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Abstract

In this study, we examine the efficiency and unbiasedness of Atlantic salmon

futures prices. Market participants use the Fish Pool futures market to hedge

the increasingly volatile salmon spot price. We further examine the futures

market's predictive accuracy, comparing it to a variety of proprietary predic-

tion models. Our results show that futures prices are efficient and unbiased in

the long‐run, while being biased and inefficient in the short‐run. Moreover,

we find that futures prices provide an adequate price discovery function for

most contracts, while suffering from magnified risk premiums due to few

noncommercial traders.
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1 | INTRODUCTION

Ever since the first net‐pen production facilities for Atlantic salmon were established in 1969, the Norwegian salmon
industry has experienced tremendous growth, becoming a substantial contributor to Norwegian exports Figures
(Aarset, 1998). However, due to considerable production risk and fluctuating demand, the salmon price has been
highly volatile, imposing a significant price risk on any market participant (Guttormsen, 1999; Oglend, 2013). The ever‐
growing price risk has intensified the need for adequate risk management tools, initially seen as traditional forward
contracts initiated by market participants on both sides of the transactions. In 2005, a growing desire for a financial
derivatives market was accommodated, with the establishment of the Fish Pool futures market. In the years following
its inception, Fish Pool provided both futures contracts and financial options. However, due to thin trading, the
financial options were withdrawn within a few years, leaving futures contracts as the only remaining hedging tools
(Fish Pool ASA, 2019c). Today, the Fish Pool futures market is the exclusive trading platform for salmon derivatives.
Nevertheless, the futures market's trading volume is rather thin in comparison to other commodity futures markets,
leaving its hedging efficiency subject to question.

In this study, we examine the efficiency and unbiasedness of Atlantic salmon futures prices, both in the long‐run
and short‐run. Initially, we perform a long‐run analysis of the market by conventional likelihood‐ratio tests on the
restriction of cointegration parameters. Moreover, we perform a more extensive analysis of short‐run efficiency by
initially utilizing a prototypical error correction model (ECM), conventionally applied in the assessment of cointegrated
time series. Residuals analysis does, however, reveal that the ECM exhibits shortcomings in the assessment of a market
such as the salmon market, which to a large extent is subject to severe fluctuations. We account for this by applying an
extended ECM with generalized autoregressive heteroscedastic (ECM‐GARCH) components in the assessment of
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short‐run efficiency and unbiasedness. We also examine the price discovery role of the futures market employing
causality tests for both long‐run and short‐run causality. We further assess the futures market's predictive power by
comparing the predictions provided by the market, to out‐of‐sample predictions provided by several comprehensive
prediction models, which were specifically developed for the purpose of our analysis.

The results of our long‐run analysis indicate both efficiency and unbiasedness in the long‐run, in line with previous
findings. The short‐run analysis does, on the other hand, provide less convincing results, indicating both inefficiencies
and biases in the futures prices. Moreover, the results on the predictive power are rather twofold. The tests of causality
indicate that the futures do, to some extent, perform price discovery in both the long‐ and short‐run, whereas out‐of‐
sample predictions produced by our prediction models were consistently outperforming the futures market, possibly
indicating exploitable inefficiencies. In terms of the salmon market's characteristics, our results indicate that a short‐
run bias partly reflects underlying market risk factors, while also revealing potential excess risk‐adjusted return,
presumably due to the sparse number of speculative traders in the market.

Our findings should be of particular interest to any market participants, both commercial and noncommercial. For
commercial market participants, the findings indicate that the risk premium paid to hedge the salmon price is
relatively high over time, meaning that risk preferences and financial solidity is of great importance when determining
whether futures contracts should be applied for hedging or not. Consequently, for any noncommercial participants, the
findings indicate that there is an opportunity for risk‐adjusted excess return from speculative futures trading in the Fish
Pool futures market.

Existing literature on the subject of efficiency in the Fish Pool futures market is both relatively scarce, and to some
degree contradicting. Moreover, the most recent studies were published in 2016, examining data sets covering time
periods up until 2014, 2015 and mid‐2016, respectively (Asche et al., 2016b; Fisher & Lai, 2016; Yeboah et al., 2016). We
provide an updated market review, applying an extended data set covering the time period from January 2007 to
December 2018. Furthermore, we develop a substantially more comprehensive framework than what has previously
been applied, accounting for essential features of the salmon market. In conclusion, the combination of familiar
methodology on market efficiency and a number of sophisticated prediction models, yields novel insights into the
characteristics of both the futures market and the entire value chain of the Atlantic salmon market.

The remainder of this study is organized as follows: In Section 2 we provide a thorough review of existing literature,
related to the assessment of the Atlantic salmon futures market. In Section 3 we present the most vital data applied in
our analysis, whereas theory on market efficiency as well as the methodology is outlined in Section 4. We present
results from our analysis in Section 5, followed by conclusive remarks in Section 6.

2 | LITERATURE REVIEW

There are relatively few studies on the Atlantic salmon futures market, and previous findings are not entirely con-
sistent. However, the literature on other futures markets is rich and may provide valuable insights, both in terms of
common market properties and useful methodological techniques. Therefore, the following literature review contains
relevant literature on the salmon market as well as other commodity markets exhibiting similar properties.

2.1 | Literature on efficiency in the Atlantic salmon futures market

The Fish Pool futures market has been subject to only a few studies ever since its inception in 2005. The most recent
studies on the efficiency and unbiasedness of the salmon futures market provide somewhat conflicting results, partly
due to differences in both methods and data preprocessing. Asche et al. (2016b) perform efficiency testing on
monthly observations spanning the time period from 2006 to 2014, involving monthly contracts with 1–6 months to
maturity. Using the augmented Dickey–Fuller (ADF) test (Dickey & Fuller, 1979) and Johansen's test for coin-
tegration (Johansen, 1988, 1991), they find that the spot and futures prices are nonstationary and cointegrated for all
maturities. Based on restrictions on the cointegrating parameters, they fail to reject the null hypothesis of long‐run
market efficiency and unbiasedness, suggesting that the market does provide effective hedging. However, they also
fail to reject that spot prices are exogenous in the spot‐futures relation, suggesting that the futures prices do not
perform a price discovery role, an important feature of a mature futures market (Garbade & Silber, 1983; Hansen &
Hodrick, 1980).
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Fisher and Lai (2016) perform a similar study on weekly observations covering the time period from June 2006 to
June 2016, involving monthly contracts with 1–12 months to maturity. Similar to Asche et al. (2016b), they perform
tests of stationarity and cointegration. In addition to Johansen's test for cointegration, they apply the conventional
Engle–Granger (Engle & Granger, 1987) cointegration procedure. As emphasized by Stock (1987), the cointegrating
parameters incurred by the Engle–Granger procedure do not follow standard limiting distributions, and market effi-
ciency testing by restrictions on the given parameters is not appropriate. Conversely, the results of this procedure are
redundant, at best. Ultimately they incorporate a prototypical ECM, testing for both long‐ and short‐run efficiency.
They fail to reject unbiasedness based on the the Engle‐Granger parameters, for all maturities. However, based on the
Johansen cointegrating parameters, unbiasedness is rejected for some of the contracts. These differing results clearly
highlight the problems imposed by the use of the Engle‐Granger procedure, in terms of efficiency and unbiasedness
testing. Contrary to Asche et al. (2016b) they conclude that the futures market does, in fact, provide a price discovery
function. Looking closer at their test results on weak exogeneity however, their results might be interpreted differently,
questioning their contradicting conclusion.

Yeboah et al. (2016) examine the salmon futures market by utilizing monthly data from 2006 to 2015, confirming
previous findings on stationarity and cointegrating relations. They find that the unbiasedness hypothesis holds for
monthly futures contracts with 1‐6 and 9 months to maturity. Furthermore, they examine the price discovery role in a
similar manner as Asche et al. (2016b) and Fisher and Lai (2016). They reveal that the futures contracts do provide the
expected price discovery role for 3‐, 4‐, 5‐, 9‐ and 12‐month futures contracts, but simultaneously that this is not the
case for 1‐, 2‐ and 6‐month futures contracts. They conclude that the futures market does exhibit properties of a
maturing market, but that hedging efficiency is better for longer contracts than for contracts closer to maturity.
Moreover, they find strong support for the Samuelson hypothesis, stating that futures price volatility increases as the
futures contract approaches maturity.

2.2 | Literature on efficiency in other commodity futures markets

The literature on other commodity futures markets is extensive, compared with the salmon market. A broad range of
recent studies follows a conventional approach, finding nonstationary properties for both spot and futures prices, and
testing for long‐run cointegrating relations. Also, these studies impose restrictions on the parameters of a fitted ECM,
yielding conclusions of both long‐ and short‐run market efficiency and unbiasedness. Following this methodology,
Kellard et al. (1999) fail to reject long‐run efficiency in a range of commodity markets, but find evidence for short‐run
inefficiencies. Similarly, Beck (1994) finds several agricultural futures markets to be sporadically inefficient in the
short‐run. When investigating some of the same agricultural futures markets, McKenzie and Holt (2002) acknowledge
the fact that the futures risk premium is time‐varying, and that the conventional ECM does not provide sufficient
insight. This is confirmed by the existence of significant autoregressive heteroscedastic (ARCH) effects in the ECM
residuals. These effects are captured by complementing the ECM model with a generalized quadratic ARCH in‐mean
component, using what is referred to as a GQARCH‐M‐ECM model. Once again, the cattle, hogs and corn futures
markets were found to be efficient in the long‐run, while simultaneously exhibiting short‐run inefficiencies and pricing
biases. The salmon market has an important common denominator with the markets considered in all of these studies,
namely that they are all subject to seasonal effects, which to a large extent is explained by periodic harvesting patterns.
With this in mind, the findings of the previously mentioned studies are highly relevant when examining the salmon
futures market.

2.3 | Literature on modeling Atlantic salmon spot price

When assessing a futures market's ability to serve as an adequate hedging tool, its predictive power is of key im-
portance. Existing literature on the salmon futures market examines weak‐form market efficiency, exclusively, which
we further discuss in Section 4. For market participants, however, semi‐strong form efficiency is of major concern. The
existence of a model, comprising all publicly available information1, significantly outperforming the futures market

1
In terms of semi‐strong market efficiency, the available information set comprises all relevant and publicly available information, including information on exogenous factors affecting the spot price,

which we will further discuss in subsequent sections.
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would imply semi‐strong form market inefficiencies, which would be of great concern to both hedgers and speculators.
The literature on modeling salmon spot price is rather scarce and does primarily cover models predicting the direction
of future price movements. Guttormsen (1999) applied a variety of prediction models2 but was unable to conclude on a
superior framework. Using state‐space modeling on salmon price forecasting, Vukina and Andersen (1994) amply
demonstrate that the salmon price exhibits considerable seasonal properties. Sandaker et al. (2017) model the dis-
tribution of the Atlantic salmon spot price using quantile regression, thoroughly studying factors affecting the salmon
spot price, including factors affecting both demand and supply. Although the findings in the existing literature are not
directly transferable to the evaluation of market efficiency, these empirical findings were highly valuable to our
development of prediction models, which we further explain in Section 4.2 and Appendix A. Broadly speaking these
findings are key insights on seasonal effects and exogenous factors affecting the salmon spot price.

2.4 | Contribution to existing literature

Existing literature on the Atlantic salmon futures market provides mixed findings in terms of both efficiency, un-
biasedness, and the price discovery function. These partially contradicting findings should be carefully assessed,
acknowledging the fact that the small size of available data sets, might cause inconsistencies across different meth-
odologies. The majority of existing papers were published in 2016, typically assessing the market based on 10 years of
monthly data, which is a relatively short time span compared with studies on well‐established markets. Brorsen and
Fofana (2001) found that the majority of newly established futures markets fail to acquire the hedging properties of a
mature market, and are abolished within a few years of inception, implying that consecutive reviews over the first few
decades of inception are of particular interest. By incorporating extended data sets, this study captures the evolution of
the Atlantic salmon futures market over the last few years, providing an updated review of market characteristics.

Furthermore, existing literature does not fully account for some of the important proprieties of the salmon market,
possibly leaving the basis for conclusions somewhat inadequate. As we emphasize in subsequent sections, seasonal
effects on the spot price are reflected in the realized futures risk premium3. This implies that neither the existence of
cointegrating relations nor the application of an ECM is sufficient to conclude on short‐run unbiasedness. Inspired by
the work of McKenzie and Holt (2002), we account for the existence of ARCH effects in the ECM residuals in an
extended ECM model, allowing for a time‐varying risk premium. Failure to reject market efficiency does not rule out
the existence of market inefficiencies, and the strive for an adequate model is crucial. Ultimately, we compare the
predictive power of a variety of models to the predictive power of futures prices, giving additional insights into market
efficiency of both the weak and semi‐strong form variety. The results of these models provide further intuition in the
assessment of current market features, knowledge which should be of great interest to market participants, both
hedgers and speculators alike.

3 | DATA

In this section, we describe the most important data used in the analysis of the Atlantic salmon futures market. As we
will further explain in subsequent sections, we have developed multiple prediction models as part of the market
analysis, incorporating extensive data on exogenous factors affecting the salmon spot price. As the predictions models
as such are outside the main scope of this study, descriptions and details on prepossessing the data employed by these
models are found in Appendix A.1.

3.1 | The fish pool index

In this study, we examine the Fish Pool futures market and its characteristics. The underlying price for financial
settlement of all futures contracts on the Fish Pool futures market is the Fish Pool Index™ (FPI). The FPI is a synthetic

2
Models applied in the study include autoregressive moving average (ARMA), Holt–Winters exponential smoothing (HW) Classical Additive Decomposition (CAD), Vector Autoregression (VAR), as well

as two naïve techniques.
3
The risk of futures contracts is defined as the difference between the contractual price and the realized spot price, often referred to as the basis.
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spot price, reflecting the current market price of 1 kg of fresh Atlantic salmon. It is based on a weighted average of sizes
of 3–6 kg, superior quality, head‐on‐gutted salmon, and comprises data from the Nasdaq Salmon Index, Statistics
Norway (SSB) and the Fish Pool European Buyers Index (Fish Pool ASA, 2019b). The prices are reported on a weekly
basis, whereas the underlying settlement prices of futures are calculated as their monthly average. These calculations
are based on schedules published in the Fish Pool Rulebook (Fish Pool ASA, 2019a). The settlement price for, for
example, January 2018 is calculated as the average of the FPI over Weeks 1–5, 2018. Following this schedule, the
weekly spot prices are transformed into monthly prices, comprising 144 observations over the time period January
2007–December 2018.

3.2 | Futures prices

Fish Pool ASA provides daily updated futures prices, reflecting the latest market trades. The futures prices are
ultimately highly dependent on the participants risk preferences as well as the total trading volume. A necessity for an
efficient and unbiased futures market is, therefore, a sufficient number of participants taking both long and short
positions. Thus, when assessing the efficiency of a futures market, it is of primary interest to assess contracts that are
frequently traded. The total trading volume on the Fish Pool futures market is thin, relative to a number of global and
mature markets. It is, therefore, of particular interest to examine the contracts that are most frequently traded. A
review of all the completed trades clearly demonstrates that certain contracts are superior in terms of trading volume.
Moreover, we found that the front‐month,4 half‐year, and quarterly contracts, as well as monthly contracts with 1 and 2
months to expiration, were the most reasonable contracts to analyze. Based on this review, we chose to examine
monthly contracts with 1–6 months to expiration, indirectly assessing the upfront quarter and half‐year contracts as
well. Throughout this study, the prices of the monthly contracts at time t, expiring in 1–6 months, are referred to as
F F F, , …,t t t,1 ,2 ,6, respectively.

As emphasized by Ma et al. (1992), traders tend to roll over their positions in expiring contracts to other back‐
month contracts, causing rollover effects in the futures prices. Following Bloznelis (2018), the futures prices are
therefore adjusted by transforming the time series to log‐returns, replacing the rollover return by the return on the
underlying, and subsequently undoing the log transformation. Next, the daily futures prices are transformed into
monthly prices by averaging monthly observations. That is, the price of, for example, Ft,1 contracts with expiration in
June 2018 is calculated as the averaged price of this actual contract, observed over the entire month of May 2018. As
for the spot price, this study comprises 144 observations of Ft,1–Ft,6, covering the time period January
2007–December 2018.

In the assessment of futures contracts, one may experience issues from overlapping observations, including au-
tocorrelation and the spurious appearance of inefficiency (Hansen & Hodrick, 1980). To curtail such effects, futures
contracts with unequal time to expiration are treated separately in the analysis. Moreover, only nonoverlapping
observations are included in the time series of each futures contract. As demonstrated by (Kellard et al., 1999), an
effective way of dealing with autocorrelated residuals is to apply sampling intervals equal to the forecast interval. This
approach would give a sampling interval of 6 months for contracts expiring in 6 months, which would imply that the
number of observations for these contracts would be reduced from 144 to 24. Due to the already short sampling period,
this approach is found not to be favorable for this study, although the applied sampling intervals could potentially lead
to spurious appearance of inefficiency from autocorrelated residuals.

3.3 | Unit root testing

To examine whether the data exhibits non‐stationarity, we apply the ADF test (Dickey & Fuller, 1979) to the time series
in both log levels (s S f F= log , = logt t t t T, ) and first difference log levels. The number of lags was chosen based on the
Akaike information criteria (AIC). As would be expected from previous findings in the literature, both the spot price
and futures prices for all contract lengths were found to be nonstationary and integrated of the first order, as depicted
in Table 1.

4
Front‐month contracts refer to the contracts with expiration date closest to the current date.
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3.4 | Seasonality

The Atlantic salmon spot and futures prices are previously found to exhibit seasonal properties (Asche et al.,
2016a), reflecting deterministic patterns in both supply and demand. Of primary interest in the assessment of
market efficiency, is the occurrence of deterministic seasonal patterns on the realized futures risk premia, that is,
the difference between futures and spot price at expiration (RP S F= −t T T t T, , ). The a priori belief was that such a
pattern would be seen by visually examining the occurrence of any autocorrelation of the risk premia with lags of
up to 12 months, depicted in the autocorrelation plots in Appendix C. Although all the risk premia seem to be
somewhat autocorrelated, the plots do not reveal any considerable autocorrelation for lags of exactly 12 months.
This does, however, not rule out the existence of annual seasonality, but suggests that any seasonal effects are
either found within only a few months of the year, or coinciding with demand driving factors not constantly
occurring at the same time of the year, such as certain holidays. The seasonal components were further in-
vestigated by composing 12 monthly dummy variables, DEm t, for months M Jan Feb Dec= { , , …, }, as well as dummy
variables for both the Chinese New Year and the Easter holidays, formally expressed as DE and DC, respectively.
Noting that neither of these holidays are occurring repeatedly at the same time of the year, their occurrence where
manually preassigned. The seasonal coefficients were found by regressing the observed values on each dummy
variable. In order for the coefficients not to be collinear, one of the dummy variables were manually omitted before
the regression. The Chinese New Year, which is found to have an impact on other aquaculture markets such as
shrimp and mud crab (Lee., 1991), was found to be negligible in terms of seasonal effects, and its dummy variable,
DC, was omitted for further analysis. Besides the insignificance of the Chinese New Year holidays, we found that
the risk premia exhibit seasonal patterns for all the futures contracts we examined. Eventually, we further applied
this method to the seasonal prediction model proposed in Section 4.2.

3.5 | Descriptive statistics on the risk premia

Table 2 exhibits the most important statistics on the risk premia, as well as relevant test results. The positive mean
for all contracts indicates a possible overweight of traders wishing to hedge their exposures by taking short
positions in futures contracts, i.e. an overweight of market participants on the supply side. Moreover, the risk
premium of all contracts except the front‐month contracts are positively skewed. Furthermore, all risk premia are
found to be leptokurtic, that is, heavy‐tailed, reflecting the volatile nature of the underlying spot price. The Jarque
Bera test rejects normally distributed risk premia for the front‐month contracts, only. We check for stationarity
and autocorrelation using the ADF and Ljung Box‐tests, respectively. Neither stationarity nor the existence of
autocorrelation in the risk premium can be rejected for any of the contracts (for visual inspection please refer to
the plots in Appendix C).

TABLE 1 Results from ADF unit root testing

Log levels First difference log levels

Without trend With trend Without trend With trend

Spot 0.554 −3.365 −7.197*** −7.178***

Ft,1 0.695 −3.274 −6.609*** −6.642***

Ft,2 0.880 −3.145 −6.083*** −6.146***

Ft,3 1.066 −2.991 −5.189*** −5.282***

Ft,4 1.141 −2.814 −5.673*** −5.786***

Ft,5 0.934 −3.158 −6.723*** −6.837***

Ft,6 0.957 −3.122 −6.328*** −6.456***

Note: The ADF was conducted with and without a deterministic trend. The number of lags was chosen based on the Akaike information criteria.
*** indicates rejection of the null hypothesis (H0: A unit root is present in the time series) at 1% level.

Abbreviation: ADF, augmented Dickey–Fuller.
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4 | THEORY AND METHODOLOGY

The majority of studies on efficiency in futures markets are built on the theoretical efficient market hypothesis (EMH),
presented by Fama (1970). Conceptually, the EMH assumes that the present futures price Ft in an efficient market
equals the expected spot price at expiration, given the information‐set Φt. This implies that the futures price is the best
possible forecast of the spot price at expiration. In terms of the price of a futures contract at time t, expiring at time
t+ 1, this is formally expressed as

F S= [ Φ ].t t t,1 +1 ∣ (1)

The information‐set on which the expectations are based is, however, highly relevant. Fama (1970) and Roberts
(1967) consider market efficiency in three separate forms; weak, semi‐strong, and strong form efficiency. Weak‐form
efficiency implies that all historical price information is fully incorporated in the futures prices, that is, that
Equation (1) holds for an information‐set containing historical prices. Similarly, for the semi‐strong and strong
form efficiency, the information‐set consolidates all publicly available and publicly unavailable information,
respectively, including information on exogenous factors affecting the underlying. The classical approach, utilized
in a number of studies (e.g., Bigman et al., 1983), is simply to regress the futures price on the spot price at maturity,
that is,

S A BF u= + + ,t t t−1,1 (2)

where the residuals, ut, are assumed i.i.d. N σ~ (0, )2 . Market inefficiencies are then found by rejecting the null hy-
pothesis H A: = 00 and B = 1. Strictly speaking, this hypothesis can be viewed as a joint hypothesis of both market
efficiency (B = 1) and unbiasedness (A = 0). The unbiasedness hypothesis is based on the assumption of fully risk‐
neutral market participants, which are represented by an equal number of short and long hedgers. In reality, however,
this is rarely the case. Under the Keynes–Hicks hypothesis (Hicks, 1939; Keynes, 1927), short hedgers are willing to sell
futures contracts below the expected spot price, paying a risk premium to participants willing to offset the position.
Conversely, long hedgers are willing to buy futures contracts above the expected spot price. Unless the market is
perfectly balanced by the number of long and short hedgers, we would expect to find a risk premium incorporated in
the futures prices, ultimately causing the null hypothesis to be rejected. Under this theory, a hedge dependent risk
premium can then be introduced into Equation (1) as follows:

F RP S= + [ Φ ].t t t t,1 +1 +1 ∣ (3)

Note that when we are evaluating storable commodities, the difference in futures price and realized spot price,
generally referred to as the futures' basis, may be encountered as a convenience yield, rather than a risk premium.
However, due to the limited storability of fresh salmon, the risk premium theory presented above seems more suitable
for the interpretation of any price bias. Independent of the expected risk premium, the regression method in Equation
(2) does, however, yield limited or even misleading insights when evaluating most futures market. As demonstrated by
Byrne et al. (2013), most commodity prices are nonstationary with one unit root, which was also found to be the case
for both salmon spot and futures prices in Section 3.3. The use of ordinary least squares (OLS) linear regression may

TABLE 2 Descriptive statistics on the risk premia

Descriptive statistics Tests

Contract N Mean SD Skew Ex. kurt. JB ADF Ljung. Box

Ft,1 144 0.424 4.34 −0.03 0.95 6.13** −4.86*** 40.94***

Ft,2 144 0.870 5.72 0.12 0.56 2.58 −4.38*** 83.38***

Ft,3 144 1.305 6.62 0.23 0.48 2.93 −4.32*** 106.14***

Ft,4 144 1.664 7.08 0.28 0.51 3.8 −3.76** 138.08***

Ft,5 144 1.957 7.30 0.24 0.42 2.69 −3.44* 182.70***

Ft,6 144 2.353 7.44 0.23 0.37 2.35 −3.56** 233.67***

Note: ***, **, and * indicates rejection of the null‐hypotheses at a 1%, 5%, and 10% level, respectively.

Abbreviation: ADF, augmented Dickey–Fuller.
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therefore lead to spurious regression results. Methods have been presented to bypass the problem of nonstationary
properties, by first‐differencing Equation (2) with respect to the spot and futures price

S S A B F F u− = + ( − ) + ,t t t t t−1 −1,1 −2,1 (4)

implying a joint hypothesis of efficiency and unbiasedness, that is, A = 0 and B = 1. However, also this approach has
its pitfalls. If the time series are cointegrated, the regression is misspecified.

4.1 | Long‐ and short‐run analysis

As outlined in Section 3.3, both the spot price and the futures prices are all nonstationary and integrated of first order
and, presumably, so are the residuals in Equation (2) for most combinations of A and B. However, if the spot price and
futures prices are cointegrated, they can not move too far away from each other in the long‐run. If that is the case, there
exist one or more combinations of cointegrating parameters, α and δ, leaving the residuals in Equation (5) stationary.
Formally, the cointegrating relationship is expressed as

S α δF u= + + ,t t j j t− , (5)

where j represents the months ahead expiry of the futures contracts being assessed.
We employ the Johansen multivariate cointegration test (Johansen, 1988), and likelihood ratio tests on the coin-

tegrating parameters, α and δ, testing for long‐run efficiency (δ = 1) and unbiasedness (α = 0). Note that the broadly
applied Engle‐Granger (Engle & Granger, 1987) procedure does not follow standard limiting distributions, meaning
that hypothesis testing on the given parameters can not be performed by the use of conventional statistical tests. This
procedure is, therefore, not applied to our study.

4.1.1 | ECM

For a futures market to be efficient and unbiased, the futures prices need to be cointegrated with the underlying spot
price. Cointegration does, however, only imply that the two time series do not move too far apart in the long‐run, and is
not sufficient evidence for short‐run efficiency. The conventional approach for testing short‐run efficiency in a coin-
tegrated futures market, also applied in this study, is to formulate the cointegrated system as an ECM first introduced
by Granger (1986). Formally, the ECM applied in this study is given by

S ρu β F β F ψ S υΔ = − + Δ + Δ + Δ + ,t t t j j

i j

m

i t i j

l

k

l t l t−1 − ,

= +1

− ,

=1

−∑ ∑ (6)

whereut is the residual from Equation (5) at time t. The futures market is weak‐form efficient and unbiased in the short‐run
if all previous price information is incorporated into the futures prices, such that lagged versions of the spot and futures
prices do not improve the forecast. Formally, efficiency implies not violating the following restrictions on Equation (6):

ρ β β ψ i l M K= 1, 0 and = = 0 [ , ] [ , ].i l≠ ∈ (7)

Similar to the long‐run analysis, the short‐run analysis on price bias may be divided into separate hypotheses, re-
presenting different scenarios. To better understand the implication of the scenarios, the ECM may be rewritten as

S ρ S βF ρδ β F ρα β F ψ S υ= (1 − ) + + ( − ) + + Δ + Δ + .t t t j j t j j

i j

m

i t i j

l

k

l t l t−1 − , − −1,

= +1

− ,

=1

−∑ ∑ (8)

One scenario, and presumably the least realistic, is a market with a zero risk premium in the short‐run. This would
indicate fully unbiased futures prices, reflecting an adequate balance of market participants in both long and short
positions. Formally, this scenario means not violating neither the long‐run restrictions (α δ= 0, = 1) nor the following
short‐run restrictions imposed on Equation (6) above:

ρ β β ψ i l M K= = 1, = = 0 [ , ] [ , ]i l ∈ (9)
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implying that Equation (8) is reduced to S F υ= +t t t−1 . Another, and presumably more plausible, scenario is the
finding of a market with a constant risk premium in the long‐run. Such a finding would suggest an averaged over-
weight of hedgers in either short or long positions, depending on the risk premium's signum. Unlike the first scenario,
this scenario implies that α 0≠ , yielding a reduced form of Equation (8) given by S α F υ= + +t t j j t− , .

4.1.2 | ECM with GARCH component

The ECM outlined in Equation (6) does however exhibit a shortcoming in that it does not include a time varying risk premium
on the futures prices. Commodity markets with periodic harvest volumes are particularly likely to exhibit both seasonality and
autocorrelation in the risk premia, which we have already found to be the case for the Atlantic salmon market. Further, the
sporadic blossoms of sea lice and diseases are likely to cause temporary volatility peaks on the spot price, yielding hetero-
scedastic properties of both the spot price and risk premia. This is confirmed by the existence of ARCH‐effects in the ECM
residuals outlined in Section 5.1, suggesting that an extended version of the conventional ECM model would be more
appropriate. McKenzie and Holt (2002) did similar observations when assessing agricultural futures markets, leading to the
utilization of an extended ECM with a generalized quadratic ARCH‐in‐mean component, referred to as a GQARCH‐M‐ECM
model. Inspired by their work, we extended the prototypical ECM to incorporate autocorrelated residuals. Consecutive residual
analysis indicated that an ECM‐GARCH(1,1) model was able to capture the ARCH‐effects found in the ECM‐residuals for all
contracts, and this model was therefore applied to the short‐run analysis. Formally, the model is expressed as

S ρu β F β F ψ S θ h υΔ = − + Δ + Δ + Δ + + ,t t t j j

i j

m

i t i j

l

k

l t l t t−1 − ,

= +1

− ,

=1

−∑ ∑ (10)

where

h w γh a υ υ e h e IN= + + and = , ~ {0, 1}.t
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j t j t t t t

=1

−

=1

−
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We note that ht is the conditional variance of spot price changes for period t. Once again, short‐run efficiency implies
not violating the restrictions

ρ ρδ β β ψ i l M K= 1, = 0, = = 0 [ , ] [ , ]i l≠ ∈ (12)

and conversely, short‐run unbiasedness along with efficiency and unbiasedness in the long‐run (α δ= 0, = 1 from the
cointegrating relation in Equation 5) assume that the stricter restriction β = 1 is fulfilled.

4.2 | Predictive power

In a final assessment of the futures market, we examine its predictive power. This part of the analysis is twofold: We
assess the futures market's price discovery role, as well as its historical prediction accuracy in comparison to a variety of
models, testing for both weak and semi‐strong market efficiency.

4.2.1 | Price discovery role

If the spot and futures prices are found to be cointegrated, we know that the two time series will not move too far apart
in the long‐run. When assessing long‐ and short‐run market relations, we examine whether the spot or the futures price
is the driving force toward equilibrium, i.e. which of the two prices perform a price discovery function. In a mature and
efficient futures market, we would expect to find bidirectional causalities where both the spot and the futures prices
contribute to price changes. We analyze long‐ and short‐run causality establishing a bivariate vector error correction
model (VECM), similar to the ECM in Equation (6) for both the spot and futures prices, given by

s ρ u β f ψ s υΔ = − + Δ + Δ + ,t t

i

n

i t i j

l

m

l t l t1 −1

=1

− ,

=1

− 1,∑ ∑ (13)
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f j ρ u ψ f β s υΔ , = − + Δ + Δ + .t t
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m

k t k j

l
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l t l t2 −1

=1

− ,

=1

− 2,∑ ∑ (14)

The long‐run price dynamics are assessed by running a conventional t‐test on the coefficients of the error correction
term, that is, ρ1 and ρ2. A statistically significant coefficient implies causality in the long‐run. The analysis of short‐run
causality is performed by block exogeneity tests on the respective ECM models, excluding the lagged price information
on the endogenous variable. That is, forcing β i n= 0, [1, ]i ∈ in Equation (13) and ψ k m= 0, [1, ]k ∈ in Equation (14).
A Wald‐type χ2 test on the restricted and unrestricted models reveals whether the excluded variables have any
statistically significant explanatory power, and thereby if there exists any short‐run causality. These procedures are
often referred to as long‐ and short‐run Granger causality tests (Granger, 1988).

4.2.2 | Out‐of‐sample prediction accuracy

The second part of the assessment of predictive power was performed by dividing the complete time series into two
separate parts, for an in‐ and out‐of‐sample analysis, comprising 108 and 36 monthly observations, respectively. The
two models outlined above were then re‐estimated in‐sample, and their respective out‐of‐sample forecasts were re‐
transformed into price levels. The predictive performances of the re‐estimated models were then compared with that of
the futures prices, out‐of‐sample. The metric for goodness‐of‐fit used for assessing prediction accuracy, was the out‐of‐
sample root mean squared error (RMSE). The futures markets' primary purpose is to serve as a tool for hedging price
risk, inevitably testifying to the existence of risk‐averse market participants in an efficient market, that is, market
participants with nonlinear concave utility functions. Such risk preferences are reflected in the use of RMSE which is
disproportionately penalizing large errors.

In addition to the already stated models, we constructed a seasonal prediction model on the risk premia, directly
incorporating historical in‐sample seasonal effects on the risk premia. This was done by introducing seasonal dummies
for each month of the year, as well as for the Easter holiday, in line with the approach outlined in Section 3.4. Formally,
the model is expressed as

S F ω DM ϕ DEˆ = + + ,t t j j

m

m t m j t t− ,

=1

12

, ,∑ (15)

where ωm t, is a binary variable taking on the value 1 if time t coincides with month of the year l, and DMm j, is the in‐
sample seasonal risk premium components of contracts expiring in j months for the calendar months
m Jan Des{ , …, }∈ . Similarly, for the Easter holiday effect, ϕt is a preassigned value between 0 and 1, reflecting the
portion of the Easter holiday effect affecting the respective month at time t, whereas DEt is the in‐sample seasonal
effect on the risk premium for the Easter holiday.

Thus far, this study has dealt with the futures markets weak‐form efficiency, exclusively. For any market parti-
cipants, however, semi‐strong efficiency is equally important. Considerable effort was, therefore, put into the con-
struction of additional models, comprising publicly available information on exogenous factors affecting the spot price,
thoroughly described in Appendix A. This includes a vector autoregressive (VAR) model, as well an artificial neural
network (ANN) model. As for the weak‐form models above, these models were estimated in‐sample, and their out‐of‐
sample predictive power was then compared with that of the futures prices. In the context of this study, the results of
the models are of primary interest rather than the technical details of the actual models. Further details on the VAR
and ANN models are therefore found in Appendices A.3 and A.4, respectively.

5 | RESULTS

The following sections provide empirical findings based on the methodologies previously presented. We start by
presenting long‐run properties of the futures market, followed by a more comprehensive short‐run analysis. Next, we
evaluate the predictive power of Atlantic salmon futures markets, both in terms of the price discovery role and the out‐
of‐sample predictions. Finally, we discuss our findings and interpret our results in the context of the properties of the
salmon market.
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5.1 | Long‐ and short‐run analysis

Already knowing that both the spot and futures price series are nonstationary with one unit root, the first part of the
long‐run analysis is the assessment of cointegration. The Johansen test reveals that the prices for all the assessed
contracts are cointegrated with the spot price. In Table 3 we show both the trace and eigenvalue statistics for r = 0 and
r = 1 cointegrating relations, both rejecting r = 0 for all contracts at a 1% level of significance. We also list the
parameters, α and β, for cointegration without trends.

The analysis of long‐term relationship of the spot and futures prices proceeds with hypothesis testing on the
cointegrating parameters, incorporating the restrictions for efficiency and unbiasedness outlined in Section 4.1. As
depicted in Table 4, neither of the restrictions on individual coefficients, α = 0 and δ = 1, are rejected for any of the
futures contracts we examined. Moreover, the joint hypothesis of simultaneous fulfillment of the two restrictions, α = 0

and δ = 1, implying long‐run market efficiency and unbiasedness, can not be rejected. Evidently, our findings imply
that all contracts exhibit the properties of an efficient market in the long‐run.

Unable to reject efficiency in the long‐run, we proceed with the assessment of short‐run properties. The
prototypical ECM outlined in Section 4.1.1 was estimated for all futures prices, followed by tests on restrictions
for both efficiency and unbiasedness in the short‐run. The tests were performed by imposing F tests on the
residuals of both the restricted and the unrestricted models. In Table 5 we depict the coefficients of explanatory
variables found to be statistically significant. We also show the test results for efficiency and unbiasedness,
indicating that short‐run efficiency is rejected at a 5% level of significance for contracts with 1, 4, 5, and 6
months to expiration. Similarly, for contracts with 2 and 3 months until expiration, efficiency is rejected at a 10%
level of significance. The joint hypothesis of efficiency and unbiasedness in the short‐run is, however, strongly
rejected (p 1%≪ ) for all the futures contracts, suggesting the existence of a risk premium in the short‐run. A
pormanteau (Castle & Hendry, 2010) test for autocorrelation in the residuals with lags of up to 12 months does,
however, reveal that the ECM‐residuals exhibits ARCH effects for all contracts except contracts expiring in 3
months. These findings suggest that the prototypical ECM is somewhat misspecified. To capture the ARCH‐
effects, we incorporate the extended ECM with GARCH‐components, previously referred to as the ECM‐GARCH
model presented in Section 4.1.2 (Table 6).

Examining the ECM‐GARCH coefficients, the efficiency hypothesis is rejected at a significance level of 5% for
contracts expiring in 4, 5, and 6 months, and at a 10% level of significance for contracts expiring in 1 and 3 months.
Efficiency of contracts with 2 months until expiration can however not be rejected. The joint hypothesis of efficiency
and unbiasedness is, on the other hand, once again strongly rejected for all contracts. The minor changes in the test
statistics and probabilities, as compared with the ECM‐results, are partly due to changes in the degrees of freedom
imposed by the increased number of restricted parameters. They do however also confirm our previous findings of
autocorrelated risk premia, which we will discuss further in Section 5.3.

TABLE 3 Results from Johansen's bivariate cointegration test

r = 0 r ≤ 1 Parameters

λtrace λmax λtrace λmax α δ

st; ft,1 [3] 30.76*** 28.74*** 2.02 2.02 0.118 0.967

st; ft,2 [9] 47.11*** 44.34*** 6.67 2.77 0.109 0.972

st; ft,3 [5] 30.95*** 28.69*** 2.26 2.26 0.130 0.965

st; ft,4 [9] 48.52*** 43.98*** 2.95 2.95 0.100 0.972

st; ft,5 [10] 47.43*** 44.38*** 3.44 3.44 0.151 0.958

st; ft,6 [9] 50.15*** 47.43*** 2.72 2.72 0.192 0.947

Note: λ T λi λ T λ r n= − log(1 − ˆ ), = − log(1 − ˆ + 1) [0, − 1].
i r

n
trace = +1 max∑ ∈ The number of lags shown in brackets were chosen based on the Akaike

information criteria from the corresponding VAR model. *** indicates rejection of null hypothesis at 1% level. H :0 There exists r cointegrating relations.
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TABLE 4 Test of restrictions on parameters for long‐run efficiency

H α: = 00 H0: δ = 1 H0: α δ= 0, = 1

st; ft,1 [3] 1.102 (0.765) 1.107 (0.766) 0.343 (0.706)

st; ft,2 [9] 1.472 (0.810) 1.451 (0.808) 1.875 (0.153)

st; ft,3 [5] 0.808 (0.716) 0.757 (0.706) 1.520 (0.217)

st; ft,4 [9] 0.876 (0.729) 0.845 (0.723) 0.626 (0.531)

st; ft,5 [10] 1.333 (0.795) 1.286 (0.790) 1.081 (0.337)

st; ft,6 [9] 1.372 (0.799) 1.313 (0.793) 1.516 (0.218)

Note: p Values are shown in parentheses.

TABLE 5 Error correction model parameters

Parameter Ft,1 Ft,2 Ft,3 Ft,4 Ft,5 Ft,6

ρ 0.337 0.004 0.211 0.061 0.138 0.037

β 0.546 0.333 0.376 0.264 0.613 0.667

β2 −0.323 – – 0.340 – –

β3 – – 0.191 – −0.412 –

β4 – 0.302 – −0.433 – −0.444

β5 – – – 0.268 – 0.372

β7 – 0.397 – – 0.469 –

β8 – −0.309 – – 0.379 –

β9 – 0.246 – −0.302 – –

ψ1 0.369 – 0.292 0.128 0.175 –

ψ2 −0.143 – 0.113 – 0.182 –

ψ3 – −0.262 – – – –

ψ5 – – – −0.154 – –

ψ6 – −0.218 – −0.185 −0.228 −0.140

ψ7 – −0.153 – – – –

ψ9 – – – – 0.131 –

Q(12) 52.782* 27.593** 32.684 32.524*** 32.052*** 31.515***

(0.069) (0.024) (0.384) (0.006) (0.001) (0.001)

H ρ: = 10 (0.066)* (0.065)* (0.038)** (0.045)** (0.048)** (0.033)**

H β: = 10 (0.113) (0.101) (0.109) (0.087)* (0.161) (0.177)

Efficiency 3.506** 2.295* 2.573* 2.577** 3.455*** 3.113***

(0.031) (0.0788) (0.063) (0.031) (0.002) (0.008)

Unbiasedness 32.779*** 7.005*** 16.417*** 6.636*** 6.765*** 5.582***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: s ρu β f β f ψ s υΔ = − + Δ + Δ + Δ + .t t t j j i j

m
i t i j l

k
l t l t−1 − , = +1 − , =1 −∑ ∑ The depicted coefficients are significant at a 10% level only. Q(12) indicates portmanteau

test results with 12 lags (H0: No residual autocorrelation up until 12 lags). Efficiency and unbiasedness indicate test results on the hypothesis of efficient and
unbiased futures prices, respectively. p Values are shown in parentheses. ***, **, and * indicate rejection of the null hypothesis at a 1%, 5%, and 10% level of
significance, respectively.
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TABLE 6 Error correction model‐generalized autoregressive heteroscedastic parameters

Parameter Ft,1 Ft,2 Ft,3 Ft,4 Ft,5 Ft,6

ρ 0.369 0.004 0.223 0.062 0.138 0.017

β 0.508 0.333 0.352 0.264 0.613 0.667

β2 −0.340 – – 0.341 – –

β3 – – 0.196 – −0.412 –

β4 – 0.302 – −0.433 – −0.444

β5 – – – 0.269 – 0.372

β7 – 0.398 – – 0.468 –

β8 – −0.310 – – 0.380 –

β9 – 0.246 – −0.302 – –

ψ1 0.397 – 0.295 0.128 0.173 0.089

ψ2 −0.129 – 0.119 – 0.184 –

ψ3 – −0.264 – −0.105 – –

ψ5 – – – −0.153 – –

ψ6 – −0.217 – −0.185 −0.228 −0.140

ψ7 – −0.152 – – – –

ψ9 – – – – 0.133 –

θ 0.227 0.248 0.004 0.248 0.351 0.225

w 0.002 0.002 0.002 0.001 0.002 0.006

γ1 0.594 0.981 0.657 0.977 0.988 0.123

a1 0.071 0.052 0.068 0.029 −0.043 −0.133

Q(12) 48.132 27.591 31.682 32.525 32.052 35.139

(0.467) (0.992) (0.967) (0.957) (0.963) (0.917)

H ρ: = 10 (0.064)* (0.063)* (0.041)** (0.042)** (0.046)** (0.032)**

H β: = 10 (0.109) (0.094) (0.101) (0.091)* (0.163) (0.176)

Efficiency 2.960* 2.096 2.288* 2.416** 3.293*** 2.943***

(0.053) (0.117) (0.097) (0.046)* (0.003) (0.012)

Unbiasedness 32.779*** 4.577*** 16.417*** 6.636*** 6.765*** 5.582***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: s ρu β f β f ψ s θ h υΔ = − + Δ + Δ + Δ + + .t t t j j i j

m
i t i j l

k
l t l t t−1 − , = +1 − , =1 −∑ ∑ The depicted coefficients are significant at a 10% level only. Q(12) indicates

Portmanteau test results with 12 lags (H0: No residual autocorrelation up to lag 12). Efficiency and unbiasedness indicate test results on the hypothesis of
efficient and unbiased futures prices, respectively. p Values are found in parentheses. ***, **, and * indicate rejection of the null hypothesis at a 1%, 5%, and 10%
level of significance, respectively.

5.2 | Predictive power

5.2.1 | Price discovery role

In Table 7, we show results on the price discovery role of both spot and futures prices from employing the methodology
for causality testing, outlined in Section 4.2. The long‐run analysis reveals that a bidirectional causality can only be
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rejected for the front‐month contracts and contracts expiring in 3 months, implying that the futures contracts expiring
in 2, 4, 5, and 6 months, do indeed exhibit a price discovery role in the long‐run. Generally speaking, this is an
indication of well‐informed market participants, with adequate knowledge of long‐term market prospects. In practice,
this can be viewed as if market participants' updated view on the long‐term prospects of the salmon market are being
consecutively reflected in the futures prices. For a better intuition on why this is the case, it is worth noting that the
word causality could be somewhat misleading in the assessment of the price discovery function. If the futures price is
indeed Granger causing the spot price, this does not imply that a change in the futures price itself causes a change in
the spot price, since the spot price is in essence a direct reflection of supply and demand in the market. Rather, such a
causality implies that any change in the market prospects is reflected in the futures prices before the spot price, a
phenomenon we will further discuss shortly.

Turning now to the short‐run analysis, the presence of a price discovery function is further strengthened. In Table 7
we show that the null hypothesis of the short‐run Granger causality test (H x: ΔO do not Granger‐cause yΔ in the short‐
run) was rejected for both the front‐month and the contracts expiring in 5 and 6 months. For the front‐month and
contracts expiring in 5 months, the short‐run causality was found to be bidirectional, whereas unidirectional causality
was found for the contracts expiring in 6 months, with the futures price performing the price discovery role. A necessity
of no‐arbitrage is that the futures' basis5 is approaching zero as we get closer to expiration. For the front‐month
contracts, this basis is ultimately relatively small. In view of the fact that salmon is neither a particularly liquid nor a
storable asset, and that the spot price underlying the futures contracts is not directly tradable in the market, the finding
of a bidirectional causality close to expiration is not surprising. For the futures contract expiring in 2–4 months,
however, the short‐run price impacts are unidirectional with the spot price as the driving force.

To see how these findings can be interpreted in the context of the salmon market, we will present an example:
Following the blossom of a fatal alga in the Northern parts of Norway in May 2019, the overall market view was that
such an outbreak would lead to an increased harvest volume in the short‐term due to preventive harvest peaks in areas
nearby the affected farming facilities, followed by a long‐term supply decrease proportional to the overall biomass
reduction. Knowing that the harvest volume is negatively correlated with the spot price (see Table A1), one would

TABLE 7 Results on long‐ and short‐run causality

Contract Cause Long‐runa Short‐runb

Ft,1 sΔ t 4.220 (0.999) 84.095 (0.000)***

fΔ t,2 −2.388 (0.009)*** 7.216 (0.000)***

Ft,2 sΔ t 6.342 (1.000) 26.181 (0.000)***

fΔ t,2 0.019 (0.507) 0.176 (0.839)

Ft,3 sΔ t 5.470 (0.999) 13.495 (0.000)***

fΔ t,3 −2.189 (0.015)** 1.123 (0.340)

Ft,4 sΔ t 6.218 (1.000) 7.239 (0.000)***

fΔ t,4 −0.461 (0.323) 1.489 (0.206)

Ft,5 sΔ t 6.216 (1.000) 6.845 (0.000)***

fΔ t,5 −1.039 (0.150) 2.391 (0.029)**

Ft,6 sΔ t 6.752 (1.000) 0.796 (0.373)

fΔ t,6 −0.369 (0.356) 7.1829 (0.008)***

Note: The number of lags in the Granger causality test were chosen based on Akaike information criteria.
aThe presented p‐value and test statistics indicate the significance level ρ from the vector error correction model in Equations (13) and (14). This may be
translated to H X: Δ0 causes YΔ in the long‐run.
bThe presented p value indicates the p value of rejection of the null hypothesis, H0: XΔ does not Granger cause YΔ in the short‐run. ***, **, and * indicates
rejection of the null hypothesis at a 1%, 5%, and 10% level of significance, respectively.

5
Note that the basis is not referred to as a risk premium in this context, as any deviation from the long‐run equilibrium is not exclusively described by a risk‐adjust price premium, acknowledging that

the long‐run equilibrium would include an appropriate long‐run risk premium.
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expect a momentary price drop, and a simultaneous positive shift in the distant parts of the forward curve. Examining
the price of a monthly futures contract expiring in October 2019, the price as of May 15, 2019 was 55.90 NOK/kg. One
week later, on May 22, the price of a similar contract had increased to 57.20 NOK/kg, presumably due to the fatal algae
which caught global media's attention on May 16 (iLaks, 2019).

In the case of a considerable harvest peak, such as the one following the alga outbreak, a natural short‐term effect is
a sudden price drop, both in spot and futures prices. Knowing that the spot price is reflecting the actual market price in
the preceding week, the effect of a sudden harvest peak would be somewhat lagged in the spot price, which is not
necessarily the case for the futures price. Under the no‐arbitrage argument outlined above, the causality needs to be
bidirectional close to expiration, which we found to be the case for the front‐month contracts, assuming that market
participants are adequately but not perfectly informed on the short‐term harvest volumes. Similarly, for the longest
contracts such as contracts expiring in 6 months, the most obvious effect of the alga outbreak is an increase in futures
price proportional to the biomass reduction. For an intermediate horizon, however, such as contracts expiring in 2–4
months, the effect is not that obvious. No one can really tell for how long the alga outbreak is going to last, nor the
exact magnitude of the event. If the algae will keep forcing farmers to harvest for another month, it is likely that the
spot price will keep declining or at least be kept at a minimum level for a longer period of time. Likewise, it is difficult
or even impossible to conclude when the effect of the alga outbreak will turn from negative to positive, in terms of spot
price changes. Under all circumstances, eligible anticipations on the effect in 2–4 months require substantially more
accurate insights in the market than both front‐month and the longest contracts. Although the example of an alga
outbreak of this magnitude is an extreme event in the context of price changes, the intuition is the same for minor
changes in market expectations. Thus, findings of price discovery in the front‐month and longest contracts are in-
dications of no‐arbitrage and well‐informed marked participants, acting on the basis of updated market prospects
respectively. The finding of an inadequate price discovery role for intermediate contracts may, on the other hand, be an
indication of few speculative traders willing to speculate on the more risky and less predictable intermediate effects of
an event, such as the alga outbreak.

5.2.2 | Out‐of‐sample predictions

The last part of our assessment of the futures market's price discovery abilities, is the analysis of its out‐of‐sample
prediction accuracy. In Table 8 we present the RMSE‐figures for both futures prices and the models previously outlined,
covering prediction horizons of 1–6 months. It turns out that all models outperform the futures prices for all horizons,
indicating that the futures market is unable to provide the best possible predictions6. Appreciating the previous
findings of both inefficiencies and biases in the short‐run, it is not surprising to see that both the ECM and the more
comprehensive ECM‐GARCH models were able to slightly outperform the futures market. Moreover, the fact that also
the seasonal model was able to outperform the market on all horizons indicates that the short‐run bias is, at least to
some degree, deterministic and reflecting a time‐varying spot price risk, which we will discuss further in the following
section. The prediction results also show that including data on exogenous factors improves the prediction results,
implying that there might be speculative opportunities for risk‐adjusted return in the futures market. Note, however,
that the Diebold–Mariano test of prediction accuracy indicates that the prediction accuracy is statistically different
from that of the futures prices, primarily for the front‐month forecasts. Although these findings could to some degree
be explained by the low number of out‐of‐sample observations, the prediction results should be interpreted as no more
than indications of the futures prices failing to provide the best predictions possible. In the following, we will evaluate
these findings in the context of our previously reported results.

5.3 | Interpretations

In this section, we further discuss and interpret our findings of short‐run bias in the context of relevant features of the
salmon market, as well as the results on predictive power. Throughout the study, we have presented results indicating
time‐varying and somewhat predictable risk premia exhibiting seasonal patterns, despite an adequate price discovery

6
Note that transaction costs are excluded from the analysis, in favor of the prediction models.
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function. Such predictability and biases would not be found in an unbiased futures market in the framework of the
EMH. We appreciate that the EMH is a theoretical framework subject to criticism for its tendency of characterizing
well established and apparently efficient markets, as both inefficient and biased (Malkiel, 2003). Thus, there might be
natural causes explaining both predictability and bias, which would be of great interest to market participants utilizing
the futures market as a risk management tool.

A remark on the finding of somewhat predictable risk premia is that the risk premia are likely to reflect one or more
underlying risk factors also exhibiting seasonality. In Figure 1a we depict the monthly components applied in the
seasonal prediction model for a forecast horizon of 1 month (excluding the Easter‐component), as well as the additive
inverse7 of the seasonal components of the monthly harvest volume in Norway over the same time period. Evidently,
the plot shows that the risk premium has in general been relatively high in conjunction with months with low harvest
volumes, indicating an overweight of hedgers on the supply side. Similarly, for months with high seasonal components
on the harvest volume, the risk premium is significantly lower, indicating a relative increase in the number of hedgers
on the demand side. To further examine whether the risk premium is a direct reflection of time‐varying price risk, the
realized risk premia of all the contracts over the 144 months are regressed on the spot price volatility at the time of
expiration, as shown in Figure 1b.

The risk premia were normalized to make them comparable across contract lengths, acknowledging that the risk
premium is expected to approach zero as we get closer to expiration. Furthermore, we employed the absolute values of
the risk premia in the regression, reflecting price risk on both sides of the hedge. The volatility was initially found as
the exponentially weighted moving average (EWMA)8 of the log‐returns of weekly updated spot prices (FPI). The
volatility assigned to each contract was the average of the weekly volatility figures within the contract month. The
regression shows a low degree of explained variance (R = 0.0892 ), and one should be careful in drawing conclusions
based on the results. If there is a relation, however, the regression suggests that a higher risk premium is, to some
degree, reflecting valid expectations of price risk.

The observed risk premia should be of particular interest for major market participants, occupying positions
making up considerable parts of the overall trading volume. Investors in illiquid markets who want to liquidate or
offset their positions, often discover that there is no way out at the current market price. In such cases, an offsetting
position is likely to disrupt the price severely, effectively reducing the risk‐reward trade‐off considerably. Moreover,
commodities are often found to be more volatile than other asset classes, making liquidity even more of an issue.

TABLE 8 Out‐of‐sample prediction results

Model 1 mo 2 mos 3 mos 4 mos 5 mos 6 mos

Futures 6.814 (6) 8.836 (6) 10.096 (6) 10.794 (6) 11.075 (6) 11.340 (6)

ECM 5.815** (4) 8.653 (4) 9.915 (5) 9.651 (4) 10.609 (5) 11.089 (5)

0.022 0.301 0.434 0.105 0.544 0.422

ECM‐GARCH 5.788** (3) 8.639 (3) 9.664 (3) 9.384 (3) 10.311 (3) 10.804 (4)

0.017 0.280 0.408 0.107 0.317 0.338

Seasonal 6.603** (5) 8.666 (5) 9.818 (4) 10.402 (5) 10.606 (4) 10.698 (3)

0.264 0.278 0.354 0.415 0.288 0.263

VAR 5.428** (1) 8.483 (2) 8.886 (1) 9.043 (1) 9.115 (1) 9.748 (1)

0.039 0.158 0.167 0.189 0.205 0.171

ANN 5.554** (2) 7.608* (1) 9.571 (2) 9.629 (2) 9.637 (2) 9.976 (2)

0.017 0.066 0.288 0.210 0.190 0.172

Note: Root mean squared errors of out‐of‐sample predictions. Ranks in parentheses. p Values from the Diebold–Mariano test in italic, indicating the probability
of the prediction accuracy being statistically different from that of the futures prices. ***, **, and * indicates rejection of the null‐hypotheses at a 1%, 5%, and
10% level, respectively.

7
The correlation figures in Table A1 reveals that the harvest volume is negatively correlated with the spot price, and it is therefore more illustrative to plot the risk premium on the additive inverse of

the harvest volume.
8
The EWMA‐parameter was estimated by MLE using the log‐likelihood of the observed weekly log‐returns. σ λσ λ r λ= + (1 − ) , = 0.92t t t

2
−1
2

−1
2 .

964 | ANDERSEN AND DE LANGE



Consequently, investors in such illiquid markets generally expect a higher premium than in other comparable markets
with higher liquidity (Cho et al., 2019). Knowing that all salmon futures contracts are thinly traded compared with
futures contracts on other commodities, the observed bias is also likely to reflect poor market liquidity. If so, the risk
premium is not only reflecting the underlying spot price risk, both also a liquidity risk. This liquidity premium can be
interpreted in different ways. Obviously, the liquidity premium could be considered a proportional premium on both
sides of the hedge, reflecting a scarce number of traders willing to enter into an offsetting position.

If the liquidity premium makes up a considerable part of the observed short‐run bias, we should expect the realized
risk premium to decrease in conjunction with increased trading volumes. To assess whether that has been the case in
the salmon futures market over the last decade, we derive the 12 months moving average of the realized risk premia of
monthly contracts expiring in 1–6 months, applying normalized absolute values under the same argument we offered
above. We display the results in Figure 2, including the annual contract values of traded contracts on the Fish Pool
futures market covering the time period of 2008–2018. Despite the fact that the futures market has experienced
substantial growth over the last decade, this has not led to a reduction in the overall risk premium, rather the opposite.
This does not, however, rule out the existence of liquidity premia. The increase in the overall risk premium could

(a) (b)

FIGURE 1 (a) Seasonal components and (b) risk premium versus volatility. (a) depicts the annual seasonal decomposition of salmon
spot price, upfront monthly futures contracts, and the additive inverse of harvest volume. (b) depicts observations on normalized risk premia
regressed on weekly spot price volatility

(a) (b)

FIGURE 2 (a) Annual contract values versus risk premium and (b) risk premium versus contract values. (a) depicts 12 months moving
average of the normalized risk premia over the total contract values on Fish Pool futures market. (b) shows an ordinary least squares
regression of trading volumes on realized risk premia
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simply reflect the fact that the salmon price has become ever more volatile over the last couple of decades
(Oglend, 2013).

To further investigate the existence of liquidity premia in the futures market, we perform a review of all the
individual trades on monthly contracts on the Fish Pool futures market ever since its inception. By regressing the total
contract values of each monthly contract (usually comprising a number of transactions each) on the absolute value of
the realized risk premia, we seek to determine whether low trading volume on individual contracts tends to imply an
increased liquidity premium. From this regression we obtain an OLS, which is unable to explain a satisfactory part of
the total variance (R = 0.1432 ). The regression output does, however, suggest the complete opposite of an additional
liquidity premium in case of low trading volumes on individual contracts. Nevertheless, this does not rule out the
existence of a liquidity premium, but rather confirms our previous findings of the risk premium reflecting actual price
risk. In case of high expected price risk, the desire to hedge a vulnerable position increases. Assuming the market
participants' expectations of high price risk are valid, the relation found by the OLS in Figure 2b indicates that the risk
premium is, in fact, reflecting actual price risk, partly explaining the bias found in the short‐run analysis of
unbiasedness.

The fact that our prediction models were consistently able to outperform the futures market, is an indication of
opportunities of excess risk‐adjusted return in the market. During the time period of 2010–2013, speculative traders
made up about 30% of the total number of market participants on the Fish Pool futures market (Fish Pool ASA, 2014)9,
which is rather low in comparison with, for example, the market for crude oil futures, of which speculators make up
more than 50% (Smith, 2009). The prediction results, as well as the lack of price discovery for the intermediate
contracts, are presumably indications of magnified risk premia due to a sparse number of speculators.

6 | SUMMARY AND CONCLUSIONS

The salmon spot price is highly volatile, creating a need for financial risk management tools, such as financial futures
contracts. Following its inception in 2005, the Fish Pool futures market has experienced considerable growth. However,
despite being the exclusive financial market providing salmon derivatives, the trading volumes are relatively scarce in
comparison to other commodity markets. As a consequence, its hedging efficiency has often been questioned. In this
study, we assess the efficiency and unbiasedness of the Fish Pool futures market. We examine monthly futures
contracts expiring in 1‐6 months, covering the time period from January 2007 to December 2018.

The ADF test rejected stationarity for both spot price and futures prices on all the monthly contracts, whereas the
Johansen cointegration procedure showed that all futures contracts were cointegrated with the spot price. Applying
likelihood ratio tests on the cointegration parameters, we were unable to reject both efficiency and unbiasedness in the
long‐run, in line with existing research (Asche et al., 2016b; Yeboah et al., 2016). Furthermore, we initiated a short‐run
analysis by the use of a prototypical ECM. Residual analysis did, however, reveal ARCH‐effects in the ECM‐residuals,
reflecting the autocorrelated nature of the risk premia found in the initial data analysis in Section 3.5. An extended
ECM‐GARCH model was implemented, capturing autocorrelation and heteroscedasticity. By imposing various re-
strictions on parameters of the ECM‐GARCH model, the hypothesis of short‐run efficiency was only rejected at a 5%
level of significance for the contracts expiring in 4–6 months, indicating that futures contracts closer to expiration are
more likely to be efficient. The hypothesis of short‐run unbiasedness was, on the other hand, rejected for all contracts.
Knowing that unbiasedness in the long‐run could not be rejected, the rejection of short‐run unbiasedness indicates a
time‐varying risk premium, partly due to seasonal effects. Our findings on time‐varying risk premia conform well with
previous findings by Asche et al. (2016a) and Konjhodzic and Narmo (2017), all of which found seasonal effects when
assessing determinants of the salmon futures risk premium.

Furthermore, we assessed the price discovery role of the futures market employing long‐ and short‐run Granger
causality tests. The two tests revealed that both the front‐month and the longest contracts perform a price discovery
role of an efficient and mature market, indicating no‐arbitrage and well‐informed traders. Intermediate contracts
expiring in 2–4 months, however, fail to perform the desired price discovery role, presumably as a consequence of
sparse numbers of speculative traders acting in the Fish Pool futures market. The absence of numerous speculative
traders could imply unexploited excess risk‐adjusted return. Our suspicion of such a market characteristic was further

9
Current figures on the number of speculators are not known.
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strengthened by the futures prices' low prediction accuracy, in comparison to out‐of‐sample predictions by a variety of
models. We computed out‐of‐sample predictions of ECM and ECM‐GARCH models, as well as a seasonal model, a
VAR model and an ANN model. The RMSEs of the out‐of‐sample predictions showed that all of our models were able
to consistently outperform the futures contracts maturing in 1–6 months over a time period of 36 months, suggesting
that there might be speculative trading opportunities in these contracts.

Our results indicate that the Fish Pool exchange exhibits some of the characteristics of an efficient futures market,
while still suffering somewhat from the sparse trading volume and low number of speculative traders. Although the
observed inefficiencies could be partly explained by autocorrelated risk premia, due to the shorter sampling intervals
discussed in Section 3.2, we demonstrate that the time‐varying risk premium is to a large extent reflecting time
variation in the actual price risk. For any risk averse market participant utilizing the futures market for risk man-
agement purposes, our results indicate that the futures contracts provide adequate hedging efficiency, but that the risk
premium is likely to be somewhat higher than what the actual price risk of an offsetting position would suggest.
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APPENDIX A: SPOT PRICE PREDICTIONS
Vital in the assessment of semi‐strong market efficiency, are prediction models comprising publicly available ob-
servations on exogenous factors affecting the salmon spot price. A conventional approach in the modeling of the spot
price is a simple linear regression of the year‐over‐year (YoY) change of harvest volume on the YoY change in the spot
price. More sophisticated models include a variety of input factors, usually comprised as YoY or month‐over‐month
(MoM) changes, depending on whether the time series exhibit annual seasonality or not (e.g., Sandaker et al., 2017). An
alternative approach, utilized in this study, is to model irregular observations on both a range of explanatory variables
and the spot price. The irregularities are extracted by thorough preprossessing, predominantly employing detrending
and deseasonalization. Subsequent sections provide descriptions of exogenous10 variables applied in the modeling of
the spot price, as well as the preprocessing performed on each variable. Note that the futures prices are not included in
the models as input variables, due to the inadequate price discovery function, demonstrated by Granger causality in
Table 7. We also develop a Vector Autoregressive (VAR) model and an ANN model, both comprising the exogenous
variables.

A.1 Factors affecting the salmon spot price

Harvest volume
Examining trailing changes on the salmon spot price, the preceding harvest volume of salmon is one of the factors with
the highest explanatory power, partly reflected by the correlation figures in Table A1. As depicted in Figure A1, the
harvest volume of salmon in Norway exhibits considerable seasonal patterns. The seasonality is both due to natural
causes such as salmon growth rate, sea lice occurrence, and sea temperature, as well as seasonal demand variations.
Moreover, the harvest volume has had a substantial positive trend over the last decade, reflecting the overall market
growth. The time series on harvest volume was therefore both detrended and deseasonalized. The data was desea-
sonalized by introducing both an annualized pattern and an Easter dummy, reflecting the demand growth in con-
junction with the Easter holiday.

Smolt release
Weighing about 60–100 g the salmons, usually referred to as smolts, are released into seawater cages. To reduce
mortality rates over the first few months of release, the smolt release figures are peaking in spring and autumn,
coinciding with optimal water temperatures and causing significant seasonal patterns. Moreover, the amount of smolt
released in Norway has increased in a similar manner to the salmon market as a whole. Therefore, the time series on
smolt individuals released was both detrended and deseasonalized.

Standing biomass
The standing biomass of salmon (in tonnes) is directly linked to smolt release and growth rate on one side of the
production cycle, and harvest volume on the other. As a direct consequence of the seasonalities on both input and
output, the standing biomass is also subject to substantial seasonal patterns. Moreover, the time series exhibit a
substantial trend, once again reflecting the overall market growth. The time series was, therefore, both detrended and
deseasonalized. The Easter effect found in the harvest volume is, however, negligible in the assessment of standing
biomass and was omitted from the preprossessing.

Seawater temperature
Seawater temperature has a direct influence on feed consumption and growth rates, and ultimately the harvest volume.
Temperatures are collected for a number of Norwegian counties.11 The measure used in this study is computed as a
weighted average based on the trailing harvest volume in each county. Although the time series does exhibit a
somewhat positive trend over the last few years of in‐sample observations, this trend is not caused by market growth
and should not be removed. The time series was therefore deseasonalized with an annual pattern.

10
Note that all the subsequent factors are referred to as exogenous, although a few of them such as harvest volume and biomass are likely to be somewhat affected by the spot price.

11
Finnmark, Troms, Nordland, Trønderlag, Møre og Romsdal, Sogn og Fjordane, Hordaland, and Rogaland.
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(a) (b) (c)

FIGURE A1 (a) Harvest volume in levels, (b) trend and seasonality, and (c) detrended and deseasonalized. The harvest volume was
both detrended and deseasonalized. The seasonal component comprises both monthly dummies as well as an Easter dummy. Source:
Fisheries Monitoring Centre (FMC) and the Norwegian Directorate of Fisheries

(a) (b) (c)

FIGURE A3 (a) Biomass in levels, (b) trend and seasonality, and (c) detrended and deseasonalized. The amount of standing biomass
was both deseasonalized and detrended. Source: Fisheries Monitoring Centre (FMC) and the Norwegian Directorate of Fisheries

(a) (b) (c)

FIGURE A2 (a) Smolt release in levels, (b) trend and seasonality, and (c) detrended and deseasonalized. The smolt release was both
detrended and deseasonalized on an annual basis. Source: Fisheries Monitoring Centre (FMC) and the Norwegian Directorate of Fisheries
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(a) (b) (c)

FIGURE A4 (a) Sea temperature in levels, (b) seasonality, and (c) deseasonalized. The seawater temperature was deseasonalized on an
annual basis. Source: The Norwegian Food Safety Authority [Lusedata.no]

(a) (b) (c)

FIGURE A5 (a) Feed consumption in levels, (b) trend and seasonality, and (c) detrended and deseasonalized. The figures on feed
consumption were both deseasonalized and detrended. Source: Fisheries Monitoring Centre (FMC) and the Norwegian Directorate of
Fisheries

(a) (b) (c)

FIGURE A6 (a) Mortality in levels, (b) trend and seasonality, and (c) detrended and deseasonalized. The mortality rates were both
detrended and deseasonalized. Source: Fisheries Monitoring Centre (FMC) and the Norwegian Directorate of Fisheries
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(a) (b) (c)

FIGURE A7 (a) Sea lice occurrence in levels, (b) seasonality, and (c) deseasonalized. The relative occurrence of sea lice is highly
seasonal and was, therefore, deseasonalized. Source: The Norwegian Food Safety Authority [Lusedata.no]

(a) (b) (c)

FIGURE A8 (a) Meat price index in levels, (b) trend and seasonality, and (c) detrended and deseasonalized. The FOA meat price index
was both detrended and deseasonalized. Source: The Food and Agriculture Organization of the United States (FAO)

(a) (b)

FIGURE A9 (a) Currency index in levels and (b) First difference. The currency index reflects trailing exchange rates as well as salmon
invoice value for EUR and USD. Applied in the models was the MoM first differences. Source: The Central Bank of Norway
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Feed consumption
Feed consumption per salmon is a nonlinear function of both average salmon size and water temperature. During the
winter the feed consumption drops due to low water temperature. Also, high temperatures during the summer may
have the same effect, partly due to reduced oxygen levels in the water negatively affecting the salmon (Handeland et al.,
2008). Thus, the figures on feed consumption (tonnes) exhibit a similar trend and seasonal components as most of the
previously described factors. Therefore, the time series was detrended and deasonalized.

Mortality
Mortality rates are usually observed peaking during the first 2 months after smolts have been released into seawater (Marine
Harvest, 2018). Furthermore, farmers may experience minor mortality peaks due to external factors such as sea lice
occurrence or reduced oxygen levels in the seawater, both frequently observed in conjunction with high water temperatures.
The mortality figures do, therefore, exhibit seasonal patterns, reflecting seasonality in both smolt release and other factors.
Moreover, the mortality figures exhibit a somewhat positive trend, obviously reflecting the growth in standing biomass over
the last in‐sample time period. Therefore, the time series on mortality was both detrended and deseasonalized.

Sea lice occurrence
The occurrence of sea lice does occasionally have a major impact on the salmon market as a whole. Due to strict
regulations, farmers may be forced to harvest significant amounts of salmon in cases of high sea lice rates. In this study,
we apply a measure of the number of female sea lice per salmon. Thus, one should not expect to find any natural trend
despite significant market growth, and the time series should not be detrended. Lice occurrence is, however, somewhat
correlated with the water temperature, yielding peaks during the summer. The time series was therefore deseasona-
lized with an annual seasonal pattern.

Meat price
The demand for fresh salmon turns out to be price elastic (Lohdi, 2015), suggesting that alternative proteins serve as
substitutes affecting the spot price of salmon. In this study we include the FOA Meat Price Index, reflecting interna-
tional price quotations of pork and bovine meats on a monthly basis. The index exhibits both a significant trend and
seasonal patterns, and was therefore both detrended and deseasonalized.

Currency indices; Norwegian krone (NOK)/US dollar (USD) and NOK/euro (EUR)
The NOK is used as invoicing currency in only a minority of Norwegian salmon export transactions. Over the time
period 2003–2009 the NOK was used in contracts comprising 20.1% of the combined fresh and frozen salmon export.
The EUR was by far the most frequently used currency, as contracts comprising 51% of exported tonnes were de-
nominated in euros. The equivalent figure for the USD was 17.5% (Straume, 2014). As the spot price (FPI) is denoted in
NOK, both the NOK/EUR and NOK/USD exchange rates are likely to have a substantial impact on the spot price. We
therefore constructed a currency index, comprising trailing exchange rates and invoice volume for both currencies. The
index was employed in the models as MoM first differences.

(a) (b) (c)

FIGURE A10 (a) Spot price in levels, (b) trend and seasonality, and (c) detrended and deseasonalized. The leftmost figure shows the in‐
sample spot price in levels, as well as the trailing 1‐month predictions. The plot in the middle depicts the trend and seasonal component in
the price series, whereas the rightmost plot shows the in‐sample and out‐of‐sample predictions of the price deviations from the detrended
and deseasonalized expectations
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A.2 Descriptive statistics

A.3 Vector autoregressive (VAR) model

A vector autoregressive VAR(p) model was constructed, comprising the preprocessed time series of exogenous factors
introduced in Appendix A.1. The number of lags was chosen based on AIC and BIC criteria and was set to ρ = 6months for
all variables except for the smolt release, which was lagged 14–24 months. Formally, the model is expressed as

α β β β ϵY Y Y Y= + + + + + ,t t t t t1 −1 2 −2 6 −6⋯ (A1)

where
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(A2)

TABLE A1 In‐sample descriptive statistics on preprossessed exogenous factors

Descriptive statistics

Time series N Mean SD Skew Ex kurt FPI corr

FPI 108 −0.047 3.75 0.43 0.43 1.00

Harvest volume 108 119.381 5548.44 −0.04 −0.6 −0.62

Smolt release 108 0.000 5138.22 0.29 0.19 −0.15

Biomass 108 0.000 9503.81 −0.14 0.50 0.02

Temperature 108 0.092 0.50 −0.02 −0.10 0.06

Feed consumption 108 0.000 7341.69 0.18 0.16 −0.23

Mortality 108 0.000 962.25 0.74 0.42 0.02

Sea lice 108 0.000 0.10 1.63 3.92 0.04

Meat price 108 0.000 5.51 0.33 0.66 0.22

Currency Index 108 0.002 0.02 0.84 2.42 0.11

Tests

Time series N JB ADF Ljung Box

FPI 108 5.94* −6.57*** 99.32***

Harvest volume 108 1.98 −6.38*** 32.38**

Smolt release 108 2.44 −7.40*** 38.55***

Biomass 108 2.30 −5.21*** 82.89***

Temperature 108 0.04 −3.41* 123.10***

Feed consumption 108 1.08 −7.97*** 211.48***

Mortality 108 14.85*** −3.95** 54.61***

Sea lice 108 161.55*** −4.14*** 199.73***

Meat price 108 5.74* −4.79*** 218.99***

Currency Index 108 54.89*** −3.96** 22.64***

Note: Descriptive statistics for time series, preprossessed as previously described. ***, **, and * indicate rejection of the null‐hypotheses at a 1%, 5%. and 10%
level, respectively.

Abbreviations: ADF, augmented Dickey–Fuller; FPI, Fish Pool Index™.
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TABLE A2 In‐sample coefficients of VAR‐model for horizons of 1–6 months

1 mo Coefficient 2 mos Coefficient

β1 FPI, lag 1 0.38061*** β1 Feed, lag 5 0.00021***

(0.07465) (0.00004)

β2 Biomass, lag 5 −0.00011*** β2 FPI, lag 1 0.35493***

(0.00002) (0.07523)

β3 Harvest, lag 3 0.00017*** β3 Biomass, lag 5 −0.00014***

(0.00003) (0.00003)

β4 Feed, lag 1 −0.00016*** β4 Feed, lag 1 −0.00016***

(0.00003) (0.00003)

β5 Feed, lag 5 0.00017*** β5 Sea lice, lag 5 12.66534***

(0.00003) (3.46952)

β6 Biomass, lag 3 −0.00011*** β6 Biomass, lag 5 −0.00009

(0.00002) (0.00002)

β7 Sea lice, lag 5 5.42449*** β7 Smolt, lag 20 0.00177***

(1.71353) (0.00054)

β8 Smolt, lag 19 −0.00101*** β8 Smolt, lag 21 −0.00176***

(0.00032) (0.00054)

3 mos Coefficient 4 mos Coefficient

β1 FPI, lag 1 0.46221*** β1 FPI, lag 1 0.42840***

(0.07268) (0.09162)

β2 Feed, lag 1 −0.00019*** β2 Biomass, lag 2 −0.00015***

(0.00004) (0.00003)

β3 Feed, lag 3 0.00017*** β3 Biomass, lag 3 −0.00021***

(0.00004) (0.00021)

β4 FPI, lag 4 −0.18826** β4 Feed, lag 2 0.00021***

(0.07247) (0.00005)

β5 Biomass, lag 3 0.00008** β5 Meat price, lag 5 −0.20801***

(0.00003) (00107)

β6 Mortality, lag 1 −0.00052** β6 Smolt, lag 5 −0.00292***

(0.00025) (0.00107)

β7 Biomass, lag 3 −0.00007** β7 Mortality, lag 1 00069***

(0.00004) (0.00026)

β8 – – β8 Smolt, lag 16 −0.00365**

– (0.00150)

5 mos Coefficient 6 mos Coefficient

β1 FPI, lag 1 0.35641*** β1 FPI, lag 1 0.38769***

(0.07182) (0.07004)

β2 Feed, lag 1 −0.00013*** β2 FPI, lag 6 −0.31552***

(0.00003) (0.07464)

(Continues)
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As for the majority of the included factors, also the spot price exhibits substantial seasonal patterns. A conventional
approach is therefore to examine YoY‐change of the spot price. However, the assessment of YoY‐change has its
limitations in the sense that irregularities in previous observations, such as shocks caused by factors outside the model,
may cause significant errors in the predictions. Therefore, the approach chosen in this study is to assess irregularities in
both explanatory factors as well as in the spot price, that is, the observed deviation from seasonal expectations. This is
achieved by detrending and deseasonalizing the spot price in‐sample. The trend is simply the annual moving average of
the time series, whereas the seasonal component comprises both annual seasonal patterns, as well as an Easter holiday
dummy accounting for the fact that the Easter holiday week is not consistently occurring at a particular time of the
year. This preprocessing is depicted in Figure A10, where the detrended and deseasonalized spot price is shown in the
rightmost plot. The VAR model was estimated in‐sample, restricted only to include parameters significant at a 5% level,
presented in Table A2. Based on the estimated models, trailing out‐of‐sample forecasts of the deviations were made for
horizons of 1–6 months. The predictions were then reseasonalized and retrended by including the price level at the
time of prediction and the in‐sample seasonal patterns, ultimately yielding spot price predictions in levels. Out‐of‐
sample predictions for all horizons are depicted in Figure B4, whereas figures on the predictive power are shown in
Table 8 in Section 5.2.

A.4 ANN model

The final model applied in the assessment of semi‐strong market efficiency involves the use of a multilayer
perceptron (MLP), a class of ANN. The number of hidden layers was set to one, and the numbers of neurons in
each hidden layer was set to 2/3 of the number of input neurons. Utilizing normalized time series only, the
applied activation function was the logistic sigmoid function, f x exp x( ) = 1 (1 + (− ))∕ . We further employed the
Broyden‐Fletcher‐Goldfarb‐Shanno (BFGS) algorithm, an iterative numerical optimization algorithm in the family
of quasi‐Newton methods. The model's learning rate was an Inverse Scaling rate, which is gradually decreasing as
the power of the model increases, and can be seen as a trade‐off between the computer processing time and the
accuracy of the model.

TABLE A2 (Continued)

5 mos Coefficient 6 mos Coefficient

β3 FPI, lag 5 −0.32573*** β3 Feed, lag 4 0.00014***

(0.07385) (0.00004)

β4 Smolt, lag 23 0.00013*** β4 Mortality, lag 4 −0.00075***

(0.00004) (0.00023)

β5 Smolt, lag 21 −0.00154** β5 Smolt, lag 19 0.00171***

(0.00061) (0.00054)

β6 Smolt, lag 22 0.00153** β6 Feed, lag 1 −0.00012***

(0.00060) (0.00004)

β7 Smolt, lag 24 −0.00267** β7 Smolt, lag 18 0.00164***

(0.00111) (0.00054)

β8 Smolt, lag 19 −0.00057** β8 Smolt, lag 17 0.00153***

(0.00025) (0.00052)

Note: Standard errors are shown in parentheses. Note that lags are denoted from the time of forecast, that is, t= 0. When the lag is less than the time to
expiration, lagged FPI values are substituted with the respective FPI forecast. Only parameters significant at a 5% level are included in the forecast models.
** and *** indicate significance at a 5% and 1% level, respectively.

Abbreviations: ADF, augmented Dickey–Fuller; VAR, Vector autoregressive.
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The model inputs the preprocessed time series on exogenous factors and spot price, as described in Sections A.1 and
A.3, respectively. The exogenous factors were lagged 1–6 months except for the smolt release figures, which were
lagged 14–24 months. All the time series were normalized before running the model on the in‐sample subset. To reduce
the consequences of both local optima and risk of overfitting in the model training procedure, the model was trained
and evaluated 10 times. The average RMSE of these predictions was set as a benchmark, and the model was repeatedly
trained until the RMSE was deviating from this benchmark with less than 5%. Utilizing the trained model, predictions
were made out‐of‐sample. Ultimately, the predictions were denormalized and finally retrended and reseasonalized,
reversing the preprocessing described in Section A.3. This procedure was completed for spot price predictions 1–6
months ahead. Out‐of‐sample predictions for all horizons are depicted in Figure B5, whereas figures on the predictive
power are shown in Table 8 in Section 5.2. The algorithm was specified as follows.

Algorithm 1 ANN‐model

1: input [exogenous factors, spot price deviations]

2: normalize time series

3: for i in 1:10

4: train MLP

5: RMSE RMSE RMSE+BM BM i←

6: RMSE RMSE 10BM BM← ∕

7: RMSE 0train ←

8: while abs RMSE RMSE RMSE( − ) > 0.05BM BM∕ do

9: train MLP

10: update RMSEtrain
11: make predictions out‐of‐sample

12: denormalize, reseasonalize and retrend out‐of‐sample predictions

13: output predictions
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APPENDIX B: PREDICTION PLOTS

ECM predictions

FIGURE B1 Predictions by the error correction model
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ECM‐GARCH predictions

FIGURE B2 Predictions by the Error correction model‐generalized autoregressive heteroscedastic model
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Seasonal predictions

FIGURE B3 Predictions by the seasonal model
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VAR predictions

FIGURE B4 Predictions by the vector autoregressive model
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ANN predictions

FIGURE B5 Predictions by the artificial neural network model
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APPENDIX C: RISK PREMIUM PLOTS

FIGURE C1 Risk premium for futures contracts with 1 month until expiration [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE C2 Risk premium for futures contracts with 2 months until expiration [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE C3 Risk premium for futures contracts with 3 months until expiration [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE C4 Risk premium for futures contracts with 4 months until expiration [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE C5 Risk premium for futures contracts with 5 months until expiration [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE C6 Risk premium for futures contracts with 6 months until expiration [Color figure can be viewed at wileyonlinelibrary.com]
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