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a b s t r a c t

The vortex dynamics in a two-dimensional oscillatory lid-driven cavity with depth-to-width ratio 1:2
has been investigated, covering a wide range of Reynolds numbers and Stokes numbers where this flow
is known to be in the two-dimensional regime. Numerical simulations show that the present flow can
be divided into four flow patterns based on the vortex dynamics. The regions of these flow patterns
are given in the Stokes number and Reynolds number space. For the flow pattern with lowest Reynolds
number, there is no transfer of vortices between two successive oscillation half-cycles while for the
three other patterns, vortices are carried over from one oscillation half-cycle to the next. For a given
Stokes number, the flow pattern appears sequentially as the Reynolds number increases, showing that
the transition between the different flow patterns depends strongly on the Reynolds number. However,
if the frequency of oscillation is increased (i.e., the Stokes number is increased) for a given Reynolds
number, the extrema of the stream function have less time to grow and the center of the primary
vortex has less time to move away from the lid. To compensate these effects, the amplitude has to be
increased with increasing frequency to maintain the same flow pattern.

© 2019 The Authors. Published by ElsevierMasson SAS. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Flow in an oscillatory lid-driven cavity has been studied over
the years because of its relevance to industrial flows. Despite
the simple geometry involved, this flow contains several complex
hydrodynamic flow structures and phenomena, such as vortex
merging [1,2], flow separation [3,4], corner singularities [5,6],
boundary layers [7,8] and chaotic mixing [9,10]. Comprehen-
sive reviews of lid-driven cavity flows are given by Shankar
and Deshpande [5] and by Kuhlmann and Romanò [11]. Oscilla-
tory lid-driven cavity flows are characterized by a Stokes layer
beneath the horizontally oscillating lid which rolls up at the
vertical side walls, forming one clockwise and one anti-clockwise
primary vortex which alternate in growing and decaying during
the oscillation cycle. Flow separation leads to the formation and
evolution of corner vortices which in turn interacts with the
primary vortices, thus exhibiting a complicated vortex dynamics,
as shown by Soh and Goodrich [12], Iwatsu et al. [13] and Mendu
and Das [14] for square cavities.

Ovando et al. [15] used numerical simulations to investigate
the flow in a rectangular cavity driven by a simultaneous oscil-
latory motion of the vertical walls, relevant to a piston moving
inside a circular cylinder in combustion engines. They found two
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major generation mechanisms for the primary vortex: (i) vorticity
produced by the shear motion induced by the oscillating walls,
and (ii) roll-up of vortex sheets as the wall-induced flow changes
direction when the fluid meets the vertical walls, as previously
observed in experiments by Tabaczynski et al. [16] and Allen and
Chong [17].

The possible application of an oscillatory lid-driven cavity
flow as a viable viscometer [18] spurred further investigations
of the stability of the two-dimensional base flow, including the
experimental work by Vogel et al. [19] and Leung et al. [20]
and the stability analysis by Blackburn and Lopez [21]. These
works resulted in stability regions as a function of the Reynolds
number Re (based on the height of the cavity and the oscillation
velocity amplitude of the lid) and the Stokes number St (based
on the height of the cavity and the oscillation frequency of the
lid). Three different flow states were found: (i) a basic two-
dimensional time-periodic flow, (ii) a three-dimensional time-
periodic flow with a cellular structure in the spanwise direction,
(iii) a three-dimensional irregular flow.

The vortex dynamics for two-dimensional oscillatory
lid-driven cavity flows is more complex than for steady lid-driven
cavity flows [4,22] as it includes the evolution of intermediate
primary and secondary vortices through the oscillation cycle,
where the location and duration of these intermediate vortices
depend strongly on the Reynolds number and the Stokes number.
The aim of the present paper is to provide a further detailed
investigation of the vortex dynamics for an oscillatory lid-driven
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Fig. 1. Sketch for the oscillatory lid-driven rectangular cavity flow.

cavity with depth-to-width ratio 1:2, covering the wide range of
the Reynolds number and the Stokes number where this flow is
known to be in the two-dimensional regime [19]. Numerical sim-
ulations show that this flow regime can be further divided into
four different flow patterns based on the vortex dynamics, which
is visualized by instantaneous streamline contours through the
first half-cycle of oscillation. These flow patterns are mapped out
in the Stokes number and Reynolds number space, and a detailed
analysis of the vortex dynamics underpinning the flow pattern
classification is presented, including the interaction between the
primary vortices and the corner and wall vortices, which has not
been previously investigated in such detail.

2. Governing equations

Incompressible flow with a constant density ρ and kinematic
viscosity ν is governed by the two-dimensional Navier–Stokes
equations described as follows
∂ui

∂xi
= 0 (1)

St
Re

∂ui

∂t
+

∂uiuj

∂xj
= −
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∂xi

+
1
Re
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where the Einstein notation using repeated indices is applied.
Here ui = (u, v) and xi = (x, y) for i = 1 and 2, are the velocity
and Cartesian coordinates, respectively, whilst t , p, Re = U0H/ν
and St = ωH2/ν denote the time, pressure, Reynolds number
and Stokes number, respectively, where H , U0 and ω are the
depth of the cavity, the velocity amplitude of the lid motion and
the oscillation frequency of the lid, respectively. The velocity,

time, pressure and length are scaled with U0, T , ρU2
0 and H ,

respectively, where T is the period of the lid oscillation. Fig. 1
shows a sketch of the oscillatory lid-driven cavity. The velocity
of the lid is given by u = cos(2π t) while no-slip conditions are
imposed on the side and bottom walls.

3. Numerical method

Eqs. (1) and (2) have been solved by using a projection method
with a semi-implicit time integration using a second-order
Adams–Bashforth scheme for the convective terms and a Crank–
Nicolson scheme for the diffusive terms. Second-order central
differences with a staggered grid arrangement are applied in the
spatial discretization. The intermediate velocity u∗

i is obtained as
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where δ/δxi represents the numerical spatial gradient opera-
tor; the convective and diffusive terms are denoted by Hi =

δ(uiuj)/δxj and Fi = νδ2(ui)/(δxjδxj), respectively; the super-
script n denotes the time step, and pn−1/2 indicates the pressure
obtained at the previous time-step. The velocity correction is

un+1
i = u∗

i − ∆t
δ

δxj
(φn+1) (4)

where φn+1
= pn+1/2

− pn−1/2 is determined such that the
resulting velocity field un+1

i satisfies the continuity condition.
Substitution of Eq. (4) into the continuity equation δui/δxi = 0
yields a Poisson equation for the pressure correction

δ2

δx2j
(φn+1) = −

1
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δu∗

i

δxi
(5)

where Neumann conditions are applied for the pressure correc-
tions on all the walls and on the lid.

The oscillatory lid-driven cavity flow starts from rest, and after
a spin-up time of typically 6–16 cycles (depending on Re and
St), the flow reaches a fully-developed periodic state, i.e. where
the velocity and pressure fields at t and t + T are equal within
a specified numerical accuracy. The criterion for the flow being
fully-developed is given by

max|
ui(x, y, t + T ) − ui(x, y, t)

ui(x, y, t + T )
| ≤ ε, i = 1, 2 (6)

where ε = 1 × 10−6.
Based on grid convergence tests, a spatial resolution of

100 × 100 and 100 × 200 uniform grid points is sufficient to
obtain grid independent results, for the depth-to-width ratios 1:1
and 1:2, respectively.

Fig. 2. Comparisons of u(0.5, y) and v(x, 0.5) between predictions and reference data for the steady lid-driven cavity flow with Re′
= 100, 400 from Ghia et al. [22]

and Re′
= 1000 from Ghia et al. [22], Romanò and Kuhlmann [23], Bottella and Peyret [24] and Bruneau and Saad [25].
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Fig. 3. Streamline contours for Re′
= 500 and 1000. Present results (left) and the results by Cheng and Hung [4] (right) which were digitalized.

Fig. 4. Streamlines (positive values for black full lines; negative values for
black dashed lines) and λ2 = −0.1 (blue lines) contours for steady lid-driven
rectangular cavity flow at Re′

= 1000.

4. Validation against previous numerical and experimental
results

4.1. Steady lid-driven cavity flow

Fig. 2 shows the center-line velocities u(0.5, y) and v(x, 0.5)
for a steady lid-driven flow in a square cavity for Re′

= UH/ν =

100, 400 and 1000, where U is the constant lid velocity. The
velocity gradients near the wall increase as Re′ increases, and
the thickness of the boundary layers at the wall decreases as
Re′ increases. A good agreement is obtained with the results by
Ghia et al. [22] for Re′

= 100, 400 and 1000 and by Romanò and
Kuhlmann [23], Bottella and Peyret [24] and Bruneau and Saad
[25]. for Re′

= 1000.
Fig. 3 shows the streamlines for a steady lid-driven flow in a

rectangular cavity with depth-to-width ratio 1:2 for Re′
= 500

and 1000. The size of left bottom corner vortex increases sub-
stantially and drifts further off the bottom wall as Re′ increases
from 500 to 1000, while the positions and strengths of the right
bottom corner vortex and the primary vortex are weakly affected
by Re′. The present results (left column) are in good agreement
with the streamlines (right column) obtained previously by Cheng
and Hung [4].

Fig. 4 shows contour lines of the stream-function (black lines)
and the vortices identified by the λ2 method (blue lines) proposed
by Jeong and Hussain [27] for steady lid-driven rectangular cavity

flow with Re′
= 1000. The λ2 method identifies the primary

vortex and the bottom corner vortices, which are also visualized
by closed streamlines. However, the flow at the upper-left corner
is also identified as a vortex by the λ2 method whereas the
streamlines are not closed in this case, thus demonstrating the
complexity of vortex identification. In this paper, the stream func-
tion is applied to identify the flow patterns for both the steady
and oscillatory lid-driven cavity flow following the practice of
previous works [4,14,28,29].

4.2. Oscillatory lid-driven cavity flow

Simulations of the flow within an oscillatory lid-driven square
cavity have been compared with previous numerical results [13,
14,26]. Fig. 5 shows the center-line velocity profiles u(0.5, y)
and v(x, 0.5) for Re = 100, 400 and 1000 at different times
(indicated in the legend) for ω′

= St/Re = 1. The present
results are in good agreement with those of Iwatsu et al. [13]
while showing some deviation from the results obtained by Liu
[26], especially for Re = 1000. The boundary layer thickness
beneath the moving lid decreases as the Reynolds number (and
consequently the Stokes number) increases. This is consistent
with laminar boundary layer theory (i.e. Stokes second problem
described in Schlichting et al. [30]) and also with the findings by
Duck [31].

Simulations of the flow within an oscillatory lid-driven rect-
angular cavity have been compared with the experimental re-
sults previously obtained by Vogel et al. [19]. They conducted
an experimental investigation of the two-dimensional and three-
dimensional flow regimes in an oscillatory lid-driven cavity with
depth-to-width ratio 1:2 and spanwise aspect ratio 1:19.4 for a
wide range of Re and St . Here the bottom was moving while the
upper lid was fixed. Experimental results for the two-dimensional
flow regime are compared with the present results by contours
of the z-component of the vorticity (Ωz = ∂v/∂x − ∂u/∂y) for
Re = 166, 332, 498 and 747 for a fixed St = 53 as shown in Fig. 6.
Here the left column shows Ωz obtained from the measurements,
while the right column shows Ωz obtained by the present nu-
merical simulations. It should be noted that Vogel et al. [19] did
not present the values of the contours of Ωz obtained from the
measurements, and thus values of the contours in the numerical
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Fig. 5. Comparisons of u(0.5, y) and v(x, 0.5) between the present results and those obtained by Iwatsu et al. [13] and Liu [26] for the oscillatory lid-driven cavity
flow.

simulations have been chosen (as best fit by eye) to match the
measurements. Fig. 6 shows that the qualitative agreement is fair;
the experimental measurements may deviate from the numerical
simulations due to the uncertainty of the measured vorticity.
Moreover, the present contours are similar to the numerical
results (not shown here) presented by Vogel et al. [19].

5. Results and discussion

5.1. Basic flow patterns

Fig. 7 shows streamline contours for Re = 125 and St =

23 for the first half-cycle of oscillation. At t = 0, where the
lid velocity is at its largest during the oscillation cycle (the lid
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Fig. 6. Comparisons between predictions (right column) and measurements (left column) by Vogel et al. [19] for contours of Ωz at Re = 166, 332, 498 and 747
(from top to bottom) and St = 53. All the data are for phase t = 0. Dashed and solid lines indicate negative values and positive values, respectively.

is moving towards the right), the cavity is almost completely
occupied by the clockwise primary vortex (CPV ), and the flow
here is qualitatively similar to a steady lid-driven cavity flow.
As the lid velocity decreases (t = 0.2), flow separation and
reattachment cause a bottom left corner vortex (BLCV ), and a
bottom right corner vortex (BRCV ) as well as a left wall vortex
(LWV ). These three vortices grow in size and strength and the
weaker left wall vortex becomes encircled by the stronger bottom
left corner vortex from t = 0.20 to 0.22, and then (t = 0.25)
they merge (LWV + BLCV ) to an anti-clockwise vortex which
grows with time, while the clockwise primary vortex shrinks. As
the lid starts moving towards the left (t = 0.3), the flow driven
by the lid (rolls down at the upper left corner) forms an anti-
clockwise elongated upper left corner vortex (ULCV ) confined
by the clockwise primary vortex and the (LWV + BLCV ) vortex.
Furthermore, an anti-clockwise upper right corner vortex (URCV )
appears due to the interaction between the flow moving with
the lid and the clockwise primary vortex. These two vortices near
the lid push the clockwise primary vortex away downwards from
the lid, while the (LWV + BLCV ) vortex pushes the clockwise

primary vortex towards the right. As a result, from t = 0.3 to
t = 0.45 the clockwise primary vortex shrinks gradually, and the
(LWV + BLCV ) vortex merges with the upper left corner vortex
while the vortices at the upper right corner (URCV ) and at the
bottom right corner (BRCV ) erode rapidly. Finally (t = 0.5), the
clockwise primary vortex vanishes, and the flow becomes anti-
symmetric compared with the flow field at t = 0. In the flow
shown in Fig. 7 the clockwise primary vortex exists without the
simultaneous presence of the anti-clockwise primary vortex (and
vice versa) for a small interval of the oscillation cycle where the
magnitude of the lid velocity is largest, i.e. at t = n/2 where n is
the number of cycles. The flow pattern which fulfills this criterion
will hereafter be denoted flow pattern A.

Fig. 8 shows further details (close-up) of the merging of the
left wall vortex (LWV ) and the bottom left corner vortex (BLCV ),
previously shown in Fig. 7. At t = 0.20, the flow separates at
(x, y) = (0, 0.4) and reattaches at (0, 0.52) at the left wall, forming
the small left wall vortex. As time increases, the separation point
moves downward and meets at t = 0.205; the attachment point
of the bottom left corner vortex is located at (0, 0.3). From t =
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Fig. 7. Streamline contours for flow pattern A at Re = 125 and St = 23; for contours with values from −0.06 to 0.06, the difference in value between two adjacent
contour lines is 0.005, for contours with values from −0.005 to 0.005, the difference in value between two adjacent contour lines is 0.001, for contours with values
from 0.0001 to 0.0004, the difference in value between two adjacent contour lines is 0.0001, for contours with values from 1e-05 to 3e-05, the difference in value
between two adjacent contour lines is 1e-05. Dashed and solid lines indicate negative values and positive values, respectively.

0.22 to t = 0.23, these two vortices have nearly equal strength,
and grow in size by vorticity diffusion. Additionally, they grow in
strength due to the positive vorticity near the walls but they do
not rotate about each other due to the presence of the walls. It
appears that the left wall vortex grows faster than the bottom left
corner vortex, and the merging of them is qualitatively similar to
that of an unequal co-rotating vortex pair; the weaker bottom

left corner vortex deforms rapidly while the stronger left wall
vortex gradually dominates with core detrainment (from t =

0.23 to t = 0.24), and finally they merge (t = 0.25) to form
the (LWV + BLCV ) vortex. Fig. 9 displays another close-up of
Fig. 7, showing the evolution of the two co-rotating vortices at
the upper left corner (ULCV ) and at the upper right corner (URCV )
as well as the already merged vortex (LWV + BLCV ). As the lid
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Fig. 8. The evolution of co-rotating vortex pair of different strengths, i.e. the left wall vortex (LWV ) and the bottom left corner vortex (BLCV ).

Fig. 9. The evolution of three co-rotating vortices of different strengths, i.e. the merged vortex (LWV + BLCV ), the upper left vortex (ULCV ) and the upper right
corner vortex (URCV ).
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Fig. 10. Streamline contours (bold black lines) and vorticity contours Ωz from t = 0.25 to t = 0.50 for St = 23 with Re = 125.

Fig. 11. Time history of Ωz monitored at the center of the cells nearest the
upper corners through one oscillation cycle for Re = 125 and St = 23.

moves towards the left (t = 0.255), two anti-clockwise vortices
are formed at the upper left and right corners, respectively. Then
at t = 0.2575 they grow and meet beneath the lid. The weaker
upper right corner vortex grows in strength (from t = 0.30 to
t = 0.32) and erodes gradually without the core detrainment
of the stronger upper left corner vortex (from t = 0.35 to t =

0.36), i.e. these two vortices do not merge. However, the merging
between the weaker (LWV+BLCV ) vortex and the stronger (ULCV )
vortex appears to be present; the core detrainment occurs in the
stronger vortex as the weaker one moves towards it (from t =

0.30 to t = 0.32), and the merging occurs (t = 0.35), forming the
anti-clockwise primary vortex (APV = LWV + BLCV + ULCV ).

The shear layer beneath the moving lid has been further inves-
tigated by visualizing the vorticity contours Ωz in Fig. 10 within
the time interval t = 0.25 to 0.50 (the corresponding streamlines
are shown in Fig. 7). Due to the oscillation cycle, some vorticity
remains beneath the lid when the lid velocity is zero (at t = 0.25).
As the lid moves from the right towards the left, the thickness
of the shear layer beneath the lid increases both with time and
along the lid. It is observed that as the shear layer beneath
the lid becomes thicker, the corner vorticity singularities shown
in Fig. 10 (shown by the contraction of the vorticity contours
towards the upper corners) become more visible. This is further
visualized in Fig. 11, showing the vorticity evaluated at the center
of the cell nearest to the upper left and right corners through
the oscillation cycle. The magnitude of the vorticity Ωz on the
bisection of the singular corner and in the immediate vicinity of

the corner is small as the lid velocity is zero (at t = 0.25 and t =

0.75), which is consistent with the observation from Fig. 10 for
t = 0.25. As the lid moves towards the left in the time interval
from t = 0.25 (where u = 0) to t = 0.35 (where u = −0.588),
the magnitude of the near-corner vorticities increases. As the lid
velocity increases further, the magnitude of the vorticity near
the right corner becomes slightly larger than that near the left
corner with the maximum deviation observed at t = 0.50 (where
u = −1); and vice versa for u = 1. Some further aspects of the
upper corner singularities will be discussed below in Section 5.2.

Fig. 12 shows streamline contours for Re = 200 and St =

23 for the first half-cycle of oscillation. Here, a remaining part
of the anti-clockwise primary vortex (APV ) from the previous
half-cycle of oscillation is present at the left wall; this vortex
does not completely vanish at any instance of the oscillation
cycle as it does for flow pattern A shown in Fig. 7. Except from
this, the vortex dynamics is similar to that of flow pattern A;
the remaining part of the anti-clockwise primary vortex merges
gradually with the bottom left corner vortex (t = 0.24) in the
same manner as the left wall vortex does in flow pattern A; the
upper left and right corner vortices are formed beneath the lid
(t = 0.3), and from t = 0.34 to t = 0.5 the upper left corner
vortex merge gradually with the (APV+BLCV ) vortex, forming the
anti-clockwise primary vortex while the upper left corner vortex
and the upper right corner vortex erode. However, a small part
of the clockwise primary vortex remains as the next half-cycle
of oscillation starts. The flow pattern exhibiting this behavior is
denoted flow pattern B.

Fig. 13 shows streamline contours for Re = 350 and St = 23
for the first half-cycle of oscillation. At t = 0, the remaining part
of the anti-clockwise primary vortex is so large that it separates
the bottom left corner vortex from the clockwise primary vortex,
resulting in a bottom left corner vortex (BLCV ′) with a clockwise
rotation instead of the anti-clockwise rotation observed in flow
patterns A and B. As the lid velocity decreases, this clockwise
bottom vortex (BLCV ′) decreases gradually in size and strength
(from t = 0.04 to t = 0.24) and finally vanishes (t = 0.24). The
merging of ULCV and APV , the erosion of URCV and the decay of
the clockwise primary vortex with time are qualitatively similar
to those observed in flow patterns A and B, except that the bottom
right corner vortex does not erode (t = 0.5). This is because
the bottom right corner vortex here is isolated from the anti-
clockwise primary vortex by the remaining clockwise primary
vortex. Consequently, the flow here carries two vortices (the
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Fig. 12. Streamline contours for flow pattern B at Re = 200 and St = 23; for contours with values from −0.085 to 0.065, the difference in value between two
adjacent contour lines is 0.005, for contours with values from −0.005 to 0.005, the difference in value between two adjacent contour lines is 0.001, for contours with
values from 0.0002 to 0.0008, the difference in value between two adjacent contour lines is 0.0002, for contours with values from 1e-05 to 5e-05, the difference
in value between two adjacent contour lines is 2e-05, for contours with values from 1e-06 to 5e-06, the difference in value between two adjacent contour lines is
4e-06. Dashed and solid lines indicate negative values and positive values, respectively.

clockwise primary vortex and the bottom right corner vortex)
between the two successive half-cycles of oscillation. The flow
exhibiting this behavior is denoted flow pattern C .

Fig. 14 shows streamline contours for Re = 550 and St = 23 for
the first half-cycle of oscillation. At t = 0, the cavity is occupied
by the clockwise primary vortex as well as the remaining part of

the anti-clockwise primary vortex and the clockwise bottom left
corner vortex. As the clockwise primary vortex core approaches
the bottom, a closed region of recirculation appears on the wall,
leading to the formation (t = 0.16) of an anti-clockwise bottom
vortex (BV ) which does not appear in flow patterns A-C . This
behavior is qualitatively similar to the observations of Walker
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Fig. 13. Streamline contours for flow pattern C at Re = 350 and St = 23; for contours with values from −0.095 to 0.075, the difference in value between two
adjacent contour lines is 0.005, for contours with values from −0.001 to 0.009, the difference in value between two adjacent contour lines is 0.002, for contours with
values from −5e-05 to 9e-05, the difference in value between two adjacent contour lines is 2e-05, for contours with values from −1e-06 to 5e-06, the difference
in value between two adjacent contour lines is 2e-06. Dashed and solid lines indicate negative values and positive values, respectively.

et al. [32] who found that as a primary vortex ring approaches
a solid wall, a wall eddy with opposite vorticity will be present
in the close vicinity of the wall. The interaction between the co-
rotating vortex pair (BV and APV ) is described in further details
in Fig. 15; flow separation and reattachment occur between (x,
y) = (0.725, 0) and (0.84, 0) at the bottom for t = 0.1525,
forming the bottom vortex (BV ), which grows gradually (t =

0.16) due to the vorticity diffusion and meets (t = 0.1625) with
the primary vortex (APV ), and is eventually (t = 0.22) destroyed
by the stronger primary vortex (APV ) which remains relatively
unaffected as shown in Fig. 14 (from t = 0.2 to t = 0.22). The flow
state which includes the bottom vortex is denoted flow pattern D.

Further details of the vortex generating mechanisms are ob-
tained by contours of Ωz shown in Fig. 16. Here the vorticity
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Fig. 14. Streamline contours for flow pattern D at Re = 550 and St = 23; for contours with values from −0.11 to 0.085, the difference in value between two adjacent
contour lines is 0.005, for contours with values from −0.001 to 0.003, the difference in value between two adjacent contour lines is 0.001, for contours with values
from 0.0001 to 0.0003, the difference in value between two adjacent contour lines is 0.0001, for contours with values from −5e-05 to 5e-05, the difference in value
between two adjacent contour lines is 2e-05, Dashed and solid lines indicate negative values and positive values, respectively.

contours for t = 0 and t = 0.16 corresponds to the streamlines
(for t = 0 and t = 0.16) shown in Fig. 14. The generation of
vorticity along the oscillating lid as well as the vorticity which
occurs due to the vertical wall are clearly visualized. As pointed
out by Ovando et al. [15] the vortex shedding (Fig. 16, t =

0.16) due to the rolling down of the vortex sheets at the right
wall follows the qualitative behavior of a vortex approaching

a wall perpendicularly, first predicted by Peace and Riley [33]
and observed experimentally by Walker et al. [32] and Allen
and Chong [17]. As the vortex is approaching the wall (Fig. 16,
t = 0), a region with opposite vorticity sign occurs between the
vortex and the wall, causing the vortex to rebound from the wall
(Fig. 16, t = 0.16); this can also be seen from Fig. 14 (t = 0
and t = 0.16). These mechanisms are similar to those previously
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Fig. 15. The merging process of the asymmetric vortex pair, i.e. the anti-clockwise bottom vortex (BV ) and primary vortex (APV ).

Fig. 16. Contours of Ωz for Re = 550 and St = 23; dashed and solid lines indicate negative values and positive values, respectively.

visualized by Ovando et al. [15] for a rectangular cavity with two
simultaneously oscillating vertical walls.

5.2. Effect of upper corner vorticity singularity

Now the flow in the vicinity of the upper left and right corners
where the vorticity is singular will be discussed. These singu-
larities cause numerical challenges, making it more difficult to
obtain an accurate numerical solution in the close vicinity of the
upper corners. For spectral methods, the global nature of the trial
function in conjunction with the upper corner singularities leads
to spurious oscillations. This is overcome by combining the trial
functions with local analytic solutions based on asymptotic series
expansions in terms of the local Reynolds number, which is small
due to the small flow velocity near the upper corner [24,34]. Also
for finite difference, finite volume and finite element methods,
the upper corner singularities lead to numerical inaccuracies.
Bruneau and Saad [25] applied a finite difference method showing
that for a steady lid-driven square cavity flow for Re = 1000 and

5000, grid convergence was obtained for the total kinetic energy
E =

1
2

∮
S ∥U∥

2dS (where S is the computation domain, and Ωz is
evaluated at the cell center), whilst grid convergence could not
be obtained for neither the enstrophy Z =

1
2

∮
S ∥Ωz∥

2dS nor the
palinstrophy P =

1
2

∮
S ∥∇Ωz∥

2dS. As pointed out by Bruneau and
Saad [25], this is caused by the infinite velocity gradients in the
corners, causing the enstrophy and the palinstrophy to approach
infinity as the grid cell size approaches zero. Similar results are
obtained in the present work for oscillating lid-driven cavities.
Fig. 17 shows the total energy E for St = 23 and Re = 550
through the oscillation cycle obtained from both a resolution of
200 × 100 and 400 × 200 grid cells (in the x and y direction,
respectively) with a maximum deviation of 0.8% between the
two grid resolutions. However, for the enstrophy (also shown
in Fig. 17), the corresponding maximum deviation is 5.9%. This
result is qualitatively similar to those by Bruneau and Saad [25]
who obtained corresponding deviations from 4%–8% and from
4%–10% for steady lid-driven flow with Re = 1000 and 5000,
respectively. Although grid convergence of both the enstrophy
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Fig. 17. Time history of energy (left) and enstrophy (right) over one oscillation cycle for Re = 550 and St = 23.

Fig. 18. Close-up of Ωz for the upper left corner at grid resolution 200 × 100 (left) and refined grid resolution 400 × 200 (right) for St = 23 with Re = 550.

and the palinstrophy can be obtained by letting the lid velocity
approach zero locally at the corners [25], this case is not relevant
for comparison with laboratory measurements, as pointed out by
Shankar and Deshpande [5]. A close-up of the vorticity contours
in the vicinity of the left corner is shown in Fig. 18 for the two
different resolutions of 200 × 100 and 400 × 200 grid cells; the
difference between the contour lines obtained from the two grid
resolutions is small. Although the upper corner singularities affect
the accuracy of the numerical solution, particularly in the close
vicinity of the corners, the vorticity is adequately resolved in the
present simulations, as demonstrated in Fig. 18.

5.3. Distribution of the basic flow patterns in (St, Re)-space

Fig. 19 shows the distribution of flow patterns A-D in the (St ,
Re)-space; the full line denotes the transition between 2D and 3D
flow [19]. More than 400 numerical simulations with Re from 10
to 875 and with St from 23 to 53 have been conducted to map out
the regions in the (St , Re)-space of the flow patterns represented
by the dashed lines in Fig. 19. For a given St number, the flow
patterns A-D appear sequentially as Re increases, showing that the
transition between the different flow patterns strongly depends
on Re. Furthermore, as St increases, the Re for the transition
between different flow patterns increases. This is because an
increase in St for a given Re leads to less time for the extrema of
the stream function to grow and for the primary vortex center to
move away from the lid. Consequently, a higher Re is required to
maintain the same flow pattern. This effect appears to be stronger
for the flow pattern D than for the flow pattern A. It appears that
the transition between the different flow patterns (i.e. the dashed
lines) is given by an approximately linear relation between Re and
St .

Fig. 20 shows the scaled drag force (defined as
∫ 2
0

∂u
∂y |y=1dx)

beneath the moving lid through one oscillation cycle for St = 23
and for Re = 125, 200, 350 and 550; i.e. for the flow patterns
A-D. It appears that an increase in Re leads to a moderate growth
and phase shift of the drag force. Fig. 21(a) shows the phase
shift between the lid oscillation velocity and the drag force on
the lid for Re = 10, 125, 250 and 490 and for St = 23, 28, 33,

Fig. 19. Basic flow patterns A− D of the two-dimensional oscillatory lid-driven
cavity within (St , Re)-space.

38, 43, 48 and 53. The phase shift increases monotonically as St
increases whereas an increase of Re results in lower phase shifts.
The maximum phase shift is 30◦ (for St = 53 and Re = 10),
which is considerably smaller than the 45◦ phase shift obtained
from the Stokes’ classical second problem. Fig. 21(b) shows the
horizontal velocity component along the vertical center-line of
the cavity for t = 0.2 and 0.6 for St = 53 and for Re = 10 and
490. The flow driven by an infinite plate (Stokes solution) is given
for comparison. As Re decreases, the near-lid velocity becomes
more similar to the Stokes solution. This is consistent with the
observation in Fig. 21(a) showing that the flow with smallest Re
and largest St exhibits the phase shift (30◦ ) between the drag
force and the lid velocity which is closest to that from the Stokes
solution (45◦ ). However, farther away from the lid, the velocity
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Fig. 20. The drag force beneath the moving lid at St = 23 and for Re = 125,
200, 350 and 550; i.e. for the flow patterns A-D.

component obtained for Re = 490 is closer to Stokes solution than
that obtained for Re = 10.

6. Summary and conclusions

This paper provides a detailed investigation of the vortex
dynamics in the oscillatory lid-driven cavity with depth-to-width
ratio 1:2, covering a wide range of Reynolds numbers and Stokes
numbers where this flow is known to be in the two-dimensional
flow regime. The predictions have been successfully compared
with previous numerical results for steady [4,22–25] and os-
cillatory [13,14,26] lid-driven cavity flows as well as with ex-
perimental results obtained by Vogel et al. [19] for oscillatory
lid-driven cavity flows. Furthermore, the effect of the upper cor-
ner vorticity singularity is discussed: the total energy exhibits
grid convergence while the enstrophy does not; these results are
qualitatively similar to those obtained by Bruneau and Saad [25]
for a steady lid-driven flow. Although the upper corner singu-
larities affect the numerical accuracy of the predictions, it is
demonstrated that the vorticity is adequately resolved.

It appears that the two-dimensional flow regime can be fur-
ther divided into four flow patterns based on the vortex dynam-
ics, which is visualized by streamline contours. The classification
of these basic flow patterns can be summarized as follows:

• For flow pattern A, there is no transfer of vortices between
each successive half-cycle of oscillation; this means that
the clockwise primary vortex (generated by the lid moving
towards the right) and the anti-clockwise primary vortex
(generated by the lid moving towards the left) are not
present simultaneously at the end of each half-cycle of
oscillation.

• For flow pattern B, a small part of the clockwise primary
vortex remains as the next half-cycle of oscillation starts,
and thus the flow carries the primary vortex between each
successive half-cycle of oscillation when the lid velocity is
largest.

• For flow pattern C , the flow carries two vortices between
each successive half-cycle of oscillation. When the lid is
moving towards the right, these two vortices consist of the
anti-clockwise primary vortex and the clockwise bottom left
corner vortex from the last half-cycle of oscillation.

• Flow pattern D is similar to flow pattern C , except the inter-
mediate appearance of an additional bottom vortex during
each half-cycle of oscillation.

These flow structures are unique functions of the Reynolds
number and the Stokes number, and the pattern changes with
these parameters. The increased forcing quantified by the
Reynolds number and the Stokes number leads to finer flow
structures and hence different flow patterns. If the frequency of
oscillation is increased for a given Reynolds number, the extrema
of the stream function have less time to grow and the center of
the primary vortex has less time to move away from the lid. To
compensate these effects, the amplitude has to be increased with
increasing frequency to maintain the same flow pattern.
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Fig. 21. (a): phase shift of the drag force on the moving lid at Re = 10, 125, 250 and 490 for St = 23, 28, 33, 38, 43, 48 and 53; (b): the horizontal velocity along
the center-line of the cavity at t = 0.2 and 0.6 for St = 53 with Re = 10 and 490.
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