KNN Classification for cur-
rent direction of 270◦. Compared to Case C2 with current direction of 90◦ (Figure 4.9),
Case C4 illustrates improved performance as the estimation is less noisy. In steady state
condition, after 100 seconds, there is some small spikes of under- and overestimation of
15◦ for both models.

0 50 100 150 200 250 300

Time [s]

0

100

200

300

400
Weighted KNN Classification

Estimated Current Direction

Real Direction 270°

0 50 100 150 200 250 300

Time [s]

0

100

200

300

400
Fine KNN Classification

Estimated Current Direction

Real Direction 270°

E
st

im
a
te

d
 C

u
rr

e
n
t

D
ir

e
c
ti

o
n
 [

°]

Figure 4.13: Fine and Weighted KNN Classification for Case C4 with real current direction of 270◦.
Compared to Case C2, these models illustrates improved performance as the estimates are less noisy.
Some small spikes of under- and overestimation of 15◦ appears in steady state condition.

Fine and Medium Decision Tree Classification models for Case C4, Figure 4.14, predicts
more consistent estimates, and contains less noise compared to KNN models in Figure
4.13. Medium Decision Tree Classification underestimates the current direction by 15 de-
grees, while Fine Decision Tree model makes a perfect prediction as the estimates reaches
a current direction of 270◦ in steady state condition.

61

Chapter 4. Result

0 50 100 150 200 250 300

Time [s]

0

100

200

300

400
Fine Decision Tree Classification

Estimated Current Direction

Real Direction 270°

0 50 100 150 200 250 300

Time [s]

0

100

200

300

400
Medium Decision Tree Classification

Estimated Current Direction

Real Direction 270°

E
st

im
a
te

d
 C

u
rr

e
n
t

D
ir

e
c
ti

o
n
 [

°]

Figure 4.14: Fine and Medium Decision Tree Classification models for Case C4 with real current
direction of 270◦. The figure illustrates more consistent estimates and less noise compared to KNN
models in Figure 4.13.

Classification results are presented for Weighted and Fine KNN, and Fine and Medium
Decision Tree models. The current direction for Case C1, C2, C3 and C4 corresponds to
0◦, 90◦, 180◦ and 270◦, respectively. As the presented result illustrates, the classification
models are not able to predict the current direction for Case C3 when the AUV is exposed
to a real current direction of 180◦. This leads to noisy estimates and poorly predicted
directions for both the KNN models, and Fine and Medium Decision Tree models. The
unpleasant results for Case C3 could be due to fluctuation in the independent variables.
Better tuning could possibly result in more stability among independent variables, and
thereby result in better predictions.

Fine and Medium Decision Tree Classification models scored an accuracy of 23.9 % and
17.0 % receptively, while the Fine and Weighted KNN models scored an accuracy of
88.5% and 87.9%, respectively (Table 3.3). These results are inconsistent with the pre-
sented graphs as the KNN Classification models overall produces more noisy estimates
compared to Fine and Medium Decision Tree Classification models. Fine Decision Tree
Classification model predicted the exact current direction in Case C1, C2 and C4, and
overall performed higher then the remaining models. This illustrates that one should not
simply trust the accuracy score from the training phase, and that deployment and testing

62

4.3 Depth Controller Result and Discussion

of each models are necessary before any conclusion can be drawn. Appendix E presents
confusion matrices for the trained classification models.

4.3 Depth Controller Result and Discussion
ILOS algorithm was developed to produce the desired theta angle in present of vertical
ocean current. The method is described in Section 3.2. The depth controller is tested with
comparison to the original controller in AUVsim described in Section 2.3.1. The result is
presented in this section. All simulations are done in head current, where current speed is
Vc = 0.2 m/s. The speed of the AUV is chosen as a constant of Uref = 1.6 m/s, while
the initial position of the AUV is chosen as x0 = [0, 0, 0, 0, 0, 0]. The vertical current
speed component is chosen as wc = −0.3 m/s.

Although the vertical current speed is the main focus, horizontal current speed has also
been included. This is due to the horizontal current is almost always present. In theory, the
horizontal current speed should not affect the results for vertical current speed. However,
the controller developed in this thesis showed improved performance when both horizon-
tal and vertical current speed was included. Therefore, the author has chosen to include
this variable in the simulation. Better tuning of the horizontal controller would lead to
improved performance of the proposed depth controller, and could thereby eliminate the
need for horizontal current.

4.3.1 Fixed Depth Path
The AUV is set to follow a straight-line with constant depth. The waypoint-list used to
conduct the simulation is presented in Table 4.2.

Waypoint-list

x y z

100 0 30
200 0 30
300 0 30
400 0 30

Table 4.2: Waypoints for straight line and constant depth.

Figure 4.15 illustrates the North-East position of the AUV. The red crosses correspond to
the horizontal waypoints (x-y) presented in Table 4.2. As the figure illustrates, the AVU
is able to follow a straight line with minimal variations. With a distance of 100 meters
towards north, the variations is ± 0.25 m in east direction.

63

Chapter 4. Result

-200 -150 -100 -50 0 50 100 150 200

East [m]

0

50

100

150

200

250

300

350

400

N
o

rt
h

 [
m

]

North-East Position

Figure 4.15: The North-East position illustrates that the AVU are following a straight line with
minimal variations. Red crosses illustrated the waypoints presented in Table 4.2. With a distance of
100 meters towards north, the variations is ± 0.25 m in east direction.

Figure 4.16 illustrates the difference in depth position for REMUS 100 by using the origi-
nal controller (blue line) and the designed depth controller (red line). The desired depth is
set to z = 30 m. As the figure illustrates, the original controller are not able to counteract
the vertical current and therefore not able to reach the desired depth of 30 m.

0 50 100 150 200 250

Time [s]

-5

0

5

10

15

20

25

30

35

D
e

p
th

 [
M

]

Depth Position

Original Controller

Vertical ILOS Scheme

Figure 4.16: Comparison of original controller and designed depth controller with the vertical ILOS
algorithm conducting a fixed level flight. The original controller are not able to counteract the current
and therefore are not able to reach the desired depth of 30 m.

64

4.3 Depth Controller Result and Discussion

4.3.2 Various Depth Path

The following result is generated by running simulation with the waypoints shown in Table
4.3.

Waypoint-list

x y z

100 0 30
200 0 30
300 0 30
450 50 45
500 100 45
600 200 10
700 300 10
800 400 20
900 500 20

Table 4.3: Waypoints for straight lines and various depth.

Figure 4.17 illustrates the North-East position of the AUV where the red crosses corre-
spond to the horizontal waypoints presented in Table 4.3.

-100 0 100 200 300 400 500

East [m]

0

100

200

300

400

500

600

700

800

900

N
o

rt
h

 [
m

]

North-East Position

Figure 4.17: North-East position av AUV in present of ocean vertical current of 0.2 m/s with direc-
tion of 0◦.

Figure 4.18 illustrates the difference in depth position of REMUS 100 by using the original
controller (blue line) and the designed depth controller (red line) for various depth.

65

Chapter 4. Result

0 100 200 300 400 500 600 700

Time [s]

-10

0

10

20

30

40

50

D
e

p
th

 [
M

]

Depth Position

Original Controller

Vertical ILOS Scheme

Figure 4.18: Comparison with original controller and designed depth controller with the vertical
ILOS algorithm with various depth.

Figure 4.16 compares the original and designed controller by executing a fixed level flight.
As the graphs illustrates, the original controller is not able to reach the desired depth, while
the designed controller is able to counteract the vertical current component and reaches de-
sired set-point of 30 m. Figure 4.18 compares the original and designed controller in var-
ious desired depth points. The graphs illustrates that the original controller has a quicker
response compared to the designed controller, but is not able to reach the desired set-point.
A more aggressive tuning of pitch controller and ILOS parameters would possibly make a
faster response of the designed controller.

66

Chapter 5
Conclusion

The aim of this thesis has been to investigate current estimation of autonomous underwater
vehicles by using the machine learning method, Supervised Learning. Chapter 1 presented
an introduction to the thesis by stating previous studies on underwater vehicles, machine
learning and current estimation. Chapter 2 presented the mathematical modeling for un-
derwater vehicles inspired from marine vessel along with a basic introduction to machine
learning. Chapter 3 described the methods used to produce the result in Chapter 4.

Different regression and classification models were developed to estimate the current speed
and -direction for AUV REMUS 100. A considerably amount of time has been dedicated to
produce optimal dataset for both regression and classification models. An optimal dataset
consisting of the whole operating regime of the AUV was difficult to achieve due to lim-
itations in computer power. Therefore, the regression models were only trained in head
current.

Comparison between Polynomial, Multiple Linear, Fine Decision Tree, Medium Deci-
sion Tree, and Coarse Decision Tree Regression models was conducted in a case study.
Polynomial Regression model was best suited for numeric estimation for current speed.
Weighted and Fine KNN Classification models were compared to Fine and Medium De-
cision Tree Classification in another case study. The Fine Decision Tree model performed
on the highest level.

In addition to presenting Supervised Learning methods, a depth controller consisting of
an ILOS algorithm combined with a PID controller was designed. The ILOS algorithm
produce the desired theta angle which the PID controller regulates the stern fins according
to. The controller was tested exposing the AUV to vertical current. The presented result
was promising as the controller was able to reach the desired depth point in both fixed and
various depth flight. A more aggressive tuning of the pitch controller and ILSO scheme
would possibly make the AUV converge to the desired set-point faster.

67

Chapter 5. Conclusion

The thesis concludes that the machine learning method, Supervised Learning, has large
potential to estimate current speed and direction. Although, the process is quite time
consuming to achieve good results. This is due to the need of high-quality data and sig-
nificantly training time when dataset is large. Polynomial Regression model was able
to predict the current speed in steady state condition with perfect precision in all cases.
The corresponding Fine Decision Tree Classification model followed the same tendency
in steady state condition and was able to predict the current direction in 3/4 cases with
perfect precision. The designed depth controller was able to counteract the vertical cur-
rent component and reach the desired depth point. This will provide the AUV the options
to work in conditions with unknown vertical current, and potentially reduce the need of
expensive sensors.

5.1 Further Work
This thesis presents estimation of current speed and direction, and a depth controller for
the autonomous underwater vehicle REMUS 100. The following paragraphs present the
authors proposal for further work:

• Regression models developed in this thesis suffers from lack of training data. For
further work on the machine learning aspect, the author propose to include larger
datasets by involving current direction for improving the estimation of the models.

• To produce an optimal dataset, the internal controller should be adjusted and tuned
so the output is stable through the whole operating regime.

• Further investigation on how the regression and classification models perform with
other controllers.

• To make a wider comparison between different models, the author propose to in-
clude other regression and classification models.

• Tuning and optimization of the presented models is needed to investigate if higher
performance are achievable.

• Filed tests of REMUS 100 is necessary to investigate how the regression and clas-
sification models along with designed depth controller performs under real circum-
stances. Real datasets needs to be generated through field tests, and further com-
pared to the trained algorithms.

• To investigate the potential machine learning has on predicting the main external
forces acting on underwater vehicles, a comparison with other current estimation
methods, like ADCP, observer estimation and DPSS should be conducted.

68

Bibliography

Allen, B., Vorus, W., Prestero, T., 2000. Propulsion system performance enhancements on remus
auvs. IEEE Xplore 3, 1869–1873. doi:10.1109/OCEANS.2000.882209.

Arneson, I.B., Brodtkorb, A.H., Sørensen, A.J., 2019. Sea state estimation using quadratic
discriminant analysis and partial least squares regression. IFAC-PapersOnLine 52, 72–77.
doi:10.1016/j.ifacol.2019.12.285.

Awad, M., Khanna, R., 2015. Support vector regression, in: Efficient Learning Machines, p. 67–80.
doi:10.1007/978-1-4302-5990-9_4.

Bailey, J., Milne, I., Someren, M., 2019. Seastate detection from vessels at motion using learning
algorithms doi:https://doi.org/10.1016/j.oceaneng.2017.08.047.

Caharija, W., Pettersen, K.Y., Gravdahl, J.T., Børhaug, E., 2012. Integral los guidance for horizontal
path following of underactuated autonomous underwater vehicles in the presence of vertical ocean
currents, in: 2012 American Control Conference (ACC), pp. 5427–5434. doi:10.1109/ACC.
2012.6315607.

Candeloro, M., 2016. Tools and Methods for Autonomous Operations on Seabed and Water Column
using Underwater Vehicles. Ph.D. thesis. Norwegian University of Science and Technology.

Candeloro, M., Sørensen, A.J., Longhi, S., Dukan, F., 2012. Observers for dy-
namic positioning of rovs with experimental results. IFAC Proceedings Volumes
45, 85–90. URL: https://www.sciencedirect.com/science/article/pii/
S1474667016312095?via%3Dihub, doi:10.3182/20120919-3-IT-2046.00015.

Carlton, J., 2007. 11-propeller–ship interaction, in: Marine Propellers and Propulsion. 2nd
ed.. Butterworth-Heinemann, Oxford, pp. 264–283. doi:https://doi.org/10.1016/
B978-075068150-6/50013-9.

Caruana, R., Niculescu-Mizil, A., 2004. An empirical analysis of supervised learning per-
formance criteria URL: https://www.cs.cornell.edu/˜caruana/perfs.kdd04.
revised.rev1.pdf.

Caruana, R., Niculescu-Mizil, A., 2006. An empirical comparison of supervised learning algorithms.
Proceedings of the 23rd international conference on Machine learning, ICML 06 doi:10.1145/
1143844.1143865.

69

http://dx.doi.org/10.1109/OCEANS.2000.882209
http://dx.doi.org/10.1016/j.ifacol.2019.12.285
http://dx.doi.org/10.1007/978-1-4302-5990-9_4
http://dx.doi.org/https://doi.org/10.1016/j.oceaneng.2017.08.047
http://dx.doi.org/10.1109/ACC.2012.6315607
http://dx.doi.org/10.1109/ACC.2012.6315607
https://www.sciencedirect.com/science/article/pii/S1474667016312095?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1474667016312095?via%3Dihub
http://dx.doi.org/10.3182/20120919-3-IT-2046.00015
http://dx.doi.org/https://doi.org/10.1016/B978-075068150-6/50013-9
http://dx.doi.org/https://doi.org/10.1016/B978-075068150-6/50013-9
https://www.cs.cornell.edu/~caruana/perfs.kdd04.revised.rev1.pdf
https://www.cs.cornell.edu/~caruana/perfs.kdd04.revised.rev1.pdf
http://dx.doi.org/10.1145/1143844.1143865
http://dx.doi.org/10.1145/1143844.1143865

Chiu, M.H., Yu, Y.R., Liaw, H., Hao, L., 2016. The use of facial micro-expression state
and tree-forest model for predicting conceptual-conflict based conceptual change URL:
https://www.researchgate.net/publication/295860754_THE_USE_
OF_FACIAL_MICRO-EXPRESSION_STATE_AND_TREE-FOREST_MODEL_FOR_
PREDICTING_CONCEPTUAL-CONFLICT_BASED_CONCEPTUAL_CHANGE.

Choudhary, R., Gianey, H.K., 2017. Comprehensive review on supervised machine learning al-
gorithms, in: 2017 International Conference on Machine Learning and Data Science (MLDS),
IEEE. pp. 37–43.

Cruz, N.A., 2011. Autonomous Underwater Vehicles. URL: https://www.intechopen.
com/books/autonomous-underwater-vehicles.

Dong, N.T., 2005. Design Of Hybrid Marine Control Systems For Dynamic Positioning. Ph.D.
thesis. Department Of Civil Engineering National University Of Singapore.

Dukan, F., 2014. ROV Motion Control Systems. Ph.D. thesis. Norwegian University of Science
and Technology. URL: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/
239258.

Eremenko, K., de Ponteves, H., Team, S., Support, S., 2015. Machine learning aztm:
Hands-on python & r in data science. URL: https://www.udemy.com/course/
machinelearning/.

Fjerdingen, S.A., Kyrkjeboe, E., Transeth, A.A., 2010. Auv pipeline following using reinforcement
learning, in: ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th
German Conference on Robotics), pp. 1–8.

Fossen, T.I., 2011. Handbook of Marine Craft Hydrodynamics and Motion Control. 1st ed., John
Wiley & Sons, Ltd. doi:10.1002/9781119994138.

Fossen, T.I., 2021. Handbook of Marine Craft Hydrodynamics and Motion Control. 2nd ed., John
Wiley & Sons, Ltd.

Garcı́a-Valdovinos, L.G., Salgado-Jiménez, T., Bandala-Sánchez, M., Nava-Balanzar, L.,
Hernández-Alvarado, R., Cruz-Ledesma, J.A., 2014. Modelling, design and robust control of
a remotely operated underwater vehicle. International Journal of Advanced Robotic Systems 11,
1. doi:10.5772/56810.

Hegrenæs, O., Hallingstad, O., 2011. Model-aided ins with sea current estimation for robust un-
derwater navigation. Journal of Oceanic Engineering 36, 316–337. doi:10.1109/JOE.2010.
2100470.

Holsen, S.A., 2015. DUNE: Unified Navigation Environment for the REMUS 100 AUV - Implemen-
tation, Simulator Development, and Field Experiments. Master’s thesis. Norwegian University of
Science and Technology. URL: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/
11250/2350792?locale-attribute=en.

Hurwitz, J., Kirsch, D., 2018. Machine Learning for dummies. John Wiley & Sons Inc.

Hydroid, 2012. Our new generation man-portable auv remus 100 autonomous underwater vehicle.
URL: https://www.kongsberg.com/globalassets/maritime/km-products/
product-documents/remus-100-autonomous-underwater-vehicle.

70

https://www.researchgate.net/publication/295860754_THE_USE_OF_FACIAL_MICRO-EXPRESSION_STATE_AND_TREE-FOREST_MODEL_FOR_PREDICTING_CONCEPTUAL-CONFLICT_BASED_CONCEPTUAL_CHANGE
https://www.researchgate.net/publication/295860754_THE_USE_OF_FACIAL_MICRO-EXPRESSION_STATE_AND_TREE-FOREST_MODEL_FOR_PREDICTING_CONCEPTUAL-CONFLICT_BASED_CONCEPTUAL_CHANGE
https://www.researchgate.net/publication/295860754_THE_USE_OF_FACIAL_MICRO-EXPRESSION_STATE_AND_TREE-FOREST_MODEL_FOR_PREDICTING_CONCEPTUAL-CONFLICT_BASED_CONCEPTUAL_CHANGE
https://www.intechopen.com/books/autonomous-underwater-vehicles
https://www.intechopen.com/books/autonomous-underwater-vehicles
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/239258
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/239258
https://www.udemy.com/course/machinelearning/
https://www.udemy.com/course/machinelearning/
http://dx.doi.org/10.1002/9781119994138
http://dx.doi.org/10.5772/56810
http://dx.doi.org/10.1109/JOE.2010.2100470
http://dx.doi.org/10.1109/JOE.2010.2100470
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2350792?locale-attribute=en
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2350792?locale-attribute=en
https://www.kongsberg.com/globalassets/maritime/km-products/product-documents/remus-100-autonomous-underwater-vehicle
https://www.kongsberg.com/globalassets/maritime/km-products/product-documents/remus-100-autonomous-underwater-vehicle

IBM Cloud Education, 2020. What is machine learning? URL: https://www.ibm.com/
cloud/learn/machine-learning.

Islam, M.J., Wu, Q.M.J., Ahmadi, M., Sid-Ahmed, M.A., 2007. Investigating the performance of
naive- bayes classifiers and k- nearest neighbor classifiers, in: 2007 International Conference on
Convergence Information Technology (ICCIT 2007), pp. 1541–1546. doi:10.1109/ICCIT.
2007.148.

Johansen, J.H., 2020. Non-linear control and digital twin modeling of the REMUS 100 AUV. Mas-
ter’s thesis. Norwegian University of Science and Technology.

Kim, E., Fan, S., Bose, N., Nguyen, H., 2020. Current estimation and path following for
an autonomous underwater vehicle (auv) by using a high-gain observer based on an auv dy-
namic model. International Journal of Control, Automation and Systems doi:10.1007/
s12555-019-0673-5.

Kokegei, M., He, F., Sammut, K., 2011. Fully coupled 6 degree-of-freedom control of an over-
actuated autonomous underwater vehicle. Autonomous Underwater Vehicles , 147–170.

Leonard, J.J., Bennett, A.A., Smith, C.M., Jacob, H., Feder, S., 1998. Autonomous underwater
vehicle navigation, in: MIT Marine Robotics Laboratory Technical Memorandum.

Liu, S., Wei, Y., Gao, Y., 2012. 3d path planning for auv using fuzzy logic , 599–603doi:10.1109/
CSIP.2012.6308925.

Mak, B., Düz, B., 2019. Ship As a Wave Buoy: Estimating Relative Wave Direction From In-Service
Ship Motion Measurements Using Machine Learning 9. doi:10.1115/OMAE2019-96201.

Maxwell, A.E., Warner, T.A., Fang, F., 2018. Implementation of machine-learning classification
in remote sensing: an applied review. International Journal of Remote Sensing 39, 2784–2817.
doi:10.1080/01431161.2018.1433343.

Meurer, C., Fuentes, J., Palomeras, N., Carreras, M., Kruusmaa, M., 2019. Differential pressure
sensor speedometer for autonomous underwater vehicle velocity estimation. IEEE Journal of
Oceanic Engineering , 1–33doi:10.1109/JOE.2019.2907822.

Meurer, C., Fuentes-Pérez, J.F., Schwarzwälder, K., Ludvigsen, M., Sørensen, A.J., Kruusmaa, M.,
2020. 2d estimation of velocity relative to water and tidal currents based on differential pressure
for autonomous underwater vehicles. IEEE Robotics and Automation Letters 5, 3444–3451.
doi:10.1109/LRA.2020.2976318.

Mwiti, D., 2020. Random forest regression: When does
it fail and why? URL: https://neptune.ai/blog/
random-forest-regression-when-does-it-fail-and-why.

Naeem, W., Sutton, R., Ahmad, S., 2003. Lqg/ltr control of an autonomous underwater vehicle
using a hybrid guidance law. IFAC Proceedings Volumes 36, 31 – 36. URL: http://www.
sciencedirect.com/science/article/pii/S1474667017366533, doi:https:
//doi.org/10.1016/S1474-6670(17)36653-3. iFAC Workshop on Guidance and
Control of Underwater Vehicles 2003, Newport, South Wales, UK, 9-11 April 2003.

National Oceanic and Atmospheric Administration, . How much water is in the ocean? URL:
https://oceanservice.noaa.gov/facts/oceanwater.html. accessed: 2020-
11-11.

71

https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/cloud/learn/machine-learning
http://dx.doi.org/10.1109/ICCIT.2007.148
http://dx.doi.org/10.1109/ICCIT.2007.148
http://dx.doi.org/10.1007/s12555-019-0673-5
http://dx.doi.org/10.1007/s12555-019-0673-5
http://dx.doi.org/10.1109/CSIP.2012.6308925
http://dx.doi.org/10.1109/CSIP.2012.6308925
http://dx.doi.org/10.1115/OMAE2019-96201
http://dx.doi.org/10.1080/01431161.2018.1433343
http://dx.doi.org/10.1109/JOE.2019.2907822
http://dx.doi.org/10.1109/LRA.2020.2976318
https://neptune.ai/blog/random-forest-regression-when-does-it-fail-and-why
https://neptune.ai/blog/random-forest-regression-when-does-it-fail-and-why
http://www.sciencedirect.com/science/article/pii/S1474667017366533
http://www.sciencedirect.com/science/article/pii/S1474667017366533
http://dx.doi.org/https://doi.org/10.1016/S1474-6670(17)36653-3
http://dx.doi.org/https://doi.org/10.1016/S1474-6670(17)36653-3
https://oceanservice.noaa.gov/facts/oceanwater.html

Nebot, E., 1999. Sensors used for autonomous navigation, in: Advances in Intelligent Autonomous
Systems. Springer, pp. 135–156.

Norgren, P., 2018. Autonomous underwater vehicles in arctic marine operations: Arctic marine
research and ice monitoring .

Norgren, P., Skjetne, R., 2015. Line-of-sight iceberg edge-following using an auv equipped with
multibeam sonar. IFAC-PapersOnLine 48, 81–88. doi:https://doi.org/10.1016/j.
ifacol.2015.10.262.

Nornes, S.M., 2018. Guidance and Control of Marine Robotics for Ocean Mapping and Monitoring.
Ph.D. thesis. Norwegian University of Science and Technology.

Prestero, T., 2001. Verification of a six-degree of freedom simulation model for the remus
autonomous underwater vehicle. URL: https://darchive.mblwhoilibrary.org/
handle/1912/3040.

Reshmi, K.R.G., Priya, P.S., 2016. Design and control of autonomous unerwater vehicle for
depth control using lqr controller. International Journal of Science and Research 5, 1432
– 1436. URL: https://www.ijsr.net/search_index_results_paperid.php?
id=ART2016447.

Riise, Ø., G., 2020. Guidance and control of underwater vehicle. Project thesis. Norwegian Univer-
sity of Science and Technology. Not published.

Rish, I., 2001. An empirical study of the naive bayes classifier. IJCAI 2001 workshop on empirical
methods in artificial intelligence 3, 41–46.

Rosenbaum, L., Dörr, A., Bauer, M., Boeckler, F., Zell, A., 2013. Inferring multi-target qsar models
with taxonomy-based multi-task learning. Journal of cheminformatics 5, 33. doi:10.1186/
1758-2946-5-33.

Ruud, F.J., 2016. Autonomous Homing and Docking of AUV REMUS 100 - Homing and Docking
Guidance Algorithm and Relative Localization. Master’s thesis. Norwegian University of Science
and Technology. URL: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/
2410753.

Sabiha, W., Pushkin, K., 2018. Autonomous underwater vehicles modeling, control design, and
simulation. Tyler & Francis Group.

Sang, H., Zhou, Y., Sun, X., Yang, S., 2018. Heading tracking control with an adaptive hybrid
control for under actuated underwater glider. ISA Transactions 80, 554–563. doi:10.1016/j.
isatra.2018.06.012.

Sclavounos, P.D., Ma, Y., 2018. Artificial intelligence machine learning in marine hydrodynam-
ics. 37th International Conference on Ocean, Offshore and Arctic Engineering doi:10.1115/
omae2018-77599.

Souza, E.C.D., Maruyama, N., 2007. Intelligent uuvs: Some issues on rov dynamic positioning.
IEEE Transactions on Aerospace and Electronic Systems 43, 214 – 226.

Sørensen, A.J., 2018. Towards Autonomous Marine Operations and Systems. Department of Marine
Technology, NTNU.

72

http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2015.10.262
http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2015.10.262
https://darchive.mblwhoilibrary.org/handle/1912/3040
https://darchive.mblwhoilibrary.org/handle/1912/3040
https://www.ijsr.net/search_index_results_paperid.php?id=ART2016447
https://www.ijsr.net/search_index_results_paperid.php?id=ART2016447
http://dx.doi.org/10.1186/1758-2946-5-33
http://dx.doi.org/10.1186/1758-2946-5-33
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2410753
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2410753
http://dx.doi.org/10.1016/j.isatra.2018.06.012
http://dx.doi.org/10.1016/j.isatra.2018.06.012
http://dx.doi.org/10.1115/omae2018-77599
http://dx.doi.org/10.1115/omae2018-77599

Sørensen, A.J., 2020. Brief overview machine learning. University Lecture notes (TMR16).

Sørensen, A.J., Ludvigsen, M., 2015. Towards integrated autonomous underwater operations. IFAC-
PapersOnLine 48, 107–118. doi:https://doi.org/10.1016/j.ifacol.2015.06.
018.

Tranmer, M., Murphy, J., Elliot, M., Pampaka, M., 2020. Multiple Linear Regression. 2nd
ed., Cathie Marsh Institute Working Paper. URL: http://hummedia.manchester.
ac.uk/institutes/cmist/archive-publications/working-papers/2020/
multiple-linear-regression.pdf.

Utne, I.B., Sørensen, A.J., Schjølberg, I., 2017. Risk management of autonomous marine systems
and operations URL: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/
2468206.

Van Amerongen, J., 1984. Adaptive steering of ships—a model reference approach. Automatica 20,
3–14. doi:https://doi.org/10.1016/0005-1098(84)90060-8.

Værnø, S., Brodtkorb, A., Skjetne, R., 2019. Compensation of bias loads in dynamic positioning
of marine surface vessels. Ocean Engineering 178, 484–492. doi:10.1016/j.oceaneng.
2019.03.010.

Wang, H., Chen, Z., Jia, H., Chen, X., 2011. Nn-backstepping for diving control of an underactuated
auv , 1–6doi:10.23919/OCEANS.2011.6107239.

Xia, G., Tang, L., Guo, F., Chen, Q., Leng, J., 2009. Design of a hybrid controller for heading
control of an autonomous underwater vehicle , 1–5doi:10.1109/ICIT.2009.4939629.

Ye, H., Xue, W., Yang, X., 2018. Backstepping-based diving control design for underactuated auvs
combined with ilos method. IEEE , 703–708doi:10.23919/ChiCC.2018.8483805.

Zagatti, R., Juliano, D.R., Doak, R., Souza, G.M., Nardy, L.d.P., Lepikson, H.A., Gaudig, C., Kirch-
ner, F., 2018. Flatfish resident auv: Leading the autonomy era for subsea oil and gas operations
doi:https://doi.org/10.4043/28881-MS.

Østeby, E., 2017. Subsea Cable Tracking using Sensor Fusion on an Autonomous Underwater
Vehicle. Master’s thesis. Norwegian University of Science and Technology. URL: https:
//ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2456601.

73

http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2015.06.018
http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2015.06.018
http://hummedia.manchester.ac.uk/institutes/cmist/archive-publications/working-papers/2020/multiple-linear-regression.pdf
http://hummedia.manchester.ac.uk/institutes/cmist/archive-publications/working-papers/2020/multiple-linear-regression.pdf
http://hummedia.manchester.ac.uk/institutes/cmist/archive-publications/working-papers/2020/multiple-linear-regression.pdf
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2468206
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2468206
http://dx.doi.org/https://doi.org/10.1016/0005-1098(84)90060-8
http://dx.doi.org/10.1016/j.oceaneng.2019.03.010
http://dx.doi.org/10.1016/j.oceaneng.2019.03.010
http://dx.doi.org/10.23919/OCEANS.2011.6107239
http://dx.doi.org/10.1109/ICIT.2009.4939629
http://dx.doi.org/10.23919/ChiCC.2018.8483805
http://dx.doi.org/https://doi.org/10.4043/28881-MS
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2456601
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2456601

74

Appendix A
Coefficients

Parameter Value Unit
Xẋ −0.93 kg
Yv̇ −35.5 kg
Zẇ −35.5 kg
Kṗ −0.0704 kg ·m2/rad
Mq̇ −4.88 kg ·m2/rad
Nṙ −4.88 kg ·m2/rad
Xuu −1.62 kg/m
Xvv −1310 kg/m
Xww −2.86 kg/m
Kpp −0.13 kg ·m2/rad2

Mqq −188 kg ·m2/rad2

Nrr −94 kg ·m2/rad2

Yrr 0.632 kg ·m/rad2

Zqq −0.632 kg ·m/rad2
Mww 3.18 kg
Nvv −3.18 kg

Parameter Value Unit
KT 2.5075 ·
KQ 0.32033 ·
Dprop 0.1397 m

I

II

Appendix B
Python files

1 # Polynomial Regression
2

3 # Importing the libraries
4 import numpy as np
5 import matplotlib.pyplot as plt
6 import pandas as pd
7

8

9 # Importing the dataset
10 dataset = pd.read_csv('file.csv')
11 X = dataset.iloc[:, :-1].values
12 y = dataset.iloc[:, -1].values
13

14 # Splitting the dataset into the Training set and Test set
15 from sklearn.model_selection import train_test_split
16 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =

0.20, random_state = 1)
17

18 # Training the Polynomial Regression model on the Training set
19 from sklearn.preprocessing import PolynomialFeatures
20 from sklearn.linear_model import LinearRegression
21 poly_reg = PolynomialFeatures(degree = 2)
22 X_poly = poly_reg.fit_transform(X_train)
23 regressor = LinearRegression()
24 regressor.fit(X_poly, y_train)
25

26 # Predicting the Test set results
27 y_pred = regressor.predict(poly_reg.transform(X_test))
28 np.set_printoptions(precision=3)
29 np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test)

,1)),1)
30

31

32 # Evaluating the Model Performance
33 from sklearn.metrics import r2_score
34 r2_score(y_test, y_pred)

III

35 print(r2_score(y_test, y_pred))
36

37 from sklearn.metrics import mean_squared_error
38 print(mean_squared_error(y_test, y_pred))
39

40 print(regressor.coef_)
41 print(regressor.intercept_)
42

43 # Visualising the Polynomial Regression results
44 #plt.scatter(X, y, color = 'red')
45 #plt.plot(y_train, regressor.predict(poly_reg.fit_transform(X_train)),

color = 'blue')
46 #plt.title('Polynomial regression')
47 #plt.xlabel('variables')
48 #plt.ylabel('Estimated Current [m/s]')
49 #plt.show()

1 # Multiple Linear Regression
2

3 # Importing the libraries
4 import numpy as np
5 import matplotlib.pyplot as plt
6 import pandas as pd
7

8 # Importing the dataset
9 dataset = pd.read_csv('file.csv')

10 X = dataset.iloc[:, :-1].values
11 y = dataset.iloc[:, -1].values
12

13 # Splitting the dataset into the Training set and Test set
14 from sklearn.model_selection import train_test_split
15 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2,

random_state = 0)
16

17 # Training the Multiple Linear Regression model on the Training set
18 from sklearn.linear_model import LinearRegression
19 regressor = LinearRegression()
20 regressor.fit(X_train, y_train)
21

22 # Predicting the Test set results
23 y_pred = regressor.predict(X_test)
24 np.set_printoptions(precision=8)
25 print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(

y_test),1)),1))
26

27

28

29 # Evaluating the Model Performance with R2 and RMSE
30 from sklearn.metrics import r2_score
31 print(r2_score(y_test, y_pred))
32

33

34 from sklearn.metrics import mean_squared_error
35 print(mean_squared_error(y_test, y_pred))
36

37 print(regressor.coef_)
38 print(regressor.intercept_)

IV

39

40 # Visualising the Test set results
41 #plt.scatter(X_test, y_test, color = 'red')
42 #plt.plot(X_train, regressor.predict(X_train) , color = 'blue')
43 #plt.title(' Current estimation')
44 #plt.xlabel('variables')
45 #plt.ylabel('Current speed [m/s]')
46 #plt.show()

V

VI

Appendix C
Regression result

0 50 100 150 200 250 300

Time [s]

-2

0

2

E
s
ti
m

a
te

d
 C

u
rr

e
n
t
[m

/s
]

Polynomial Regression

Estimated Current

Real Current Speed 0.50 m/s

0 50 100 150 200 250 300

Time [s]

-2

-1

0

1

E
s
ti
m

a
te

d
 C

u
rr

e
n
t
[m

/s
]

Multiple Linear Regression

Estimated Current

Real Current Speed 0.50 m/s

Figure C.1: Polynomial and Multiple Linear Regression estimation in 90◦ current direction

VII

0 50 100 150 200 250 300

Time [s]

-2

0

2
E

s
ti
m

a
te

d
 C

u
rr

e
n
t
[m

/s
]

Polynomial Regression

Estimated Current

Real Current Speed 0.50 m/s

0 50 100 150 200 250 300

Time [s]

-2

0

2

E
s
ti
m

a
te

d
 C

u
rr

e
n
t
[m

/s
]

Multiple Linear Regression

Estimated Current

Real Current Speed 0.50 m/s

Figure C.2: Polynomial and Multiple Linear Regression estimation in 180◦ current direction

0 50 100 150 200 250 300

Time [s]

-2

-1

0

1

E
s
ti
m

a
te

d
 C

u
rr

e
n
t
[m

/s
]

Polynomial Regression

Estimated Current

Real Current Speed 0.50 m/s

0 50 100 150 200 250 300

Time [s]

-2

0

2

E
s
ti
m

a
te

d
 C

u
rr

e
n
t
[m

/s
]

Multiple Linear Regression

Estimated Current

Real Current Speed 0.50 m/s

Figure C.3: Polynomial and Multiple Linear Regression estimation in 270◦ current direction

VIII

Appendix D
Confusion Matrix

Figure D.1: Confusion matrix for Fine KNN Classification model

IX

Figure D.2: Confusion matrix for Weighted KNN Classification model

X

Figure D.3: Confusion matrix for Fine Decision Tree Classification model

XI

Figure D.4: Confusion matrix for Medium Decision Tree Classification model

XII

Appendix E
Attachments

The attached zip-file, Code Deliver, include the following:

• Generated dataset, which include developed dataset

• Mat files, all exported regression and classification models

• Predict functions, generated functions to make predictions on exported models

• Python files , multiple regression and classification algorithms

• Simulator, initialization files

To run the AUVsim follow these steps: (must have Matalb version 2020b or newer):

1. open run auv simulator.m

2. Include all the folder described above to the path

3. Run run auv simulator.m

4. Open Simulink simulator AUVsim .slx. and run this file

5. Run current dir estimation.m to make predictions with the developed regression and classifi-
cation models.

XIII

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

Ø
rjan G

jernes Riise
Current Estim

ation for Autonom
ous U

nderw
ater Vehicle using Supervised Learning

Ørjan Gjernes Riise

Current Estimation for Autonomous
Underwater Vehicle using Supervised
Learning

Master’s thesis in Marine Cybernetics
Supervisor: Dong Trong Nguyen

June 2021M
as

te
r’s

 th
es

is

	Preface
	Acknowledgments
	Abstract
	Sammendrag
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	Level of Autonomy
	REMUS 100 AUV
	AUVSim

	Motivation
	Literature Review
	Previous Work on Underwater Vehicles
	Examples of Machine Learning
	Current Estimation
	Control System
	Sensor Systems

	Objectives
	Contribution
	Organization of Project

	Theory
	Mathematical Modelling of Underwater Vehicle
	Kinematics
	Kinetics
	Control Plant Model

	Generalized Forces
	Environmental Force
	Rudder and Fin
	Control Surfaces
	Thrust Force

	Control System for REMUS 100
	Low Level Control System
	Guidance System

	Specifications of REMUS 100
	Introduction to Machine Learning
	Different Methods of Machine Learning
	Regression
	Classification

	How to Perform Machine Learning
	Validation of Data
	Evaluation of Models
	Overfitting and Underfitting

	Method
	AUVsim
	Low Level Control
	Guidance System

	Depth Controller
	Current Estimation
	Dataset
	Validation
	Regression
	Classification

	Simulation Cases

	Result
	Limitations
	Machine Learning Result and Discussion
	Regression
	Classification

	Depth Controller Result and Discussion
	Fixed Depth Path
	Various Depth Path

	Conclusion
	Further Work

	Bibliography
	Coefficients
	Python files
	Regression result
	Confusion Matrix
	Attachments

