
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Hege Bærland

Optimal reparametrization of curves
in shape analysis by introducing a
deep neural network architecture

Master’s thesis in Applied Physics and Mathematics
Supervisor: Elena Celledoni

June 2021M
as

te
r’s

 th
es

is

Hege Bærland

Optimal reparametrization of curves in
shape analysis by introducing a deep
neural network architecture

Master’s thesis in Applied Physics and Mathematics
Supervisor: Elena Celledoni
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Abstract

Shapes are typically described to be what is left of a object after filtering out translation,
rotation and change of size.

A big part of shape analysis consists of defining similarity and differences between
shapes in order to perform different applications, such as interpolation. A distance func-
tion is then defined, and in this thesis we will use a elastic metric from [37]. Since this
metric changes for curves with different parametrization, when comparing two shapes we
need to optimize the distance over all reparametrizations. This is an infinite dimensional
optimization problem and the main focus of this thesis, where we discretize so that in
practice we end up optimizing only over a finite number of parameters.

Several iterative techniques will be tested to solve the optimization problem, such as
gradient descent and Adam. Additionally, a deep neural network architecture is introduced
to make the optimization more efficient, where the parametrization function is described as
a single or multiple composition of an affine transformation and an activation function with
a skip connection. The implementation of the discussed algorithms has been performed
using Python and the tensor library for deep learning PyTorch [41].

1

Sammendrag

Former er typisk beskrecet som det som er igjen av et objekt uten å ta hensyn til plassering,
rotasjon og størrelse.

En stor del av formanalyse består av å definere likheter og forskjeller mellom formene
for å utføre ulike applikasjoner, som for eksempel interpolasjon. En avstandfunksjon er
så definert, og i denne avhandlingen vil en elastisk måleenhet fra [37] bli brukt. Siden
denne måleenheten endrer seg for kurver med ulik parametrisering, må vi minimere dis-
tansen over alle reparametriseringene når to kurver blir sammenlignet. Dette er et uen-
delig dimensjonalt optimeringsproblem og hovedfokuset i denne avhandlingen, hvor vi
diskretiserer slik at i praksis så ender vi opp med å optimere bare over et endelig antall
parametere.

Flere iterative teknikker blir utprøvd for å løse optimeringsproblemet, som gradient
descent og Adam. I tillegg blir et nevralt nettverk introdusert for å gjøre optimiseringen
mer effektiv, hvor parametriseringsfunksjonen blir brukt som aktivasjonsfunksjonen i hvert
lag som genererer den nye parametriseringen og dens deriverte. Implementasjonen algo-
ritmene diskutert i avhandlingen har blitt utført ved bruk av Python og tensorbiblioteket
for dyp læring, PyTorch [41].

2

Preface

This thesis concludes a five-year integrated master’s degree in Applied Physics and Math-
ematics at The Norwegian University of Science and Tehcnology (NTNU), with special-
ization in industrial mathematics.

I would very much like to thank my supervisor, Elena Celledoni, for the valuable guid-
ance and good assistance through the last year.

Trondheim, June 2021
Hege Bærland

3

4

Table of Contents

Abstract 1

Sammendrag 2

Preface 3

Table of Contents 6

1 Introduction 7
1.1 Background . 7
1.2 Motivation . 8

2 Literature review 9
2.1 Shape Analysis . 9

2.1.1 Describing shapes with use of landmarks 9
2.1.2 Describing shapes as planar curves 10

2.2 Curve matching . 10
2.3 Shape space and metric . 11
2.4 Reparametrization and optimization . 13

2.4.1 Dynamic programming . 13
2.4.2 Gradient descent . 14

3 Theoretical framework 17
3.1 Differential geometry . 17
3.2 A Shape Space Metric . 18
3.3 Modelling character motions . 20
3.4 Neural networks . 22

3.4.1 Residual neural networks . 23

5

4 Method 25
4.1 Gradient descent . 27
4.2 Adam method . 28
4.3 Neural networks . 29

5 Experiments and Results 31
5.1 Curves in R3 . 31

5.1.1 Gradient descent . 31
5.1.2 Adam method . 35
5.1.3 Neural networks . 38
5.1.4 Summary . 44

5.2 Animation curves from motion capturing 45

6 Conclusion and future work 49
6.1 Future work . 49

Bibliography 51

Appendix 57

6

Chapter 1
Introduction

1.1 Background

Shape analysis is a field much studied over the last years, and are applied to several ar-
eas. Already in 1917, a paper by D’Arcy Thompson was published, where shapes was
described using mathematics and physics. Since then, a numerous of articles have been
published with different approaches and methods.

One area where shape analysis is applied is when describing motions of virtual char-
acters on TV or in computer games. They are often represented as skeleton animations,
translated into curves and shapes by tracking the positions of the bones throughout the mo-
tion. Some examples of applications done related to this topic are interpolation to make
the motions cyclic ([11], [14]), comparison of animations ([3]) and identifying movement
([27, 12], using signatures).

Another field where shape analysis is applied is in biomedical image analysis ([16],
[15]), where for example one application is to transform one anatomical structure to the
other using anatomical curve information.

Shapes are typically described as unparametrized curves in a vector space or on a
manifold [4], [11]. A common approach to work with similarity between unparametrized
curves is to define shapes as equivalence classes of certain mappings, where the equiva-
lence relation is induced by reparametrization. Given two curves c0, c1 : I → M with
I = [a, b] ⊂ R and M a vector space or a manifold, the equivalence classes [c0], [c1] are
defined as

c0 ∼ c1 ⇐⇒ ∃ϕ : c0 = c1 ◦ ϕ,

where ϕ is a smooth, strictly increasing bijection1 on I. The space of parametrized
curves containing c0 and c1 is denoted by P , which is an infinite dimensional manifold.

1A bijection is a function that is both onto and one-to-one, i.e. all elements in the image can be reached and
only by one element from the codomain.

7

We will focus on regular or immersed curves [4], where a regular curve is defined as a
curve with a non-vanishing tangent, i.e. ċ(t) 6= 0. Hence we can define

P := Imm(I,M) := {c ∈ C∞(I,M)|ċ(t) 6= 0},

where M is a certain space, f.ex. a manifold or Rn. This shape space could also be
defined on closed curves, where usually the interval I is replaced by the unit circle S1,
but this can cause problems/give a more complicated approach in for instance defining a
geodesic. Therefore only open curves will be examined in this paper.

The shapes, denoted [c], can finally be collected in the corresponding shape space:

S := P/ ∼ .

Since we are working on similarity between curves, we need to find a way to measure
this similarity, typically a distance function. Distance functions on this shape space are
usually obtained from a distance function dP on the underlying space P as follows:

dS([c0], [c1]) := inf
ϕ
dP(c0, c1 ◦ ϕ), (1.1)

where ϕ ranges over all possible curve reparametrizations. There are several methods
to find the optimal reparametrization, i.e. the reparametrization giving the minimal dis-
tance between two shapes. This paper will introduce both a gradient descent and a Adam
approach where an activation function depending on parameters A and b will be used to
define the diffeomorphism ϕ, and the optimization problem will be solved with respect
to these parameters. In addition, a neural network model with the same principle will be
examined.

1.2 Motivation
As already stated, this theory on shape analysis is adapted into the field of motions of
characters on TV or in computer games. Then the motion is defined by a skeleton of bones
and joints and an animation curve. The distance between different motions are calculated
with the distance function (1.1) (which will be elaborated later), and the animation curves
are treated as the immerse curves defined in the space P .

Several methods has shown good results for solving this optimization problem, among
others dynamic programming and gradient descent ([14], [3]). However, the methods
implemented so far have high computational cost, and it is desirable to find a method of
reparametrization that minimizes this.

8

Chapter 2
Literature review

D’Arcy Thompson was the first to give a biophysical explanation of size and shape of
organisms in On Growth and Form (1917). He explained the shapes of things in nature
in terms of physics and mathematics. One well-known idea of his is ’the theory of trans-
formations’, where one species can transform into another related species by using the
transformation of the standard Cartesian grid. This can especially be related to finding a
similarity measure for shapes, where one approach is to measure the energy for deforming
one of the shapes into the other.

2.1 Shape Analysis

There have been multiple approaches in how to define a shape, for instance by landmarks
or as curves or surfaces.

In general it is common to define a shape space in two steps [44]. First a mathematical
representation of curves with suitable constraints is often defined as a preshape space,
and then elements of the preshape space which preserves the shape by transformations as
rotation, translation, scaling and reparametrization are identified. This final quotient space
is the desired shape space.

2.1.1 Describing shapes with use of landmarks

Kendall [22] defined in 1984 a shape as what is left after filtering out the effects of trans-
lation, rotation and dilatation1, and he represented them as points in the Euclidean space
which is finite dimensional. He used landmarks (later called), which is a finite set of
coordinate points that determine the shape.

He defined a shape coordinate-free by saying that it is the representing point, i.e. equiv-
alence class, in the quotient space Σkm defined by

1change of size

9

Σkm = {(Rm)k−1\0}/Sim, (2.1)

where Sim is the group of similarities caused by rotations and dilatations.
If the dilatation group first is quotiented out (by replacing z with z/‖z‖) and then apply

the rotation group SO(m), the final shape space is defined as

Σkm = Skm/SO(m). (2.2)

Here Skm is the unit sphere Sm(k−1)−1.
The shape spaces for m = 1 or 2 are being called shape-manifolds, and he proves that

it is also a C∞ riemannian manifold. This opens the opportunity for distance functions - a
way to measure similarity between shapes.

Although this was a breakthrough in shape analysis, there are some drawbacks. The
accuracy of describing a shape by using landmarks is dependent on how the marks are
chosen, and it is also often difficult to automate the choice of these landmarks.

2.1.2 Describing shapes as planar curves

Kendall and his colleagues took major steps in shape analysis, but with limitation of de-
scribing shapes by using landmarks. In 1998, Younes introduced a new way of defining
shapes [52], i.e. represent the boundary of the shape as a continuous, planar curve. They
were seen as elements of a infinite-dimensional shape space, and adopting a Riemannian
point of view gave possibilities to computation of geodesics and optimal matching between
plane curves.

Further Klassen et. al. [25] computed the geodesic between closed curves using nu-
merical algorithms by just considering arc-length parametrized planar curves. They were
first to compute the geodesic directly on the space of closed curves and such that it was
reparametrization invariant.

Since this, Michor og Mumford [32] and Mennuci [30], [31] among others have ex-
amined many different choices for comparing shapes using Riemannian metrics on spaces
of planar curves.

2.2 Curve matching
In [42], Sebastian et. al. divided curve alignment methods into two different categories:
either based on rigid transformations ([48], [28], [5]) or on nonrigid deformations ([47],
[50], [21], [19]). Methods based on rigid transformations match feature points by finding
the optimal rotation, translation and scaling parameters, while methods that are based on
nonrigid deformations find the mapping from one curve to another which minimizes some
”stretching” and ”bending” energies. Some disadvantages of the first kind of methods
are that they are sensitive to occlusion, deformations of parts and other variations in the
object form. Of the second type, some disadvantages can be that the curves are treated
asymmetrically, they are not rotation and scaling invariant and sensitivity to sampling of
the curves and occlusion.

10

It was Cohen et al. [13] that introduced a deformation-based approach to curve match-
ing. They matched high curvature points on the curves, while a smooth displacement field
is maintained.

2.3 Shape space and metric
In this thesis, shapes are defined as curves. According to [6], there exists two different
approaches to define the shape space. One option is to use the transitive left action of the
set of spatial deformations Φ, i.e. the set of diffeomorphisms on the ambient space, on the
set of shapes S

Φ× S → S, (ϕ, c) 7→ ϕ ◦ c. (2.3)

If we equip the space of diffeomorphisms with a Φ-invariant metric, the distance be-
tween two curves c0 and c1 can be measured as the minimal cost of a deformation trans-
forming one shape into the other

dS(c0, c1) = inf{dΦ(Id, ϕ)|ϕ ∈ Φ, ϕ ◦ c0 = c1}. (2.4)

This option is inconvenient because the entire ambient space is deformed when de-
forming a curve. Instead, it is possible to quotient out the set of temporal deformations
Φ, i.e. the action of reparametrizing a curve. Then the transitive right action of Φ on the
space of parametrized curvesM is considered,

M× Φ→M, c 7→ c ◦ ϕ. (2.5)

The distance between two shapes is then measured as the distance between one curve
that is fixed parametrized and one curve with optimal reparametrization,

dS(c0, c1) = inf{dM (c0, ϕ ◦ c1)|ϕ ∈ Φ}. (2.6)

In this case the ambient space is not affected, therefore will this approach be the focus
in this paper.

Now a metric to measure the distance is needed, where several options have been
suggested throughout the years.

An important example is the reparametrization invariant L2-metric,

G0
c(w, z) =

∫ 1

0

〈w(t), z(t)〉|c′(t)|dt, w, z ∈ TcM, (2.7)

where we can denote |c′(t)|dt = dl as the arc length and simplify the equation. Unfor-
tunately this choice of metric induces a vanishing geodesic distance dS on the shape space,
as was shown in [33]. Michor and Mumford [33] showed that it is possible to connect two
shapes in this space with a path that can be made arbitrarily short.

This initiated studies on among others, local metrics, Sobolev metrics and elastic met-
rics. Sobolev metrics, which are stronger versions of G0 where linear combinations of
higher order derivatives of the tangent vectors are used in the definition of the metric. A
family of these metrics for Rd-valued curves has the form

11

Gnc (w, z) =

∫ n∑
i=0

ai〈Di
lw,D

i
lz〉dl, w, z ∈ TcM. (2.8)

Here Dlw = w′/|c′|, i.e. the derivative with respect to the arc length, and the ai’s are
constants. Sobolev metrics are further studied in among others [45], [29] and [35]. One
issue discussed in [35] is completion of the space of curves for the metrics with n = 1, 2,
including the geodesic equation. The authors of [35] also showed how the Fréchet distance
is induced by the ”Finsler L∞-metric”2.

In [35] it is shown that the geodesic equation for first-order Sobolev metrics is locally
but not globally well-posed3, but global existence of geodesics for Sobolev metrics Gn

with n ≥ 2 was found and proven in [7].
The first-order limit-case

G1,∞
c (w, z) =

1

L(c)

∫
〈Dlw,Dlz〉dl, w, z ∈ TcM, (2.9)

which can be seen as a descendant of [52], was studied in [34]. This is an elastic
metric, and can be mapped to an L2-metric using other coordinates (SRVT, introduced
later). In [37] they look at a similar metric, where different weights are added on the
tangential Dlw

T , Dlz
T and normal parts Dlw

N , Dlz
N of the arc-length derivatives of the

tangent vectors. So the definition of a 2-parameter family of elastic metrics is

Ga,bc (w, z) =

∫
a2〈Dlw

N , Dlz
N 〉+ b2〈Dlw

T , Dlz
T 〉dl, w, z ∈ TcM. (2.10)

In [20] Joshi et al. introduced a framework convenient for getting an explicit formula
for the geodesic linking two shapes in a Riemannian manifold. This framework consists
of a transformation called Square Root Velocity Transformation (SRVT), and is applied
on closed curves in Rn.

This is further developed in [43], where the SRVT is applied to curves in Euclidean
spaces. Then the metric will take the following form

d2
L2(q0, q1) =

∫
I

‖q1(t)− q0(t)‖2dt, (2.11)

and applied on the shape space S,

dS([c0], [c1]) = inf
ϕ∈Diff+(I)

√∫
I

‖q0(t)− q1(ϕ(t)) ·
√
ϕ̇‖2dt. (2.12)

2the L∞-norm of the normal projection of the tangent vector
3a solution exists, the solution is unique, the solution’s behaviour changes continuously with the initial con-

ditions

12

2.4 Reparametrization and optimization
Solving optimization problem 2.6, two things need to be determined, namely how to
reparametrize the curves and which optimization method to use. Alternatively, we can
find the optimal reparametrization directly, without defining it first.

There has been several different ways to define a parametrized curve, for instance
angle functions, coordinate functions, curvature functions and speed functions. A concrete
example is Mio et al. [36] which represents closed curves as a pair of functions, namely
an angle function and a speed function.

Reparametrizations, or temporal deformations, of curves is typically defined as in-
creasing diffeomorphisms of the interval I which the curves are defined, i.e. Φ = Diff+(I).

In 1998, Younes [52] used numerical approximation to the curves by polygons, and
then found the maximum (he had changed the problem to a maximization problem, which
was not concave - hence the approximation was needed) by linear programming when
the number of edges in the polygonal approximated curves were small enough, else a
suboptimal steepest-descent approach can be used.

Common methods of how to find the optimal reparametrization directly is dynamic
programming and gradient descent, represented in the coming subsections.

2.4.1 Dynamic programming

In [49], Ueda and Suzuki implemented a dynamic programming approach to find the op-
timal matching between shapes. Their main focus was shape learning and shape recogni-
tion, which we also consider as applications in this thesis, by defining a convex/concave
structure of the shapes. This is being used to generalize the shapes, which is an important
feature in shape learning.

First, they transform the shape samples into multiscale representations, where each
discrete portion of the shape contours are observed at different viewscales.

To measure the difference/similarity between two shapes A and B, they compare them
at different scales (from finest to coarsest) - the more coarse scale you need to use to
get similar shapes, the bigger difference between the shapes. This is formulated as a
minimization problem where total segment dissimilarity is minimized, i.e.

Ψ(A,B) = min
{(iw,jw)|w=1,...,W}

W∑
w=1

ψ(a(iw−1 + 1|iw),b(jw−1 + 1|jw)). (2.13)

Here ψ is the function measuring the dissimilarity between segments a(iw−1 + 1|iw)
(inflection points of index iw−1 + 1 to iw of shape A) and segments b(jw−1 + 1|jw).

This minimization problem is solved using dynamic programming, making a dis-
similarity table with 2N columns and 2M rows, where values g(iw, jw) are placed in
the (iw, jw)th element. Here N is number of inflection points to shape A, and M the
same to B. The path from (iw−1, jw−1) to (iw, jw) means that a(iw−1 + 1|iw) matches
b(jw−1 + 1|jw).

The elements g(iw, jw) are calculated by the following recurrence equation,

13

g(iw, jw) = min
iw−1,jw−1

{g(iw−1, jw−1) + ψ(a(iw−1 + 1|iw),b(jw−1 + 1|jw))}. (2.14)

This approach is also adopted to yield for other similarity measures/matching methods
aswell, where the reparametrization is optimized instead [42] (adpoted to the elastic curve
model in [37]). We denote Φ the set of all piecewise linear and increasing homomorphisms
ϕ : I → I with vertices on the grid I × I , and Φk,l as the set consisting of all ϕ ∈ Φ that
satisfy ϕ(k) = l. Then we also get a table consisting of values H(i, j) defined as

H(i, j) := min
ϕ∈Φi,j

E(ϕ; 0, 0; i, j), (2.15)

where E is a energy functional, i.e. H(i, j) correpsonds to the minimal energy needed
to match the curve segments c0|[0,i] and c1|[0,j] . This energy is in other words the function
we want to minimize defined in the metric 3.5, namely

E(k, l; i, j) =

∫ i

k

|q0 − qk,l;i,j |2Rddt (2.16)

where

qk,l;i,j(t) := q1 ◦ ϕk,l;i,j
√
j − l
i− k

and ϕk,l;i,j(t) := l + (t− k)
j − l
i− k

. (2.17)

To simplify, we note that this can be seen as a recursion

H(i, j) = min
k,l∈I,k<i,l<j

E(k, l; i, j) +H(k, l). (2.18)

Finally, the optimal reparametrization is obtained by backtracking the minimizing in-
dices and use the following formula,

ϕi,j(t) =

{
ϕk,l;i,j(t) t ∈ [k, i]
ϕk,l(t) t ∈ [0, k]

(2.19)

where (k, l) are the the solution to 2.18.

2.4.2 Gradient descent
Another common approach for solving the optimization problem of finding the optimal
reparametrization is a gradient descent approach. According to [44] the computational
cost is lower compared to the dynamic programming approach, which is an advantage.
However, the gradient descent method has an important limitation, namely that its solution
always is local for non-convex problems.

In 1995, Caselles et al. [9] and Kichenassamy et al. [23] studied how to minimize a
geometric energy, a generalization of Euclidean arclength, that was defined on curves with
respect to the edge-detection problem. This was done by deriving the gradient descent
order flow. These articles focus on adjusting a contour/curve to fit a desirable object by

14

minimizing an energy function, and this method can be adapted to minimizing the distance
between two shapes, which is the main focus in this paper.

In [9], Caselles et al. show the relation between the energy minimization problem and
geodesic computations, which is useful in computing distance between shapes.

In 2005, Sundaramoorthi et al. [45] proceeded on this theory by computing the gra-
dient of the energy function for Sobolev metrics, discovering several drawbacks with the
already existing method. The method is still restricted to the segmentation problem, i.e.
minimizing a energy functional where a curve is trying to fit an object, while we want it to
yield for optimizing a distance between two curves with respect to their reparametrization.
This is done in among others [44].

Based on the description in [3], we get the following gradient and method.
The distance between two shapes can be interpreted as the energy needed for one of the

shapes to transform into the other. The energy functional in this case is again the function
which is we want to optimize (equation), i.e.

Eop(ϕ) :=

∫
I

∣∣∣ ċ0√
|ċ0|
−
√
ϕ̇

ċ1 ◦ ϕ√
|ċ1| ◦ ϕ

∣∣∣2dt =

∫
I

|q0 −
√
ϕ̇ · (q1 ◦ ϕ)|2dt. (2.20)

The variation in direction δϕ and the resulting L2-gradient of this energy functional is
given by Lemma 12 in [3] as

δE(ϕ)(δϕ) =

∫
I

〈
q0−

√
ϕ̇(q1 ◦ϕ), δϕ̇

√
ϕ̇(q1 ◦ϕ)−2

d

dt

(√
ϕ̇(q1 ◦ ϕ)

)
δϕ
〉
dt (2.21)

and

∇E(ϕ) = −
〈
q0,

d
dt

(√
ϕ̇(q1 ◦ ϕ)

)
ϕ̇

〉
+
〈
q̇0,

√
ϕ̇(q1 ◦ ϕ)

ϕ̇

〉
. (2.22)

Applying this gradient multiplied with a small parameter to the diffeomorphism until
the relative error is as small as desired, will give the optimal diffeomorphism and hence
the minimal distance.

15

16

Chapter 3
Theoretical framework

3.1 Differential geometry

This thesis will include some theory in differential geometry, so firstly some definitions
will be introduced.

First a brief definition of a manifold [40]. A manifold is roughly speaking a topologi-
cal space that locally looks like an open subset of an Euclidean space, but not globally. A
more precise definition is given in the appendix.

Then a differentiable manifold (M,F) conists of a topological manifoldM which is
locally an Euclidean space and a differentiable structure F onM.

Definition [53] In mathematics, a diffeomorphism ϕ : M 7→ N is an isomorphism
of smooth manifoldsM and N . It is an invertible function that maps one differentiable
manifold to another, such that both the function and its inverse are smooth.

In this thesis we mostly deal with diffeomorphisms that are orientation preserving. A
definition of an oriented manifold follows here.

Definition [46] A smooth manifoldM is called orientable if each tangent space ofM
can be oriented in a continuous way. In other words, an orientation class1 can be chosen
for each tangent space such that the following is satisfied: for each p ∈M there exists an
open neighbourhood U and linearly independent vector fields X1, .., Xn on U such that,
for every q ∈ U , (X1(q), ..., Xn(q)) belongs to the orientation class of TqM.

Then according to [46], ifM and N are oriented manifolds, the diffeomorphism ϕ :
M 7→ N is orientation preserving if the derivative in p, dϕp, preserves orientation at

1An orientation class: [46] Two basises of Rn can be continuously transformed to each other, through a
family of basis, if and only if they belong to the same orientation class.

17

each point p ∈ M. I.e., whenever (X1, ..., Xn) is in the orientation class of TpM, then
(dϕp(X1), ..., dϕn(Xn)) is in the orientation class of Tϕ(p)N .

3.2 A Shape Space Metric
Often in applications it is desirable to calculate the distance between two shapes, i.e. deter-
mine how different the shapes are. A short debrief of different metrics and improvements
is given in the literature review. Now a further derivation of the metric relevant to this
thesis will be discussed.

Shapes represent points in a shape manifold, and the distance between two shapes is
given as the shortest path linking them - the geodesic. Equipping the manifold with a
Riemannian metric provides a convenient framework, because then the geodesic linking
two shapes, c0 and c1, corresponds to the optimal deformation from c0 to c1 [6].

Figure 3.1: Optimal deformations for a reparametrization invariant metric. The dots represents the
optimal deformation using the metric, and the lines is the actual optimal deformation.

A suggestion for simplifying the problem of finding the distance, is to require the
distance function to be reparametrization invariant2. To do this, the group of temporal de-
formations T , or reparametrizations, is quotiented out. For this we consider the transitive
right action of T on the space of parametrized curves P ,

P × T → P , c 7→ c ◦ ϕ.
This does not, however, guarantee that the distance would not change when the curves

are reparametrized in different ways, as illustrated in figure 3.1. Therefore, given a T -
invariant Riemannian metric on P , we can measure the distance between the shapes of two
curves as the distance between one fixed parametrized curve and one optimally reparametrized,

dS(c0, c1) = inf
ϕ∈T

dP(c0, c1 ◦ ϕ), (3.1)

where the same notation is used for the curves and their shapes. The reparametrizations
of these curves are increasing diffeomorphisms of the interval I (usually I = [0, 1] or [0, 2π]),
i.e. T = Diff+(I). Now we define the Riemannian metric on P by equipping each tangent
space TcP of P at point c with a scalar product, denoted by

2independent of reparametrization.

18

Gc : TcP × TcP → R, (w, z) 7→ Gc(w, z).

Figure 3.2: Infinitesimal deformation of a curve and its decomposition into tangential and normal
parts. Figure taken from [6].

A suggestion for this metric is discussed in among others [4] and [6] (based on [37]),
namely the elastic metric

Ga,bc (w, z) =

∫
M

a2〈Dlw
N , Dlz

N 〉+ b2〈Dlw
T , Dlz

T 〉dl, w, z ∈ TcM. (3.2)

This is the most relevant metric because the arc-length derivation and integration dl =
|c′|dt guarantee that G is reparametrization invariant. Also because this is mapped to an
L2-metric (using SRVT, introduced later) and gives explicit expressions for the geodesics
and a closed form for the geodesic distance. Here Dlw

N , Dlz
N and Dlw

T , Dlz
T are

respectively the normal and tangential parts of the arc-length derivatives of the vector
fields w and z like in figure 3.2, and a2 and b2 are weights.

To interpret this metric in an easier way [37], you can look at the first integrand as a
measure in bending as it considers the normal components of w and z, while the second
integrand can be seen as a measure of stretching as it only depends on the tangential
components. The weights a and b can then be chosen to favour either stretching or bending.

To find an explicit formula, a transformation called the Square Root Velocity Transfor-
mation (SRVT) is introduced [20], [44]. This transform is given by

R(c) = q :=
ċ√
|ċ|
,

with its inverse defined as

R−1(q) =

∫ τ

0

q|q|dt. (3.3)

Then by substituting this transform for the curve and using a = 1 and b = 1
2 , the

elastic distance is just the L2-distance (shown in [44]),

d2

G1, 1
2

(c0, c1) = d2
L2(q0, q1) =

∫
I

‖q1(t)− q0(t)‖2dt. (3.4)

19

Finally, using a property of SRVT [44] stating

q(c ◦ ϕ) = q(c) ◦ ϕ ·
√
ϕ̇,

the geodesic distance function on the shape space S = P/Diff+(I) is given by

dS([c0], [c1]) = inf
ϕ∈Diff+(I)

√∫
I

‖q0(t)− q1(ϕ(t)) ·
√
ϕ̇‖2Rndt, (3.5)

where n is the dimension of the curve, i.e. c ∈ Rn (or a n-dimensional manifold).
Note that by inducing the SRVT, the metric becomes invariant to translation since now
only the derivative of the curve is considered.

The unique geodesic connecting the paths c0 and c1 exists if and only if there exists no
t ∈ [0, 1] and no λ > 0 such that ċ0(t) = −λċ1(t). Then the geodesic g is given by

g(τ, t) := R−1((1− τ)q0 + τq1). (3.6)

3.3 Modelling character motions
Motions of characters are typically defined by a skeleton and an animation curve, a so-
called skeletal animation, and are widely used in movie special effects, tv series and video
games. A common approach for creating realistic animations is motion capturing, which
is a method of recording an actor’s motions and superimpose them on a virtual model.

It is possible to adapt the theory of shapes as planar curves to this area, introduced in
[14]. Then the character animations are treated as points on infinite-dimensional Hilbert
manifolds and motion spaces are constructed like a shape space, i.e. equivalence classes
of animations under reparametrizations.

A further description of the skeletal animation is needed. The skeleton is a hierarchy of
bones which are connected by joints inducing a transformation between the bones, and this
hierarchy is seen as a directed, acyclic graph where each node has maximum one parent.
A global transformation for every bone is achieved by traversing the graph from a root
bone and perform all transformations along the graph [14].

Skeletons in computer animation are a simplification of real life skeletons, as bones
and joints often are left out, grouped together or new, artificial bones are added. The bones
are also given fixed lengths and with one to three degrees of rotational freedom, roll, pitch
and yaw. This is called an Euler angle representation, depending on how many rotations
the joint is capable of (the wrist can do all three rotations, while the knee only is capable
of one). The Euler angles consists of three angles, often referred to as roll, pitch and
yaw (ψ, θ, φ), which measure the angle with regard to the three axes x, y and z in R3

[2]. There are also certain constraints related to the joints, for example that the knee can’t
bend backwards, but this will be ignored for now. The skeleton used in the experiments of
chapter 5 is shown in figure 3.3.

Collecting all bones in a set B and denoting a bone’s degrees of freedom as dof(b) for
b ∈ B allows us to define the joint space J :

20

Figure 3.3: An example of the human skeleton used for computer animation. Figure taken from
[14], and based on the CMU Graphics Lab Motion Capture Database [8].

J := Tn = S1 × ...× S1︸ ︷︷ ︸
n

,

where n =
∑
i∈B dof(i) is the total number of degrees of freedom in the skeleton, Tn

denotes the n-dimensional torus and S1 the unit circle. Now one position of the skeleton is
represented as one point in the joint space J . Since this is an Euler angle representation,
it neglects an underlying structure of animation curves, namely the Lie group structure.
This extended way of representing motions is examined in [11].

The animation curve related to the motion, β : [0, T] → J , is a function that trans-
form every bone in the skeleton for every point in a time interval.

The metric introduced earlier related to shape analysis that penalizes bending and
stretching, i.e. equation (3.2), can in this case be interpreted as finding a continuous de-
formation of one animation into another such that we minimize the sum of changes in
angular velocity and angular acceleration. This can be seen as the most energy efficient
way of changing from one motion to another.

Like before, the curves are assumed to be immersions, i.e.

Imm(M,Rn) := {q ∈ C∞(M,Rn) : q̇(t) 6= 0∀t ∈M},
where M is equal the interval [0, T] since we are working with open curves. Since this

space is not reparametrization invariant (i.e. equal motions with different reparametriza-
tion/speed are two distinct motions in this space), the space of reparametrizations Diff([0, T])
is again quotiened out. This leaves the final shape space/motion space to be

S := Imm([0, T],Rn)/Diff([0, T]). (3.7)

21

Then the metric (3.5) can be used to measure the distance between two motions.

3.4 Neural networks
Neural networks are a large class of machine learning models used in many applications
such as regression, classification, reinforcement learning and image generation. Machine
learning is in general the study of computer algorithms that improve automatically through
experience [38]. Neural networks, inspired by studies on how the neurons in the biological
brain works, are characterized as a combination of simple, parametric functions between
feature spaces [10]. These functions are often referred to as layers in the network. Every
neural network consists of a input layer, at least one hidden layer and a output layer. To
link these layers together, we use function composition.

If X k denote the feature spaces for k ∈ {0, ...,K − 1}, then a generic layer can be
defined as

fk : X k ×Θk → X k+1.

Here Θk is the set of possible parameter values of this layer. After defining this, we
can define a neural network

Ψ : X ×Θ→ Y
(x, θ) 7→ zK

(3.8)

as the iteration

z0 = x

zk+1 = fk(zk, θk), k = 0, ...,K − 1
(3.9)

such that X 0 = X and XK = Y . Here θ := (θ0, ..., θK−1) ∈ Θ0 × ...×ΘK−1 =: Θ
denotes all of the network’s parameters.

A common layer type in neural networks is using an activation function, a simple and
nonlinear function. An example are fully-connected layers

f : RM × (RM
′×M ×RM

′
)→ RM

′

(z, (A, b)) 7→ σ(Az + b),
(3.10)

where the weight matrix A ∈ RM
′×M and the bias vector b ∈ RM

′
are the pa-

rameters of the network. The activaion function σ : RM
′ → RM

′
is usually applied

component-wise, e.g. the hyperbolic tangent [tanh(z)]i := tanh(zi) or the sigmoid func-
tion [sigmoid(z)]i = 1

1+e−zi
.

A network with more than one hidden layer is referred to as deep, and gives usually a
much better result of what we want the model to learn.

22

To learn the parameters of a neural network model, a loss function is needed to measure
the error.

3.4.1 Residual neural networks
A problem with regular neural networks is that after a number of layers, adding more
layers leads to higher training error, which is undesirable. One can think that this is caused
by overfitting, but this is in fact not the cause, because overfitting occurs when the training
error is lower or as low as a model with fewer layers, but the test error increases. Here
both the test and the training error increase. This problem is solved by introducing deep
residual neural networks, see [17]. The principle behind this network is that the output of
the residual layer is added to the input, i.e. it takes a shortcut over layers.

If the underlying mapping is denoted by H(x), we define the residual mapping as
F(x) := H(x)− x. So the original mapping is recast into F(x) + x, which is believed to
be easier to optimize than the original, unreferenced mappingH(x) [17].

This residual Ψ : X × Θ → X ,Ψ(x, θ) = zK is in other words defined through the
iteration

z0 = x

zk+1 = zk + σ(Akzk + bk), k = 0, ...,K − 1.
(3.11)

This requires that the input and output are of same dimension.

23

24

Chapter 4
Method

The main idea of this chapter is to define the diffeomorphism using an activation function.
We will consider discrete diffeomorphisms that map the points of a grid t0 < t1 < ... < tN
of the interval [0, T] with t0 = 0 and tN = 1 to a new set of points in [0, T], preserving the
order and the boundary. The goal is to solve the optimization problem (3.5) on the space
of discrete diffeomorphisms instead of Diff+(I).

Denote with t = [t1, ..., tN−1] the vector containing the gridpoints, the discrete dif-
feomorphism is then defined as

ϕ(t) = t + hσ(At + b), (4.1)

where σ(At + b) is the activation function, h is a small parameter, A is a matrix and
b a vector. Examples of activation functions that can be used are the sigmoid function
σ(x) = 1

1+e−x and σ(x) = tanh(x).

Plots of the discrete diffeomorphism when using the two different activation functions
are shown in figure 4.1. Here the existence of an inverse of the diffeomorphism is verified.

Figure 4.1: A plot of the diffeomorphism ϕ(t) as a function of t, for the two different activation
functions. HereA is the identity matrix and b is a vector of 4 times negative ones,N = 50, h = 0.1.

Resulting from this definition of the diffeomorphism, the problem that will be solved

25

in this thesis is

min
A,b

∫
I

‖q0(t)−
√
ϕ̇(t, A, b)q1(ϕ(t, A, b))‖2dt. (4.2)

Preservation of order and boundary

The activation functions themselves are increasing, but this does not guarantee preserving
the order of the grid points. For this to be preserved, some restrictions need to be set to
the matrix A and the vector b. This is illustrated in figure 4.2, where we see that the order
is not preserved if A is a random generated matrix, as opposed to if A is a stochastic or
the identity matrix. The vector b is equal −4 · 1, where 1 is a vector containing only 1’s.
These parameters are chosen such that the initial solution for equal shapes computed in
the experiments is close to the optimal. The preservation of order will be examined further
in the experiments introduced in chapter 5.

Figure 4.2: The ti-values are plotted for i = 1, ..., 20 as a function of iterations. The ti-values are
within the interval [0, 1] as shown on the y-axis, and the number of iterations is represented on the
x-axis.

In addition, we want the function ϕ(t) to be boundary preserving (i.e. stay in the
interval [0, T]). One option to guarantee this is to add a function f such that f(0) =
f(T) = 0, for instance f(x) = x(T − x),

ϕ(t) = t + ht(T − t)σ(At + b). (4.3)

This, however, yields a bit more complicated derivative of the function, namely

ϕ̇(t) = 1 + ht(T − t)Aσ̇(At + b) + h(T − 2t)σ(At + b).

Another option is to assume ϕ(0) = 0 and ϕ(T) = T and do the computations just on
the inner grid. This has shown to be the best approach.

Preservation of orientation

Next, the property of being orientation preserving (definition in section 3.1) is examined.
Since the focus is on curves in Rn, all that is needed is that ϕ̇(t) > 0. This follows from

26

the fact that for c(t) and c(ϕ(t)) to have the same orientation, the tangent vector ċ(ϕ)ϕ̇(t)
needs to have same direction as ċ(ϕ).

The derivative of ϕ(t) is given as

ϕ̇(t) = 1 + hAσ̇(At + b), (4.4)

and this is bigger than 0 for h < min
∣∣∣ 1
Aσ̇(At+b)

∣∣∣. This is usually a large number, so
using h < 1 will normally fulfill this condition.

Convexity of the problem

Then the convexity of the problem is examined. There is a proposition saying that a twice
differentiable function f : Rn×n ×Rn 7→ R is convex if and only if its Hessian ∇2f(x)
is positive semi-definite for all x ∈ Rn×n × Rn [18]. To know if a symmetric matrix is
positive semi-definite, the eigenvalues need to be non-negative.

The Hessian is defined as

H =

 ∂2d
∂A2

∂2d
∂A∂b

∂2d
∂b2

∂2d
∂b∂A

 , (4.5)

and we can see from the plots (figure 4.3) that it has negative eigenvalues. The Hessian
is calculated using the initial parameters of A and b of the experiments in chapter 5, i.e.
A = I and b = −4 ·1. Hence the Hessian is not positive semi-definite for all x = (A, b) ∈
Rn×n ×Rn, and we can conclude that this problem is non-convex.

(a) The eigenvalues of the Hessian matrix plotted
for σ(x) = tanh(x).

(b) The eigenvalues of the Hessian matrix plotted for
σ(x) = sigmoid(x).

Figure 4.3

4.1 Gradient descent
To use this diffeomorphism to solve the problem (3.5), a gradient descent approach with
respect to the variables A and b is introduced to find the minima of the function

27

d2 =

∫
I

‖q0(t)−
√
ϕ̇(t, A, b)q1(ϕ(t, A, b))‖2dt. (4.6)

Instead of computing the gradient of this distance like discussed in section 2.4.2 in the
literature review, the gradient is found by an integrated function in python called autograd.
The integral in the distance formula is approximated using Simpson’s rule.

A disadvantage of this method is that we need to find initial parameters close enough
to the solution. This is difficult if we don’t know the parametrization giving the optimal
result. Since we are working with a non-convex problem, another challenge is that the
solution could only be a local minimum.

4.2 Adam method

Another method for finding the minima of a function with respect to some parameters is
Adam’s method. An advantage of this method, is that only the first-order gradients are
required, and it has few memory requirements and is computational efficient. The method
is derived in [24].

Let f(θ) be a differentiable scalar function with respect to parameters θ. Then we want
to minimize the expected value of this function with respect to the parameters. Denote the
realizations (the value X attains when one of the possibilities did happen) of the function at
timesteps 1, ..., T as f1(θ), ..., fT (θ). Then the gradient evaluated at timestep t is denoted
gt = ∇θft(θ), and the algorithm is as follows

while not converged:
gt = ∇θft(θt−1)

mt =
1

1− βt1
(β1m

t−1 + (1− β1)gt

vt =
1

1− βt2
(β1v

t−1 + (1− β2)g2
t

θt = θt−1 − α mt

√
vt + ε

.

(4.7)

Here the parameters are set beforehand with α > 0, 0 < β1, β2 < 1 and ε > 0 small.
What the algorithm does is updating the exponential moving means1 of the gradient (mt)
and its square (vt) where β1 and β2 control the exponential decay rates of these means
[24].

In our case, the parameters that are being optimized are θ = [A, b] and the function f
is the distance function defined in (3.5), so gt = ∇θdP(c0(t), c1 ◦ ϕ(t, θ)).

1a calculation to analyze data points by creating a series of averages of different subsets of the full data set

28

Figure 4.4: A neural network model computing z and y consisting of L layers.

4.3 Neural networks
In [1], it says that we can approach an arbitrary diffeomorphism i Diff(Ω) (Ω is a com-
pact manifold) by combining a finite number of elementary diffeomorphisms. Since the
structure of residual neural networks with one layer look similar to our discrete diffeomor-
phism, an idea is to combine several diffeomorphisms giving the structure of a residual
neural network with several layers.

Then the distance function 4.6 is used as the loss function of the model, and Stochastic
Gradient Descent or Adam is the optimizer. The parameters are θ = (A1, b1, ..., AK , bK)
and the feature space is X = I × ... × I K times, where K is the number of layers. I.e.,
t ∈ X is a vector of increasing elements, all within in the interval I , typically I = [0, 1] or
I = [0, 2π].

The initial parameters Ak and bk for k = 1, ...,K are now determined by the model,
and have no longer restrictions. The order seem still to be preserved by the model, showed
in the experiments of chapter 5.

We also need to update the derivative in the layers, and the model becomes

zk+1 = zk + hσ(Akz
k + bk)

yk+1 = yk(1 + hAσ̇(Akz
k + bk))

(4.8)

for k = 1, ..., K and the loss function is

loss =

∫ 1

0

|q0(t)−
√
yKq1(zK)|2dt. (4.9)

A scetch of the model is shown in figure 4.4.

Another suggestion is to first define ϕ′(tj) = yj and assume this to be piece-wise
constant in the intervals [tj−1, tj). Then this is integrated to find z. So we define

29

Figure 4.5: A neural network model computing z and y using L layers.

y = 1 + hσ(At+ b), (4.10)

where A and b still are the parameters we optimize on. By approximating the integral
of this, we get

ϕ(t) =

∫ t

0

ϕ′(ξ)dξ =

j∑
i=1

ϕ′(ti)(ti − ti−1) + (t− tj)ϕ′(tj). (4.11)

This is the midpoint-rule just evaluated in the last point of the interval instead of the
midpoint. Setting yj = ϕ′(tj), gives

zj =

j∑
i=1

yi(ti − ti−1), (4.12)

and in vectorform

z = Ly,L =

t1 − t0 0
xt − t0 t2 − t1 0
t1 − t0 t2 − t1 t3 − t2 0 . . .

...
...

...
. . . 0

t1 − t0 t2 − t1 t3 − t2 . . . tN − tN−1

 (4.13)

This model will then look like

yk+1 = 1 + hσ(Akz
k + bk))

zk+1 = yk+1(Lzk)
(4.14)

and is illustrated in figure 4.5.

30

Chapter 5
Experiments and Results

5.1 Curves in R3

In this section, some experiments that are performed on both equal and different shapes
will be introduced. When equal shapes are considered, the curves are defined as c0 =
c1 = [tsin(πt), tcos(πt), t]. For different curves, c0 = [tsin(πt), tcos(πt), t] and c1 =
[tsin(t), tcos(t), t] are used. Here, [c0] and [c1] are the corresponding shapes. In all figures,
the red parametrization will represent c0 and the green will represent c1.

5.1.1 Gradient descent
In the following section, some experiments using the gradient descent method described in
chapter 4.1 computed on both equal and different shapes are shown. The initial parametriza-
tions used are equidistant points t (this is the one held constant) and ϕ(t) = t+hσ(At+b)
(this is the one being optimized) with the initial parameters A = I and b = −4 · 1. Here
v = At + b is a vector, and the function is performed component-wise.

From figure 5.1a it is clear that the algorithm preserves the order for only σ(At +
b) = sigmoid(At + b) = 1

1+e−(At+b) , hence this is the activation function used in the
experiments.

31

(a) The ti-values are plotted for i = 1, ..., N throughout the gradient de-
scent algorithm, where N = 50 for equal shapes and N = 30 for different
shapes. The ti-values are within the interval [0, 2π] as shown on the y-axis,
and the number of iterations is represented on the x-axis.

(b) Here only t1 is plotted through-
out the 2000 iterations to illustrate
that the values are not constant as it
seems in the left figure.

Figure 5.1

32

Equal shapes

To check if the method works, a convenient way to start is to compare two equal shapes
with different initial parametrization. Then the optimal reparametrization is known, and it
is easy to test the performance of the method.

(a) The parametrization of the curves before and after the optimization. The
red parametrization is constant, and the green is optimized. Here ϕ(t) =
t+ hσ(At+ b) with σ(x) = sigmoid(x).

(b) A convergence plot of the
method. The distance are shown on
the y-axis, and the iterations on the
x-axis.

Figure 5.2

In figure 5.2, the red parametrization belong to the curve c1 and is being optimized,
while the green parametrization represents c0 and is held constant. We see that the final
solution of the red parametrization overlap the green parametrization, which was the desire
in this case. Hence we can conclude that the method is working.

33

Different shapes

It is desirable to see if the method also works for different shapes. In this example it is
difficult to know if the initial solution is close enough to the optimal solution. As known
from the theory [18], we have seen also in our experiments that gradient descent works
well if we start with an initial guess that is close enough to the optimal solution.

(a) The parametrization of the curves before and after the optimization. The
red parametrization is constant, and the green is optimized. Here ϕ(t) =
t+ hσ(At+ b) with σ(x) = sigmoid(x).

(b) A convergence plot of the
method. The distance are shown on
the y-axis, and the iterations on the
x-axis.

Figure 5.3

The method is converging also for different shapes, as seen in figure 5.3b. However,
because of the non-convexity of the problem discussed in chapter 4, it is not guaranteed
that this is in fact a global minimum. The gradient descent algorithm will in this case only
find the solution closest to the initial suggestion.

34

5.1.2 Adam method
Again, experiments will be done on both equal and different shapes, and with both σ(At+
b) = sigmoid(At+b) = 1

1+e−(At+b) and σ(At+b) = tanh(At+b). The initial parametriza-
tions used are equidistant points t and ϕ(t) = t + hσ(At + b), where A is a random
generated diagonal matrix and b = −1 for three of the experiments. However, for equal
shapes and σ(At+ b) = tanh(At+ b) a change in initial matrix A was needed in order to
converge, namely A = −0.8 · I , where I is the identity matrix. The preservation of order
is fulfilled, shown in figure 5.4.

The algorithm described in (4.7) is computed for the parametersα = 0.001, β1 = 0.88,
β2 = 0.8 and ε = 10e − 8 for three of the methods, except for the experiment with equal
shapes and σ(At + b) = tanh(At + b). Then α = 0.0009, β1 = 0.88, β2 = 0.93 and
ε = 10e− 8, also in order to achieve convergence.

Figure 5.4: The ti-values are plotted for i = 1, ..., N throughout the Adam algorithm, where
N = 50 for equal shapes and N = 30 for different shapes. The ti-values are within the interval
[0, 2π] as shown on the y-axis, and the number of iterations is represented on the x-axis.

35

Equal shapes

(a) The parametrization of the curves before and after the optimization. The
red parametrization is constant, and the green is optimized. Here ϕ(t) =
t+ hσ(At+ b) with σ(x) = sigmoid(x)

(b) A convergence plot of the
method. The distance are shown on
the y-axis, and the iterations on the
x-axis.

Figure 5.5

(a) The parametrization of the curves before and after the optimization. The
red parametrization is constant, and the green is optimized. Here ϕ(t) =
t+ hσ(At+ b) with σ(x) = tanh(x).

(b) A convergence plot of the
method. The distance are shown on
the y-axis, and the iterations on the
x-axis.

Figure 5.6

This method converges after few iterations and gives a good result for σ(x) = sigmoid(x)
in figure 5.5. For σ(x) = tanh(x) it also converge after few iterations, but the final distance
and optimal reparametrization is not as satisfying.

36

Different shapes

(a) The parametrization of the curves before and after the optimization. The
red parametrization is constant, and the green is optimized. Here ϕ(t) =
t+ hσ(At+ b) with σ(x) = sigmoid(x).

(b) A convergence plot of the
method.

Figure 5.7

(a) The parametrization of the curves before and after the optimization. The
red parametrization is constant, and the green is optimized. Here ϕ(t) =
t+ hσ(At+ b) with σ(x) = tanh(x).

(b) A convergence plot of the
method. The distance are shown on
the y-axis, and the iterations on the
x-axis.

Figure 5.8

The method with σ(x) = sigmoid(x) is performing well also here. There is still fast
convergence, but harder to know if the result is the global minimum or only a local one.
Compared to gradient descent, this method attains a approximately the same minimum
value of the distance function.

37

5.1.3 Neural networks
Now we introduce some experiments using the neural network architecture, both the resid-
ual neural network and alternative neural network described in respectively (4.8) and
(4.14). All figures are computed for 5 layers and with Adam as optimizer. A confirmation
for preserved order is shown in figure 5.9, 5.10 and 5.11.

Figure 5.9: The ti-values are plotted for i = 1, ..., N , where N = 50 for equal shapes and N = 30
for different shapes. The ti-values are within the interval [0, 2π] as shown on the y-axis, and the
number of iterations is represented on the x-axis.

38

(a) The ti-values are plotted for i = 1, ..., N ,
where N = 50. The ti-values are within the
interval [0, 2π] as shown on the y-axis, and the
number of iterations is represented on the x-
axis.

(b) Here only t1 is plotted throughout the 2000 itera-
tions to illustrate that the values are not constant as it
seems in the left figure.

Figure 5.10

(a) The ti-values are plotted for i = 1, ..., N , where N = 30. The
ti-values are within the interval [0, 2π] as shown on the y-axis, and
the number of iterations is represented on the x-axis.

(b) Here is a small cut of the left fig-
ure (the black square) to assure the
preservation is fulfilled.

Figure 5.11

39

Equal shapes

(a) The parametrization of the curves before and after the optimization. The
red parametrization is constant, and the green is optimized. Here ϕ(t) =
t+ hσ(At+ b) with σ(x) = sigmoid(x).

(b) A convergence plot of the
method. The distance are shown on
the y-axis, and the iterations on the
x-axis.

Figure 5.12

(a) The parametrization of the curves before and after the optimization. The
red parametrization is constant, and the green is optimized. Here ϕ(t) =
t+ hσ(At+ b) with σ(x) = tanh(x).

(b) A convergence plot of the
method. The distance are shown on
the y-axis, and the iterations on the
x-axis.

Figure 5.13

The method performed in figure 5.14 is the one with fastest convergence of the neural
network approaches.

Generally we see that the neural networks converges faster than the gradient method
and usually gives a better result, except for the residual neural network with σ(x) =
tanh(x), seen in figure 5.13b.

The red and green parametrization, of respectively the curves c0 and c1, are overlap-
ping already from the start, which means that the model determine initial parameters A
and b close to the optimal. This can also be a reason for the good results.

The distance with respect to number of layers are also plotted for the different methods,
represented in figure 5.15 and 5.16. We see that the distance has a tendency of increasing
for several layers.

40

(a) The parametrization of the curves before and after the optimization.
The red parametrization is constant, and the green is optimized. This is
for the alternative formulation, i.e. ϕ̇(t) = 1+hσ(At+b),where σ(x) =
sigmoid(x).

(b) A convergence plot of the
method. The distance are shown on
the y-axis, and the iterations on the
x-axis.

Figure 5.14

(a) A plot of the distance (y-axis) between equal shapes
as a function of number of layers (x-axis). The distance
is computed using 4.8 with σ(x) = sigmoid(x).

(b) A plot of the distance (y-axis) between equal shapes
as a function of number of layers (x-axis). The distance
is computed using 4.8 with σ(x) = tanh(x).

Figure 5.15

Figure 5.16: A plot of the distance (y-axis) between equal shapes as a function of number of layers
(x-axis).The distance is computed using 4.14 with σ(x) = sigmoid(x).

41

Different shapes

(a) The parametrization of the curves before and after the optimization. The
red parametrization is constant, and the green is optimized. Here ϕ(t) =
t+hσ(At+ b) with σ(x) = sigmoid(x), and the optimizer used is Adam.

(b) A convergence plot of the
method. The distance are shown on
the y-axis, and the iterations on the
x-axis.

Figure 5.17

(a) The parametrization of the curves before and after the optimization. The
red parametrization is constant, and the green is optimized. Here ϕ(t) =
t+ hσ(At+ b) with σ(x) = tanh(x).

(b) A convergence plot of the
method. The distance are shown on
the y-axis, and the iterations on the
x-axis.

Figure 5.18

Figure 5.17 and 5.18 shows that the convergence is a bit faster when using the activa-
tion function σ(x) = tanh(x) than σ(x) = sigmoid(x). The final result is approximately
the same for the choice of both activation functions, and with smaller minimum distances
than for the gradient descent method.

The second approach using neural networks is shown in figure 5.19, and we can see
that this method gives the smallest distance between two different shapes. However, there
is no clear convergence in this case.

Again, the distance with respect to number of layers are plotted for the different meth-
ods. This is represented in figure 5.20 and 5.21, and tells us that the distance decreases
using more layers.

42

(a) The parametrization of the curves before and after the optimization.
The red parametrization is constant, and the green is optimized. This is
for the alternative formulation, i.e. ϕ̇(t) = 1+hσ(At+b),where σ(x) =
tanh(x).

(b) A convergence plot of the
method. The distance are shown on
the y-axis, and the iterations on the
x-axis.

Figure 5.19

(a) A plot of the distance (y-axis) between different
shapes as a function of number of layers (x-axis).
The distance is computed using 4.8 with σ(x) =
sigmoid(x).

(b) A plot of the distance (y-axis) between different
shapes as a function of number of layers (x-axis). The
distance is computed using 4.8 with σ(x) = tanh(x).

Figure 5.20

Figure 5.21: A plot of the distance (y-axis) between different shapes as a function of number of
layers (x-axis). The distance is computed using 4.14 with σ(x) = sigmoid(x).

43

5.1.4 Summary

Figure 5.22: A table with a overview of the methods when considering equal shapes.

Figure 5.23: A table with a overview of the methods when considering different shapes.

(a) A plot of all the optimal
reparametrizations for the differ-
ent methods, when comparing
equal shapes.

(b) A plot of all the optimal reparametrizations for the different
methods, when comparing different shapes.

Figure 5.24

The tables 5.22 and 5.23 show that the Adam method with σ(x) = sigmoid(x) is
the one with fastest convergence for both cases, and has the best result for equal shapes.
However, the result for the same method when considering different shapes is not optimal
compared to the other methods. This can be due to the fact that the function being opti-
mized is non-convex, hence the final result could only be a local solution.

In figure 5.24, the reparametrization giving the minimized distance between both equal
and different shapes are plotted for the different methods. When comparing equal shapes,
we see that most of the methods have reached the optimal parametrization. The exception
is the reparametrization achieved with the Adam method and σ(x) = tanh(x), which have
some deviation. This coincides with the value for this method in the table as well.

44

For different shapes there is no optimal reparametrization to compare with, but it seems
that the methods achieving approximately the same minimum distance also achieves the
same reparametrization. The alternative neural network approach defined in 4.14 is the
reparametrization that deviate the most from the others, but also have the smallest mini-
mum distance.

The figures that compare the distance with number of layers (5.15, 5.16, 5.20 and 5.21)
show that for equal shapes the distance increases when using more layers, but decreases
when comparing different shapes.

5.2 Animation curves from motion capturing
Finally, some experiments are performed on human motions, using the dataset CMU
Graphics Lab Motion Capture Database [8]. This is a dataset consisting of 144 subjects
performing various movements with labels on each movement. Each subject has one file
(asf: Acclaim Skeleton File) consisting of the skeleton, i.e. length of the bones and which
joints that are connected, in addition to a set of files (amc: Acclaim Motion Capture data)
with one or several movements given as rotations of the joints in Euler angles over time.

The animation curves are extracted from the dataset using the code of Lystad [26],
represented as 50-dimensional curves with distinct number of frames N , where N vary
from 130 to approximately 420. I.e., each animation curve is a n × N -matrix, where
n = 50 is the total number of degrees of freedom in every position. The frames are
translated into time points on the interval I = [0, 1]. The derivative of the curves is needed
to transform the curves into SRVT, which we define as ċ(ti) = c(ti+1)−c(ti)

ti+1−ti . The action of
applying the diffeomorphism to the SRVT of the curve, q◦ϕ, is done by linear interpolation
for every degree of freedom, i.e.

q ◦ ϕ(t) = qi,j + (ϕ(tj)− tj)
qi,j+1 − qi,j
tj+1 − tj

,∀i = 1, ..., 50 and j = 1, ..., N.

Here qi,j is the ij-th element of the matrix representing the animation curve. It is as-
sumed that the new time point ϕ(tj) = tj + hσ(

∑N
i=1Aijtj + bj) lies between tj and

tj+1 because of the small parameter h.

A suitable way of measuring similarity when dealing with several objects is cluster
analysis. This is a method that assembles objects with similar features into groups/clusters.
One way of doing this is using classical multidimensional scaling [51], where the given
input is a distance m ×m-matrix with elements dij equal to the distance between object
i and j of the total of m objects. Note that this matrix is symmetric and with zeros on the
diagonal. Then a set of vectors xi, i ∈ 0, ...,m− 1 with optional dimension k (usually k =
2 or 3) is found such that

‖xi − xj‖ ≈ dij ∀i, j ∈ 0, ...,m− 1.

This is done on 9 objects in total, divided into three different movements which is
”walk”, ”run” and ”jump”.

45

Figure 5.25: Classical multidimensional scaling plot for the distance function dP , i.e. without
optimizing with respect to the parametrization.

Figure 5.26: Classical multidimensional scaling plot for the dynamic programming approach.

46

(a) Classical multidimensional scaling plot for the
method using neural networks with 1 layer.

(b) Classical multidimensional scaling plot for the
method using neural networks with 5 layers.

Figure 5.27

In figure 5.27 the optimal reparametrization, and hence minimal distance, between the
motions is found using the residual neural network described in (4.8). Comparing the
figures 5.27a and 5.27b, it seems that the method is working better for 5 layers than 1. The
difference in computational cost between this methods is nearly insignificant.

The distances between the same motions are also computed using the dynamic pro-
gramming algorithm described in section 2.4.1, and the result is illustrated in figure 5.26.
Then, by comparing these two methods with each other and with the non-optimized dis-
tances in 5.25, the neural network with 5 layers seems to provide a satisfying result.

47

48

Chapter 6
Conclusion and future work

This thesis has introduced a new approach for reparametrizing a curve to find the optimal
distance between two curves. The parametrization function has been described as an affine
transformation and an activation function with a skip connection, and the optimal distance
is achieved by optimizing on this group of discrete diffeomorphisms.

First, the methods gradient descent and Adam have been computed to find the optimal
distance between curves. The experiments of chapter 5 show satisfying results for both
methods on curves in R3, especially when comparing equal shapes. When comparing
different shapes, it is not guaranteed that the reached minimum is global because of the
non-convexity of the problem. Additionally, these methods are known to perform well
when the initial guess is close to the optimal, which is harder to determine when comparing
different shapes.

A deep neural network architecture have also been introduced, now describing the
parametrization as multiple compositions of the original parametrization function, and the
minimum distance is found using the Adam optimizer. Experiments have been done on
curves in R3 using two different approaches, where both seem to be suitable.

One of the neural network approaches are also induced on comparing skeletal ani-
mations, where three different motions are considered. The approach is compared with
a dynamic programming approach, and according to the experiments in this thesis, they
seem to have approximately the same good performance.

6.1 Future work

Something that can be examined further from this paper is to use this method on curves of
the Lie group, to match skeletal animations. As we have seen, when describing animations,
the motion of a character is defined by a skeleton and animation curve [14].

Every bone in the skeleton has a fixed length and one to three degrees of rotational free-
dom associated with it, so-called Euler angles. But describing the skeletons and animation
curves using Euler angles neglects a certain structure, called the Lie group structure. An

49

improvement to the method will therefore be to include this underlying geometric struc-
ture in the mathematical models and their numerical discretizations.

In practice this means that instead of considering a curve in Rn, where n is the total
number of joints in the skeleton, the data will consist of curves in SO(3)d. Here d is the
number of bones in the skeleton. This representation has shown to be robust and work well
in problems of motion blending and curve closing, examined and demonstrated in [11].

Then parametrized curves in the Lie group G will also be treated as immersions, and
the space of these curves will be denoted P := Imm(I,G). The final shape space S is
then defined in the same way as before

S := P/Diff+(I),

but using the Lie group G which is defined as

G = SO(3) = {A ∈M3×3|det(A) = 1, ATA = I}. (6.1)

Here the matrices contains the Euler angles for each bone.

50

Bibliography

[1] A.A. Agrachev and M. Caponigro. Controllability on the group of diffeomor-
phisms. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 26(6):
2503–2509, 2009. ISSN 0294-1449. doi: https://doi.org/10.1016/j.anihpc.2009.
07.003. URL https://www.sciencedirect.com/science/article/
pii/S0294144909000687.

[2] George B. Arfken, Hans J. Weber, and Frank E. Harris. Chapter 3 - vector analysis.
In George B. Arfken, Hans J. Weber, and Frank E. Harris, editors, Mathematical
Methods for Physicists (Seventh Edition), pages 123–203. Academic Press, Boston,
seventh edition edition, 2013. ISBN 978-0-12-384654-9. doi: https://doi.org/10.
1016/B978-0-12-384654-9.00003-7. URL https://www.sciencedirect.
com/science/article/pii/B9780123846549000037.

[3] M. Bauer, M. Eslitzbichler, and M. Grasmair. Landmark-guided elastic shape analy-
sis of human character motions. pages 14–, 2018.

[4] Ma Bauer, M. Bruveris, S. Marsland, and P. W. Michor. Constructing reparameter-
ization invariant metrics on spaces of plane curves. Differential Geometry and its
Applications, 34:139 – 165, 2014. ISSN 0926-2245. doi: https://doi.org/10.1016/
j.difgeo.2014.04.008. URL http://www.sciencedirect.com/science/
article/pii/S092622451400062X.

[5] Belongie and Malik. Matching with shape contexts. In 2000 Proceedings Workshop
on Content-based Access of Image and Video Libraries, pages 20–26, 2000. doi:
10.1109/IVL.2000.853834.

[6] A. Le Brigant. Probability on the spaces of curves and the associated metric spaces
via information geometry; radar applications. 2017.

[7] Martins Bruveris, Peter W. Michor, and David Mumford. Geodesic completeness for
SOBOLEV metrics on the space of immersed plane curves. Forum of Mathematics,
Sigma, 2, Jul 2014. ISSN 2050-5094. doi: 10.1017/fms.2014.19. URL http:
//dx.doi.org/10.1017/fms.2014.19.

51

https://www.sciencedirect.com/science/article/pii/S0294144909000687
https://www.sciencedirect.com/science/article/pii/S0294144909000687
https://www.sciencedirect.com/science/article/pii/B9780123846549000037
https://www.sciencedirect.com/science/article/pii/B9780123846549000037
http://www.sciencedirect.com/science/article/pii/S092622451400062X
http://www.sciencedirect.com/science/article/pii/S092622451400062X
http://dx.doi.org/10.1017/fms.2014.19
http://dx.doi.org/10.1017/fms.2014.19

[8] Carnegie-Mellon. Carnegie-mellon mocap database. http://mocap.cs.cmu.
edu/.

[9] Vicent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic active contours. In-
ternational Journal of Computer Vision, 22:61–79, 02 1997. doi: 10.1109/ICCV.
1995.466871.

[10] E. Celledoni, M. J. Ehrhardt, C. Etmann, R. I. Mclachlan, B. Owren, C. B. Schönlieb,
and F. Sherry. Structure preserving deep learning. 2009.

[11] E. Celledoni, M. Eslitzbichler, and A. Schmeding. Shape analysis on Lie groups with
applications in computer animation. 2016.

[12] Elena Celledoni, Pål Erik Lystad, and Nikolas Tapia. Signatures in shape analy-
sis: An efficient approach to motion identification. In Frank Nielsen and Frédéric
Barbaresco, editors, Geometric Science of Information, pages 21–30, Cham, 2019.
Springer International Publishing. ISBN 978-3-030-26980-7.

[13] Isaac Cohen, Nicholas Ayache, and Patrick Sulger. Tracking points on deformable
objects using curvature information. In G. Sandini, editor, Computer Vision —
ECCV’92, pages 458–466, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.
ISBN 978-3-540-47069-4.

[14] M. Eslitzbichler. Modelling character motions on infinite-dimensional manifolds.
2014.

[15] J. Glaunes, A. Qiu, M. I. Miller, and L. Younes. Large deformation diffeomorphic
metric curve mapping. 2008.

[16] U. Grenander and M. Miller. Computational anatomy: an emerging discipline. Quar-
terly of Applied Mathematics, 56:617–694, 1998.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/
abs/1512.03385.

[18] S.J. Wright J. Nocedal. Numerical Optimization. Springer, 2006.

[19] D.W. Jacobs, D. Weinshall, and Y. Gdalyahu. Classification with nonmetric dis-
tances: image retrieval and class representation. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 22(6):583–600, 2000. doi: 10.1109/34.862197.

[20] Shantanu H Joshi, Eric Klassen, Anuj Srivastava, and Ian Jermyn. A novel represen-
tation for Riemannian analysis of elastic curves in . Proceedings. IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2007(17-22 June
2007):1—7, July 2007. ISSN 1063-6919. doi: 10.1109/cvpr.2007.383185. URL
https://europepmc.org/articles/PMC3035322.

[21] Witkin A. Terzopoulos D. Kass, M. Snakes: Active contour models. page 321–331,
1988.

52

http://mocap.cs.cmu.edu/
http://mocap.cs.cmu.edu/
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://europepmc.org/articles/PMC3035322

[22] D. G. Kendall. Shape manifolds, procrustean metrics, and complex projective spaces.
1984.

[23] Satyanad Kichenassamy, Arun Kumar, P. Olver, Allen Tannenbaum, and A. Yezzi.
Gradient flows and geometric active contour models. pages 810–815, 07 1995. ISBN
0-8186-7042-8. doi: 10.1109/ICCV.1995.466855.

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2017.

[25] E. Klassen, A. Srivastava, M. Mio, and S.H. Joshi. Analysis of planar shapes using
geodesic paths on shape spaces. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(3):372–383, 2004. doi: 10.1109/TPAMI.2004.1262333.

[26] Pål Erik Lystad. Signatures in shape analysis. https://github.com/paalel/
Signatures-in-Shape-Analysis.

[27] Pål Erik Lystad. Signatures in shape analysis. 2019.

[28] Maurice Maes. On a cyclic string-to-string correction problem. Information Pro-
cessing Letters, 35(2):73–78, 1990. ISSN 0020-0190. doi: https://doi.org/10.
1016/0020-0190(90)90109-B. URL https://www.sciencedirect.com/
science/article/pii/002001909090109B.

[29] Andrea Mennucci, A. Yezzi, and G. Sundaramoorthi. Sobolev–type metrics in the
space of curves. 04 2006.

[30] Andrea C. G. Mennucci. Metrics of curves in shape optimization and analysis, 2013.

[31] Andrea C. G. Mennucci, Stefano Soatto, Ganesh Sundaramoorthi, and Anthony
Yezzi. A new geometric metric in the space of curves, and applications to tracking
deforming objects by prediction and filtering. SIAM Journal on Imaging Sciences, 4
(1), 2011. doi: 10.1137/090781139.

[32] P. W. Michor and D. Mumford. Riemannian geometries on spaces of plane curves.
pages 1–48, 01 2006.

[33] Peter Michor and David Mumford. Vanishing geodesic distance on spaces of sub-
manifolds and diffeomorphisms. Documenta Mathematica, 10, 10 2004.

[34] Peter Michor, David Mumford, Jayant Shah, and Laurent Younes. A metric on shape
space with explicit geodesics. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend.
Lincei (9) Mat. Appl., 19, 07 2007. doi: 10.4171/RLM/506.

[35] Peter W. Michor and David Mumford. An overview of the Riemannian metrics on
spaces of curves using the Hamiltonian approach. Applied and Computational Har-
monic Analysis, 23(1):74–113, 2007. ISSN 1063-5203. doi: https://doi.org/10.1016/
j.acha.2006.07.004. URL https://www.sciencedirect.com/science/
article/pii/S1063520307000243. Special Issue on Mathematical Imag-
ing.

53

https://github.com/paalel/Signatures-in-Shape-Analysis
https://github.com/paalel/Signatures-in-Shape-Analysis
https://www.sciencedirect.com/science/article/pii/002001909090109B
https://www.sciencedirect.com/science/article/pii/002001909090109B
https://www.sciencedirect.com/science/article/pii/S1063520307000243
https://www.sciencedirect.com/science/article/pii/S1063520307000243

[36] W. Mio and Anuj Srivastava. Elastic-string models for representation and analysis
of planar shapes. volume 2, pages II–10, 01 2004. ISBN 0-7695-2158-4. doi:
10.1109/CVPR.2004.1315138.

[37] W. Mio, A. Srivastava, and S. Joshi. On shape of plane elastic curves. 2007.

[38] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[39] P. Olver. Equivalence Invariants and symmetries. Cambridge University Press, Cam-
bridge, 1995.

[40] Peter J. Olver. Geometric Foundations, page 7–31. Cambridge University Press,
1995. doi: 10.1017/CBO9780511609565.003.

[41] Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan. Tensors and
dynamic neural networks in python with strong gpu acceleration. https://
github.com/pytorch/pytorch.

[42] T. B. Sebastian, P. N. Klein, and B. B. Kimia. On aligning curves. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 25(1):116–125, 2003. doi: 10.1109/
TPAMI.2003.1159951.

[43] Anuj Srivastava, Eric Klassen, Shantanu Joshi, and Ian Jermyn. Shape analysis of
elastic curves in Euclidean spaces. IEEE transactions on pattern analysis and ma-
chine intelligence, 09 2010. doi: 10.1109/TPAMI.2010.184.

[44] Anuj Srivastava, Eric Klassen, Shantanu Joshi, and Ian Jermyn. Shape analysis of
elastic curves in Euclidean spaces. IEEE transactions on pattern analysis and ma-
chine intelligence, 09 2010. doi: 10.1109/TPAMI.2010.184.

[45] Ganesh Sundaramoorthi, Anthony Yezzi, and Andrea Mennucci. Sobolev active
contours. International Journal of Computer Vision, 73:345–366, 01 2005. doi:
10.1007/s11263-006-0635-2.

[46] Georgia Tech. Lecture notes 11. https://people.math.gatech.edu/

˜ghomi/LectureNotes/LectureNotes11G.pdf.

[47] Wen-Hsiang Tsai and Shiaw-Shian Yu. Attributed string matching with merging for
shape recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-7(4):453–462, 1985. doi: 10.1109/TPAMI.1985.4767684.

[48] A. Tversky. Features of similarity. page 327–352, 1977.

[49] N. Ueda and S. Suzuki. Learning visual models from shape contours using mul-
tiscale convex/concave structure matching. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15(4):337–352, 1993. doi: 10.1109/34.206954.

[50] Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem.
J. ACM, 21(1):168–173, January 1974. ISSN 0004-5411. doi: 10.1145/321796.
321811. URL https://doi.org/10.1145/321796.321811.

54

https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://people.math.gatech.edu/~ghomi/LectureNotes/LectureNotes11G.pdf
https://people.math.gatech.edu/~ghomi/LectureNotes/LectureNotes11G.pdf
https://doi.org/10.1145/321796.321811

[51] Jianzhong Wang. Classical Multidimensional Scaling, pages 115–129. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-27497-8.
doi: 10.1007/978-3-642-27497-8 6. URL https://doi.org/10.1007/
978-3-642-27497-8_6.

[52] Laurent Younes. Computable elastic distances between shapes. SIAM Journal on
Applied Mathematics, 58, 12 2000. doi: 10.1137/S0036139995287685.

[53] W. Zeng, M. Razib, and A. Bin Shahid. Diffeomorphism spline. page 157, 2015.

55

https://doi.org/10.1007/978-3-642-27497-8_6
https://doi.org/10.1007/978-3-642-27497-8_6

56

Appendix

Definitions in differential geometry
Definition [40], [39] An m-dimensional manifoldM is a topological space covered by a
collection of open subsets Wα ∈ M (coordinate charts) and maps Xα : Wα 7→ vα ∈ Rm
one-to-one and onto (i.e. a bijection), where 7→ vα is an open, connected subset of Rm.
(Wα,Xα) define coordinates onM.M is a smooth manifold if the maps Xαβ = Xβ ◦X 1

α

are smooth where they are defined, i.e. on Xα(Wα ∩Wβ) to Xβ(Wα ∩Wβ).

57

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Hege Bærland

Optimal reparametrization of curves
in shape analysis by introducing a
deep neural network architecture

Master’s thesis in Applied Physics and Mathematics
Supervisor: Elena Celledoni

June 2021M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	Table of Contents
	Introduction
	Background
	Motivation

	Literature review
	Shape Analysis
	Describing shapes with use of landmarks
	Describing shapes as planar curves

	Curve matching
	Shape space and metric
	Reparametrization and optimization
	Dynamic programming
	Gradient descent

	Theoretical framework
	Differential geometry
	A Shape Space Metric
	Modelling character motions
	Neural networks
	Residual neural networks

	Method
	Gradient descent
	Adam method
	Neural networks

	Experiments and Results
	Curves in R3
	Gradient descent
	Adam method
	Neural networks
	Summary

	Animation curves from motion capturing

	Conclusion and future work
	Future work

	Bibliography
	Appendix

