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A B S T R A C T   

In the last decade, the bridge aerodynamics community has pivoted towards the investigation and prediction of 
nonlinear aerodynamic phenomena. Several nonlinear models have been suggested, but the research community 
has yet to conclude on the best types of models for the wide range of nonlinearity observed in the research. 
Multiple authors have indicated that Volterra models show promise in modeling nonlinear bridge aerodynamics. 
However, efficient data-driven identification of the Volterra model is challenging. A Laguerrian expansion basis 
is introduced in this work to alleviate the identification issue. The proposed method improves the identification 
of the Volterra models, leading to a reduction in computational effort and simplification of the least-squares 
problem by parameterizing the kernels. The method is also more robust to noise and small perturbations in 
the experimental data, leading to smooth, decaying kernels that are interpretable in a physical context. A 
relevant theoretical example is given to evaluate the applicability of the technique in bridge aerodynamics. 
Furthermore, the method is used to identify 1st− to 4th-order Volterra models on the experimental data of one 
degree of freedom and two degrees of freedom self-excited forces. The study shows that the technique can 
identify Volterra models with high fidelity when one degree of freedom and most two degrees of freedom motion 
data are considered. The model struggles slightly when considering the noisiest and most nonlinear two degrees 
of freedom scenarios for self-excited drag force.   

1. Introduction 

Wind loading often governs the dynamic behavior of long-span 
bridges. Thus, the interaction between the bridge and the wind has 
been an avid research topic of interest. Twin deck configurations have 
become a standard solution to avoid aerodynamic instabilities for 
bridges with super long spans. However, wind tunnel tests have shown 
that twin deck cross-sections often exhibit nonlinear aerodynamic 
behavior (Diana et al., 2004; Skyvulstad et al., 2017; Zhang et al., 2017; 
Zhou et al., 2018b, 2019a). Numerous methods have been proposed to 
adequately capture the nonlinear effects of unsteady forces, but no 
specific model has been shown to prevail (Abbas et al., 2020; Chen and 
Kareem, 2001, 2003; Chen et al., 2020; Diana et al., 1993, 1995, 2008, 
2010, 2013; Diana and Omarini, 2020; Gao et al., 2018; Gao and Zhu, 
2017; Wu and Kareem, 2011, 2013a; Zhang et al., 2020; Zhou et al., 
2018a, 2019a, 2019b). 

The Volterra series model is a general nonlinear model that expands 

linear convolutions to higher-order convolutions (Schetzen, 1980; Vol-
terra, 1959). The Volterra series model can be thought of as a Taylor 
series with a memory. An extensive review of the different identification 
methods and the use of the Volterra series models in the research 
community can be found in (Cheng et al., 2017). The functionality of 
such models for bridge aerodynamics applications has been explored in 
the time domain (Ali et al., 2020; Denoël and Carassale, 2015; Wu and 
Kareem, 2013b, 2013c, 2014, 2015a, 2015b) and the frequency domain 
(Carassale et al., 2014; Carassale and Kareem, 2010). 

Volterra series model applications in bridge aerodynamics have been 
mainly based on identification from the theoretical expressions of 
nonlinear systems or data-driven identification by sparse or full pseu-
doinverse identification. The use of data-driven identification methods 
of the Volterra series is still not extensively explored in the bridge 
aerodynamics research community. The efficient identification of Vol-
terra series models has been a research topic since the 1950s (Wiener, 
1958). Wiener proposed the Wiener series with orthogonal Wiener 
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kernels. This method is based on a Gram-Schmidt orthogonalization of 
the Volterra kernels assuming Gaussian white noise as the training input 
(Lee and Schetzen, 1965). developed an efficient algorithm for identi-
fying Wiener kernels by a cross-correlation-based method, but the 
training data input was still restricted to Gaussian white noise (Koren-
berg and Hunter, 1990). developed the repeated Toeplitz inversion al-
gorithm for identifying a Weiner series with Gaussian colored noise as 
input. Other efforts have been made to identify Volterra kernels (Del-
port, 2005): identified Volterra kernels by a tailored sequence of impulse 
inputs with varying amplitudes and time separations (Wray and Green, 
1994). recognized that kernels could be identified through a rewriting of 
the unknowns in an artificial neural network (Batselier et al., 2019). 
used a tensor network iterative algorithm to identify the kernels. 

One issue with the Volterra series models is the curse of dimen-
sionality, where the computational burden increases rapidly with the 
number of inputs, the model order and memory length. One way to 
alleviate this problem is to use a parameterized kernel expanded by basis 
functions with relatively few coefficients. Utilizing a parameterized 
kernel for the Volterra series was first suggested by (Wiener, 1958), who 
suggested simple time-delay functions as a basis, which was first 
implemented by (Watanabe and Stark, 1975). The solution was also 
recognized by (Amorocho, J., Brandstetter, 1971), who recast the 
identification problem into a linear least squares regression problem 
(Korenberg, 1987). proposed an ordinary orthogonal algorithm and 
further proposed the fast-orthogonal algorithm (FOA) to solve the 
least-squares regression problem more efficiently. 

While the use of parameterized kernels brings computational bene-
fits, a remaining challenge is to find suitable low-order expansions that 
can properly represent the physical fluid memory effects in the context 
of bridge aerodynamics (Prazenica, 2002). used a set of wavelet func-
tions as the expansion basis. The wavelet expansion basis has been used 
in the aerospace community (Khawar et al., 2012). (Reisenthel, 1999) 
suggested exponential decay, while (Nelles, 2001; Seretis and Zafirioul, 
1997) suggested distorted sine functions as filter banks (Ogura, 1986). 
worked with the Laguerrian expansion basis but tried to identify the 
coefficients through a cross-correlation method (Marmarelis, 1993). 
developed the method further and recast the identification into a 
least-squares problem. Using a Laguerrian expansion basis, the kernels 
can be parameterized by considering a superposition of a given number 
of filters as basis functions. In a model identification context, the most 
significant benefit from using a parameterized model is that the number 
of unknown coefficients is significantly reduced. 

Fewer unknown coefficients make the identification problem less 
computationally expensive and reduce the model’s necessary training 

data. Less computationally expensive operations open the opportunity 
to identify higher-order and multiple input Volterra models. As will be 
shown, the number of unknown Laguerrian coefficients is independent 
of the memory length, which can be set as arbitrarily long, thus allowing 
for long memory and utilizing high sampling frequencies. As will be 
shown, a high sampling frequency can be important when the identified 
Volterra series model in nondimensional time is rescaled for full-scale 
time-domain simulations. The Laguerrian filters are mutually ortho-
normal, and the filter coefficients become orthogonal for white noise 
inputs or nearly orthogonal for colored noise inputs, which makes the 
identification process better conditioned (Westwick and Kearney, 2003). 
The filters decay to zero, which is the case for most physical systems. The 
filters also have a low-pass filter property that suppresses higher-order 
noise, making the kernel smoother than classic pseudoinverse identifi-
cation. The physical interpretation of the kernel thus becomes more 
straightforward. 

To the best of the author’s knowledge, the Laguerrian expansion has 
not yet been explored in the bridge aerodynamics community. In this 
paper, the Laguerrian expansion technique is used to estimate the Vol-
terra kernels to predict nonlinear motion-induced forces on bridge 
decks. The technique’s effectiveness is demonstrated in a numerical 
example and with experimental data from state-of-the-art wind tunnel 
tests. The theory and experimental application are also extended to 
systems with multiple inputs. The experimental data stems from forced 
vibration tests with relatively low amplitude pitching motion and 
combined pitching and vertical motion. The nonlinearity of the section 
forces varies from significant for the drag force, mildly nonlinear for the 
pitching moment, and linear for the lift force. Modelling of the drag 
force using Volterra models is the main focus of this work. 

2. Nonlinear bridge aerodynamics 

Nonlinearity is an inherent property of fluid dynamics and can 
manifest itself in many forms. The most relevant nonlinearities in bridge 
aerodynamics are amplitude dependency and harmonic distortion. 
Traditionally, bridge engineers strive to design bridge cross-sections that 
behave mostly linear within the bridge operating range. Furthermore, 
design codes often specify a minimum flutter onset speed, without 
designing for post-flutter responses. It is well known that vortex-induced 
vibration is self-limiting, but most design codes place restrictions on the 
onset and not the response amplitude. 

Significant research efforts are being placed into modeling nonlinear 
aerodynamic phenomena. It is important to note that nonlinearity is not 
necessarily unfavorable. Several of the different phenomena assumed to 

Fig. 1. Force and motion definitions.  
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have unbounded responses in a linear analysis are in reality bounded by 
nonlinear limit-cycle oscillations (LCOs). By utilizing the actual 
nonlinearity of the problem and not restricting and assuming the phe-
nomena to be linear, one opens the opportunity to build longer and safer 
bridges at a lower cost. To do so, we need robust and well-documented 
nonlinear load models and ways to correctly identify these models. 

A suitable nonlinear model should be user-friendly and flexible 
enough to describe a broad range of nonlinear behaviors. The model 
should also be easily identified with appropriate engineering tools such 
as computational fluid dynamics (CFD), perturbations of theoretical 
models or wind tunnel experiments. In this work, a data-driven identi-
fication technique using input-output data at successive time intervals is 
used to identify the model. 

Fig. 1 shows a bridge section model subjected to wind with a mean 
wind speed V. The vertical and pitching motions of the model are 
denoted as rz and rθ, and the self-excited drag and lift forces and pitching 
moments are denoted as FD, FL, and FM. Fig. 2 shows an overview of the 
identification problem for modeling nonlinear self-excited forces with 
vertical and pitching motion as inputs. Separate systems can model the 
self-excited drag, lift and pitching moment, and it should also be noted 
that the horizontal motion can be added to the framework straightfor-
wardly. Since the self-excited drag force due to vertical and pitching 
motions shows the most interesting nonlinear aerodynamic behavior, for 
the forces considered, the main focus in this paper is given to the drag 
force. 

Research on nonlinear self-excited forces on bridges has mainly 
focused on lift and pitching moment, since these are the typical drivers 
of LCOs for galloping, vortex-induced vibrations, and nonlinear flutter. 
The drag force will often exhibit nonlinearities even for relatively small 
amplitudes due to the quadratic shape of the drag coefficient. Wind 
tunnel tests of the streamlined bridge decks clearly show 2nd-order ef-
fects of the drag component (Siedziako and Øiseth, 2018). The non-
linearities could be one reason why a large scatter is often observed for 
the aerodynamic derivatives relating to the drag force. These observa-
tions indicate that the traditional quasi-steady theory will not accurately 
predict the aerodynamic damping from drag. On the other hand, 
nonlinear models could improve the drag force prediction needed in 
simulations of bridge responses to wind loading. The self-excited forces 
from Volterra series convolutions can be incorporated into standard 
numerical integration techniques for nonlinear time-domain simula-
tions. However, such aeroelastic system simulations of bridge responses 
are outside the scope of this contribution, and only the modelling of the 
self-excited forces is considered here. 

In the wind tunnel tests in this paper, a relatively low motion 
amplitude is used (less than 3◦ for the pitching motion), which roughly 
corresponds to the displacement of a bridge in the ultimate limit state. 
As a simplification of the multi-modal buffeting response of the bridge 
decks, broad-banded stochastic motion is used to identify the model. 
This is an efficient way to incorporate multiple frequencies and ampli-
tudes in the input motion. The Volterra model could also be used to 
evaluate the LCOs, which typically display a single or double harmonic 
motion behavior with large amplitudes (Gao et al., 2020; Zhang et al., 
2020). Large-amplitude harmonic motions should be used in the training 
data for accurate modelling and identification of these phenomena. 
Evaluation of Volterra models for these effects is also outside the scope 
but would be an interesting study for the future. 

After a model is identified, a new set of inputs can in principle be fed 

through the model to predict the self-excited force. One should however 
be very careful to extrapolate with the nonlinear models; one can 
generally only the model prediction to perform well for input motions 
that are relatively similar to those considered in the model identifica-
tion. This is because the model is not necessarily able to generalize 
outside the domain of the training data. 

The next chapter explains how nonlinear aerodynamic forces for 
bridge decks can be modeled using Volterra models. The aerodynamic 
forces may depend nonlinearly on incoming turbulence, bridge motion, 
or a combination of both. This paper focuses on modeling nonlinearities 
stemming from bridge motion, but the method could easily be used on 
nonlinearities stemming from turbulence. 

3. Volterra model 

The Volterra series model of order p for causal single-input-single- 
output systems can be formulated in a continuous time-domain form 
as follows (Rugh, 1981): 

F = h0 +

∫t

0

h1(t − τ)r(τ)dτ+
∑p

P=2

∫t

0

…
∫t

0

∫t

0

hP(t − τ1,…, t

− τP)r(τ1)…r(τP)dτ1…dτP (1) 

Here, hp is the pth-order Volterra kernel. Furthermore, r is the input 
of the system (usually horizontal, vertical or pitching motion in the 
context of bridge aerodynamics), and F is the system output, which in 
our case is the self-exited drag, lift or pitching motion. By introducing 
the assumption that the system has finite fading memory with memory 
length M, the discrete form of the Volterra series model becomes (Clancy 
and Rugh, 1979): 

F[n] = h0 +
∑M

k=0
h1[k]r[n − k] +

∑p

P=2
HP

M [n] (2)  

HP
M [n] =

∑M

k1

...
∑M

kp

hp
[
k1, ..., kp

]
r[n − k1]...r

[
n − kp

]
(3) 

For 2nd-order models (p = 2), a multi-input-single-output (MISO) 
system with two inputs can be described as follows: 

F[n] = h0 +
∑M

k=0
hr1

1 [k]r1[n − k]+
∑M

k=0
hr2

1 [k]r2[n − k]+ ...

∑M

k1=0

∑M

k2=0
hr1r1

2 [k1,k2]r1[n − k1]r1[n − k2]+
∑M

k1=0

∑M

k2=0
hr2r2

2 [k1,k2]r2[n − k1]r2[n − k2]

(4)  

Here, hr1r1
2 [k1, k2] and hr2r2

2 [k1, k2] are called the 2nd-order direct kernels, 
while hr1r2

2 [k1, k2] and hr2r1
2 [k1, k2] are denoted as cross-kernels. For high 

model orders (p) and long memory lengths (M), the number of unknown 
kernel coefficients to be identified becomes very large. A large number 
of coefficients increases the computational burden and requires more 
input/output data for statistical confidence in the unknown coefficients. 
One way to reduce the number of coefficients is to use a parameterized 
kernel using basis functions/filters. In the following, attention is given to 
the Laguerre expansion basis (Marmarelis, 1993). As will be explained, 
the parameters of the Laguerre filters can be identified utilizing least 
squares, which provides a relatively loose constraint on the type of input 
to the dynamic system, and one could use a reasonably wide input range 
as long as a sufficiently high dynamic order is used (Marmarelis, 1993). 

The impulse response functions (IRFs) for the discrete Laguerrian 
filters are defined by (Marmarelis, 1993): 

gl[k] =α(k− l)/2(1 − α)(1/2)
∑l

i=0
( − 1)i

(
k
i

)(
l
i

)

αl− i(1 − α)i
, k ≥ 0 (5) 

Fig. 2. Identification problem for self-excited force modelling. F could be drag 
force, lift force or pitching moment. 
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where l = 0 … J is the filter number. The functions gl[k] approach zero for 
large k values at a rate controlled by a single parameter, the decay 
parameter 0 < α < 1. As will be shown later, the Volterra kernels are 
constructed as a summation of multiplications of the Laguerre IRFs: 

h1[k] =
∑J

l=0
clgl[k] (6)  

hP
[
k1,…, kp

]
=

∑J

l1=0
…

∑J

lp=0
cl1…lp

(
gl1 [k1]…glp

[
kp
])

, p > 1 (7)  

where c represents unknown constant coefficients. The determination of 
the constant coefficients in Eq. (6)–(7) and (15)–(16) are discussed in 
Chapter 3.1. 

It can be shown that the z-transform of Eq. (5) is given by: 

Gl(z)=
( ̅̅̅

α
√

− z− 1

1 −
̅̅̅
α

√
z− 1

)l( ̅̅̅̅̅̅̅̅̅̅̅
1 − α

√

1 −
̅̅̅
α

√
z− 1

)

(8) 

Note that the gain of these frequency response functions is inde-
pendent of the filter number l: 

|Gl(z)|=
⃒
⃒
⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅
1 − α

√

1 −
̅̅̅
α

√
z− 1

⃒
⃒
⃒
⃒ (9)  

Here, α controls the cutoff frequency, as this basis function acts as a low- 
pass filter. The choice of this parameter is discussed later. In this paper, 
the decay parameter is restricted to be equal for all filter and model 
orders. For a more general description of the Laguerre expansion basis 
technique, this need not be the case (Israelsen and Smith, 2014). 

Fig. 3 and Fig. 4 show frequency and time-domain properties of 
different Laguerre filters. Fig. 3 shows Eq. (9) and the effect of α on the 
low-pass filter properties of the model. Fig. 4 shows the time-domain 
properties of the IRF of the filters, and it is interesting to note that the 
filter order is equal to the number of zero-crossings of the IRF. Addi-
tional properties of the filters as modelling of time delays, length of 
memory depends on the decay factor and phase properties of the filters 
can be found in (Marmarelis, 1993). 

3.1. Identifying procedure 

To structure the least-squares problem for kernel identification, one 
can follow these steps (Westwick and Kearney, 2003):  

1. Choose a suitable number of filters gl[k], l = 0 … J  
2. Compute the outputs of each filter via convolution of the inputs: 

xl[n] =
∑M

k=0
gl[k]r[n − k] for l = 0...J (10)    

3. Construct the regression matrix, 

X[n, : ] =
[
1 x0[n]… xJ [n] x2

0[n] x0[n]x1[n]… x2
J [n] … xP

J [n]
]

(11) 

Higher-order and cross terms can easily be obtained by adding 
additional columns.  

4. Solve the least-squares problem: 

F =Xθ (12)  

where θ is the coefficient vector to be solved by linear least-squares. F is 
the output vector. The kernels can further be constructed from the 
estimated coefficient vector S using the following relations: 

θ̂ =

[

c0 |c0…cJ | c0,0 … cJ,J
⃒
⃒c0,0,0…cJ,J,J

⃒
⃒ c0,…,0…cJ,…,J

]T

(13)  

h0 = c0 (14)  

h1[k] =
∑J

l=0
clgl[k] (15)  

hP
[
k1,…, kp

]
=

∑J

l1=0
…

∑J

lp=0
cl1…lp

(
gl1 [k1]…glp

[
kp
])

, p > 1 (16) 

To further improve the identification efficiency, one can utilize the 
recursive relation to make the single columns in the regressor matrix X. 
The recursive relation is given according to (Ogura, 1986): 

x0[n] =
̅̅̅
α

√
x0[n − 1] +

̅̅̅̅̅̅̅̅̅̅̅
1 − α

√
r[n], x0[0] = 0 (17)  

xl[n] =
̅̅̅
α

√
xl[n − 1] +

̅̅̅
α

√
xl− 1[n] − xl− 1[n − 1], l= 1...J, xl[0] = 0 (18) 

Fig. 3. Gain of Laguerre filters with different decay factors. Note that the gain 
is independent of the filter order. 

Fig. 4. Time-domain plot of different Laguerre filter orders with α = 0.3. Note 
that the number of zero crossings is equal to the filter order. 
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By using these recursive equations the entire available motion his-
tory is implicitly considered. This means that the truncation introduced 
by only considering the first M points of the filters have been removed. 
The effective memory of the IRFs is entirely determined by the decay 
factor with an effective total memory length according to the total 
length of the longest stretching filter. As indicated in Fig. 4, the Laguerre 
IRFs approach zero, where the highest-order filter always stretches the 
furthest. For the Laguerre expansion basis, the number of unknown 
coefficients is given by: 

C(p,J) =
(J + 1)p+1

− 1
J

≃ Jp (19) 

For comparison, the number of parameters that need to be deter-
mined in the full (non-parametrized) Volterra series model is given by: 

C(p,M) =
(M + 1)p+1

− 1
M

≃ Mp (20) 

Thus, for high-order models where the number of filters is smaller 
than the memory length (J < M), the reduction in computational burden 
requirements can be significant. Note that additional redundancies can 
be removed by considering the well-known symmetry of the higher- 
order kernels. High sampling rates give a high necessary memory 
length, making the model computationally intensive to identify. For 
long necessary memory lengths, the Laguerrian expansion basis has a 
considerable advantage, especially as shown in the next chapter. 

The Laguerrian filters are orthonormal over the interval between 
(0,∞) because they follow the relation: 

∑∞

k=0
gm[k]gn[k] = δnm =

{
0 for m ∕= n
1 for m = n (21) 

Orthonormality implies that the Laguerrian filters are uncorrelated 
with each other, which in turn makes for a well-conditioned identifi-
cation problem. When the system input is Gaussian white noise, the filter 
coefficients in Eq. (13) also become uncorrelated. This further implies 
that if one has identified a Volterra model with a given set of filters, one 
can add a filter and only expect the coefficient for that filter to change. 
Furthermore (Marmarelis, 1993), concluded that the input does not 
need to be Gaussian white noise as long as all of the system frequencies 
are excited, and a high enough order is included in the model (Mar-
marelis, 1993). stated that the coefficients are said to be near ortho-
normal under these circumstances. The filter coefficients are found 
through least-squares identification, without any restriction on the type 
of input. This means that using single-harmonic inputs or harmonic 
sweeps is also applicable for training the model, with the condition that 
the model only is valid for the frequency and amplitude range of the 
training data. 

3.2. Determination of the decay parameter α 

For a given filter order J, the decay parameter α remains to be 
determined. The decay parameter controls the potential effective 
memory of the model, but as illustrated in Fig. 4 it is the sum of the filters 
for all orders that control the actual shape of the kernel. Many different 
decay factors have been tested by the authors, and our experience is that 
the methodology generally is robust both in terms of model identifica-
tion and model predictions for all cases. It is however convenient to have 
some guidelines when selecting the decay factor, and several procedures 
have been presented in the literature. Some guidelines only focus on 
getting the best possible model predictions while others also focus on 
improving the conditioning of the least-squares problem. One possibility 
is to include α as an unknown parameter; thus, Eq. (12) becomes a 
nonlinear least-squares problem. The properties of Laguerre filters 
consisting of a low-pass and an all-pass filter have been well documented 
in the literature (Schetzen, 1980). These properties are also shown in 
Eqs. (8) and (9). In the control research community, authors (Campello 

et al., 2001, 2003, 2006; Fu and Dumont, 1993) have utilized pole 
placement of the filters in the z-domain to gain an optimal decay 
parameter by minimizing the model truncation error. Some authors 
have even suggested having different decay parameters for each filter 
and each order (Israelsen and Smith, 2014). 

In this work, we choose a more straightforward form of the decay- 
parameter identification given in (Marmarelis, 1993). The reason for 
using the simple relationships given below is the ease of use, and 
sensitivity studies on experimental data show that the fit using this 
procedure gives a fit very close to the global minimum. The procedure is 
as follows:  

1. Choosing a minimum decay parameter to obtain coefficients that are 
close to orthogonal: 

Choose a decay parameter such that the cutoff frequency of the 
highest filter is less than the highest input frequency of the system: 

α ≥
(

2 − cos(β) −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cos 2(β) − 4 cos(β) + 3

√ )2
(22)  

where 

β= 2π fmax

fs
(23)  

where fmax is the maximum input frequency and fs is the sampling 
frequency.  

2. The highest filter used also has the longest influence (Marmarelis, 
1993); suggested a heuristic relationship in which the IRF of the 
highest filter should be beneath a value cut for the end of the system 
memory to capture the entire memory and avoid overfitting. 

gJ(M) ≤ 0.01 (24) 

If the suggested decay parameter from Eq. (24) is lower than the 
minimum value of Eq. (22) one should decrease the number of filters. If 
the training data is white noise, ill-conditioning is not a problem, and Eq. 
(22) can be disregarded. A suitable model order and filter order can also 
be found by gradually increasing their values until the model perfor-
mance stagnates when it is evaluated for an independent set of valida-
tion data. 

3.3. The use of Volterra model full-scale time-domain calculations 

To be able to use the Volterra models trained with experimental data 
on a full-scale analytical time-domain model, often using commercial 
FEM software, one needs to consider the following: 1) scaling from 
model scale to full scale, and 2) the possible resampling of the kernels.  

1) Scaling 

To be able to scale the mathematical model from model scale to full 
scale, the model is trained on dimensionless quantities that obey scaling 
laws. A commonly used scaling law in bridge aerodynamics is that an air 
particle uses the same dimensionless time to travel along the cross- 
section width at both the full and model scales. The dimensionless 
time s is given the following definition: 

s= tV/B (25)  

where V is the mean wind speed and B is the deck width. The aero-
dynamic force can be made dimensionless by training the model with 
the equivalent static coefficients: 

CD =
FD

1
2 ρDV2, CM =

FM
1
2 ρB2V2, CL =

FL
1
2 ρBV2 (26)  

H. Skyvulstad et al.                                                                                                                                                                                                                             



Journal of Wind Engineering & Industrial Aerodynamics 219 (2021) 104805

6

where D is the cross-wind dimension (height) of the deck and ρ is the air 
density. The rotations are already dimensionless, and the displacement 
can be made dimensionless by dividing the motions by the bridge width 
B: 

Rn =
rn

B
, where n = {z, x} (27)    

2) Resampling of kernels 

The next point of discussion is the discrete nature of the Volterra 
kernels, which are obtained for a given intersample time. While this is 
not problematic in training, it can pose a problem/restraint on the time 
step in full-scale model simulations. Consider the following example: 

Assume in a full-scale simulation of a suspension bridge excited by 
turbulent winds that the desired time step for integration is 0.2 s (cor-
responding to a 5 Hz sample rate and thus a 2.5 Hz Nyquist frequency). 
Furthermore, the wind velocity is 10 m/s in the wind tunnel and 50 m/s 
at full scale. The deck width B is set to 0.74 at the model scale and 37 m 
at the full scale, corresponding to a 1:50 geometric scale. The required 
intersample time for the model scale would then yield: 

dtmod = dtfull⋅
Vfull

Vmod

Bmod

Bfull
= 0.2⋅

50
10

1
50

= 0.02 s  

which corresponds to a sample rate of 50 Hz. The nondimensional time 
step is: 

dsmod = dsfull = dtfull⋅
Vfull

Bfull
≈ 0.27 

It can be expected that the maximum nondimensional memory is 
approximately s = 10, implying that the effective length of the wake 
influencing the bridge is less than 10B (Costa and Borri, 2006; Øiseth 
et al., 2011; Wu and Kareem, 2014). The effective wake influence length 
requires a discrete memory of M = 10/0.27 = 37 time steps. Consid-
ering, for example, a 3rd-order Volterra series model, M = 37 can be 
very challenging for both identification and prediction, as it involves 
approximately 56,000 coefficients in the full nonparametric model. On 
the other hand, a Laguerre expansion basis using J = 7 filters only has 
585 coefficients. 

Furthermore, in the case of bridge simulations with nonlinear aero-
dynamics using FEM software, the time step is not necessarily directly 
coherent with the discretization of the Volterra kernels. The inconsis-
tency requires resampling of the kernels. In this problem, it can be 
advocated that downsampling rather than upsampling is desired, which 
also imposes requirements for the minimum sampling rate of the wind 
tunnel data. 

The memory size and speed in making the regression matrix in Eq. 
(10) are relevant for time-domain models. If one uses the recurrence 
relation of Eqs. (17) and (18), this effect is optimized. If the model has 
longer memory lengths than the filter order of the Laguerrian filter, as is 
often the case, the regression matrix size decreases significantly by using 
the Laguerrian expansion basis. 

Note also that one should make use of the symmetry of the kernels 
when one implements the Volterra model. 

4. Numerical example 

A numerical example is created to evaluate the performance of the 
Laguerrian expansion based on relevant bridge aerodynamics. First, a 
linear kernel has been assumed to follow the impulse response function 
of a rational function (Øiseth et al., 2011), excluding the instantaneous 
terms: 

h1 = −
dV
B

e

(

− dV
B t

)

(28) 

Next, static nonlinearity, in other words, a Weiner model, is 
introduced: 

F = a1F1 + a2F1
2 + Fnoise (29)  

where F1 is the force from the convolution of the 1st-order kernel and the 
input. a1 and a2 are constants. A simulated white noise input is fed 
through the model, and the input-output data are used to train the 
Laguerrian expansion basis model, noise is added to the output. Three 
scenarios with different types of additional noise are studied:  

1. SNR (signal-to-noise ratio) = ∞: Noise-free – Input-output data 
(Fnoise = 0), i.e., no noise is added to the output, representing a 
perfect input-output data scenario.  

2. SNR = 10: Fnoise is artificial Gaussian white noise with an SNR (signal- 
to-noise ratio) equal to 10 (based on the variance of the signals), 
representing a scenario with imperfect measurements.  

3. HO. Noise: Noise is added to the output by expanding the Weiner 
model with 3rd-, 4th- and 5th-order elements (Fnoise = a3F1

3 +

a4F1
4 + a5F1

5), representing a scenario with a small number of high- 
order unaccounted dynamics. Note that the identification model is 
still limited to the 2nd order. 

In Table 1, the general parameters of the numerical examples can be 
found. The decay factor α is found by using Eq. (24). 

Fig. 5 shows the estimated kernels compared with the theoretical 
kernels. For scenarios 1 and 2, a very good fit with the theoretical kernel 
is obtained. In Fig. 5b), it can be seen that the higher-order noise (sce-
nario 3) has a slight influence on the diagonal of the 2nd-order kernel, 
which is probably because the inclusion of the 4th-order noise is also a 
one-sided nonlinearity. Similar effects can be observed for the 1st-order 
kernel, where the 3rd- and 5th-order dynamics embed as an erroneous 
kernel contribution. However, the kernels still look similar in shape and 
form, and the identified kernels have the correct decay. The example 
shows that the Laguerrian expansion basis (LEB) is efficient for low- 
order models that are used for predicting nonlinear self-excited forces. 

In this work the quality of fit in the time-domain is generally checked 
with the normalized mean square error (NMSE): 

NMSE= 1 −

⃦
⃦xref − xpred

⃦
⃦2

⃦
⃦xref − mean

(
xref

)⃦
⃦2 (30)  

where x is the predicted data and xref is the measured data. ‖x‖ repre-
sents the second norm of the vector x. The NMSE value is 1 for perfect fit 
and -∞ for a very poor fit. 

Fig. 6 shows a time-domain realization of the different models, where 
new white noise inputs are used to validate the realizations. All three 
models fit very well. Note that the NMSE values are very high for all 
models, where the scenario with higher-order dynamics yields a slightly 
lower value of 0.962. 

As mentioned in Chapter 3.1, the Laguerre IRFs are orthonormal. 
This property implies that the coefficients are uncorrelated with each 
other, given that the input is Gaussian white noise. Thus, increasing the 
filter order by one in the identification problem does not influence the 
coefficients of the lower-order filters. This property is confirmed for the 

Table 1 
Parameters of the theoretical example.  

d = V = B = 1 a1 – a5 = {1, 0.05, 0.005,0.0005, 0.00005} 
Signal-to-noise ratio = 10a α = 0.909 
Length of training data = 1.000.000 Length of validation data = 1.000.000 
J = 3 M = 100 dt = 0.05sec  

a Signal-to-noise ratio based on the variance of the signals. 
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numerical example in Table 2, which shows the resulting coefficients 
from Eq. (13) for filter orders J = 1, J = 2 and J = 3. The table also shows 
that setting the memory as M = 30 and M = 100 yields the same results, 
as the recursive relationship of Eq. (17) is used. 

If the same system is excited with pink noise, slightly different co-
efficients are obtained between the 1st and 2nd filter orders. Another 
interesting fact from the table is that when using a filter order of two or 

higher, the coefficients become almost similar independent of the input. 
This concurs with (Marmarelis, 1993), who stated that orthogonality 
effects are also achieved for colored noise input as long as a sufficiently 
high model and filter order are used. 

Fig. 5. Theoretical example of LEB training. a) 1st-order kernel, b) diagonal of 2nd-order kernel, c) 2nd-order kernel analytical, d) 2nd-order kernel for input-output 
data without noise, e) 2nd-order kernel with added white noise in the output, f) 2nd kernel trained for input-output data with added higher-order component. 

Fig. 6. Time-domain realization of the different trained Volterra models.  
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5. Experimental example 

A wind tunnel testing campaign was conducted at the Fluid Me-
chanics Laboratory at the Norwegian University of Science and Tech-
nology (NTNU). A 1:50 twin deck section model with curved undersides 
was tested. The cross-section exhibits slightly nonlinear properties in the 
self-excited pitching moment and severe nonlinearities in the self-exited 
drag for tests with low amplitudes. For a more detailed description of the 
campaign, see (Skyvulstad et al., 2021). The wind tunnel facility has an 
advanced forced vibration rig driven by motion actuators that can excite 
the cross-section in an arbitrarily prescribed vertical, horizontal and 
pitching motion. The rig is fully described in (Siedziako et al., 2017). 
Fig. 7 shows an illustration of the section model in the rig. Drag, lift and 
pitching moment forces are measured by load cells at each end of the 

section model at a sampling frequency of 250 Hz. 
A variety of tests were performed on the section model, including 

single harmonic motion and random motion tests. Random motion tests 
are well suited to excite a wide frequency range in a short amount of 
time and are the preferred choice for system identification of a general 
load model. The largest amplitudes of the tested pitching motion are 
about 2.5◦, which implies that significant nonlinearities are only ex-
pected for the drag force. However, all sections have nonlinear aero-
dynamic behavior for large angles of attack, which can be caused by 
large motion or large-scale incoming turbulence that contributes to the 
dynamic angle of attack. 

The inertia forces are removed from the analysis by utilizing the 
(Han et al., 2014) method, which implies testing the same motion in still 
air and subtracting the forces from the forces in the in-wind test. The 
contribution from self-excited forces in still air is assumed to be 
insignificant. 

The goal of the rest of this chapter is to evaluate the performance of 
the Laguerrian filter basis technique on nonlinear self-excited forces for 
bridge decks with low amplitude motions. Nonlinear forces for low 
amplitude motions are interesting. Usually, nonlinearities are seen for 
damping-driven high amplitude motion phenomena such as galloping, 
vortex-induced vibrations, and torsional flutter. However, the nonlinear 
behavior for small amplitudes is interesting for a broader range of bridge 
responses and for the ultimate limit state response in turbulent winds. 

In the next chapter, 1DOF random pitching motion experiments are 
used to evaluate the Laguerrian expansion basis technique. Further-
more, the most nonlinear component, namely, the 6 m/s self-excited 
drag force, is evaluated in detail. After that, 2DOF random motion 
tests are evaluated, and the 6 m/s drag force is investigated in detail. 

5.1. One degree of freedom random pitching motion 

In the following, the 1st− to 4th-order Volterra models with different 
filter orders (J = 1-10) are calibrated and validated on experimental 
data utilizing the Laguerrian expansion basis. The motion in the wind 
tunnel is a time-domain realization of colored noise with a constant 
spectrum between 0 and 3.5 Hz, which corresponds to a full-scale fre-
quency content (V = 50 m/s) of 0–0.31 Hz. Three hundred seconds of 
training data and 300 s of validation data are used. The wind speed in 
the tunnel is 6 and 10 m/s, and the motion forced on the cross-section is 
pitching motion. The wind tunnel test is sampled at 200 Hz but is 
downsampled by a factor of 1/3 (~66.6 Hz), and the downsampling is in 
agreement with the sampling rate applicable for utilizing the model at 
full scale. The amplitude of the model is restricted to a maximum 
amplitude over the entire time series of 3◦. 

For each Volterra model order, the lowest filter order that gave the 

Table 2 
Estimated coefficients for different filter orders, with different memory lengths and with and without constant terms. Note that all models have been trained with the 
recursive relation of the regression matrix. The model order is P = 2.   

M = 30 M = 100 M = 100 

Input data: white noise white noise pink noise 

Regression column, x J = 1 J = 2 J = 3 J = 1 J = 2 J = 3 J = 1 J = 2 J = 3 

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000 
x1 − 3.2409 − 3.2408 − 3.2408 − 3.2409 − 3.2408 − 3.2408 − 3.1877 − 3.2406 − 3.2406 
x2 – − 0.0762 − 0.0762 – − 0.0762 − 0.0762 – − 0.0757 − 0.0758 
x1x1 0.5250 0.5251 0.5251 0.5250 0.5251 0.5251 0.5084 0.5250 0.5250 
x1x2 – − 0.0247 − 0.0247 – − 0.0247 − 0.0247 – − 0.0246 − 0.0245 
x2x1 – Sym. Sym. – Sym. Sym. – Sym. Sym. 
x2x2 – 0.0003 0.0003 – 0.0003 0.0003 – 0.0003 0.0003 
x3 – – − 0.0015 – – − 0.0015 – – 0.0000 
x1x3 – – 0.0005 – – 0.0005 – – 0.0003 
x2x3 – – 0.0000 – – 0.0000 – – 0.0000 
x3x1 – – Sym. – – Sym. – – Sym. 
x3x2 – – Sym. – – Sym. – – Sym. 
x3x3 – – 0.0000 – – 0.0000 – – 0.0001  

Fig. 7. Illustration of the forced vibration rig with the tested model mounted in 
the model. 

Table 3 
NMSE between experimental data and estimated model data from the Volterra 
series model of different orders using the Laguerrian expansion basis. 1DOF 
random pitching motion data. The models are compared to the performance of a 
linear benchmark model using a rational function approximation fitted to 
aerodynamic derivatives.  

Section 
force 

Mean wind 
speed 

Rational 
function 

1st 2nd 3rd 4th 

Moment 10 0.893 0.905 0.981 0.983 0.983 
Moment 6 0.919 0.983 0.989 0.992 0.992 
Lift 10 0.959 0.978 0.993 0.994 0.994 
Lift 6 0.984 0.989 0.992 0.995 0.995 
Drag 10 − 0.124 0.642 0.938 0.942 0.942 
Drag 6 0.117 0.391 0.882 0.905 0.905  
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Fig. 8. 1st-order kernel of different models. Self-excited pitching-motion data are used for calibration of the model. Note that the 1st-order kernel of the 1st-order 
models can be viewed as the linear unit impulse response function of the system. 

Fig. 9. 2nd-order kernels for different models. Self-excited random pitching motion.  

H. Skyvulstad et al.                                                                                                                                                                                                                             



Journal of Wind Engineering & Industrial Aerodynamics 219 (2021) 104805

10

best performance according to the NMSE was chosen. Filter-order J = 5 
gives the best fit for all orders of the model, and utilizing the heuristic 
relation of Eq. (24) gives an α = 0.6563. A sensitivity study to change α 
finds that the fit is relatively independent of the factor. 

The NMSE values are given in Table 3. It can be seen in the table that 
the drag force measured at 6 m/s wind speed is the most nonlinear force 
component since the NMSE is only 0.391 for the 1st-order model. These 
tests are evaluated in detail in the next chapter. This section mainly 
focuses on other results. It is seen in the table that the lift and the 6 m/s 
pitching moment are more or less linear with an NMSE above 0.98. The 
2nd-order model increases the performance for the 10 m/s pitching 
moment and 10 m/s drag. 3rd-order models provide only a slight in-
crease in all model performances. The 4th-order model gave no extra 
gain in performance but did not suffer from overfitting either. 

The performance of a rational function model (Øiseth et al., 2011) is 
presented in Table 3 to evaluate the Laguerrian expansion basis models 
performance against a well-established model in bridge aerodynamics. 
The rational function model is established from a fit to the aerodynamic 
derivatives, which is in turn is extracted from single harmonic tests 
(Skyvulstad et al., 2021). Since the cross-section is found to be 
Reynolds-sensitive, only single harmonic data, with the same mean wind 
speed as the validation data, were used to extract the aerodynamic 
derivatives. 

It is seen from the table that the 1st-order Volterra-models perform 
better than the rational function models. A reason for this could be that 
more terms have been used in the Laguerrian expansion basis than in the 
rational function approximation. Another reason is the greater similarity 
of training and validation data used for the Laguerrian expansion basis. 
Nevertheless, this illustrates that the Laguerrian expansion basis also has 

potential for linear modelling of self-excited forces. 
Fig. 8 shows the 1st-order kernels for the different force components 

for motion tests at different wind speeds. It is interesting to note that the 
change in mean wind speed drastically changes the 1st-order kernel in 
drag, but the kernels for lift and pitching moment remain the same. This 
change could be explained by a Reynolds number dependency of the 
cross-section. The 1st-order kernel for the lift and pitching moment 
shows only small differences in the different mean wind speeds, indi-
cating less Reynolds number dependency for these sectional forces. The 
6 m/s pitching moment kernel has a larger negative starting value than 
the 10 m/s kernel, but it also has higher positive values evening out the 
differences. 

Fig. 9 shows the 2nd-order kernels for different models. As expected, 
the parameterized kernels yield surfaces that are generally smooth. The 
2nd-order kernels for drag are also different for both wind speeds, but 
the shape is not as different as seen for the 1st-order kernel. The lift 
kernel shapes are also different, but note that the 6 m/s lift kernel is 
numerically very small, indicating less nonlinearity of the time series, as 
also seen in Table 3. The difference in absolute values of the 2nd-order 
kernel for the 6 m/s and 10 m/s tests is quite significant, and the larger 
numerical values of the 10 m/s kernel indicate that the system is more 
nonlinear than the 6 m/s test, which is also seen in Table 3. For the 2nd- 
order kernel, the memory lengths are approximately 10 elements giving 
a total 2nd-order memory length of s2st,Memory = 10*0.1216 ≈ 1.2. The 
exception to memory lengths is the 6 m/s lift kernel, but this kernel is 
almost zero and should not be included in the modeling of the lift force. 

5.2. Drag force from one degree of freedom pitching motion 

In this chapter, the 6 m/s self-excited drag force is investigated in 
detail. Table 4 shows a comparison between the different nonlinear 
model orders and their performance. Several comments can be made 
from the table: The 1st-order model struggles to predict the drag data, a 
clear indicator of nonlinearity. The 2nd-order model performs signifi-
cantly better than the linear model, and the 3rd-order model performs 
slightly better than the 2nd-order model. The 4th-order model does not 
increase in performance compared to the 3rd-order model. Since the 
4th-order model did not give a better prediction, this model was not 
investigated further. 

Fig. 10 shows the 1st-order kernel for the 1st− , 2nd− and 3rd-order 
models. Note that the 1st-order kernel for the 1st-order model is the 
only kernel that can be said to be a linear impulse response of the system. 
The diagonal elements on the higher-order kernels can also be seen as 
“autokernels”, and therefore, the 1st-order impulse response needs to 
account for the higher-order effects. In other words, the 1st-order kernel 
does not need to be the same for all of the models, which further implies 
that one cannot reduce a higher-order model to a lower-order model by 
removing the higher-order kernels. It is interesting to note that in the 
3rd-order models, the 1st-order kernel has higher positive values on 
both peaks compared with the 1st− and 2nd-order models. It seems that 
the extraction of 3rd-order nonlinearities enables the inclusion of more 
information in the linear kernel since both are odd order. The sharp edge 
of the kernel comes from the discrete form properties of the LEB, but the 
kernels are in general very smooth considering the noise level in the 
measurements, and this can be assigned to the low-pass filter properties 
of the Laguerrian filters. Volterra identification methods based on full 
nonparametric least-squares often yield nonsmooth kernels, making the 
physical reasoning behind the kernels more challenging to interpret. 

The 1st-order kernel diminishes to zero at approximately 45 ele-
ments for all models. This means that the 1st-order memory of the sys-
tem, in nondimensional time, is approximately s1st, Memory = 45*0.1216 
≈ 5.5. This corresponds to a physical length of 5.5*B, a result that can be 
reasonable for bridge decks. 

Fig. 11 shows the 2nd-order kernels for the 2nd− and 3rd-order 
models. The numerical value of the 2nd-order kernel is significant 
compared with the 1st-order kernel, which further implies that the 2nd- 

Table 4 
Comparison of different orders of the Volterra series model performance ac-
cording to NMSE. The models are compared to the performance of a linear 
benchmark model using a rational function approximation fitted to aerodynamic 
derivatives.   

Rational function 1st 2nd 3rd 4th 

NMSE 0.117 0.39 0.88 0.905 0.905  

Fig. 10. 1st-order kernels for the 1st− , 2nd− and 3rd-order models. Drag force 
at 6 m/s for pitching motion training data. Note that the higher-order models 
include all lower-order kernels. As an example, the 3rd-order model has 1st 
-,2nd-order and 3rd-order kernels. 
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order kernel is essential, as expected from the increased performance of 
the 2nd-order model compared with the 1st-order model. Note that the 
force output is dependent on the pitching motion in radians squared, so 

the magnitude difference cannot be compared directly. 
The kernel shape is very smooth and has high similarities to the 

square of the 1st-order kernel. The experimental noise is very much 

Fig. 11. 2nd-order kernels for the 2nd− and 3rd-order Volterra models. Note that the higher-order models include all lower-order kernels. As an example, the 3rd- 
order model has 1st− , 2nd− and 3rd-order kernels. 

Fig. 12. Prediction of motion-induced forces using Volterra models of different orders compared to experimental data. Drag force 6 m/s random pitching motion 
data. Training data are independent of the validation data viewed. 
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suppressed in the kernel, and the 2nd-order memory is significantly 
shorter than the 1st-order memory, at approximately 25 elements or a 
nondimensional memory s2nd, memory = 25*0.1216 = 3.04. A reduction in 
higher-order memory lengths is expected, and this was utilized by (Wu 
and Kareem, 2014) by reducing the effective memory of the 

higher-order kernels. Some discrepancies of the 2nd-order kernel from 
the 2nd− and 3rd-order models are visible, but these discrepancies can 
be characterized as small. 

Fig. 12 shows a cut of the experiment’s validation time series plotted 
together with the predicted time series from different model orders. The 

Fig. 13. Predicted self-excited drag force due to random pitching motion at 6 m/s wind velocity. The thick line in the top figure shows the contribution from the first 
1st-order kernel, the thick line in the middle figure shows the contributions from the 2nd− order kernel and the thick line in the bottom figure shows the contribution 
from the 3rd-order kernel. The thin lines show the sum of all contributions. 

Fig. 14. Fourier amplitude of the predicted and the validation self-excited drag force data. Movmean denotes the smoothed 100-element central moving mean of the 
Fourier amplitude. 
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Fig. 15. Bicoherence values between the pitching motion, and the force from the measured validation data as well as the predicted force for the Volterra models at 
different orders. The data is the self-excited drag force at 6 m/s. 

Fig. 16. Single harmonic experimental data, 6 m/s 1.7 Hz test pitching motion and Volterra model prediction from models calibrated on random motion 6 m/s 
pitching motion data. The power spectrum shows that the higher-order models are needed for modelling higher-order harmonics of the measured force. 
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top of the figure shows the pitching motions. One can see in the figure 
that the 1st-order model struggles to predict the drag force. The am-
plitudes of the predicted force for the 1st-order model amplitude are 
always smaller than the measured ones, and the error becomes greater 
with higher amplitude motion. The results are expected if high 2nd- 
order nonlinearity is present, as often is the case for drag. 

The 2nd− and 3rd-order models perform significantly better than the 
1st-order model. It is interesting to note that the 2nd− and 3rd-order 
models follow each other very closely and that the 3rd-order model 
only slightly alters behavior compared with the 2nd-order model. A 
surprising fact is that the high amplitude forces are also predicted as the 
low amplitude forces, and it seems that more discrepancies are present 
for low-amplitude high-frequency motions of approximately 286 
s–287.5 s. The discrepancies could be due to the suppression of higher- 
order noise by the filters, or it could be a 4th− or higher-order nonlin-
earity present system. 

Fig. 13 shows a breakdown of the 3rd-order model prediction. It is 
seen that the 1st-order part has lower frequency components compared 
with the 2nd- and the 3rd- order contribution. It is interesting to note 

that the 3rd-order contribution contributes mostly when the pitching 
motion is large. 

Fig. 14 shows the Fourier amplitudes for the different Volterra- 
models compared with the Fourier amplitude of the validation data 
for the self-excited drag force. Moving mean values are also shown. The 
figure shows that the 1st-order model lacks frequency content above the 
highest input frequency of 3.5Hz. The 2nd-order model captures the 
high-frequency components and the 3rd-order model is the most accu-
rate of the considered models. 

Bicoherence is a tool that can be used for identifying the quadratic 
coupling of frequencies in a signal. Fig. 15 shows the bicoherence be-
tween the motion input and the self-excited drag force for the validation 
data and the predicted forces. The predictions from the 1st, 2nd, and 
3rd-order models, where bicoherence definition used is according to 
(Hayashi et al., 2007). The bicoherence is always between zero and one, 
respectively representing the case of no quadratic coupling and the case 
where all energy stems from a quadratic coupling for that frequency 
pair. It is seen from Fig. 16 that the measured data has a strong quadratic 
coupling for values outside the input region of 0–3.5 Hz, but the 
quadratic coupling is also present within the frequency range of the 
input motion. For the linear model, on the other hand, very low values of 
the bicoherence are observed as expected since no quadratic nonline-
arity is present in this model. The 3rd-order and the 2nd-order model 
both show a very similar pattern of bicoherence as the measured vali-
dation data. Using the bicoherence tool one can observe that the 2nd−

and 3rd-order model has very similar quadratic frequency content 
compared with the measured validation data. 

When the model is trained on the random motion data, one can 
predict forces on any arbitrary motion. Of course, one should be very 
careful to predict forces from motions that are outside the training re-
gion of the model, considering amplitude, frequency, and motion history 
over the memory length. Fig. 16 shows a 1.7 Hz single harmonic test at 6 
m/s compared with predicted forces from the Volterra models trained on 
random motion data. The amplitude of the single harmonic is 2◦, and the 
frequency is 1.7 Hz, which is inside the testing region data of the random 
motion, so one should expect reasonable behavior from the Volterra 
models. Note that testing of a single harmonic represents a very distinct 
motion pattern backwards in time and that the single harmonics (14 
cycles) are shown, but the first two cycles are removed to stabilize the 
fluid memory over the cycles. The stabilized motions are probably 

Table 5 
NMSE between experimental data and estimated model data from the Volterra 
series model of different orders using the Laguerrian expansion basis. 2DOF 
random motion vertical and pitching motion data. The models are compared to 
the performance of a linear benchmark model using a rational function 
approximation fitted to aerodynamic derivatives.  

Section 
force 

Mean 
wind 
speed 

Cross Rational 
function 

1st 2nd 3rd 4th 

Moment 10 Yes 0.854 0.903 0.977 0.975 0.970 
Moment 10 No 0.854 0.903 0.947 0.945 0.945 
Moment 6 Yes 0.937 0.979 0.985 0.988 0.976 
Moment 6 No 0.937 0.979 0.982 0.982 0.980 
Lift 10 Yes 0.941 0.961 0.976 0.971 0.939 
Lift 10 No 0.941 0.961 0.970 0.969 0.967 
Lift 6 Yes 0.951 0.965 0.968 0.967 0.924 
Lift 6 No 0.951 0.965 0.967 0.967 0.964 
Drag 10 Yes 0.187 0.612 0.770 0.735 0.394 
Drag 10 No 0.187 0.612 0.726 0.701 0.670 
Drag 6 Yes 0.408 0.503 0.815 0.821 0.755 
Drag 6 No 0.408 0.503 0.724 0.725 0.719  

Table 6 
NMSE between experimental 2DOF random motion vertical and pitching motion 
data and superposition of 1 + 1 random motion vertical and torsional data.  

Section force Mean wind speed 1+1Dof 

Moment 10 0.903 
Moment 6 0.966 
Lift 10 0.966 
Lift 6 0.977 
Drag 10 0.722 
Drag 6 0.463  

Table 7 
Shows the NMSE performance of the different models. Volterra w/cross is a 
Volterra model using a Laguerrian filter basis but with cross kernels included. 
Volterra w/o cross is a Volterra model using a Laguerrian filter basis but without 
using cross kernels but calibrated with 2DOF data directly. Experimental de-
notes the superposition of the two 1 + 1 degree of freedom tests. The models are 
compared to the performance of a linear benchmark model using a rational 
function approximation fitted to aerodynamic derivatives.  

Volterra w/cross 1st = 0.503 2nd =
0.815 

3rd = 0.821 4th =
0.755 

Volterra w/o 
cross 

1st = 0.503 2nd =
0.724 

3rd = 0.725 4th =
0.719 

Experimental 1+1DOF =
0.463  

Rational 
function 

= 0.408  

Fig. 17. 1st-order kernel for both inputs of the cross model. 6 m/s random 
motion, drag data with vertical motion and pitching motion as input. Kernels 
are from 2nd-order models. 
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outside the testing region of the random motion. 
The 1st-order model shows typical linear elliptical shapes in the 

hysteresis plot. This is limited to predicting only the 1st-order harmonic, 
as seen in Fig. 16. The 2nd− and 3rd-order models can predict 2nd and 
3rd superharmonics as expected, but it can be seen that the 3rd-order 
model somewhat underestimates the 3rd superharmonic. 

The performance of the hysteresis predicted by the 2nd− and 3rd- 
order models is acceptable but not very impressive. Note also that sig-
nificant mean drift effects between predicted and measured tests are 
present. The Volterra model can model mean drift effects, but as ex-
pected, using stochastic training data when predicting the forces from 
single harmonics will deem some inaccuracies. 

5.3. Two degrees of freedom pitching and vertical motion 

Two degrees of freedom random motion is also tested in the wind 
tunnel. Herein, the two degrees of freedom data comprise vertical and 
pitching motions. The pitching motion is the same as for the 1DOF 
motion in the previous chapter. The vertical motion is also a time 

realization of colored noise with a constant spectrum between 0 and 3.5 
Hz. The maximum amplitude of the vertical motion is 30 mm. 

Note that all models are based on the displacements as input. Vertical 
velocity is directly related to the change in the angle of attack according 
to quasi-steady theory, but analysis has shown that using displacement 
as input gives the same results. It is important to note that the 
displacement is not an independent variable compared with the veloc-
ity, and models with memory will also be velocity dependent for 
displacement inputs. 

A 1DOF vertical motion with the same vertical motion amplitudes of 
the 2DOF motion is also tested in the wind tunnel, providing an op-
portunity for a benchmark of superposition experimental tests. 

Table 5 and Table 6 show the NMSE performance of the different 
models for 2DOF random motion data. The Laguerrian filter basis is 
iterated from filter order J = 0-10 with the decay factor determined by 
the highest filter according to Eq. (24). All models used a filter order of J 
= 5 and a decay factor of α = 0.6563. 

Table 5 shows the NMSE performance on the 2DOF self-excited force 
data. Including cross-terms gives, in general, an increase in performance 

Fig. 18. 2nd direct and cross kernels for the 2nd-order Volterra model. 6 m/s drag force data with pitching motion and vertical motion as input. Note that input 1 is 
pitching motion, and input 2 is vertical motion. 
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for all 2nd− and 3rd-order models. The performance decrease of the 4th- 
order model shows clear signs of overfitting, but the performance loss is 
generally small. 

The performance of the Laguerrian expansion basis for modeling 
2DOF lift and pitching moment data is good, but modeling the drag force 
is challenging, and the 6 m/s drag data for 2DOF motions are evaluated 
in detail in the next chapter. 

The Rational function model benchmark of the 1DOF case is also 
introduced in the 2DOF case. It is seen that the 1st-order Volterra models 
outperform the rational function model. The reason for this could be 
assigned to the type of rational function model, but the reason is prob-
ably due to the difference in training data compared with the validation 
data. Nevertheless, this indicates that the Laguerrian expansion basis 
models perform well on the problem at hand. 

Table 6 shows the performance of the superposition of two 1DOF 
motions, namely, vertical and pitching motions. The performance 
should be compared with the models given in Table 5. 

5.4. Drag forces for pitching and vertical motion with two degrees of 
freedom 

Table 7 shows the performance of the different models that are tested 
on the 6 m/s two-degree-of-freedom random motion data. It can be seen 
that the Laguerrian filter basis performs best for the 3rd-order model, 
and overfitting for the 4th-order model is present. The 2nd-order model 
performs better than the linear model, but the performance is less than 
that for the 1DOF case. The 1st-order no-cross model is equal to the 
model with cross-terms because these models are equal. The 2nd− and 
3rd-order models without cross-terms perform worse than the model 
with cross-terms. The 4th-order model without cross-terms gives less 
reduction in performance compared with the 4th-order model with 
cross-terms and can be an indication of overfitting due to a large number 
of unknown compared with the size of the training data. The 1 + 1 DOF 
superposition data perform slightly worse than the linear models. 

Fig. 17 shows the 1st-order kernel of the 2nd-order model with and 
without cross-terms. The 1st-order kernel of the 2nd-order model of the 
1DOF data from the former chapter is also shown. In the figure, one can 
see that the vertical motion has slightly longer memory at approximately 
50 terms compared with the 45 terms of the pitching motion. It is 
interesting to note that both the vertical and pitching motion 1st-order 
kernels are similar for the model with and without cross-terms. 

However, the 1st-order kernel of the 2nd-order model from the 1DOF 
test has significantly higher amplitudes compared to the 2DOF test. It 
seems that the model has a hard time extracting correct information 
from the model, and the model keeps treating the other motions as noise. 
Additional data could alleviate the problem. The size of the vertical 
motion 1st-order kernel is larger than the pitching motion kernel, 
indicating that the vertical motion has a more significant impact on the 
drag per unit of displacement. 

Fig. 18 shows the 2nd-order kernels for the 2nd-order models with 
and without cross-terms. h2,zz and h2,θθ are similar in shape for the cross- 
and no-cross-term models, but the amplitudes are different. The h2,θz and 
h2,zθ could, in general, be equal, so a comparison between them is 
obsolete, but it appears that the memory of the cross-kernels is about the 
same lengths as the direct kernels. 

Fig. 19 shows a time-domain realization of the different models. At 
time instances 255.8 and 260.1, one can observe that the 1+1DOF 
model struggles to predict forces when both vertical and pitching motion 
is at their negative peaks. The 2nd-order model with cross-terms per-
forms fairly well, given that the model data are noisy and that the model 
has a limited amount of data. The performance of the model with cross- 
terms is better than the performance without cross-terms, indicating that 
the cross-term has an impact on the model, but the performance with 
cross-terms is significantly lower than the 1DOF problem displayed 
earlier. 

6. Conclusion 

In this paper, the use of parametrized functions called the Laguerrian 
expansion basis for identifying Volterra models is explored. Volterra 
models are used to predict nonlinear aerodynamic self-excited forces on 
twin decks. It is found that the parameterized Volterra kernels have 
several advantages: i) they have fewer unknown coefficients, which 
leads to a significantly less computationally expensive identification 
problem; ii) recursive relationships inherent to Laguerrian filters pro-
vide an opportunity for fast self-computation; iii) the kernels decay 
smoothly towards zero, and this suppresses high-order noise; iv) the 
memory length can be specified almost arbitrarily high without the 
addition of computational effort. 

The method was used to identify kernels using experimental data 
from wind tunnel tests on a twin deck, and the following conclusions can 
be drawn: 

Fig. 19. Time-domain realization of different Volterra series models compared with experimental data. Volt w/cross denotes full 2nd-order Volterra with cross- 
terms. Volt w/o cross denotes the 2nd-order Volterra model without cross-terms. 1+1DOF denotes the superposition of a single degree of experimental data. 6 
m/s drag force data. 
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- For the 1DOF motion problem, low filter orders were used, and good 
performance was observed. The 2nd-order models gave a slight in-
crease in performance for nearly linear datasets but a significant 
increase for the nonlinear datasets. The 3rd-order models gave a 
small increase in performance, but the 4th-order model gave no in-
crease over the 3rd-order models.  

- The Volterra kernels gained from the technique were smooth and 
easily interpretable.  

- For the 2DOF motion problem, the technique works well for slightly 
nonlinear datasets, but for more nonlinear and noisy datasets, such 
as the drag force, the performance decreased, but the performance 
was still better than the model without cross-terms and significantly 
better than linear and 1+1DOF models. 

The capabilities of the method for efficient identification and 
modelling of nonlinear self-excited forces indicate that it could be 
applied to other nonlinear bridge aerodynamics phenomena. A natural 
extension, which remains to be further investigated, is the modelling of 
self-excited lift and moment at large angles of attack, which is of 
particular interest when evaluating the stability limit of long-span 
bridges. A limitation of the present work is that only vertical and 
pitching motion has been considered, but horizontal motion can also 
straightforwardly be used. It should however be acknowledged that it is 
difficult to obtain reliably experimental results for self-excited forces 
due to horizontal motion since the forces are small. 

Moving forward, implementing the model in finite element software 
utilizing the model in response analysis for the full structure would be of 
interest. 

Author statement 

Henrik Skyvulstad: Conceptualization, Methodology, Software, 
Formal analysis, Writing - Original Draft, Visualization, Funding 
acquisition, Øyvind W. Petersen: Conceptualization, Methodology, 
Writing - Original Draft, Tommaso Argentini: Writing - Review & Edit-
ing, Alberto Zasso: Writing - Review & Editing, Ole Øiseth: Conceptu-
alization, Methodology, Writing - Review & Editing, Supervision, 
Project administration, Funding acquisition. 

Toolbox 

The authors have supplied a MATLAB toolbox together with the 
manuscript. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The research presented in this paper has been financed by Norconsult 
AS, The Norwegian Public Roads Administration (NPRA) and The 
Research Council of Norway grant nr. 263483. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jweia.2021.104805. 

References 

Abbas, T., Kavrakov, I., Morgenthal, G., Lahmer, T., 2020. Prediction of aeroelastic 
response of bridge decks using artificial neural networks. Comput. Struct. 231 
https://doi.org/10.1016/j.compstruc.2020.106198. 

Ali, K., Katsuchi, H., Yamada, H., 2020. Numerical simulation of buffeting response of 
long-span bridges in time-domain using Volterra based wind load model. J. Struct. 
Eng. 66A, 292–302. https://doi.org/10.11532/structcivil.66A.292. 

Amorocho, J., Brandstetter, A., 1971. Determination of nonlinear functional response 
functions in rainfall runoff processes. Water Resour. Res. 7, 1087–1101. 

Batselier, K., Chen, Z., Wong, N., Bouvier, D., Hélie, T., Roze, D., Bouvier, D., Hélie, T., 
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Denoël, V., Carassale, L., 2015. Response of an oscillator to a random quadratic velocity- 
feedback loading. J. Wind Eng. Ind. Aerod. 147, 330–344. https://doi.org/10.1016/ 
j.jweia.2015.09.008. 

Diana, G., Bruni, S., Cigada, A., Collina, A., 1993. Turbulence effect on flutter velocity in 
long span suspended bridges. J. Wind Eng. Ind. Aerod. 48, 329–342. https://doi.org/ 
10.1016/0167-6105(93)90144-D. 

Diana, G., Falco, M., Bruni, S., Cigada, A., Larose, G.L., Darnsgaard, A., Collina, A., 1995. 
Comparisons between wind tunnel tests on a full aeroelastic model of the proposed 
bridge over Stretto di Messina and numerical results. J. Wind Eng. Ind. Aerod. 
54–55, 101–113. https://doi.org/10.1016/0167-6105(94)00034-B. 

Diana, G., Omarini, S., 2020. A non-linear method to compute the buffeting response of a 
bridge validation of the model through wind tunnel tests. J. Wind Eng. Ind. Aerod. 
201, 104163 https://doi.org/10.1016/j.jweia.2020.104163. 

Diana, G., Resta, F., Rocchi, D., 2008. A new numerical approach to reproduce bridge 
aerodynamic non-linearities in time domain. J. Wind Eng. Ind. Aerod. 96, 
1871–1884. https://doi.org/10.1016/j.jweia.2008.02.052. 

Diana, G., Resta, F., Zasso, A., Belloli, M., Rocchi, D., 2004. Forced motion and free 
motion aeroelastic tests on a new concept dynamometric section model of the 
Messina suspension bridge. J. Wind Eng. Ind. Aerod. 92, 441–462. https://doi.org/ 
10.1016/j.jweia.2004.01.005. 

Diana, G., Rocchi, D., Argentini, T., 2013. An experimental validation of a band 
superposition model of the aerodynamic forces acting on multi-box deck sections. 
J. Wind Eng. Ind. Aerod. 113, 40–58. https://doi.org/10.1016/j.jweia.2012.12.005. 

Diana, G., Rocchi, D., Argentini, T., Muggiasca, S., 2010. Aerodynamic instability of a 
bridge deck section model: linear and nonlinear approach to force modeling. J. Wind 
Eng. Ind. Aerod. 98, 363–374. https://doi.org/10.1016/j.jweia.2010.01.003. 

Fu, Y., Dumont, G.A., 1993. An optimum time scale for discrete laguerre network. IEEE 
Trans. Automat. Control 38, 934–938. https://doi.org/10.1109/9.222305. 

Gao, G., zhong, Zhu, dong, L., 2017. Nonlinear mathematical model of unsteady 
galloping force on a rectangular 2:1 cylinder. J. Fluid Struct. 70, 47–71. https://doi. 
org/10.1016/j.jfluidstructs.2017.01.013. 

Gao, G., Zhu, L., Han, W., Li, J., 2018. Nonlinear post-flutter behavior and self-excited 
force model of a twin-side-girder bridge deck. J. Wind Eng. Ind. Aerod. 177, 
227–241. https://doi.org/10.1016/j.jweia.2017.12.007. 

Gao, G., Zhu, L., Li, J., Han, W., Yao, B., 2020. A novel two-degree-of-freedom model of 
nonlinear self-excited force for coupled flutter instability of bridge decks. J. Sound 
Vib. 480, 115406 https://doi.org/10.1016/j.jsv.2020.115406. 

Han, Y., Liu, S., Hu, J.X., Cai, C.S., Zhang, J., Chen, Z., 2014. Experimental study on 
aerodynamic derivatives of a bridge cross-section under different traffic flows. 
J. Wind Eng. Ind. Aerod. 133, 250–262. https://doi.org/10.1016/j. 
jweia.2014.08.003. 

H. Skyvulstad et al.                                                                                                                                                                                                                             

https://doi.org/10.1016/j.jweia.2021.104805
https://doi.org/10.1016/j.jweia.2021.104805
https://doi.org/10.1016/j.compstruc.2020.106198
https://doi.org/10.11532/structcivil.66A.292
http://refhub.elsevier.com/S0167-6105(21)00280-4/sref3
http://refhub.elsevier.com/S0167-6105(21)00280-4/sref3
https://doi.org/10.1098/rsos.181848
https://doi.org/10.23919/ecc.2001.7075935
https://doi.org/10.23919/ecc.2001.7075935
https://doi.org/10.1016/j.automatica.2005.12.003
https://doi.org/10.1016/j.automatica.2005.12.003
https://doi.org/10.1016/S1474-6670(17)35022-X
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000113
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000737
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000737
https://doi.org/10.1061/(ASCE)0733-9399(2003)129:8(885)
https://doi.org/10.1061/(ASCE)0733-9399(2003)129:8(885)
https://doi.org/10.1016/S0167-6105(01)00147-7
https://doi.org/10.1016/S0167-6105(01)00147-7
https://doi.org/10.1016/j.engstruct.2019.109855
https://doi.org/10.1016/j.ymssp.2016.10.029
http://refhub.elsevier.com/S0167-6105(21)00280-4/sref14
http://refhub.elsevier.com/S0167-6105(21)00280-4/sref14
https://doi.org/10.1016/j.jweia.2006.06.007
https://doi.org/10.1016/j.jweia.2006.06.007
http://refhub.elsevier.com/S0167-6105(21)00280-4/sref16
http://refhub.elsevier.com/S0167-6105(21)00280-4/sref16
http://refhub.elsevier.com/S0167-6105(21)00280-4/sref16
https://doi.org/10.1016/j.jweia.2015.09.008
https://doi.org/10.1016/j.jweia.2015.09.008
https://doi.org/10.1016/0167-6105(93)90144-D
https://doi.org/10.1016/0167-6105(93)90144-D
https://doi.org/10.1016/0167-6105(94)00034-B
https://doi.org/10.1016/j.jweia.2020.104163
https://doi.org/10.1016/j.jweia.2008.02.052
https://doi.org/10.1016/j.jweia.2004.01.005
https://doi.org/10.1016/j.jweia.2004.01.005
https://doi.org/10.1016/j.jweia.2012.12.005
https://doi.org/10.1016/j.jweia.2010.01.003
https://doi.org/10.1109/9.222305
https://doi.org/10.1016/j.jfluidstructs.2017.01.013
https://doi.org/10.1016/j.jfluidstructs.2017.01.013
https://doi.org/10.1016/j.jweia.2017.12.007
https://doi.org/10.1016/j.jsv.2020.115406
https://doi.org/10.1016/j.jweia.2014.08.003
https://doi.org/10.1016/j.jweia.2014.08.003


Journal of Wind Engineering & Industrial Aerodynamics 219 (2021) 104805

18

Hayashi, K., Tsuda, N., Sawa, T., Hagihira, S., 2007. Ketamine increases the frequency of 
electroencephalographic bicoherence peak on the α spindle area induced with 
propofol. Br. J. Anaesth. 99, 389–395. https://doi.org/10.1093/bja/aem175. 

Israelsen, B.W., Smith, D.A., 2014. Generalized laguerre reduction of the volterra kernel 
for practical identification of a MIMO system. Fuels petrochemicals div. 2014 - core 
program. Area 2014 AIChE spring meet. 10th Glob. Congr. Process Saf. 1, 496–504. 

Khawar, J., Zhigang, W., Chao, Y., 2012. Volterra kernel identification of MIMO 
aeroelastic system through multiresolution and multiwavelets. Comput. Mech. 49, 
431–458. https://doi.org/10.1007/s00466-011-0655-9. 

Korenberg, M.J., 1987. Functional expansions, parallel cascades, and nonlinear 
difference equations. Adv. Methods Physiol. Syst. Model. 1, 221–240. 

Korenberg, M.J., Hunter, W., 1990. The identification of nonlinear biological systems: 
Weiner kernel approaches. 1 Ann. Biomed. Eng. 18, 629–654. 

Lee, Y.W., Schetzen, M., 1965. Measurements of the Wiener kernels of non-linear system 
by cross-correlation. Int. J. Control 2, 237–254. 

Marmarelis, V.Z., 1993. Identification of nonlinear biological systems using laguerre 
expansions of kernels. Ann. Biomed. Eng. 21, 573–589. https://doi.org/10.1007/ 
BF02368639. 

Nelles, O., 2001. Nonlinear System Identification from Classical Approaches to Neural 
Networks and Fuzzy Models. Springer-Verlag, Berlin.  

Ogura, H., 1986. Estimation of Wiener kernels of a nonlinear system of fast algorithm 
using digital Laguerre filters. In: 15th NIBB Conference, pp. 14–62. 
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