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A B S T R A C T

Small-scale cohesive-zone models based on potential functions are expected to be consistent
with the important features of linear-elastic fracture mechanics (LEFM). These include an
inverse-square-root 𝐾-field ahead of a crack, with the normal and shear stresses being pro-
portional to the mode-I and mode-II stress-intensity factors, 𝐾𝐼 and 𝐾𝐼𝐼 , the work done against
crack-tip tractions being equal to

(

𝐾2
𝐼 +𝐾

2
𝐼𝐼

)

∕𝐸̄, where 𝐸̄ is the appropriate modulus, and
failure being controlled by the toughness. The use of an LEFM model also implicitly implies that
the partition of the crack-tip work into shear and normal components is given by a phase angle
defined as 𝜓𝐾 = tan−1

(

𝐾𝐼𝐼∕𝐾𝐼
)

. In this paper, we show that the partition of crack-tip work in
a cohesive-zone model is consistent with LEFM if the normal and shear deformations across an
interface are uncoupled. However, we also show that this is not the case for coupled cohesive
laws, even if these are derived from a potential function. For coupled laws, LEFM cannot be
used to predict the partition of work at the crack tip even when the small-scale requirements for
LEFM conditions being met; furthermore, the partition of the work may depend on the loading
path. This implies that LEFM cannot be used to predict mixed-mode fracture for interfaces that
are described by coupled cohesive laws, and that have a phase-angle-dependent toughness.

. Introduction

Cohesive-zone models, originating from the work of Hillerborg et al. [1] and Needleman [2], are widely used to simulate the
nitiation and growth of cracks in problems ranging from the materials scale [2–5] to the structural scale, such as adhesive joints [6–
] and wind turbine blades [9]. In these models, the fracture process is described by a traction–separation relationship, known as a
ohesive law, that comprises both a strength (peak traction) and a fracture energy (area under the traction–separation curve) [10,11].
he use of cohesive laws allows a transition between the strength-based approach to fracture of [12] and the energy-based method
f [13] that underpins linear-elastic fracture mechanics (LEFM) [14–16].

Since [17] and [18] generalized cohesive laws to include shear tractions, cohesive-zone modelling has been extended to mixed-
ode fracture, with many different cohesive laws being developed. These cohesive laws can be divided into several fundamentally
ifferent groups [19]. First, there are those derived from potential functions, and those that are not derivable from potential
unctions. Second, there are what are termed as ‘‘uncoupled’’ and ‘‘coupled’’ mixed-mode laws.
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Potential-based cohesive laws are independent of the loading history. The normal and shear tractions depend only on the values
f the normal and tangential openings; they do not depend on the path by which those openings are reached. As an example,
icromechanical modelling can be used to show that cross-over fibre-bridging gives coupled laws for which a potential function

xists [20]. For cohesive laws that cannot be derived from a potential function, the cohesive tractions and the work of the cohesive
ractions depend on the loading path. Such laws can be used to model fracture processes that include history-dependent phenomena
uch as plasticity or frictional sliding [21]. However, attention is focused in this paper on conditions that might be consistent with
EFM, so only potential-based cohesive laws are considered in the present work; history-dependent mechanisms are excluded.

In ‘‘uncoupled’’ mixed-mode cohesive laws, the normal tractions depend only on the normal openings, and the shear tractions
epend only on the tangential (shear) openings. However, despite the terminology, coupling between the two modes of deformation
s inherently introduced through the failure criterion [22]. This coupling generally manifests itself as a relationship between the
ritical normal and shear displacements. In particular, shear decreases the critical opening-displacement, and opening decreases the
ritical shear displacement. More details are given in Appendix. In coupled cohesive laws, the normal and shear tractions each
epend on both the normal and tangential openings. It is not necessary to describe an additional mixed-mode failure criterion with
uch coupled laws, but the coupling should be consistent with any observed mixed-mode failure criterion.

Under small-scale conditions, the driving force for crack growth in an elastic body is the gradient of total potential energy of
he system with respect to the length of the traction-free portion of the crack [23]. In linear-elastic fracture mechanics (LEFM), this
s designated by the energy-release rate,  [13], which is identical to the value of the 𝐽 -integral taken around the crack tip [23].

Fracture occurs when  = 𝛤 , which is identified as the toughness, and is considered to be a material property. Mixed-mode fracture
n an LEFM framework is described in terms of the mode-I and mode-II stress-intensity factors, 𝐾𝐼 and 𝐾𝐼𝐼 : the amplitudes of the

singular normal and shear stresses in the 𝐾-dominant region near the crack tip. A phase angle describes the ratio between these two
parameters as 𝜓𝐾 = tan−1

(

𝐾𝐼𝐼∕𝐾𝐼
)

, and the toughness is assumed to be a unique function of the phase angle, 𝛤
(

𝜓𝐾
)

[24,25]. Crack
growth occurs when  = 𝛤 (𝜓𝐾 ), where the phase angle describes the ratio 𝐾𝐼𝐼∕𝐾𝐼 at fracture. Two implicit assumptions of LEFM
are that the work at the crack tip, and its partition into shear and normal components are both path-independent i.e., independent
of whether 𝐾𝐼 and 𝐾𝐼𝐼 are applied proportionally (simultaneously) or non-proportionally (e.g. sequentially).

The use of LEFM is predicated on the assumption that any portion of a body not described as a continuum elastic medium is
limited to a very small region near the crack tip, and that the macroscopic response of the body is linear-elastic. The use of LEFM
as a powerful quantitative tool that is ubiquitous in engineering design is not predicated on singular stresses actually existing at
the crack tip, but rather on the fact that the fracture process at the crack tip is dependent only on a macroscopic description of the
𝐾-field [26]. In other words, the crack tip (and its partition) are uniquely defined by 𝐾𝐼 and 𝐾𝐼𝐼 , and independent of the cohesive
ength, provided this latter parameter is small enough. The implication of this is that any loading-path dependence that might exist
or deformation of the crack tip potentially is inconsistent with the assumptions that underpin the use of LEFM.

In the present study, we investigate this specific issue within the broad framework of small-scale fracture that is generally taken to
orrespond to LEFM conditions. It is emphasized again that for a fracture problem to be described by LEFM merely requires a small-
cale cohesive zone. It does not require singular stresses to actually exist at the crack tip. This has been demonstrated by appropriate
mall-scale cohesive-zone analyses [16,27,28]. In this paper, we use small-scale cohesive-zone models with potential-based cohesive
aws to satisfy one obvious requirement of path-independence, and examine whether there are additional constraints on traction–
eparation laws for them to provide path-independent, mixed-mode behaviour. In particular, we are interested in whether there
ay be limitations on when an LEFM framework might be valid to describe small-scale fracture with uncoupled and coupled,
otential-based, mixed-mode cohesive laws.

. Basic mechanics

.1. Work of cohesive tractions

The local work done (per unit area) against cohesive tractions across a small element of the interface,  , can be decomposed
into the local work done against normal tractions (designated as mode-I), 𝑛, and the local work done against shear tractions
designated as mode-II), 𝑡:

 = 𝑛 +𝑡 = ∫

𝛿𝑛

0
𝜎𝑛(𝛿′𝑛, 𝛿

′
𝑡 )𝑑𝛿

′
𝑛 + ∫

𝛿𝑡

0
𝜎𝑡(𝛿′𝑛, 𝛿

′
𝑡 )𝑑𝛿

′
𝑡 , (1)

where 𝜎𝑛 and 𝜎𝑡 are the normal and shear tractions, 𝛿𝑛 and 𝛿𝑡 are the normal and shear displacements. Under pure mode-I conditions
(𝛿𝑡 = 0), local failure of the interface occurs when 𝛿𝑛 = 𝛿𝑛c , where 𝛿𝑛c is the normal displacement at failure. This corresponds to
𝑛 = 𝛤𝑛, which is defined as the mode-I toughness. Under pure mode-II conditions (𝛿𝑛 = 0), local failure of the interface occurs
when 𝛿𝑡 = 𝛿𝑡c , where 𝛿𝑡c is the shear displacement at failure. This corresponds to 𝑡 = 𝛤𝑡, which is defined as the mode-II toughness.

Of particular interest in fracture mechanics is the work done against the tractions at a cohesive crack tip (defined as the point at
which the active cohesive zone ends, 𝑥1 = 0 in Fig. 1). The normal and shear displacements at the cohesive crack tip are designated
by 𝛿𝑛𝑜 and 𝛿𝑡𝑜 , and the two terms for the work done against the corresponding tractions at this location are designated by 𝑛𝑜 and
𝑡𝑜 . When the 𝐽 -integral [29] is evaluated along the cohesive zone out to a region where  = 0, its value is given by [30]:

𝐽𝑙𝑜𝑐 = 𝑜 = 𝑛𝑜 +𝑡𝑜 = ∫

𝛿𝑛𝑜

0
𝜎𝑛(𝛿𝑛, 𝛿𝑡)𝑑𝛿𝑛 + ∫

𝛿𝑡𝑜

0
𝜎𝑡(𝛿𝑛, 𝛿𝑡)𝑑𝛿𝑡 = 𝛷(𝛿𝑛𝑜 , 𝛿𝑡𝑜 ) , (2)
2

where 𝛷(𝛿𝑛, 𝛿𝑡) is the potential function used for the traction–separation law.



Engineering Fracture Mechanics 252 (2021) 107792S. Goutianos et al.
Fig. 1. Definitions of a cohesive crack tip and the associated parameters for the cohesive-zone model. The total opening at the crack tip is 𝛿𝑜 =
√

𝛿2𝑛𝑜 + 𝛿
2
𝑡𝑜.

In this paper, the concept of an instantaneous cohesive length at the tip of the cohesive crack [16,28] is used. This can be defined
for a homogeneous system in modes I and II as

𝜉𝑛𝑜 = 𝐸̄𝛿2𝑛𝑜∕𝑛𝑜 , 𝜉𝑡𝑜 = 𝐸̄𝛿2𝑡𝑜∕𝑡𝑜 , and 𝜉𝑜 = 𝐸̄𝛿2𝑜∕𝑜 (3)

where 𝐸̄ = 𝐸∕(1−𝜈2) in plane strain, 𝐸̄ = 𝐸 in plane stress, and 𝐸 and 𝜈 are Young’s modulus and Poisson’s ratio. These are slightly
different from similar quantities defined in terms of the failure parameters [1,16,31]. They have the advantages that they can be
used to describe the state of the cohesive zone at any stage of loading, and they can be defined for coupled cohesive laws.

The cohesive lengths can be normalized by a characteristic dimension of the geometry, such as a layer thickness, ℎ, so that
𝜉𝑜 = 𝜉𝑜∕ℎ. If 𝜉𝑜 is very small, one is in a small-scale regime, and the principles of LEFM are expected to apply. In particular,
this means that there will be a 𝐾-dominant region ahead of the cohesive crack tip, where the stresses across the interface follow an
inverse square-root relationship with respect to distance from the tip, 𝑥1. In the absence of a modulus mismatch across the interface,
the normal tractions and shear tractions along 𝑥2 will be described in this region by:

𝜎𝑛 =
𝐾𝐼

√

2𝜋𝑥1
; 𝜎𝑡 =

𝐾𝐼𝐼
√

2𝜋𝑥1
(4)

where 𝐾𝐼 and 𝐾𝐼𝐼 are the mode-I and mode-II stress-intensity factors. Close to the crack tip, the stresses will deviate from this
relationship, with the details of the stress field being dependent on the cohesive law. Beyond the 𝐾-dominant region, the stresses
will deviate from this relationship, following the non-singular, elastic, stress field of the structure. The region over which the 𝐾-field
describes the stresses may be very small; however such a region will exist if 𝜉𝑜 is small enough. Again, we emphasize that a central
tenet of LEFM is that it can be used to describe fracture if 𝜉𝑜 is small, it does not have to be zero. It is for this reason that cohesive-zone
models can be used to describe LEFM under small-scale conditions [16,27,28].

Under LEFM conditions, an evaluation of the 𝐽 -integral in the 𝐾-dominant region gives [29]:

𝐽𝐾 =
𝐾2
𝐼 +𝐾

2
𝐼𝐼

𝐸̄
=

|𝐾|

2

𝐸̄
. (5)

Owing to the path-independency of the 𝐽 -integral [29], 𝐽𝐾 is equal to 𝐽𝑙𝑜𝑐 (Eq. (2)), so that

𝐽𝐾 = 𝑜 = 𝑛𝑜 +𝑡𝑜 . (6)

Irwin’s virtual crack closure relation holds in LEFM:  = |𝐾|

2 ∕𝐸. So, a consistent connection between LEFM models and CZM models
will be that  = 𝑜, if 𝜉𝑜 is small enough for LEFM assumptions to be valid.

2.2. Definitions of mode-mixedness

There are several definitions of mode-mixedness in the cohesive-zone literature (Fig. 2). The one we will focus on in this paper
has a direct connection with the concept of a phase angle in LEFM. It is defined in terms of the ratio of the work done against each
mode of deformation, so that, at any point along the interface, the local phase angle is

𝜓(𝑥1) = tan−1
⎛

⎜

⎜

⎝

√

𝑡(𝑥1)
𝑛(𝑥1)

⎞

⎟

⎟

⎠

(7)

As 𝑥1 approaches zero, this tends to the crack-tip phase angle, which is defined as [22,32]

𝜓𝑜 = tan−1
[
√

𝑡𝑜
𝑛𝑜

]

. (8)

The distance over which 𝜓(𝑥 ) is equal to 𝜓 decreases with decreasing cohesive length, 𝜉 [16,27,28].
3

1 𝑜 𝑜
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Fig. 2. Definition of (a) the phase angle 𝜓𝐾 in LEFM; (b) the traction ratio, 𝜑𝜎 ; (c) the phase angle in a cohesive-zone model 𝜓 .

For the special case of uncoupled cohesive laws, no modulus mismatch across the interface, and a very small value of 𝜉𝑜, the
ode-I and mode-II work done against crack-tip tractions can be identified with 𝐾𝐼 and 𝐾𝐼𝐼 through Eq. (6) as1

𝑛𝑜 = 𝐾2
𝐼 ∕𝐸̄

𝑡𝑜 = 𝐾2
𝐼𝐼∕𝐸̄ . (9)

he phase angle used in LEFM is defined as:

𝜓𝐾 = tan−1
(

𝐾𝐼𝐼
𝐾𝐼

)

. (10)

herefore, as has been shown to be the case [16,27], 𝜓𝑜 is expected to equal 𝜓𝐾 under these conditions. Furthermore, if there is a
modulus mismatch across the interface, 𝜓𝑜, scales with the elastic properties and cohesive length as predicted by LEFM [16,27,33].

It is noted that an alternative measure of mode-mixedness (Fig. 2), based on the ratio of the two tractions:

𝜑𝜎 (𝑥1) = tan−1
[

𝜎𝑡(𝑥1)
𝜎𝑛(𝑥1)

]

(11)

can vary with the choice of cohesive law. It does not have the potential advantage of 𝜓𝑜, in linking crack-tip deformation to
macroscopic conditions under LEFM conditions.

Under LEFM conditions, the magnitude of the stresses within the 𝐾 field region are dictated by the stress-intensity factors. So,
𝜑𝜎 (𝑥1) = 𝜓𝐾 in this region. However, it is axiomatic to LEFM that fracture is controlled by the deformation at the crack tip, and
hat the 𝐾-field controls this deformation through 𝐽𝐾 . Therefore, it would seem to be an unnecessary restriction on modelling

mixed-mode fracture to impose an additional constraint on cohesive laws that the crack-tip stresses in the entire cohesive zone
should be in the same ratio as the stress-intensity factors [34]. In conclusion, one expects 𝜑𝜎 (𝑥1) = 𝜓𝐾 in the 𝐾 field, but expects
𝜎 to depend on the choice of cohesive law at the crack tip. Conversely, one expects 𝜓(𝑥1) to equal 𝜓𝐾 close to the crack tip, but

or there to be no connection between 𝜓(𝑥1) and 𝜓𝐾 in the 𝐾-field.
The observation that 𝜓𝑜 = 𝜓𝐾 has already been shown to be valid if the cohesive laws are uncoupled [16,27]. However, a

onsideration of Eq. (2) for the case when the cohesive-laws are coupled indicates that the ratio between the two quantities (𝑛
nd 𝑡) may depend on the loading path, as discussed in Ref. [35]. In such a case there may not be a unique relationship between
𝐾 and 𝜓𝑜. This could have implications for the use of LEFM to predict the failure of interfaces if the fracture-process mechanism
ehaves in accordance with a coupled traction–separation law. Mixed-mode LEFM models are all predicated on an assumption that
eformation at the crack tip, where fracture takes place, is uniquely defined by 𝐾𝐼 and 𝐾𝐼𝐼 , with no path dependence. If coupled laws
ive path-dependent deformation at the crack tip, then it would imply that the use of LEFM may implicitly require the assumption
f uncoupled cohesive laws. It is the purpose of this paper to explore this point.

In this context it should be emphasized that we are exploring the effects of using coupled and uncoupled laws, when 𝜉𝑜 is small
nough for the problem to be in the LEFM limit. It has already been shown that, in this limit, uncoupled laws result in 𝜓𝑜 being
qual to 𝜓𝑘, provided sufficient care is taken to ensure that in finite element modelling the mesh size is small enough to observe
he plateau in 𝜓(𝑥1). We are interested in whether the same conclusion can be made for uncoupled laws, given the same care about
esh size and limitations on 𝜉𝑜.

This focus is in contrast to that of earlier work [27,32,36], which explored the crack-tip phase angle and mixed-mode fracture
t large cohesive lengths, well away from the LEFM limit. This body of work indicates that, for large cohesive lengths, the crack-tip
hase angle tends to move away from the values controlled by the local K-field to values controlled by the macroscopic loads and
eometries, as suggested by Charalambides et al. [37]. For example, the paper by Conroy et al. [32] explores values of cohesive
engths that range from values slightly bigger than ones for which LEFM should unambiguously be valid to much larger values. At

1 Occasionally, a form of this equation is used to define what are termed the mode-I and mode-II components of 𝐽𝐾 or . However, this is not a rigorous
4

perspective because 𝐽𝐾 and  are scalar energy terms. They cannot be split into orthogonal components.
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Fig. 3. The finite-element model used to describe the 𝐾-field domain; (a) shows the global model of the entire domain of radius 𝑅, (b) shows details of the
elements at the crack tip.

the lower end, the phase angle for an uncoupled law approaches the LEFM value, while the phase angle for a coupled law shows a
larger discrepancy. In this paper, we explore in detail the difference between coupled and uncoupled laws, while ensuring that we
are unambiguously within the range where LEFM is valid.

3. Finite-element modelling

The problem was modelled by finite-element (FE) simulations, using the commercial code ABAQUS. The finite-element domain
(of radius 𝑅) and the mesh for the mixed-mode 𝐾-field is shown in Fig. 3. A crack extends along the plane 𝑥2 = 0, from 𝑥1 = −𝑅 to
𝑥1 = 0. The traction–separation relationships used to model the cohesive zone were specified along the crack plane from 𝑥1 = 0 to
𝑥1 = 𝑅 (Fig. 3).

Quadratic plane-strain elements were used for the elastic solid, and quadratic cohesive elements of non-zero thickness were used
in the cohesive zone. As can be seen from Fig. 3, a combination of quadrilateral and triangular elements allows for a structured
increase in the size of the plane-strain elements as one moves away from the vicinity of the crack tip.

The mixed-mode cohesive laws were implemented as user-defined elements. The cohesive elements had a length2 equal to
5 × 10−7𝑅 in the range 0 ⩽ 𝑥1∕𝑅 ⩽ 8.2 × 10−3. The mesh was then gradually increased to 5 × 10−2𝑅 at 𝑥1∕𝑅 = 1. The height of
the cohesive elements was equal to 5 × 10−8𝑅 along the cohesive interface. Only positive values of 𝐾𝐼 were studied, so there was
no issue with interpenetration.

Several potential-based mixed-mode cohesive laws were tested. Particular results are presented for the laws shown schematically
in Fig. 4, and discussed in more detail in Appendix: an uncoupled trapezoidal law of [22], an uncoupled linear law [16,28], and
the coupled Park–Paulino–Roesler (PPR) law [38,39].

3.1. Boundary conditions

The displacement components, 𝑢1 and 𝑢2, are related to the singular field of Fig. 3 by [40]:

𝜇(𝑢2 + i 𝑢1) =
|𝐾|

√

𝑟

2
√

2𝜋

{3 − 𝜈̄
1 + 𝜈̄

i e−i(𝜃∕2−𝜓𝐾 ) −
[

i ei(𝜃∕2+𝜓𝐾 ) + sin 𝜃 e−i(𝜃∕2+𝜓𝐾 )]
}

, (12)

where 𝜇 is the shear modulus, 𝜈̄ = 𝜈 in plane stress and 𝜈̄ = 𝜈∕(1 − 𝜈) in plane strain, 𝜈 is Poisson’s ratio, and the magnitude of the
stress intensity factors is |𝐾| =

√

𝐾2
𝐼 +𝐾

2
𝐼𝐼 . These displacement components are prescribed remotely on the boundary at 𝑟 = 𝑅 by

means of a user-defined ABAQUS subroutine. The magnitude of |𝐾| is varied through incremental changes in 𝑢1 and 𝑢2, such that
𝜓𝐾 is kept at the desired value.

The application of displacements that match those expected in an LEFM field does not, by itself, ensure that a 𝐾-controlled stress
field will be established. This requires an additional condition that both 𝜉𝑛𝑜∕𝑅 and 𝜉𝑡𝑜∕𝑅 are small enough. Although the geometry
of Fig. 3 is the conventional one used to describe 𝐾-fields in infinite bodies with semi-infinite cracks, it must be remembered that
𝑅 introduces an arbitrary length scale that will determine if the cohesive zone satisfies the small-scale conditions or not.

2 This element size should be compared to the cohesive length, which is about 0.0015𝑅 for all the calculations. This satisfies the condition for mesh
sensitivity [28].
5
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Fig. 4. Schematic illustration of the mode-I cohesive law for: a trapezoidal law, a linear law and the Park–Paulino–Roesler (PPR) with 𝛼 = 1.98. The shape of
the PPR cohesive law depends on parameter 𝛼, which is defined in Appendix.

3.2. Measurement of mode-mixedness

The normal, 𝜎𝑛(𝑥1), and shear, 𝜎𝑡(𝑥1), tractions acting in the cohesive zone, and the corresponding normal, 𝛿𝑛(𝑥1), and tangential,
𝛿𝑡(𝑥1), openings were used to monitor the mode mixedness for all points along the cohesive zone (𝑥1 ≥ 0, 𝑥2 = 0). The work
done against normal tractions, 𝑛, was calculated for each point in the cohesive zone by integrating the area under the mode-I
omponent of the traction–separation law for all increments up to the current level of 𝛿𝑛, in accordance with Eq. (1). Similarly, 𝑡
as determined from the area under the mode-II component of the traction–separation law up to the current level of 𝛿𝑡. From these

alculations of 𝑛 and 𝑡, the phase angle, 𝜓(𝑥1), could be determined at every point ahead of the crack. The value of 𝜑𝜎 (𝑥1) was
omputed directly from the corresponding values of the tractions.

. Results

The results presented in this section are divided into two main classes. In the first set of results, the loading is done in such a way
hat 𝜓𝐾 remains constant throughout the loading procedure. This is described as proportional loading. In the second set of results,
he loading is done in such a way that 𝜓𝐾 changes during the loading procedure. This is described as non-proportional loading.

.1. Proportional loading

.1.1. Uncoupled cohesive laws
Fig. 5 shows the normal and shear tractions ahead of the crack tip for an uncoupled, linear cohesive law (Appendix A.1) for a

ixed value of the phase angle, 𝜓𝐾=45o, and for three different values of 𝜉𝑡∕𝜉𝑛 (Note that for a linear law 𝜉𝑡𝑜 = 𝜉𝑡 and 𝜉𝑛𝑜 = 𝜉𝑛).
he value of 𝜉𝑛𝑜∕𝑅 for this plot is equal to 0.01375, which satisfies small-scale conditions. The excellent agreement between the
umerical results and the asymptotic 𝐾 field can be seen from this plot for both the opening and shear tractions. The 𝐾 field under
hese conditions extends to within about 0.01𝑅 from the crack tip, with the relationship between the cohesive length and the extent
f the singular field being visible from Fig. 5(b).

Fig. 5 provides what might be considered to be a classic understanding of LEFM: an inverse square root relationship between
tress and distance from the crack tip, with a magnitude given by 𝐾𝐼 and 𝐾𝐼𝐼 , but which breaks down near the crack tip.3 This
erifies the ability of a cohesive-zone model to describe LEFM under appropriate small-scale conditions.

The variation of the phase angle, 𝜓(𝑥1), with 𝑥1, is illustrated in Fig. 6 with the same three cohesive laws (with different 𝜉𝑡∕𝜉𝑛
atios) as the plots in Fig. 5, but with three different phase angles. As expected, 𝜓𝑜 tends to 𝜓𝐾 close to the crack tip in all cases,
ut generally deviates from this equality in the 𝐾 field. The exception is the special case of 𝜉𝑡∕𝜉𝑛 = 1, for which 𝜓(𝑥1) equals 𝜓𝐾 for
ll values of 𝑥1∕𝑅. This is because the ratio of the two stresses is equal to the square root of the ratio of the two modes of work in
his law. Therefore, there is a special case agreement between 𝜓(𝑥1) and 𝜓𝐾 within the 𝐾 field where the stresses must also scale
ith 𝜓𝐾 . For the other cohesive laws, the same agreement between the stresses and 𝜓𝐾 applies, but now the ratio of the stresses is
ot the same as the ratio of the square root of the work.

This point is emphasized in Fig. 7, which shows how the traction ratios, represented by the phase angle 𝜑𝜎 , vary with 𝑥1. For
𝑛∕𝜉𝑡 = 1, the traction ratio is identical to the square root of the work ratios for a linear cohesive law. Therefore, 𝜓𝜎 = 𝜓𝐾 , both
ear the crack tip and in the 𝐾 field. For other values of 𝜉𝑛∕𝜉𝑡, 𝜑𝜎 = 𝜓𝐾 only in the 𝐾 field. However, it should be remembered
hat it is at the crack tip where fracture occurs, and where one needs a measure of mode-mixedness that can be linked to LEFM. As
iscussed earlier, such a measure is provided by 𝜓𝑜, which equals 𝜓𝐾 for an uncoupled law.

3 It should be noted that, for this law, the asymptotic stresses near the crack tip are limited by the requirement for a finite work at the crack tip, rather
6

han any intrinsic value of cohesive strength.
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Fig. 5. (a) The normal tractions and (b) the shear tractions along 𝑥1 for uncoupled, linear cohesive laws at fixed values of 𝜉𝑛∕𝑅 and |𝐾|∕𝐸̄
√

𝑅, and at three
different values of 𝜉𝑡𝑜∕𝜉𝑛𝑜 . The phase angle, 𝜓𝐾 is equal to 45o.

Similar conclusions can be drawn from calculations conducted using uncoupled laws with different shapes. Although this has
been demonstrated before for beam-like geometries [16], here we show the results for a 𝐾-field geometry using a trapezoidal law
(described in Appendix A.1) for two values of mode-mixedness. Fig. 8 shows how the stress field evolves near the crack tip for
𝜓𝐾 = 45o, and a peak traction ratio 𝜎̂𝑡∕𝜎̂𝑛 = 2. The length of the fracture process zone is less than 1% 𝑅 and, in the 𝐾-field zone
(𝑥1∕𝑅 >10−2), the normal and shear tractions are identical to the asymptotic field. In this case, the tractions of the uncoupled
cohesive law are at their maximum values, established by their cohesive strengths, all the way to the cohesive crack tip, because
neither law has entered the softening regime under the conditions for which the plot has been made. It should be emphasized that
𝜉𝑜 is small enough for LEFM to be valid, as can be seen from the stress field of Fig. 8.

Fig. 9 shows how the phase angle 𝜓(𝑥1) varies with 𝑥1 for 𝜓𝐾 = 45o and 60o. As before, it can be seen that the crack-tip phase
angle, 𝜓𝑜 tends to 𝜓𝐾 . Away from the crack-tip region, there is no particular significance to this partition of work. However, it should
be noted that, for these calculations, much of the 𝐾-field is associated with the initial, linear portion of the traction–separation law.
This means that, for the two cases with identical mode-I and mode-II cohesive laws, the laws look like linear laws with equal
cohesive lengths. As discussed in connection with Fig. 6, this means that in the 𝐾-field region the special case of 𝜓(𝑥1) = 𝜓𝐾 is met.

4.1.2. Coupled cohesive laws
The results for the coupled cohesive law developed by Park et al. [38], which we refer to as the PPR law, are described in this

section.
Fig. 10 shows the normal and shear tractions ahead of the crack tip with 𝜓𝐾 = 45o, and with values of 𝐾 and cohesive

strengths corresponding to those used for Fig. 8. In this case, the cohesive-zone is fully developed, so the stresses at the crack
tip are approximately zero. As with the uncoupled law, the cohesive-length scale, 𝜉𝑜, is so small that the stresses are described by
the asymptotic 𝐾-field at distances greater than about 0.01𝑅 from the crack tip. Again, this confirms the ability of a cohesive-zone
model to describe LEFM under appropriate conditions.

The phase angle, 𝜓 , is plotted in Fig. 11 for three peak-traction ratios, 𝜎̂𝑡∕𝜎̂𝑛, and two values of 𝜓𝐾 . These plots illustrate the
effect of different parameters for the PPR cohesive law. A key difference between the results for this form of a coupled law, and the
7
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Fig. 6. The variation of the phase angle with distance ahead of the crack tip for three uncoupled linear cohesive laws, with 𝜉𝑡∕𝜉𝑛 = 4, 1 and 0.25: (a) 𝜓𝐾 = 75◦,
b) 𝜓𝐾 = 60◦, and (c) 𝜓𝐾 = 45◦. For these plots, |𝐾|∕𝐸̄

√

𝑅 = 3.74 × 10−7, and 𝜉𝑛∕𝑅 = 0.01375.

esults for uncoupled cohesive laws, is that, in general, 𝜓𝑜 ≠ 𝜓𝐾 . The only situation in which 𝜓𝑜 = 𝜓𝐾 is the special case of 𝜓𝐾=45o,
when the shear and normal laws are identical. A similar result that, in general, 𝜓𝑜 ≠ 𝜓𝐾 for coupled mixed-mode laws was found
when several other coupled cohesive laws were explored, including those of Xu and Needleman [18], and Sørensen and Goutianos
[41].
8
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Fig. 7. The variation of 𝜑𝜎 for the three uncoupled linear cohesive laws of Fig. 5. 𝜓𝐾 =45 ◦ and three different ratios 𝜉𝑡∕𝜉𝑛.

Fig. 8. Normal and shear tractions along axis 𝑥1 for an uncoupled trapezoidal cohesive law. The non-dimensional parameters for this plot are given in Table A.1
for 𝜎̂𝑡∕𝜎̂𝑛 = 2.

The reason for the discrepancy between 𝜓𝐾 and 𝜓𝑜 can be seen by a simple examination of the form of the equations. If, in
general, 𝜎𝑛 = 𝑓𝑛(𝛿𝑛, 𝛿𝑡) and 𝜎𝑡 = 𝑓𝑡(𝛿𝑛, 𝛿𝑡), then the crack-tip phase angle, which from Eq. (2) is given by

𝜓𝑜 = tan−1
⎛

⎜

⎜

⎝

∫
𝛿𝑡𝑜
0 𝑓𝑡(𝛿′𝑛, 𝛿

′
𝑡 )𝑑𝛿

′
𝑡

∫
𝛿𝑛𝑜
0 𝑓𝑛(𝛿′𝑛, 𝛿

′
𝑡 )𝑑𝛿′𝑛

⎞

⎟

⎟

⎠

1∕2

, (13)

will generally depend on how 𝛿𝑡 varies with 𝛿𝑛, and it is going to be path dependent. In particular, there is no reason why 𝜓𝑜 should
be related to 𝜓𝐾 .

4.2. Non-proportional loading

In the previous section, we showed that 𝜓𝑜 = 𝜓𝐾 for uncoupled laws and proportional loading; but this identity was valid only for
very special forms of coupled laws. In this section, we explore the effect of non-proportional loading on this relationship. Specifically,
we do this by determining the evolution of the phase angle as the geometry is loaded to the same final conditions (𝜓𝑘 = 45o), but
following two different loading paths, 𝑝1 and 𝑝2, illustrated schematically in Fig. 12.

Fig. 13 shows how the phase angle 𝜓(𝑥1) varies with 𝑥1 for an uncoupled trapezoidal law at four discrete points along the two
non-proportional loading paths, 𝑝1 and 𝑝2 identified in Fig. 12. It can be seen that the crack-tip phase angle, 𝜓𝑜, always matches
the applied value of 𝜓𝐾 , at all points during loading. Similar results were obtained for all the other paths and cohesive parameters
that were explored.

The corresponding results for the PPR cohesive law are shown in Fig. 14. In this case, it will be remembered that 𝜓𝑜 was not
equal to 𝜓𝐾 for proportional loading. Here the two parameters are in closer agreement for a trajectory that starts off dominated
by mode-I. However, the two are even more divergent for the mode-II dominated trajectory than for the proportional trajectory,
9

indicating clear evidence of path-dependence for the crack-tip phase angle. This path dependence of 𝜓𝑜 was confirmed as being
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Fig. 9. Phase angle 𝜓(𝑥1) along axis 𝑥1 for uncoupled trapezoidal cohesive laws with varying stiffnesses and peak traction ratios: (a) 𝜓𝐾 =45o, and (b) 𝜓𝐾 =60o.
he non-dimensional parameters for this plot are given in Table A.1 for the three values of 𝑘𝑡∕𝑘𝑛 e.g. 𝜎̂𝑡 = 0.5𝜎̂𝑛 for 𝑘𝑡 = 0.5𝑘𝑛, 𝜎̂𝑡 = 𝜎̂𝑛 for 𝑘𝑡 = 𝑘𝑛 and 𝜎̂𝑡 = 2𝜎̂𝑛
or 𝑘𝑡 = 2𝑘𝑛. See Appendix A.1 for definitions of 𝑘𝑛 and 𝑘𝑡.

Fig. 10. Normal and shear tractions along axis 𝑥1 when the fracture process zone is fully developed for the coupled PPR cohesive law. The non-dimensional
parameters for this plot are given in Table A.2 for 𝜎̂𝑡∕𝜎̂𝑛 = 2.

a general result for other paths and cohesive parameters for coupled laws. It should be emphasized that, in all cases, the total
work at the crack tip remained the same. There was no path dependence to this quantity, as expected for potential-based laws. The
path-dependency was only related to how the crack-tip work was partitioned between the two modes.
10
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Fig. 11. Phase angle 𝜓 along axis 𝑥1 for coupled PPR cohesive laws with varying stiffnesses and peak traction ratios: (a) 𝜓𝐾 =45o, and (b) 𝜓𝐾 =60o. The
on-dimensional parameters for this plot are given in Table A.2 for the three values of 𝜎̂𝑡∕𝜎̂𝑛.

Fig. 12. Proportional-loading path OA (dashed line) and non-proportional-loading paths 𝑝1 and 𝑝2 (solid lines).

5. Discussion

5.1. LEFM assumptions

Mixed-mode loading in an LEFM framework is completely described by the energy-release rate, , and the phase angle, 𝜓𝐾 . It is
ssumed that any small-scale deformation at the crack tip is uniquely described by these two parameters, which are both independent
f the loading history. Therefore, in corresponding cohesive zone modelling, both the magnitude of the work done at the crack tip
11
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Fig. 13. The variation of 𝜓 with 𝑥1 with an uncoupled trapezoidal law for four steps in a non-proportional loading process, as 𝜓𝐾 increases along the
on-proportional loading paths (a) 𝑝1 and (b) 𝑝2 shown in Fig. 12. The uncoupled cohesive law parameters are defined in Table A.1, with 𝜎̂𝑡 =2𝜎̂𝑛.

uring this deformation and the partition of this work into normal and shear components can be deduced uniquely from the two
arameters.4 Mixed-mode failure criteria used in LEFM analyses are all predicated on this concept of path-independence.

The use of potential-based traction–separation laws within a cohesive-zone framework, ensures the same total work is done
gainst crack-tip tractions for any loading path under mixed-mode loading. Therefore, this class of cohesive law results in an
greement with one LEFM assumption: the energy-release rate does not depend on the loading history. However, not all potential-
ased cohesive laws match the second assumption: the LEFM partition of the work at the crack tip can be described only in terms
f 𝐾𝐼 and 𝐾𝐼𝐼 .

The present paper confirms the earlier results of [16,27,28] that the LEFM assumption about the prediction of work is satisfied
or uncoupled cohesive laws if 𝛽 ≠ 0.5 However, it is shown here that coupled cohesive laws generally result in a different partition
f crack-tip work from that assumed by LEFM. Furthermore, while the total work is path independent, this partition of crack-tip
ork can be path dependent. This conclusion has been illustrated by the results presented in this paper, but it was also confirmed by

esting other potential-based coupled cohesive laws from the literature [18,38,41], with proportional and non-proportional loading
aths.

.2. Implications for LEFM mixed-mode failure criteria

The implicit assumption behind LEFM mixed-mode failure criteria is that an interface separates when the energy-release rate,
, exceeds a critical value, 𝛤 , which is identified as the toughness, and is a function of the phase angle:  ≥ 𝛤 (𝜓𝐾 ). This functional

4 This is rigorously correct only when the second Dundurs parameter, 𝛽, is equal to zero. When 𝛽 ≠ 0, LEFM cannot be used to partition the work done in
eforming the crack-tip region into shear and normal components, although the total work is still given by the energy-release rate [33,42].

5 LEFM requires an additional length parameter to represent the behaviour of uncoupled potential-based cohesive laws when 𝛽 ≠ 0 [16,27].
12
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Fig. 14. The variation of 𝜓(𝑥1) with 𝑥1 with a coupled PPR law for four steps in a non-proportional loading process, as 𝜓𝐾 increases along the non-proportional
oading paths (a) 𝑝1 and (b) 𝑝2 shown in Fig. 12. The uncoupled cohesive law parameters are defined in Table A.1, with 𝜎̂𝑡 =2𝜎̂𝑛.

ependence of toughness on phase angle can take any form, including non-monotonic forms. However, in LEFM, the phase angle is
efined only in terms of the geometry and the loads, and is path independent. Therefore, the toughness of an interface is implicitly
ssumed to be path independent.

In practice, most LEFM mixed-mode fracture tests are conducted under proportional loading, so that 𝜓𝐾 is constant throughout
test. An envelope of toughness is developed as a function of 𝜓𝐾 through a series of separate tests, each one exploring a different

alue of 𝜓𝐾 . With this approach, it would not matter if the actual crack-tip phase angle, 𝜓𝑜, of the fracture process was incorrectly
escribed by 𝜓𝐾 , a unique mixed-mode failure envelope would always be developed that described the experimental results. This
ailure envelope could then be used predictively in design, under the same assumptions of LEFM and proportional loading.

It would be relatively easy to develop a cohesive-law that describes such limited data. Both coupled and uncoupled laws could
ork; indeed, even a law not based on a potential function could work, if the issue of path dependence is not explored. However, only

he uncoupled law would be consistent with LEFM assumptions. More detailed experimental studies might reveal path-dependence,
iolating LEFM, in which case coupled laws derived from a potential function or cohesive laws not derived from a potential function
ight be more appropriate.

. Conclusions

Different types of mixed-mode, potential-based cohesive laws under small-scale conditions have been used to explore how the
ehaviour of the crack-tip region compares to the assumptions that underpin linear-elastic fracture mechanics (LEFM). It has been
hown that the fundamental assumptions of LEFM are fully consistent with uncoupled, potential-based laws. For these types of law,
ot only is the work done against crack-tip tractions independent of the loading path and equal to the value of the 𝐽 -integral, but
he partition of this work into the two orthogonal modes is also in agreement with LEFM assumptions. The crack-tip phase angle is
13

qual to the phase angle of the surrounding 𝐾-field if small-scale conditions are met.
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Coupled, potential-based cohesive laws result in the work done against the crack-tip tractions being path-independent and equal
o that given by the 𝐽 -integral (consistent with LEFM). However, the partition of this work into normal and shear components does
ot necessarily agree with that indicated by the surrounding 𝐾-field, even under small-scale conditions. In particular, the crack-tip

phase angle can be path dependent.
These results have implications for the interpretation of mixed-mode fracture experiments and design based on LEFM concepts.

LEFM assumes that deformation at a crack tip is uniquely described by the 𝐾-field. It also assumes that the local conditions for mixed-
mode crack advance are controlled by 𝐾𝐼 and 𝐾𝐼𝐼 , and, hence, mixed-mode failure is independent of the loading path. However,
if the normal and shear deformation processes at the crack tip are coupled, these assumptions would generally be violated to some
degree.

A full understanding of mixed-mode failure criteria requires path dependence to be explored. In the absence of any significant
path dependence being observed experimentally, uncoupled, potential-based cohesive laws with suitable empirical mixed-mode
failure criteria would seem to be adequate, and, perhaps, the easiest to implement numerically. In addition, the use of path-dependent
functions or coupled laws would need to be validated to ensure they did not introduce stronger path-dependence than merited by
the experimental results. Only if significant path dependence that needs to be modelled is observed experimentally, would it seem
to be imperative to use a coupled law, or path-dependent cohesive laws.
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Appendix. Potential-based mixed-mode cohesive laws

A.1. Uncoupled cohesive laws

Two forms of mixed-mode uncoupled cohesive laws are used in this study. The first is a special case of linear laws, for which
the tractions are linearly dependent on the displacements until failure. Mathematically, these are described by

𝜎𝑛(𝛿𝑛) = 𝑘𝑛𝛿𝑛 (A.1)

𝜎𝑡(𝛿𝑡) = 𝑘𝑡𝛿𝑡 , (A.2)

where 𝑘𝑛 and 𝑘𝑡 are the stiffnesses of the two modes, which need not be identical. The peak tractions were set high enough that
fracture did not occur in this study. However, they can easily be added if fracture needs to be modelled explicitly. It should be
noted that a physical manifestation of a linear-elastic cohesive law could be an interface bonded by compliant brittle elastic springs.
However, from a modelling perspective, linear laws have the unique feature that the instantaneous cohesive-lengths [28],

𝜉𝑛 = 2𝐸̄∕𝑘𝑛 and 𝜉𝑡 = 2𝐸̄∕𝑘𝑡 , (A.3)

do not vary during loading. Furthermore, the simplicity of linear cohesive-laws means that the results of all calculations performed
with them can be expressed in terms of only four non-dimensional parameters:

𝜉𝑛
𝑅
,
𝜉𝑡
𝜉𝑛
,

|𝐾|

𝐸̄
√

𝑅
, 𝜓𝐾 ,

here the first two terms describe the cohesive laws, and the second two terms describe the remote loading.
For completeness, Eqs. (A.1) and (A.2), can be used to show that the potential function is

𝛷 =
𝑘𝑛𝛿2𝑛
2

+
𝑘𝑡𝛿2𝑡
2

. (A.4)

Since
𝜕𝜎𝑛(𝛿𝑛)
𝜕𝛿𝑡

=
𝜕𝜎𝑡(𝛿𝑡)
𝜕𝛿𝑛

= 0 (A.5)

and therefore the mixed mode linear uncoupled laws are based on a potential function.
The second form of uncoupled law used in this study are trapezoidal laws [22]. The tractions for these laws increase linearly

with displacement until the normal and tangential displacements are 𝛿𝑛1 and 𝛿𝑡1 ; at which point the peak tractions are 𝜎̂𝑛 and 𝜎̂𝑡,
respectively. The tractions remain at these levels while the relevant displacements remain less than 𝛿𝑛2 and 𝛿𝑡2 , at which point they
drop linearly to zero at 𝛿𝑛 = 𝛿𝑛c and 𝛿𝑡 = 𝛿𝑡c . These laws can be expressed in the range −90o ≤ 𝜑𝛿 ≤ 90o as

𝜎𝑛 = 𝜎̂𝑛

⎡

⎢

⎢

⎢

𝛿𝑛
𝛿𝑛1

−

⟨

𝛿𝑛 − 𝛿𝑛1
⟩1

𝛿𝑛1
−

⟨

𝛿𝑛 − 𝛿𝑛2
⟩1

(

𝛿𝑛 − 𝛿𝑛
) +

⟨

𝛿𝑛 − 𝛿𝑛c

⟩1

(

𝛿𝑛 − 𝛿𝑛
)

⎤

⎥

⎥

⎥
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Table A.1
Parameters for the uncoupled trapezoidal cohesive law
used in the calculations for this paper. The critical mode-
I and mode-II instantaneous cohesive lengths are defined
as 𝜉c

𝑛 = 𝐸̄𝛿2𝑛𝑐 ∕𝛤𝑛 and 𝜉c
𝑡 = 𝐸̄𝛿2𝑡𝑐 ∕𝛤𝑡.

𝜎̂𝑛∕𝐸̄ 0.001

𝜉c
𝑛∕𝑅 0.0115

𝛿𝑛1∕𝛿𝑛c
0.01

𝛿𝑛1∕𝛿𝑛2 0.05

𝜎𝑡∕𝜎𝑛 0.5 1 2

𝑘𝑡∕𝑘𝑛 0.5 1 2

𝛿𝑡1∕𝛿𝑡c 0.0046 0.01 0.025

𝛿𝑡1∕𝛿𝑡2 0.05 0.05 0.05

𝜎𝑡 = 𝜎̂𝑡

⎡

⎢

⎢

⎢

⎣

𝛿𝑡
𝛿𝑡1

−

⟨

𝛿𝑡 − 𝛿𝑡1
⟩1

𝛿𝑡1
−

⟨

𝛿𝑡 − 𝛿𝑡2
⟩1

(

𝛿𝑡c − 𝛿𝑡2
) +

⟨

𝛿𝑡 − 𝛿𝑡c
⟩1

(

𝛿𝑡c − 𝛿𝑡2
)

⎤

⎥

⎥

⎥

⎦

(A.6)

where ⟨⋯⟩ are Macaulay brackets [43]. Macaulay brackets of the form ⟨𝛿 − 𝛿𝑖⟩
1 are interpreted as being equal to 0 when 𝛿 < 𝛿𝑖, or

qual to (𝛿 − 𝛿𝑖) when 𝛿 ≥ 𝛿𝑖.
The non-dimensional presentation of results for these trapezoidal laws is slightly more complicated than for the linear laws,

ecause of the additional parameters required to describe the laws. The problem is completely described by ten non-dimensional
roups. There are the two loading parameters, |𝐾|∕(𝐸̄

√

𝑅) and 𝜓𝐾 , and eight parameters that describe the cohesive laws. The values
of these eight parameters that are used in this paper are given in Table A.1.

Finally, it should be noted that what are termed as ‘‘uncoupled’’ mixed-mode cohesive laws are actually coupled through a failure
criterion of the general form

𝑓
(

𝑛
𝛤𝐼

,
𝑡
𝛤𝐼𝐼

)

= 1, (A.7)

where 𝛤𝐼 and 𝛤𝐼𝐼 are the areas under the mode-I and mode-II cohesive laws. When this condition is met, both sets of tractions are
set to zero. Although, it is not the point of this study to explore fracture, and the important results of this paper can be obtained at
arbitrary points during loading, it can be shown that Eq. (A.7) can be expressed as a failure criterion of the form 𝛤 = 𝛤 (𝜓𝐾 ) used
in LEFM. Under general mixed-mode loading, 𝛤 (𝜓𝐾 ) = 𝑊 ∗

𝑛 +𝑊 ∗
𝑡 , where 𝑊 ∗

𝑛 and 𝑊 ∗
𝑡 at failure are given by

𝑊 ∗
𝑛 =

𝛤 (𝜓𝐾 )
1 + tan2 𝜓𝐾

and 𝑊 ∗
𝑡 =

𝛤 (𝜓𝐾 ) tan2(𝜓𝐾 )
1 + tan2 𝜓𝐾

(A.8)

If for example, a simple failure criterion is used such as
𝑊 ∗
𝑛

𝛤𝐼
+
𝑊 ∗
𝑡

𝛤𝐼𝐼
= 1, (A.9)

then the failure criterion of Eq. (A.7) can be written as

𝛤 (𝜓𝐾 ) = 𝛤𝐼
1 + tan2 𝜓𝐾

1 + (𝛤𝐼𝐼∕𝛤𝐼 ) tan2 𝜓𝐾
(A.10)

An alternative way to demonstrate that ‘‘uncoupled’’ laws are actually coupled is to re-write Eq. (A.7) using the mode-I and
ode-II peak tractions. Assuming linear laws (Eqs. (A.1) and (A.2)):

𝛤𝐼 =
𝜎̂2𝑛
2𝑘𝑛

and 𝛤𝐼𝐼 =
𝜎̂2𝑡
2𝑘𝑡

(A.11)

and

𝑊𝑛 = 𝛤𝐼
(𝜎𝑛
𝜎̂𝑛

)2
and 𝑊𝑡 = 𝛤𝐼𝐼

(𝜎𝑡
𝜎̂𝑡

)2
. (A.12)

Then, the failure criterion of Eq. (A.9) is given by
(𝜎∗𝑛
𝜎̂𝑛

)2
+
(𝜎∗𝑡
𝜎̂𝑡

)2
= 1 (A.13)

where the tractions at failure, as a function of 𝜓𝐾 are

𝜎∗𝑛 = 𝜎̂𝑛

√

1
2

(A.14)
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Table A.2
Parameters for the coupled PPR cohesive law used in
the calculations for this paper. The critical mode-I and
mode-II instantaneous cohesive lengths are defined as
𝜉c
𝑛 = 𝐸̄𝛿2𝑛𝑐 ∕𝛤𝑛 and 𝜉c

𝑡 = 𝐸̄𝛿2𝑡𝑐 ∕𝛤𝑡.

𝜎̂𝑛∕𝐸̄ 0.00091

𝜉c
𝑛∕𝑅 0.0115

𝛼 1.9

𝛿𝑛1∕𝛿𝑛c
0.1

𝜎̂𝑡∕𝜎̂𝑛 0.5 1 2

𝜉c
𝑡 ∕𝑅 0.0539 0.0115 0.0018

𝛽 1.95 1.9 1.6

𝛿𝑡1∕𝛿𝑡c 0.04 0.1 0.23

and

𝜎∗𝑡 = 𝜎̂𝑡

√

(𝛤𝐼∕𝛤𝐼𝐼 ) tan2 𝜓𝐾
(𝛤𝐼∕𝛤𝐼𝐼 ) tan2 𝜓𝐾 + 1

(A.15)

A.2. Park–Paulino–Roesler (PPR) cohesive law

A number of different path-independent, coupled mixed-mode cohesive laws are available in the literature. In the present study,
the Park–Paulino–Roesler (PPR) cohesive law is used [38,39]. The normal and shear tractions are given by:

𝜎𝑛(𝛿𝑛, 𝛿𝑡) =
𝛷𝐼
𝛿𝑛c

[

𝑚
(

1 −
𝛿𝑛
𝛿𝑛c

)𝛼(𝑚
𝛼

+
𝛿𝑛
𝛿𝑛c

)(𝑚−1)
− 𝛼

(

1 −
𝛿𝑛
𝛿𝑛c

)𝛼−1(𝑚
𝛼

+
𝛿𝑛
𝛿𝑛c

)𝑚
]

[

𝛷𝐼𝐼
(

1 −
|𝛿𝑡|
𝛿𝑡c

)𝛽( 𝑛
𝛽
+

|𝛿𝑡|
𝛿𝑡c

)𝑛
+ ⟨𝛤𝑡 − 𝛤𝑛⟩

1

]

𝜎𝑡(𝛿𝑛, 𝛿𝑡) =
𝛷𝐼𝐼
𝛿𝑡c

[

𝑛
(

1 −
|𝛿𝑡|
𝛿𝑡c

)𝛽( 𝑛
𝛽
+

|𝛿𝑡|
𝛿𝑡c

)(𝑛−1)
− 𝛽

(

1 −
|𝛿𝑡|
𝛿𝑡c

)𝛽−1( 𝑛
𝛽
+

|𝛿𝑡|
𝛿𝑡c

)𝑛
]

[

𝛷𝐼
(

1 −
𝛿𝑛
𝛿𝑛c

)𝛼(𝑚
𝛼

+
𝛿𝑛
𝛿𝑛c

)𝑚
+ ⟨𝛤𝑛 − 𝛤𝑡⟩

1

]

𝛿𝑡
|𝛿𝑡|

(A.16)

where 𝛼 and 𝛽 are non-dimensionless constants, 𝛿𝑛𝑐 and 𝛿𝑡𝑐 are the mode-I and mode-II critical openings when the tractions become
zero, and 𝛤𝑛 and 𝛤𝑡 are the toughness values for mode-I and mode-II. The energy constants 𝛷𝑛 and 𝛷𝑡 are given by:

𝛷𝑛 =
(

−𝛤𝑛
)

⟨𝛤𝑛−𝛤𝑡⟩1∕(𝛤𝑛−𝛤𝑡)
( 𝛼
𝑚

)𝑚

𝛷𝑡 =
(

−𝛤𝑡
)

⟨𝛤𝑡−𝛤𝑛⟩1∕(𝛤𝑡−𝛤𝑛)
(

𝛽
𝑛

)𝑛
. (A.17)

The non-dimensional exponents 𝑚 and 𝑛 are given by:

𝑚 =
𝛼(𝛼 − 1)(𝛿𝑛1∕𝛿𝑛c )

2

(1 − 𝛼𝛿𝑛1∕𝛿𝑛c )
, 𝑛 =

𝛽(𝛽 − 1)(𝛿𝑡1∕𝛿𝑡c )
2

(1 − 𝛽𝛿𝑡1∕𝛿𝑡c )
. (A.18)

where 𝛿𝑛1 and 𝛿𝑡1 are the normal and tangential openings corresponding to the pure mode-I and pure mode-II peak tractions,
respectively.

The problem of this paper is completely described by ten non-dimensional groups, including the two loading parameters,
|𝐾|∕(𝐸̄

√

𝑅) and 𝜓𝐾 . The eight parameters used in this paper that describe the cohesive laws are given in Table A.2. The parameters
re chosen in such a way so as to ensure that the shape of pure mode-I and mode-II cohesive laws are similar to the shape of
he corresponding mode-I and mode-II uncoupled cohesive laws. They have identical peak tractions, critical openings and fracture
nergies as the corresponding uncoupled laws (Table A.1).
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