
Computers and Geotechnics 135 (2021) 104199

Available online 5 May 2021
0266-352X/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Research Paper 

A hybrid finite element model for non-isothermal two-phase flow in 
deformable porous media 

S.A. Ghoreishian Amiri a,*, E. Taheri b, A.A. Lavasan c 

a PoreLab, Department of Civil and Environmental Eng., Norwegian University of Science and Technology (NTNU), Trondheim, Norway 
b Department of Rock Mechanics, Tarbiat Modares University, Tehran, Iran 
c Chair of Soil Mechanics, Foundation Engineering and Environmental Geotechnics, Ruhr-Universität Bochum, Germany   

A R T I C L E  I N F O   

Keywords: 
Multiphase flow 
Geomechanic 
Thermal flow 
THM coupling 
Hybrid solution 

A B S T R A C T   

This paper presents a numerical method to model the coupled thermo-hydro-mechanical (THM) processes in 
porous media saturated with two immiscible fluids. The basic equations of the system have been derived based 
on the averaging theory, considering skeleton deformation, two-phase fluid flow, and heat transport. As applying 
the standard Galerkin finite element method (GFEM) to solve this system of partial differential equations may 
lead to oscillatory results for saturation and temperature profiles, a hybrid numerical solution is proposed. In this 
frame, the GFEM is combined with a control volume based finite element (CVFE) approach, and a streamline 
upwind control volume finite element (SUCVFE) scheme, respectively for the mechanical, hydraulic and thermal 
part of the system. The CVFEM has been adopted to provide a smooth saturation profile by ensuring local mass 
conservation, while the streamline upwind scheme has been applied to remove the spurious temperature 
oscillation by adding stabilizing terms to the thermal part of the system. The CVFE and SUCVFE formulations 
have been derived using a similar approach as the standard FE practice in the context of weighted residual 
technique, but using different weighting functions. This will significantly facilitate the implementation of the 
proposed model in existing FE codes. Accuracy and efficiency of the proposed method have been justified using 
several numerical examples and comparing the results with available analytical or numerical solutions.   

1. Introduction 

Numerical simulation of coupled THM phenomena in geological 
porous media is of great interest in many engineering disciplines. Areas 
of applications include, among the others, natural gas and oil recovery, 
geothermal energy utilization, underground waste repositories, 
geological sequestration of CO2, underground gas storage, artificial 
ground freezing and cold climate engineering. Generally, the basic 
governing equations of the above-mentioned systems, i.e. the mo-
mentum, mass and energy conservation laws, are derived using either 
the continuum theory of mixture (Nunziato and Walsh, 1980; Passman, 
1977; Wei and Muraleetharan, 2002), local volume averaging theory 
(Hassanizadeh and Gray, 1979a, 1979b; Lewis and Schrefler, 1998), or a 
phenomenological extension of Biot’s consolidation theory (McTigue, 
1986; Pao et al., 2001; Schiffman, 1971). Although, these approaches 
are generally suitable for describing coupled THM phenomena in porous 
media, the formers may introduce a more systematic and flexible 
framework for further development. 

Many attempts, with different coupling strategies, have been made to 
develop numerical tools for analyzing this kind of problems. Sequential 
coupling using different codes for thermal, multiphase fluid flow and 
geomechanics is one of the most popular strategies (Asadi and Ataie- 
Ashtiani, 2021; Kim, 2018; Lee et al., 2019; Rutqvist, 2011; Rutqvist 
et al., 2002). It has a wide flexibility in terms of software development 
and can be computationally less costly comparing to a fully coupled 
scheme. However, stability, accuracy and convergence properties of the 
solution might be affected (Kim, 2018). On the other hand, a fully 
coupled solution offers an unconditional stability and internal consis-
tency as the full system of equations are solved together. A number of 
studies have been conducted to develop fully coupled THM models in a 
single integrated code, utilizing different numerical schemes associated 
with their intended applications (Abed and Sołowski, 2017; Cui et al., 
2018; Kelkar et al., 2014; Nishimura et al., 2009; Pao et al., 2001; Tong 
et al., 2010; Winterfeld and Wu, 2016; Zhou and Ghassemi, 2009). The 
most extensively used discretization scheme has been the FEM (Abed 
and Sołowski, 2017; Cui et al., 2018; Lewis and Schrefler, 1998; 
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Nishimura et al., 2009; Pao et al., 2001; Tong et al., 2010; Zhou and 
Ghassemi, 2009). Several fully coupled solution procedures using FEM 
are presented and investigated in Lewis and Schrefler (1998). Despite 
the advantages of the FEM in dealing with complex geometries and 
unstructured grids, it does not, in its standard form (i.e. standard 
Galerkin solution), automatically satisfy the local conservation of the 
transported variables between adjacent elements. As shown by Hughes 
et al. (2000), GFEM could be locally conservative if the flux is calculated 
in a correct way through a post-processing step. However, it will add 
another layer of complexity to the system (Wan, 2002). Nevertheless, a 
non-conservative solution might result in severe nonphysical oscillation 
of the field variables, especially in case of reservoir simulation with a 
distinct saturation shock front. Indeed, the GFEM results in a spurious 
temperature oscillation in case of convection-dominated thermal flow. 
In order to overcome these issues, hybrid solutions are desirable. 

Despite the popularity of the GFEM as the natural choice to discretize 
the momentum balance equation, it is not the optimum choice for 
transport equations. On the other hand, the finite volume method (FVM) 
is one of the most popular methods in transport problems, as it is known 
to satisfy the local conservation of the transported variables. Kelkar et al. 
(2014) proposed a fully coupled THM model using a combination of the 
GFE and FV methods for geomechanics and transport equations (mass 
and heat), respectively. The proposed solution is fully conservative in terms of mass and heat, and capable of representing complex geometries 

using an unstructured FV scheme. However, the vertex-centered FV 
scheme, employed in this work for the transport equations, is not fully 
compatible with the FE discretization of the deformation equations. The 
FV part of the model needs the nodal values of volumetric strains, while 
in the FE part, strains are computed at integration points, which does not 
necessarily provide a continuous nodal value to be used by the FV part. 
This issue might affect stability and accuracy of the solution. 

The FVM is flexible to be enriched by the basis functions of the FEM 
to interpolate the variation of the field variables over the control 

Fig. 1. Schematic representation of subdomain (a); and control volume (b) around node i.  

e = 1 e = 2 e = 3 e = 4

Control Volumes Control Volumes

Pressure

Flux

Fig. 2. Pressure and flux distribution in a one-dimensional case: flux discon-
tinuity between the adjacent elements (Sadrnejad et al., 2012). 
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Fig. 3. The natural convection problem: domain and boundary conditions 
(dimension: 0.1× 0.1 m). 

Table 1 
Material properties for the natural convection problem.  

Water density at reference condition, ton/m3 ρwref
= 1  

Reference temperature, ◦C Tref = 15.5  
Rock density, ton/m3 ρs = 2.4  
Water viscosity, kPa.s μw = 1.5× 10− 6  

Rock porosity, % n = 40  
Absolute permeability, m2 K = 1× 10− 8  

Specific heat capacity of water, kJ/ton.K Cw = 4181  
Specific heat capacity of rock, kJ/ton.K Cs = 835  
Thermal conductivity of the mixture, kJ/s.m.K χ = 0.7027× 10− 3   
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volumes and their boundaries. This will make the FV and FE schemes 
more compatible. This approach is known as the CVFEM in the 
computational fluid dynamic literature (Chen et al., 2005; Forsyth, 
1990; Fung et al., 1992; Ghoreishian Amiri et al., 2013; Gottardi and 
Dall’Olio, 1992; Mello et al., 2009; Sadrnejad et al., 2012; Verma, 1996). 
Flexibility of the CVFEM, along with its conservative characteristic and 
compatibility with the FEM, makes the method an attractive option for a 
hybrid numerical solution of coupled THM systems. A hybrid solution of 
this type has been proposed by Ghoreishian Amiri et al. (2017) for 
coupled hydro-mechanical problems, and its efficiency was demon-
strated through several benchmark problems. 

In this study, a fully coupled model, with a combination of the 
CVFEM (for mass), SUCVFEM (for heat) and GFEM (for deformation), is 
presented. We shall see that the CVFE formulation could be obtained in 
the context of the FE technology by employing different type of 
weighting functions. This is beneficial for implementing purposes, 
especially in existing FE codes, since it makes possible to construct the 
final set of the algebraic equations using the traditional assembling al-
gorithm of the FEM. Indeed, the need for the so-called dual mesh system, 
which is normally necessary in hybrid models, will also be obviated. In 
this context, the control volumes are automatically constructed around 
each node using appropriate weighting functions, and provides a fully 
conservative solution. 

2. Governing equations 

The system of concern is a non-isothermal deformable porous me-
dium saturated with two immiscible fluids (wetting and non-wetting 
phases). In this study, no phase change is considered; and local ther-
mal equilibrium is assumed. The multiphase system is described using 
the assumption of superposition; i.e. any spatial point, x, in the solution 
domain, is simultaneously occupied by material points of all phases, Xα, 
while their motions are described independently. 

A Lagrangian description is used for the solid skeleton, while the 
fluid phases are described in Eulerian form with respect to the motion of 
the solid skeleton. Relative velocities are, therefore, defined as: 

vα = vα − vs, α ∕= s (1)  

where vα and vs are the absolute velocities of phase α and solid skeleton, 
respectively, and vα denotes the relative velocity. 

In this description, the material time derivative of any differentiable 
function given in the spatial coordinate, fα(x, t), should then be referred 
to the solid skeleton: 

Dsfα

Dt
=

∂fα

∂t
+ (∇fα).vs (2)  

where D
sfα
Dt indicates the material time derivative of function f (in phase 

α) with respect to the solid skeleton, and ∇ is the gradient operator. 
By assuming a quasi-static condition with irrotational velocity field, 

Fig. 4. Streamlines at different time before the steady state, ts, for the natural convection problem-Case 1.  
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small displacements and displacement gradients, the following relations 
are hold: 

∂f
∂x

≈
∂f
∂X

(3)  

∇T vs = − mT Dsε
Dt

(4)  

ε = − ℒu (5)  

where u denotes the displacement vector of the solid skeleton, ∇T is the 
divergence operator, and ε, ℒ and mT are defined as: 

ε = [ εxx εyy εzz γxy γyz γzx ]
T (6)  

ℒ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
∂x

0 0 ∂
∂y 0 ∂

∂z

0 ∂
∂y 0 ∂

∂x
∂
∂z 0

0 0 ∂
∂z 0 ∂

∂y
∂
∂x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

(7)  

m = [ 1 1 1 0 0 0 ]T (8)  

where the superscript T refers to transpose. It should be noted that 

throughout this article, compressive stress and strain are assumed to be 
positive. 

2.1. Mass balance equations 

The mass balance equation for the solid phase might be written as: 

Ds[(1 − n)ρs]

Dt
+ (1 − n)ρs∇

T vs = 0 (9)  

where ρs is the density of solid grains and n is the porosity. Assuming 
incompressible solid grains, and a volumetric thermal expansion coef-
ficient, βs, one can write: 

dρs = − ρsβsdT (10)  

where T is temperature. By substituting Eqs. (4) and (10) into (9), the 

Fig. 5. Temperature isotherms at different time before the steady state, ts, for the natural convection problem-Case 1.  

Table 2 
Comparison of the average Nusselt number for the natural convection problem.   

Nithiarasu et al. 
(1997) 

Massarotti 
(2001) 

Lauriat and 
Prasad (1989) 

Present 
model 

Average 
Nusselt 
number  

1.08  1.07  1.07  1.08  
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following expression can be found for variation of porosity: 

dn = − (1 − n)mT dε − (1 − n)βsdT (11) 

Similarly, the mass balance equations of the fluid phases are written 
as: 

Ds[nαρα]

Dt
+∇T(nαραvα) + nαρα∇

T vs − Ṁα = 0, α ∕= s (12)  

where nα denotes the volume fraction of phase α and Ṁ is the source/ 
sink term. The relative velocities of the fluids are described using the 
generalized Darcy’s law: 

nαvα =
krαK
μα

[ραg − ∇pα], α ∕= s (13)  

where g is the gravitational acceleration vector, p stands for pressure, K 
is the absolute permeability tensor, μ denotes dynamic viscosity and kr is 
the relative permeability that is related to the volume fraction of the 
wetting phase, nw: 

krw = A (nw) (14)  

krn = G (nw) (15)  

where the subscripts w and n refer to the wetting and non-wetting fluids, 
respectively. 

Fluids interaction can be considered using empirical correlations 

relating the capillary pressure, pc = pn − pw, and temperature to the 
volume fraction of the wetting phase (Hassanizadeh and Gray, 1993): 

nw = F (pc,T) (16) 

Indeed, the following constraint must be satisfied: 

nw + nn = n (17) 

By partially differentiating of Eqs. (16) and (17), and introducing Eq. 

Fig. 6. Steady state streamlines and temperature isotherms for the natural convection problem-Case 2.  

Table 3 
Material properties for the hot water injection problem.  

Water density at reference condition, kg/m3 ρwref
= 1000  

Reference temperature, ◦C Tref = 15.5  
Reference pressure, kPa pref = 101  
Rock density, kg/m3 ρs = 2386  
Rock porosity, % n = 18.67  
Total pore compressibility, vol/vol.kPa Kp = 1.45× 10− 6  

Water compressibility, vol/vol.kPa Kw = 4.35× 10− 7  

Absolute permeability, darcy K = 0.089  
Specific heat capacity of water, kJ/kg.K Cw = 4.18  
Specific heat capacity of rock, kJ/kg.K Cs = 0.837  
Thermal conductivity of the mixture, W/m.K χ = 2.5  
Thermal expansion of water, vol/vol.K βw = 8.82× 10− 4  

Thermal expansion of rock, vol/vol.K βs = 2.7× 10− 5   

Fig. 7. Pore pressure and temperature profiles at different times at the center 
line of the reservoir, compared to Pao et al. (2001). 
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(11) into the results, one obtains: 

dnw =
dnw

dpc
dpc +

dnw

dT
dT = n′

w(dpn − dpw) + n
′

wT dT (18)  

dnn = dn − dnw = − (1 − n)mT dε − n′

w(dpn − dpw) −
[(

1 − n)βs + n′

wT

]
dT
(19)  

where n′

w = ∂nw
∂pc 

and n′

wT = ∂nw
∂T . 

Substituting Eqs. (4), (5), (13), (18) and (19) into (12), the final form 
of the mass balance equations are obtained: 
[

nw
∂ρw

∂pw
− ρwn’

w

]
Dspw

Dt
+ ρwn’

w
Dspn

Dt
+

[

nw
∂ρw

∂T
+ ρwn’

wT

]
DsT
Dt

+∇T
{

ρw
krwK
μw

[ρwg − ∇pw]

}

+ ρwnwmTℒ
Dsu
Dt

− Ṁw = 0

(20)  

[

nn
∂ρn

∂pn
− ρnn’

w

]
Dspn

Dt
+ ρnn’

w
Dspw

Dt
+

[

nn
∂ρn

∂T
− (1 − n)βsρn − ρnn’

wT

]
DsT
Dt

+∇T
{

ρn
krnK
μn

[ρng − ∇pn]

}

+ ρn(1 − n + nn)mTℒ
Dsu
Dt

− Ṁn = 0

(21)  

2.2. Linear momentum balance equations 

For any representative elementary volume (REV) of the mixture, the 
linear momentum balance equation for a quasi-static process can be 
written as: 

ℒT σ − ρg = 0 (22)  

where σ and ρ are the total stress and total density of the mixture, 
respectively: 

σ = σ ′

+
1
n

m(nwpw + nnpn) (23)  

ρ = (1 − n)ρs +
∑

α∕=s

nαρα (24)  

where σ′ is the effective stress which can be linked to the deformation of 
the skeleton through a general thermo-mechanical constitutive relation: 

dσ′

= De( dε − dεp
m − dεe

T − dεp
T
)

(25)  

where De is the elastic stiffness matrix, and εp
m, εe

T and εp
T stand for the 

mechanical plastic strain, thermal elastic strain and thermal plastic 
strain of the skeleton, respectively. According to the observations of 
Campanella and Mitchell (1968), the thermal elastic strain of the soil 
skeleton can be assumed equal to that of the soil particles. Thus: 

dεe
T = −

m
3

βsdT (26)  

where βs is defined in Eq. (10). The thermal and mechanical plastic 
strains (εp

m and εp
T) can be calculated through an appropriate thermo- 

elastic-plastic constitutive model. Although such a model is not imple-
mented in the present study, the formulation is developed in a way that 
makes it straight forward for future development. 

Substituting Eq. (23) into (22), the final form of the linear mo-
mentum balance equation is obtained: 

ℒT σ’ + ℒT m
nw

n
pw + ℒT m

nn

n
pn − ρg = 0 (27)  

2.3. Energy balance equation 

By enforcing the local thermal equilibrium assumption, a single en-
ergy balance equation is adequate to describe the heat transfer process 
in the multiphase mixture. This assumption implies that all the phases at 
each spatial point reaches thermal equilibrium instantaneously 
together. 

Neglecting kinetic energy as well as viscous and intrinsic dissipa-
tions, the energy balance equation for any REV of the mixture can be 
written as: 

Fig. 8. Temperature profiles at different times at the center line of the reservoir 
for the case with Pe = 160 using the present model and GFEM. 
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Fig. 9. The five-spot hot water flooding problem.  

Table 4 
Material properties for the five-spot problem.  

Water density at reference condition, kg/m3 ρwref
= 1000  

Oil density at reference condition, kg/m3 ρoref
= 900  

Reference temperature, ◦C Tref = 15.5  
Reference pressure, kPa pref = 101  
Rock porosity, % n = 37.5  
Water compressibility, vol/vol.kPa Kw = 21.37  
Oil compressibility, vol/vol.kPa Ko = 34.47  
Absolute permeability, m2 K = 1.3× 10− 10  

Specific heat capacity of water, J/kg.K Cw = 4184  
Specific heat capacity of oil, J/kg.K Co = 2092  
Heat capacity of rock, kJ/ m3.K ρsCs = 2413  
Thermal conductivity of the mixture, W/m.K χ = 0.1661   
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ρC
DsT
Dt

+ v*T∇T − ∇T(χ∇T) − ρh = 0 (28)  

where: 

ρC = (1 − n)ρsCs + nwρwCw + nnρnCn (29)  

ρh = (1 − n)ρshs + nwρwhw + nnρnhn (30)  

χ = (1 − n)χ s + nwχ w + nnχ n (31)  

v* = nwρwCwvw + nnρnCnvn (32)  

hα, Cαand χ α are the external heat source/sink term, specific heat ca-
pacity and thermal conductivity tensor of phase α, respectively. 

2.4. Initial and boundary conditions 

Eqs. (20), (21), (27) and (28) represent a set of partial differential 
equations (on a domain Ω bounded by Γ), which are highly nonlinear 
and strongly coupled. The fluids pressure, pw and pn, skeleton defor-
mation, u, and temperature, T, are selected as the primary unknown 
variables. In order to reach a closed-form system of equations, the initial 
and boundary conditions associated with the primary variables are 
needed to be defined. The initial condition should specify the variables 
at time t = 0: 
⎧
⎪⎪⎨

⎪⎪⎩

pα = p0
α, α ∕= s

u = u0

T = T0

at t = 0, on Ω and Γ (33) 

Dirichlet boundary conditions are imposed as prescribed values of 
the primary variables: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pα = pα, α ∕= s on Γpα

u = u on Γu

T = T on ΓT

(34)  

and Neumann boundary conditions are imposed as prescribed fluxes and 
tractions: 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

qα =

{

ρα
krαK
μα

[ραg − ∇pα]

}T

.n, α ∕= s on Γqα

t = lT σ on Γt

q = { − χ∇T}T
.n on Γq

(35)  

where qα is the imposed mass flux of phase α, t is the imposed traction, q 
is the imposed heat flux, n denotes the unit outward normal vector to the 
boundary: 

n = { nx ny nz }
T (36)  

and the matrix l is defined as: 

l =

⎡

⎣
nx 0 0 ny 0 nz
0 ny 0 nx nz 0
0 0 nz 0 ny nx

⎤

⎦

T

(37) 

The conditions Γpw ∪ Γqw = Γ, Γpn ∪ Γqn = Γ, Γu ∪ Γt = Γ and ΓT ∪

Γq = Γ should hold on the complementary parts of the boundary. 

3. Numerical solution 

Hexahedral elements are employed in this work to discretize the 
physical domain. The field variables (pw, pn,u,T) are interpolated in 
terms of their corresponding nodal values (pw,pn,U,T): 

pw = Npw, pn = Npn, u = NU, T = NT (38)  

where Nis the finite element shape functions for interpolating the 
pressure and temperature fields, and N for the displacement field. 

In Eq. (38) different shape functions have been used for the 
displacement field. This is a requirement when approaching the un-
drained limit state, where the permeability and compressibility ma-
trixes are approaching to zero. In such a limiting case, the Babuska- 
Brezzi convergence conditions (Babuška, 1971, 1973; Brezzi, 1974) 
put some restrictions on the interpolating functions for pressure (N) 
and displacement (N). The possible choices of elements to satisfy the 
necessary convergence and consistency criteria of the undrained limit 
are discussed by Zienkiewicz (1984). However, if the undrained limit 
state is never imposed, equal-order interpolations can be used without 
any problem (Lewis and Schrefler, 1998). 

3.1. Mass balance equations – CVFEM 

In order to derive the CVFE formulation of the mass balance equa-
tions (20) and (21) through a procedure similar to the FEM, the 
following weighting functions, W, are considered: 

Wi = H(ξ.ξi).H(η.ηi).H(ζ.ζi) (39)  

where ξ, η, ζ are the standard natural (local) coordination system of the 
element, the subscript i denotes the element nodes, and H is the Heav-
iside function: 

H(x) =
{

1 x⩾0
0 x < 0 (40) 

This weighting function implicitly divides the element into sub-
domains belonging to each node. This is known as the subdomain 
collection technique. Fig. 1-a shows the subdomain associated with node i. 
As shown in the figure, there are internal surfaces (abcd, abef, bcfg), 
namely internal boundaries (Γint), that separate this subdomain from the 
rest of the element. 

The fundamental properties of the Heaviside function include 
(Stewart and Devenport, 2017): 

Table 5 
Water saturation and relative permeability for the five-spot problem.  

sw  krw  kro  pc(kPa)

0.1  0.0  1.0  28.32  
0.2  0.0016  0.875  0.65  
0.3  0.0081  0.735  0.50  
0.4  0.0259  0.59  0.42  
0.5  0.0672  0.42  0.35  
0.6  0.1000  0.21  0.28  
0.7  0.1400  0.07  0.21  
0.8  0.2000  0.016  0.14  
0.86  0.2500  0.0  0.08  

Table 6 
Viscosity of the fluids for the five-spot problem.  

T, 0C  μw, cP  μo , cP  

20  1.14 1200 
40  0.63 250 
60  0.45 155 
80  0.35 70 
100  0.29 38 
120  0.25 23 
140  0.22 15 
160  0.19 10 
180  0.18 7.5  
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Water saturation

Water saturation

A) Present Model

B) GFE Solution

Fig. 10. Water saturation and temperature contours after 52 h of hot water injection; A) present model; and B) GFE solution.  
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∫

Ωe

WT∇T FdΩ =

∫

Ωs

[1]T∇T FdΩ =

∫

Γs

[1]T FT .ndΓ

=

∫

Γe

WT FT .ndΓ +

∫

Γint

WT FT .ndΓ (41)  

∫

Ωe

(∇W)
T FdΩ =

∫

Ωe

[
∇T(FW)

]T dΩ −

∫

Ωe

WT∇T FdΩ

=

∫

Γe

WT FT .ndΓ −

∫

Γe

WT FT .ndΓ −

∫

Γint

WT FT .ndΓ = −

∫

Γint

WT FT .ndΓ

(42)  

where Ωe and Ωs are the domain of the element and the subdomain, 
respectively, that are bounded by Γe and Γs, while in this case F denotes 
a smooth vector field. 

Considering Eq. (41), the weighted residual formulation of Eqs. (20) 
and (21) over Ωe and Eq. (35) over Γe, can be written as:     

As it can be seen, the internal boundaries appeared in the integral 
form of the partial differential equations. This is the main difference of 
the CVFE formulation comparing with the FEM. 

Using the interpolatory representation of the field variables (Eq. 
(38)), the discretized form of the mass balance equations can be written 
as: 

Pwwpw + Pww
Dspw

Dt
+ Cwn

Dspn

Dt
+ Cwu

DsU
Dt

+ CwT
DsT
Dt

− f w = 0 (45)  

Pnnpn + Cnw
Dspw

Dt
+ Pnn

Dspn

Dt
+ Cnu

DsU
Dt

+ CnT
DsT
Dt

− f n = 0 (46)  

where the coefficients are listed below: 

Pww = −

∫

Γint

WT

{(

ρw
krwK
μw

∇N
)T

.n

}T

dΓ (47)  

∫

Ωe

WT
[

nw
∂ρw

∂pw
− ρwn’

w

]
Dspw

Dt
dΩ +

∫

Ωe

WT ρwn’
w
Dspn

Dt
dΩ +

∫

Ωe

WT
[

nw
∂ρw

∂T
+ ρwn’

wT

]
DsT
Dt

dΩ

+

∫

Γe

WT
{

ρw
krwK
μw

[ρwg − ∇pw]

}T

.ndΓ +

∫

Γint

WT
{

ρw
krwK
μw

[ρwg − ∇pw]

}T

.ndΓ

+

∫

Ωe

WT ρwnwmTℒ
Dsu
Dt

dΩ −

∫

Ωe

WT ṀwdΩ +

∫

Γe

WT

[

qw −

{

ρw
krwK
μw

[ρwg − ∇pw]

}T

.n

]

dΓ = 0

(43)   

∫

Ωe

WT
[

nn
∂ρn

∂pn
− ρnn’

w

]
Dspn

Dt
dΩ +

∫

Ωe

WT ρnn’
w
Dspw

Dt
dΩ

+

∫

Ωe

WT
[

nn
∂ρn

∂T
− (1 − n)βsρn − ρnn’

wT

]
DsT
Dt

dΩ +

∫

Γe

WT
{

ρn
krnK
μn

[ρng − ∇pn]

}T

.ndΓ

+

∫

Γint

WT
{

ρn
krnK
μn

[ρng − ∇pn]

}T

.ndΓ +

∫

Ωe

WT ρn(1 − n + nn)mTℒ
Dsu
Dt

dΩ

−

∫

Ωe

WT ṀndΩ +

∫

Γe

WT

[

qn −

{

ρn
krnK
μn

[ρng − ∇pn]

}T

.n

]

dΓ = 0

(44)   

2F

2F

Impermeable

Impermeable

2a

2b

a=b= 1 m
F=1×106 kN

T 
= 

20
 o C

P 
= 

0 
kP

a

T 
= 

20
 o C

P 
= 

0 
kP

a

Fig. 11. The non-isothermal Mandel’s problem: domain and bound-
ary conditions. 

Table 7 
Material properties for the non-isothermal Mandel’s problem.  

Shear modulus of the mixture, kPa G = 1× 106  

Poison ratio ν = 0.2  
Absolute permeability, m2 K = 1× 10− 9  

Water viscosity, kPa.s μw = 1× 10− 6  

Soil porosity, % n = 20  
Thermal conductivity of the mixture, W/m.K χ = 5  
Thermal expansion of water, vol/vol.K βw = 0.3× 10− 6  

Thermal expansion of soil, vol/vol.K βs = 0.9× 10− 6  

Heat capacity of water, MJ/m3.K ρwCw = 4  
Heat capacity of soil, MJ/ m3.K ρsCs = 3   
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Pnn = −

∫

Γint

WT

{(

ρn
krnK
μn

∇N
)T

.n

}T

dΓ (48)  

Pww =

∫

Ωe

WT
(

nw
∂ρw

∂pw
− ρwn′

w

)

NdΩ (49)  

Pnn =

∫

Ωe

WT
(

nn
dρn

dpn
− ρnn′

w

)

NdΩ (50)  

Cwn =

∫

Ωe

WT ( ρwn
′

w

)
NdΩ (51)  

Cnw =

∫

Ωe

WT ( ρnn′

w

)
NdΩ (52)  

Cwu =

∫

Ωe

WT(ρwnw)mT BdΩ (53)  

Cnu =

∫

Ωe

WT(ρn(1 − n) + ρnnn)mT BdΩ (54)  

CwT =

∫

Ωe

WT
(

nw
∂ρw

∂T
+ ρwn′

wT

)

NdΩ (55)  

CnT =

∫

Ωe

WT
(

nn
∂ρn

∂T
− (1 − n)βsρn − ρnn′

wT

)

NdΩ (56)  

f w =

∫

Ωe

WT ṀwdΩ −

∫

Γqw

WT qwdΓ −

∫

Γint

WT

[

ρ2
w

(
krwK
μw

g
)T

.n

]

dΓ (57)  

f n =

∫

Ωe

WT ṀndΩ −

∫

Γqn

WT qndΓ −

∫

Γint

WT

[

ρ2
n

(
krnK
μn

g
)T

.n

]

dΓ (58)  

where B(= ℒN) is the strain-displacement matrix. Note that calculation 
of the volume and surface integrals follows the standard FEM practice. 

The final set of the nodal mass balance equations can now be con-
structed using the standard assembling algorithm of the FEM. This will 
join the subdomains from all adjacent elements and form a bigger sub-
domain, namely control volume, around each node (Fig. 1-b). Consid-
ering the choice of the weighting functions in Eq. (39), all the integrals 
in Eqs. (45) and (46) will be automatically zero outside of the corre-
sponding control volumes. It means, the mass balance equations are in 
fact satisfied in the control volumes, although they are presented at 
element level. In addition, the flux terms that are discontinues between 
the adjacent elements, are only appeared in surface integral terms on the 
internal boundaries (as shown in Eqs. (47) and (48)). Consequently, 
discontinuity of the velocity field between adjacent elements does not 
affect the local conservative characteristic of the calculations over the 
control volumes (Fig. 2). Indeed, construction of the control volumes is 
embedded in the formulation, thus there is no need to construct a dual 
mesh system. The discrete approximations follow the standard FE 
practice; the FEM data structure is retained, and the discrete equations 
are processed in elements loop. 

3.2. Linear momentum balance equations – FEM 

Applying the GFE discretization technique to Eq. (27) along with the 
boundary condition (Eq. (35)), the discretized form of the linear mo-
mentum balance equation can be derived: 

Fig. 12. Excess pore pressure at different time for the non-isothermal Mandel’s problem.  
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Cuwpw + Cunpn + Fu− int − f u = 0 (59)  

where the coefficients are listed below: 

Cuw =

∫

Ωe

nw

n
BT mNdΩ (60)  

Cun =

∫

Ωe

nn

n
BT mNdΩ (61)  

Fu− int =

∫

Ωe

BT σ′

dΩ (62)  

f u = −

∫

Ωe

NT ρgdΩ +

∫

Γt

NT tdΓ (63)  

3.3. Energy balance equation - SUCVFEM 

In order to avoid the spurious oscillation of the temperature field in a 
convection-dominated problem, the weighting function of the CVFEM is 
modified in a way similar to the Petrov-Galerkin technique (Zienkiewicz 
et al., 2005): 

W = W + W* = W +
θhe
̅̅̅̅̅
15

√
‖v*‖

v*T(∇W) (64)  

where W is the weighting function for the energy balance equation, W is 
defined in Eq. (39), he is the element characteristic length in the direc-
tion of flow (see the Appendix), and θ is defined as: 

θ = cothPe −
1

Pe
(65)  

where Pe is the element Peclet number, defined as: 

Pe =
‖v*‖he

2χ (66) 

Weighting function of this type has been tested on a range of 
convection-diffusion problems by Swaminathan and Voller (1992). 

The weighted residual formulation of the energy balance Eq. (28) 
over Ωe and Eq. (35) over Γe, can now be written with the help of Eqs. 
(41) and (42): 

∫

Ωe

WT ρC
DsT
Dt

dΩ +

∫

Ωe

WT v*T∇TdΩ −

∫

Γe

WT(χ∇T)T
.ndΓ

−

∫

Γint

WT(χ∇T)T
.ndΓ −

∫

Ωe

WT ρhdΩ +

∫

Γe

WT ( q + (χ∇T)T
.n
)
dΓ

−

∫

Γint

τWT v*T
[

ρC
DsT
Dt

+ v*T∇T − ∇T(χ∇T) − ρh
]

ndΓ = 0

(67)  

where τ = θhe̅̅̅̅
15

√
‖v*

‖
. 

According to the discussion provided by Brooks and Hughes (1982), 
the effect of the perturbation weighting (W*) on the diffusion term 
(∇T(χ∇T)) can be neglected for regular shaped elements with first order 
basis functions. Following their argument, the discretized form of the 
energy balance equations can be written as: 

TTT T + TTT
DsT
Dt

− f T = 0 (68)  

TTT =

∫

Ωe

WT v*T∇NdΩ −

∫

Γint

WT
{[

(χ∇N)
T
+ τ

(
v*v*T∇N

)T
]
n
}T

dΓ (69) 

Fig. 13. Temperature profile at different time for the non-isothermal Mandel’s problems.  
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TTT =

∫

Ωe

WT ρCNdΩ −

∫

Γint

τWT ρCNv*T .ndΓ (70)  

f T =

∫

Ωe

WT ρhdΩ −

∫

Γq

WT qdΓ +

∫

Γint

WT τρhv*T .ndΓ (71)  

3.4. Temporal discretization 

Spatial discretization of the governing equations has been carried out 
in the previous sections. The resulted Eqs. (45), (46), (59) and (68) 
represent a system of ordinary differential equations in time: 
⎡

⎢
⎢
⎣

Rpw

Rpn

RU
RT

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

Pww 0 0 0
0 Pnn 0 0

Cuw Cun 0 0
0 0 0 TTT

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

pw
pn
U
T

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

Pww Cwn Cwu CwT
Cnw Pnn Cnu CnT
0 0 0 0
0 0 0 TTT

⎤

⎥
⎥
⎦

Ds

Dt

⎡

⎢
⎢
⎣

pw
pn
U
T

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

0
0

Fu− int
0

⎤

⎥
⎥
⎦ −

⎡

⎢
⎢
⎣

f w
f n
f u
f T

⎤

⎥
⎥
⎦

= 0
(72) 

The temporal discretization of similar systems is extensively dis-
cussed by many authors e.g. (Lewis and Schrefler, 1998; Peaceman, 
1977; Schrefler and Xiaoyong, 1993; Schrefler et al., 1995; Settari and 
Aziz, 1979; Sukirman and Lewis, 1993), showing that the stability of the 
solution is strongly influenced by the approximation of the nonlinear 
terms in (72). They all concur that a fully implicit formulation is un-
conditionally stable. Following this recommendation, a fully implicit 
first order accurate finite difference scheme is adopted here for the 
temporal discretization of (72). It results in the following nonlinear 
equation:  

where Δt = tn+1 − tn is the time step increment, and the subscripts n and 
n + 1 denote time steps. 

3.5. Linearization and solution strategy 

Linearization of the system is performed using the Newton-Raphson 

algorithm. By expanding Eq. (73) with the first-order truncated Taylor 
series, the following linear approximation can be obtained: 

Ji
n+1

⎡

⎢
⎢
⎣

Δpw
Δpn
ΔU
ΔT

⎤

⎥
⎥
⎦

i+1

n+1

= −

⎡

⎢
⎢
⎣

Rpw

Rpn

RU
RT

⎤

⎥
⎥
⎦

i

n+1

(74)  

where the superscripts denote iterations, and J is the well-known Ja-
cobian matrix. By solving the linearized system in Eqs. (74) in each 
iteration, the increment of the nodal degrees of freedom will be ob-
tained, and then the corresponding nodal value will be updated as: 
⎡

⎢
⎢
⎣

pw
pn
U
T

⎤

⎥
⎥
⎦

i+1

n+1

=

⎡

⎢
⎢
⎣

pw
pn
U
T

⎤

⎥
⎥
⎦

i

n+1

+

⎡

⎢
⎢
⎣

Δpw
Δpn
ΔU
ΔT

⎤

⎥
⎥
⎦

i+1

n+1

(75) 

This iterative procedure continues until the residual vector, R, van-
ishes within the given tolerance. The Jacobian matrix is defined as 
∂Ri

n+1/∂Xi
n+1, which in this work is approximated as follows:    

in which the partial derivatives are approximated as: 

P̃ww =
∂Pww

∂pw
pw ≃

∫

Γint

WT

{(

ρw
K
μw

∂krw

∂nw
n′

wpw∇N
)T

.n

}T

dΓ (77)  

C̃wn =
∂Pww

∂pn
pw ≃ −

∫

Γint

WT

{(

ρw
K
μw

∂krw

∂nw
n′

wpw∇N
)T

.n

}T

dΓ (78)  

C̃wT =
∂Pww

∂T
pw ≃ −

∫

Γint

WT

{(

ρw
K
μw

∂krw

∂nw
n′

wT pw∇N
)T

.n

}T

dΓ (79)  

C̃nw =
∂Pnn

∂pw
pn ≃

∫

Γint

WT

{(

ρn
K
μn

∂krn

∂nw
n′

wpn∇N
)T

.n

}T

dΓ (80)  

Ji
n+1 ≃

⎡

⎢
⎢
⎢
⎢
⎣

Pww + Δt.
(

Pww + P̃ww

)
Cwn + Δt.C̃wn Cwu CwT + Δt.C̃wT

Cnw + Δt.C̃nw Pnn + Δt.
(

Pnn + P̃nn

)
Cnu CnT + Δt.C̃nT

Cuw + C̃uw Cun + C̃un K̃uu C̃uT
0 0 0 TTT + Δt.TTT

⎤

⎥
⎥
⎥
⎥
⎦

i

n+1

(76)   

⎡

⎢
⎢
⎢
⎣

Rpw

Rpn

RU

RT

⎤

⎥
⎥
⎥
⎦

n+1

=

⎡

⎢
⎢
⎢
⎣

Pww + Δt.Pww Cwn Cwu CwT

Cnw Pnn + Δt.Pnn Cnu CnT

Cuw Cun 0 0
0 0 0 TTT + Δt.TTT

⎤

⎥
⎥
⎥
⎦

n+1

⎡

⎢
⎢
⎢
⎣

pw

pn

U
T

⎤

⎥
⎥
⎥
⎦

n+1

+

⎡

⎢
⎢
⎢
⎣

0
0

Fu− int

0

⎤

⎥
⎥
⎥
⎦

n+1

−

⎡

⎢
⎢
⎢
⎣

Δt.f w

Δt.f n

f u

Δt.f T

⎤

⎥
⎥
⎥
⎦

n+1

−

⎡

⎢
⎢
⎢
⎣

Pww Cwn Cwu CwT

Cnw Pnn Cnu CnT

0 0 0 0
0 0 0 TTT

⎤

⎥
⎥
⎥
⎦

n+1

⎡

⎢
⎢
⎢
⎣

pw

pn

U
T

⎤

⎥
⎥
⎥
⎦

n

= 0

(73)   
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P̃nn =
∂Pnn

∂pn
pn ≃ −

∫

Γint

WT

{(

ρn
K
μn

∂krn

∂nw
n

′

wpn∇N
)T

.n

}T

dΓ (81)  

C̃nT =
∂Pnn

∂T
pn ≃ −

∫

Γint

WT

{(

ρn
K
μw

∂krw

∂nw
n′

wT pn∇N
)T

.n

}T

dΓ (82)  

C̃uw =
∂Cuw

∂pw
pw +

∂Cun

∂pw
pn =

∫

Ωe

BT n′

w

n
mpcNdΩ (83)  

C̃un =
∂Cuw

∂pn
pw +

∂Cun

∂pn
pn = −

∫

Ωe

BT n′

w

n
mpcNdΩ (84)  

K̃uu =
∂Fu− int

∂U
+

∂Cuw

∂U
pw +

∂Cun

∂U
pn

=

∫

Ωe

BT
(

− De +
nw(1 − n)

n2 m.pcmT
)

BdΩ (85)  

C̃uT =
∂Fu− int

∂T
+

∂Cuw

∂T
pw +

∂Cun

∂T
pn

≃

∫

Ωe

BT
(βs

3
De −

n′

wT

n
pc −

nw

n2 (1 − n)βspc

)
mNdΩ (86)  

4. Numerical examples 

The hydraulic part and the coupled hydro-mechanical part of the 
presented model have been previously published and extensively vali-
dated through several benchmark problems (Ghoreishian Amiri et al., 
2017, 2013; Sadrnejad et al., 2012). Thus, in this work, the focus would 
be on the thermal coupling part to justify the performance of the pre-
sented THM formulation. 
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Fig. 15. The non-isothermal consolidation problem: domain and bound-
ary conditions. 

Table 8 
Material properties for the non-isothermal consolidation problem.  

Elastic modulus of the mixture, kPa E = 6× 103  

Poison ratio ν = 0.4  
Water density, ton/m3 ρw = 1  
Soil density, ton/m3 ρs = 2  
Air density at initial condition, ton/m3 ρa = 1.22× 10− 3  

Bulk modulus of water, kPa Kw = 0.43× 1010  

Absolute permeability, m2 K = 0.4× 10− 12  

Soil porosity, % n = 50  
Thermal conductivity of the mixture, kCal/m.K.s χ = 0.2  
Thermal expansion of water, vol/vol.K βw = 0.63× 10− 5  

Thermal expansion of soil, vol/vol.K βs = 0.9× 10− 6  

Heat capacity of the mixture, kCal/ton.K C = 40× 103  

Viscosity of air, kPa.s μa = 1× 10− 9   

Fig. 14. Displacement, excess pore pressure and temperature evolutions at the 
center of the sample, compared to Pao et al. (2001). 
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4.1. Natural convection 

The buoyant flow in a differentially heated porous material has been 
considered in this example. The porous medium has been assumed to be 
non-deformable, and water saturated. This is a very well-known prob-
lem, where the fluid motion happens because of the temperature 
induced density variation. This problem has been extensively studied, 
and accurate solutions have been already presented (Oosthuizen, 2000). 

The set-up of the problem is shown in Fig. 3, and the material 
properties are listed in Table 1. Water density varies with temperature 
according to the following relation: 

ρw = ρwref
+ 2.57 × 10− 4( T − Tref

)
(87)  

where ρwref 
denotes the density of water at a reference temperature, Tref . 

Numerical solutions in terms of streamlines and temperature iso-
therms are presented in Figs. 4 and 5, respectively. The qualitative 
comparison of the results obtained from the proposed model with those 
available in literature (Massarotti, 2001; Nithiarasu et al., 1997) shows a 
good agreement. The average Nusselt number,Nuavg, along the hot wall 
has been used for quantitative comparison. The average Nusselt number 
represents the ratio between the total heat transfer to that in a pure 
conduction mode. In this case, it can be calculated as (Lewis et al., 
2004): 

Nuavg =
H

L(Th − Tc)

∫ L

0

∂T
∂x

dy (88) 

Table 2 provides the comparison of the predicted steady state 

average Nusselt number along the hot wall with those reported in 
literature. 

In order to show the efficiency of the solution in case of convection- 
dominated thermal flow, we have decreased the thermal conductivity of 
the system by a factor of 6, and re-analyzed the case. It results in an 
average Nusselt number of 2.357. The steady state results of this simu-
lation are shown in Fig. 6. 

4.2. Hot water injection 

This example was first proposed by Aktan and Farouq-Ali (1978), 
and has been used by others (e.g. Pao et al. (2001)) for validation pur-
poses. A Berea sandstone reservoir with a dimension of 9.15 m by 27.45 
m (30 ft by 90 ft) and a thickness of 30.5 m (100 ft) has been considered. 
The reservoir was assumed to be fully saturated by water, with an initial 
pressure of 15170 kPa (2200 psia), and initial temperature of 37.8 ◦C 
(100 ◦F). The injection and production wells at the opposite ends of the 
reservoir operated under a constant pressure of 15,170 and 13790 kPa 
(2200 and 2000 psia), respectively. Injected water has a constant tem-
perature of 287.8 ◦C (550 ◦F). Properties of rock and water for this 
problem are listed in Table 3. The following equations of state were used 
in the modelling: 

ρw = ρwref

[
1 + Kw(p − pref) − βw(T − Tref)

]
(89)  

μw = 2.185/
(
0.000016701T2 + 0.072809T + 0.289118

)
(90)  

where Kw and βw denote the compressibility and thermal expansion of 
water, respectively. In Eq. (90), μw and T are given in cP and ◦C. The 
pressure and temperature profiles obtained from our simulation are 
compared, in Fig. 7, with those presented by Pao et al. (2001), and a 
remarkable agreement are observed. 

In order to highlight the performance of the model in dealing with 
convection-dominated problems with high Peclet numbers, we have 
increased the absolute permeability of the medium by a factor of 20, and 
imposed a constant temperature of 37.8 ◦C at the production well. This 
results in a flow with a maximum Peclet number 160. The result from the 
present model is compared with GFEM in Fig. 8. As it is seen, the 
oscillatory results of the GFEM is eliminated in the present model by 
employing the SUCVFE scheme. 

4.3. Five-spot hot water flooding 

The problem analyzed in this section has been chosen from the 
literature of enhanced oil recovery. It is schematically depicted in Fig. 9. 
The physical domain is a homogenous porous material, initially satu-
rated with 0.8 oil and 0.2 water. The initial temperature of the formation 
is 50 ◦C, while hot water at 100 ◦C is injected to the formation through 
the injection well at the constant pressure 1.79 MPa. A mixture of oil and 
water is recovered from the production wells at the constant pressure 

Fig. 16. Temperature and displacement evolutions at different depth, 
compared to Schrefler et al. (1995). 
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Fig. A1. General hexahedral element.  
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1.31 MPa. The material properties for this problem are given in 
Tables 4–6. The problem was numerically solved by Sheorey and Mur-
alidhar (2003). However, their saturation and temperature fields 
severely suffered from the so-called grid orientation effect (GOE) and 
spurious oscillation. 

Fig. 10-A illustrates the results of the present model in terms of water 
saturation and temperature contours. As it is exhibited, the saturation 
isotherms are very smooth and not affected by orientation of the grids. 
The temperature isotherms are also smooth, but very slightly affected by 
the distorted elements. This small GOE appeared because of the upwind 
technique implemented in the solution of the energy balance equation. 
This is the price has been paid to get rid of the spurious oscillation of the 
temperature field without mesh updating. 

In order to show the superiority of the proposed solution over the 
standard FEM, the problem has been also analyzed using the standard 
FEM. The results are shown in Fig. 10-B. As expected, serious oscillations 
are observed in both saturation and temperature fields. The former is the 
result of the non-conservative characteristic of the GFEM, which has 
been completely solved in our solution by adopting the CVFE technique. 
The latter is a well-known issue of the GFE formulation in convection- 
dominated transport problems, which has been reasonably solved in 
our solution using the SUCVFE technique. 

4.4. The non-isothermal Mandel’s problem 

The Mandel’s thermo-poro-elasticity problem was suggested by Pao 
et al. (2001) as a benchmark problem for coupled THM models. The set- 
up of the problem is shown in Fig. 11, and the material properties are 
listed in Table 7. The impermeable plates, shown in the figure, is con-
nected to a heat source which supplies the heat at 1000 MJ/day. The 
initial temperature has been assumed to be 0 ◦C, and the temperature at 
the side boundaries have been assumed to increase to the constant room 
temperature of 20 ◦C on the onset of loading. Since the problem is 
symmetric, only one quarter of the domain was simulated. 

Figs. 12 and 13 illustrate the excess pore pressure and temperature 
contours at different time steps. The time-history results, in terms of 
displacement, excess pore pressure and temperature, at the center of the 
sample, are illustrated in Fig. 14. The comparison of the results with 
those presented by Pao et al. (2001), in Fig. 14, reveals an excellent 
agreement. 

4.5. Non-isothermal consolidation 

In order to examine the coupled THM behavior of the model in the 
presence of two phase fluid flow, a thermo-poro-elastic soil column 
problem, presented by Schrefler et al. (1995), has been considered. 
Fig. 15 shows the geometry and boundary conditions of the problem. 
The sample is initially saturated with 92% water and 8% air. The initial 
stress, air pressure and temperature are assumed to be zero, 1 atm and 
273.2 K, respectively. The capillary-water content relation has been 
considered as: 

pc = pa − pw = 1.68
[

nw − 0.06
0.4963 − 0.06

]− 1
3

(91) 

Water viscosity varies with temperature according to the following 
relation: 

μw = 661.12(T − 229)− 1.562 (92)  

where T is given in K and μw in cP. The air density follows the perfect gas 
law. Other relevant material properties are listed in Table 8. 

Fig. 16 compares the solution obtained from the presented model 
with those by Schrefler et al. (1995), in terms of displacement and 
temperature profiles, and a reasonable agreement is observed. 

5. Conclusions 

In this paper, a fully coupled model for the simulation of complex 
behavior of two-phase fluid flow and heat transfer in deformable porous 
media has been presented. The conservation equations of mass, linear 
momentum and energy, together with the hydraulic, mechanical and 
thermal constitutive relations, provide the basis for the multiphysics 
formulation of a multiphase geological system. The system has been 
spatially discretized using a fully coupled hybrid numerical method by 
means of CVFEM for fluid flow, GFEM for deformation, and SUCVFEM 
for heat flow equations. The discrete approximations follow the stan-
dard FE practice, and the FEM data structure is retained. The proposed 
solution satisfies the local and global conservation of mass, which have 
been demonstrated to be crucial in problems with distinct saturation 
shock front. A fully implicit first order accurate finite difference scheme 
has been employed for temporal discretization of the equations. The 
efficiency of the streamline upwind scheme, which has been employed 
for the heat flow equation, has been illustrated in the numerical exam-
ples dealing with convection-dominated heat transport problems. 
However, very small grid orientation dependency has been observed, 
that is inherent in upwind techniques. The superiority of the proposed 
hybrid solution over the GFEM has been demonstrated through nu-
merical examples. Five benchmark problems have been chosen to 
illustrate the accuracy and efficiency of the computational algorithm, 
and reasonable results have been achieved comparing to reference nu-
merical and analytical solutions. 
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Appendix A. The element characteristic length 

A general hexahedral element is used here to define the element characteristic length (Fig. A1). First, the three vectors joining the midpoints of the 
opposing faces of the element are introduced as: 
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hξ =
1
4
[(x2 + x3 + x6 + x7) − (x1 + x4 + x5 + x8) ]

hη =
1
4
[(x3 + x4 + x7 + x8) − (x1 + x2 + x5 + x6) ]

hζ =
1
4
[(x5 + x6 + x7 + x8) − (x1 + x2 + x3 + x4) ]

(A1) 

The projections of hξ, hη, hζ in the direction of the velocity vector v* are then calculated as: 

h1 =
v*.hξ

‖v*‖
; h2 =

v*.hη

‖v*‖
; h3 =

v*.hζ

‖v*‖
(A2) 

Finally, the element characteristic length is defined as: 

he = |h1| + |h2| + |h3| (A3)  
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