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Extended abstract

The interaction between a vibrating surface and an adjacent fluid is a common topic in
many subfields of acoustics, for example building acoustics, noise control, and acous-
tic non-destructive testing. In the most fundamental formulation, the specified normal
velocity vy of the vibrating surface at y = 0 and the resulting fluid pressure p can be
expressed as

vy(x, 0, t) = vy0 ei(kxx−ωt), (1a)

p(x, y, t) = p0 ei(kxx+kyy−ωt) . (1b)

Here, the fluid wavenumber y-component ky can be calculated from the surface wave-
number kx and the fluid wavenumber k f = ω/c f as

ky =
√

k2
f − k2

x = k f

√
1− (kx/k f )2. (2)

With c f being the fluid sound speed and cv = ω/kx being the surface vibration speed,

this can also be expressed as ky = k f

√
1− (c f /cv)2.

Classic treatments of this problem (see e.g. [1]) find two solution domains depending
on the surface vibration speed cv. In the supersonic domain (cv > c f ), the wavenumber ky

is real-valued, and (1b) expresses a plane fluid wave radiating away from the surface. In
the subsonic domain (cv > c f ), however, ky is imaginary-valued, so that (1b) expresses an
evanescent, non-radiating fluid wave that decays exponentially away from the surface.

However, multiple articles have shown radiating fluid waves to exist even in the sub-
sonic domain, specifically for Rayleigh waves [2] and Lamb waves [3–5]. These results
follow by numerically solving the complex dispersion equations for the investigated type
of wave. While this mathematical approach is standard and correct, it does not explain
why this subsonic radiation can occur. One brief qualitative explanation is provided in [2],
where the subsonic radiation is related to the attenuation of the surface vibration. This
attenuation is caused by the loss of the power radiated into the fluid by the pressure
wave.

In our work, we investigate subsonic radiation more closely through a simple phys-
ical model. We take the formulation in (1) and (2) and generalise it to an attenuated
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Figure 1: Properties of the wave radiated from an attenuated surface vibration. Left: Nor-
malised radiated intensity Iy0/(v2

y0Z f /2) = (kyr/k f )/|ky/k f |2. Middle: Radiation angle θ =

arctan(kxr/kyr). Right: Normalised fluid wave speed c/c f = k f /
√

k2
xr + k2

yr.

surface vibration using a complex surface wavenumber kx = kxr + ikxi, where the real
part relates to the surface vibration speed as kxr = ω/cv and the imaginary part provides
an exponential attenuation e−kxix.

The complex surface wavenumber kx makes ky = kyr + ikyi complex as well. In fact,
closer investigation of (2) reveals that any propagating (kxr > 0) and attenuated (kxi > 0)
surface vibration leads to a radiating (kyr > 0) fluid wave whose pressure increases expo-
nentially with distance from the surface (kyi < 0). (While the latter fact might at first seem
troubling, [5] explains why this is the correct physical behaviour for the inhomogeneous
fluid wave [2, 6] that an attenuated surface vibration radiates.)

We then investigate the properties of the radiated wave further. The left plot in Fig. 1
shows that if the surface vibration is not attenuated (kxi = 0), the radiated time-averaged
intensity Iy has a discontinuous singularity at the supersonic-subsonic transition and is
zero in the subsonic domain. If the surface vibration is attenuated, however, Iy is smooth
and continuous at the transition, showing power radiation in the entire subsonic domain.
The middle plot in Fig. 1 shows that the fluid wave will only ever graze the surface
(θ = 90°) in the subsonic domain if the surface vibration is not attenuated. Finally, if the
surface vibration is not attenuated, the right plot in Fig. 1 shows a sharp transition in the
actual fluid wave speed c from the fluid sound speed c f in the supersonic domain to the
surface vibration speed cv in the subsonic domain. For attenuated surface vibrations, this
transition is smoothed due to the lower speed of the inhomogeneous radiated waves.

For a more physically realistic treatment, instead of simply imposing a particular at-
tenuation of the surface vibration, we connect the radiated power to the power lost in the
surface vibration. With a surface vibration power flow Px(x) = Px0 e−2kxix, this implies
−∂Px/∂x = 2kxiPx = Iy [5]. With Iy and potentially Px depending on the variable kxr

and the unknown kxi, valid propagation modes are represented by the roots of the func-
tion f (kxr, kxi) = 2kxi − Iy0(kxr, kxi)/Px0(kxr, kxi) plotted in Fig. 2. The figure shows two
such modes: One ‘classic’ non-radiating subsonic mode, and one radiating supersonic
mode that extends into the subsonic domain, demonstrating very similar behaviour to
the subsonic radiation shown for A0 Lamb waves in [3–5].

To validate our results, we apply them to leaky A0 Lamb waves on a 1 cm thick steel
plate radiating into air on both sides. A number of perturbation methods already exist
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Figure 2: Diverging colour plot of the function f (kxr, kxi) = 2kxi − Iy0(kxr, kxi)/Px0(kxr, kxi), with
arbitrary values chosen for material constants and power flow. White colour and dashed lines
indicate the function’s roots ( f = 0), which represent valid propagating modes.
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Figure 3: Comparison of exact leaky A0 Lamb wave solutions for a 1 cm steel plate in air against
approximate solutions. Left: Attenuation due to radiation. Right: Phase speed of leaky and free
Lamb waves.

to predict the attenuation of leaky Lamb waves from free-plate solutions, as summarised
in [7], but none of them can predict subsonic radiation. Our results can be used as an
improved perturbation method to overcome this weakness. We base this perturbation
on the dispersion relations kfree

xr (ω) and kleaky
xr (ω) of free and leaky A0 Lamb waves, re-

spectively, in addition to the field equations for free Lamb waves. We then compare the
results against the exact attenuation kleaky

xi (ω).
The left plot in Fig. 3 shows our attenuation results. First, we calculate the atten-

uation based on the roots of 2kxi − 2Iy0(kfree
xr , 0)/Px0(kfree

xr , 0), i.e., as a simple perturba-
tion to a non-attenuated surface vibration. This results in the same attenuation as ex-
isting perturbation methods, with no radiation in the subsonic domain. Second, we
take the attenuation of the surface vibration into account, finding the roots of 2kxi −
2Iy0(kfree

xr , kxi)/Px0(kfree
xr , kxi). This results in the same qualitative behaviour as the exact

solution, although the attenuation peak and cutoff frequencies are different. The reason
for this difference is apparent from the phase speed of the free and leaky Lamb waves
in the right plot in Fig. 3: Close to the supersonic-subsonic transition, the two diverge,
leading to different coincidence frequencies. Third, we take this phase speed divergence
into account by finding the roots of 2kxi − 2Iy0(k

leaky
xr , kxi)/Px0(k

leaky
xr , kxi). This shows a

very good match with the exact solution, thus validating our results.
In summary, we have found that subsonic radiation occurs because any attenuated
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surface vibration will radiate power into the fluid. Our simple power flow model, which
connects the power radiated into the fluid to the power lost in the surface vibration,
shows that such subsonic radiation can occur in a small area of the subsonic domain.
Furthermore, we have shown that this model can be used as a perturbation method for
leaky Lamb waves that improves on existing ones. A full match with the exact attenua-
tion, however, requires using the exact phase speed, which itself is part of the exact leaky
solution.
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