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severe sea states, the assumption of small amplitude waves may not be appropriate due to nonlinear 
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parameters from weather forecasts.  
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Compare with response measurements. 
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Abstract

Information about the sea state and the Response Amplitude Operator (RAO) are essential

in studying the motions of floating structures. Response predictions in marine operations

often rely on wave spectrum models based on statistical wave parameters provided by fore-

casts to describe the ocean environment. However, the choice of wave spectrum depends,

among other things, on the geographical location of the vessel, the on-site wave system,

and the wave parameters. Further, the RAOs are typically calculated based on linear

theory by numerical methods. As a result of the increased availability of response mea-

surements in the maritime industry, more detailed estimates of the RAOs can be obtained

by utilizing measurements to capture nonlinear effects in the wave-induced response for

more severe sea states. A focus on an improved representation of the sea state and vessel

characteristics can provide significant benefits in terms of the safety onboard vessels and

costs of an operation due to increased accuracy in response predictions.

In this thesis, the aim was to improve the prediction accuracy of vessel responses through

a sensitivity study and RAO estimation. A sensitivity study of response predictions to

wave modeling was conducted on full-scale data of a construction vessel. The theoretical

response was calculated by utilizing the numerically calculated RAOs, and JONSWAP-,

PM-, and Ochi-Hubble spectra modeled based on wave parameters from weather forecasts.

The study showed that the response was sensitive to uncertainty elements of the relation

between the forecasted parameters for the total wave and the wind-wave and swell com-

ponents. Further, none of the considered wave spectrum models enabled to satisfactorily

reproduce the measurements for all samples despite minor variations in the sea states.

Additionally, two methods for estimating the RAOs of a vessel have been proposed, based

on response measurements and a known wave spectrum. The tuning algorithm optimizes

a tuning coefficient to improve an initial estimate of the RAOs. In contrast, the observer

algorithm is based on a brute-force method for sea state estimation that requires no prior

estimate of the RAOs. The methods were evaluated on data gathered at the Marine

Cybernetics Laboratory (MC Lab) in Trondheim for Cybership Inocean Cat I Drillship

(CSAD). The sample-specific estimates from the dataset were utilized to calculate average

RAOs with respect to the significant wave height. Due to a limited dataset with wave

energies distributed for frequencies where the wave-induced response is expected to be low,

the results showed that the estimated RAOs do not reflect the true physics of the vessel.

Further, the average RAOs showed a clear dependence on the individually estimated re-

sponses due to few samples. However, good agreement was seen when the average RAOs

were used to predict the vessel response for two sea states, despite the unrealistic RAO

estimates.
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Sammendrag

Informasjon om sjøtilstanden og Respons Amplitude Operator (RAO) er viktig for å stud-

ere bevegelsene til flytende strukturer. Responsprediksjoner i marine operasjoner er ofte

avhengige av bølgespektrummodeller basert p̊a statistiske bølgeparametere gitt av vær-

prognoser for å beskrive havmiljøet. Valget av bølgespektrum avhenger imidlertid blant

annet av fartøyets geografiske beliggenhet, bølgesystemet, og bølgeparameterne. Videre

blir RAOer vanligvis beregnet basert p̊a lineær teori ved hjelp av numeriske metoder. Som

et resultat av den økte tilgjengeligheten av responsm̊alinger i den maritime industrien, kan

mer detaljerte RAO estimat oppn̊as ved å bruke målinger for å fange opp ulineære effekter

i den bølgeinduserte responsen for høyere sjøtilstander. Fokus p̊a en forbedret represen-

tasjon av sjøtilstanden og fartøysegenskapene kan gi betydelige fordeler n̊ar det gjelder

sikkerheten ombord p̊a fartøy og kostnader ved en operasjon p̊a grunn av økt nøyaktighet

i responsprediksjoner.

Målet i denne oppgaven var å forbedre prediksjonsnøyaktigheten av fartøyresponser gjen-

nom en sensitivitetsstudie og RAO-estimering. En sensitivitetsstudie av responsprediksjon

til bølgemodellering ble utført p̊a fullskala data fra et konstruksjonsfartøy. Den teoretiske

responsen ble beregnet ved å bruke de numerisk beregnede RAOene, og JONSWAP-, PM-

og Ochi-Hubble-spektrene modellert basert p̊a bølgeparametere fra værprognoser. Studien

viste at responsen var sensitiv for de usikre elementene i forholdet mellom de prognostis-

erte parameterne for totalbølgen og vind- og dønning komponentene. Videre var ingen

av de vurderte bølgespektrummodellene i stand til å tilfredsstillende gjengi alle m̊alingene

til tross for sm̊a variasjoner i sjøtilstandene. I tillegg er det foresl̊att to metoder for

å estimere RAOene til et fartøy, basert p̊a responsm̊alinger og et kjent bølgespektrum.

Tuning-algoritmen optimaliserer en tuning-koeffisient for å forbedre et initielt estimat av

RAOene. I motsetning er observer-algoritmen basert p̊a en brute-force-metode for es-

timering av sjøtilstander som ikke krever noe tidligere estimat av RAOene. Metodene

ble evaluert p̊a data samlet ved Laboratoriet for Marin Kybernetikk (MC Lab) i Trond-

heim for Cybership Inocean Cat I Drillship (CSAD). De individuelle estimatene for hver

modelltest ble brukt til å beregne gjennomsnittlige RAOer med hensyn til intervall av

signifikante bølgehøyder. P̊a grunn av et begrenset datasett med bølgeenergier distribuert

for frekvenser der det forventes at bølgeindusert respons er lav, viste resultatene at de

estimerte RAOene ikke gjenspeiler fartøyets sanne fysikk. Videre viste de gjennomsnit-

tlige RAOene en klar avhengighet av de individuelle responsestimatene som følge av et

begrenset antall tester. Imidlertid s̊a man god overensstemmelse n̊ar de gjennomsnittlige

RAOene ble brukt til å predikere fartøyets respons for to sjøtilstander, til tross for de

urealistiske RAO-estimatene.
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1 Introduction

Wave-induced responses are often predicted by seakeeping analysis based on linear theory

through a description of the vessel characteristics utilizing a Response Amplitude Operator

(RAO). As such, RAOs are essential in studying the motions of floating structures in ship-

design projects and during marine operations to ensure the desired safety and efficiency

for execution. However, the sea state is of equal importance in the numerical prediction,

often given in terms of the wave spectrum.

1.1 Motivation

The accuracy of RAOs and the sea state, and thereby the response prediction accuracy,

is a crucial factor for operators to reduce downtime and costs of an operation. The RAOs

are traditionally calculated for different loading conditions by numerical software based

on panel methods or strip theory that require detailed information about the hull lines [1].

This information may not be available in the design stage of a vessel, hence assumptions

must be taken in the calculation. At later stages, the hull lines are typically restricted

to a limited number of stakeholders. They may not be available for the ship operator to

obtain updated RAOs for the given operation. Updated RAOs could also be beneficial in

operations with changing loading conditions, like pipe-laying or lifting operations.

Waves can be directly measured by instruments like wave buoys and radars, and post-

processed to obtain the wave spectrum at the desired location. Wavefield data is also

frequently obtained from weather forecasts in terms of statistical wave parameters pre-

dicted by numerical models. The wave spectrum can then be modeled as one of different

idealized wave spectra derived from experimental studies. However, spectrum accuracy

correlates with the parameter accuracy, and the choice of the model impacts the wave

energy distribution. Uncertainties related to wave forecasts are studied by Orimolade et

al. [2] by comparing deterministic forecasts for a location in the Barents Sea and the Nor-

wegian Sea against measurements at the corresponding location. The comparison study

showed that the uncertainty varies with location and season.

In recent years, installing sensors on vessels and offshore structures has increased the data

available in the maritime sector, motivating decision-making through vessel modeling and

simulations. It is seen in embedded systems like decision support systems, where data plays

an essential role in ensuring safe navigation and support for the crew. Digital twins have

also gained interest in the maritime industry, where low-cost analyses are carried out to

predict vessel behaviors during operations. A similarity for both examples is the common

use of the first principle methods utilizing models like RAOs for response prediction. Since

vessel RAOs cannot themselves be measured directly, researchers have proposed methods

that exploit the available data to estimate RAOs based on response measurements and

knowledge of the on-site wave conditions. Some of the methods are introduced below and

aim to improve the accuracy of traditionally RAOs calculated based on linear theory to

1 of 56



1 INTRODUCTION NTNU 2021

account for nonlinear effects in the wave-induced response for more severe sea states.

The method proposed by Skandali et al. [3] is an example where RAOs are calibrated

using vector fitting. In contrast, Han et al. [4, 5] aim at improving the RAO accuracy

by hydrodynamic model parameter tuning based on two different approaches. The first

method is based on spectral analysis, probabilistic modeling, and the discrete Bayesian

updating formula. The second method is shown to be much more efficient by tuning the

parameters based on the unscented transformation and scaled unscented Kalman filter.

An increased interest has also been seen in response prediction based on data-driven

methodologies. The methods benefit from their independence of the RAOs, hence reducing

challenges related to changing vessel characteristics during operation. Gilbert et al. [6]

studies a method to improve access forecasting for offshore wind farm operations using a

data-driven methodology. The best performing model is trained to estimate vessel motion

up to 5 days ahead based on heave peak-to-peak displacement measurements and sea state

parameters. Nielsen et al. [7] study a semi-empirical model for added-wave resistance

estimation, where improved estimates are valuable in terms of energy efficiency in the

shipping industry and the risk of designing under-powered ships.

A challenge related to the examples based on historical motion records is their ability to

obtain generalized estimates. This means that an estimated RAO from previous samples

may not be valid during the entire operation if the condition changes. Therefore, a real-

time procedure is required to continuously update the RAO estimates based on new input.

In situations where real-time estimation procedures are not suited, accurate estimations of

generalized RAOs may be obtained by calculating the average RAO over a given number of

sample-specific estimates. This is beneficial when it is desired to improve existing RAOs,

or if the RAOs are initially unknown.

1.2 Research Objectives

This thesis is completed in collaboration with the company Subsea 7 and has two different

objectives with an overreaching goal of improving vessel response predictions based on

available sea state information and vessel response measurements. Firstly, a sensitivity

study on the predicted response will be assessed utilizing full-scale measurements of a vessel

and wave spectral parameters provided by external weather forecasts. Since actual 2D

wave spectra measurements are not available, the prediction sensitivity will be evaluated

by modeling the wave spectrum using three different parametrized 1D spectra. Secondly,

two methods for estimating the RAO for heave and pitch motion are studied based on

experimental data obtained at the Marine Cybernetics Laboratory (MC Lab) located at

the Center of Marine Technology in Trondheim. Both methods require vessel response

measurements for heave and pitch as input and wave spectral parameters in terms of the

significant wave height, peak period, and wave direction. The aim is to generalize the

RAO estimates by calculating the average RAOs for a pre-defined range of significant

wave heights. Though individually evaluated, the methods will be compared to form an
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idea of the future potentials of implementation.

1.3 Main Contributions

A sensitivity study on vessel response prediction for heave and pitch motion is conducted

by calculating the theoretical response based on available RAOs and wave spectra. Ad-

ditionally, two methods for estimating the RAOs are implemented, tested, and evaluated

to represent a diverse selection of methodologies to obtain an improved knowledge of the

wave-ship interaction for a given vessel. The first method is an extension of the pre-project

submitted by the author in December 2020 at the Norwegian University of Science and

Technology (NTNU) [8]. It considers an iterative approach that utilizes the residual be-

tween the measured and estimated vessel responses assuming no prior knowledge of the

RAOs. The second method is proposed by Nielsen et al. [1] for estimating a tuning co-

efficient employing least-squares optimization. The tuning coefficient updates an initial

estimate of the RAOs calculated by semi-analytical closed-form expressions.

1.4 Organization of the Thesis

The remainder of the thesis is organized as follows.

Section 2: Presents the necessary background theory for understanding frequency do-

main calculation of vessel response, in addition to an explanation of a selection of

optimization algorithms used for implementing the methods.

Section 3: Presents previous work in the field of sea state description uncertainties,

vessel model estimation, and response prediction.

Section 4: Presents the methods proposed in this thesis. This entails definitions and

assumptions, the datasets used for testing, the sensitivity analysis on wave spectrum

modeling, and the two algorithms for estimating the RAOs.

Section 5: Evaluates and discusses the results. Results from the sensitivity study is

first presented, followed by the results from the estimation algorithms.

Section 6: Discusses the implications of the sensitivity analysis in terms of vessel re-

sponse prediction, and the implications and uses of the two individual methods for

estimating an average RAO with respect to ranges of significant wave heights.

Section 7: Concludes on the influence of wave spectrum modeling on vessel response

predictions, and the methods studied for RAO estimation.

Appendix A: Presents the derivation of the semi-analytical closed-form expressions for

the RAOs used by the tuning algorithm.
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2 THEORY NTNU 2021

2 Theory

The theory in this section aims to provide the necessary background knowledge for under-

standing the methods studied in this thesis. The first part focuses on the frequency-domain

analysis of the wave-induced vessel response and describes the RAOs and response spec-

tra. Then, different idealized spectra are explained, followed by theory about different

optimization methods. The first part is based on work from the pre-project [8].

2.1 Wave-induced Vessel Response

Dynamic analyses are essential for evaluating a vessel’s seakeeping capabilities in the design

stages and operations. The processes involved in the analyses is the ocean environment

and wave-induced responses, described in terms of their statistical properties to account

for the stochastic variation in the loads. These processes can be analyzed in the time-

domain, or the frequency-domain [9]. The statistical variability is commonly described

in terms of short-term statistics regarding stationary Gaussian processes where the sea

surface elevation is assumed to be the only time-varying parameter. In the time domain,

the wave-induced vessel response is modeled as time series, or samples, over set time

frames. In the frequency domain, the Gaussian process is described by the signal’s power

distribution as a function of frequency.

The wave-induced vessel response can be modeled in terms of a RAO and wave spectrum,

assuming linear theory and stationary conditions. In a spectral formulation, the steady-

state responses induced by the wave system are given by the cross-spectrum

SR,ij(ω, β) =

∫
Xi(ω, β)Xj(ω, β)Sζ(ω, µ)dµ, (1)

for a pair (i, j), defined as the Degree of Freedom (DoF) in heave and pitch given as

i, j = {z, θ}, respectively [10]. Xi(ω, β) is the motion transfer function and Xj(ω, β)

its complex conjugate for the wave frequencies, ω, and the relative direction, β = µ + ψ,

between the wave direction for the single waves, µ, and the vessel heading, ψ. Furthermore,

Sζ(ω, µ) is the two-dimensional wave spectrum. Eq.(1) is complex-valued due to imaginary

parts of the motion transfer function associated with the phase angle of the response [10].

The imaginary part is zero when i = j, and a real-valued cross-spectrum is obtained.

2.1.1 The Surface Elevation - Frequency to Time-domain

The sea state is expressed in the time-domain by deriving an expression for the wave

elevation. The wave amplitude, ζa, for component k is related to the wave spectrum by

Eq.(2), which sums up the spectral density, Sζ(ωk), for each frequency interval, ∆ω [11].

1

2
ζ2a = Sζ(ωk)∆ω (2)
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Assuming that the waves propagate in one direction, the wave elevation is modeled as a

long-crested irregular sea. This is obtained by summing all N harmonic components

ζ =
N∑
k=1

ζa cos(ωkt+ εk)

=
N∑
k=1

√
2Sζ(ωk)∆ω cos(ωkt+ εk).

(3)

Eq.(2) is substituted in the last equality. εk is the random phase angle of the corresponding

wave component.

In reality, waves propagate in multiple directions and are termed as short-crested irregular

sea. The effect of multiple directions is accounted for by introducing a spreading function

f(β) to represent the 2D wave spectrum as

Sζ(ω, β) = Sζ(ω)f(β), (4)

where β is the relative direction between vessel heading and wave direction [11]. By

considering a frequency- and direction interval of ∆ω and ∆β, respectively, the wave

elevation for a short-crested irregular sea is found as the sum of N components and M

directions

ζ =
N∑
k=1

M∑
i=1

√
2Sζ(ωk, βi)∆ω∆β cos(ωkt+ εk). (5)

2.1.2 Motion Response Amplitude Operators

The RAO is frequently used to obtain a measure of vessel response in a sea state and

describes the ratio of ship motion amplitude to wave amplitude. The name RAO is often

used in seakeeping and is closely related to transfer functions but do not encompass the

phase lag [12].

By assuming linear theory and steady-state response, the motion response in irregular sea

is obtained through superpositioning of regular waves with different amplitudes, wave-

lengths, and propagation directions [13]. The body motions are then evaluated by solving

the Equation of Motion (EoM) for a rigid ship in six DoFs, j, k = {x, y, z, φ, θ, ψ}

6∑
k=1

[(Mjk +Ajk(ω)) η̈k +Bjk(ω)η̇k + Cjkηk] = Fje
−iωt. (6)

The left side of Eq.(6) includes the vessel mass, Mjk, and hydrodynamic loads identified

as added mass-, damping-, and restoring forces, Ajk, Bjk, and Cjk respectively. On the
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right hand side, Fj is the complex amplitudes of the excitation loads, and the real part of

Fje
−iωt denotes the force and moment components [13]. For a wave with frequency ω and

direction β, the excitation load can be expressed as the linear relation

Fje
−iωt = ζaXj(ω, β)e−iωt, (7)

between the wave amplitude, ζa, and the complex-valued transfer function for the excita-

tion loads, Xj(ω, β). Introducing the complex notation of body motions

ηk = ηkae
−iωt, (8)

the solution of the EoMs is solved by substituting Eq.(8) into Eq.(6), giving the body

motion system

6∑
k=1

[
−ω2 (Mjk +Ajk(ω)) + iωBjk(ω) + Cjk

]
ηka = ζaXj(ω, β). (9)

Dividing on ζa, the transfer function describing the amplitude and phase of the body

motions relative to the waves becomes

H(ω, β) =
ηa
ζa

=
[
−ω2 (M + A(ω)) + iωB(ω) + C

]−1
Xj(ω, β), (10)

where the RAO is given as the real part, |H(ω, β)|.

2.1.3 Response Spectrum

The response spectrum results from the transformation of wave energy to response energy

of a vessel in the frequency-domain by using Eq.(1). Figure 1 shows a principle sketch of

the transformation in heave, where the transfer function is represented by the motion RAO.

The wave spectrum, Sζ(ω), is shown to the left in Figure 1. Regular wave components

associated with their corresponding wave energy, 1
2ζ

2
a , are superpositioned to describe the

irregular wave history, ζ(t).

Figure 1 also shows the the response spectra for heave motion, denoted as Sz(ω). The

response components are obtained by multiplication of each wave component with the

motion RAO, and superpositioned to obtain the irregular response history in heave, z(t).
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Figure 1: Transformation of wave energy to vessel response in heave [14]. Sζ(ω) is the

wave spectrum, and Sz(ω) is the heave response spectrum.

2.2 Modeling of Waves

In situations where measurements of the actual wave conditions for a given geographic

location are not available, the waves can be described in terms of their statistical prop-

erties as a sum of regular wave components [9]. Standardized wave spectra derived from

experimental data are used to approximate the sea state utilizing statistical parameters

like the significant wave height, Hs, and peak wave period, Tp, obtained by, among other

things, weather forecasts or hindcasts. If wind-waves or swells dominate the sea state,

a one-peaked spectrum like the Joint North Sea Wave Project (JONSWAP) or Pierson-

Moskovitz (PM) spectrum is typically chosen. When low-frequency swells significantly

influence the high-frequency wind-waves, a bimodal spectrum like the Ochi-Hubble spec-

trum can be used to account for the individual contributions to the total wave energy

[15].

The chosen wave spectrum can be described by the spectral moments

mn =

∫ ∞
0

ωnSζ(ω)dω, (11)

where Sζ(ω) is the 1D wave spectrum for wave frequencies ω [9]. The 0-th order spectral

moment is found for k = 0 as the standard deviation of the wave spectrum, and is essen-

tial for expressing the statistical parameters of the considered spectrum. The mentioned

parametrized wave spectra and some important relations in terms of wave modeling are
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described in the following sections.

2.2.1 Pierson-Moskowitz Spectrum

For fully developed sea states and unlimited fetch, the PM spectrum is described by the

spectral density

Sζ(ω) =
A

ω5
exp[− B

ω4
], (12a)

A = 0.0081g2, (12b)

B = 0.74

(
g

Vwind

)4

, (12c)

where ω is the angular wave frequency, g is the gravitational constant, and Vwind is the

wind speed at 19.5 m altitude [9]. The spectral parameters, A and B, define the type of PM

spectrum. Different spectral formulations can be obtained by changing these parameters.

2.2.2 JONSWAP Spectrum

As a result of the Joint North Sea Wave Project (JONSWAP), the spectral density of the

JONSWAP spectrum is described by

Sζ(ω) = α
g2

ω5
exp[−5

4

(ωp
ω

)4
]γ

exp[− 1
2

(
ω−ωp
σωp

)2
]

(13)

[9]. Here, g is the gravitational constant, α determines the spectrum shape in the high

frequency range, and γ is given as the ratio of the maximum spectrum energy to the

maximum energy in the PM spectrum. Furthermore, σ describes the width of the left

and right side of the peak, as shown in Figure 2 [16]. Since the JONSWAP spectrum

describes not fully developed seas, the spectral density function is more peaked than the

PM spectrum.
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Figure 2: Measured wave spectra under ideal conditions and parametrical approximations.

Principal sketch of the peak shape parameters γ, σa, σb [16].

2.2.3 Ochi-Hubble Spectrum

Ochi and Hubble describe a bimodal spectrum as the sum of two PM spectra by

S+
ζ (ω) =

1

4

2∑
i=1

((λi + 1/4)ω4
p,i)

λi

Γ(λi)

H2
m0,i

ω4λi+1
exp

(
−(λi + 1/4)ω4

p,i

ω4

)
(14)

[15]. For the low and high frequency component, i = 1, 2, the significant wave height, peak

frequency, and spectral shape parameter are described by Hm0,i, ωp,i, and λi, respectively.

The parameters in Eq.(14) are determined in terms of empirical constants obtained from an

analysis of 800 spectra based on data from the North Atlantic. Given Hm0, the parameters

can be found by

Hm0,1 = Rp,1Hm0, (15a)

Hm0,2 =
√

1−R2
p,1Hm0, (15b)

ωp,i = ai exp (−biHm0) , (15c)

λi = ci exp (−diHm0) , (15d)

where ai, bi, ci, di, and Rp,1 are empirical constants.
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2.3 Optimization

Optimization is a tool that, among other things, can be used for analyzing physical systems

based on a construction of an appropriate model. The process of modeling the system

is based on identifying an objective to be maximized or minimized. The objective is

determined as a scalar function f of the unknown variables x. The goal is to find the

variables that yield the optimum value of the objective, given a set of constraints, ci,

on the variables that must be satisfied [17]. Mathematically, an optimization problem is

defined as

min
x∈Rn

f(x)

subject to ci(x) = 0, i ∈ E ,

ci(x) 6= 0, i ∈ I,

(16)

where E and I are the sets of equality and inequality constraints, respectively. x ∈ Rn

is a vector with n 6= 1 unknown variables. In unconstrained optimization, E = I = Ø,

meaning that the constraints are disregarded. This applies to systems where the solution

is not affected by any constraints.

In unconstrained optimization, an initial guess of the variables, x0, is supplied to the

algorithm. The optimization algorithm then decides the trajectory from one iterate to the

next by using information about f at the current iterate xk in search of a lower function

value.

2.3.1 The Line Search Method

The line search method is one of the fundamental methods for iteration from the current

point, xk, to the next, xk+1, given by

xk+1 = xk + αkpk (17)

[17]. The iteration step is defined in terms of a search direction, pk, and a step length, αk,

found by the algorithm. The line search strategy often define the search direction as

pk = −B−1k ∇fk, (18)

with a requirement of pk to be a descent direction. This guarantees a reduction in f along

the direction. In Eq.(18), Bk is a symmetric and nonsingular matrix, and ∇fk is the

function gradient. The step length can be found by solving the minimization problem

min
α>0

f(xk + αpk). (19)
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Newton’s method is an example of a line search strategy that defines Bk as the exact

Hessian ∇2fk, and uses the Newton direction

pNk = −(∇2fk)
−1∇fk, (20)

derived from the second-order Taylor series approximation

f(xk + p) ≈ fk + pT∇fk +
1

2
pT∇2fkp = mk(p). (21)

It is found as the direction p that minimizes Eq.(21). The Newton’s direction require the

Hessian to be positive definite, and typically uses a step length of αk = 1.

2.3.2 The BFGS Method

The Quasi-Newton methods provide alternative line search methods that do not require

computations of the Hessian. Instead, an approximation of the Hessian, Bk, is updated at

each iteration step [17]. This makes the Quasi-Newton methods only require the gradient

of the objective function to account for changes during the step, thus providing information

about the Hessian along the search direction.

The BFGS method is the most popular Quasi-Newton method, which updates Bk in

Eq.(18) at every iteration [17]. It is based on the quadratic model of the objective function

mk(p) = fk +∇fTk p+
1

2
pTBkp, (22)

where the minimizer pk is given by Eq.(18). At each iteration, Bk is updated to satisfy

the construction of a new quadratic model mk+1(p). Instead of imposing conditions on

the Hessian approximation, the BFGS algorithm considers their inverses Hk. A unique

solution of Hk+1 is determined by solving the following problem.

min
H

‖H −Hk‖

subject to H = HT , Hyk = sk

(23)

In Eq.(23), H is the inverse Hessian at iterate k + 1 to be determined as the symmetric

matrix closest to the current matrix Hk. Further, sk = xk+1−xk and yk = ∇fk+1−∇fk is

the displacement and change of gradient, and must satisfy the curvature condition given

as

sYk yk > 0. (24)

If the curvature condition holds, the approximated inverse Hessian, Hk+1, maps yk into

sk by the secant equation
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Hk+1yk = sk. (25)

In Eq.(23), the BFGS algorithm uses the weighted Frobenius norm, yielding the unique

solution

Hk+1 = (I − ρkskyTk )Hk(I − ρkyksTk ) + ρksks
T
k , (26)

to Eq.(23) where ρk = 1
yTk sk

.

2.3.3 Least-squares Problems

In the search of the unknown variables of an optimization problem like Eq.(16), the ob-

jective function must be defined. Least-squares problems are recognized by the quadratic

objective function

f(x) =
1

2

m∑
j=1

r2j (x), (27)

where the residual, rj , is a smooth function from Rn to R [17]. rj measures the discrepancy

between the observed data yj and the behavior of a parametrized model, φ(tj ;x) as

rj(x) = yj − φ(tj ;x), j = 1, 2, ...,m. (28)

The best-fitting parameters for the model are obtained by solving Eq.(16) in terms of the

objective function in Eq.(27). Such models are considered the largest source of uncon-

strained optimization problems due to their relatively easy and inexpensive calculation of

the Hessian, where the most important part is described in terms of the Jacobian matrix.
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3 Previous Work

A literature review covering the topics related to the theory presented in Section 2 is pre-

sented here. It includes previous work focusing on uncertainties in sea state description,

estimation of vessel models, and prediction of wave-induced vessel response. The men-

tioned topics are fundamentally based on the relationship between vessel response and the

surrounding waves to improve knowledge of the on-site operational or sea state conditions.

Parts of this section are based on work from the pre-project submitted in December 2020

[8].

3.1 Uncertainties in Sea State Description

For marine operations dominated by waves, the sea state description influences the numer-

ical analyses of vessel response predictions. The local wave conditions are often provided

by weather forecasts in terms of statistical parameters, requiring the spectral model to be

chosen by the analyst. In situations where sea state measurements are not available, it

may be challenging to validate the predicted responses that depend on the wave spectral

model and estimate the bias and uncertainty of the given method. According to Guedes

Soares [18], it is necessary to describe the sources of the fundamental, statistical, and

model uncertainty for the probabilistic sea state description to be complete. This includes

uncertainties in the spectral shape definitions such as degree of development, combined

sea states, and the adequacy of standardized wave spectra.

Li et al. [19] study the effect of uncertainties in sea state description on the assessment of

operational limits for two floating crane vessels, a heavy-lift vessel, and a semi-submersible.

A JONSWAP- and a Torsethaugen spectrum is used to model the waves as both long-

crested and short-crested. Considering the vertical crane tip motion as the critical pa-

rameter, the study shows that the corresponding response spectra and the operational

limits are sensitive to the spectral models due to their different spectral distribution. Fur-

ther, the estimated operational limits tend to be more conservative for short-crested waves

compared to long-crested waves.

A methodology to assess uncertainties in operational limits due to the variability in wave

spectral energy distribution is presented by Guachamin-Acero and Li [20]. Among other

things, uncertainties are introduced in offshore sites where a combination of wind seas

and swells are present in the sea state. Inaccurate partitioning of wave parameters to

simplify the information result in analytical 2D wave spectra that cannot represent the

actual wave condition in situations where the wave information is not adequately de-

scribed. The methodology has been applied on a case study of an offshore wind turbine

transition piece installation, and significant differences in operational limits are observed

when uncertainties in wave spectral parameters are included.

Different considerations apply for ship model testing where a wavemaker generates waves

in a basin with limited dimensions. In this case, the irregular wave properties are nor-
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mally defined by a type of spectrum with corresponding significant wave height and peak

period. In a published report by the International Towing Tank Conference (ITTC) [21],

a procedure of uncertainty analysis for experimental ship model measurements and test-

ing is summarized. Kim and Hermansky [22] consider the uncertainties in seakeeping

experiments, introducing the details of the ITTC’s procedure. It is seen that although

wave parameters are considered a significant contribution to the experimental error, such

uncertainties are difficult to estimate and are usually neglected. This considers wave gen-

erator limitations, deterioration of wave properties along the facilities, and reflections from

wave energy dampers. Although such uncertainties are generally sufficient in engineering

practice, the understanding helps evaluate experimental results.

Extending upon the issue of uncertainties in the sea state description, researchers have

gained interest in estimating the sea state parameters or the wave spectrum based on

both model- and non-model based calculation. Model based methods typically relate

vessel response measurements to the sea state in terms of a mathematical model referred

to as the wave buoy analogy [23]. Tannuri et al. [24] assume prior knowledge of the

RAOs to estimate vessel response using Eq.(1). The Directional Wave Spectrum (DWS) is

estimated from on-board measurements of a Floating Production, Storage, and Offloading

(FPSO) vessel in Dynamic Positioning (DP). The sea state parameters are then found by

minimizing the quadratic error between estimated and measured vessel response.

Sea state estimation using machine learning yields benefits in terms of their independence

of mathematical models such as the vessel RAOs. Algorithms are trained to recognize

patterns in the measurements and thus require different information about the vessel. An

example is proposed by Alfsen [25]. Using Convolutional Neural Network (CNN) based

on regression and classification models, the significant wave height, peak period, an wave

direction is estimated based on data from Inertial Measurement Unit (IMU) sensors.

Two approaches for estimating the relative wave direction using machine learning are

proposed by Mak and Düz [26, 27]. The first approach adopts a CNN and Recurrent

Neural Network (RRN) for multivariate regression from 6 DoF ship motion time series

and wave measurements. Despite some shortcomings in the data, good estimates are

obtained compared to established methods [26]. However, the performance depends on

the training strategy of the neural networks. The second approach by Mak and Düz [27]

considers various types of neural networks trained on a comprehensive simulated data set

of eleven different ship geometries. The training set consists of a selection of the ships,

and the neural networks are evaluated on the remaining ships. Remarkable performance

is achieved by the neural networks based on the simulated data. The networks are able

to generalize over geometry, yielding future potential for estimating the sea state based

on a general model. However, when the trained neural networks were reused on in-service

measurement data of a frigate vessel, the results depend on the selected approach. For the

transfer learning approach, where the neural network is further trained on the measured

data, more accurate results are obtained for the relative wave direction compared to the
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direct application approach. Here, no further training of the models was obtained before

being applied to the in-service measurements.

3.2 Estimation of Vessel Models

The prediction accuracy of vessel responses is limited by the corresponding wave infor-

mation and vessel model accuracy. In recent decades, several studies have been made

on improving response prediction by proposed sea state estimation approaches based on

both first-principle models and data-driven methods. For some operational- and vessel-

dependent uncertainties, reductions are normally obtained by careful design and organi-

zation of operation activities or monitoring systems. However, uncertainties related to

vessel parameters such as inertia distribution and damping are challenging to measure [5].

The influence of uncertainties in vessel RAOs on the short-term response variance was

assessed by a model developed by Soares [28]. The results showed that the variance un-

certainty varies with vessel heading, significant wave height, and zero-up crossing period

of the sea state. This indicates an existing potential in vessel model estimation to improve

knowledge of on-site conditions.

One attempt to improve vessel model description in terms of the RAO is addressed by

Skandali et al. [3]. An approach is proposed to calibrate the vessel RAOs by vector

fitting and modification of fitting parameters based on measured vessel response and a

directional wave spectrum. With the goal of decreasing the deviations between measured

and predicted vessel motion, the results show an increased accuracy when discrepancies in

motion prediction are caused by imprecise estimates of the vessel characteristics. However,

when the discrepancies are caused by nonlinear effects such as potential mass and damping,

the methodology fails due to non-convexity.

In her master thesis, Vettestad [29] proposes a parameteric and non-parametric method

for RAO estimation to predict heave motions during offshore oil drilling from floating rigs

or drilling ships. The methods are implemented with both measured- and modeled wave

spectrum, as well as measured heave amplitude. The parametric model is modeled as a

Single Input Single Output (SISO) mass-spring-damper system, while the non-parametric

model is based on the relation between the heave motion, RAO amplitude, and wave

spectrum, with no assumptions regarding system structure. It is shown that the methods

perform differently based on the conditions. The parametric model performs best under

ideal conditions, while the non-parametric model yields better results using measurements.

Another approach is proposed by Han et al. [4] to improve the RAO accuracy by tuning

the important hydrodynamic model parameters based on spectral analysis, probabilistic

modeling, and the discrete Bayesian updating formula. An adaptive model updates both

the parameter values and their confidence quantitatively. Analyses based on a numerical

model of an Offshore Supply Vessel (OSV) demonstrate the potential of the tuning ap-

proach by being fast and stable to deal with noise by considering up to four uncertain

parameters. The approach performs reasonably, yielding better results for the tuned pa-
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rameters, which strongly influences the measured vessel response. Similarly, updating the

parameters for cases where the sea states or measurements were less critical for the uncer-

tain parameters showed reasonable behavior. In a second paper, Han et al. [5] address a

challenge with the former approach being time-consuming and computationally expensive

due to the curse of dimensionality. Therefore, a novel and much more efficient algorithm

for model parameters tuning is proposed to solve this problem while also being able to

reduce the considered uncertainties from waves through the proposed tuning procedure.

The approach is based on the unscented transformation and scaled unscented Kalman

filter. This makes the approach efficient for dealing with large dimensional problems and

can account for system nonlinearities. Based on a simulated case study of an OSV, the

tuning results are shown to approach the true values.

Kaasen et al. [30] considers a different approach related to improved vessel model de-

scriptions. Instead of tuning the RAOs, parameters in the SIMO1 software are subject

to automatic model tuning. The linear and square damping, stiffness, and mass are the

parameters selected for tuning, based on the tuning principle of minimizing the difference

between the measured and simulated response. The challenge by this approach was seen

in roll response tuning for other directions than beam sea. The output error was signifi-

cant with the reason being unknown. The responses in sway, heave, pitch, and yaw were

improved by the tuning approach.

3.3 Prediction of Wave-induced Vessel Response

The requirement of a high level of safety for the majority of marine operations has mo-

tivated researchers to study methods for accurate calculation of the future wave-induced

vessel response. In execution of operations in the nearest future, like lifting operations and

helicopter landings, it is valuable to know the response minutes forward in time through

short-time predictions based on previous response measurements [31]. Longer time hori-

zons are of interest for operations like installations and pipe-laying to evaluate the vessel

operability according to operational limits determined based on regulations and standards

defined by class societies and national directorates [32].

Nielsen et al. [33, 31] present two methods for short-time, deterministic vessel response

prediction in the nearest future from prior measurements. Both are independent of any

knowledge of the environmental conditions and any offline training. Instead, they rely on

the autocorrelation function. The first presented method evaluates 7200 sets of predictions

and artificially simulated measurements of the vertical acceleration of a Liquefied Natural

Gas (LNG) carrier, with a prediction horizon in the order 30 s. The study of mean values

of the normalized Root Mean Square (RMS) value is based on predictions up to 50 s

ahead of time and shows that prediction accuracy depends on the time horizon. For larger

horizons from 20 s to 50 s, the accuracy reduces. Also, accuracy is highly dependent on the

autocorrelation of the actual process. Particularly the degree of smoothing of the response

1https://www.dnv.com/services/complex-multibody-calculations-simo-2311
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spectra influences the outcome.

The second study presented by Nielsen et al. [31] extends the first procedure to using

experimental data obtained from model-scale tests. By considering a period of Tpast =

25Tp, where Tp is the peak period, predictions are made 7.5 s ahead of the current time,

corresponding to 41 s in full-scale. The study shows that the procedure effectively can be

extended to full-scale measurements, yielding successful results for the given time horizon.

A prediction procedure for use in ship-helicopter flight operations based on simulated

motion data is proposed by Yan et al. [34]. The algorithm models the current state

observation as a linear function, where the respective orders of its previous states and

system input is obtained using the Bayes Information Criterion. A comparison study

of the proposed algorithm, an order-predefined predictor, and an AutoRegressive model

predictor was made for a wave height of 1 m. The study shows that the method sacrifies

prediction error for capacity, but overall yields satisfactory performance for use in flight

operations.

Attempts to predict ship motions based on data-driven methodologies are addressed in

literature. Kawan et al. [35] proposes a system structure based on Support Vector Regres-

sion (SVR) utilizing raw data for verification. The SVR model is trained and tested on

1750 and 25 data samples, respectively, and evaluated on a case study for trajectory and

pitch velocity prediction. The case studies show good performance of the proposed model,

yielding small values in the Root Mean Square Error (RMSE) and Square Correlation

Coefficient (R2) close to 1. Duan et al. [36] proposes another data-driven approach, where

real-time estimation of deterministic ship motions are obtained based on a Long-Short-

Term-Memory (LSTM) deep learning model. Based on simulated data of nonlinear ship

motions and datasets of the corresponding waves, the proposed method yield comparable

results with a traditional Hydrodynamic Transfer Function (HTF) method. In higher sea

states, the LSTM neural network outperforms the HTF method in heave motion due to

its nonlinear advantages.

Pivano et al. [37] study the digital twin performance of a semi-submersible drilling rig for

use in planning DP drilling operations. The study is motivated by the many advantages

of cloud-based digital twins, like increased simulation efficiency and sharing of real-time

information and predictions between stakeholders. The key contribution of the study is to

validate the digitial twin for drift-off simulations based on full-scale measurements from

sea trials in mild weather conditions. The comparison shows sufficient agreement between

the measured and simulated drift-off time.
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4 Methods

The implemented methods are explained in the following sections. This entails definitions

and assumptions, the datasets, the sensitivity analysis on response prediction, and the two

algorithms for estimating the RAOs.

4.1 Definitions and Assumptions

The sensitivity analysis and the algorithms for estimating the RAOs are based on the

following assumptions

i) The vessel response is stationary. The vessels are operating in DP having a constant

heading during the measurements.

ii) β is the mean relative direction between wave direction and vessel heading.

iii) The sea state is long-crested with a constant wave spectrum in the considered period.

iv) The transfer function is stationary, with constant loading condition over the period

examined.

Figure 3 shows the direction definitions. Figure 3 (a) defines the incoming wave direction

θ and vessel heading ψ in North-East-Down (NED) frame. The relative wave direction β

in the body-frame, represented by an x-y coordinate system, is defined in Figure 3 (b).

β = 0◦ and β = 180◦ is following- and head sea, respectively. The wave direction is

denoted as µ in the following sections.

Figure 3: Definition of relevant directions; θ being incoming wave direction, ψ being vessel

heading, and β being the relative wave direction [38].

4.2 Datasets and Preparation

Datasets from a full-scale vessel and a model-scale vessel are used to evaluate the methods

studied in this thesis. The full-scale dataset is used to study the sensitivity of response

prediction to wave modeling. The study is carried out by modeling the sea state in terms of
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a JONSWAP-, PM-, and an Ochi-Hubble spectrum. The experimental data obtained from

model tests includes a broader range of sea states, hence will be applied to the methods

for calculating a set of average RAOs that depend on a range of significant wave heights.

The datasets are described in the following sections.

4.2.1 Full-scale Vessel Response Measurements

Response measurements for heave and pitch motion of a full-scale construction vessel

collected during operation are provided by Subsea 7 for usage in this thesis.

Table 1 shows the main dimensions and parameters of the vessel. The dataset consists

of continuous measurements of the full-scale vessel response for six months. The vessel

heading, ψ, is measured by a gyrocompass in the NED reference frame. Additionally,

hourly updated sea state parameters are provided by external weather forecasts. The set

of parameters consists of the significant wave height, Hs, the peak period, Tp, and the wave

direction, µ, for the total wave, and the wind-wave and swell component. The wind-wave

and swell component is abbreviated with w and s, respectively.

Table 1: Main dimensions and parameters of the full-scale construction vessel.

Parameter Value

Length, Lpp 151.1 m

Moulded width, B 32.0 m

Mean draught, T 8.2 m

Displacement, ∆ 32 904 tons

Information about the vessel state is given in terms of keywords described in the operation

log, distinguishing between working conditions and when the vessel is under transit or

mobilization. Due to the weather forecast duration, a selection of 1-hour samples is chosen

for which the vessel is working, assuming that the working condition implies operation in

DP. Table 2 shows the chosen samples, describing the sample name, vessel heading, and

corresponding predicted sea state parameters. Hs, Tp, and µ are the significant wave

height, peak period, and wave direction for the total wave. Furthermore, (Hs,w, Hs,s),

(Tp,w, Tp,s), and (µw, µs) represents the corresponding sea state parameters for the wind

wave and swell component, respectively. The wave directions are defined such that the

waves are traveling from North towards South for µ = 0◦, hence must be converted 180◦

to apply for the direction definitions in Section 4.1.
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Table 2: Sample, vessel heading, and sea state parameters for the construction vessel and

sea states.

Sample ψ Hs (Hs,w,Hs,s) Tp (Tp,w, Tp,s) µ(µw, µs)

A 311◦ 1.3 (0.2, 1.2) m 11.2 (2.7, 11.2) s 205◦ (192◦, 206◦)

B 184◦ 1.8 (0.2, 1.8) m 13.3 (2.5, 13.5) s 198◦ (208◦, 198◦)

C 77◦ 1.4 (0.3, 1.4) m 14.2 (3.3, 14.4) s 214◦ (177◦, 215◦)

D 17◦ 1.1 (0.4, 1.1) m 15.8 (3.7, 15.9) s 206◦ (191◦, 208◦)

E 239◦ 0.9 (0.4, 0.8) m 11.2 (3.2, 12.3) s 210◦ (240◦, 205◦)

F 340◦ 1.7 (0.7, 1.6) m 12.5 (5.0, 12.3) s 350◦ (42◦, 340◦)

The samples in Table 2 are applied to the sensitivity study, and are chosen as the encoun-

tered sea states in the dataset with the most variation in spectral parameters. However,

the dataset does not contain much variation during the six months of measurements, and

the sea states are mild. Furthermore, it is observered that the sea states are dominated

by swells with limited variations in the significant wave height, and a double-peaked wave

spectrum may seem redundant since the wind-wave contribution to the spectrum will be

small. Nevertheless, the individual wave parameters are included in the study to evaluate

the unknown aspects of calculating the wave parameters.

4.2.2 Experimental Data from Model Test

Physical data of the vessel model Cybership Inocean Cat I Drillship (CSAD) is gathered

in the test basin at the MC Lab located at the Center of Marine Technology in Trondheim.

The laboratory consists of a wave basin with dimensions 40 x 6.45 m (LxB) and a water

depth of 1.5 m [39, 40].

Qualisys motion capture system, towing carriage, wave generator, and a video camera are

fixed equipment allowing experimental testing of marine control systems and hydrody-

namic tests [39]. The Qualisys motion capture system tracks six DoF using three Oqus

cameras and infrared reflector balls placed on the vessel. A real-time CompactRIO (cRIO)

controller from National Instruments (NI) located in the vessel running Qualisys Track

Manager 2 software reads the transmitted camera data [39, 40]. A wave-making machine

generates waves with a 6-meter wide paddle. The wave generator can generate both regular

and irregular waves with the capacity given in Table 3.

Table 3: Capacity of wave maker [39].

Height [m] Period T [s]

Regular waves H < 0.25 0.3− 3.0

Irregular waves Hs < 0.15 0.6− 1.5

2https://www.qualisys.com
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CSAD is a 1:90 scaled model developed by Bjørnø in 2016 as part of his master thesis [41]

and designed as an Arctic Drillship by Inocean for Statoil (now Equinor). The propulsion

system consists of three azimuth thrusters in the stern and bow and is equipped with a

moonpool for turret and mooring lines. The control system is programmed in Simulink

and compiled to C code to run real-time by the cRIO through the software NI VeriStand 3.

The model is equipped with a SixAxis gamepad controller and Raspberry Pi 2, allowing

human operator input to the control system [41]. Table 4 shows the main dimensions

of CSAD and Figure 4 shows the vessel model. Since the motion RAOs of CSAD are

originally unknown, the RAOs in heave and pitch are calculated in the hydrodynamic

workbench, ShipX [42], based on strip-theory.

Table 4: Scaled dimensions (1:90) of C/S Inocean CAT I Drillship [41].

Description Full-scale data Model-scale data

Length over all, Loa 232.0 m 2.578 m

Width, B 39.6 m 0.440 m

Depth moulded, Dm 19.0 m 0.211 m

Draught design, DT 12.0 m 0.133 m

Figure 4: Test basin and CSAD in the MC Lab.

A set of test cases are chosen based on the table of realistic sea states by Price and Bishop

[43]. Table 5 shows the chosen cases denoted by SSn, with corresponding significant wave

height and peak period in full-scale and model-scale. Irregular waves are modeled as a

JONSWAP spectrum, and 15 minutes vessel response measurements in DP are collected

3https://www.ni.com
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for each test case in head sea to obtain a reliable estimate of the response spectrum. The

first 100 seconds are removed from the measurements to avoid any transient behavior.

Table 5: Test cases for CSAD in head sea. The significant wave height and peak period

are given in full-scale and model-scale.

Full-scale Model-scale (1:90)

SSn Hs Tp Hs Tp

1a 1 m 7.72 s 0.011 m 0.81 s

1b 1 m 8.63 s 0.011 m 0.91 s

1c 1.5 m 7.72 s 0.017 m 0.81 s

1d 1.5 m 8.63 s 0.017 m 0.91 s

1e 1.5 m 15.84 s 0.018 m 1.67 s

1f 1.9 m 7.72 s 0.021 m 0.81 s

1g 1.9 m 8.63 s 0.021 m 0.91 s

2a 2 m 8.73 s 0.022 m 0.92 s

2b 2 m 9.57 s 0.022 m 1.01 s

2c 2.5 m 8.73 s 0.128 m 0.92 s

2d 2.5 m 9.57 s 0.128 m 1.01 s

2e 2.5 m 15.84 s 0.028 m 1.67 s

2f 2.9 m 8.73 s 0.028 m 0.92 s

2g 2.9 m 9.57 s 0.028 m 1.01 s

3a 3 m 9.65 s 0.033 m 1.02 s

3b 3 m 10.39 s 0.033 m 1.09 s

3c 3.5 m 9.65 s 0.039 m 1.02 s

3d 3.5 m 10.39 s 0.039 m 1.09 s

3e 3.5 m 15.84 s 0.039 m 1.67 s

3f 3.9 m 9.65 s 0.043 m 1.02 s

3g 3.9 m 10.39 s 0.043 m 1.09 s

4a 4 m 10.47 s 0.044 m 1.10 s

4b 4 m 11.17 s 0.044 m 1.18 s

4c 4.5 m 10.47 s 0.050 m 1.10 s

4d 4.5 m 11.17 s 0.050 m 1.18 s

4e 4.5 m 15.84 s 0.050 m 1.67 s

4f 5 m 10.47 s 0.056 m 1.10 s

4g 5 m 11.17 s 0.056 m 1.18 s

4.2.3 Froude Scaling

Representation of the data obtained from the experimental testing of CSAD in full-scale

is obtained by Froude scaling. The scaling method relates the inertia and pressure forces

to gravity forces by the ratio
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Fn =
Vvessel√
gL

, (29)

and is based upon keeping the ratio equal for the model and full-scale vessel [14]. Vvessel

is the forward vessel speed, g is the gravitational constant, and L is the vessel length. The

geometric similarity is obtained by the ratio, λ = Ls/Lm, for the full-scale vessel and the

model, respectively. From a dimensionality analysis, λ, and the requirement from Eq.(29),

scaling of other physical quantities is obtained by

Length: Ls = λLm, (30a)

Mass: Ms =
ρs
ρm

λ3Mm, (30b)

Time: ts =
√
λtm. (30c)

The ratio ρs/ρm is used to correct for water density differences between the operational

environment and test basin. Full-scale values of CSAD main dimensions in Table 4, and

the sea state parameters for the test cases in Table 5, are Froude scaled based on the

physical quantities in Eq.(30). Similarly, the timeseries of the response measurements

from the MC Lab are Froude scaled by Eq.(30a) for heave motion, and the time is scaled

by Eq.(30c).

4.3 Post-processing of Data and Preliminary Analysis

Since the algorithms for estimating the RAOs are formulated in the frequency domain,

the measured time series must be transformed. The Power Spectral Density (PSD) of the

vessel responses are calculated from a Discrete Fourier Transform (DFT) using the dat2spec

function in the WAFO toolbox [44] in MATLAB4 2019b. The result yields information

about the magnitude and phase.

Based on the sea state parameters, the wave spectra are modeled as a JONSWAP-, PM-,

and an Ochi-Hubble spectrum according to the theory in Section 2.2. The input parame-

ters for the two former spectra for the total wave are

• Hs: Significant wave height,

• Tp: Peak period,

• γ=3.3: Peak shape factor [16].

The input parameters for the Ochi-Hubble spectrum are

• Hs,w: Significant wave height for the wind component,

4https://se.mathworks.com
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• Tp,w: Peak period for the wind component,

• Hs,s: Significant wave height for the swell component,

• Tp,s: Peak period for the swell component,

• λ = 3: Spectral shape parameter [15].

4.3.1 Data Selection of the Full-scale Measurements

Since the operation log of the construction vessel described in Section 4.2.1 do not provide

detailed information about the vessel state for the period where the response measurements

are collected, the measurements may be affected by unknown aspects of the ongoing oper-

ations. Therefore, the samples may not represent perfect DP conditions. This again will

impact the accuracy of the results from the sensitivity study.

Figure 5 shows an example of two different 1-hour time series of the roll response while

the vessel is working. The upper plot represents the roll angles for sample A described in

Table 2, and the lower plot represents the measured roll angles for an arbitrary sample

selected for a different day. As seen in the lower plot, the roll angle changes significantly in

the first 5 minutes of the measurements before it settles at a mean value of approximately

0.3◦. After about 18 minutes, the roll angle again changes to a static mean angle of 0◦

for the remaining part of the time series. The roll response seen in the upper plot shows

steady and more significant oscillations around 0◦ for the whole period. The different

roll behaviors in the time series can be explained by the measurements being collected

for different types of operations. An ongoing lifting operation may cause the small roll

response and static angles for the arbitrary sample. The metacentric height value changes

during the considered time window and will deviate from the wave-induced response for

a vessel with zero roll angle. Considering this as a reasonable assumption, the samples in

Table 2 were chosen using the measured roll response to indicate the most representable

time series of the actual vessel response encountered by the on-site sea state.
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Figure 5: Timeseries of the roll response for sample A and an arbitrary sample from the

dataset, measured at two different days.

Reliable response predictions require the wave spectrum to be adequately modeled by the

available spectral parameters. The parameters in Table 2 yield the possibility of utilizing

the total wave parameters, or the wind-wave and swell component, to model a uni-modal

or bimodal wave spectrum, respectively. Although the wind-wave contribution to the to-

tal sea state is minor, the total wave parameters are not fully represented by the swell

component. Furthermore, the relation between the parameters and assumptions intro-

duced in the prediction methods by the forecasts are not known. It is therefore necessary

to evaluate the total- and decomposed wave parameters to identify any potential uncer-

tainty elements that may affect the results from the sensitivity study. This is especially

important for calculating the theoretical response using the Ochi-Hubble spectrum. For

long-crested waves, the correct RAOs are then chosen for the relative direction between

the vessel heading and the direction of the total wave calculated from the wind-wave and

swell parameters.

The wave parameters in Table 2 are evaluated and compared by calculating the total

significant wave height and wave direction from the wind-wave and swell parameters. The

total peak period is considered the peak period related to the dominating wave component

in the sea state. A method for calculating the total wave parameters is presented by Nielsen

and Dietz [45] based on the weightings
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w1 =
H2
s,w

Hs
2 , (31a)

w2 =
H2
s,s

Hs
2 , (31b)

of the significant wave heights. Hs =
√
H2
s,w +H2

s,s is the total significant wave height.

Accounting for the circularity in wave directions, a new set of parameters

A = w1 · cos(µw) + w2 · cos(µs), (32a)

B = w1 · sin(µw) + w2 · sin(µs), (32b)

based on the Cartesian vector components of the particular directions is introduced [46].

The total wave direction for the wind-wave and swell component is then given as

µ = arctan (Bk, Ak). (33)

Table 6 shows a comparison of the total wave parameters for the wind-wave and swell

components, and the total wave parameters provided in the forecast. Note that the wave

directions, µ and µ, are converted according to Figure 3. The differences between the

total wave parameters are minor for most of the samples. The maximum difference for

the significant wave height and wave direction is 0.1 m and 2◦, respectively. The most

significant difference appears for the peak periods in sample E with a difference of 1.1 s.

The peak period is defined as the period for which the wave spectrum has its maximum,

hence the total peak period, Tp, should be equal to Tp [9]. For frequencies where the

slope of the RAOs is large, such differences can yield significant changes in the wave-

induced response dependent on the chosen wave modeling methods. Furthermore, the

values presented in Table 6 highlight the issue of the limited information about how

the spectral parameters are calculated and may introduce challenges in validating the

reliability of the wave spectrum models for the considered sea states.

Table 6: Wave parameters for the total wave provided by the forecasts (Hs, Tp, µ) and

calculated based on the wind-wave and swell component (Hs, Tp, µ)

Sample Hs Hs Tp Tp µ µ

A 1.3 m 1.2 m 11.2 s 11.2 s 25 deg 26 deg

B 1.8 m 1.8 m 13.3 s 13.5 s 18 deg 18 deg

C 1.4 m 1.4 m 14.2 s 14.4 s 34 deg 33 deg

D 1.1 m 1.2 m 15.8 s 15.9 s 26 deg 26 deg

E 0.9 m 0.9 m 11.2 s 12.3 s 30 deg 32 deg

F 1.7 m 1.7 m 12.5 s 12.3 s 170 deg 169 deg
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4.3.2 Preliminary Analysis of the Experimental Measurements

The motion RAOs of CSAD are computed in ShipX based on Computer Aided Design

(CAD) drawings and linear potential theory, and are referred to as ShipX RAOs [42]. The

ShipX RAOs are used for validating the experimental response spectra for the test cases

in Table 5.

A selection of response spectra is presented with the RAOs and corresponding wave spectra

in Figures 6 and 7. The upper plots in the figures show the wave spectra for eight different

sea states with two sea states represented in each plot. The ShipX RAOs are then shown

under as the blue and green curve for heave and pitch motion, respectively. The two lower

plots show the frequency-domain response of the measurements for the corresponding wave

spectra. It is observed from the RAOs that the PSD for the majority of the sea states

is distributed over frequencies where the wave-induced vessel response is expected to be

small. This is expected for frequencies higher than 0.08 Hz and 0.1 Hz where the respective

heave and pitch RAO have a local minimum after reaching their maximum magnitude.

The exception is for test cases e with peak frequencies of 0.06 Hz. Among the other test

cases, the lowest peak frequency of 0.09 Hz is given for test case 4g, and the highest peak

frequency of 0.13 Hz is given for test case 1a, as seen in Table 5. This means that the

majority of the response measurements are represented for frequencies between 0.09 Hz

and 0.13 Hz. Since the dataset will be used to estimate the average RAOs for the ranges of

the significant wave heights, the frequency below 0.09 Hz for each average RAO will only

be represented by one test case, namely test case e. Ideally, the dataset should represent

more sea states distributed over a broader range of frequencies for the estimated RAOs

to reproduce the physics of the vessel characteristics for the low-frequency part and the

high-frequency part of the RAOs. In retrospect, it would have made sense to beforehand

investigate which range of frequencies the vessel would respond to.
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Figure 6: Wave spectrum, ShipX RAOs, and measured response spectrum for test cases

1a,b and 2c,d in Table 5.
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Figure 7: Wave spectrum, ShipX RAOs, and measured response spectrum for test cases

3d,e and 4e,g in Table 5.

Another observation is seen for the heave response in Figures 6 and 7. Despite the single-

peaked waves represented by a JONSWAP spectrum, the response spectra for heave are

multi-peaked for all test cases, except test case 3d, where the wave peak frequency is

approximately 0.1 Hz. At 0.1 Hz, a second peak in the ShipX RAO for heave yields a high

and narrow peak in the response spectrum. For the other test cases where the wave energy

is significantly lower at 0.1 Hz, the same spectral peak is observed. It is dominating the

response for sea states with waves frequencies above 0.09 Hz, as seen for test cases a to d

and f to g. In these cases, the wave energy is distributed for frequencies where the slope

of the heave RAO is large, with the peak at 0.1 Hz. Therefore, the highest wave-induced

response is expected to occur at this frequency.

Resonance behaviors of the water inside the moonpool of CSAD may also have contributed

to the multi-peaked response observed for heave motion in Figures 6 and 7. For drilling

ships like CSAD, sloshing and piston motions from the water may significantly influence the

response measurements if the natural modes of oscillations are excited [47]. The former

means that the water moves back and forth between the walls, while the latter yields

heaving motion of the water. Simple quasi-analytical approximations to determine the

natural frequencies of the moonpool via linearized potential flow theory have been derived

by Molin [47]. Considering a three-dimensional problem for a barge under the assumption

that the length and width of the barge are infinitely large compared to the corresponding
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moonpool dimensions, the natural frequency of the piston mode is approximated as

ω00 ≈
√

g

h+ bf3(b/l)
, (34)

where

f3 =
1

π
{sinh−1

(
l

b

)
+
l

b
sinh−1

(
b

l

)
+

1

3

(
b

l
+
l2

b2

)
− 1

3

(
1 +

l2

b2

)√
b2

l2
+ 1}. (35)

In Eq.(34), the length and width of the moonpool are represented by l and b, respectively,

assuming a rectangular moonpool. g is the gravitational constant. CSAD has a circular

moonpool with full-scale diameter of 18 m, hence l = b = 18 m. This yields a natural fre-

quency of 0.11 Hz. Given that this is an approximated value, the natural frequency yields

good agreement with the peak observed at 0.1 Hz in the measured response. Therefore, it

is reasonable to believe that resonance behaviors of the water inside the moonpool cause

the observed peaks.

4.4 Sensitivity of Wave Modeling

A sensitivity study on vessel response prediction for the construction vessel described in

Section 4.2.1 is carried out to evaluate the effect of wave spectrum modeling. The study

requires prior knowledge of the RAOs and the spectral parameters of the on-site sea state,

assuming perfect agreement with the true hydrodynamics of the vessel.

The wave-induced vessel response, SR,i for the given sea state is calculated from the linear

relationship between the vessel and incoming wave as presented in Eq.(1). By considering

only the motion amplitude and long-crested waves, the equation reduces to

SR,i(ω) = |X(ω, β)|2Sζ(ω). (36)

Responses are calculated for i = {z, θ}, given as heave and pitch motion, for the RAO,

|X(ω, β)|, and wave spectrum, Sζ , at the given wave frequency, ω. Further, β is the relative

wave direction.

Vessel response predictions will be obtained for the test cases in Table 2 by calculating

the theoretical response for heave and pitch motion utilizing the RAO and the wave

parameters modeled as a JONSWAP-, PM-, and Ochi-Hubble spectrum, according to the

theory in Section 2.2. The spectra prediction capability will be evaluated by comparing the

theoretical response with the response spectra computed from the measured time series.

The JONSWAP- and PM spectrum will be modeled based on the spectral parameters

for the total wave provided by the weather forecasts. The Ochi-Hubble spectrum utilizes

the decomposed spectral parameters for the wind-wave and swell component to model the
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individual contributions of the total wave. The relative wave direction for the Ochi-Hubble

spectrum is obtained by calculating the total wave direction from Eq.(33), and is used

to choose the correct RAOs for the theoretical response prediction. Both a JONSWAP

spectrum and a PM spectrum is included in the study to evaluate the effect of not fully

and fully developed seas, respectively, on vessel response prediction when the degree of

development and geographical location of the sea state is unknown. Furthermore, an Ochi-

Hubble spectrum will reflect uncertainties in the vessel response predictions in situations

where the total wave parameters deviate from the spectral parameters for the decomposed

wave components.

4.5 Tuning Algorithm

A tuning algorithm proposed by Nielsen et al. [1] has been implemented to estimate the

RAOs based on available vessel response measurements, and wave spectra. It works as a

simple method to obtain improved RAOs for more accurate seakeeping analyses.

The response spectrum, SR(ω), is computed by applying a Fourier Transform on the vessel

response measurements. The estimated RAO, X̂(ω, β), is obtained by updating the initial

RAO estimate, X0(ω, β), based on a tuning coefficient, αR, at wave frequencies, ω, and

directions, β,

X̂(ω, β) = X0(ω, β)(1 + αR(ω, β)). (37)

For short-crested waves, the RAO estimate transfers the directional wave spectrum, Sζ(ω, µ),

for wave energy direction, µ, into the theoretical response estimate

ŜR(ω) =

∫ 2π

0
|X̂(ω, β)|2Sζ(ω, µ)dµ. (38)

Eq.(38) reduces to Eq.(36) for long-crested waves. Assuming a normal distributed resid-

ual between the measured and theoretical response estimate, S̃R(ω) = SR(ω) − ŜR(ω),

the tuning coefficient is found by minimizing S̃R(ω) for any given ω, formulated as the

nonlinear unconstrained optimization problem

min
αR

J∑
j=1

|SR(ωj)− ŜR(ωj)|2, (39)

with a least-squares objective function. A reasonable initial starting value for the tuning

coefficient is αR(ω, β) = 0, i.e. X̂(ω, β) = X0(ω, β) [1].

Seen from Eq.(38) and Eq.(39), the optimized tuning coefficient depends on the considered

measured response spectrum and wave spectrum. A mean tuning coefficient calculated for

a set of sequential response spectra SR(ω) is proposed by Nielsen et al. [1]. For marine
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operations restricted by specific weather requirements, it could be useful to calculate

instead a set of mean tuning coefficients based on the significant wave height categorized

into ranges, H, as

αH(ω, β) =
1

N

N∑
n=1

αR,n(ω, β), (40)

where N is the number of sea states in the range.

The tuning algorithm is implemented in MATLAB 2019b, and is applied to the experimen-

tal dataset described in Section 4.2.2. For each test case, a tuning coefficient is optimized

based on the Quasi-Newton BFGS method using the function fminunc. A mean tuning

coefficient is then calculated by Eq.(40) for ranges H = {[1, 2]m, [2, 3]m, [3, 4]m, [4, 5]m},
and multiplied with X0(ω, β) to obtain an updated estimate of the RAO for heave and

pitch motion.

Closed-form expressions of the RAO for heave and pitch motion are calculated to serve

as initial estimates of the RAOs in Eq.(37). The expressions are derived by Jensen et

al. [48] based on a semi-analytical approach and require only the vessel main dimensions

as input. This is restricted to length, breadth, draught, block-coefficient, waterplane

area, and vessel speed and heading. The simplifications and approximations introduced

in the approach yield initial estimates from which the tuning algorithm can improve and

compare the results with RAOs calculated by more advanced numerical methods. A brief

description of the derivation of the closed-form expressions for vertical motions is presented

in Appendix A. Since zero-speed is assumed in the present study, the expressions by Jensen

et al. [48] are modified to consider absolute wave frequencies, ω, rather than the encounter

frequencies, ωe.

4.6 Iterative RAO Observer

Building upon work from the pre-project submitted at NTNU in December 2020 [8], an

iterative observer for estimating the RAOs has been implemented. As an extension of

previous work, a set of average RAOs are calculated to depend on a pre-defined range of

significant wave heights.

The observer is limited to estimate the motion RAO amplitude for long-crested waves. As

similar to the sensitivity analysis in Section 4.4, the cross-spectrum in Eq.(1) then reduces

to

SR,i(ω) = |X(ω, β)|2Sζ(ω) = A(ω, β)Sζ(ω), (41)

by only considering the real parts of the transfer function. Estimates are calculated for

i = {z, θ} given as heave and pitch motion, respectively. Further, ω is the wave frequency,

and β is the relative wave direction between vessel heading and wave direction. The RAO

32 of 56



4 METHODS NTNU 2021

amplitude squared is estimated and defined as A(ω, β) to simplify notation. The esti-

mation algorithm is based on an iterative approach using the residual between measured

and estimated response spectra, S̃R,i(ω, β), to calculate the estimate, Âi(ω, β), given by

Eq.(42a). The corresponding response spectrum is calculated by Eq.(42b).

Âi
+

(ω, β) = Âi(ω, β) + kS̃R,i(ω) (42a)

ŜR,i(ω) = Âi(ω, β)Sζ(ω) (42b)

The updated estimate at next iteration step is given by Â(ω, β)+ and k is an observer

gain. The sea state is represented by the wave spectrum Sζ(ω). A pseudocode describing

the iterative algorithm is shown in Algorithm 1. For each DOF, SR,i(ω) and S̃R,i(ω)

are initialized as the spectral amplitude of the vessel response measurement, |SR,i(ω)|.
Furthermore, the estimates, Âi(ω, β) and ŜR,i(ω), are initialized to zero for all frequencies

Nω. The algorithm updates the estimates in Eq.(42) and the residual until the error

measure, max(|S̃R,i(ω)|), reaches a given threshold, ε.

Algorithm 1: Iterative scheme to estimate the RAO amplitude squared

for i = z, φ, θ do

SR,i(ω) = |SR,i(ω)|
Âi(ω, β) = zeros(1, Nω)

ŜR,i(ω) = zeros(1, Nω)

S̃R,i(ω) = SR,i(ω)

while max(|S̃R,i(ω)|) > ε do

S̃R,i(ω) = SR,i(ω)− ŜR,i(ω)

Âi
+

(ω, β) = Âi(ω, β) + kS̃R,i(ω)

ŜR,i(ω) = Âi(ω, β)Sζ(ω)
end

end

The observer algorithm estimates the RAOs for the experimental test cases described in

Section 4.2.2. A set of average RAOs are then calculated for the ranges of significant wave

height H = {[1, 2]m, [2, 3]m, [3, 4]m, [4, 5]m} as

|X̂H(ω, β)| =
√
ÂH(ω, β) =

1

N

N∑
n=1

|Xn(ω, β)|, (43)

where N is the number of testcases in H.
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5 Results

This section presents the results from the sensitivity study and the algorithms for estimat-

ing the RAOs. First, the results from the sensitivity study are presented and evaluated

for the full-scale dataset in Section 4.2.1. Proceeding this, the results from the proposed

methods are presented for the experimental dataset in Section 4.2.2.

5.1 Results from the Sensitivity Analysis

The sensitivity of response predictions to the sea state has been evaluated by modeling

the sea state using three idealized wave spectra. First, differences in the wave spectra

have been discussed. Then, the theoretical responses have been calculated for each wave

spectrum and compared with the measured response.

5.1.1 Wave Spectrum Modeling

Figure 8 shows a comparison of the JONSWAP-, PM-, and Ochi-Hubble wave spectrum

for samples A to F as the black, yellow, and red curves, respectively. The significant wave

height and the peak period for the total wave are shown for each plot’s corresponding

sample. It is clear from the spectral peaks that low-frequency swells dominate the sea

states. Seen by the Ochi-Hubble spectra, a small contribution from the wind-wave compo-

nent is only seen for sample F with a peak at 0.2 Hz. However, the contribution is minor.

Thus, the power distribution is considered to be single-peaked for all Ochi-Hubble spectra

and appears to be a trade-off between the JONSWAP- and PM spectra. The JONSWAP

spectrum, which represents not fully developed seas, models the highest spectral peak with

a narrow spectral width. The PM spectrum, on the other hand, has a lower peak and

wider spectral width, yielding a PSD distributed over broader range of wave frequencies.

This is expected according to the theory in Section 2.2 as the JONSWAP spectrum is a

modification of the PM spectrum determined by the spectral shape parameter γ.

The difference in peak periods for the total wind-wave and the swell component for sample

E is visualized in the lower-left plot in Figure 8. The Ochi-Hubble representation of the

sea state yields a shifted spectrum to lower frequencies compared with the JONSWAP-

and PM spectrum. Although the shift is slight for sample E, such observations indicate

that predictions of the wave-induced response may be sensitive to the choice of wave

spectrum for wave predictions with more significant differences in the spectral parameters.

Therefore, the wave spectra and response predictions may be challenging to validate in

practical applications where the actual vessel behavior is not available.
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Figure 8: Comparison of wave spectra for the sea states in Table 2.

5.1.2 Theoretical Response Prediction

Table 7 shows the relative direction between the vessel heading and wave direction for

samples A to F. βµ and βµ is the relative direction for the total wave direction µ provided

by the forecasts, and µ calculated by Eq.(31), respectively. The directions are used to

interpolate the numerically calculated RAOs to the correct relative direction for calculating

the theoretical vessel responses by Eq.(36).

Table 7: Relative directions between vessel heading and waves for the samples in Table 2.

Sample βµ βµ Description

A 73 deg 74 deg stern-quartering sea

B 193 deg 193 deg head sea

C 317 deg 316 deg stern-quartering sea

D 8 deg 8 deg following sea

E 150 deg 150 deg beam sea

F 190 deg 189 deg head sea

Figures 9, 10, and 11, show the wave spectrum, RAOs, and the theoretical and mea-

sured responses for samples A and B, C and D, and E and F, respectively. The responses

calculated by the various wave spectra are shown by similar colors, and the gray curves
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represent the measured response spectra. The theoretical responses correspond to the ob-

served power distribution in the wave spectra, where the wave-induced response is highest

for the sea states modeled as a JONSWAP spectrum. Similarly, the PM spectrum yields

a lower spectral magnitude with energies distributed over a wider range of frequencies.

The exception is seen in Figure 11 for heave in sample E, where the predicted response

for the red curve is significantly higher than the black and yellow curves. This exception

is caused by the difference in peak frequency for the wave spectra in a frequency range

where the heave RAO decreases. The slope of the pitch RAO in the same frequency range

is lower, so the prediction is not affected.

The response predictions based on the PM spectra yield better agreement with the mea-

sured response in both heave and pitch for samples A, B, and E. Although the theoretical

responses are shifted to a lower frequency for heave in samples B and E, the power spectral

magnitude and spectral width are adequate. However, for samples C and D, the measured

responses are represented by a significantly more peaked and narrow spectrum. The theo-

retical responses underpredict the response magnitude for both heave and pitch for sample

C. Furthermore, the spectral width for pitch motion is not properly represented. The same

applies to the pitch motion for sample D, while the Ochi-Hubble spectrum better predicts

the measured heave response magnitude. On the other hand, the second peak observed

at 0.08 Hz is not captured by any theoretical responses.

The opposite observation is seen for sample F. In this case, the theoretical responses sig-

nificantly overpredict the pitch motion. In contrast, the heave response is adequately

predicted by both the PM spectrum and the Ochi-Hubble spectrum. It is seen by Table

7 that 3◦ distinguish between the relative directions for samples B and F. Thus, it is rea-

sonable to assume that the wave-induced responses would be comparable. However, the

maximum pitch response of 2 deg2/Hz for sample F is significantly lower than 6.4 deg2/Hz

for sample B, despite the slight differences of 0.1 m and 0.005 Hz in the significant wave

heights and peak frequencies, respectively. A possible explanation is that the measure-

ments are affected by an ongoing operation at the considered period for one or both of

the samples. On the other hand, an explanation for the overprediction for sample F may

be that the given wave parameters do not represent the actual sea state at the considered

period.
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Figure 9: Measured and theoretical response for heave and pitch motion based on the

JONSWAP-, PM-, and Ochi-Hubble spectrum in Figure 8.
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Figure 10: Measured and theoretical response for heave and pitch motion based on the

JONSWAP-, PM-, and Ochi-Hubble spectrum in Figure 8.
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Figure 11: Measured and theoretical response for heave and pitch motion based on the

JONSWAP-, PM-, and Ochi-Hubble spectrum in Figure 8.

Figure 12 shows the 0-th order spectral moment, m0, as a function of sample, calculated

for the response spectra in Figures 9, 10, and 11. As seen for heave motion in the upper

plot, the Ochi-Hubble spectrum and PM spectrum generally yield the highest and lowest

m0, respectively, for the theoretical responses. The theoretical response for samples A, B,

D, and E for the PM spectra show good agreement with the measured response. Sample

C shows the same behavior observed in Figure 10 where the theoretical heave responses

underpredict. However, it is seen by Figure 12 that the predicted response by the Ochi-

Hubble spectrum achieves the best result considering the power content in the response

spectra.

The theoretical responses for pitch motion show better correspondence in m0 than for

heave. The spectral moment for samples A, C, D, and E is approximately equal. However,

for samples B and F, the PM spectrum shows better agreement with the measurements.

The low pitch response observed in Figure 11 is highlighted in the lower plot of Figure 12

where the theoretical responses show no agreement with the measurements.

38 of 56



5 RESULTS NTNU 2021

A B C D E F
0

0.05

0.1

m
2

Heave

Measured

JONSWAP

PM

Ochi-Hubble

0-th order spectral moment of response spectra

A B C D E F

Sample

0

0.05

0.1

0.15

0.2

d
e
g

2

Pitch

Measured

JONSWAP

PM

Ochi-Hubble

Figure 12: 0-th order spectral moment for the response spectra in Figures 9, 10, and 11.

5.2 Results from RAO Estimation

The proposed methods for estimating the RAOs have been tested and evaluated on the

experimental dataset of CSAD. Based on the individual estimates obtained by the tuning-

and observer algorithm from the test cases, a set of average tuning coefficients and average

RAOs have been calculated by Eq.(40) and Eq.(43), respectively, based on test cases a, b,

and d to f. The estimated average RAOs will be presented and discussed in this section,

and their response prediction capability have been evaluated.

5.2.1 Estimation of Average RAOs

Figure 13 shows the 0-th order spectral moment calculated by Eq.(11) for the measured and

theoretical response spectra at each test case. The black and yellow curve represents the

theoretical estimates without and with tuning, respectively, while the red curve represents

the estimate by the observer algorithm. The green curve is the spectral moment calculated

using the ShipX RAOs. As Figure 13 shows, the estimates by the observer algorithm yield

identical response to the measurements, given by the grey curves located behind the red

curves. The use of the tuned estimates yield a small difference for all samples, but are

significantly improved compared to the estimates which are not tuned. The theoretical

response by the closed-form RAOs which are not tuned, and the ShipX RAOs, yield very

similar results. However, the difference in the spectral moment is seen to increase for more

severe sea states. The theoretical estimates underpredict the measured response for all

test cases, except test cases e, which represents the only sea states with a peak period

located in the lower part of the frequency range.
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Figure 13: The 0-th order spectral moment for the measured and theoretical responses for

the testcases in Table 5.

Figure 14 shows the average RAOs for heave and pitch estimated by the tuning algorithm.

The results are compared with the ShipX RAO and the RAO calculated by the closed-

form expressions, which is not tuned, given by the grey solid and black dotted curve,

respectively. Furthermore, the average of the tuned closed-form RAOs for the range

H = {[1, 2]m, [2, 3]m, [3, 4]m, [4, 5]m} is given by the yellow, purple, green, and blue curve,

respectively. Considerable tuning of the RAOs is observed for certain parts of the frequency

range for both heave and pitch. The heave RAO shown in the upper plot is the most

amplified for frequencies between 0.087 Hz and 0.13 Hz, which corresponds to the frequency

range where most sea states are represented, as discussed in Section 4.3.2. The tuning

coefficients are especially high at 0.1 Hz, yielding a peak in the estimated RAOs. This

results from the same peak observed in the measured heave responses, probably caused

by the moonpool resonance behavior of the water. Since the peak is present for all heave

spectra independent of the sea state, and the sample-specific tuning coefficient is directly

dependent on the measured response, the peak is expected to be present in the average

RAOs.

The RAO for pitch motion shown by the lower plot of Figure 14 is the most amplified

for frequencies between 0.1 Hz and 0.13 Hz. The resonance peak is not observed for the

average pitch RAOs, but instead, a significant overprediction of the tuning coefficient with
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respect to the ShipX RAO appears between 0.11 and 0.13 Hz before the tuned RAOs drop

to zero. For frequencies above 0.13 Hz, the measured response spectra for both DoFs are

approximately zero, hence the optimal solution of the tuning coefficient is zero, or very

low, as a result of the low power content of the objective function in the optimization

problem. Therefore, the tuned average RAOs coincide with the closed-form expressions

which are not tuned at 0.13 Hz.
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Figure 14: Estimated average RAOs by the tuning algorithm compared with the untuned

closed form, and ShipX RAO in heave and pitch.

Figure 15 shows the average RAOs for heave and pitch estimated by the observer algo-

rithm. It is clear that the estimates suffer from significant oscillations for both DoFs at

low frequencies where no vessel response measurements are present in the dataset. The

oscillating behavior for heave is reduced for frequencies between 0.05 Hz and 0.1 Hz. It

corresponds to the frequency range where the power content of the response spectra for

test cases e is distributed. For the pitch RAOs, the oscillation behavior differs depending

on the range. For H = [1, 2] m, no significant oscillations are observed in the estimate

RAO. A reduction is observed around 0.05 Hz for H = [4, 5] m, and for H = [2, 3] m and

H = [3, 4] m a reduction occurs at 0.07 Hz. The estimated average RAOs yield better

results for frequencies above 0.08 Hz and 0.1 Hz for heave and pitch, respectively. The

same overpredictions seen in Figure 14 are however also present in Figure 15.
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Figure 15: Average RAOs estimated by the observer algorithm compared with the ShipX

RAO in heave and pitch.

As seen by Figures 14 and 15, only the pitch RAOs estimated by the observer algorithm

yield significantly different results depending on the ranges of significant wave heights.

Noteworthy is the average RAO for H = [4, 5] m, which deviates from the other esti-

mates for the entire frequency range. This observation is not seen in Figure 14 where the

estimated pitch RAOs coincide. The difference seen in the oscillating behavior and the

RAO magnitudes of the estimates indicate that the observer algorithm is more sensitive to

increasing values of the significant wave height or the peak period for pitch motion. This

should be investigated further through a sensitivity analysis of the methods. Furthermore,

it is seen that despite very different estimates are obtained by the two methods, Figure

13 shows that the average RAOs are based on estimates with good agreement in the 0-

th order spectral moment and with improved response estimates compared to the ShipX

RAOs. However, it must be emphasized that the RAOs are not realistic, since the curves

are expected to be smooth. This could be mitigated by including more data, or in the

case of the tuning method, by imposing optimization constraints on the second derivative

of the tuning coefficient with respect to frequency.
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5.2.2 Response Prediction Based on Average RAOs

The prediction capability of the average RAOs estimated by the tuning- and observer

algorithms have been assessed and compared by predicting the vessel response for other

sea states within the corresponding range of significant wave heights. These sea states

have not been included in the calculation of the average RAOs.

Figures 16 and 17 show the predicted vessel responses for test cases c, based on the es-

timated average RAOs presented in Section 5.2.1 and the known wave spectrum. The

predictions have been compared with the measured response, and the theoretically calcu-

lated response with the closed-form expression of the RAOs which have not been tuned.

The responses are shown by various colors in the upper and middle plots, and the lower

plots show the corresponding wave spectrum. Generally, the untuned closed-form RAOs

underpredict the vessel responses for both heave and pitch with nearly non-existent re-

sponses for test cases 1c and 2c. The responses tend to increase for increasing peak wave

periods as seen for test cases 3c and 4c, due to the wave energy being distributed for

frequencies with higher RAO magnitudes. The pitch response is adequately recreated for

the two latter cases.

The predicted heave response based on the average RAOs estimated by both algorithms

show good agreement with the measurements for all test cases. A difference is seen for

frequencies above 0.12 Hz, where the tuning algorithm underpredicts the response. At 0.13

Hz, the predicted response obtained by the tuned RAO drops to zero before it increases

again with a lower magnitude. This is caused by the observations seen in Figure 14

where the tuning algorithm estimates low RAO magnitudes for frequencies above 0.13 Hz.

However, the predicted response obtained by the observer algorithm does not suffer from

this underprediction due to higher magnitudes in the estimated RAO.

The same drop in predicted response at 0.13 Hz is observed for the predicted pitch response

obtained by the tuning algorithm. However, in this case the predictions do not increase

again at higher frequencies. Although energy content in the wave spectrum is adequate

in the frequency range, the estimated RAO magnitude is approximately zero, as seen in

Figure 14, and not sufficient to induce any significant vessel response. Furthermore, a

similar drop is observed at 0.1 Hz. Due to the closed-form estimate of the RAO is initially

zero, the estimated average RAO is also zero and cannot account for the actual vessel

response in any test case.

Better response predictions for pitch are obtained by the average RAO estimated by the

observer algorithm. The exception is seen for test case 4c, which corresponds to the

deviating estimate for H = [4, 5] m seen in Figure 15. The peak in the RAO at 0.1 Hz

yields a corresponding peak in the predicted response. However, the predicted response

is significantly lower due to a local minimum in the ShipX RAO at the corresponding

frequency. Additionally, the lower RAO magnitude estimated by the observer algorithm

for this range is shown in the plot to underpredict the vessel response for this test case at
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other frequencies.
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Figure 16: Predicted responses for testcases 1c and 2c.
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Figure 17: Predicted responses for testcases 3c and 4c.

Similar observations are seen in the predicted responses for test cases g in Figures 18 and

19. The predicted response for test case 4g by the tuning algorithm shows good agreement

with the measured response. The PSD of the measured response is fairly low at 0.1 Hz,

and therefore, a drop is not seen in the predicted response for this test case. Furthermore,

the PSD is distributed for frequencies below 0.13 Hz, where the estimated average RAO

by the tuning algorithm yield adequate results. However, the predicted response by the

observer algorithm cannot recreate the measured pitch response for test case 4g.
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Figure 18: Predicted responses for testcases 1g and 2g.
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Figure 19: Predicted responses for testcases 3g and 4g.
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6 Discussion

In examining the sensitivity study on the full-scale dataset of the construction vessel, some

reflections have been made. Assuming that the vessel characteristics are fully reflected in

the numerically calculated RAOs, the analyst is required to make decisions regarding the

choice of wave spectrum based on a given set of wave parameters provided by an external

company. This requires information and awareness of the statistical properties of the ocean

environment at the specific geographical location to model the PSD of the wave spectrum

correctly. It was seen in Section 5.1.2 that for some of the samples, the predicted response

was influenced by the choice of wave parameters used to model the spectrum, particularly

seen for sample E. Although the deviations between the 0-th order spectral moment is

minor, the PSD of the wave-induced responses is sensitive to the peak period of the wave.

The uncertainties in the modeled wave spectrum for the on-site sea state are expected

to be less in practical applications where information about the geographical location is

available. Based on the vessel’s GPS coordinates, the spectrum can be cross-validated by

other forecasts or measurements at the corresponding locations, like the ERA55 dataset

provided by the European Center of Median-Range Weather Forecasts (ECMWF). In this

study where no information about the geographical location is available, the modeled wave

spectra were evaluated based on the measured vessel response. However, the results from

the sensitivity analysis show that although the variation in the considered sea states is

small, one type of idealized spectrum is not able to yield good predictions for all samples.

Despite this observation, the PM spectrum showed to provide the most adequate predic-

tions, modeling the sea state as fully developed. This is reasonable as the contribution

from the wind-wave component is small for the samples in Table 2. Thus, the JONSWAP

spectrum overpredicted the spectral peak in the wave spectrum. Furthermore, the total

response energy was overpredicted by the Ochi-Hubble spectrum for the majority of the

sea states, seen by the 0-th order spectral moments are Figure 13. Although the param-

eters for the total wave, and wind-wave and swell component, are provided by the same

forecast, it indicates that the parameters must be evaluated before usage to reduce the

uncertainties in the response prediction.

Although the most adequate response predictions were obtained by the PM spectrum,

it was seen that the prediction accuracy of the spectra differ for heave and pitch mo-

tion when comparing the theoretical and measured responses in Section 5.1.2. During

operation, nonlinear effects and coupling between motions will be reflected in the mea-

surements. Furthermore, the ongoing operations of the construction vessel is expected to

have introduced significant effects in the observed response. This introduced challenges

in validating the results from the sensitivity analysis based on the measured vessel re-

sponses, and it could have been beneficial to apply the study on a different type of vessel.

A more accurate sensitivity analysis is expected if more samples had been considered, with

5https://www.ecmwf.int
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a lot more variations in the sea states and less uncertainties in the operational conditions.

However, the outcome of the analysis is realistic in traditional seakeeping analyses for

operational scenarios of these vessels. The use of the first-principle model in Eq.(1) for

response prediction in seakeeping analyses, will, based on its assumptions of linear theory,

not account for such effects. Therefore, unexpected scenarios may happen since future

measurements of the operation are not available for validating purposes, and uncertainties

must be accounted for in advance. This means that decisions regarding waiting on weather

and abortion of operations must be made on conservative predictions.

The study of the algorithms for estimating the RAOs concerns a scenario where the waves

are generated based on a pre-defined wave spectrum, hence uncertainties in wave modeling

can be disregarded. This makes room for the algorithms to be evaluated, and form an

idea of which method that shows the most promise for future development. The estimated

average RAOs in Figures 14 and 15 for the tuning and observer algorithm showed very

different results, respectively. The large oscillations in the latter indicate that the observer

algorithm is more sensitive to frequencies for which there is no, or almost zero, measured

response. This is a result of the iterative approach based on the initial starting value of the

RAOs being zero. For the same frequencies, the tuning algorithm performs significantly

better based on the closed-form expressions being the initial starting value. Despite the

different results and the poor similarity with the ShipX RAOs by the observer algorithm,

both methods show different strengths based on their objective. The tuning algorithm

may be better suited in situations where the objective is to improve existing RAOs to

obtain more accurate response predictions. The observer algorithm, on the other hand,

can be used to obtain estimates of the RAOs when no prior estimate is available.

The peaks in the estimated average RAOs in Figures 14 and 15 indicate that the estimates

may reflect the true vessel RAOs more adequately than the ShipX RAOs by accounting

for vessel behavior reflected in the considered measurements. However, the results were

challenging to evaluate due to unexpected behaviors in the measured response, probably

caused by resonance behaviors of the water inside the moonpool. Therefore, it would have

been preferable to study the method’s performances on a vessel without a moonpool.

Disregarding the uncertainties in the response measurements due to the moonpool, the

peaks in the estimated RAOs also indicate that the estimates depend on the local re-

sponses. Therefore, the idea of an average RAO that is independent on the on-site con-

ditions is not properly represented by these results, and the results do not work for their

purpose. This could have been mitigated by including more data such that the average

RAOs represent realistic smooth estimates, like the ShipX RAOs. Better results could

also have been achieved if the dataset had represented measurements covering the entire

frequency range, with the same number of test cases distributed over the frequencies, to

obtain equally reliable estimated parts of the RAOs. However, this may be difficult with

the considered vessel due to its large dimensions. The test basin at the MC Lab is shallow,

and thus the testbed can influence the response spectra for waves with high peak periods.
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Despite the questionable results obtained by the algorithms, the predicted responses for

test cases c ang g, presented in Section 5.2.2, reveals that the algorithms yield improved

response predictions compared to the predictions based on the RAOs which are not tuned.

Especially the observer algorithm is able to recreate responses for higher frequencies where

the closed-form RAOs filter out the waves. The good agreement with the measured re-

sponses was expected for test cases c and g as the sea states have their wave energy

distributed for frequencies where the average RAOs are the most amplified. Therefore, it

would have been interesting to evaluate the prediction capability of the average RAOs for

sea states with even higher peak periods. Nevertheless, the good predictions show that

the average RAOs are able to recreate the vessel responses, also for more severe sea states,

and show the potential in the algorithms if more test cases had been included in the study.

Future work should be focused on including more data in both the sensitivity study and

for testing and evaluating the proposed methods. The data used for the sensitivity study

includes samples with small variations in the sea state, and are dominated by swells.

Therefore, it may be necessary to include more severe sea states, and sea states with

a higher wind sea contribution, to obtain a better representation of the wave modeling

effect on the response predictions. Furthermore, the study should be extended to include

spreading in the wave spectra.

In addition to including more data in the study of the tuning and observer algorithm,

future work should be focused on evaluating the sensitivity of the methods with respect

to the significant wave height, and include forward speed. Forward speed was applied to

the tuning algorithm by Nielsen et al. [1], while only long-crested waves and zero forward

speed have been considered in the observer algorithm. Further, it would be interesting to

extend the scope of this thesis to combine the research objectives of the sensitivity study

and the proposed methods to consider both sea state estimation and RAO estimation for

cross-validating the results, and thus obtain improved vessel response predictions. Based

on vessel response measurements, the uncertainties in the predictions due to the sea state

and RAOs can be improved by iterative tuning. By initializing the wave spectrum based

on wave parameters from a weather forecast, the RAOs can be estimated by either the

tuning or observer algorithm. Following, the updated RAO estimates can be used to

improve the wave spectrum through a sea state estimation approach.
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7 Conclusion

The research objectives were to evaluate the response prediction sensitivity to wave spec-

trum modeling using three different parametrized spectra, and to generalize the RAO

estimates from the proposed methods by calculating the average RAOs for a pre-defined

range of significant wave heights.

7.1 Concluding Remarks

The sensitivity study has been conducted on data from a full-scale construction vessel.

The study showed that the theoretical responses for heave and pitch motion are sensitive

to the choice of statistical wave parameters for wave spectrum modeling. Noteworthy

was the difference in peak period for the total and decomposed wave provided by the

same forecast, which influenced the wave-induced response. Further, no trend was seen

in the choice of idealized spectrum. Although the variation in the sea states was small,

one type of idealized spectrum was not able to recreate the measured vessel response for

all samples. However, the results were challenging to validate due to effects of ongoing

operations reflected in the measurements.

Experimental measurements of Cybership Inocean Cat I Drillship (CSAD) have been col-

lected from model tests, and used to evaluate the tuning and observer algorithm. The

sample-specific RAO estimates showed that improved response estimates are obtained

for both methods. However, the average RAOs showed a clear dependence on the local

responses and did not provide realistic results, due to limitations in the dataset. The

observer algorithm is volatile to low power vessel responses, observed as significant oscil-

lations in the results. The tuning algorithm performs better since an initial estimate is

assigned to the RAOs. Regardless, it has been concluded that both algorithms are promis-

ing and their use is motivated by different purposes. Despite the unrealistic behavior in

the average RAO estimates, good agreement between the predicted and measured vessel

response was seen for sea states with PSD similar to the sea states used in calculating the

average RAOs.

7.2 Further Work

Further work should be focused on including more data for improved validation. For the

sensitivity study, this considers more samples with more variation in the sea states and

improved knowledge of the vessel working conditions. The study should also be conducted

for another vessel for validation purposes. For the proposed methods, it considers more

samples with higher peak period in the sea states. A sensitivity study of the proposed

methods to the significant wave height should also be conducted.
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A Closed-form Expressions for Vertical Motions

The frequency response functions are derived using linear strip theory and neglecting

the coupling terms between the motions. Assuming a homogeneously loaded box-shaped

vessel, the EoM for heave, z, and pitch, θ, are written in terms of Eq.(44a) and Eq.(44b),

respectively [48].

2
kT

ω2
z̈ +

A2

kBα3ω
ż + z = aF cos(ω) (44a)

2
kT

ω2
θ̈ +

A2

kBα3ω
θ̇ + θ = aG sin(ω) (44b)

Here, B and T is the breadth and draught of the vessel, and k is the wavenumber. Fur-

thermore, A is an approximation of the sectional hydrodynamic damping, modeled by the

dimensionless ratio between the incoming and diffracted wave amplitudes

A = 2 sin(
ω2B

2g
) exp(−ω

2T

g
) = 2 sin(

1

2
kBα2) exp(−kTα2). (45)

The parameter α is defined in terms of the Froude number, Fn = V/
√

(gL), and L as

α = 1− Fn
√
kL cosβ. (46)

F and G in Eq.(44) is the forcing function in heave and pitch, respectively, given as

F = κf
2

keL
sin(

keL

2
), (47a)

G = κf
24

(keL)2L

[
sin(

keL

2
)− keL

2
cos(

keL

2
)

]
. (47b)

The effective wave number, ke, Smith’s correction factor, κ, and f are given by

ke = |k cosβ|, (48a)

κ = exp(−kT ), (48b)

f =

√
(1− kT )2 +

(
A2

kBα3

)2

. (48c)

The frequency response functions for heave and pitch are given as the solution of Eq.(44a)

and Eq.(44b), respectively, as

55 of 56



A CLOSED-FORM EXPRESSIONS FOR VERTICAL MOTIONS NTNU 2021

Φw = ηF, (49a)

Φθ = ηG, (49b)

η =

√(1− 2kTα2)2 +

(
A2

kBα2

)2
−1 . (49c)

The shape effect of the hull geometry of a vessel is accounted for by defining the breadth

by the means of Cb

B = B0Cb. (50)

The homogeneously loaded box is modified by Eq.(50) so that the ship’s total mass equals

the buoyancy. Here B0 is the maximum waterline breadth.
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