
Work-in-Progress: An agile approach to formative
assessment in higher education

1st Aleksander Larsen Skrede
Department of ICT and Natural Sciences

Norwegian University of
Science and Technology

Ålesund, Norway
0000-0002-0534-1010

2nd Øystein Bjelland
Department of ICT and Natural Sciences

Norwegian University of
Science and Technology

Ålesund, Norway
0000-0002-2581-9843

3rd Evelyn Honoré-Livermore
Department of Electronic Systems

Norwegian University of
Science and Technology

Trondheim, Norway
0000-0002-5664-330X

Abstract—Formative assessment is part of a learning process
in which the teacher continuously monitors students’ learning
and provides feedback intended to let students themselves reflect
upon what they have learned and where they need to focus
more attention. The underlying goal of formative assessment is
to lift the students to a higher metacognitive level where they can
monitor and guide their learning while simultaneously improving
their learning outcomes. However, many courses are planned
before the semester starts and may not include methods to
continuously improve the teaching. With continuous monitoring
and assessment, the philosophy behind formative assessment has
some similarities to the agile methodology often employed in
software- and product development. This paper presents an agile
framework for formative assessment in engineering courses.

By taking the viewpoint of “Knowledge as a product”, this
focus ensures: (1) that the students increase their knowledge
through sprints and demonstrate it often, and (2), that the
methods of teaching and learning are continuously improved
through feedback from the students so that the teacher can adapt
and improve to enable learning, all supported by formative assess-
ment. Additionally, the agile approach to formative assessment
has the potential to improve the non-technical professional skills
of students.

Index Terms—formative assessment, feedback, agile learning

I. BACKGROUND

Formative assessment focuses on providing feedback to
learners and teachers throughout the learning process, in
contrast to summative assessment, where assessment methods
could hinder learning as the focus is sometimes shifted towards
attaining good grades instead of useful knowledge [1]. We
have adopted the definition of formative assessment provided
by Black and Wiliam [2, p. 9]:

Practice in a classroom is formative to the extent
that evidence about student achievement is elicited,
interpreted, and used by teachers, learners, or their
peers, to make decisions about the next steps in
instruction that are likely to be better, or better
founded, than the decisions they would have taken
in the absence of the evidence that was elicited.

In addition to provide an iterative approach to learning,
Clark [3] argues that formative assessment also reinforces
students’ abilities to self-regulate their learning. However, a

recent study by Schildkamp et al. [4] discusses that forma-
tive assessment in the classroom has shown mixed effects
regardless of its evident potential. The authors suggest that the
chosen strategy for providing formative assessment is critical,
and the lack of positive effects could stem from improper
or partial implementation in the classroom. They argue that
formative assessment should not be an addition to traditional
teaching but a complete restructuring in how teaching is
performed.

Moreover, formative assessment requires feedback that is
well timed and effective. Hattie and Timperley [5] argue that
feedback in education should answer three major questions,
namely: Where am I going? How am I going? and Where to
next? They also distinguish between feedback about the task
(FT), processing of the task (FP), self-regulation (FR) and
about self as a person (FS), and argue that FS is the least
effective, FR and FP enhance deep learning, while while FT
is effective when task information is sufficient for improving
strategy processing.

Another aspect, pointed out by Gagatsis, is that students
may have a compartmentalized view of the various courses
and topics they learn in their studies [6]. Compartmentalized
views may be prevalent in multidisciplinary programs, such as
where hardware meets software, design meets manufacturing,
or mathematics meets applied sciences.

Studies performed in Australia suggest that employers
are unsatisfied with recent graduates’ capabilities concern-
ing non-technical professional skills [7]. An emphasis was
placed on effective communication, time management, open-
mindedness, and the ability to learn from errors and receive
feedback. Employers rated these skills as essential but stated
they lacked in graduates. While these skills are not typi-
cally found in the curriculum of engineering programmes,
the universities could promote development of these skills
by changing the way teaching and learning is done in the
classroom [8].

This paper describes an agile approach to teaching where
formative assessment is incorporated while simultaneously
attempting to break down the various mental compartments
to give the students a more holistic view of the topics. A
bachelor’s programme in automation will be used as an exam-

1



ple of how the framework can be applied. An emphasis should
be placed on the curriculum’s applicability and support for the
students to develop practical skills. Additionally, we assert that
the agile approach inherently can promote the development of
non-technical professional skills that employers desire.

II. AGILE METHODOLOGIES

The word “agile” comes from the Latin word agilis, mean-
ing “can be moved easily, light” and the French word agere
meaning “to drive, to be in motion” [9]. It has gained substan-
tial popularity in the software development domain. At its core,
the agile work methodology borrows from the concepts around
continuous improvement and system development based on
feedback from customers and the environment. Agile teams
focus on collaborative planning and goal formulation, leading
to more substantial commitment to achieving the goals and
delivering the developed system to the customer.

In agile software development, the team agrees on overall
goals for delivery of a system (say, an online banking system),
and then timebox smaller parts and user stories that they de-
velop towards, then test this with the customer to get feedback
on features of the system to enable continuous improvement
(such as better user interface) — and enabling adjustment to a
changing environment (for example new security challenges).

A well-known agile workflow is Scrum [10], supported
by epic stories, user stories, issue poker planning, sprint
planning — review — retrospective, daily stand-ups, and other
artifacts [11]. Inclusion of the developing team in all aspects
of planning and organizing fosters ownership of the system
and can improve team cohesiveness.

In [11], the authors created the learning agile methodology,
which are guiding principles for when developing courses with
the agile methodology:

• Adaptability over prescriptive teaching methods.
• Collaboration over individual accomplishment.
• Achievement of learning outcomes over student

testing and assessment.
• Student-driven inquiry over classroom lectur-

ing.
• Demonstration and application over accumula-

tion of information.
• Continuous improvement over maintenance of

current practices.
While it is natural to consider agile as a topic and a teaching

method in software development courses [12], it can also
be applied in other fields such as management or capstone
courses [13, 14, 15]. In [16], a list of research opportunities
for applying the agile framework in technology education
was given, especially addressing effectiveness and other non-
technical professional skills. There have also been cases using
the Scrum methodology for developing university CubeSats
[17], where the students applied Scrum in both the hardware
and software development in the project. As the world is
becoming more complex and students and educators have to
deal with a changing environment and technology daily, having
an agile approach to learning and teaching would allow both to

Fig. 1. Illustration of knowledge in product- and software development
projects, as described in [18].

change the syllabus easily to include new topics, and to change
teaching methods to adapt to changing situations. However, it
is important to ensure that courses’ adaptions are within the
approved learning objectives of a given course, which may
limit the adaptability.

III. KNOWLEDGE AS A PRODUCT

In new product development projects, a critical catalyst for
project success is enabling quick learning. As illustrated in
Fig. 1, a significant challenge in product- and software devel-
opment is that product knowledge is low in the early phases of
the project, when the design space is broad, and requirement
changes cheap. In the later phases, when the design space is
narrow and changes in requirements are expensive [18, 19, 20],
the knowledge is high. Therefore, it is essential to quickly
increase product knowledge within the development team to
avoid costly rework.

Agile methods facilitate quick learning by enabling forma-
tive assessment throughout the project [21]. Quick learning fa-
cilitation is done externally through continuous feedback from
customers and the environment. The formative assessment is
also provided internally by having daily stand-up meetings
with the project team, monitoring progress, and adapting the
project path to externally acquired input [22].

Learning is a process, and by regarding knowledge as a
product, agile techniques for formative assessment can be
integrated into teaching. The analogy is as follows: the stu-
dents represent the development team, the learning outcomes
represent the requirements, and knowledge is the product. By
working in sprints, the students can learn new knowledge and
receive frequent feedback throughout the course, ensuring they
are on the right track.

In [23], particular challenges with teaching agile in higher
education are mentioned. For example, that lecturing during
the agile work can be distracting, managing difference in
proficiency or skills level, establishing good teams, avoiding
group bias and group issues, lack of self-directed learning
manifesting in the students, lack of knowledge of agile meth-
ods, lack of ownership, and ensuring communication. While
these were listed for an industry-supported project course, it
can be expected that some degree of these challenges can
manifest in any agile-run course.

2



Based on the authors’ experiences with agile methodologies
in development and educational settings, such as co-teaching
Fuzzy Front End Engineering [24], we suggest a framework
for implementing agile formative assessment techniques in
teaching and learning. Although using agile in an educational
setting is nothing new, our approach focuses on organizing
teaching and learning around formative assessment. Here,
teaching and learning are organized in full-day sprints focusing
on one topic, with small group sizes and trustful learning
environments, enabling formative assessment.

We can consider Biggs’ Structure of the Observed Learning
Outcome (SOLO) taxonomy [25] when building the course,
going from uni-structural, to multi-structural, to relational, and
finally to extended abstract (even though the course description
does not require the latter). The process is analogous to
improving the fidelity of a product or a system, and this can
be used to divide the sprints and releases of the product.

IV. APPLYING THE FRAMEWORK

To use an agile approach for formative assessment, we start
with the skills the candidates shall have at the end of the
course. These are analog to the product requirements of a
system in a software company. If we here assume that the
course can loosely be grouped into a number of parts that
build on each other in successive order, we get macro-releases
of our knowledge product that each should correspond to an
individual part. Let us that assume a course has three overarch-
ing parts: X1, X2, X3. For example, the first sprint’s goal will
be to demonstrate uni-structural knowledge of X1 topics, the
second sprint to demonstrate multi-structural knowledge of X1

topics, and the third to demonstrate relational knowledge of
X1 topics. Similarly for X2 and X3, the last two sprints could
for example demonstrate relational knowledge and extended
abstract knowledge of all topics together.

The framework, here demonstrated by sprint 2, can be
divided in two.
Part one: Theory (total 2.5 hours)

• 15min quiz on last week’s topic. The quiz will require the
candidate to demonstrate to other classmates that they can
identify, name or utilize the X1 topics.

• Summary on result of last week’s quiz. Checking that all
candidates are familiar with the X1 topics. What was
learned, what was missed (based on results from last
weeks quiz), what could be looked further into.

• One-hour traditional lecture with an introduction to how
to analyze, apply, compare and relate the topics.

Part two: Practice (total 4–5 hours)
• 5 minute student presentation on last week’s project work.
• Project work relevant to the covered topics and course
• 5 minute summary of the day.

A. Course example

Consider an introductory course on microcontrollers where
the Arduino [26] platform is used to familiarize new engi-
neering students with coding, electronics and design of cyber-
physical systems. As the course is introductory and taught

in the first semester, one must assume that the students have
no prior knowledge of any relevant domains. The following
knowledge and skills could be considered reasonable outcomes
from an introductory course on microcontrollers:

• Know the use of microcontrollers as a central component
in Internet of Things (IoT), and can describe typical com-
ponents and architecture, applications, and limitations.

• Design and build simple cyber-physical systems consist-
ing of microcontrollers, sensors, actuators, circuits, and
components.

The teaching should be organized in sprints, having a small
group size and a trustful learning environment for applying
the framework. Moreover, to view knowledge as a product,
the students must be familiar with the learning outcomes
(product requirements). A useful introduction could be to
demonstrate a cyber-physical system during the first session,
for example by showing a self-built low-fidelity robot, which
is an objectified representation of the learning outcomes. As
demonstrated in [8], low-fidelity robots, including software,
hardware, and electronics, can be built by students with little or
no prior experience in a few weeks. The framework is applied
as previously described.

Part one: Theory
• 15 min quiz on last week’s topic. E.g. introduction to

cyber-physical systems.
• Summary of result of last week’s quiz.
• Two-hour lecture on introduction to programming with

microcontrollers: basic functions, object-oriented struc-
ture, running scripts.

Part two: Practice
• 5 minute group presentation on last week’s project work
• Lab work: programming tutorials
• 5 minute summary of the day.

B. Curricular coherence

By implementing the Agile methodology in teaching, the
teacher can, in shorter cycles, determine the students’ levels
of knowledge and what they are struggling with in order
to provide feedback. We propose to reiterate old material is
to build on it where applicable. For example to emphasize
relations between previous and current syllabus and reuse
tools and other material or immaterial lab utilities to the
extent possible. With a computer or automation engineering
programme as an example, this practice would be to stick to
one programming language that can be used in all the courses
where the students are writing code. The same applies to the
choice of scripting languages, such as Matlab and Python, and
hardware platforms. The motivation behind this is to develop
relations between courses, reduce compartmentalization, and
allow students to learn and apply new knowledge on familiar
platforms.

This requires that teachers come to terms with a specific set
of tools and utilities across the various courses, which might
be difficult to organize, for courses and programmes that are
well established. Furthermore, many of the programme courses

3



for automation engineering are practical or can have projects
where the theory is applied through practical project work.
The course described previously using microcontrollers was
intended as an introduction to both electronics and program-
ming where Arduino was utilized. This modular platform can
be reused for an electronics course as it is both open hardware
and open software, which allows students to either see how it is
made or attempt to expand on it. Similarly for object-oriented
programming or similar courses, students can be introduced
to the Raspberry Pi platform [27], a micro computer that
can run an operating system. Raspberry Pi can be reused in
many possible elective courses in an automation engineering
programme where hardware can be used to demonstrate theory,
such as in topics in machine vision, real time computer science
or cybernetics. This would give students a minimum number
of platforms on which they can build their knowledge and
combine the topics in different courses.

More theoretical courses such as mathematics or physics,
where the students do not build systems in the traditional
sense, could employ computer tools or scripting languages
to make something happen on screen, as opposed to manual
computations on paper. This could both help the students
visualize what is happening and hopefully bring mathematics
and physics to a relational level on the SOLO taxonomy when
building on a familiar platform.

V. REFLECTIONS ON AGILE IN TEACHING

Agile as a methodology for teaching can improve upon non-
technical professional skills by challenging students to work
in teams and repeatedly present their work throughout the
semester. However, the methodology, as applied to teaching,
and consideration of knowledge as a product, has some pitfalls.
Knowledge is a decaying product and students may forget parts
of the syllabus within the semester or in span of semesters.
Furthermore, if the expected student knowledge is behind
schedule, the teacher can not reiterate the material with the
same ease as normal product development cycles. The teacher
is on a one semester-long development pipeline.

Ideally, the class should be divided into groups for the
project work, which should be established for the semester.
Besides cooperation in project work, the group will serve as
the environment for learning outside the classroom. If a student
falls behind, it is the student’s responsibility to acquire the
missing knowledge and group’s responsibility to aid in this.
This way, a “lagging” student gets help, and the other students
in the group get to reiterate the material and attempt to explain
it, which can improve their understanding.

The key to mastering the material starts with understanding
how to apply the knowledge. As such, the project work should
be practical exercises or lab work where possible to facilitate
hands-on learning and reiterate previous knowledge. This may
increase the student’s understanding of the material to the
multistructural level of the SOLO taxonomy. Furthermore,
during the project work presentations in the following week,
the teacher should challenge students to reflect and discuss
in plenary. A learning environment where students feel safe

is important for these discussions. Additionally, discussions
should aim for lifting students to the higher tiers of the
SOLO taxonomy and invite the students themselves to, in a
constructive manner, analyze and evaluate their work and that
of their peers.

Lastly, it might not be easy to adapt the syllabus based on
findings later in the semester, this might even be be prohibited
by local policies. The syllabus can be considered a contract
with learning outcomes that describes what is expected that the
students learn. However, how the students achieve the learning
outcomes (e.g. group sizes, how many lab exercises) does
not need to be specified in detail in the syllabus, allowing
for adjustments during the semester. There will always be
variations between students’ ability and the time required
to learn and retain new knowledge. While not all students
are able to build their knowledge according to the learning
outcomes, the teacher should try to the extent possible to guide
the student to attain the knowledge required for both future
courses and career.

VI. CONCLUDING REMARKS

Formative assessment is intended for guiding the students’
learning during the knowledge acquisition process. A holistic,
agile framework for including formative assessment in higher
engineering education has been proposed, using examples
from a new bachelor’s programme: “Automation and Intel-
ligent Systems”.

The proposed framework for formative assessment is in-
spired from Agile software- and product development and re-
quires organizing teaching in sprints and keeping the class size
to a manageable number. We realize that these requirements
make the framework inapplicable for large courses, such as
introductory courses held across study programmes at major
campuses, but suitable for smaller campuses or for specialized
courses later in the study programmes at larger campuses.

Formative assessment is given through 15-minute quizzes
during each session (teacher feedback), short 5-minute presen-
tations on last weeks topic (teacher and peer feedback), and
from performing project work in a dedicated place and time
(teacher and peer feedback). In addition to receiving feedback
throughout the semester, allowing both the students to adapt
their learning techniques, and allowing the teacher to adapt
teaching techniques, the students are taught a framework for
life-long learning that is useful for their engineering practice.

By regarding knowledge as a product and employing a
variety of assessment methods (written, reflective, presen-
tation), students will also learn non-technical professional
skills that can easily be applied to an engineering work
setting, for example when developing software or hardware
in new product development project teams. In addition to
learning-how-to-learn in teams, by using sprints or cycles,
encouraging formative assessment from peers, the framework
allows students to benefit from honing other necessary non-
technical professional skills, such as effective communication,
team work, and time management.

4



The notion of how exams and grading can be integrated
into the proposed agile framework for teaching have not been
discussed in this paper. However, each sprint will demonstrate
the students’ learning and knowledge, and as such a standard
four-hour exam should not be necessary to determine their
knowledge. The teacher could note what they have not learned
during the sprint and focus on these topics during an exam.
Further work on the subject in this paper should investigate
how grading can be incorporated into the proposed agile
framework for teaching.

REFERENCES

[1] A. Kohn, “The Case Against GRADES,” Educational
leadership: journal of the Department of Supervision
and Curriculum Development, N.E.A, vol. 69, pp. 28–
33, Nov. 2011.

[2] P. Black and D. Wiliam, “Developing the theory of for-
mative assessment,” Educational Assessment, Evaluation
and Accountability, vol. 21, no. 1, p. 5, Jan. 2009.

[3] I. Clark, “Formative assessment and motivation: Theories
and themes,” Prime Research on Education, vol. 1, p. 10,
May 2011.

[4] K. Schildkamp, F. M. van der Kleij, M. C. Heitink, W. B.
Kippers, and B. P. Veldkamp, “Formative assessment:
A systematic review of critical teacher prerequisites for
classroom practice,” International Journal of Educational
Research, vol. 103, p. 101602, Jan. 2020.

[5] J. Hattie and H. Timperley, “The Power of Feedback,”
Review of Educational Research, vol. 77, no. 1, pp.
81–112, Mar. 2007, publisher: American Educational
Research Association.

[6] A. Gagatsis, “Compartmentalization in Learning,” in
Encyclopedia of the Sciences of Learning, N. M. Seel,
Ed. Boston, MA: Springer US, 2012, pp. 665–668.

[7] M. Shah, L. Grebennikov, and C. S. Nair, “A decade of
study on employer feedback on the quality of university
graduates,” Quality Assurance in Education, vol. 23,
no. 3, pp. 262–278, Jan. 2015, publisher: Emerald Group
Publishing Limited.

[8] K. B. Slåttsveen, M. Steinert, and K. E. Aasland, In-
creasing Student Confidence and Motivation in a Project-
based Machine Construction and Mechatronics Course.
The Design Society, 2016, ISBN: 978-1-904670-80-3.

[9] Merriam-Webster Dict. (2020) agile. [Online]. Available:
https://www.merriam-webster.com/dictionary/agile

[10] L. Rising and N. S. Janoff, “The scrum software devel-
opment process for small teams,” IEEE Software, vol. 17,
no. 4, 2000.

[11] T. C. Krehbiel, P. A. Salzarulo, M. L. Cosmah, J. Forren,
G. Gannod, D. Havelka, A. R. Hulshult, and J. Merhout,
“Agile Manifesto for Teaching and Learning,” Journal of
Effective Teaching, vol. 17, p. 22, 2017.

[12] G. V. Madhuri and L. N. S. Prakash Goteti, “Adopting
agile values in engineering education,” in 2018 IEEE
6th International Conference on MOOCs, Innovation and
Technology in Education (MITE), 2018, pp. 103–106.

[13] J. H. Sharp and G. Lang, “Agile in Teaching and
Learning: Conceptual Framework and Research Agenda,”
Journal of Information Systems Education, vol. 29, no. 2,
p. 45, May 2018.

[14] Z. Masood, R. Hoda, and K. Blincoe, “Adapting agile
practices in university contexts,” Journal of Systems
and Software, vol. 144, no. Special Issue on Software
Engineering Education and Training, pp. 501–510, 2018.

[15] A. Ciupe, S. Meza, R. Ionescu, and B. Orza, “Practical
agile in higher education: A systematic mapping study,”
in 2017 XXVI International Conference on Information,
Communication and Automation Technologies (ICAT),
2017, pp. 1–6.

[16] M. C. Benton and N. M. Radziwill, “A path for exploring
the agile organizing framework in technology education,”
in 2011 Agile Conference, 2011, pp. 131–134.

[17] N. Garzaniti, S. Briatore, C. Fortin, and A. Golkar,
“Effectiveness of the scrum methodology for agile de-
velopment of space hardware,” in 2019 IEEE Aerospace
Conference. IEEE, 2019.

[18] S. Thomke and T. Fujimoto, “The Effect of “Front-
Loading” Problem-Solving on Product Development Per-
formance,” Journal of Product Innovation Management,
vol. 17, no. 2, pp. 128–142, 2000.

[19] J. K. Liker and J. M. Morgan, “The Toyota Way in Ser-
vices: The Case of Lean Product Development,” Academy
of Management Perspectives, vol. 20, no. 2, pp. 5–20,
May 2006, publisher: Academy of Management.

[20] T. Welo, “On the application of lean principles in Product
Development: a commentary on models and practices,”
International Journal of Product Development, vol. 13,
no. 4, pp. 316–343, 2011.

[21] X. Bai, M. Li, D. Pei, S. Li, and D. Ye, “Continuous
delivery of personalized assessment and feedback in agile
software engineering projects,” in Proceedings of the
40th International Conference on Software Engineering:
Software Engineering Education and Training. Associ-
ation for Computing Machinery, May 2018, pp. 58–67.

[22] J. Babb, R. Hoda, and J. Nørbjerg, “Embedding Reflec-
tion and Learning into Agile Software Development,”
IEEE Software, vol. 31, no. 4, pp. 51–57, Jul. 2014,
conference Name: IEEE Software.

[23] K. Lundqvist, A. Ahmed, D. Fridman, and J. Bernard,
“Interdisciplinary agile teaching,” in 2019 IEEE Frontiers
in Education Conference (FIE), 2019, pp. 1–8.

[24] K. Slåttsveen, C. Kriesi, M. Steinert, and K. E. Aasland,
“Experienced from a positivistic way of teaching in the
fuzzy front end,” pp. 694–699, 2018, 20th International
Conference on Engineering & Product Design Education.

[25] J. B. Biggs and K. F. Collis, Evaluating the quality of
learning: The SOLO taxonomy (Structure of the Ob-
served Learning Outcome). Academic Press, 2014.

[26] (2020) Arduino. [Online]. Available: https://www.
arduino.cc/

[27] (2020) Raspberry pi. [Online]. Available: https://www.
raspberrypi.org/

5

https://www.merriam-webster.com/dictionary/agile
https://www.arduino.cc/
https://www.arduino.cc/
https://www.raspberrypi.org/
https://www.raspberrypi.org/

