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Abstract

This thesis investigates the robustness of visual simultaneous localization and mapping
(V-SLAM) for navigation of unmanned underwater vehicles, as well as image processing
methods suitable for underwater V-SLAM. A dataset is created by conducting a wreck
site survey with a stereo camera mounted on a remotely operated vehicle (ROV). Two
camera calibration experiments are conducted in a sea water tank, and a camera model is
identified for the stereo camera by performing a camera calibration. Four different image
processing methods are implemented into the V-SLAM algorithm OpenVSLAM; a bilat-
eral filter (BLF), histogram equalization, contrast-limited adaptive histogram equalization,
and a state-of-the-art convolutional neural network for underwater color correction and
backscatter estimation. The visual effects of the image processing methods are identified
by inspecting image histograms and similarity images. The ROV navigation data is used to
estimate a ground truth reference, which is then utilized to georeference the trajectory- and
map estimates from OpenVSLAM. The ground truth reference is also used to calculate the
absolute trajectory error and the relative pose error (RPE) of OpenVSLAM’s trajectory es-
timates. A comparison analysis of OpenVSLAM with various configurations of the image
processing methods is then performed.

By looking at the visual feature distribution of image pyramids, the total number of visual
features, and the trajectory lengths, suppression of image noise and forward scattering blur
are identified to be important factors for feature matching and, consequently, the robust-
ness of V-SLAM algorithms in underwater applications. For this purpose, the BLF is found
to be a highly suitable image processing method for underwater V-SLAM. By analysing
the RPE, the most significant source for accumulated drift is identified to be loss of visual
features due to sudden changes in perspective. Proper maneuvering, with low altitude and
without sharp turns, is identified to be an important factor for underwater V-SLAM, both
in terms of robustness and accumulated drift. A well-suited camera- and lamp setup for
the relevant survey is also found to be an important, practical factor for robust applications
of V-SLAM in underwater environments. Evidence is also found, which indicate that the
static map assumption of the full SLAM standard model is a considerable robustness factor
for underwater V-SLAM, due to the large number of dynamic targets. OpenVSLAM’s bag
of visual words-based loop detection method is also found to be unsuited for underwater
V-SLAM, due to it’s sensitivity to changes in illumination.



Sammendrag

Denne avhandlingen ser nærmere på robustheten til visuell simultan lokalisering og kart-
legging (V-SLAM) for navigasjon av ubemannede undervannsfarkoster, samt bildebehan-
dlingsmetoder som er velegnede for V-SLAM under vann. Et datasett ble laget ved å gjen-
nomføre en undersøkelse av et vrak med et stereokamera montert på en fjernstyrt under-
vannsfarkost (ROV). To kamerakalibreringsforsøk ble gjennomført i en tank med sjøvann,
og en kameramodell ble identifisert for stereokameraet ved å foreta en kamerakalibrering.
Fire forskjellige bildebehandlingsmetoder ble implementert i V-SLAM-algoritmen Open-
VSLAM; et bilateralt filter (BLF), histogramutgjevning, kontrastbegrenset adaptiv his-
togramutgjevning, samt et nevralt nettverk for fargekorreksjon og lysspredningsestimer-
ing i undervannsbilder. De visuelle effektene av bildebehandlingsmetodene ble identifisert
ved inspeksjon av bildehistogrammer og likhetsbilder. Navigasjonsdataen fra ROV-en ble
brukt til å lage en sammenligningsreferanse, som ble brukt til å georeferere baneestimater
og kartestimater fra OpenVSLAM. Sammenligningsreferansen ble også brukt til å beregne
den absolutte banefeilen og den relative posisjonsfeilen (RPE) til OpenVSLAMs banees-
timater. En sammenligningsstudie av OpenVSLAM med forskjellige konfigurasjoner av
bildehandlingsmetoder ble så utført.

Ved å se på distribusjonen av visuelle kjennetegn i bildepyramider, det totale antallet vi-
suelle kjennetegn, samt banelengder, ble filtrering av bildestøy og lysspredning identifisert
som viktige faktorer for å finne overensstemmelser av visuelle kjennetegn, og følgelig ro-
bustheten til V-SLAM-algoritmer til undervannsbruk. For dette formålet ble BLF funnet til
å være en høyst passende bildebehandlingsmetode for V-SLAM under vann. Ved å analy-
sere RPE-en ble den mest signifikante kilden til akkumulert drift funnet til å være tap av vi-
suelle kjennetegn som følge av krappe endringer i perspektiv. Nøye tilpasset manøvrering,
med lav altitude og uten krappe svinger, ble identifisert til å være en viktig faktor for
V-SLAM under vann, både med tanke på robusthet og akkumulert drift. Et kamera- og
lysoppsett tilpasset den aktuelle undersøkelsen ble også identifisert som en viktig, prak-
tisk faktor for robust anvendelse av V-SLAM i undervannsmiljøer. Bevis ble også funnet
på at antagelsen om et statisk kart i standardmodellen for V-SLAM er en betydningsfull
robusthetsfaktor for V-SLAM under vann, på grunn av det store antallet dynamiske mål.
OpenVSLAMs sløyfedeteksjonsmetode ble også funnet til å være upassende for V-SLAM
under vann på grunn av dens sensitivitet til endringer i belysning.
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Chapter 1
Introduction

1.1 Background
Unmanned underwater vehicles (UUVs) are heavily reliant on acoustic positioning sys-
tems (APSs) for position measurements. However, APSs are costly systems whose mea-
surements suffer from large uncertainties, low accuracy, and infrequent sampling rates.
To compensate for the aforementioned shortcomings, APSs are often coupled with dead
reckoning navigation systems, such as inertial navigation systems (INSs), which provide
high frequent navigation data, but accumulate drift over time. One alternative to INSs for
dead reckoning navigation, is visual navigation systems (VNSs), which focus on utiliz-
ing cameras to provide navigation data. One of the benefits of VNSs over INSs, is that
the navigation system is aware of the immediate surroundings due to the exteroceptive
camera measurements. For the last decade, adaptation of VNSs has been pointed as the
next big leap for underwater navigation by the marine robotics community (Dukan, 2014;
Nornes, 2018). While similar photogrammetric approaches, such as structure from motion
(SFM), have been used for underwater 3D reconstruction for decades, they lack the ability
to provide online navigation data due to their high computational complexity. In contrast
to SFM, VNSs are formulated in an iterative fashion, which allow them to provide high
frequent navigation data in real-time.

VNSs are discrimated into two categories; visual odometry (VO) and visual simultane-
ous localization and mapping (V-SLAM). The advantage of V-SLAM over VO, is that V-
SLAM algorithms estimate a map of the environment. The map estimate allows V-SLAM
algorithms to refine their pose estimates, relocalize after track loss, and detect loops. Loop
detection enables V-SLAM algorithms to close trajectory loops, and, consequently, cor-
rect for the accumulated drift, which would otherwise grow unbounded. For this reason,
V-SLAM algorithms can provide accurate navigation data over long duration missions, and
reuse map information for revisiting missions (Burguera Burguera and Bonin-Font, 2019).
The iterative formulation of V-SLAM algorithms does, however, make them susceptible to



robustness issues. Some common robustness issues are high failure rates, inability to scale
and perform mapping over extended periods, and performance only being representative
in a limited set of environments. The effort and need to develop V-SLAM algorithms that
can handle these robustness issues have, in fact, named the current V-SLAM research era
the robust-perception age (Cadena et al., 2016).

Adaptation of underwater V-SLAM algorithm is, in general, low, when compared to ter-
restrial, urban, and aerial applications. A reason for this low adaptation is the lack of
suitable datasets, since most V-SLAM algorithms require high frequency visual data, as
well as camera calibration data (Ferrera et al., 2019). Moreover, the underwater environ-
ment is, in the context of V-SLAM, considered to be a harsh environment, mainly due
to the optical properties of the water and its constitutes (Kim and Eustice, 2013). Light
attenuation reduces the visual range, as well as the contrast and signal to noise ratio (SNR)
of the acquired images, forward scattering causes objects to appear blurry, and backscatter
reduces the dynamic range of cameras. In underwater photogrammetry, a common way
of compensating for these optical phenomena, is to employ image processing methods,
also referred to as underwater image enhancement methods. Research within the field of
underwater image enhancement has, however, primarily been driven by color correction
for photography and 3D reconstruction applications (Jian et al., 2021), with only a limited
number of studies investigating image processing methods in the context of underwater
V-SLAM (Aulinas et al., 2011). For this reason, there is a need to investigate image pro-
cessing methods that can improve the robustness of underwater V-SLAM.

1.2 Objective
The objective of this project is to investigate the validity of adapting V-SLAM algorithms
for underwater navigation. In this regard, factors that have a significant contribution on the
robustness and drift of underwater V-SLAM algorithms, should be identified. Moreover,
image processing methods that can compensate for underwater optical effects, and in-
crease the robustness and decrease the drift of underwater V-SLAM algorithms, should be
investigated. Additionally, the validity of established models and subroutines of V-SLAM
algorithms should be evaluated for underwater applications.

1.3 Scope
In order to achieve the above objectives, several tasks have to performed:

• Review of relevant theory on underwater image formation, photogrammetric camera
modelling and -stereo vision, as well as V-SLAM.

• Collect in situ stereo footage and navigation data to get a realistic and suitable data
foundation for V-SLAM.

• Perform an underwater camera calibration of the stereo camera to identify a suitable
camera model.
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• Process the navigation data to create a ground truth reference, which can be used to
evaluate the accuracy and drift of the V-SLAM algorithm OpenVSLAM.

• Implement a variety of image processing methods in the OpenVSLAM algorithm.
Evaluate the effect of the image processing methods on underwater images.

• Evaluate how the image processing methods affect OpenVSLAM in terms of robust-
ness and drift. Additionally, evaluate some of the underlying models and subroutines
of OpenVSLAM.

1.4 Delimitations
V-SLAM algorithms are complex software systems that require extensive effort to develop
and improve upon. For this reason, this project does not attempt to modify or improve upon
OpenVSLAM, except for implementations of image processing methods in the tracking
module of the algorithm.

1.5 Outline
This project is structured in five chapters. In Chapter 1 the background and outline for
the project is presented. In Chapter 2 relevant literature background on underwater image
formation, photogrammetric camera modelling, photogrammetric stereo vision, and V-
SLAM is provided to give a theoretical foundation for the discussion of the results. In
Chapter 3 the methodology that has been used to meet the project’s objective is outlined,
while Chapter 4 presents and discusses the results of project. Chapter 5 summarizes the
results of the project and concludes on the project objective.
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Chapter 2
Literature Background

Chapter 2 is in large part a continuation of the work from the project thesis, which was
conducted during the autumn of 2020 (Larsen, 2020a). Section 2.2 has been reframed
from underwater hyperspectral imaging to underwater image formation, while Section 2.3
remains largely unchanged. Section 2.4 has been supplemented with more information on
the state of the art (SOTA) deep learning (DL) stereo vision approaches. Except from the
very basic on the simultaneous localization and mapping (SLAM) problem formulation
and the full SLAM standard model, Section 2.5 is exclusively the work of this project.

2.1 Notation and Coordinate Systems

2.1.1 Notation
In this project, a quite verbose notation is used for transformations, due to large number of
coordinate systems (CSs), evident from Section 2.1.2. For example, transformation of the
vector x from coordinate system b to coordinate system a is expressed as

ax = a
bH

bx, (2.1)

where bx is the representation of the vector x in coordinate system b, ax is the representa-
tion in coordinate system a, and a

bH is the transformation from b to a. Within the sections
on photogrammetry, homogeneous coordinates are utilized extensively. The notation for a
vector and its corresponding homogeneous representation is

x =

xy
z

 , x̃ =


wx
wy
wz
w

 , (2.2)



where x is the vector and x̃ is its homogeneous representation. Transformations in homo-
geneous spaces follow a similar notation as H̃.

2.1.2 Coordinate Systems
This project works both within the fields of kinematics and photogrammetry, and therefore
the total number of relevant CSs is relatively high. The definitions of the relevant CSs
utilized within this project are listed below and the vector notation for the CSs are shown
in Table 2.1.

Coordinate System Vector Notation
World CS wx
Body CS bx
Object CS ox
Camera CS cx
Image Plane CS ix
Image Sensor CS sx

Table 2.1: Coordinate system vector notations.

World Coordinate System

For this project, the world coordinate system (CS) is a north-east-down (NED) coordinate
system defined by the UTM datum in zone 32 on the northern hemisphere. The world CS
is used to express absolute positions and orientations from the navigation system of the
remotely operated vehicle (ROV) SUB-Fighter 30K, as well as georeferenced V-SLAM
output.

Body Coordinate System

For this project, the body CS is defined to be a 3D CS positioned in the center of the
APS transponder on the ROV, with the x-axis pointing forward, the y-axis pointing to the
starboard, and the z-axis pointing downward.

Object Coordinate System

The object CS is a 3D CS that is used as a local coordinate system in order to express the
relative position and orientation of objects. The coordinate system is, for this project, used
extensively in the context of V-SLAM, where the origin is defined as the camera position
of the first keyframe.

Camera Coordinate System

The camera CS is a 3D CS that is used to describe the position and orientation of objects
relative to projection center and field of view (FOV) of the camera. The origin of the
camera CS is located in the projection center of the camera at any time, with its z-axis
aligned with the optical axis of the camera.
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Image Plane Coordinate System

The image plane CS is a 2D CS that is used to describe the projections of points onto the
camera focal plane. The origin of the image plane CS is placed in the principal point of
the camera, with the x- and y-axis lying in the camera focal plane.

Image Sensor Coordinate System

The image sensor CS is a 2D CS that is used to describe the projections of points into
the camera image sensor. The origin of the image sensor CS origin is defined to be in the
corner of the image sensor, with the x- and y-axis parallel to the axes of the image sensor.

2.2 Underwater Image Formation

2.2.1 Natural Waters and Optically Significant Constitutes

The underwater optical environment is complex, with a vast spectrum of organisms and
inorganic substances interacting with the light through absorption and scattering (Mobley,
1994). Compared to the atmosphere, water bodies are composed of extreme variations
of optically significant constitutes (OSCs), which vary with geographic location, season,
and numerous other factors (Wozniak and Dera, 2007, p. 1-7). Some commonly referred
OSCs are; 1) colored dissolved organic matter, and 2) suspended particulate matter. Water
bodies and their wide array of OSCs, display a large variety of optical properties, and are
collectively referred to as natural waters (Watson and Zielinski, 2013, p. 3-4).

Unlike the atmosphere, natural waters exhibit wavelength dependent attenuation, which
causes them to have widely differently color. This wavelength dependency mainly stems
from absorption, which is negligible in the atmosphere (Kokhanovsky, 2004; Solonenko
and Mobley, 2015). The large color variation of natural waters has been the motivation
behind qualitative optical classification, such as the classical Forel-Ule color scale and the
more modern Jerlov water types (Jerlov, 1968).

2.2.2 Radiant Transfer in Scattering Media

Conservation of radiant energy travelling a path length r in an absorbing and scattering
medium, like sea water, is expressed as

Φi(λ) = Φa(λ) + Φs(λ) + Φt(λ), (2.3)

where λ is the light’s wavelength, Φi(λ) is the incident radiant power, Φa(λ) is the ab-
sorbed radiant power, Φs(λ) is the radiant power scattered in all directions, and Φt(λ)
is the transmitted radiant power with the same direction as the incident direction, illus-
trated in Figure 2.1 (Watson and Zielinski, 2013, p. 6-7). By using the radiant powers in
Equation 2.3, the beam absorption coefficient a(λ) is defined as
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Figure 2.1: Illustration of the radiant power balance in a scattering medium. Note the difference in
notation from this project. Courtesy: Watson and Zielinski (2013)

a(λ) ≡ lim
∆r→0

Φa(λ)

Φi(λ)∆r
, (2.4)

where ∆r is the infinitesimal path length that the light travels through. Similarly, the
volume scattering function (VSF), β(ψ, λ), is defined as

β(ψ, λ) ≡ lim
∆r→0

lim
∆Ω→0

Φs(ψ, λ)

Φi(λ)∆r∆Ω
, (2.5)

where Ω is the solid angle of the scattering cone centered around the scattering angle, ψ,
the angle between the incident light direction and the scattered light direction. The VSF
is the fundamental property for scattering, and can be used to derive all other scattering
properties. For instance, the beam scattering coefficient b(λ), the forward scattering coef-
ficient bf (λ), and the backward scattering coefficient bb(λ) (Watson and Zielinski, 2013,
p. 7) are defined in terms of the VSF as

b(λ) = bf (λ) + bb(λ) = 2π

∫ π/2

0

β(ψ, λ)sin(ψ)dψ + 2π

∫ π

π/2

β(ψ, λ)sin(ψ)dψ. (2.6)

Attenuation of a beam of radiant energy as it propagates directly from an object to an
observer, is described through the beam attenuation coefficient c(λ), defined in terms of
the beam absorption coefficient a(λ) and the beam scattering coefficient b(λ) as
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c(λ) ≡ a(λ) + b(λ). (2.7)

The beam attenuation coefficient c(λ), the beam absorption coefficient a(λ), the beam
scattering coefficient b(λ), and the VSF are so-called inherent optical properties (IOPs),
i.e. properties that are independent of the incident light field and only dependent on the
light-carrying medium itself. Opposed to the IOPs are the apparent optical properties
(AOPs), which do depend on the incident light field. The AOPs are, in general, easier
to measure than the IOPs. The dependence on the incident light field do, however, make
them more susceptible to variations caused by lamp setup, time of day, weather conditions,
etc. An AOP example is the diffuse attenuation coefficient for spectral downwelling plane
irradiance, Kd(λ), defined as

Kd(λ) = −d(ln(Ed(λ)))

dz
, (2.8)

where Ed(λ) is the downward irradiance (Mobley, 1994, p. 70). Due to relatively low
sensitivity to changes in illumination, the diffuse attenuation coefficient has been used
extensively as a proxy for optical classification of natural waters.

Consider the scenario of an observer observing an object through a light-scattering media
with ambient lighting. In this scenario, the radiance observed by the observer is governed
by the general radiant transfer equation (RTE) (Mobley, 1994, p. 257), accounting for
time-variants, in-homogeneities, and three-dimensional behaviour. Due to its general and
complex form, the RTE is impractical and often replaced with the classical canonical RTE
for a homogeneous, time-invariant, and source-free media, given by

L(z,d, λ) =L0(z0,d, λ)e−c(λ)r︸ ︷︷ ︸
Object radiance

+
Ls(z,d, λ)e−Kd(λ)cos(φ)r

c(λ)−Kd(λ)cos(φ)

[
1− e−[c(λ)−Kd(λ)cos(φ)]r

]
︸ ︷︷ ︸

Path radiance

,
(2.9)

whereL(z,d, λ) is the observed radiant energy reaching an underwater observer,L0(z0,d, λ)
is the radiant energy leaving an observed object, d is a direction in three-dimensional
space, r is the path length along d, z is the depth, λ is the wavelength, and φ is the nadir
angle. The nadir angle is by oceanographic convention defined as positive looking down-
ward. Ls(z,d, λ) is the radiant path function, which describes the radiant energy gained
along d due to scattering from all directions (Mobley, 1994, p. 260). In the horizontal
scenario, i.e. φ = π/2 and z = z0, Equation 2.9 simplifies to

L(z,d, λ) = L0(z0,d, λ)e−c(λ)r +
Ls(z,d, λ)

c(λ)

[
1− e−c(λ)r

]
, (2.10)
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which does not depend on two attenuation coefficients, but only on the beam attenuation
coefficient. A simplification in Equation 2.9 that is worth noting, is that the in-scattering
radiance, also referred to as the forward scattering, has been omitted (Akkaynak and Treib-
itz, 2018). However, this simplification is justifiable for underwater imagery, as the for-
ward scattering component is, in general, negligible compared to the direct signal, and
therefore has a small contribution to image degradation (Schechner and Karpel, 2004).

2.2.3 Backscatter
In the case of ambient lighting propagating through a scattering medium, and that the
scattered light is attenuated exponentially according to Beer-Lamberts attenuation law, the
backscattered signal B is given as

B(r, λ) =
b(λ)E(z, λ)

c(λ)

(
1− e−c(λ)r

)
= B∞(λ)

(
1− e−c(λ)r

)
, (2.11)

whereE is the ambient irradiance at depth z, andB∞ is the backscattered signal at infinite
distance, also referred to as veiling light (He et al., 2009; Akkaynak et al., 2017). The total
signal T at an observer in this case is

T (z, λ) = E(z, λ)e−c(λ)r +B∞(λ)
(

1− e−c(λ)r
)
, (2.12)

where the first term is the attenuated direct signal and the second term is the attenuated
backscattered signal (Akkaynak and Treibitz, 2018).

2.2.4 Image Formation Models
The traditional image formation model for underwater red-green-blue (RGB) images with
ambient illumination is based on the signal model in Equation 2.12, and the assumption
that the camera response S(λ) are delta functions, or that attenuation is wavelength inde-
pendent. The traditional RGB image formation model can be expressed as

Ik = Jk · e−ckr +B∞k ·
(

1− e−ckr
)
, k ∈ {R, G, B}, (2.13)

where Ik is the image intensity, Jk is unattenuated image intensity, and ck is the wideband
attenuation coefficient for image channel k (Berman et al., 2016). The invalid assumptions
of the camera response, and the wavelength independent attenuation is believed to be one
of the reasons for instabilities in traditional underwater image correction methods. The
revised underwater image formation model, given as

Ik = Jke
−cDk (·)r +B∞k

(
1− e−cBk (·)r

)
, k ∈ {R, G, B}, (2.14)

seeks to improve upon these shortcomings by adopting two separate attenuation coeffi-
cients to encompass the different wavelength dependency of the direct and backscattered
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signal (Akkaynak and Treibitz, 2018). In this model, the direct attenuation coefficient
cDk (·) and backscatter attenuation coefficient cBk (·) are functions of the path length r, the
scene reflectance R, the ambient lighting E, the sensor response Sk, the scattering coeffi-
cient b, and the attenuation coefficient c, i.e.

cDk (·) = cDk (r,R,E, Sk, c), k ∈ {R, G, B}, (2.15a)

cBk (·) = cBk (E,Sk, b, c), k ∈ {R, G, B}. (2.15b)

The revised image formation model in Equation 2.14 is the underlying model of the SOTA
underwater image correction algorithm Sea-Thru (Akkaynak and Treibitz, 2019).

2.2.5 Light Refraction
Refraction is a scattering mechanism which occurs when the refractive index of the light-
carrying medium changes. Underwater, the mechanism occurs when small fluctuations
in the sea water changes the refractive index, also known as Einstein-Smoluchowski scat-
tering, and when light passes through medium interfaces, such as housing ports (Mobley,
1994, p. 102-105). The effects of light beam refraction at interfaces are changes in the
perceived size of objects, as well as the perceived relative direction between the objects
and the observer, as seen in Figure 2.2. One of the fundamental equations for modelling
of light beam refraction at interfaces is Snell’s law (Hecht, 2017, p. 109). Within the plane
of the incident light beam, known as the plane of incidence (POI), Snell’s law is given as

sin(θi)

sin(θt)
=
µt
µi

=
νi
νt
, (2.16)

where θi and θt are angles between the light beam and the interface normal in the POI, µi
and µt are the indices of refraction, and νi and νt are the speed of light in the incident-
and transmitting medium, respectively. Outside the POI, in three-dimensional coordinates,
Snell’s law can be written in vector form as

dt =
µi
µt

(
n× (−n× di)

)
− n

√
1−

(
µi
µt

)2

(n× di)(n× di), (2.17)

where di and dt are the incident- and transmitted direction of the light beam, and n is
the unit normal of the interface. Several physical-based refraction models for underwa-
ter optical sensors have been developed based on Equation 2.16 and Equation 2.17, such
as the Pinax model, and the refractive single viewpoint (SVP) model (Łuczyński et al.,
2017; Telem and Filin, 2010). Additionally, studies have analysed the systematic errors
introduced by excluding interface refraction when performing 3D reconstruction based on
underwater imagery (Sedlazeck and Koch, 2012). The disadvantages of refractive camera
models are, however, the need to measure or estimate the refractive indices of the light-
carrying media, µi, as well as having an accurate parametrization of the interfaces through
the normal vectors n.
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Figure 2.2: Ray diagrams for different housing configurations. Courtesy: Jordt (2014)

2.3 Photogrammetric Camera Modelling

A large portion of the material in this section has been found in Förstner and Wrobel
(2016). For simplicity, the reader is referred to section 5.1-5.4 (Förstner and Wrobel,
2016, p.195-242) for the background material on homogeneous representation, and sec-
tion 12.1.1-12.1.5 (Förstner and Wrobel, 2016, p.456-479) for the background material on
camera modelling.

2.3.1 The General Camera Model

A camera can be modelled as a projective measurement device which maps a 3D point or
landmark, om, into a 2D point, or pixel, measurement on the image sensor, sz, through
some projection function, π(·), with additive zero mean Gaussian noise, n. In mathemat-
ical terms, this can be expressed as

sz = π(cm) + n = π(ox ◦ om) + n, n ∼ N (0,Σ), (2.18)

where ox is the pose (position and attitude) of the camera, cm is the 3D point expressed
in the camera coordinate system, and Σ is the measurement noise covariance. The expres-
sion ox ◦ om is the general expression for the transformation from the object CS to the
camera CS, which varies depending on the attitude representation of the camera. Due to
the stochastic measurement noise, inversion of Equation 2.18 leads to an expected value
for the 3D point in the camera CS

cm̂ = E[cm] = γ · π−1(sz), (2.19)

where γ is the scale of the projection, which is unobservable from a single observation,
and π−1(sz) is the direction from the origin of the camera CS to the estimate of the 3D
point, cm̂.
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Figure 2.3: The perspective single viewpoint camera model. Note the difference in notation from
this project. Courtesy: Förstner and Wrobel (2016)

2.3.2 The Perspective Single Viewpoint Camera Model
The general expression for the transformation from the object CS to the image sensor CS
can, in homogeneous coordinates, be expressed as

sz̃ =

sxsy
1

 =
s

iH̃
i

cP̃
c

oH̃


ox
oy
oz
1

 =
s

iH̃
i

cP̃
c

oH̃
om̃, (2.20)

where om̃ is the homogeneous representation of a 3D landmark in the object CS, sz̃ is
the homogeneous representation of the corresponding 2D point in the sensor CS.

c

oH̃ is
the transform from the object CS to the camera CS,

i

cP̃ is the projection from camera CS
onto the image plane CS, and

s

iH̃ is the transformation from the image plane CS to the
sensor CS. According to the linear perspective SVP camera model, the transformation in
Equation 2.20 can, in homogeneous coordinates, be expressed as

sz̃ = π(ox ◦ om̃) =
s

cK̃
c
oR
[
I3×3

c
ot
]
om̃ =

s

oP̃
om̃, (2.21)

where
s

cK̃ is the linear camera matrix, coR is the rotation from the object CS to the camera
CS, and c

ot is the translation from the object CS to the camera CS. Equation 2.21 is known
as the direct linear transform and encodes the entire transformation from the object CS to
the image sensor CS as one linear matrix multiplication. The linear camera matrix,

s

cK̃,
consists of a linear projection and an affine transformation and can be expressed as

s

cK̃ =
s

iH̃
i

cP̃ =

1 s cx
0 1 +m cy
0 0 1

f 0 0
0 f 0
0 0 1

 =

fx s cx
0 fy cy
0 0 1

 , (2.22)
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where s is the image sensor shear coefficient, m is the image sensor scale coefficient, f is
the focal length, and cx and cy are the x- and y-coordinates of the principal point. The pa-
rameters defining the linear camera matrix in Equation 2.22 are referred to as the intrinsic
parameters, while the parameters defining the rotation and translation in Equation 2.21 are
known as the extrinsic parameters.

2.3.3 Nonlinear Corrections
The linear perspective SVP camera model introduced in Section 2.3.2 is not able to model
nonlinear effects. A common approach for dealing with nonlinearities is to add a nonlin-
ear correction to the pixels in the sensor CS, a process known as undistortion. Common
nonlinearities are; 1) distortion introduced by the camera lens, 2) physical imperfections
of the camera lens, 3) planarity imperfections of the image sensor, 4) misalignment of the
camera lens with respect to the image sensor. For underwater photogrammetry, nonlin-
ear corrections are commonly utilized to correct for refraction introduced by underwater
housings. Generally, the undistortion of the image pixels can be expressed as

rz = sz + ∆ sz(sz,k), (2.23)

where ∆ sz is the nonlinear correction defined in terms of the image sensor coordinate sz
and some parameters k. One correction method for lens distortion is the Brown radial dis-
tortion model (Brown, 1971). The distortion is modelled as an even-powered polynomial

∆ szradial(
sz,
[
k1, k2, k3

]>
) =

[
sx(k1r

2 + k2r
4 + k3r

6)
sy(k1r

2 + k2r
4 + k3r

6)

]
, (2.24)

where the radius in the image censor CS is defined as

r =
√

(sx− cx)2 + (sy − cy)2. (2.25)

Another common type of nonlinear correction is tangential distortion, also referred to as
decentering distortion (Conrady, 1919). Tangential distortion corrects for distortion effects
that are caused by misalignment of the camera lens with respect to the image sensor.
Specifically, tangential distortion accounts for distortion effects that are present when the
camera lens and image sensor are not parallel and is modelled as

∆ sztangential(
sz,
[
p1, p2

]>
) =

[
2p1

sx sy + p2(r2 + 2 sx2)
p1(r2 + 2 sy2) + 2p2

sx sy

]
. (2.26)

2.3.4 Intrinsic Camera Calibration
In order the estimate the parameters of the linear camera matrix in Equation 2.22 as well as
the parameters of the nonlinear corrections, such as the coefficients in Equation 2.24 and
Equation 2.26, an intrinsic calibration of the camera must be performed. Zhang’s method
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is a popular technique for intrinsic calibration due to its flexibility in terms of nonlinearity
modelling (Zhang, 2000). The method is based on a plane calibration target and exploits
a simplification that follows by setting the object CS origin in the corner of the calibration
target and the plane oz = 0 aligned with the calibration target. Under this condition, a
simplified version of Equation 2.21 can be expressed as

sz̃ =

sxsy
1

 =
s

oH̃

oxoy
1

 =
[
h1 h2 h3

] oxoy
1

 =
s

cK̃
[
r1 r2

c
ot
] oxoy

1

 , (2.27)

where r1 and r2 are the two first column vectors of coR. Zhang’s method then exploits the
orthonormal property of r1 and r2, to formulate the constraints

h>1 Gh2 = 0, (2.28a)

h>1 Gh1 − h>2 Gh2 = 0, (2.28b)

where the symmetric, positive definite coefficient matrix G is defined as

G =
( s
cK̃
−1
)> s

cK̃
−1. (2.29)

Zhang’s method finds the coefficient matrix G and, consequently, the linear camera matrix
s

cK̃, by minimizing the constraints in Equation 2.28 through singular value decomposition
(SVD). Since this solution does not include the nonlinear corrections, Zhang’s method
solves a maximum likelihood estimation (MLE) problem, where the previously obtained
linear camera matrix

s

cK̃ and no nonlinear corrections are used as the initial guess. The
optimization problem is formulated as

minimize
s
cK̃,k,

c
oRn,cotn

N∑
n=1

I∑
i=1

∥∥∥szin − π
( s
cK̃,k, coRn,

c
otn,

omi
n

)∥∥∥2

, (2.30)

where
s

cK̃ is the linear camera matrix, k is the parameters defining the nonlinear correc-
tions, coRn and c

otn are the rotation and translation, respectively, between the calibration
target and the camera for image n, and omi

n is the 3D location for landmark i on the
calibration target in image n.

2.4 Photogrammetric Stereo Vision
Similarly to Section 2.3, a large portion of the background material in this section has been
found in Förstner and Wrobel (2016). The reader is referred to section 13.2.2, 13.2.3, and
13.2.5 for the background material on relative orientation of dependent image pairs, and
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section 13.2.4 and 13.4.1 for stereo image pair triangulation (Förstner and Wrobel, 2016,
p.547-606).

For the entirety of this section the relative orientation of image pairs is outlined for the case
of dependent image pairs from two cameras, Camera 1 and Camera 2. The convention of
using the camera CS of Camera 1 as reference and expressing the orientation of Camera 2
relative to it is used.

2.4.1 Relative Orientation of Dependent Image Pairs
Epipolar geometry, illustrated in Figure 2.4, is a mathematical model which describes the
geometric relationship in image pairs. It enables efficient ways of searching for corre-
sponding points between image pairs by reducing the search space from the entire image
domain to a straight line in the ideal case.

Figure 2.4: Epipolar geometry illustration. Note the difference in notation from this project. Cour-
tesy: Förstner and Wrobel (2016)

According to the perspective SVP camera model, introduced in Section 2.3.2, light rays
form straight lines and intersect through the optical center of the camera. As a conse-
quence, the lines from a landmark om to its projected point in the sensor frames of two
cameras, sz1 and sz2, lie in a plane. This is known as the coplanarity constraint and can,
for two uncalibrated cameras, be expressed as

sz̃>1
( s
cK̃
>
1

)−1
S
(

2
1b
)

2
1R
>( s

cK̃2

)−1 sz̃2 ≡ sz̃>1 F̃ sz̃2 = 0, (2.31)

where
s

cK̃1 and
s

cK̃2 are the camera matrices of Camera 1 and Camera 2, respectively,
S(2

1b) is the skew-symmetric matrix of the baseline vector, 2
1R is the rotation matrix from

Camera 1 to Camera 2, and F̃ is the fundamental matrix of the camera pair. In the case for
two calibrated cameras, the coplanarity constraint becomes

cm̃>1 S(2
1b) 2

1R
> cm̃2 ≡ cm̃>1 Ẽ cm̃2 = 0, (2.32)
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where Ẽ is the essential matrix of the camera pair. By comparing Equation 2.31 and
Equation 2.32 one can see that fundamental - and essential matrix can be related by the
following expression

Ẽ =
s

cK̃
>
1 F̃

s

cK̃2. (2.33)

Since the fundamental and essential matrix encodes information about the extrinsic pa-
rameters of the camera pair, i.e. the baseline vector 2

1b and rotation matrix 2
1R, they can be

used as a mean for extrinsic calibration. A direct solution to estimation of the fundamental
is the 8-point algorithm (Longuet-Higgins, 1981). Due to measurement noise and quanti-
zation errors, the coplanarity constraint cannot be satisfied exactly. Therefore, the 8-point
algorithms finds the fundamental matrix by solving the following optimization problem
for N pairs of corresponding image points, sz1,n and sz2,n

minimize
F̃

N∑
n=1

sz1,nF̃ sz2,n, (2.34a)

subject to rank(F̃) = 2. (2.34b)

The optimal solution of Equation 2.34 is found by means of SVD and forcing the smallest
singular value of F̃ to be zero, ensuring that its rank is 2. The procedure for estimating
the essential matrix is simila,r except for an additional constraint that the two non-zero
singular values are identical. In practice, the normalized version of the 8-point algorithm
is more commonly used due to its improved numerical stability (Hartley, 1997). Another
approach for finding the essential matrix is the 5-point algorithm, which is considered the
golden standard in the case of calibrated cameras (Nister, 2004). The algorithm is often
coupled with outlier rejection through random sample consensus (RANSAC) due to its
low amount of needed inliers (Fischler and Bolles, 1981).

2.4.2 Stereo Image Pair Triangulation

Given the relative orientation between two calibrated cameras, triangulation is the problem
of estimating the three-dimensional coordinates of a landmark in the camera frame, cm,
from the corresponding points in two rectified camera images, rz1 and rz2. The stereo
normal case is an idealized case, where the cameras face the same way, the optical axis of
the two cameras are parallel, and the only translation between them is an offset in the x-
direction in the camera CS of Camera 1. By performing stereo image pair rectification, i.e.
projecting the image pair to be in a common plane, the constraints of the stereo normal case
can be satisfied approximately. In the stereo normal case, the epipolar lines are horizontal
lines, and the stereo triangulation problem is given by the stereo intersection theorem as
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(a) (b)

Figure 2.5: Stereo normal case illustration. Note the difference in notation from this project. Cour-
tesy: Förstner and Wrobel (2016)

cx1 = rx1 ·
bx
−px

, (2.35a)

cy1 =
ry1 + ry2

2
· bx−px

, (2.35b)

cz1 = f · bx−px
, (2.35c)

where cx1, cy1 and cz1 are the x-, y- and z-coordinate of a landmark expressed in the
camera frame of Camera 1, bx is the x-component of the baseline vector 2

1b, rx1, ry1,
rx2, and ry2 are the x- and y-coordinate of the pixel points corresponding to the landmark
expressed in the rectified sensor frame of Camera 1 and Camera 2, respectively. The
quantity px is known as the x-disparity or x-parallax, and is defined as

px = rx2 − rx1. (2.36)

By isolating the pixel dependent information in a vector, one can set up a depth mapping
transformation on a per pixel basis. The resulting triangulation method can be expressed
in homogeneous coordinates as

cm̃1 = −px


cx1
cy1
cz1

1

 =


bx 0 0 0
0 bx 0 0
0 0 bxf 0
0 0 0 −1



rx1
ry1

1
px

 =
c

rD̃

[
rz̃1

px

]
, (2.37)

18



where the homogeneous transformation
c

rD̃ is given for a calibrated stereo camera, the
homogeneous rectified image coordinates rz̃1 are given for the first image and the disparity
px is computed from the corresponding point in the second image. Using Gauss’ law of
propagation of uncertainty, the uncertainty of the 3D coordinates of the triangulated point
is given as

σcx =
cz

f
σrx, (2.38a)

σcy =

√
2

2
·
cz

f
σry, (2.38b)

σcz =
cz

px
σpx , (2.38c)

where σrx, σry and σpx are the uncertainties of the rectified image coordinates and the
disparity, respectively. Stereo matching, i.e. the computation of the disparity px, has been
a research topic within the computer vision community for decades. Traditional methods
have solved the stereo matching problem as a multi-stage optimization problem, generally
consisting of four stages; 1) matching cost computation, 2) cost aggregation, 3) disparity
selection, and 4) disparity refinement. These methods rely on matching image patches
by sliding windows along epipolar lines, as well as window filters to reduce pixel match-
ing uncertainty, disparity noise, and disparity discontinuities (Chen et al., 2015; Ma et al.,
2013; Colodro-Conde et al., 2014; Werner et al., 2014). Some of the short-comings of
these traditional multi-stage optimization methods are, generally, trade-off between com-
putational complexity and accuracy, handcrafted image features, and filter parameters that
need to be empirically decided per dataset. Additionally, the accuracy of the traditional
methods suffer in regions of high texture, low texture, and occlusion.

Similarly to a multitude of computer vision tasks, the state-of-the-art in stereo matching
has moved towards deep-learning (DL) methods to compensate for the aforementioned
shortcomings. The first adaptations of DL to the stereo matching problem tended to solve
one of the four stages of the multi-stage optimization, but recently the most successful ap-
proaches have been end-to-end disparity networks, which use DL to estimate the disparity
map directly from rectified stereo image pairs (Laga et al., 2020). Disparity networks do,
in general, consist of a sequence of smaller neural network which solve smaller, specific
tasks. For instance, disparity networks commonly utilize convolutional neural networks
(CNNs) pre-trained on generic image datasets, such as ResNet, for feature extraction (He
et al., 2016). In addition to disparity maps, architectures have also been proposed to esti-
mate semantic and confidence information. An example of this is DispNet3, which jointly
estimates disparity and occlusion maps from rectified image pairs (Ilg et al., 2018). While
supervised learning methods, such as DeepPruner and DLANet, have been a hot research
topics with promising results, current methods are data-greedy and do not train well on
synthetic information (Duggal et al., 2019; Yin et al., 2019). As such, self-supervised
and unsupervised methods, such as SegStereo and UnsupAdpt, respectively, have gotten
more attention in recent years due to the possibility to transfer learning across domains,
especially from synthetic to real world data (Yang et al., 2018; Tonioni et al., 2017).
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2.5 Visual Simultaneous Localization and Mapping

2.5.1 The Full SLAM Problem Formulation
The SLAM problem is formulated as simultaneously estimating a trajectory of poses x1:k

(localization), and a map m of the environment (mapping) from a series of exteroceptive
sensor measurements z1:k, and odometry inputs u1:k. Expressed in a probabilistic manner,
the full SLAM problem can be expressed as finding the probability distribution

p(x1:L,m|z1:L) ∝
( L∏
k=1

p(zk|xk,m)p(xk|uk,xk−1)
)
p(x0,m), (2.39)

where L is a time window over which the SLAM problem should be solved, p(zk|xk,m)
is a stochastic measurement model, p(xk|uk,xk−1) is a stochastic process model, and
p(x0,m) is a prior (Brekke, 2020, p.212). In SLAM, the measurements and map repre-
sentation are, generally, sets. For this project, the measurement set and map set notations
are defined as

zk = {z1
k, ..., z

Nk

k }, m = {m1, ...,mM}, (2.40)

where Nk is the size of the measurement set at timestep k, M is the size of the map, zik is
measurement sample i obtained at timestep k, and mj is landmark j.

2.5.2 The Full SLAM Standard Model
In the standard model for the full SLAM problem, all the probability distributions on the
right-hand side of Equation 2.39 are assumed Gaussian and the map is assumed to be static.
In this case, the negative logarithm of the probability distribution becomes,

−ln
(
p(x1:L,m|z1:L)

)
∝‖η0 − η̂0‖2P0

+

L∑
k=1

∥∥uk − f−1(xk,xk−1)
∥∥2

uΣk

+

L∑
k=1

∑
(i,j)∈Mk

∥∥zik − h(xk,m
j)
∥∥2

zΣik
,

(2.41)

where η̂0 is the prior mean, P0 is the prior covariance, f(xk−1,uk) is the transition func-
tion of the process model, uΣk is the odometry covariance,Mk is a set of matched mea-
surement and landmark indices, zik is a measurement associated with landmark mj from
pose xk with covariance zΣik and h(xk,m

j) is the observation function of the measure-
ment model. Note the notation ‖x− µ‖2P, which is the short-hand notation for the squared
Mahalanobis distance. The squared Mahalanobis distance is defined as

‖x− µ‖2P = (x− µ)>P−1(x− µ), (2.42)
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where x is a random variable with mean µ and covariance P (Brekke, 2020, p. 212). By
minimizing the right-hand side of Equation 2.41 with respect to the pose trajectory x1:L

and the map m, the maximum a posterior (MAP) estimate to the full SLAM problem is
obtained.

2.5.3 Graph Optimization

Figure 2.6: Graph representation for a nonlinear least squares pose optimization problem. Courtesy:
Grisetti et al. (2010)

The SOTA for solving the full SLAM problem is to solve it as a nonlinear, directed
graph optimization problem (Grisetti et al., 2010). Without specifically considering the
full SLAM problem, nonlinear least squares problems, like the minimization of Equa-
tion 2.41, can be represented as a nonlinear, directed graph consisting of vertices vi and
vj , and edges wij connecting them, as illustrated in Figure 2.6. Considering the error
function e(vi,vj ,wij) for a pair of connected edges and a vertex, (i, j), in the graph G,
the error of the graph can be written as

fG(s) =
∑

(i,j)∈G

‖e(vi,vj ,wij)‖2Ω−1
ij

=
∑

(i,j)∈G

‖eij(s)‖2Ω−1
ij
, (2.43)

where Ωij is the error information matrix and s is the state of the graph. Since the error
function is nonlinear, the optimal configuration of the graph, i.e. the vertices and edges
which minimizes the graph error, has to be found through iteration. By considering an
initial graph state š, and small increments around it ∆s, the graph error function can be
approximated as
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fG(š + ∆s) ≈
∑

(i,j)∈G

‖eij(š) + Jij∆s‖2Ω−1
ij

=
∑

(i,j)∈G

[
eij(š)>Ωijeij(š)︸ ︷︷ ︸

cij

+2 eij(š)>ΩijJij︸ ︷︷ ︸
bij

∆s + ∆s> J>ijΩijJij︸ ︷︷ ︸
Aij

∆s
]

= c+ 2b>∆s + ∆s>A∆s,

(2.44)

where Jij is the Jacobian of the error function for edge wij , connecting vertices vi and vj
(Kümmerle et al., 2011). By differentiation of the graph error function fG(·), the optimal
increment, ∆s∗, can be found by solving the linear system

A∆s∗ = −b. (2.45)

By adding the optimal increment ∆s∗ to the initial graph state š, the starting point for the
next iteration of the minimization process is obtained. The Gauss-Newton algorithm is the
classical method for minimizing fG(·), but more modern solvers utilize the Levenberg-
Marquardt algorithm, which is more robust due to the introduction of a damped version of
the linear system

(A + γI)∆s∗ = −b, (2.46)

where γ is a dampening factor that can be set dynamically for each iteration (Levenberg,
1944).

2.5.4 Bundle Adjustment
For V-SLAM, the prior and odometry terms of Equation 2.41 are disregarded, changing
the problem to a MLE problem. Additionally, the observation function h(xk,m

j) is equal
to the camera projection function outlined in Section 2.3.1, the poses xk are equal to the
camera poses, the measurements are equal to 2D points in the camera sensor frame szik,
and the landmarks mi are 3D landmarks backprojected into the object CS, omj . In this
case, the MLE optimization problem becomes

minimize
x1:L,m

L∑
k=1

∑
(i,j)∈Mk

∥∥szik − π(xk,m
j)
∥∥2

zΣik
= ‖eπ,ik‖2zΣik

, (2.47)

where eπ, is the reprojection error, and zΣik is the measurement noise covariance. Equa-
tion 2.47 is known as bundle adjustment (BA) for calibrated cameras (Triggs et al., 2000).
Comparing Equation 2.47 to Equation 2.43, it is evident that BA can be represented as
directed, nonlinear graph where the camera poses xk and landmarks mj are vertices, and
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the associated measurements, szik, are edges. Since the first implementation of BA in
real-time V-SLAM with the ORB-SLAM algorithm, BA has been the golden standard for
graph-based V-SLAM methods (Mur-Artal et al., 2015). In fact, tailor-engineered BA
solvers have been developed specifically for the V-SLAM problem in order to increase
real-time capabilities (Liu et al., 2018).

2.5.5 OpenVSLAM

Figure 2.7: Overview of the OpenVSLAM algorithm architecture. Courtesy: Sumikura et al. (2019)

OpenVSLAM is an open-source V-SLAM framework, which won the ACM Multimedia
2019 Open Source Software Competition (Sumikura et al., 2019). OpenVSLAM is in-
spired by indirect, sparse graph-based V-SLAM algorithms ORB-SLAM, ORB-SLAM2,
ProSLAM, and UcoSLAM (Mur-Artal et al., 2015; Mur-Artal and Tardós, 2017; Schlegel
et al., 2018; Muñoz-Salinas and Medina-Carnicer, 2020). Unlike previous graph-based V-
SLAM algorithms, OpenVSLAM is implemented to be versatile in terms of camera mod-
elling, with implementations of perspective, fisheye, and equirectangular camera models
for monocular, stereo, and red-green-blue-depth (RGBD) setups. OpenVSLAM also al-
lows users to implement custom camera models from templates, a valuable feature in
underwater photogrammetry due to the adaptation of refractive camera models. Addition-
ally, OpenVSLAM provides functionality to save and load the map for offline evaluation
and, potentially, map reuse. By employing the MessagePack serialization format, saved
OpenVSLAM maps can be analyzed in a variety of different programming languages (Fu-
ruhashi, 2019).

The pose representation adapted by OpenVSLAM is a vector consisting of the camera po-
sition in the object CS opk, and the unit quaternion o

cqk representing the rotation from the
camera CS to the object CS. The OpenVSLAM map representation is a set of 3D land-
marks omi represented in the object CS. By adopting the transformation and coordinate
system representation utilized in this project, the pose and map are expressed as

xk =

[
opk
o
cqk

]
, m = {om1, ..., omM}. (2.48)
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The OpenVSLAM architecture can be seen in Figure 2.7, and is roughly divided into three
modules; 1) the tracking module, 2) the mapping module, and 3) the global optimization
module. The tracking module handles frames (single images for monocular, image pairs
for stereo, and image and depth map for RGBD), by performing image processing, fea-
ture detection and description, feature matching, pose estimation, and keyframe creation.
Keyframes are frames which get inserted into the pose-graph, and whose pose has a cer-
tain variation from earlier keyframes. In the mapping modules, triangulated feature points
from keyframes are reprojected into 3D landmarks and inserted into the map, extending
it. Landmarks in close proximity to the last keyframe are refined by performing local BA.
The global optimization module performs loop detection, pose-graph optimization, as well
as refinement of the map by global BA.

Due to the complexity of the OpenVSLAM algorithm, only the most essential subroutines
are covered in detail in this project. Specifically, the feature detection and description, and
pose optimization of the tracking module, local BA of the mapping module, as well as the
loop detection, pose-graph optimization, and global BA of the global optimization module
are covered in more detail.

2.5.6 Feature Detection and Description
OpenVSLAM uses the oriented FAST and rotated BRIEF (ORB) feature for local image
feature detection and description (Rublee et al., 2011). ORB is a combined feature de-
tector and descriptor, utilizing oriented FAST (Rosten et al., 2010) for feature detection
and rotated BRIEF (Calonder et al., 2010) for feature description. FAST performs corner
detection by using a circular ring around a center pixel to perform segment tests. These
segment tests considers various combinations of the states of the pixel in the circular ring.
The state of a pixel j in the circular arc is determined as,

Sj =


−1, Ij − Ic ≤ −κ
0, ‖Ij − Ic‖ < κ

1, Ij − Ic ≥ κ
, (2.49)

where κ is a threshold value, Ij and Ic are intensities for the pixel and central pixel,
respectively. Since FAST generally yields quite large responses at edges and does not
provide a corner measure, the ORB feature detector computes the Harris corner response
at each of the detected points in order to discard edge points (Harris and Stephens, 1988).
Additionally, in order to assess features on multiple scales, ORB employs a image pyramid
to the images. After corner points are detected, ORB computes BRIEF descriptors for the
square image patches around the corner points. The BRIEF descriptor is defined as

fBRIEF(H) =
∑

1≤i≤n

2i−1τ(H; z1,i, z2,i), z1,i, z2,i ∈ H, (2.50a)

τ(H; z1, z2) =

{
1, H(z1) < H(z2)

0, H(z1) ≥ H(z2)
, (2.50b)
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where H is an image patch of size n, τ(·) is a binary test, and z1 and z2 are pixels in
the image patch. In binary form, the BRIEF feature descriptor simply becomes a string of
zeros and ones of length n, where each of the entries is the result from the corresponding
binary test τ(·). Since the BRIEF descriptor only consists of a series of binary test, it is
extremely fast to compute and compare to other descriptors. However, one of the down-
sides of the BRIEF descriptors is that it is not rotational invariant. To account for this, ORB
adopts the rotated BRIEF descriptor, which utilizes the image patch center and centroid to
define the patch orientation.

2.5.7 Pose Optimization
When new frames are inserted into the OpenVSLAM algorithm, the initial pose estimate
is optimized by performing pose-only BA. Specifically, this is performed by solving the
following graph optimization problem

minimize
xk

∑
(i,j)∈Mk

∥∥zik − π(xk,m
j)
∥∥2

zΣij
, (2.51)

where the landmarks are fixed. The pose optimization is performed in order to improve
the tracking-based pose estimate, which is, generally, less accurate and robust than the
BA-based pose estimate.

2.5.8 Local Bundle Adjustment
After the pose of the last frame has been optimized and accepted as a keyframe, local BA
is performed in order to filter out landmark outliers and, consequently, prune the map. The
local BA is

minimize
xk,m

∑
k∈C∗∪K

∑
(i,j)∈Mk

∥∥zik − π(xk,m
j)
∥∥2

zΣij
, (2.52)

where K is the set of keyframes which share landmarks with the newly inserted keyframe,
and C∗ is the covisibility graph nodes connected to the keyframes in K. The covisibility
graph was first introduced by the ORB-SLAM algorithm, and is utilized as an efficient
mean to get covisibility information without having to search the entire graph of poses
(Mur-Artal et al., 2015). The covisibility graph consists of pose vertices and edges between
the poses which have overlapping FOVs.

2.5.9 Loop Detection
To perform loop detection, OpenVSLAM adopts the bag of (visual) words (BOW) frame-
work DBoW2 (Galvez-López and Tardos, 2012). BOW is a method to compactly describe
large sets of images, as well as perform similarity comparisons between images. BOW
does this by discretizing the feature descriptor space into a finite set ofW descriptors. The
set is referred to as a vocabulary, while the feature descriptors in the set are referred to
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Figure 2.8: Illustration of the DBoW2 vocabulary tree, inverse indices, and direct indices. Courtesy:
Galvez-López and Tardos (2012)

as words. This discretization allows an image i to be described as a histogram vector vi,
where the occurrences of each of the visual words in the image are counted. For hierarchi-
cal BOW, the vocabulary is represented as a vocabulary tree, which is calculated off-line
from a training set of images. For each image, features are extracted and the correspond-
ing feature descriptors are calculated. The descriptors are then clustered into kW clusters,
which form the first set of nodes in the tree. This process is repeated for the descriptors
associated with each node to form subsequent levels in the tree, until the tree has W leave
nodes, each representing a visual word. Since frequently recurring words are ill-fit for
discrimination, a weight is usually calculated for each word to emphasis strong discrimi-
nators. A common index for weighting the words is the term frequency-inverse document
frequency (TFIDF),

TFIDFw =
nwi
ni

ln
( N
nw

)
, (2.53)

where nwi is the number of occurrences of word w in image i, ni is the number of words
in image i, nw is the number of images containing word w in the database, and N is the
number of images in the database (Sivic and Zisserman, 2003). To compute the BOW
vector vi of a image i, one simply traverse the feature descriptors through the tree, select
the node which minimizes the Hamming distance at every intermediate level, and keep
count of the leave nodes that the descriptors end up on. When comparing two images, i
and j, by their corresponding BOW vectors, vi and vj , a distance measure such as the
cossine distance, has to be used. The cossine distance between the vectors vi and vj is
defined as

dcos(vi,vj) = 1− cossim(vi,vj) = 1− v>i vj
‖vi‖ ‖vi‖

. (2.54)

To query the database in an efficient manner, DBoW2 keeps an inverse index for each
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word, which yields the images that contain that word, in addition to a direct index for each
image, which yields the words that are in the image.

2.5.10 Pose-Graph Optimization
OpenVSLAM performs pose-graph optimization after a successful loop detection. Pose-
graph optimization corrects for the accumulated drift in the loop by the following BA

minimize
xk

∑
k∈C

∑
(i,j)∈M

∥∥zik − π(xk,m
j)
∥∥2

zΣij
, (2.55)

where C is the covisibility graph for all the poses in the loop. For the pose-graph optimiza-
tion, the two poses which connected the loop are kept fixed.

2.5.11 Global Bundle Adjustment
After having performed pose-graph optimization, OpenVSLAM performs global BA

minimize
x1:L,m

∑
(i,j)∈M

∥∥zik − π(xk,m
j)
∥∥2

zΣij
, (2.56)

which solves BA over the entire trajectory and map. Global BA is performed in order to
refine the map after the accumulated drift has been corrected. By pruning the map for
outliers and correcting for the effect of the loop closure, the global BA ensures that the
map is globally consistent and that the number of landmarks is kept low, which is critical
for the ability to perform long-term mapping.
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Chapter 3
Method

Apart from the technical information and description of the ZED stereo camera, in Sec-
tion 3.1.4, which has been adopted from Larsen (2020a), Chapter 3 is exclusively the work
of this project.

3.1 Vessels, Sensors, and Systems

3.1.1 R/V Gunnerus

Figure 3.1: The NTNU research vessel, R/V Gunnerus. Courtesy: NTNU (2006)

R/V Gunnerus, seen in Figure 3.1, is a medium-sized research vessel, owned and operated
by the Norwegian University of Science and Technology (NTNU) (NTNU, 2006). The
ship is equipped with a large variety of sensors designed for research activities within
the fields of geology, biology, chemistry, archaeology, oceanography, and aquaculture.
As a part of its navigation system, the ship is equipped with a Furuno Navigator GP-



90 system consisting of a global positioning system (GPS) receiver and a display and
processing unit. Additionally, the ship is equipped with a Kongsberg Seapath 300 system,
combining the GPS signals from the Furuno Navigator GP-90 with measurements from a
Kongsberg Seatex motion reference unit (MRU) for attitude, and position estimates. To
provide position measurements to vehicles and equipment deployed under water, the ship
is equipped with a Kongsberg HiPAP 500, a super short base line (SSBL) APS.

3.1.2 ROV SUB-Fighter 30K

Figure 3.2: The SUB-Fighter 30K ROV. Courtesy: NTNU AURLab

The remotely operated vehicle (ROV), SUB-Fighter 30K, is a work class ROV manufac-
tured by the Norwegian technology company Sperre AS (Dukan, 2014). The ROV can
be seen in Figure 3.2. The ROV is equipped with a Kongsberg HPR acoustic transpon-
der, which is coupled with the APS of R/V Gunnerus. In conjunction with the GPS on
board the ship, the APS configuration provides position measurements to the ROV in the
form of latitude, longitude, and depth. In addition to the acoustic transponder, the ROV is
equipped with a set of sensors providing dead reckoning navigation data. Among others, a
XSens MTi-100 inertial measurement unit (IMU), a Teledyne RDI Workhorse Navigator
WHN 1200 Doppler velocity log (DVL), and a Paroscientific Digiquartz pressure sensor.
The XSens MTi-100 IMU contains a gyroscope, a barometer, a magnetometer, and an
accelerometer, providing heading and turn rate, pressure, magnetic field, and linear accel-
eration measurements, respectively. The DVL is mounted downwards, providing velocity
measurements relevant for current estimation and sea bottom detection, as well as altitude
measurements. The Digiquartz pressure sensor provides pressure measurements, which
can be used to estimate the depth of the ROV. In addition to the navigation sensors, the
ROV is equipped with one HD camera, one SD camera, a manipulator arm, two HMI
lamps, and four Halogen lamps, making it suited for intrusive and non-intrusive sea bot-
tom surveys. The technical specification for the various sensors can be found in Appendix
A.

3.1.3 Navigation System Topology
Figure 3.3 shows the navigation system topology of the SUB-Fighter 30K ROV and R/V
Gunnerus. In the topology diagram, the green blocks are system units, the orange are sen-
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Figure 3.3: Navigation system topology and signal flow for the ROV SUB-Fighter 30K and R/V
Gunnerus.

sor systems, the blue are software systems, and the pink are hardware units. On board the
ship, the MRU- and GPS measurements are processed by the Kongsberg Seapath motion
reference system (MRS) to estimate the ship’s position and attitude. The MRS estimates is
used in the APS in order to provide absolute position measurements of the APS transpon-
der on board the ROV. The measurements from the APS, the estimates from the Kongsberg
Seapath system, and the dead reckoning sensor measurements from the ROV are input to
the EIVA NaviPac software, which is run on a laptop in the ROV topside unit. NaviPac
relays a subset of the navigation data to the Helmans overlay system, which displays in-
formation to the ROV operators during operation. NaviPac also relays navigation data to
the LabView control system, which uses the navigation data for both state estimation- and
automatic control of the ROV. The ROV is operated via the command console in the top-
side unit, which is also used to trigger the automatic control functionalities of the control
system.

3.1.4 Stereolabs ZED Stereo Camera
The Stereolabs ZED, seen in Figure 3.4, is an out-of-the-box photogrammetry sensor, that
comes with a wide variety of software applications and a extensive software development
kit (SDK) (Stereolabs, 2021). For instance, the sensor comes with applications for dense
depth estimation, dense spatial mapping, and object detection. For photogrammetry, the
ZED has several advantages, amongst others; 1) the combined casing for the two monoc-
ular cameras, 2) fully digitized camera controls, and 3) streamlining of data acquisition.
The combined casing keeps the relative translation and orientation between the two cam-
eras practically constant and allows the shutters to be synchronized with high precision,
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Figure 3.4: The Stereolabs ZED stereo camera. Courtesy: Stereolabs (2021)

minimizing the relative temporal delay of image pairs. The fully digitized camera controls
yield a flexible way of adjusting the camera resolution, exposure and frame rate, without
the need for physical intervention. Additionally, it allows the sensor to be embedded in
networking middle-wares in order to achieve full remote control of it, a crucial feature in
terms of data validation and - quality. The technical specification of the ZED stereo cam-
era can be found in Table 3.1.

Parameter Specification
Resolution and frequency 2× 2208× 1242 @ 15 fps

2× 1920× 1080 @ 30 fps
2× 1280× 720 @ 60 fps
2× 672× 376 @ 100 fps

Output Format YUV 4:2:2
Field of View Horizontally: 90°

Vertically: 60°
Diagonally: 100°

Image Sensor 1/3" 4MP CMOS
Active Array Size 2688× 1520 pixels per sensor (4MP)
Focal Length 2.8 mm - f/2.0
Shutter Electronic synchronized rolling shutter
Baseline 120 mm
Depth Range 0.5 - 25 m
Dimensions 175 x 30 x 33 mm

Table 3.1: Technical Specification for the Stereolabs ZED stereo camera. Courtesy: Stereolabs
(2018)

3.1.5 Camera Setup and Software Topology
Since commercial underwater housing are not readily available for the ZED stereo camera,
a custom underwater housing was set up for this project. The housing consisted of a 4 inch
cylindrical acrylic tube, with the stereo camera and a NVidia Jetson TX2 microcomputer
mounted inside, seen in Figure 3.5. The ZED SDK and the Sennet software (Larsen,
2020b) was installed on the Jetson TX2. The ZED SDK allowed Stereolabs software
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Figure 3.5: The cylindrical underwater housing containing the ZED stereo camera.

solutions, like GPU-accelerated data compression, and automatic exposure control, to be
used during data acquisition. The Sennet framework provided a network module with TCP
servers and clients, a OpenGL graphics renderer, and a ImGui graphical user interface. The
Jetson TX2 hosted a server, which received camera commands and camera settings from
a client, hosted on a topside laptop. The client received image pairs extracted from the
stereo camera by the server. The transmitted image pairs were rendered to the display by
the renderer running in conjunction with the client on the topside laptop. The setup, seen
in Figure 3.6, allowed the stereo camera to be remotely operated, while getting real-time
visualization of the acquired image pairs.

Topside L aptop

Underwater Housing

Stereo Camera NVidia Jetson TX2

ZED SDK
Sennet  Network 

Server
Display

Sennet  Network 
Client

Intermediate- level 
Sensor Cont rol
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Renderer

Sennet  GUI

Sennet  Core

Figure 3.6: Camera setup and software topology for the ZED stereo camera.

3.2 Ekne Wreck Site Survey
The M/S Helma wreck site is located north west of Ekne in the Trondheim fjord, Norway,
at depths ranging from 55 to 60 meters below sea surface. A map showing the location of
the wreck site, and relevant bathymetric information can be seen in Figure 3.7. The wreck
site was discovered by the Applied Underwater Robotics Laboratory (AURLab) research
group at NTNU during a sea bottom survey in 2014, and was later studied with a multi-
beam echo sounder, a side-scan sonar, and a stereo camera mounted on a ROV in April
2019 (King, 2020). According to historical data, the overall dimensions of the hull of M/S
Helma were roughly 37.9× 8.4× 4.0 meters.

The 22nd of January 2021, NTNU AURLab conducted a site survey of the M/S Helma
wreck site with R/V Gunnerus and the SUB-Fighter 30K ROV. Due to technical difficul-
ties, the ROV control system did not function properly, consequently, the auto function-
alities of the ROV were not available throughout the survey. The survey consisted of two
dives with the ROV, referred to as Dive 1 and Dive 2. Dive 1 and Dive 2 elapsed for
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Figure 3.7: Survey map of the Ekne wreck site, created in QGIS. Map data courtesy: Kartverket
(2020)

roughly 22 and 21 minutes, respectively. The survey focused on mapping the wreck site
with optical sensors, mainly for the purpose of photogrammetry. The relevant payload
sensors for the survey were the Stereolabs ZED stereo camera, an Ecotone scientific un-
derwater hyperspectral imager, a omnidirectional camera, and a GoPro. For the majority
of the survey, the stereo camera settings shown in Table 3.2 were used.

Setting Value
Resolution 2× 1920× 1080 pixels
Target FPS 30

Self-calibration Off
Brightness 4
Contrast 4

Hue 0
Saturation 4
Sharpness 3
Gamma 5

Exposure Auto
Whitebalance Auto

Table 3.2: Stereolabs ZED stereo camera settings for the Ekne wreck site survey.

For Dive 1, the omnidirectional camera was detached from the ROV as a calibration target,
held by the manipulator arm, caused spatial constraints. Dive 1 consisted of general site
orientation, followed by four transect lines across the midship of the wreck. The location
of the transect lines were selected due to the relatively low vertical variation of the wreck,
which allowed for navigation at altitudes ranging from one to two meters. This was critical
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in order to minimize the effect of light beam attenuation and ensure a good signal to noise
ratio for the optical sensors, especially the underwater hyperspectral imager. At the end
of Dive 1, the calibration target was deployed in close proximity to the wreck site. The
calibration target consisted of a planar checkerboard pattern, with 30×30 millimeters tiles,
for geometrical calibration, as well as a sanded polystyrene plate, for spectral referencing.
The ROV hovered over the calibration target, trying to capture it from various directions
in the stereo camera images, and flew over it in order to capture it with the underwater
hyperspectral imager.

For Dive 2, the omnidirectional camera was attached to the ROV, in addition to the other
optical sensors utilized during Dive 1. The goal of Dive 2 was to cover as much of the
wreck site as possible, especially the geometrically complex parts of the wreck, near the
bow and stern. The larger vertical variations at these parts rendered navigation more diffi-
cult. Consequently, the altitude of the ROV changed more dramatically and the signal of
the optical sensors were more prone to light beam attenuation, compared to Dive 1.

3.3 Camera Calibration Experiments
When performing geometrical calibration of a camera, capturing the calibration target at
the edges of the image is important due to the stronger lens distortion in this region. For
stereo image pairs, the calibration target has to be captured in both images in order to per-
form extrinsic calibration. Additionally, for underwater images, capturing the calibration
target from various angles is important to reduce the correlation between different camera
parameters, especially when the effects of refraction are not explicitly modelled (Shortis,
2015).

An initial attempt was made to calibrate the camera based on the image pairs of the cali-
bration target deployed at the Ekne wreck site. However, a combination of the calibration
target being placed on the flat seafloor, the 45 degree inclination angle of the stereo cam-
era, and the roll and pitch stability of the ROV, made it hard to satisfy the aforementioned
criteria. Additionally, the illumination from the HMI lamps, in combination with forward
scattering in the water, caused a significant amount of glare and blur, reducing the dynamic
range and contrast of image pairs of the calibration target.

In order to provide a better data foundation for calibrating the stereo camera, two auxiliary
experiments were conducted in the main tank at Trondheim Biological Station (TBS), a
NTNU facility for marine biology. One dataset was collect for each of the experiments,
referred to as Calibration Dataset 1 and Calibration Dataset 2. During the experiments,
the tank contained sea water from a depth of 100 meters in the Trondheim fjord, which
was believed to be a suitable proxy for the waters at the Ekne wreck site with regards
to the optical properties outlined in Section 2.2. For the experiments, the stereo camera
was configured with the setup seen in Figure 3.6, with the underwater housing suspended
underneath the tank footbridge. A geometrical calibration target, consisting of a checker-
board pattern with 40 × 40 mm tiles, was attached to a pole and submerged in front of
the stereo camera, at a distance of roughly 2 meters. The calibration target was moved
throughout the field of view, especially along the edges, while making sure it was visible
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by both cameras. The camera settings utilized during the experiments were the same as
the ones utilized during the Ekne survey, seen in Table 3.2.

3.4 Camera Calibration
In order to identify the parameters of the linear perspective SVP camera model, the non-
linear corrections, and the relative orientation of the individual cameras of the ZED stereo
camera, i.e. the parameters of Equation 2.22, Equation 2.24, Equation 2.26, and Equa-
tion 2.32, respectively, a camera calibration was performed. The calibration was based on
the image pairs from the TBS calibration experiment. The camera calibration was con-
ducted with Matlab’s camera calibration toolbox, which is based on Zhang’s method for
intrinsic calibration and the 8-point algorithm for extrinsic calibration (Bouguet, 2015).
For the camera calibration, the image pairs were selected such that the calibration target
was exposed throughout a large portion of the FOV, and at various orientations, for the
two cameras. This was done in order to more accurately capture the nonlinear distor-
tion effects, introduced both by the housing interface and camera lenses, as well as add
constraints to the MLE optimization procedure in Zhang’s method (Zhang, 2000).

Due to the fixed baseline of the ZED stereo camera, the extrinsic parameters from an in-air
calibration of the camera were used as validation references for the extrinsic parameters
obtained from the in-water calibration. The calibration procedure was conducted by elim-
inating one image pair at a time, re-calibrating the cameras, and validating the obtained
extrinsic parameters, until a low mean reprojection error and physically meaningful extrin-
sic parameters were obtained. Generally, image pairs with large reprojection errors, large
differences in the mean reprojection error between the two cameras, and similar calibra-
tion target placements were eliminated. This calibration procedure was conducted for four
different models, i.e. the perspective SVP camera model with two- and three coefficient
radial distortion, with and without two coefficient tangential distortion.

3.5 Navigation Data Processing
To establish a comparative basis for the pose estimates produced by OpenVSLAM, the
ROV navigation data from the Ekne survey was processed by means of outlier rejection
and noise filtering. Due to technical issues with the ROV control system, the navigation
data was not properly logged internally, and had to be extracted from the EIVA Navipack
GND log files. For this reason, only a subset of the navigation data was available for post-
processing. Specifically, the available navigation data were ROV position measurements
from the R/V Gunnerus HiPAP APS, gyroscope roll, pitch, and yaw measurements, pres-
sure sensor depth measurements, and DVL altitude measurements from the ROV’s internal
control system.

The navigation data was first inspected in order to identify the need for outlier rejection.
Based on this inspection, it was established that the APS signals were the only ones that
contained samples which could be considered outliers, with sporadic single position mea-
surements one to ten meters away from the measurement tendency. In order to eliminate
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the outliers, two rolling window threshold (RWT) filters were applied to the APS signals,
one for the planar components and one for the depth component. In mathematical terms,
the filters are defined as

µN − tP · σN < N < µN + tP · σN , (3.1a)

µE − tP · σE < E < µE + tP · σE , (3.1b)

µD − tD · σD < D < µD + tD · σD, (3.1c)

where µN , µE , µD, and σN , σE , and σD are the mean and standard deviation of the APS
signals within the rolling window, and tP , and tD are the planar and depth thresholds.
Samples outside the intervals are rejected as outliers and replaced by the window mean
values. The RWT filters were tuned through trial and error, until the measurement samples
considered to be outliers during the initial inspection were rejected with a minimal amount
of false positives.

In order to filter out high-frequency components from the navigation data, considered to
be measurement noise, Hamming-windowed finite impulse response (FIR) low-pass filters
were applied to the signals (Oppenheim, 1983, p. 256). The Hamming-windowed FIR
low-pass filter is defined as

x̂n =

N∑
i=0

(
0.54− 0.46cos

(
2πi

N

))(
2fcsinc

(
2fci

))
xn−i, (3.2)

where fc is the filter cutoff frequency, andN is the filter order. To compensate for the time
delay introduced by the FIR filter, the timestamps of the filtered signal were shifted by the
analytical expression for the FIR filter time delay as

tn = tn,FIR −∆tFIR, (3.3)

where the time delay ∆tFIR is given as

∆tFIR =
1

2

N − 1

fs
. (3.4)

One FIR filter was tuned for each of the navigation data sensor systems through trial and
error. The filters were tuned until the filtered signals became satisfyingly smooth, without
loosing the dominant tendencies in the original signal. To avoid aliasing in the filtered
signal, the cutoff frequency was kept strictly below the Nyquist frequency throughout the
entire tuning process, i.e.

fc < fNQ =
1

2
fs. (3.5)
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3.6 Data Synchronization

(a) (b)

Figure 3.8: Images of a synchronization event, a) the ROV driver camera image, b) the left image
from the stereo camera.

Since the Jetson TX2 was not connected to the ROV NTP server during the Ekne survey,
the ROV navigation data and the ZED stereo camera footage was not synchronized. To
perform a crude synchronization, the footage from the ROV operator camera was inspected
alongside the ZED stereo camera footage in order the find a correspondence between the
clock of the NTP server and the TX2. 20 easily recognizable events, such as the one seen
in Figure 3.8, were identified in the footage from the two cameras, 7 events from Dive 1
and 13 events from Dive 2. For each of these events, the timestamp of the ZED image
pairs were extracted from the ZED SDK, while the NTP server timestamps were extracted
from overlay of the ROV camera footage, under the assumption that the time delay of the
overlay was negligible. The precision of the timestamps of the ROV overlay was only
set to seconds. In order to get sub-second precision, the ROV camera footage timestamps
were linearly interpolated between frames. Initially, the timestamps were synchronized
by adding a constant bias to the TX2 timestamps, under the assumption the drift in the
two CPU clocks would be negligible throughout the two dives. In later analyses, when
comparing the V-SLAM trajectories to the navigation data, this methodology was found
too inaccurate. Consequently, in addition to the mean bias, a bias correction was added
on a per trajectory basis, as a tuning parameter. Following this methodology, the synchro-
nization process can be expressed as

tTX2
k,d ← tTX2

k,d + t̄d + ∆t̄s, k ∈ K, s ∈ S, d ∈ {1, 2}, (3.6a)

t̄b,d =
1

N

N∑
i=1

(
tROV
i,d − tTX2

i,d

)
, i ∈ I, d ∈ {1, 2}, (3.6b)

where t̄b,d is the mean constant bias for dive d, ∆t̄s is the mean bias correction for trajec-
tory s, k is the time index for each dive, and i is a synchronization point.
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3.7 Image Processing
Through visual inspection, the stereo image pairs from the Ekne wreck site survey seem-
ingly contained a significant amount of noise. The noise was identified by sporadic white
and black pixels appearing throughout the images. In addition to noise, the image pairs
did, in general, have relatively low contrast, and contained a significant amount of blur
along object edges, as well as a small amount of backscatter. The blur was believed to
be an effect of small angle forward scattering in the water and housing interface. To im-
prove the quality of the image pairs from the stereo camera, with respect to the robustness
and accuracy of OpenVSLAM, several image processing methods were implemented in
the OpenVSLAM tracking module. The implemented methods can be categorized into
three categories; 1) sharpness enhancement and denoising, 2) contrast enhancement, and
3) color correction and backscatter removal.

3.7.1 Image Sharpness Enhancement and Denoising
In order to filter out the noise in the image pairs, a bilateral filter (BLF) was applied
to the image pairs. The BLF is a non-linear filter which performs edge-preserving noise
removal by applying a bilteral Gaussian kernel, which accounts for spatial- and radiometric
(intensity) differences of pixels (Tomasi and Manduchi, 1998). The BLF has three tuning
parameters; the filter diameter dBLF, the spatial variance σ2

s , and the radiometric variance
σ2

r . Larger spatial variance has the effect of smoothing larger image features, while larger
radiometric variance has the effect of smoothing edges. The filter parameters were tuned
by visual inspection of the images, as the resulting feature extraction and -matching in
OpenVSLAM.

3.7.2 Contrast Enhancement
Since the stereo image pairs suffered from low contrast, histogram equalization (HE),
a common contrast enhancement technique, was employed previous to performing BLF
(Hummel, 1977). By applying HE, it was believed that the number and the quality of
the visual features, extracted by OpenVSLAM, would increase. HE performs contrast en-
hancement by transforming the pixel intensities, making the cumulative distribution func-
tion transformed intensities into a linear function. Since this transform is given for a given
image, HE is a parameter free method and therefore did not require any tuning.

Another contrast enhancement method, contrast-limited adaptive histogram equalization
(CLAHE), was also implemented into OpenVSLAM (Zuiderveld, 1994). As opposed to
HE, which performs one histogram equalization on the entire image, CLAHE performs
several histogram equalizations, each on small image patches throughout the image. Since
local histogram equalization is prone to enhancing noise, CLAHE limits the contrast on
each image patch by adding a clipping limit. The clipping limit c is therefore a parameter
that needs tuning, in addition to the image patch width and height, w and h, respectively.
The CLAHE parameters were tuned in a similar fashion to the ones of the BLF parameters,
by visually inspecting the processed image and looking at the effect on the visual features
extracted by OpenVSLAM. Similarly, to HE, CLAHE was applied previous to BLF, in
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order to reduce noise and enhance sharpness of edges.

3.7.3 Color Correction and Backscatter Estimation
The final method that was implemented into OpenVSLAM is a SOTA deep learning-based
method for underwater image enhancement (Chen et al., 2021). The method is referred
to as underwater image enhancement network (UIENet) within the scope of this project.
UIENet is a CNN based on the revised underwater image formation model, outlined in
Section 2.2.3 and Section 2.2.4. The model is comprised of two modules, a backscat-
ter estimation module and a direct transmission estimation module, which estimate the
backscatter and direct transmission components of a simplified version of Equation 2.14.
The original model is implemented in the Python-based DL-framework PyTorch (Paszke
et al., 2019), but was converted to C++ by porting it as a TorchScript. The model was
then implemented in the OpenVSLAM tracking module with GPU-acceleration by adding
Torch and CUDA support to OpenVSLAM.

UIENet works exclusively on RGB images, while OpenVSLAM works exclusively on
grayscale images. As such, UIENet was implemented in OpenVSLAM by extracting RGB
stereo image pairs from the ZED SDK, inputting them into UIENet, and then converting
the processed image pairs to grayscale. Contrary to HE and CLAHE, BLF was not applied
to the image pairs processed by UIENet, in order to evaluate the capabilities of an entirely
physical-based underwater image enhancement model with respect to V-SLAM.

3.8 Ground Truth and Georeferencing

3.8.1 Ground Truth Reference

Figure 3.9: Relationship between body- and camera coordinate system. Adopted from: Dukan
(2014)

In order to compare the drift and overall accuracy of different VSLAM trajectories, a
ground truth reference had to be established. Due to potentially crude errors introduced
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by inaccurate synchronization, the ground truth reference was based exclusively on the
ROV navigation data, and physical measurements of the stereo camera mounting position
relative to the APS transponder. Expressed in the ROV body CS, with the origin at the APS
transponder position and the axis defined as in Figure 3.9, the relative translation from the
APS transponder to the stereo camera was found to be equal to the values in Table 3.3.

Parameter Value Unit
btx 2.00 m
bty −0.21 m
btz 1.40 m
α 45.00 deg

Table 3.3: Stereo camera lever arm and inclination angle.

The ground truth reference was created by utilizing the filtered APS position measure-
ments and the filtered gyroscope roll, pitch, and yaw measurements to estimate the camera
position and attitude in the world CS. To make the comparison between the ground truth
reference and the OpenVSLAM trajectories easier, the attitude of the camera was repre-
sented by quaternions. Note that in this project, the Hamilton convention for quaternions
is utilized, as opposed to the JPL convention, commonly utilized in visual-inertial SLAM
(VI-SLAM) (Solà, 2017; Trawny and Roumeliotis, 2005). For readers unfamiliar with
quaternions, a brief overview of quaternion arithmetic and attitude representation is given
in Appendix B. From the filtered APS position measurements and gyroscope roll, pitch,
and yaw measurements the position of the camera in the world CS was computed as

[
0

wpGT
l

]
= w

bql ⊗
[

0
bpCam

]
⊗ w

bq
∗
l +

[
0

wpTrans
l

]
, (3.7)

where wpTrans is the position of the transponder given by the filtered APS measurements,
bpCam is the lever arm of the stereo camera in the body CS, and w

bq is the quaternion
representing the rotation from the body CS to the world CS. The quaternion w

bq was com-
puted as a quaternion product of the unit quaternions representing the roll, pitch, and yaw
rotations as

w
bql = qYaw

l ⊗ qPitch
l ⊗ qRoll

l , (3.8)

where qYaw
l , qPitch

l , and qRoll
l were computed from the filtered gyroscope measurements

matched with the corresponding filtered APS measurement. The ground truth camera
attitude was computed as

w
cq

GT
l = w

bql ⊗ b
cq, (3.9)

where bcq is the rotation aligning the camera CS with the body CS, defined in terms of the
constitute rotations qx, qy , and qz as
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b
cq = qx ⊗ qy ⊗ qz. (3.10)

The constitute rotations were calculated in terms of the camera inclination angle α as

qx = Axis-Angle(
[
1 0 0

]>
, 0°) (3.11a)

qy = Axis-Angle(
[
0 1 0

]>
, 90°− α) (3.11b)

qz = Axis-Angle(
[
0 0 1

]>
, 90°), (3.11c)

where the Axis-Angle function is given in Equation B.18. The composition of Equa-
tion 3.11 is made under the assumption that the x-axis of the camera CS is parallel with
the y-axis of the body CS.

3.8.2 Timestamp Matching
Since the output trajectories of OpenVSLAM have higher frequency than the APS mea-
surements, and consequently the ground truth trajectories, a temporal matching problem
has to be solved to find the optimal correspondence between samples. The matching prob-
lem can be expressed in terms of a constrained optimization problem as

minimize
T

∑
(l,k)∈T

∥∥tGT
l − tSLAM

k

∥∥ , (3.12a)

subject to
∥∥tGT
l − tSLAM

k

∥∥ ≤ ∆tMatching, (3.12b)

where tGT
l are the timestamps of the ground truth trajectories, tSLAM

k are the timestamps
of the OpenVSLAM trajectories, ∆tMatching is a temporal matching threshold, and T is
the ordered set of index pairs minimizing the absolute difference between the timestamps
of the two trajectories. The matching problem in Equation 3.12 was solved by dynamic
programming with the open-source Python library ssdts_matching (Palachy, 2021).

3.8.3 Optimization-Based Georeferencing
In order to compare the OpenVSLAM trajectories with the ground truth trajectories, a
procedure to find the transformation from the object CS to the world CS, also known as
georeferencing, had to be established. For this purpose, Umeyama’s method, an algo-
rithm commonly utilized by the VSLAM community for trajectory alignment, was used
(Umeyama, 1991; Sumikura et al., 2019). Umeyama’s method minimizes the squared Eu-
clidean distance between two position trajectories under the assumption of homogeneous
uncertainty. For georeferencing, the optimization problem can be expressed as

minimize
w
oq,wot

∑
(l,k)∈T

∥∥wpGT
l − wpSLAM

k

∥∥2
, (3.13a)
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[
0

wpSLAM
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]
⊗ w

oq
∗ +

[
0
w
ot

]
, (3.13b)

where T are the matched timestamp pairs between the ground truth trajectory and the
OpenVSLAM trajectory, opSLAM

k are the camera positions output by OpenVSLAM, and
wpGT

l are the ground truth camera positions computed using the methodology in Sec-
tion 3.8.1. The rotation obtained from solving Equation 3.13 were then used to compute
the attitude of the camera in the world CS as

w
cq

SLAM
k = w

oq⊗ o
cq

SLAM
k , (3.14)

where o
cq

SLAM
k are the camera attitudes output by OpenVSLAM. Similarly to the camera

positions, the OpenVSLAM landmarks omj , were georeferenced as

[
0

w
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]
= w

oq⊗
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0
o
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]
⊗ w

oq
∗ +

[
0
w
ot

]
, mj ∈m. (3.15)

3.9 V-SLAM Error Metrics
In order to analyze the accuracy and drift of OpenVSLAM, several error metrics had to
be employed. For this purpose, the homogeneous transform T, composed of the ground
truth- and OpenVSLAM positions and attitudes, were utilized to simplify the analysis.
The homogeneous transform T, composed of the position pk and quaternion attitude rep-
resentation qk, is given as

Tk = T(pk,qk) =

[
R(qk) pk
01x3 1

]
, (3.16)

where R(qk) is the rotation matrix representation of qk. For simplification of notation,
the two utilized homogeneous transforms are expressed as

TGT
l = T(wpGT

l ,wcq
GT
l ), (3.17a)

TSLAM
k = T(wpSLAM

k ,wcq
SLAM
k ), (3.17b)

where wpGT
l and w

cq
GT
l , and wpSLAM

k and w
cq

SLAM
k are computed using the methodology in

Section 3.8.1 and Section 3.8.3, respectively.

3.9.1 Absolute Trajectory Error
In order to quantify the goodness of fit of the OpenVSLAM trajectories with respect to
the ground truth trajectories, the absolute trajectory error (ATE) was utilized (Sturm et al.,
2012). In terms of the homogeneous transforms in Equation 3.17, the ATE was calculated
as

43



ATEk = (TGT
l )−1TSLAM

k , (l, k) ∈ T . (3.18)

To evaluate the translational- and rotational components of the ATE individually, the root
mean squared error (RMSE) of the components were calculated as

ATETrans.,k = RMSE
[
Translation(ATEk)

]
, (3.19a)

ATERot.,k = RMSE
[
Rotation(ATEk)

]
, (3.19b)

where Translation(ATEk), and Rotation(ATEk) are the translational- and rotational ele-
ments of the ATE matrix, respectively.

3.9.2 Relative Pose Error
Since dead reckoning navigation systems, like V-SLAM, inevitably accumulate drift over
time, it was desirable to evaluate the drift over the OpenVSLAM trajectories. To quantify
the drift, the relative pose error (RPE) metric was utilized (Sturm et al., 2012). The RPE
is defined as

RPEk(∆) =
[
(TGT

l )−1TGT
l (∆)

]−1[
(TSLAM

k )−1TSLAM
k (∆)

]
, (l, k) ∈ T , (3.20)

where ∆ is a displacement, which can either be a temporal displacement, i.e. a time shift,
or a spatial displacement. In the conducted analysis, a spatial displacement was utilized to
calculate the RPE. Similarly to the ATE, the translational- and rotational components of
the RPE were calculated by taking the RMSE of the relevant elements of the RPE matrix

RPETrans.,k = RMSE
[
Translation(RPEk)

]
, (3.21a)

RPERot.,k = RMSE
[
Rotation(RPEk)

]
. (3.21b)
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Chapter 4
Results and Discussion

4.1 Camera Calibration

(a) (b)

Figure 4.1: Example images from a) Calibration Dataset 1, and b) Calibration Dataset 2.

The parameters for the camera calibration, based on the camera calibration methodology
outlined in Section 3.4, can be seen in Table 4.1 and Table 4.2. For clarification, bx, by ,
and bz are the x-, y-, and z-component of the stereo baseline vector 2

1b, while rx, ry ,
and rz are the XYZ Euler angles of the stereo camera rotation matrix 2

1R, outlined in
Section 2.4.1. The image pairs utilized in the calibration were exclusively taken from
the Calibration Dataset 1 from the calibration experiment. The reason for doing this was
a slight difference in the ambient illumination in Calibration Dataset 1 and Calibration
Dataset 2, as seen in Figure 4.1, which had a significant effect on the calibration results.
From Figure 4.2 one can see that the mean reprojection error per image pair was relatively
balanced between the left and right camera, indicating that the calibration target was well
exposed for both cameras and that the angle between the cameras and the calibration target
was not too large.

From Table 4.1 one can see that the camera model did not include the third radial distor-



Parameter Left, In-Air Left, In-Water Right, In-Air Right, In-Water
fx 1400.2200 1793.0321 1398.4100 1789.2000
fy 1400.2200 1694.3191 1398.4100 1690.4034
cx 960.3700 936.4110 924.1700 915.3692
cy 546.3410 555.9133 523.8170 534.5125
s 0 0 0 0
k1 −0.1725 −0.0470 −0.1712 −0.0606
k2 0.0265 0.1164 0.0023 0.2516
k3 0 0 0 0
p1 0.0023 0 0.0023 0
p2 0.0004 0 0.0004 0

Table 4.1: Intrinsic parameters of the perspective SVP model.

Parameter In-Air In-Water Unit
bx 120.0010 119.3609 mm
by 0.0012 0.3348 mm
bz 0.0113 −0.0445 mm
rx −0.0039 0.0027 rad
ry 0.0037 0.0076 rad
rz 0.0003 0.0004 rad

Table 4.2: Extrinsic parameters of the stereo normal model.

tion coefficient, k3, and omitted the tangential distortion, i.e. p1 and p2, completely. The
third radial distortion coefficient is, practically, only needed for fisheye- and equirectangu-
lar cameras, which exert extreme distortion (Shortis, 2015). For this reason, the fact that
it had a negligible impact on the reprojection error, and strongly affected the other radial
distortion coefficients, it was left out of the model. The radial distortion coefficients are in
fact always correlated, but the correlation is strengthened further when the model is cali-
brated against a planar calibration target. Additionally, tangential distortion was omitted
from the model due to instabilities in the calibration procedure. Inclusion of tangential
distortion in the model lead to large variations in the relative translation between the cam-
eras, especially in the z-component of the baseline vector, bz . A reason for this correlation
can be the relatively small variation of the calibration targets orientation around the z-axis
of the two camera, as seen from the reprojections in Figure 4.3 and Figure 4.4. Since
Zhang’s method exploits the orthonormal properties of rotation matrices, additional im-
ages, in which the calibration target lie in the same plane as in a previous image, do not
add additional constraints to the optimization problem (Zhang, 2000). The lack of con-
straints is believed to be the reason behind the observed correlation between the tangential
distortion and the baseline vector. By omitting the tangential distortion, the optimization
algorithm became more stable and a better correspondence between the extrinsic parame-
ters obtained in water and in air was achieved. As seen in Table 4.2, the differences in the
translations and rotations of the calibrated extrinsic parameters are well below 1 mm and
0.5°, when compared to their corresponding values from the Stereolabs factory calibration.
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Figure 4.2: Mean reprojection errors for the calibration image pairs.

From the calibrated intrinsic parameters in Table 4.1, one can see the effects of refraction
on the parameters of the perspective SVP model. Among other, one can see that the focal
lengths become larger as a consequence of the perceptually smaller field of view due to
refraction. For instance, planar ports have been shown to increase the focal length by up
to 25%, while dome ports only increase it by 6-7%, depending on the relative translation
between the focal points of the camera and port (Bruno et al., 2011). For the left camera,
one can see a change in the focal length of 28% and 21%, along the cameras x- and y-
axis, fx and fy respectively. Considering the cylindrical housing utilized in this project,
these values give physical sense, as the cylinder housing has refractive properties similar
to a planar port along the longitudinal axis, and similar to a dome port along the polar
axis. The fact that the camera was mounted approximately 4 mm from the housing wall,
which has an inner radius of 51 mm, indicates why the effects of refraction are relatively
strong in the vertical direction as well. One can also see the effects of refraction on the
x- and y-coordinate of the principal point, cx and cy respectively. The principal points for
the two cameras were shifted upwards and to the left, which indicate that optical axis of
the cameras were slightly misaligned with respect to the housing surface normal. Since
the effects of refraction are radially symmetric only when the optical axis of the camera
and the surface normal of the housing are aligned, this indicates that tangential distortion
should also have been included in the camera model, which was not feasible due to the
aforementioned optimization problems (Li et al., 1997).

In order to evaluate the camera model with respect to the mathematical models outlined in
Section 2.3, the reprojection errors from the calibration procedure were analyzed. From
Equation 2.16, one can see that refraction is dependent on the incident angle on the re-
fractive surface. This fact would lead one to believe that the reprojection errors from the
calibration would be largest in the outer edges of the images, where the incident angles
and consequently refractive effects are stronger. However, from Figure 4.3 and Figure 4.4,
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Figure 4.3: Calibration target reprojections for the left camera.
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Figure 4.4: Calibration target reprojections for the right camera.

one can not see any pattern of this effect. The large reprojection errors are, seemingly,
randomly distributed throughout the FOV. This was an indication that the large reprojec-
tion errors are caused by other reasons than refraction. As discussed earlier, illumination
was a significant factor which affected the calibration results. It is therefore likely that,
uneven illumination of the calibration target points were one of the reasons for the large
reprojection errors, as the utilized dataset contained images with a significant amount of
glare from reflections and wave flickering.

Based on the general camera model in Section 2.3.1, the reprojection errors should exclu-
sively consists of zero-mean Gaussian noise. From Figure 4.5a and Figure 4.5b, one can
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see that the reprojection errors did, in general, seem to fit this model, both for the left and
right camera. The mean errors for both of the cameras were practically zero, and the 3σ
sample covariance ellipsis, which theoretically should encompass 99.7% of the samples,
did contain most of them. However, one remark that is worth noting is the slightly higher
number of samples outside the 3σ-bound of the right camera than the left camera. A reason
for this could, for instance, be slight differences in reflections from the calibration target
for the two cameras. To get a more objective and generic evaluation of the error introduced
by not employing a refractive camera model, more advanced analyses, for instance caustic
analysis or 3D reconstruction of a known target at different distances, should be conducted
in order to expose the distance and angle dependency of refraction (Jordt-Sedlazeck and
Koch, 2013; Shortis, 2015).
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Figure 4.5: Reprojection error distributions for a) the left camera, b) the right camera.

4.2 Navigation Data Processing

Signal Window Threshold
- - -

APS, northing 10 2.4
APS, easting 10 2.4
APS, depth 10 3.0

Table 4.3: Rolling window threshold filter parameters.

The RWT filter parameters, tuned with the methodology described in Section 3.5, can be
seen in Table 4.3. From the parameters one can see that the window sizes were set rela-
tively small. This is due to the fact that the RWT does not account for tendentious changes
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in the signal, which is the case when the ROV changes position. By having a too large
window, the variations within the window have a higher chance of simply being changes
in the ROV position, for instance seen in the depth measurements in Figure 4.6 around
the 4300 second marker, when the ROV started to ascend to the surface. Additionally,
from the parameters one can see that the threshold for the two planar measurements is
significantly lower than the one for the depth measurement. This means that fluctuations
in the depth measurements have to be more extreme, compared to the other measurements
in the window, to be considered outliers. This was primarily set due to the small variations
in the depth measurements, when compared to the planar measurements, as seen in Fig-
ure 4.6. The majority of the bad measurements, which are considered outliers, came from
periods where the ROV was close to the surface. Physically, this makes sense as the APS
measurements are more susceptible to shadow regions, and loss of line of sight closer to
the surface. The majority of the false positives of the RWT filter also seem to originate
from the filter not considering tendentious changes, as already pointed out. Despite the
short-comings of the RWT filter, the outlier-rejected APS measurements were considered
sufficiently clean for further frequency-filtering.
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Figure 4.6: Detected outliers in the APS measurements from the RWT filter.

By using the tuning method described in Section 3.5, the FIR filter parameters seen in
Table 4.4 were found to yield a satisfying filtering effect of the relevant sensor measure-
ments. During the FIR filtering process, the sampling frequencies of the gyroscope were
found to be different from the sampling frequency given in technical specifications, seen
in Table A.2. This was an indication that the measurements were not raw sensor mea-
surements, but rather measurements that had already been processed. This hypothesis was
further backed by the fact that the FIR filter had little effect on the gyroscope measure-
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ments. This can be seen from the seemingly identical unfiltered- and filtered gyroscope in
Figure 4.7.
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Figure 4.7: FIR filtered gyroscope roll, pitch, and heading measurements.

Unlike the gyroscope measurements, the APS position measurements were found to be
particularly noisy, with sporadic fluctuations as large as 0.5 meters, as seen in Figure 4.8.
The APS measurements therefore needed extensive frequency filtering in order to elimi-
nate the high-frequency signal components. In order to get a satisfyingly smooth signal,
the FIR filter order had to be set quite high, while the FIR filter cutoff frequency had to
be set quite low relatively to the sampling frequency of the APS measurements, as seen in
Table 4.4.

Similarly to the gyroscope, the FIR filter had little effect on the DVL measurements, which
is evident from Figure 4.9. However, in contrast to the gyroscope measurements, the
sampling frequency of DVL measurements coincided with the sampling frequency given
in the technical specifications, seen in Table A.3. Compared to the gyroscope, the DVL
is a highly advanced sensor and it is therefore likely that the sensor has some internal
signal processing modules. It was later confirmed by AURLab employees that the DVL
was processed internally in the ROV control system before being logged in EIVA Navipac,
which explains why the frequency filtering was redundant. For further information about
the DVL processing, the reader is referred to Dukan (2014). Additionally, information
was provided that the gyrocompass, i.e. the one providing the heading measurements
from the gyroscope, was not properly calibrated. The inaccurate heading measurements
are therefore a source of error in further analyses.
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Sensor Sampling Frequency Filter Order Filter Cutoff Frequency
- Hz - Hz

APS 1.000 8 0.100
Gyroscope 6.622 6 0.600

DVL 6.622 4 2.000

Table 4.4: FIR filter parameters for the ROV navigation data.
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Figure 4.8: FIR filtered APS northing, easting, and depth measurements.
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Figure 4.9: FIR filtered DVL altitude measurements.

4.3 Data Synchronization
Figure 4.10 shows the synchronization points that were identified for the two dives dur-
ing the Ekne Survey, and their corresponding estimated time biases. The relatively large
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spread of the estimated biases, was an indication that simply adding a constant time bias
based on the methodology in Section 3.6, would be inadequate for synchronizing the ROV
and Jetson TX2 CPU clocks. Table 4.5 shows the mean biases, the corresponding standard
deviations, as well as the tunable bias corrections utilized for the V-SLAM trajectories.
From the tunable bias corrections one can see that, in general, small positive bias cor-
rections had to be added in order to get good correspondences between the ground truth
trajectories and the OpenVSLAM trajectories.
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Figure 4.10: Synchronization points and estimated mean bias for Dive 1 and Dive 2.

There are several sources of error with the synchronization methodology. The assumption
that the time bias between the clocks was constant is inaccurate, as CPU clocks drift over
time and are highly affected by temperature. Additionally, the assumption that there was
no delay in the Helmsman overlay system is questionable, as both transmitting the data
from the ROV and rendering it to the topside display inherently introduces time delays.
Finally, the linear interpolation of the timestamps of ROV video footage frames in order to
acquire sub-second precision is highly susceptible to the video capturing software. Since
the tunable bias corrections were all small positive values, it is believed that a majority of
the tunable bias corrections originated from the overlay system delays. The origin of the
small fluctuations in the estimated biases were, however, not identified, but it is believed
that these were a combination of CPU clock drift and interpolation errors.
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Trajectory Mean Bias and Std. Dev. Tunable Bias Correction Unit
1 51057.171± 0.371 0.6 s
2 51057.171± 0.371 0.6 s
3 51057.171± 0.371 0.6 s
4 51057.171± 0.371 0.6 s
5 54142.115± 0.317 0.6 s
6 54142.115± 0.317 0.4 s
7 54142.115± 0.317 0.4 s
8 54142.115± 0.317 0.7 s
9 54142.115± 0.317 0.8 s

10 54142.115± 0.317 0.6 s

Table 4.5: Timestamp corrections for the synchronized V-SLAM trajectories.

4.4 Image Processing
Table 4.6 and Table 4.7 show the tuned parameters for the BLF and CLAHE. For the
BLF, the filter diameter, dBLF, was set to an intermediate value, as a trade-off between
loss of feature awareness and computational complexity. The spatial variance, σs, was
also set to a moderate level, as too small values caused noise to pass through the filter,
and too large values caused loss of local texture. The radiometric variance, σr, was set
relatively high, in order to suppress false edges along object edges, an artifact known to be
introduced by the BLF (Kornprobst et al., 2009). For the CLAHE, the clipping limit was
kept at a moderate level, as setting it too high contributed to significant amplification of
the image noise, which could not be filtered out by the BLF. The CLAHE image patches
were set to be quadratic and were, initially, kept relatively small. Increasing the image
patch size reduced the noise amplification, but also reduced the effect of the local contrast
enhancement. The image patch size was set as a trade-off between the two effects.

Parameter Value Description
dBLF 10 Filter diameter.
σr 60 Radiometric standard deviation.
σs 20 Spatial standard deviation.

Table 4.6: Tuned BLF parameters.

Parameter Value Description
c 2.0 Histogram clipping limit.
w 20 Window width.
h 20 Window height.

Table 4.7: Tuned CLAHE parameters.

In Figure 4.11a, a raw RGB image from the Ekne wreck site is shown. From the image one
can see the effects of light attenuation, outlined in Section 2.2.2, on the colors of the image.
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The water molecules absorb light towards the red end of the visible spectrum, meaning
that mainly light towards the green and blue parts of the spectrum manages to reach the
camera. This is also visible in the RGB image histogram for the image in Figure 4.12a,
where the red histogram is shifted left, towards the lower intensities, compared to the
green and blue histograms. In Figure 4.11b, one can see the same RGB image processed
by UIENet. The restoration of the red color channel is evidence that UIENet manages
to remove a significant portion of the light attenuation effect in the image. From the
corresponding RGB histogram in Figure 4.12b, one can see that in addition to the shift in
the red channel, UIENet also increases the contrast of all three channels, evident by the
wider channel histograms. One remark that is worth noting is the histogram peak on the
right side of the histogram, at intensity level 255. This peak is abnormal, and might be due
to the underlying underwater image formation model. Specifically, UIENet is based on
the revised underwater image formation model, outlined in Section 2.2.4, which assumes
ambient illumination. A lamp was used in this case, causing the scene illumination to
be relatively uneven. This uneven illumination is not captured by the image formation
model, and might be a reason for the high pixel intensities seen in the lower right corner
of Figure 4.11b.

(a) (b)

Figure 4.11: RGB images from the Ekne wreck site; a) a raw RGB image, b) the same RGB image
processed by UIENet.
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Figure 4.12: RGB image histograms; a) the unprocessed RGB image, b) the RGB image processed
by UIENet.
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Figure 4.13 shows the image histograms for the grayscale image processed by the various
IP methods. In Figure 4.13b one can see that the BLF does not affect the contrast, evident
by the similar shape of the histogram compared to the histogram of the raw grayscale im-
age, seen in fig. 4.13a. The BLF does, however, create some small pits in the histogram,
which is a consequence of the sharpness enhancing effect of the method. This pitting ef-
fect can also be seen in the other histograms where BLF has been applied to the image,
i.e. Figure 4.13c and Figure 4.13d. These figures also highlight the effect of contrast
enhancement by the wider histograms. When comparing the HE- and CLAHE processed
histograms, the clipping limit of CLAHE is evident by the slightly lower contrast enhance-
ment effect. A contrast enhancing effect can also be seen in fig. 4.13e for the grayscale
image of the RGB image processed by UIENet.
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0 64 128 192 255

(d)

0 64 128 192 255

(e)

Figure 4.13: Grayscale image histograms; a) the unprocessed grayscale image, b) the grayscale
image processed with BLF, c) the grayscale image processed with HE-BLF, d) the grayscale image
processed with CLAHE-BLF, e) the grayscale image processed with UIENet.

In Figure 4.14 one can see the similarity images of the processed grayscale images com-
pared to the raw grayscale image, computed with structural similarity index method (Wang
et al., 2004). Darker and brighter pixels in the similarity images indicate larger and smaller
changes, respectively, compared to the raw grayscale image. In Figure 4.14a the noise
suppression effect of the BLF can be seen from the sporadic black pixels throughout the
image. Additionally, one can see the edge sharpening effect of the filter from the nar-
row strips of gray pixels near object edges. This effect was found to be an effective way
of suppression forward scattering, which appear as a slight blur around object edges. In
Figure 4.14b one can see that the noise suppression effect of the BLF is prominent when
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compared to Figure 4.14a, with only a small amount visible noise in the foreground of
the scene. This could be an indication that the BLF is less effective or requires re-tuning
when used in conjunction with HE. When coupled with CLAHE, the noise suppression
effect of BLF is still quite prominent, as seen from the sporadic dark pixels uniformly
distributed in Figure 4.14c. From Figure 4.14d one can see that UIENet performs quite
sophisticated changes in the images. Since UIENet corrects for light attenuation, which is
distance dependent, as seen in Equation 2.14, one would expect to see larger changes in
the background of the scene than in the foreground. This is in line with what we see in the
similarity image, where the darker pixels, in general, correspond to the background of the
scene. Since UIENet does not get any other information than the image of the scene, it is
evident that the model has learned geometric features to deduce the scene attenuation and,
correspondingly, the scene depth.

(a) (b)

(c) (d)

Figure 4.14: Similarity images for the grayscale image processed with; a) BLF, b) HE-BLF, c)
CLAHE-BLF, and d) UIENet.

An aspect that is worth noting within the context of V-SLAM, is the processing time of
the image processing methods. Figure 4.15 shows that the processing time of UIENet is
close to ten times higher compared to that of the other image processing methods, despite
the fact that the implementation is GPU-accelerated. This is an indication that the model
architecture of UIENet is not suited for real-time V-SLAM applications, since these, in
general, rely on a high frequent image data. Since real-time capabilities is one of the selling
points of utilizing V-SLAM over structure-from-motion, this fact is quite detrimental for
further adaptation of UIENet in underwater V-SLAM applications. However, this does
not exclude DL-based underwater image processing methods from being adapted for V-
SLAM. Some possibilities, that are still open research questions, are utilizing the visual
depth information in conjunction with the RGB images in a DL-based underwater image
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enhancement method. It is possible that this additional geometric information could reduce
the needed model complexity for backscatter and direct transmission estimation, which
would make the model faster. This approach is, of course, dependent on consistent visual
depth estimates, which for real-time applications would require stereo vision or auxiliary
distance measurements.
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Figure 4.15: Processing times for the various image processing methods, shown at two different
time scales.

4.5 Georeferencing
In total 10 different trajectories from the Ekne wreck site survey, where OpenVSLAM
was able to keep track over a significant period, were identified. Figure 4.16 and Fig-
ure 4.17 show the georeferenced positions and attitude from OpenVSLAM with combined
CLAHE and BLF image processing, which have been georeferenced with the methodol-
ogy outlined in Section 3.8. Note that the attitudes are the XYZ Euler angles, rx, ry , and
rz , of the quaternion describing the rotation from the camera CS to the world CS, wcq,
and cannot be interpreted as roll, pitch, and yaw, since the axes of the camera CS are not
aligned with the axes of the body CS. One can see that the georeferenced OpenVSLAM
positions do, in general, correspond quite well to the calculate ground truth trajectory. The
OpenVSLAM trajectories do, however, accumulate drift over time due to errors in the
pose estimates. This accumulated drift is likely the reason for the discrepancy between the
ground truth positions and the OpenVSLAM position estimates, which is evident in the
UTM Northing estimates around the 500- and 700 second mark and the UTM Easting es-
timates around the 770 second mark. In Figure 4.17 one can see that the correspondences
between the ground truth attitudes and the estimated attitudes, arguably, worse than the
correspondences between the positions. This disprecancy might just be an effect of the
georeferencing method, as Umeyama’s method does not include the attitudes in the least
squares optimization problem. The inclination angle of the camera is another possible
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reason for the deviations in the attitude estimates. The inclination angle of the camera
was measured by hand with a protractor and therefore had a high amount of uncertainty.
Another remark that is worth mentioning about the georeferencing is the navigation data
that was used to create the ground truth reference. The navigation data is based on fil-
tered sensor measurements and therefore has varying degrees of accuracy and uncertainty
associated with it. The uncalibrated gyrocompass, mentioned in Section 4.2, is a con-
siderable source of uncertainty and error. For this reason, the uncertainty of the ground
truth reference should be have been analyzed to see if the OpenVSLAM estimates were
inside the appropriate confidence intervals. This could, for instance, have been conducted
by generating the ground truth reference with a probabilistic filter, such as a Bayes filter.
This could also have been used to fuse the depth measurements from the APS with the
depth measurements from the pressure sensor, which was not utilized in the ground truth
reference in this project.
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Figure 4.16: Georeferenced OpenVSLAM position estimates for Trajectory 1.

Figure 4.18 and Figure 4.19 show the survey map with the georeferenced trajectories and
the extent of the georeferenced maps from Dive 1 and Dive 2, respectively. The maps
are provided to give an overview of the location and length of the different trajectories.
The shown trajectories and maps were generated from OpenVSLAM with the combined
CLAHE and BLF image processing method. As explained in Section 3.2, Dive 1 consisted
of planned transect lines across the mid-ship of the wreck site, while Dive 2 consisted of
less planned maneuvering of the ROV in the more geometrically complex parts near the
stern and aft. As a consequence of this difference in maneuvering, the distance between the
seabed and the camera was, in general, larger for Dive 2 than for Dive 1. This meant that
the stereo image pairs from Dive 2 were more prone to light attenuation, the effect of which
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Figure 4.17: Georeferenced OpenVSLAM attitude estimates for Trajectory 1.

was shown in Figure 4.11a. Dive 2 also had multiple points were visual contact between
the seabed and the stereo camera was lost completely. Based on the difference of the track
lengths in Figure 4.18 and Figure 4.19, it is evident that this difference in the maneuvering
of the ROV had a large impact on the robustness of OpenVSLAM and its ability to provide
consistent tracks. Maintaining a minimal distance between the camera and the seabed, as
well as maneuvering with consistent altitude, are therefore found to be important factors
for the robustness of V-SLAM methods when used underwater. Since maneuvering of
UUVs is, in general, dictated by the risk of vehicle loss, which is highly dependent on the
site bathymetry, consistent maneuvering close to the seabed cannot always be guaranteed.
Robust adaptation of V-SLAM for underwater navigation is therefore dependent on the
bathymetry of the relevant survey site. Another way to minimize the distance between the
camera and the seabed is to configure the inclination angle of the camera to be suitable
for the site bathymetry. The 45 degree inclination angle that was used during the Ekne
wreck site survey was considered to be too small for the relevant survey. The inclination
angle was, however, set due to fact the downward facing lamps underneath the ROV were
unreliable and did not providing consistent illumination. This shows that a reliable lamp
setup and a camera mounting position that is suitable for the relevant site bathymetry, are
practical factors that need to be considered in order to get robust setups for underwater
V-SLAM.
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Figure 4.18: Georeferenced trajectories and extent of maps from OpenVSLAM for Dive 1.

Figure 4.19: Georeferenced trajectories and extent of maps from OpenVSLAM for Dive 2.

4.6 V-SLAM Comparative Analysis
All the results in this section are generated with OpenVSLAM with various image pro-
cessing methods. For simplicity, the various configurations of OpenVSLAM are at times
just referred to by the acronym of the relevant image processing method.

In order to evaluate how the different image processing methods affect the feature extrac-
tion and overall performance of OpenVSLAM, a comparative analysis was performed on
one of the trajectories. Trajectory 1 was chosen due to the consistent low altitude and the
possibility of loop detection, and consequently, loop closing. Throughout the analysis, the
tuned OpenVSLAM parameters in Table 4.8 were used. Some parameters that are worth
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noting are the FAST thresholds and the minimum number of triangulated points. The
FAST thresholds were initially set relatively low in order to get a sufficient amount of fea-
tures extracted due to the relatively low contrast of the stereo image pairs. The minimum
number of triangulated points also had to be set relatively low in order to maintain track in
low-texture regions.

Parameter Value Unit
Maximum number of features 1000 -
Image pyramid levels 8 -
Image pyramid scale 1.2 -
FAST initial threshold 7 -
FAST backup threshold 3 -
Depth threshold factor 30 -
Minimum number of triangulated points 10 -
Baseline distance threshold 0.10 m

Table 4.8: Tuned OpenVSLAM parameters.

Since modern V-SLAM systems are multi-threaded, they exert stochastic behaviour due
to race conditions. In order to compensate for this stochastic behaviour, OpenVSLAM
was run 10 times on Trajectory 1 for each of the image processing methods, and then
the longest track was used for further analysis. Figure 4.20 shows the distribution of
the achieved track lengths for each of the image processing methods, i.e. the number
of frames over which OpenVSLAM was able to keep track. From the track lengths one
can clearly see a significant difference between the image processing methods. In terms
of track length, OpenVSLAM with BLF, HE-BLF, and CLAHE-BLF clearly outperform
OpenVSLAM with UIENet and the raw image pairs.
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Figure 4.20: Track lengths for ten runs of Trajectory 1 for various image processing methods.
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4.6.1 Feature Distributions
To evaluate how the various image processing methods affected the feature extraction and
feature matching of OpenVSLAM, a statistical approach was taken. To clarify, a matched
feature is an image feature which is extracted in one image and then found in the following
image. In Figure 4.21 and Figure 4.22, one can see how the extracted- and matched fea-
tures are distributed throughout the image pyramid of OpenVSLAM. The image pyramid
is utilized by OpenVSLAM to extract features at different scales of the images, where fea-
tures extracted at level one corresponds to small, detailed features, and features extracted
at level eight corresponds to larger, less detailed features. From Figure 4.21 one can see
that the image pyramid distribution of the extracted features are close to identical for the
various image processing methods. This means that the relative relation between small-
scale and large-scale features is close to equal for the extracted features for the various
image processing methods.
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Figure 4.21: Image pyramid distribution of extracted features over Trajectory 1.
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Figure 4.22: Image pyramid distribution of matched features over Trajectory 1.

However, when one examines the pyramid distribution of the matched features in Fig-
ure 4.22, the distribution is significantly different for the various image processing meth-
ods. Specifically, the top heavy pyramid distribution of the raw and UIENet image pairs
means that OpenVSLAM does not find matches among small-scale features, but only
among large-scale features. A similar distribution can be seen for the HE-BLF image pairs,
but the distribution is not as skewed as for the raw and UIENet image pairs. For the BLF
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image pairs, one can see that OpenVSLAM is able to match a lot of small-scale features,
and that the distribution is relatively even for the subsequent levels. For the CLAHE-BLF
image pairs the distribution is relatively even, which means that the proportion between
small-scale and large-scale feature matches is equal.

To understand the reason for the distribution difference between the extracted and the
matched features, one can consider the observations that was made in Section 4.4, more
specifically in Figure 4.14. From the similarity images it was established that the BLF
was effective at suppressing noise and forward scattering blur. This effect was also con-
siderable when the BLF was applied in conjunction with CLAHE, but was less clear when
applied in conjunction with HE. UIENet, on the other hand, did not seem to have any
effect on noise suppression or reduction of forward scattering blur. All these observed
image processing effects are consistent with the distribution differences. Based on these
observations, one can make the proposition that suppression of image noise and forward
scattering blur is important to increase the ratio between matched small-scale and large-
scale features.

4.6.2 Robustness
Now that it has been established that suppression of image noise and forward scattering
blur is important for the distribution of matched features, it is interesting to investigate how
this affects OpenVSLAM’s tracking robustness. From the track lengths in Figure 4.20, it
is evident that OpenVSLAM is more robust with BLF, HE-BLF, and CLAHE-BLF, than
with the raw and UIENet image pairs. From Figure 4.23, one can see that OpenVSLAM
is, in general, able to reach the limit of 1000 extracted features for all image processing
methods, which is due to the relatively low FAST thresholds, as seen in Table 4.8. Note
that for the selected tracks, OpenVSLAM with BLF lost track at the 690 second marker,
and then later relocated and regained track. For this reason, the corresponding plot lines
are not representative after the 690 second marker, as seen in Figure 4.23. This means
that the number of extracted features can not be the reason for the difference in tracking
robustness. However, from Figure 4.24 one can see a clear difference in the amount of
matched features for the different methods. Specifically, one can see that OpenVSLAM,
overall, matches a significantly lower amount of features for the raw and UIENet image
pairs, than for the other methods. From this observation and the discovery in Section 4.6.1,
one can draw the conclusion that suppressing image noise and forward scattering blur is
important to improve small-scale feature matching, and that small-scale feature matching
is important to increase the total number of matched features, and, consequently, track
robustness. In terms of this effect, the BLF clearly makes a significant difference on the
number of features that OpenVSLAM is able to match, and consequently has a significant
impact on the overall robustness.

Since BLF was applied in conjunction with HE and CLAHE, the effect of these contrast
enhancing methods is still unclear. Based on the track lengths in Figure 4.20, one can
conclude that the difference in terms of overall robustness is minor, since most of the
runs with BLF, HE-BLF, and CLAHE-BLF loose track around frame 6100. Initially, one
would think that the increased contrast would improve OpenVSLAM’s ability to extract
and match features at larger visual depths. To evaluate this hypothesis, consider the time
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Figure 4.23: Number of extracted features for Trajectory 1.

point around the 580 second marker in Figure 4.23 and Figure 4.24. At this point in time
the ROV rises up to an altitude of about 2.5 meter, as seen in the altitude measurements in
Figure 4.25, which causes the visual depth within the FOV of the camera to become quite
large. One can see that the number features that is extracted with BLF at this time point
drops significantly. In contrast, OpenVSLAM with HE-BLF and CLAHE-BLF still reach
the maximum number of extracted features of 1000. From the matched features at the same
time point, one can see that, despite this difference in extracted features, OpenVSLAM
with BLF is able to match more features than HE-BLF and CLAHE-BLF. Even in this
situation, where one would initially believe that the contrast enhancement would improve
the tracking, this does not seem to be the case. Taking this into consideration, in addition
to the fact that OpenVSLAM with BLF has a higher number of matched features overall,
the evidence seems to suggest that contrast enhancement is not of significant importance
to improve tracking robustness.
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Figure 4.24: Number of matched features for Trajectory 1.

4.6.3 Absolute Trajectory Error and Relative Pose Error
In addition to the feature distributions and robustness, the standard comparison metric,
ATE and RPE, were analyzed. In Figure 4.26, one can see the translational and rotational
components of the ATE, defined in Equation 3.19a and Equation 3.19b, for the various
image processing methods. From the translational components, one can see that there
are large variations between the methods. The translational components for the raw and
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Figure 4.25: Heading and altitude measurements for Trajectory 1.

UIENet image pairs are lower than the other, up until the point where OpenVSLAM looses
track with the respective image processing method. Additionally, the translational compo-
nent of OpenVSLAM with BLF, HE-BLF, and CLAHE-BLF, are very similar in shape, but
seem to be scaled. Since the ATE utilizes the absolute difference between the ground truth
reference and the georeferenced trajectories, the ATE is highly dependent on the perfor-
mance of the georeferencing methodology. The large variation in trajectory lengths in this
case, means that there is a large variation in the accumulated drift in the trajectories. This
difference in accumulated drift has a high effect on the georeferencing results, and conse-
quently the ATE. For this reason, the ATE is considered to be a highly biased measure and
is not considered in the comparison of the various methods.
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Figure 4.26: Absolute trajectory errors for Trajectory 1.

In contrast to the ATE, the RPE uses relative position differences, and is therefore more
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suited to compare trajectories of various length. Figure 4.27 shows the translational and
rotation RPE components, as defined in Equation 3.21a and Equation 3.21b. Note that
due to the lost and later regained track of the BLF, the corresponding RPE metrics are
not representative from the 650 second marker and onward. The reason for the slight
time shift of this point is that the RPE compares the trajectory to a future reference point,
which is displaced ∆ units in space. In both the translational and rotational components
one can see that for the raw and UIENet image pairs, the RPE is slightly higher than the
other methods, but not by a considerable margin. The BLF, HE-BLF, and CLAHE-BLF
are, generally, quite similar in terms of the RPE, with no significant different between
them. An observation that is worth noting is that the peaks in the rotational RPE, at 410,
440, 490, and 525 seconds, correspond to changes in the heading, as seen in Figure 4.25.
The explanation for this is that the stereo camera is a perspective camera, and therefore
has a limited FOV. When the ROV turns, the camera ultimately looses sight of visual
features, forcing OpenVSLAM to continually find new features to track. This means that
OpenVSLAM can not track the same visual features over longer periods, which is the
reason for the observed drift peaks.
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Figure 4.27: Relative pose error with ∆ = 5 meter for Trajectory 1.

In addition to the ATE and RPE, the normalized estimation errors squared (NEES) and nor-
malized innovation squared (NIS) are additional metrics that would have been interesting
to analyze for comparison (Fornasier et al., 2021). NEES and NIS are consistency metrics,
which are used to check whether the V-SLAM method is consistent with the assumed prob-
ability distributions, such as the Gaussian assumptions in the full SLAM standard model
in Equation 2.41. NEES and NIS are commonly analyzed for probabilistic filters, like the
Kalman Filter, but are seldom analyzed in the context of SLAM. The reason for this is
that computation of NEES and NIS requires access to the covariance matrices, which are
often left out of implementations, due to the extra performance and memory savings. Due
to the extra work with implementing the required changes into OpenVSLAM, this was
not attempted in this project. Performing a comparative consistency analysis is, however,
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highly recommended as further work for this project.

4.7 V-SLAM Qualitative Analysis

4.7.1 Dynamic Targets

Figure 4.28: Dynamic targets highlighted by their bounding boxes. The high amount of dynamic
targets causes OpenVSLAM’s pose estimation to fail and the track is lost.

In addition to the quantitative comparison in Section 4.6, a qualitative evaluation of some
of the underlying models of OpenVSLAM was conducted in order to assess their validity
for underwater use. In Figure 4.28, an image from Trajectory 10 is shown, where the
fish are marked with bounding boxes to highlight them. In this situation the ROV moves
into an area with several fish schools. Since the stereo camera has visual contact with the
fish schools over an extended period, in which the fish are relatively still, OpenVSLAM
ultimately starts to track visual features on the fish. When the fish suddenly start to move in
multiple directions, OpenVSLAM is not able to estimate a pose which resolves the change
in the landmarks, and therefore looses track.

The reason why this happens, is that the standard model of the full SLAM problem, out-
lined in Section 2.5.2, assumes that the map is static. The normal approach of dealing with
dynamic targets, which is also the approach that OpenVSLAM uses, is to reject them as
outliers by using RANSAC. However, when the number of dynamic targets becomes too
high, RANSAC is no longer able to reject them as outliers, and they get considered in the
pose estimation. This highlights a limitation of the full SLAM standard model, which can
be quite severe in certain underwater scenarios. In addition to large fish schools, another
underwater scenario where static map assumption can be critical, is kelp forests moving
due to currents or waves. While SLAM formulations with dynamics targets have been pro-
posed (Sola, 2007), they do, in general, suffer from high computational complexity due to
the high number of target hypotheses, and have in large part been neglected in favour of
the real-time capabilities of the standard model.
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4.7.2 Loop Detection

(a) (b)

Figure 4.29: Loop closure candidate images for Trajectory 1; a) Visit 1, and b) Visit 2.

As pointed out in Section 1.1, the main motivation of adopting V-SLAM over VO is the
map estimate which enables loops to be detected, and, consequently, the accumulated drift
to be corrected. Out of the 50 OpenVSLAM runs that was conducted on Trajectory 1 in
Section 4.6, all of the runs with BLF, HE-BLF, and CLAHE-BLF managed to keep track
throughout the entire trajectory loop. Out of these 30 runs, not a single loop closure was
detected by the BOW-based loop detection, outlined in Section 2.5.9. Figure 4.29 shows
two candidate images for loop detection, where the image in Figure 4.29b is taken ap-
proximately 5 minutes after the image in Figure 4.29a. Based on the similarity of the
images, one would believe that OpenVSLAM would be able to detect the loop closure. It
is possible that the image processing methods could have a negative impact on the distinc-
tion of the BOW features, or that the BOW vocabulary of OpenVSLAM is unsuited for
underwater use. To distinguish why the BOW-based loop detection fails, more in-depth
quantitative analyses would have to be performed. BOW-based loop detection methods
have, however, been shown to be susceptible to illumination changes (Milford and Wyeth,
2012), which is a possibility why the method fails in this case, as the light source moves
with the ROV. Less computational and memory intensive loop detection methods, like hash
table-based approaches (Bonin-Font et al., 2014), have been proposed to replace the BOW-
based approaches. The most modern approaches for loop detection are DL-based image
hash approaches (Bonin-Font and Burguera, 2021), which utilize fast CNNs to create the
image hashes. These approaches have proven to be more reliable, more efficient, and sim-
pler than previous methods. However, the effects of integrating a DL-based image hash
loop detection method with an underwater V-SLAM system are still open research ques-
tions. Considering the lack of performance of the BOW-based approach of this project,
integration of a DL-based image hash loop detection method into OpenVSLAM is highly
recommended as further work.
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Chapter 5
Conclusion

5.1 Conclusion
This project investigated the validity of using V-SLAM for underwater navigation, and
identified parameters that are important for the robustness and drift of underwater V-
SLAM algorithms. Additionally, an evaluation of the full SLAM standard model and a
BOW-based loop detection method was performed.

A dataset suitable for underwater V-SLAM was collected with a stereo camera mounted on
a ROV. The dataset was used to perform a comparison analysis of the V-SLAM algorithm
OpenVSLAM, with four different image processing methods. Based on the comparison
analysis, filtering of image noise and forward scattering blur were found to be important
factors for underwater V-SLAM robustness, due to the improved ability to match small-
scale visual features. Due to this effect and the fast computational speed, the BLF was
found to be a very good image processing method for underwater V-SLAM. In terms of
the accumulated drift, the various image processing methods were found to have little
effect on the RPE. Maneuvering with a lot of turns was, however, identified to cause a lot
of peaks in the RPE and therefore a significant source of accumulated drift.

By comparing two dives with very different maneuvering patterns, proper maneuvering
was found to be a very important factor for underwater V-SLAM robustness. Specifi-
cally, maneuvering with a low altitude was found to be important for the stereo camera to
maintain good visual contact with the seabed, and avoiding sharp turns was found to be
important to reduce motion blur. Having a properly configured camera- and lamp setup
for the relevant survey site, was also identified to be crucial elements to improve visual
contact and illumination, and, consequently, V-SLAM robustness.

One of the underlying models and a submethod of the OpenVSLAM algorithm were iden-
tified to be problematic for underwater V-SLAM. Specifically, the static map assumption
of the full SLAM standard model was shown to be invalidated in the presence of a high



number of dynamic targets. Moreover, the BOW-based loop detection method was found
to be inappropriate for underwater V-SLAM, as it is susceptible to illumination changes
and, therefore, did not detect a single loop in the dataset.

5.2 Further Work
State Estimation and Georeferencing

Some recommendations for further work to this project is to improve upon the analyses that
was conducted in this project. In this regard, there are several recommendations for further
work that are closely related. The first is to improve upon the navigation data processing,
and the establishment of the ground truth reference. A specific approach is to utilize a
probabilistic filter, such as a Kalman Filter, which takes the measurement uncertainties
into consideration. By employing a probabilistic filter, not only would one improve the
accuracy of the ground truth reference, but one would also gain access to the ground truth
covariance. Closely related to this, is to establish a georeferencing method which takes
both positions and attitudes, as well as uncertainties into consideration.

Consistency Analysis

Also related to uncertainties, is to implement functionality to retrieve the covariance ma-
trices for the pose- and landmark estimates from OpenVSLAM. Pose- and landmark esti-
mates, and their corresponding covariance matrices can then be used to perform a consis-
tency analysis of OpenVSLAM.

Guidance and Control

Considering the requirements that underwater V-SLAM puts on maneuvering, it is inter-
esting to investigate guidance- and control laws for this specific purpose. For instance, one
could investigate guidance laws that utilize visual information to guide the maneuvering
of the UUV. The gains of such a system could be improved visual contact between the
camera and the seabed, and less critical maneuvers, like sharp turns at high altitude. This
could help increase the overall robustness of underwater V-SLAM algorithms.

Refractive Camera Models

A recommendation for further work within the field of photogrammetry would be to de-
velop a refractive camera model for cylindrical housings. This refractive camera model
could then be implemented in OpenVSLAM, to examine the systematic errors that are in-
troduced by omitting refraction. This is an ambiguous project, as there has been no study
of underwater refractive V-SLAM, to the author’s knowledge. There are, however, studies
where refractive camera models have been integrated into SFM methods with great suc-
cess (Xiaorui et al., 2019). It is hard to believe that underwater V-SLAM algorithms would
not see similar benefits. Adapting a refractive camera model for a flat plane housing, such
as the Pinax model (Łuczyński et al., 2017), could also be an interesting project, but would
require the collection of a new dataset.

72



Adaptive Edge-Preserving Filters

In the wake of the success of the bilateral filter in this project, a recommendation for
further work is to investigate the more advanced version, the fast adaptive bilateral filter
(Gavaskar and Chaudhury, 2019). The fast adaptive bilateral filter has improved on some
of shortcomings of the bilateral filter, while still being able to process images at a high
rate. Another image processing filter that could be interesting for underwater V-SLAM
is the guided filter (He et al., 2013), which is another edge-preserving filter, just like the
bilateral filter.

Deep Learing-Based Loop Detection

Perhaps the most interesting recommendation for further work, in the context of V-SLAM,
is to integrate a DL-based image hashing method for loop detection in OpenVSLAM. A
method that is particularly interesting is NetHALOC, a CNN which has been specifically
engineered for underwater loop detection (Bonin-Font and Burguera, 2021).

Visual Inertial SLAM

The last recommendation is to investigate adaptations of VI-SLAM methods for under-
water navigation. In recent years several VI-SLAM projects have been made publicly
available, like the Kimera framework (Rosinol et al., 2020). By utilizing an IMU in ad-
dition to the visual information from a camera, VI-SLAM have proven to be more robust
than V-SLAM, and less reliant on good visual features. There are, however, few studies of
underwater VI-SLAM, so the robustness gains for underwater navigation are very much
open research questions.
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Appendix A
Technical Information

Technical Specifications of Sensors and Sensor Systems

Parameter Specification Unit
Angular accuracy, 20 dB S/N 0.06 deg
Angular accuracy, 10 dB S/N 0.10 deg
Angular accuracy, 0 dB S/N 0.30 deg
Range accuracy, 20 dB S/N 0.10 m
Range accuracy, 10 dB S/N 0.15 m
Range accuracy, 0 dB S/N 0.20 m
Coverage ±100 deg

Table A.1: Technical specifications for the Kongsberg HiPAP 500 system. Courtesy: Kongsberg
(2005)

Parameter Specification Unit
Frequency 415 Hz
Initial bias error 0.2 deg/s
Bias stability 10.0 deg/h
Noise density 0.01 deg/s

√
Hz

Table A.2: Technical specifications for the XSens MTi-100 IMU gyroscope. Courtesy: Xsens
(2018)
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Parameter Specification Unit
Maximum ping frequency 7 Hz
Std. dev. at 1 m/s 0.3 cm/s
Std. dev. at 3 m/s 0.5 cm/s
Std. dev. at 5 m/s 0.7 cm/s
Long-term accuracy 0.2 %
Long-term std. dev. 0.1 cm/s
Minimum altitude 0.5 m
Maximum altitude 25 m

Table A.3: Technical specifications for the Teledyne RDI Workhorse Navigator DVL. Courtesy:
Teledyne (2013)

Parameter Specification Unit
Pressure signal frequency 37-42 kHz
Accuracy 0.01 %

Table A.4: Technical specifications for the Paroscientific Digiquartz pressure sensor. Courtesy:
Paroscientific (2005)
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Appendix B
Mathematical Preliminaries

Quaternions

Quaternion Definitions and Properties

Quaternion Fundamentals

For the background material on quaternion arithmetic and unit quaternion rotation repre-
sentation, the reader is referred to Solà (2017).

A quaternion q is a four-dimensional number consisting of a real scalar part η, and a
hyper-imaginary part ε. The quaternion q can be expressed in terms of its real part and the
hyper-imaginary units, i, j, and k, as

q =

[
η
ε

]
=


η
ε1
ε2
ε3

 = η + ε1i + ε2j + ε3k, (B.1)

where the hyper-imaginary units are connected through Sir William Rowan Hamilton’s
famous fundamental property of quaternions,

i2 = j2 = k2 = ijk = −1. (B.2)

Quaternion Sums

Addition of quaternions is straight-forward, and defined as
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qa + qb =

[
ηa
εa

]
+

[
ηb
εb

]
=

[
ηa + ηb
εa + εb

]
. (B.3)

Quaternion Product

The quaternion product is were the arithmetics become more complex. The product of two
quaternions qa and qb is defined as

qa ⊗ qb =

[
ηaηb + ε>a εb

ηbε1 + ηaεb + εa × εb

]
. (B.4)

From eq. B.4 one can see that the quaternion product is non-commutative, i.e.

qa ⊗ qb 6= qb ⊗ qa, (B.5)

due to non-commutativity of the vector cross product of the hyper-imaginary parts. The
quaternion product is, however, associative

(qa ⊗ qb)⊗ qc = qa ⊗ (qb ⊗ qc), (B.6)

and distributive

qa ⊗ (qb + qc) = qa ⊗ qb + qa ⊗ qc. (B.7)

Quaternion Identity

Utilizing the quaternion product definition in eq. B.4, one can see that the identity quater-
nion q1, with the following property

q⊗ q1 = q1 ⊗ q = q, (B.8)

is defined as

q1 =

[
1
0

]
. (B.9)

Quaternion Conjugate

Similarly to imaginary numbers, the conjugate of a quaternion q is defined as

q∗ =

[
η
−ε

]
, (B.10)
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with the following properties

q⊗ q∗ = q∗ ⊗ q = η2 + ε21 + ε22 + ε23 =

[
η2 + ε21 + ε22 + ε23

0

]
(B.11)

and

(qa ⊗ qb)
∗ = q∗b ⊗ q∗a. (B.12)

Quaternion Norm

The norm of a quaternion is defined as

‖q‖ =
√

q⊗ q∗ =

√
η2 + ‖ε‖2 =

√
η2 + ε21 + ε22 + ε23. (B.13)

‖qa ⊗ qb‖ = ‖qa‖ ‖qb‖ (B.14)

Quaternion Inverse

Now that the identity quaternion q1 has been established, the property which would define
the inverse of a quaternion q, would be that the product of the quaternion and its inverse
is equal to the identity quaternion, i.e.

q⊗ q−1 = q−1 ⊗ q = q1. (B.15)

This relation in addition to the definition of the quaternion product leads to the following
expression of the inverse quaternion

q−1 =
q∗

‖q‖2
. (B.16)

Quaternion Rotation Representation
Unit quaternions are useful for attitude representation, due to the afore-mentioned prop-
erties, the fact that multiple consecutive rotations can be expressed as a single quaternion
product, and that they do not suffer from gimbal locking. A unit quaternion can rotate a
three-dimensional vector v to v′ as

[
0
v′

]
= q⊗

[
0
v

]
⊗ q∗, ‖q‖ = 1. (B.17)
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Since quaternion are challenging to compose directly, a common approach is to define
them in terms of an axis and an angle. Using this approach, a unit quaternion q can be
composed by a rotation α around an axis, defined by the unit vector d, as

q = Axis-Angle(d, α) =

[
η
ε

]
=

[
cos(α2 )

d · sin(α2 )

]
, ‖d‖ = 1. (B.18)

Combined rotations can also be expressed with unit quaternions in a straight forward fash-
ion, depending on the frame of reference. Consider two consecutive rotations applied to
an object, expressed by the two unit quaternions qa and qb, respectively. In an absolute
reference frame, the resulting rotation is expressed in terms of the unit quaternion qc, as

qc = qb ⊗ qa. (B.19)

In the frame of reference of the rotated object the same resulting rotation qc is expressed
by reversing the order of the two constituent rotations in the quaternion product, i.e.

qc = qa ⊗ qb. (B.20)
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Appendix C
Data and Source Code

Ekne Wreck Site Video Sequences

Sequence Duration YouTube Link
"Ekne Wreck Site 01" 14:18 Link
"Ekne Wreck Site 02" 4:13 Link
"Ekne Wreck Site 03" 4:05 Link
"Ekne Wreck Site 04" 2:16 Link
"Ekne Wreck Site 05" 4:18 Link
"Ekne Wreck Site 06" 3:13 Link
"Ekne Wreck Site 07" 0:58 Link
"Ekne Wreck Site 08" 1:07 Link

Source Code Repositories
https://github.com/markvilar/Sennet

https://github.com/markvilar/Sennet-ZED

https://github.com/markvilar/Cardinal

https://github.com/markvilar/Focal

https://github.com/markvilar/Trajectory
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https://youtu.be/G6iFZP082es?list=PLhpREwMHKtVAeR5IbZ-DNkQgH2eECfYju
https://youtu.be/0HQqOfRPpOA?list=PLhpREwMHKtVAeR5IbZ-DNkQgH2eECfYju
https://youtu.be/o1c2ETyikHw?list=PLhpREwMHKtVAeR5IbZ-DNkQgH2eECfYju
https://youtu.be/HYEKMfT9oYs?list=PLhpREwMHKtVAeR5IbZ-DNkQgH2eECfYju
https://youtu.be/YaeFt9GS0FE?list=PLhpREwMHKtVAeR5IbZ-DNkQgH2eECfYju
https://youtu.be/DmXqTBPXZW8?list=PLhpREwMHKtVAeR5IbZ-DNkQgH2eECfYju
https://youtu.be/FXoUadmTfdY?list=PLhpREwMHKtVAeR5IbZ-DNkQgH2eECfYju
https://youtu.be/jJtaig2OgZY?list=PLhpREwMHKtVAeR5IbZ-DNkQgH2eECfYju
https://github.com/markvilar/Sennet
https://github.com/markvilar/Sennet-ZED
https://github.com/markvilar/Cardinal
https://github.com/markvilar/Focal
https://github.com/markvilar/Trajectory


https://github.com/markvilar/openvslam
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https://github.com/markvilar/openvslam
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