
ISBN 978-82-326-5820-6 (printed ver.)
ISBN 978-82-326-5514-4 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2021:279

Even Thingstad

Collective effects in low-
dimensional systems with
coupled quasiparticlesD

oc
to

ra
l t

he
si

s

D
octor al theses at N

TN
U

, 2021:279
Even Thingstad

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e 
of

Ph
ilo

so
ph

ia
e 

D
oc

to
r

Fa
cu

lty
 o

f N
at

ur
al

 S
ci

en
ce

s
D

ep
ar

tm
en

t o
f P

hy
si

cs





Thesis for the Degree of Philosophiae Doctor

Trondheim, September 2021

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Physics

Even Thingstad

Collective effects in low-
dimensional systems with
coupled quasiparticles



NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Natural Sciences
Department of Physics

© Even Thingstad

ISBN 978-82-326-5820-6 (printed ver.)
ISBN 978-82-326-5514-4 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2021:279

Printed by NTNU Grafisk senter



Abstract

Many of the most fascinating and challenging phenomena in condensed mat-
ter physics occur in systems with coupling between quasiparticles of different
nature. This thesis is concerned with the study of collective effects which
may occur due to coupling between electrons, magnons, and phonons in
various two-dimensional systems, and is based on four research papers.

In the first paper, we examine a spin model analog of the Haldane model
which has a topologically non-trivial magnon band structure. We discuss the
effect of coupling the topological magnons to phonons, and suggest signatures
both in the transverse magnon spin Hall conductivity and through exotic
magnon-polaron edge states.

In the second paper, we use a tight binding approach to model electron-
phonon coupling in graphene, and study possible phonon-mediated supercon-
ductivity in doped graphene using a detailed model for the effective phonon-
mediated electron-electron interaction.

In the third paper, we provide a revealing physical picture for the eigenex-
citations of the quantum antiferromagnet, and discuss the implications of
this in various physical settings. Amongst others, we emphasize that cou-
pling asymmetrically to the two sublattices of the antiferromagnet through
an uncompensated interface may enhance the effective coupling strength to
the antiferromagnetic magnons.

In the fourth paper, we discuss superconductivity mediated by antiferro-
magnetic magnons in a heterostructure of a normal metal coupled to anti-
ferromagnetic insulators. We find that sublattice coupling asymmetry plays
an important role in determining the pairing symmetry of the superconduct-
ing phase. Using Eliashberg theory instead of BCS theory, we furthermore
demonstrate the importance of a proper treatment of the frequency depen-
dence of the effective pairing interaction for magnon-mediated superconduc-
tivity.
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Preface

This thesis is submitted in partial fulfillment of the requirements for the
degree of Philosophiae Doctor at the Norwegian University of Science and
Technology (NTNU) in Trondheim, Norway. The work presented in this
thesis has been conducted at the Department of Physics from August 2017
until June 2021 under the supervision of Professor Asle Sudbø, while Pro-
fessor Jacob Linder has been co-supervisor. I have been affiliated with the
research centre Quspin. During these years, I have also been enrolled in the
PhD program of the Department of Physics, and completed 30 ECTS credits
of coursework. In addition, I have completed teaching duties corresponding
to one year, which have consisted of teaching the course TFY4210 Quantum
Theory of Many-Particle Systems, as well as teaching student labs. The
work has been funded by the Faculty of Natural Sciences at NTNU and
the Research Council of Norway through Grant Number 262633 “Center of
Excellence on Quantum Spintronics”.

The core of this thesis are the four research papers enclosed in the back.
In addition, the thesis consists of introductory chapters on the broader topics
these papers are concerned with through a discussion of magnetism, topol-
ogy, phonons, and superconductivity in Chapters 2-5, while more specialized
discussions are given in Chapters 6-8, where I try to introduce the themes
and some of the results in the papers without going into excessive detail.

One of the best feelings I know, is the feeling of solving a puzzle or
understanding something new after thinking about it for a long time. During
four years as a PhD candidate, I have been fortunate to have that feeling a
number of times. I hope this thesis can help you to understand something
new, have a new idea, or view something from a new angle.
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Chapter 1

Introduction

Imagine taking two ice cubes out of the freezer, and placing one on top of
a piece of wood and one on top of an equally shaped piece of aluminium.
Which of the two ice cubes melts first?

Being able to answer the above question correctly may help you staying
cold on a hot summer day. Understanding why is one of the great achieve-
ments of 20th century physics.

The explanations of seemingly simple everyday phenomena like the one
above can be thought of as pyramid shaped. The simple answer to the
question is that the ice cube on the piece of aluminium melts first because
aluminium is a better conductor of heat than wood. Climbing one step down
the pyramid, however, we may ask why aluminium is a better conductor of
heat than wood. A proper explanation of this ultimately requires quantum
mechanics, the Pauli principle, band theory, screening, and a fundamental
understanding of the basic quantum degrees of freedom describing the solid
state.

In simple terms, the solid state can be thought of as being described by a
small number of the basic degrees of freedom. First, a solid consists of ions
organized in a periodic structure, and these ions may vibrate around their
equilibrium lattice positions. Second, electrons in the solid may either be
bound to ions or move rather freely around. Finally, both ions and electrons
have the quantum property of spin. Understanding the behaviour of these
three degrees of freedom is at the heart of condensed matter physics.

Condensed matter physics allows us to understand why aluminium is a
better conductor of electricity than wood, why electron spins may all align in
a ferromagnet, and why phonons and not electrons dominate the transport

1



2 CHAPTER 1. INTRODUCTION

of heat in insulators.
Some of the most fascinating, surprising, and confusing phenomena in

condensed matter physics occur, however, when the basic degrees of free-
dom are allowed to interact with each other. Cooling the piece of aluminium
down to 1.2 K, it becomes superconducting due to interaction between the
electrons and vibrations of the lattice [5]. Fluctuations of spins explain resis-
tance minima in the Kondo effect [6], and seem to play an important role in
the superconductivity of heavy fermion compounds and high-Tc cuprates [7].

Phenomena due to coupling between the fundamental degrees of freedom
are also of great technological utility. For instance, superconductors are used
to generate large magnetic fields in MRI scanners, and coupling between
electron currents and the magnetization of ferromagnetic domains can be
used to read a hard drive through the giant magnetoresistance effect [8].

In this thesis, we study collective effects arising due to the coupling be-
tween electrons, magnons, and phonons in low-dimensional quantum sys-
tems. In Paper [1], we discuss the coupling of topological magnons in a
magnetic systems to the quantum excitations of the lattice called phonons.
The resulting excitations are superpositions of lattice vibrations and spin
flips, and we discuss how this affects the notion of topology in the system.
In Paper [2], we discuss how the coupling between lattice vibrations and
electrons may give rise to superconductivity in graphene. In Paper [3], we
provide a physical picture for the magnetic excitations in an antiferromag-
net. Building on this, we complete the triangle in Paper [4], and use an
Eliashberg theory framework to discuss how coupling between electrons in a
normal metal and magnons in an adjacent antiferromagnet may give rise to
superconductivity.

The thesis can be thought of as consisting of two parts. First, in chapters
2 to 5, we introduce the basic condensed matter phenomena and formalisms
used in the research papers through separate chapters on magnetism, topol-
ogy, phonons, and superconductivity. Second, in the chapters 6, 7, and 8, we
bring these phenomena together, and provide an introduction to the papers
and their main results.

Paper [1] is discussed in Chapter 6, and is based on material introduced
in the introductory chapters on magnetism, topology and phonons.

Paper [2] is discussed in Chapter 7, building on material introduced in
the introductory chapters on phonons and superconductivity.

Papers [3] and [4] are discussed in Chapter 8. The discussion of Paper [3]
is based on material introduced in the chapter on magnetism, while the dis-
cussion of Paper [4] in addition builds on material introduced in the chapter
on superconductivity.



Chapter 2

Magnetism

Unlike most condensed matter phenomena, the phenomenon of magnetism
is truly ancient, and its discovery dates thousands of years back. Yet, a
proper understanding of magnetism must be built on quantum mechanics
and condensed matter physics. Historically, the study of magnetism is also
intimately connected with the development of the modern understanding of
phase transitions, including concepts such as spontaneous symmetry break-
ing and the Berezinskii-Kosterlitz-Thouless phase transition [9].

Today, magnetism is a rich and varied topic. Fundamental research is
performed along a multitude of directions for a multitude of reasons. Within
spintronics, magnetic systems are investigated as possible platforms for low
dissipation data storage and manipulation [10], while magnetic fluctuations
are also studied in the pursuit of a theory for the poorly understood high-
temperature superconductors [11–13]. Furthermore, magnetic systems may
host strongly correlated and massively degenerate phases of fundamental
interest [14, 15], and magnetic systems continue to function as working plat-
form to study novel phase transitions which cannot be understood within
existing paradigms of phase transitions [16–18].

In this chapter, we will primarily be discussing magnetism within the
context of magnetically ordered insulators. In Sec. 2.1, we introduce the
basic description for such systems. In Sec. 2.2, we introduce the concept of
a magnon in ferromagnetic systems. In Sec. 2.3, we generalize the concept to
antiferromagnetically ordered systems, and this will be particularly relevant
for Papers [3, 4]. Finally, in Sec. 2.4, we discuss the Dzyaloshinskii-Moriya
interaction, which plays an important role in Paper [1].

3



4 CHAPTER 2. MAGNETISM

2.1 Spin models

We consider a set of quantum spins {Si} with spin quantum number S
localized on lattice sites labelled by i on some lattice. A spin model can
then be specified by a Hamiltonian on the form

H =∑
i

h1
i (Si) +∑

ij

h2
ij(Si,Sj) +∑

ijk

h3
ijk(Si,Sj ,Sk) +⋯, (2.1)

where the various terms correspond to a single spin contribution h1
i , two-

spin-interactions h2
ij , and so on. This quantum Hamiltonian dictates the

ground state of the system, along with its excitations and thermodynamics.
In the research discussed in this thesis, we encounter spin models which

mainly consist of terms on the form

H =∑
i,j

JijSi ⋅Sj −K∑
i

(Szi )
2
−B∑

i

Szi . (2.2)

Here, K ≥ 0 is an easy-axis anisotropy, B represents a homogeneous magnetic
field, and Jij is the exchange interaction strength between spins on lattice
sites i and j. We will only be considering spin models where Jij is non-zero
only for nearest and next-to-nearest neighbours on the lattice, and denote the
nearest neighbour exchange coupling by J1, and the next-to-nearest neigh-
bour exchange coupling by J2. Furthermore, we will be considering spin
models on the square and the honeycomb lattice, which are so-called bipar-
tite lattices1. Thus, they can be separated into two sublattices denoted by
A and B, as shown in Fig. 2.1 (a) and (b).

In the above model, the easy axis anisotropy tends to favour spins point-
ing along direction ẑ in spin space. Depending on the sign of the exchange
interaction, the exchange coupling between the spins Si and Sj tends to
favour them pointing along the same direction when Jij < 0, and in oppo-
site directions when Jij > 0. Assuming the nearest neighbour interaction
J1 to dominate, we therefore expect ferromagnetic order when J1 < 0, and
antiferromagnetic order on bipartite lattices when J1 > 0, as illustrated in
Fig. 2.1 (c) and (d).

Since a general model on the form in Eq. (2.1) contains a macroscopic
number of interacting spins, deducing the ground state and its excitations

1To define the notion of bipartite, we may think of a lattice as a set of points, where
we have defined a set of “neighbours” for each of the points. The lattice is then bipartite
if the set of lattice points can be split into to disjoint sets such that each lattice site in one
set only has “neighbours” in the other set. Such a separation is possible for the square
lattice and the honeycomb lattice (if we assume that two lattice points are “neighbours”
when their distance is as short as it gets), but not the triangular lattice.
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(a) (b) (c)

(d)

A A AB B

A

B

Figure 2.1: Lattices and magnetic order. (a) The square lattice is bipartite
since it can be split into two sublattices. (b) Honeycomb lattice. (c) Each
lattice site in a spin model is associated with a quantum spin. Loosely
speaking, the system has ferromagnetic order when all spins are pointing
in the same direction. (d) Antiferromagnetic order with spins on the two
sublattices pointing in opposite directions.

is in general not a trivial task. Therefore, several techniques have been
developed to analyze the behaviour of spin models.

The arguably most basic is known as linear spin wave theory, and applies
to the situation where the ground state has long-range magnetic order, and
there are only small fluctuations around this order. For low temperatures,
this allows us to restrict our analysis to a low-energy subspace consisting of
states with few spin flips on top of the ordered state. We will be reviewing
this in the next section.

We also mention, however, a few techniques beyond linear spin wave
theory. A technique which does not depend on any particular magnetic order
is the introduction of Schwinger bosons or Schwinger fermions [19], which
can be combined with mean field or saddle point approaches. Furthermore,
in one-dimensional systems [20] and certain two-dimensional systems [21],
it may be useful to map the spin system to a set of fermions using the
Jordan-Wigner transformation. Finally, a path integral representation for
the spin system allows for various field theory techniques and gauge field
theory descriptions [19, 22]. In one dimension, certain properties can some
times even be calculated analytically using a so-called Bethe Ansatz [23].

2.2 Magnons

To introduce the concept of a magnon, we consider a ferromagnetic spin
model, which we assume to take the form in Eq. (2.2).

For simplicity, we assume that Jij = J1 < 0 when i and j are nearest
neighbours, and zero otherwise. One may then show that the ground state
of the system is the ferromagnetically aligned state, where every spin is in the
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=
+

+

+

(a)

(b)

Figure 2.2: (a) A spin flip in a ferromagnet costs a significant amount of
energy due to the antiparallel alignment of neighbouring spins. (b) Magnons
are delocalized spin flips.

state with magnetic quantum number S with respect to the spin quantization
axis Bẑ [23]2.

In our research, we are specifically interested in the excitations on top of
this state. The conceptually simplest excitation we can make is the flip of a
spin on a given site, as shown in Fig. 2.2 (a). However, this excitation costs
a significant energy of order ∣J1∣, as the spin is no longer parallel with its
neighbours. An excitation with lower energy is instead obtained by delocal-
izing the spin flip, creating a superposition of spin flips at different lattice
sites, as shown in Fig. 2.2 (b). Such delocalized spin flips are referred to as
magnons.

The elementary excitations on top of the ground state in a condensed
matter system can often be represented in terms of bosons through bosoniza-
tion techniques. In line with the low energy behaviour we expect, we there-
fore want our bosons to represent delocalized spin flips. This can be achieved
through the so-called Holstein-Primakoff representation [23–25]

S+i =
√

2S − a†
iaiai (2.3)

S−i = a
†
i

√

2S − a†
iai (2.4)

Szi = S − a
†
iai, (2.5)

where the boson operators ai, a
†
i represent local changes in the magnetic spin

2To be more specific, one may show that each term in the Hamiltonian takes on its
minimum possible value in that state, and thus, the ferromagnetic state must be the
ground state of the system [23].
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quantum number along the quantization axis ẑ. One may show that the S-
operators satisfy spin commutation relations when the a-operators satisfy
boson commutation relations, and vice versa.

In line with the qualitative reasoning above, we assume that the number
of spin flips in the system remains small, so that the ferromagnetic insulator
is close to being perfectly magnetically ordered. Up to quadratic order in
the boson operators in the Hamiltonian, we may then use the linearized
Holstein-Primakoff transformation

S+i =
√

2Sai (2.6)

S−i =
√

2Sa†
i (2.7)

Szi = S − a
†
iai. (2.8)

From the local spin flip bosons, one may construct delocalized spin flip
operators through the Fourier transform

aqκ =
1

√
N
∑
n

e−iq⋅(xn+τκ)anκ, (2.9)

where anκ annihilates a spin flip on the lattice site at position xn + τκ for
atom κ in unit cell n, and where N is the number of unit cells in the system.

Within linear spin wave theory, one may then derive the excitation spec-
trum of the quantum ferromagnet on the two-dimensional square lattice to
show that the Hamiltonian takes the diagonalized form

H =∑
q

ωqa
†
qaq, (2.10)

with magnon excitation spectrum

ωq = 2KS +BS + 2∣J1∣S(2 − cos qx − cos qy), (2.11)

and where we have set the lattice constant a to 1.
The spin model considered above is symmetric with respect to spin ro-

tations around the spin space ẑ-direction. This symmetry can be broken by
adding another easy axis anisotropy ∑iKx(S

x
i )

2 or considering an in-plane
exchange coupling anisotropy. In addition to terms on the form a†

qaq, we

then generate terms on the forms a†
qa

†
−q and aqa−q. In that case, the Hamil-

tonian can be diagonalized using a Bogoliubov transformation, as discussed
in further detail in the next section.
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2.3 Antiferromagnetic magnons

In the antiferromagnetic Heisenberg model, we expect there to be antifer-
romagnetic order, where the spins are on average pointing in opposite di-
rections on the two sublattices A and B of a bipartite lattice. The linear
spin-wave theory above can easily be generalized also to these systems. In
Papers [3] and [4] we make use of the excitations on top of the ground state
of an antiferromagnet, and we will be discussing these excitations in the
following.

Our starting point is the Hamiltonian

H =∑
i,j

JijSi ⋅Sj −K∑
i

(Szi )
2, (2.12)

where we let J1 ≥ 0, K > 0, and consider a square lattice. The classical
ground state is the so-called Néel state, where neighbouring spins on the
two sublattices of the system are pointing in opposite directions along the
spin quantization axis ẑ.

As one may easily check, however, this Néel state is not an energy eigen-
state of the quantum spin Hamiltonian, and it can therefore also not be the
ground state. Yet, since we do expect antiferromagnetic order in the ground
state, we assume that the system can still be understood in terms of a small
number of spin flip excitations on top of the Néel state.

Therefore, we again introduce the linearized Holstein-Primakoff repre-
sentation. Denoting the spin flips on the lattice sites i ∈ A and j ∈ B by ai
and bj , we have [23]

S+i∈A =
√

2Sai S−i∈A =
√

2Sa†
i Szi∈A = S − a†

iai (2.13a)

S+j∈B =
√

2Sb†j S−j∈B =
√

2Sbj Szj∈B = −S + b†jbj . (2.13b)

In terms of the local spin flips bosons, the spin Hamiltonian then takes the
form

H = 2S(z1J1 − z2J2 +K)∑
i

(a†
iai + b

†
ibi) + 2z1J1S∑

⟨ij⟩
(aibj + a

†
ib

†
j)

+2z2J2S ∑
⟪ij⟫

(a†
iaj + b

†
ibj), (2.14)

consisting of an onsite energy term, a term describing the simultaneous cre-
ation or annihilation of sublattice magnons on neighbouring lattice sites, and
a next-to-nearest neighbour magnon hopping term.
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Since the system is translationally invariant when we assume periodic
boundary conditions, we introduce the Fourier transform to diagonalize the
system. As before, we therefore introduce Fourier transformed boson oper-
ators aq and bq through the transformation

ai =
1

√
N
∑
q

eiq⋅xiaq (2.15)

bi =
1

√
N
∑
q

eiq⋅xibq. (2.16)

With spins oriented in opposite directions on the two sublattices, the peri-
odicity of the system is enhanced with respect to the square lattice, and the
number of atoms in the basis is doubled by introducing different operators a
and b on the two sublattices. To preserve the number of degrees of freedom in
the system, the Brillouin zone is therefore reduced, and the momenta q run
over the so-called reduced Brillouin zone indicated in orange in Fig. 2.3 (d).

Furthermore, we also introduce the Fourier transforms of the nearest and
next-to-nearest neighbour interactions through

γq =
1

z1
∑
δδδ1

eiq⋅δδδ1 γ̃q =
1

z2
∑
δδδ2

eiq⋅δδδ2 , (2.17)

where the sums run over the sets of nearest- and next-to-nearest neighbour
vectors δ1 and δ2, and z1 and z2 are the number of vectors in these sets.
The Hamiltonian then takes the form

H =∑
q

Cq(a
†
qaq + b

†
−qb−q) +Dq(aqb−q + a

†
qb

†
−q), (2.18)

where we have introduced coefficients

Cq = 2z1J1S − 2z2J2S(1 − γ̃q) + 2KS (2.19)

Dq = 2z1J1Sγq. (2.20)

The Hamiltonian thus consists of two kinds of terms. The first term,
which is proportional to Cq, corresponds to an energy cost associated with
the creation of the excitations described by the boson operators aq and bq.
This term conserves the boson number. In contrast, the second term couples
sectors of the Hilbert space which do not have the same number of bosons.
A quantity which is however conserved, is
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Nq = a
†
qaq − b

†
−qb−q. (2.21)

It can be thought of as a momentum resolved Néel order parameter. Thus,
we may separate our Hilbert space into sectors with different values for Nq
for each momentum q, and diagonalize the Hamiltonian separately within
each sector. This can be achieved through the Bogoliubov transform3

aq = uqαq + vqβ
†
−q (2.22a)

b†−q = uqβ
†
−q + vqαq, (2.22b)

with some coefficients uq and vq
4. As one may easily show by solving for αq

and β†
−q above, the inverse transformation is given by

αq = uqaq − vqb
†
−q (2.23a)

β†
−q = uqb

†
−q − vqaq. (2.23b)

Since we want the new operators αq and βq to satisfy boson commutation
relations, the coefficients uq and vq have to satisfy the hyberbolic constraint

u2
q − v

2
q = 1. (2.24)

The so-called coherence factors uq and vq can therefore be expressed as

uq = cosh θq vq = sinh θq. (2.25)

We may now choose the hyperbolic angle θq so that the Hamiltonian is
diagonalized. One may show that this corresponds to the choice

θq = −
1

2
tanh−1

(
Dq

Cq
) = −

1

2
tanh−1

(
z1J1γq

z1J1 +K − z2J2(1 − γ̃q)
) , (2.26)

and that the Hamiltonian then takes the form

H = E0 +∑
q

ωq(α
†
qαq + β

†
qβq), (2.27)

3More generally a Bogoliubov transform allows the diagonalization of a quadratic
Hamiltonian with any number of coupled bosonic modes, where the boson number is
not necessarily conserved [26–29].

4The Bogoliubov transform given here has been defined according to Paper [4]. We
notice that the parameter vq in Paper [3] has been defined with a relative sign difference.
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Figure 2.3: (a) Magnon spectra along high-symmetry path in (d) for various
K. (b) Magnon spectra for various J2. (c) Coherence factors uq and vq. (d)
Brillouin zone (BZ) and reduced Brillouin zone (RBZ) with high symmetry
path and points.

where E0 is a constant and the excitation spectrum ωq is given by

ωq =
√
C2
q −D

2
q. (2.28)

Inserting the explicit expressions for Cq and Dq, we have

ωq = 2S
√

[z1J1 − z2J2(1 − γ̃q) +K]2 − (z1J1γq)2. (2.29)

The spectrum is shown for various easy axis anisotropies K with J2 = 0 in
Fig. 2.3 (a), and for various J2 with a small easy axis anisotropy K/J1 = 10−4

in Fig. 2.3 (b).
Any state can be constructed from the Néel state by superimposing states

with multiple spin flips. Since the mode aq only couples to the mode b−q
and the quantity Nq is conserved, it should therefore be possible to write
the ground state on the form

∣GS⟩ =∏
q

fq(a
†
qb

†
−q)∣0⟩ (2.30)



12 CHAPTER 2. MAGNETISM

where fq is a function of the creation operators, and ∣0⟩ the Néel state, corre-
sponding to the vacuum state for the sublattice magnon operators aq and bq.
Since the eigenoperators αq and βq represent eigenexcitations, the ground
state in the system is clearly the state without any α- or β-excitations. Thus,
the ground state should satisfy

αq ∣GS⟩ = βq ∣GS⟩ = 0. (2.31)

These conditions can be used to derive differential equations5 for the function
fq, which are easily solved to give

fq(a
†
qb

†
−q) =

1

N
exp(

vq

uq
a†
qb

†
−q) . (2.32)

Calculating the ground state inner product to fix the normalization con-
stant6, one then finds the normalized ground state

∣GS⟩ =
∞
∑
n=0
∏
q

(
tanhn θq

cosh θq
)
(a†
q)
n(b†−q)

n

n!
∣0⟩ =∑

n
∏
q

Pn(q)∣n,n⟩q (2.33)

where ∣nA, nB⟩q is the state with nA delocalized spin flips with momentum
q on the sublattice A and nB delocalized spin flips at momentum −q on
sublattice B. The weight Pn(q) is given by

Pn(q) = (
tanhn θq

cosh θq
) . (2.34)

For small θq, the weight Pn(q) of the states with a large number nq
of pairs of spin flips on the two sublattices in the above superposition is
small. When q → 0 and K/z1J1 is small, however, ∣θq ∣ approaches 1, and
the ground state has significant weight also for states with a large number
of spin flips. At the same time, the magnitude of the coherence factors can
be approximated by

∣uq→0∣ ≈ ∣vq→0∣ ∼ (z1J1/K)
1/4, (2.35)

5This is achieved by utilizing that [a, f(a†)] = f ′(a) for a function f depending only
on a† and not a.

6The result can for instance be shown by Taylor expanding the two exponentials in the
inner product and utilizing an(a†)n∣0⟩ = n!.
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which becomes large for small easy axis anisotropies7. This is also shown
in Fig. 2.3 (c), which shows the coherence factors uq and vq along a high
symmetry path for K = 10−4J1. This observation becomes important when
we discuss squeezed magnons and magnon-mediated superconductivity in
Chapter 8.

2.4 Dzyaloshinskii-Moriya interaction

So far, we have considered a restricted class of spin interactions, namely
ferromagnetic or antiferromagnetic exchange couplings on the form JSi ⋅Sj ,
and an easy-axis anisotropy on the form K(Szi )

2. In general, there may of
course also be more exotic two-spin interactions. In addition to anisotropic
versions of the exchange interaction, we may have a so-called Dzyaloshinskii-
Moriya or antisymmetric exchange interaction between two spins, and we will
be considering a model with such an interaction in Paper [1].

A Dzyaloshinskii-Moriya interaction between two spins Si and Sj is an
interaction on the form

HDMI
ij =Dij ⋅ (Si ×Sj), (2.36)

where Dij is a vector which determines both the interaction strength Dij =

∣Dij ∣ and the direction of the interaction. The Dzyaloshinskii-Moriya in-
teraction typically occurs due to the presence of spin-orbit coupling in an
underlying electronic system. In the following, we discuss two examples of
this.

In Mott insulators, the antiferromagnetic exchange interaction can be ob-
tained through second order perturbation theory based on a Hubbard model
with hopping parameter tij and onsite repulsion u to produce exchange in-
teraction Jij ∝ ∣tij ∣

2/u. By assuming that there are in addition spin flip
hoppings proportional to sij in the Hubbard model originating from spin
orbit coupling, a similar procedure produces a Dzyaloshinskii-Moriya inter-
action Dij ∝ tijsij/u [30, 31].

Similarly, in systems of localized spins with itinerant electrons, the local-
ized spins interact through an RKKY exchange interaction mediated by the
electrons. If the electrons are spin-orbit coupled, a similar mechanism pro-
duces a Dzyaloshinskii-Moriya interaction linear in the spin orbit coupling
strength [32].

7The fact that this may actually happen is a consequence of the hyperbolic nature of
the constraint in Eq. (2.24), which contrary to the corresponding constraint for a unitary
transformation does not constrain the absolute values of the matrix elements uq and vq .
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To understand qualitatively how the Dzyaloshinskii-Moriya interaction
affects the ground state of a spin model, we may use classical considera-
tions. When the spin cross product Si × Sj is aligned oppositely with Dij

and the spins are orthogonal, the energy associated with the Dzyaloshinskii-
Moriya interaction is minimal. The Dzyaloshinskii-Moriya interaction there-
fore favours spin textures where the spins are no longer collinear, and that
may cause various spiral or skyrmion phases.

To see why, we may consider a pair of spins at lattice sites i and j
which are interacting through a ferromagnetic exchange interaction and a
Dzyaloshinskii-Moriya interaction, so that

Hij = −JSi ⋅Sj +Dẑ ⋅ (Si ×Sj) − h(S
z
i + S

z
j ), (2.37)

where we have assumed the Dzyaloshinskii-Moriya interaction to be oriented
along the ẑ-direction. In terms of spin raising and lowering operators, the
pair Hamiltonian can then be written

Hij = −JS
z
i S

z
j −

V

2
(e−iφS+i S

−
j + e

+iφS−i S
+
j ) − h(S

z
i + S

z
j ), (2.38)

where V =
√
J2 +D2 and φ = arctanD/J . To analyze it further, one may

rotate one of the spin coordinate systems around the ẑ-axis relative to the
other by introducing the rotated spins

S̃±i = e
iθiS

z

S±e−iθiS
z

= e±iθiS±i , (2.39)

where the last equality can be shown by utilizing the Baker-Hausdorff-
Campbell lemma [33]. By choosing θi = 0 and θj = φ, one may then eliminate
the phase φ in the Hamiltonian to produce the effective model

Hij = −JS̃
z
i S̃

z
j − V (S̃xi S̃

x
j + S̃

y
i S̃

y
j ) − h(S̃

z
i + S̃

z
j ). (2.40)

If we first consider h = 0, the classical ground state simply consists of ferro-
magnetically ordered spins in the xy-plane. In the original coordinates, this
corresponds to a state where one of the spins is rotated with respect to the
other.

Turning on the magnetic field, we expect that the two spins will even-
tually align along the ẑ-direction. Then, the Dzyaloshinskii-Moriya interac-
tion does not affect the ground state energy of the pair Hamiltonian, but
it will affect the excitations, and in Paper [1], we will see that a particu-
lar Dzyaloshinskii-Moriya interaction plays an essential role in generating a
topologically non-trivial magnon band structure on a honeycomb lattice.
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Let us now go beyond the simple two-spin model, and think of a one-
dimensional spin chain with neighbouring spins interacting according to the
above pair Hamiltonian in the absence of a magnetic field. The classical
ground state is therefore a spin spiral where the spins in the chain are aligned
along a position dependent quantization axis which rotates with a fixed angle
φ for every step we move along the chain.

Depending on the lattice and the pattern of the Dzyaloshinskii-Moriya
vectors Dij , it may in higher dimensions not be possible to minimize all the
pair Hamiltonians at the same time. This makes the spin model frustrated,
and it may consequently host exotic phases and excitations [34, 35].
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Chapter 3

Topology

An informal investigation of the abstracts in the condensed matter section
of the preprint server arXiv in May 2021 indicated that roughly 20 % of the
abstracts contain the word “topology” in some form. The concept grew pop-
ular through the classification of electronic band structures to explain the
integer quantum Hall effect. Nowadays, however, the usage has exploded.
The concept is applied to describe the ground states and excitations of mag-
netic systems [36], superfluids [37], superconductors [38], and lattices [39],
while major technology companies invest millions and millions of dollars to
realize topological quantum computation [40].

With such a broad range of applications in physics, one may suspect
that the core concept is very general. Indeed, the concept itself comes from
mathematics, where the notion of a topological space is defined with great
mathematical rigour [41]. To the physicist, it is simpler and more useful to
think of topology as the qualitative study and classification of continuous
mappings. To make this statement less abstract, we consider two examples
in the following.

Consider first a chain of XY spins with periodic boundary conditions.
The orientation of an XY spin can be specified by an angle θ ∈ [0,2π).
Let us furthermore assume that we have a continuum of these spins. The
configuration of the spin chain can then be specified through the function
θ(x), where x ∈ [0, L) is the position of a given spin, and we have θ(0) =

θ(L). We now also require the mapping x ↦ θ(x) to be continuous. The
domain of the mapping can be considered equivalent (homeomorphic) to a
unit circle, which we denote by S1. Since the target space is also a unit circle,
configurations in the system can be represented by the various continuous

17
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mappings S1 → S1. This illustrates that a spin configuration can be thought
of as a mapping [42].

Furthermore, from this simple example, it is also clear that the various
mappings can be organized into various classes according to their winding
number. If we think of a continuous mapping x↦ θ(x), it is clear that since
θ(L) = θ(0), the angle θ can only complete an integer number of complete
turns. This number is known as the “winding number” of the mapping, and
can be expressed as

w = ∫

L

0
dxθ′(x), (3.1)

where θ′(x) is the derivative of θ(x) with respect to its argument. We no-
tice that although the winding number is a global property describing the
mapping as a whole, it can be calculated by summing over the instantaneous
local changes in the angle. Furthermore, mappings with different topological
invariants cannot continuously be deformed into each other, and the wind-
ing number therefore introduces a non-trivial equivalence relation between
mappings [24, 42].

As a second example, we consider the electronic states of a quantum
system with translational invariance. Assume we have M different energy
levels En(k) and eigenstates ψn(k) associated with the quasimomentum k,
where the quasimomentum k takes on values in the first Brillouin zone. For
simplicity, we consider a two-dimensional system with M = 2 energy bands.
The physical states of the system can now be represented by points on the
Bloch sphere, which is equivalent to the unit sphere S2 consisting of unit
vectors n. The eigenstates of the system can therefore be thought of as a
mapping from the torus to the unit sphere, T → S2, where k ↦ n(k).

Although more challenging to visualize and understand, the topological
invariant of this mapping is the so-called skyrmion or wrapping number [42]

S =
1

AT
∫
T
d2k n ⋅ (∂xn × ∂yn), (3.2)

where ∂µ denotes the partial derivative with respect to kµ and AT is the
area of the torus. This skyrmion number can be thought of as the number
of times the mapping wraps around the unit sphere [22, 42].

The two examples given above represent two of the most common notions
of topology used in condensed matter and statistical physics, namely the
notions of topological band structures and topological excitations. In this
thesis, we will primarily be concerned with the notion of topological band
structures.
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Based on the above discussion, it should be possible to classify electronic
band structures into topologically distinct classes. Yet, for such a classifi-
cation to be useful, we need to relate it to some physical properties of the
system. Historically, the whole concept of the topology of band structures
was introduced to explain the quantized levels of conductance in the integer
quantum Hall effect [43]. Thus, at our level of understanding, we should
expect that Hall conductivities in condensed matter systems are somehow
related to topological invariants of the band structure, and that materials
can be classified topologically according to their Hall response. Furthermore,
as we will see, the topological classification can also be used to understand
the presence or absence of edge modes in a system through the so-called
bulk-boundary correspondence.

In this chapter, we will be introducing the concept of topology in con-
densed matter physics. In Sec. 3.1, we discuss the connection between topol-
ogy and Hall conductivities, while in Sec. 3.2, we introduce the Haldane
model as an example of a model containing topologically non-trivial phases.
This model will be relevant for Paper [1]. Building on the discussion of the
Haldane model, we introduce the bulk-boundary correspondence in Sec. 3.3.
Finally, we discuss topological bosonic band structures in Sec. 3.4, while a
more detailed discussion of the specific instance of topological magnons is
given in Chapter 6.

3.1 Hall conductivity and Berry curvature

The classical Hall effect was discovered in 1879 by Edwin Hall [44], who
discovered that when a conductor is placed in a magnetic field B = Bẑ, the
application of an electric field Ey gives rise to a transverse voltage Vx. We
may understand this due to an off-diagonal term σxy in the conductivity
matrix, so that the electric field E = Ey ŷ gives rise to a transverse current.
Because of this, a boundary charge builds up and causes a transverse voltage.

In the original discovery, Hall made use of rather small magnetic fields.
In the classical picture, this gives rise to large cyclotron orbits, which renders
the electron motion essentially classical. Increasing the magnetic fields, the
cyclotron orbits shrink, and at sufficiently large magnetic fields, we would ex-
pect quantum effects to become important. When von Klitzing and cowork-
ers [43] measured the Hall conductivity at magnetic fields reaching 18 T,
the measurements showed plateaus, and the Hall conductivity σxy took on
quantized values
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σxy =
e2

2π~
ν, (3.3)

where ν ∈ Z is an integer.
To explain this phenomenon theoretically, we therefore need a quantum

mechanical description of the system and a method to calculate Hall con-
ductivities. In the following, we will therefore be discussing currents within
a second quantization framework, and how to calculate Hall conductivities
using linear response theory. As we will see, this calculation allows us to as-
sociate the quantity ν with the so-called Chern number of the bands, which
is a topological invariant.

3.1.1 Current operator

We consider a system of spinless electrons described by a tight binding hop-
ping model on a lattice. In the absence of an electromagnetic field, the
system can thus be described by a Hamiltonian on the form

H = −∑
ij

tijc
†
icj , (3.4)

where tij = t∗ji is in general complex. For systems with translational in-
variance, it is useful to introduce the Fourier representation of the electron
creation and annihilation operators through

cnα =
1

√
N
∑
k

eik⋅x
α
nckα (3.5)

c†nα =
1

√
N
∑
k

e−ik⋅x
α
nc†kα, (3.6)

where cnα is the annihilation operator for an electron on sublattice α within
the Bravais unit cell n, and where xαn is the position of the lattice site, while
N is the number of unit cells. The Hamiltonian then takes the form

H =∑
k

∑
αβ

hαβ(k)c
†
kαckβ . (3.7)

This Hamiltonian can be diagonalized by introducing new fermion opera-
tors dkα through the unitary transformation dkα = ∑β Uαβ(k)ckβ to obtain
eigenenergies Ekα, where α is a band index.

We now aim at deriving a second quantized expression for the current
operator in the system. Since the canonical and kinematic momenta are in
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general different [45], the current operator jµ along direction µ in general
has two contributions, one paramagnetic and one diamagnetic. The dia-
magnetic part is simply given in terms of the electron density ni and the
vector potential Ai on site i. Letting H be the Hamiltonian in the absence
of an electromagnetic field, the paramagnetic part can be extracted from the
Heisenberg equation of motion [33]

eṅi = −
ie

~
[ni,H] (3.8)

by comparing with the continuity equation

eṅi +∑
δ

ji,i+δ = 0 (3.9)

for the electron charge. Here, ji,i+δ is the operator corresponding to current
flowing from lattice site i to lattice site i + δ. We discuss this in more detail
in Appendix A.

We now define a local current density operator

ji =
1

Vuc
∑
j

jijδij , (3.10)

where δij is the displacement vector between lattice sites i and j, and Vuc is
the real space volume of the unit cell. As shown in Appendix A, the Fourier
transformed current operator jµ(q → 0) then takes the form

jµ(q → 0) = (
1

Vuc

√
N

)
e

~∑k
∑
αβ

(
∂hαβ(k)

∂kµ
) c†kαckβ . (3.11)

Furthermore, we introduce the velocity matrix

vαβµ =
1

~
(
∂hαβ(k)

∂kµ
) . (3.12)

When the matrix hαβ is diagonal, the result therefore has a very simple
interpretation, and can simply be thought of as the number of electrons in
a given state multiplied with the group velocity.

3.1.2 Linear response and Berry curvatures

Knowing the second quantized form of the current operators, we are ready
to calculate Hall conductivities using linear response theory. We consider a
system described by the Hamiltonian in Eq. (3.7), and subject the system
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to a time dependent electric field E(t) = Ee−iωt, where we eventually let
the frequency go to zero. This electric field is incorporated in the theory
through the time dependent vector potential

A(t) =
E

iω
e−iωt, (3.13)

which is coupled to the electric current in the system through the interaction
term

Hem = −Vuc∑
j

A(xj) ⋅ jj . (3.14)

Using linear response theory to linear order in the vector potential as dis-
cussed in Appendix A, the Hall conductivity can be expressed as [46, 47]

σxy =
e2

2π~∑α
∫

BZ

d2k

2π
nF (Ekα)[1 − nF (Ekβ)]F

αβ
(k). (3.15)

Here Ekα is the single particle energy of a particle in eigenstate α, and
nF (Ekα) is the corresponding Fermi-Dirac distribution. We have further-
more introduced the curvature matrix

F
αβ

(k) = i~2
ṽαβx ṽβαy − ṽαβy ṽβαx

(Ekα −Ekβ)2
(3.16)

expressed in terms of the velocity matrix elements ṽαβµ in the band eigenstate

basis, which are obtained from the sublattice basis matrix elements vαβµ
through

ṽαβµ (k) = U †
αρ(k)v

ρσ
µ (k)Uσβ(k), (3.17)

where Uαβ(k) is the unitary transformation which diagonalizes the Hamil-
tonian.

We now assume that there is an energy gap in the spectrum, and that
the chemical potential lies in the middle of the gap. Furthermore, we also
assume that the temperature is small compared to the gap. This allows us
to replace the Fermi-Dirac distributions above by unity or zero depending
on whether the bands lie above or below the Fermi surface. Thus, the Hall
conductivity can be written

σxy =
e2

2π~ ∑
α filled

∫
BZ

d2k

2π
F
α
(k), (3.18)
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where the sum runs over the filled bands and the band curvature

F
α
(k) = ∑

β≠α
F
αβ

(k) (3.19)

is obtained by summing over a given row of the curvature matrix.
As also shown in Appendix A, this curvature equals the Berry curvature

Ωα(k) of band α, which is defined as [46, 48]

Ωα(k) ≡ i[⟨∂xu
α
k ∣∂yu

α
k⟩ − ⟨∂yu

α
k ∣∂xu

α
k⟩]. (3.20)

Here, ∂µ denotes the derivative with respect to kµ, and we have used the bra-
ket notation ∣uαk⟩ for the column vector α of the matrix Uβα(k). Integrating
the Berry curvature over the Brillouin zone one obtains the so-called Chern
number Cα, so that the Hall conductivity can be expressed

σxy =
e2

2π~
C, (3.21)

where C = ∑α filled C
α is the Chern number of the filled bands and e2/2π~ is

the so-called quantum of conductance.
The concepts of Berry phases and Chern numbers in physics were first in-

troduced to describe the adiabatic evolution of the states of quantum Hamil-
tonians described by parameters which depend on time [48]. Since the system
we consider is translationally invariant and momentum is conserved, we may
similarly consider the quasimomentum k as a parameter which can be varied
to control the matrix h(k) and its eigenvectors. This allows us to construct
a hierarchy of quantities which will prove useful in the following.

For simplicity, we consider a two-dimensional system, so that k = (kx, ky)
lives on the torus. One may then define the Berry connection [49]

Aα
(k) = i⟨uαk ∣∇k∣u

α
k⟩. (3.22)

Considering some path P in the Brillouin zone, the Berry phase γB is ob-
tained by integrating the Berry connection along the path, so that

γB = ∫
P
dk ⋅Aα

(k). (3.23)

Motivated by Stokes’ theorem, we may furthermore define the Berry curva-
ture

Ωα(k) = (∇k ×A
α
)z , (3.24)
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and this definition is completely equivalent with the definition given above
in Eq. (3.20). Finally, the Chern number is given by

C
α
= ∫

BZ

d2k

2π
Ωα(k), (3.25)

as already discussed above.

While the skyrmion density n ⋅ (∂xn × ∂yn) used to define the wrapping
number in Eq. (3.2) can be thought of as the unit sphere area spanned out
by the vectors n corresponding to an infinitesimal area around the point k
in the domain, the Berry curvature Fα(k) can similarly be thought of as
the portion of the Hilbert spanned out by eigenstates of the Hamiltonian for
the momenta around k.

3.1.3 Quantization of the Chern number

We have now shown that the Hall conductivity is related to a quantity called
the Chern number, which we have defined in terms of the eigenstates of the
system. At this stage, however, it is not clear what these quantities have to
do with topology. In particular, it is not clear yet why the Chern number
should only be allowed to take on integer values. This is what we discuss in
the following.

The Berry curvature Fα(k) is a gauge invariant quantity, and is not
affected by the gauge transformation [48]

∣uαk⟩→ eiζ(k)∣uαk⟩. (3.26)

In contrast, the Berry connection is not gauge invariant, and transforms
according to

Aα
(k)→Aα

(k) −∇kζ(k). (3.27)

As starting point for our argument, we consider a square Brillouin zone
which we denote by D, and a curve P which encloses a domain D1 ⊂ D,
such that P = ∂D1. However, since the Brillouin zone has the topology of
a torus, the curve P does not have a well defined inside and outside, so in
fact, we could equally well think of the curve P as enclosing the conjugate
domain D2, as shown in Fig. 3.1 (a). Considering the integral of the Berry
connection around the closed path P and using Stoke’s theorem, we may
now write
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I II

(a) (b)

Figure 3.1: (a) Stoke’s theorem on a torus. A curve P enclosing the domain
D1 can equally well be thought of as enclosing D2. (b) The location of
exceptional points in the topologically non-trivial regime depends on the
choice of gauge.

∫
P
dk ⋅Aα

(k) = +∫
D1

d2k Fα(k) (3.28a)

∫
P
dk ⋅Aα

(k) = −∫
D2

d2k Fα(k), (3.28b)

where the opposite signs occur because the path P is oriented in opposite
directions with respect to the two domains D1 and D2. By subtracting the
second equation from the first, we obtain an integral over the entire domain
D. Thus, it may at first glance appear as if the Chern number is always
trivial, so that Cα = 0. However, this is not the case, and the reason is
subtle. The eigenvectors of the Hamiltonian are associated with arbitrary
phases. To be able to calculate the Berry curvature, we need to calculate
the derivatives of the eigenstates, and this requires us to fix the phases of
the various states (i.e. fix the gauge). However, it may not be possible to do
this in a continuous way over the entire Brillouin zone within a single gauge,
and we may then have exceptional points, as indicated in Fig. 3.1 (b). By
changing the gauge, however, the exceptional point can typically be moved
from one domain to the other, and we should then evaluate the two equations
in Eq. (3.28) in different gauges which we denote by I and II. Subtracting the
the two equations and utilizing that the Berry curvature is a gauge invariant
quantity, we then have

2πCα = ∫
D
d2kFα(k) = ∮

P
dk ⋅ [AαI (k) −A

α
II(k)], (3.29)
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where Aα
I (k) and Aα

II(k) are the Berry connections in the two gauges.
Assuming that gauge II is obtained from gauge I via a gauge transformation
specified by ζ through Eq. (3.26), we then have

∮
P
dk ⋅ [AαI (k) −A

α
II(k)] = ∮P

dk ⋅ ∇kζ(k) = 2πm, (3.30)

where m ∈ Z is an integer and we have utilized the uniqueness of the phase
factor exp(iζ(k)) upon completing the loop. This proves that Cα is integer
valued. Hence, conductivity is quantized, and the Chern number allows a
topological classification of electronic band structures. In experiments, the
quantization of conductance has been found to be extremely precise, with a
precision down to 10−9 [50].

From the above argument, we also realize that the Chern number is
always trivial when we can choose a consistent gauge in the entire Brillouin
zone. We will be commenting on this in a concrete context when discussing
the Haldane model in Sec. 3.2.

An infinitesimally small change in the model through the matrix hαβ(k)
cannot usually change the Chern number significantly, and since the Chern
number must be an integer, it therefore cannot change at all. Thus, a dra-
matic change in the model is needed to change the Chern number. Such a
dramatic change is a gap closing. When a gap closes, the involved eigenstates
become degenerate, and this makes the otherwise gauge invariant Berry cur-
vature ill defined at the gap closing point, and as opposed to case of the
exceptional point discussed above, this problem cannot simply be solved by
moving to a different gauge. When a gap opens again, the Chern number
may have changed.

3.2 The Haldane model

Both the original discovery of the Hall effect and the discovery of the integer
quantum Hall effect were done in systems with a net magnetic field pene-
trating the sample. However, a net magnetic field is in fact not necessary
to give finite Hall conductivities. In systems with broken time reversal sym-
metry, the band structure itself may provide a finite Hall conductivity. An
explicit demonstration of this was provided by Haldane in 1988 [51], who
investigated what we today know as the Haldane model.

In Paper [1], we will be studying a spin model with magnon excitations
which perfectly mimic the electronic states in the Haldane model. To prepare
for this, we will therefore be discussing the Haldane model in an electronic
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(a) (b)

A
B

Figure 3.2: (a) Honeycomb lattice with sublattices A and B. Next-to-nearest
neighbour hoppings are associated with a phase νijφ, where νij = ±1 is +1
for hoppings along the arrows and −1 for hoppings against the arrows. (b)
The Brillouin zone of the hexagonal lattice with high-symmetry points and
a typical high-symmetry path.

context in this section, and also use it to illustrate the main concepts in
topological band theory.

The Haldane model is a model describing hopping of electrons between
the lattice sites of a honeycomb lattice, as shown in Fig. 3.2. The model is
given by [46, 51, 52]

H = −t1∑
⟨ij⟩

c†icj − t2 ∑
⟪ij⟫

eiφijc†icj +M∑
i

εic
†
ici, (3.31)

where t1 is the nearest neighbour hopping amplitude, and where εi = +1 for
i ∈ A and εi = −1 for i ∈ B, so that M is the strength of a staggered potential.
The special term that was added by Haldane is the next-to-nearest neighbour
hopping with amplitude t2. In this term, each hopping is associated with a
phase φij = νijφ, where the sign νij = ±1 is chosen according to the pattern
in Fig. 3.2 (a). These phases can be thought of as generated by a staggered
magnetic field through the unit cell, but where the net magnetic field is still
zero.

In his paper introducing the Haldane model, Haldane remarked that
“the particular model presented here is unlikely to be directly physically
realizable”. Several decades later, it has, in perfect fulfilment of the irony of
fate, been realized in ultracold atom systems [53].
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3.2.1 Bulk spectrum

To determine the bulk energy spectrum, we introduce the Fourier represen-
tation for the fermion creation and annihilation operators. The honeycomb
lattice can be thought of as a hexagonal lattice with a two-atomic basis.
The lattice sites of the honeycomb lattice are then located at positions xDn ,
where n is a unit cell index and D ∈ {A,B} a sublattice index. We define
the Fourier transform according to

cnD =
1

√
NA
∑
k

eik⋅x
D
n ckD, (3.32)

where the operator cnD is the electron annihilation operator on the D sub-
lattice in unit cell n. The first Brillouin zone of the hexagonal lattice is
shown in Fig. 3.2 (b), and has the shape of a hexagon. The high symmetry
points K and K ′ are inequivalent.

Using the above Fourier transform, the Haldane Hamiltonian takes the
form

H =∑
k

c†kh(k)ck, (3.33)

where we have introduced electron spinor ck = (ckA ckB)
T

, and the Hamil-
tonian matrix h(k) is given by

h(k) = (
M − 2t2∑β cos(k ⋅β + φ) −t1∑α e

ik⋅α

−t1∑α e
−ik⋅ααα −M − 2t2∑β cos(k ⋅β − φ)

) , (3.34)

where the sums over α and β are over the sets of three nearest and next-to-
nearest neighbour vectors shown in Fig. 3.2 (a).

Since the matrix is Hermitian, it can also be expressed in terms of Pauli
matrices, which form a basis for Hermitian 2 × 2 matrices. Thus, we may
also write

h(k) = d0(k) + di(k)σi, (3.35)

where σi denotes a Pauli matrix, and i ∈ {1,2,3}. Here, the coefficients
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dµ(k) are given by

d0(k) = −2t2 cosφ∑
β

cos(k ⋅β) (3.36a)

d1(k) = −t1∑
α

cosk ⋅α (3.36b)

d2(k) = +t1∑
α

sink ⋅α (3.36c)

d3(k) =M + 2t2 sinφ∑
β

sink ⋅β. (3.36d)

The energy spectrum of a Hamiltonian on the given form is known to be

Ek± = d0(k) ± ∣d(k)∣, (3.37)

where we have introduced the vector d = (d1, d2, d3). For the Haldane model,
this spectrum is shown along a high-symmetry path in Fig. 3.3 for φ = π/2
and two different values of M .

The gap in the spectrum is determined solely by the magnitude of the
vector d. Since the two vector components d1 and d2 vanish only at the
special points K and K ′ in the Brillouin zone, these are the only two points
where the gap can actually close. At these points, the last component d3 is
given by

d3(±K) =M ± 3
√

3t2 sinφ, (3.38)

so that the gap closes at the point ±K for M = ∓3
√

3t2 sinφ. As we have
already argued, the topological properties of the system can only change
under a gap closing. Thus, we suspect that one may draw a phase diagram
in the φ-M -plane which has the curves defined by setting d3 = 0 as phase
boundaries.

3.2.2 Topology

To verify our suspected phase diagram, we need to know the topological
invariants within the different regions of the φ-M -plane. A simple way to
do this, is to calculate the Berry curvature and integrate it numerically over
the Brillouin zone to obtain the Chern number.

For Hamiltonians on the form of Eq. (3.35), the Berry curvature can
conveniently be calculated using the formula [48]
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Figure 3.3: Haldane model energy spectrum for φ = π/2 and M = 0 (blue)
and M = 3

√
3t2 (green), corresponding to the gap closing point.

Ω±
= ∓d̂ ⋅ (∂kx d̂ × ∂ky d̂), (3.39)

and the result is shown in Fig. 3.4 (a) for four different parameter choices as
indicated in Fig. 3.4 (b). Integrating over the Brillouin zone to obtain the
Chern numbers, we obtain the phase diagram in Fig. 3.4 (b), which shows the
Chern number of the lowest band in the M -φ-plane. There are three phases,
where the Chern number takes on the values C = 0 (topologically trivial)
and C = ±1 (topologically non-trivial). The model transitions between these
phases in a so-called topological phase transition when the gap closes. As
illustrated in Fig. 3.4 (c), this topological phase transition can be thought
of as an exchange of a unit Chern number at the point K.

To understand some aspects of this result, we may consider the Haldane
model in the atomic limit M → ±∞. The model is then trivially solvable,
and the eigenstates and energies become momentum independent, clearly
corresponding to a topologically trivial phase. To calculate the Chern num-
ber in the remaining sectors of the phase diagram, one may show that a unit
Chern number is transferred between the bands in a gap closing within a
low energy effective theory valid close to the gap closing point [46]. We will
not be discussing this further here.

Earlier, we remarked that non-zero Chern numbers may only occur when
it is not possible to choose a consistent gauge over the entire Brillouin zone.
The topologically trivial regime corresponds to ∣M ∣ > 3

√
3t2 sinφ, and in this

regime, d3(k) > 0 for all k. In contrast, the topologically non-trivial regime
also has a set of momenta k where d3 < 0. Thus, while the mapping from
the torus to the unit sphere spanned out by d covers the full unit sphere
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Figure 3.4: (a) Berry curvatures for four different parameter choices (1)-
(4) indicated in the Haldane model phase diagram of (b). The Haldane
model has topologically trivial (C = 0) and non-trivial (C = ±1) phases. (c)
Approaching a topological phase transition, the negative Berry curvature
(in blue) becomes more and more peaked around the point K where the gap
closes. The bands interchange a unit Chern number in the transition.

in the topologically non-trivial regime, in the topologically trivial regime, it
does not.

The eigenstates of the Hamiltonian at a given momentum k are aligned
along the vector d(k) on the Bloch sphere. However, as discussed in Sec. 8.6
of Ref. [49], there exists no gauge where the mapping from the unit sphere
to a spinor ψ representing the eigenstate is continuous over the entire unit
sphere. Thus, within any gauge, there always exists a point k where the
mapping k → d → ψ is discontinuous. This represents an exceptional point
as discussed in Sec. 3.1.3, and the presence of such an exceptional point gives
rise to a non-zero Chern number and non-zero Hall conductivities.

3.3 Bulk-boundary correspondence

So far, we have been considering systems with periodic boundary conditions.
In systems of finite size, or which do not have translational invariance, it
turns out that topological classification is also intimately connected with
the presence or absence of edge modes. The association of bulk properties
with the properties on the edge of the system is known as the “bulk-boundary
correspondence”.
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Simply put, the bulk-boundary correspondence states the following: The
interface between two materials characterized by topological invariants ν1

and ν2 has a set of ∣ν1 − ν2∣ localized boundary modes.
Thus, when a material undergoes a topological phase transition, this is

always associated with the emergence or disappearance of boundary modes
at the edges of the material. Remarkably, the bulk-boundary correspondence
therefore provides us with a tool to say something about the physics on the
edges of a system based only on the physics of the system with periodic
boundary conditions.

Proving the bulk-boundary correspondence is not an easy task. In some
cases, it can be done based on index theorems in fibre bundle theory [41],
but there is no general proof [54]. The bulk-boundary can be checked in
multiple systems, where one may show that closing the gap changes the
topological invariant, and at the same time introduces edge modes. Proving
or justifying the bulk-boundary correspondence convincingly beyond very
hand-wavy arguments is however very challenging. The basic problem is
that whereas the bulk properties are concerned with infinite systems with
translational invariance, the boundary properties can only occur when we
explicitly break translational symmetry in the system.

Instead of venturing into mathematical details, we will simply see how the
bulk-boundary correspondence unfolds for the Haldane model. We will be
doing this through two approaches. First, we break translational invariance
in the Haldane model by considering a ribbon geometry, and calculate the
band structure numerically. Second, we develop an effective low energy
theory in which the boundary modes can be calculated analytically.

3.3.1 Ribbon geometry

Consider a Haldane model on a ribbon geometry, where we consider periodic
boundary conditions in the x̂-direction and a finite number of unit cells in
the ŷ-direction, as shown in Fig. 3.5 (a). Since the system is translationally
invariant in the x̂-direction, it is useful to perform a Fourier transform there,
but use a real space description in the remaining direction. This can be done
through the partial Fourier transform

cnx,ny =
1

√
Nx
∑
kx

eikxx̂⋅x
D
n ckxny,D, (3.40)

where xDn is the position of the atom on sublattice D in the Bravais lattice
cell labelled by n = (nx, ny), and Nx is the number of Bravais unit cells in the
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Figure 3.5: Zigzag ribbon geometry spectrum for the Haldane model. (a)
Honeycomb ribbon with zigzag edge. Periodic boundary conditions in the
horizontal direction and a finite number of layers in the vertical direction.
(b) Labelling of unit cells on the honeycomb ribbon. (c) Ribbon geometry
spectrum with inverse participation ratio indicated with color. (d) The bulk
part of the ribbon spectrum can be thought of as a projection down on the
indicated line.

x̂-direction. The operators ckxny,D are our new partially Fourier transformed
operators. The surface Brillouin zone is determined by the periodicity in the
direction x̂, which is

√
3d for the zig-zag edge ribbon geometry, where d

is the nearest neighbour distance. Thus, the surface Brillouin zone can be
chosen as kx ∈ [0,2π/

√
3d).

Introducing this partial Fourier transform in the Hamiltonian of Eq.
(3.31) on the ribbon geometry, the Hamiltonian takes the form

H =∑
kx

c†(kx)h(kx)c(kx), (3.41)

where c(kx) now denotes a vector of size 2Ny containing the various oper-
ators cnyD(kx). Similarly, h(kx) is an 2Ny × 2Ny matrix. Diagonalization
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Figure 3.6: Haldane model edge states. (a) Ribbon geometry spectrum in
the topologically non-trivial regime with edge modes crossing the gap. (b)
Edge state probability amplitudes for the states indicated in (a). The two
edge states are localized on opposite edges. (c) Different Chern numbers
across the sample edges imply the existence of edge modes.

of this matrix gives the 2Ny eigenvalues and eigenvectors corresponding to
momentum kx.

The spectrum that results from this is shown in Fig. 3.5 (c) for parame-
ters M = 0 and φ = π/2 corresponding to the topologically non-trivial regime.
The bands have been colored according to their inverse participation ratio.
Assuming that a state in the band structure corresponds to probability am-
plitudes ψi with i ∈ {1, . . . ,N}, we define the inverse participation ratio as

ρIP =
1

N
(∑
i

∣ψi∣
4
)

−1

. (3.42)

When a set of M amplitudes in the eigenvector are equally probable and the
remaining amplitudes are zero, this gives ρIP =M/N . Thus, a localized edge
state would have a vanishing edge participation ratio in the thermodynamic
limit N →∞, while a delocalized state would have a finite value.

Although the bulk spectrum is gapped (see Fig. 3.3), the spectrum on
the ribbon geometry still has states crossing the gap. Since there are no
bulk states within this energy range, the states must be edge states, as also
indicated by their purple color. This is also shown in Fig. 3.6, where (b)
shows the spatial profile of the edge states indicated in (a). From the group
velocities of the states, it is furthermore clear that these are chiral edge
states, since they are only propagating in the counter-clockwise direction
around the sample, as illustrated in Fig. 3.6 (c).
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3.3.2 Effective low energy theory

The existence of chiral edge states in the Haldane model can also be demon-
strated within an effective low energy theory describing the system [46, 50].
We are interested in the physics close to the situation where the gap closes,
and therefore expand the Haldane model Hamiltonian around the points ±K
to obtain the effective low energy theories

h(±K + q) = 3t2 cosφ +
3t1d

2
(±qxσx − qyσy) + (M ± 3

√
3t2 sinφ)σz (3.43)

describing the electrons close to the two special points ±K. Introducing the
velocity v = 3t1d/2 and the gap parameter m± = M ± 3

√
3t2 sinφ, the two

theories can be written

h±(q) = v(±qxσx + qyσy) +m±σz, (3.44)

where we have disregarded the constant term, which is insignificant because
it does not affect the eigenstates of the system. From this low energy effective
theory, we may now go back to a real space theory by replacing the momenta
according to qµ → −i∂µ. We are interested in the possible existence of edge
modes. We therefore have to consider a system which contains an interface
between topologically trivial and non-trivial subsystems. We therefore allow
the mass m to depend on the position coordinate y in such a way that
m(y →∞) = m and m(y → −∞) = −m, as shown in Fig. 3.7. We then have
real space theory

h± = −v(±σxi∂x + σyi∂y) +m±(y)σz. (3.45)

The above Hamiltonian is separable, as it can be written on the form
h± = h±x + h

±
y with Hamiltonians h±x,y acting only on the x or y coordinates.

Furthermore, the x-dependence is trivial and describes a freely propagating
particle. We therefore write the eigenstates of the system on the form

∣ψ⟩ = eiqxx [φ1(y)γ1 + φ2(y)γ2] , (3.46)

where γ1 and γ2 are the two eigenvectors of σx with corresponding eigenval-
ues ζ1,2 = ±1. These eigenvectors are given by

γ1 = (
1
1
) γ2 = (

1
−1

) . (3.47)
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(a) (b) (c)

Figure 3.7: Edge states in effective low energy theory. If the effective sub-
lattice asymmetry m(y) changes sign as function of y and takes on values
±m for y → ±∞, an edge mode eigenstate occurs on the boundary between
the two regions. Thus, as shown in (c), two regions in space with differ-
ent topological invariants have an edge mode travelling in the direction x̂ in
between.

In the regimes y → ±∞, one may now show that the model has eigenstates on
the form ∣ψ⟩ ∝ ei(qxx+qyy) with energies E = ±

√
v2(q2

x + q
2
y) +m

2. These are
the bulk eigenstates. However, the model also permits a localized solution
on the form

∣ψ⟩ = eiqxxφi(y)γi (3.48)

with energy Ei = ±ζivqx originating only from the term h±x in the Hamilto-
nian1. The eigenequations for φi(y) then become

[ζiv∂y −m±(y)]φi(y) = 0, (3.49)

and the solution is

φi(y) = exp [
ζi
v
∫

y

0
m±(y

′
)dy′] . (3.50)

In the limits y → ±∞, this function approaches an exponential. Crucially,
however, the wavefunction is normalizable for both y →∞ and y → −∞ only
when m±(y) changes sign. This corresponds exactly to the situation where
the material is in different topological phases in the two half planes of the
system. Thus, only one of the two eigenvectors γ1,2 may give a properly
normalized edge state. Which of the two this is depends on sgnm(y →∞),

1By carrying out the full analysis, one may show that the localized eigenstates of
the effective low energy model can always be written on this form, and that the energy
contribution from h±y is always zero.
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and determines the direction of propagation along the interface since the
energy of the edge mode is Ei = ±ζivkx.

If we were to introduce models for the upper and lower half-planes with
Chern numbers ±1, the effective low energy Hamiltonians corresponding to
both valleys would have masses m±(y) with a changing sign. Consistent
with the bulk-boundary correspondence, we would then get two edge modes.

3.4 Topological bosonic systems

We have seen that the band structure of an electronic system can be viewed
as a mapping from the Brillouin zone to the Hilbert space of the model for
non-interacting electron systems, which are described by quadratic Hamil-
tonians. The band structure and diagonalization procedure in such a case
does, however, not depend on the fermionic nature of the electrons. We can
therefore equally well classify the band structures of bosonic particles and
excitations through the topological classification scheme.

As discussed previously, the whole concept of topological band structures
was invented to explain quantized Hall conductance, which had not been
predicted before it was observed experimentally. Furthermore, the fact that
the Hall conductivity in electronic systems is simply proportional to the
integer valued Chern number is a consequence of the Pauli principle, as it
rests on being able to replace the Fermi-Dirac distributions in Eq. (3.15)
with unity or zero. Since bosons obey different statistics, we would not
expect bosonic transverse conductivities to be quantized. It is therefore by
no means a coincidence that topological band structures were first discussed
within an electronic setting.

Recently, however, there has also been significant interest in topological
bosonic systems2. Topological bosonic band structures can now be real-
ized in a multitude of settings. Ultracold atoms in optical lattices have band
structures similar to condensed matter systems which can engineered to real-
ize topologically non-trivial phases [55–57]. Topology is also used to classify
the lattice vibrations and edge modes in acoustical and solid state materi-
als [58–62]. The suggestion and observation of topological photons [63–65] in
photon crystals has lead to the emergence of topological photonics [66], and
in magnetic materials, both magnon and Schwinger boson band structures
can become topologically non-trivial [36, 67]. In short, topological band

2By topological bosonic systems, we will be referring to systems with a topologically
non-trivial band structure. A spin texture hosting skyrmions can also be considered
topological, but this is not what we will be considering.
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theory is no longer restricted to electronic systems.
A key question is, however, where we can find topologically non-trivial

bosonic band structures. A good place to start, is to think of how topo-
logically non-trivial phases occur in electronic systems. To demonstrate the
theoretical possibility of a topologically non-trivial band structure without
a net magnetic field, Haldane added the famous next-to-nearest neighbour
hopping term breaking time reversal symmetry. Similar symmetry break-
ing is required to produce bosonic analogs of the Haldane model within the
contexts above. In ultracold atom systems, artificial gauge fields can be
engineered with astonishing precision using lasers [53]. In acoustic metama-
terials, one may use acoustic elements with rotating parts [59, 68], and Cori-
olis forces originating from rotation of the sample may produce topological
phonon band structures [61]. In magnetic systems, topologically non-trivial
band structures often occur due to the presence of a Dzyaloshinskii-Moriya
interaction originating from spin-orbit coupling [36].

Although there is no quantized conductance in topological bosonic sys-
tems, the description of the band structure within the framework of topo-
logical band theory may still provide important insights on experimentally
accessible observables. Hall conductivities are typically still related to the
Berry curvatures of the system, not through the Chern number, but weighted
with some Bose distributions. As a consequence, various Hall conductivities
may often have a non-trivial dependence with temperature as various energy
ranges in the band structure with different Berry curvatures are filled [69, 70].
Furthermore, the connection between topological bulk band structures and
the emergence or disappearance of edge modes is independent of particle
statistics. Thus, the boundaries of topological bosonic systems may provide
channels for edge transport.

Contrary to fermions, bosonic topological edge states may hybridize with
other bosonic excitations. In Paper [1], we exploit this in a system of topo-
logical magnons coupled to lattice vibrations. We show that the edges may
host exotic magnon-polarons composed of chiral edge magnons hybridized
with edge phonons. Thus, coupling effects may produce bosonic topological
insulators with new and exotic edge states. The mixing may also lead to a
chirality in the phonon transport of the system, and we will be discussing
this in more detail in Chapter 6.



Chapter 4

Phonons

In the solid state, translational symmetry is broken spontaneously, and the
atoms may organize into periodic structures in space, forming crystalline
order. However, just like there can be magnetic fluctuations around a mag-
netically ordered state, there may also be fluctuations around the crystalline
order. The basic degree of freedom describing these fluctuations is the devia-
tion of an atom from its equilibrium position. Delocalizing such excitations,
we obtain a quantum mechanical description in terms of collective quasipar-
ticles called phonons [71].

Phonons play an important role for material properties such as heat ca-
pacity and thermal conductivity [72]. Importantly, however, phonons also
play a very important role in condensed matter physics due to their in-
teraction with other degrees of freedom. Most notably, phonons interact
with electrons to produce superconductivity in weak coupling superconduc-
tors [73]. Lattice distortions may also interact with magnetic degrees of
freedom to produce magnetostriction and new exotic magnon-polaron quasi-
particles [74], which are excitations of both magnetic and phononic character.

In this Chapter, we will be discussing the aspects of phonons relevant for
the research in Papers [1] and [2]. We start by discussing how force constant
models can be used to model phonon spectra in Section 4.1. Subsequently,
we will be discussing how phonons couple to electrons in Sec. 4.2. This is
relevant for Paper [2], where we study the possibility of a superconducting
instability in graphene due to a phonon-mediated mechanism. In Sec. 4.3,
we will be discussing magneto-elastic coupling. This will be relevant for
Paper [1], where we discuss the coupling and hybridization of phonons with
topological magnons.

39
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4.1 Force constant models

Phonons are quantum excitations corresponding to lattice vibrations in crys-
talline solid systems. We assume that the lattice can be considered a Bravais
lattice [75] with several atoms in the basis. In their equilibrium configura-
tion, the atoms are then localized at positions xin = xi + τn, where xi is the
position of Bravais lattice site i, and τn is the relative position of atom n
inside the Bravais unit cell.

A general model for the solid state must in addition to kinetic terms
for electrons and ions in the system contain interactions between the ions,
between electrons, and between electrons and ions. To understand the bare
phonon properties of the system, however, it usually suffices to consider the
interaction between ions in the material, which we assume to take the form

Hph =∑
i,n

(Pin)2

2Mn
+

1

2
∑
i,j

∑
m,n

U(Rin −Rjm), (4.1)

where Rin is the position of ion n in the basis of Bravais unit cell i, and
which may deviate from the equilibrium position xin. Furthermore, we let
atom n in the basis have mass Mn, and Pin denote its momentum. The form
of U(δ) is typically isotropic, and has a minimum at some distance r0. Due
to homogeneity of space, the interaction between the atoms depends only on
the relative displacement of the two atoms.

Assuming the ion displacements uin from the equilibrium positions are
small, we may write Rin = xin +uin and Taylor expand the Hamiltonian in
small uin to obtain

Hph =∑
i,n

(Pin)
2

2Mn
+

1

2
∑
i,j

∑
mn
∑
µν

Φnmµν (δδδnmij )uµinu
ν
jm. (4.2)

Here, the indices µ, ν denote directions the ions may be displaced in, and
for now, we may think of them Cartesian indices, so that µ, ν ∈ {x, y, z}.
Furthermore, δnmij = xjm−xin is the vector connecting the equilibrium lattice
sites at positions xin and xjm. In the above Hamiltonian, we will typically
only keep interactions between deviations on lattice sites which are fairly
close, but in principle, they can be arbitrarily far apart.

Since the above Hamiltonian is quadratic in momenta and ion deviations
from equilibrium, it can be diagonalized. As a first step, we introduce the
rescaled coordinates

ũin =
√
µnuin P̃in =

1
√
µn
Pin, (4.3)
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where we have defined a relative mass µn for basis atom n such that Mn =

µnM and M = ∏m
Nb
√
Mm, where Nb is the number of atoms in the basis.

This rescaling has been chosen such that the canonical commutation relations
are preserved, so that

[ũµin, P̃
ν
jm] = i~δijδµνδmn. (4.4)

The idea is that the Hamiltonian then takes the form

Hph =∑
i

(P̃in)
2

2M
+

1

2
∑
i,j

∑
mn
∑
µν

1
√
µmµn

Φnmµν (δδδnmij )ũµinũ
ν
jm, (4.5)

with a kinetic term that is now described by a unit matrix instead of a
matrix with different entries along the diagonal. Thus, we may freely perform
unitary transformations on the momenta and deviations in the Hamiltonian
without having to fear producing off-diagonal kinetic terms.

In the research papers, we are interested in diagonalizing a Hamiltonian
on this form on the honeycomb lattice for two different kinds of geometries.
First, the bulk spectrum can be obtained by assuming periodic boundary
conditions and introducing the Fourier representations

ũin =
1

√
N
∑
q

eiq⋅(xi+τn)ũqn (4.6)

P̃in =
1

√
N
∑
q

eiq⋅(xi+τn)P̃qn. (4.7)

Second, we will be interested in the phonon spectrum on a ribbon geom-
etry, as discussed in Sec. 3.3.1. Then, we may introduce a partial Fourier
transform analogous to the transform of Eq. (3.40), which we used to find the
edge modes of the Haldane model. In the following, we will be discussing the
calculation of the bulk spectrum. The ribbon geometry calculation requires
us to work with a far larger number of coupled deviations, but is otherwise
perfectly analogous.

Assuming the force constants to satisfy translational symmetry, the Fourier
transform renders the Hamiltonian on the form

H =
1

2M
∑
n,q

P̃−qnP̃qn +
1

2
∑
nm
∑
µν
∑
q

ũµ−qnD
nm
µν (q)ũνqm. (4.8)

Here, we have introduced the dynamic matrix
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Dnm
µν (q) =∑

j

1
√
µnµm

Φnmµν (δδδnmj )eiq⋅δδδ
nm
j , (4.9)

where the sum over j corresponds to a sum over the equilibrium displace-
ments vectors δδδnmj which lattice sites on sublattice m may have relative to
an atom on sublattice n in any Bravais unit cell.

We now combine the deviations ũµqn corresponding to various Cartesian
directions in various atoms in the basis into a spinor ũq. We then introduce
a unitary transform

ũq = Uqvq (4.10a)

P̃ q = UqQq. (4.10b)

The unitary transformation preserves canonical commutation relations. Choos-
ing Uq to diagonalize the matrix D(q), the Hamiltonian takes the form

H =
1

2M
∑
q

Qλ−qQ
λ
q +

1

2
∑
λ

∑
q

dλqv
λ
−qv

λ
q, (4.11)

where the index λ labels the various entries of the deviation and canonical
momentum spinors, and dλq are the eigenvalues of D(q). We may recognize
this as the Hamiltonian for uncoupled harmonic oscillators with eigenfre-
quencies given by

ωqλ =
√
dλq/M. (4.12)

Such a Hamiltonian can be expressed in terms of phonon creation and anni-
hilation operators aqλ and a†

−qλ through [25]

vλq =

¿
Á
ÁÀ ~2

2M~ωq
(aqλ + a

†
−qλ) (4.13)

Qλq =

¿
Á
ÁÀ ~2

2M~ωq
i(a†

qλ − a−qλ) (4.14)

to obtain the diagonalized phonon Hamiltonian

H =∑
qλ

~ωqλ (a†
qλaqλ +

1

2
) . (4.15)
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Assuming the force constants Φnmµν (δnmj ) are known, the diagonalization pro-
cedure is now clear.

Not all of the force constant in the matrix Φnmµν (δnmj ) are independent.
Utilizing the symmetries of the system, it is typically possible to reduce the
number of independent force constants significantly. In Papers [1] and [2],
we apply a force constant model on the above form to derive the phonon
spectra for the out-of-plane and in-plane modes in graphene using nearest
neighbour and up to third-nearest-neighbour models. Some details of the
symmetry analysis for the in-plane modes are presented in Paper [2].

In principle, the lattice structure, lattice constant, and the force constants
can all be determined from ab-initio calculations [76]. Instead, our approach
will rather be to adjust the force constants so that the resulting spectrum
fits with experimental data [77].

4.2 Electron-phonon coupling

Although phonons are important quasiparticles in their own right, some of
the most interesting phenomena in condensed matter physics occur when
we allow bosonic quasiparticles such as phonons to interact with electrons.
In Paper [2], we discuss phonon-mediated superconductivity, and therefore
need to understand electron-phonon coupling, which we will be discussing in
the following. Our discussion here will also provide a useful prequel to the
discussion of magnon-mediated superconductivity in Paper [4].

The standard electron-phonon interaction is a many-body interaction
between electrons and phonons on the form

Hel−ph =∑
kσ

∑
qν

gηη
′,ν

k,k+q(aqν + a
†
−q,ν)c

†
k+q,η′σck,ησ, (4.16)

and describes the scattering of an electron with spin σ and quasimomentum k
in band η to a state with quasimomentum k+q in band η′ through absorption
of a phonon with momentum q or emission of a phonon with momentum −q.

Here, gηη
′,ν

kk′ is the electron-phonon coupling matrix element. The above
form is generic, and to understand electron-phonon coupling in more detail,
it is necessary to understand the behaviour of the electron-phonon coupling
matrix element with momenta and band and mode indices.

To calculate the electron-phonon coupling matrix element, we therefore
need to go to a more elementary description of the system [72, 78–80]. The
earliest works on electron-phonon coupling were based on Bloch wave matrix
elements [81–83], and this is often referred to as the Bloch approach. An
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alternative is the so-called Fröhlich or tight binding approach [84], where
it is assumed that electrons follow the ion cores almost adiabatically due
to the slow time scale of the ionic motion compared with the electron time
scale [85–90]. It has been shown, however, that the two approaches are

equivalent up to order
√
me/M , where me and M are the electronic and

ionic masses [91]. Since then, there has also been significant progress in the
calculation of electron-phonon coupling using ab-initio approaches based on
density functional theory methods [80].

In Paper [2], we will be using a tight binding model to describe the
electron-phonon coupling in graphene and to study superconductivity. To
illustrate the methodology, we apply it to a square lattice model in the
section below.

4.2.1 Modelling the electron-phonon coupling

Consider a system of atoms with a square lattice structure and some free
electrons described by the single band tight binding model [79, 92]

H = −∑
i,j

tijc
†
icj − µ∑

i

c†ici. (4.17)

Due to the time scale separation of electrons and phonons, we may then think
of the hopping matrix element tij as an almost instantaneous function of the
positions of the ions on the lattice [79, 93]. Since the overlap integrals tij
are then functions of the relative positions of lattice sites i, j, we may write
tij = t(dij), where dij is the relative displacement between the atoms at
positions xi+ui and xj+uj . Expanding around the equilibrium displacement
δij = xj −xi, we obtain

tij(dij) = tij(δij) + (ui −uj) ⋅ ∇dtij(d). (4.18)

When the system is mirror symmetric with respect to the line connecting
the equilibrium lattice sites i and j, we may furthermore write

tij(dij) = t
0
ij +

1

a2
γijt

0
ijδij ⋅ (ui −uj), (4.19)

where t0ij is the hopping integral when the atoms are at their equilibrium
positions, a is the lattice constant, and where

γij = −(
a2

t0ij ∣δij ∣
2
)δij ⋅ ∇dtij(d)∣d=δij (4.20)
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is a dimensionless parameter of order 1, which can be thought of as the
logarithmic derivative of the overlap integral with respect to inter-atomic
distance.

Assuming we keep only the nearest neighbour contribution, the tight
binding electron-phonon coupling then takes the form

Hel−ph = −
γt1
a2 ∑

i,δ

δ ⋅ (ui+δ −ui)c
†
i+δci, (4.21)

where the sum over δ now runs over the nearest neighbour vectors.
From this simple expression, it is already clear that the electron-phonon
coupling should take the form in Eq. (4.16).

As discussed in the previous section, lattice site deviations can be ex-
pressed in terms of the phonons of the system through

ui =

√
~2

2MN
∑
q,ν

eiq⋅xi
eν(q)
√
~ωqν

(aqν + a
†
−qν) , (4.22)

where eν(q) is the polarization of the phonon mode ν, and would in general
correspond to an eigenvector of the matrix Uq introduced to diagonalize the
phonon Hamiltonian. Thus, the polarization vector is in general momentum
dependent, but for the square lattice, we may simply take eν(q) to be unit
vectors along the three Cartesian directions.

By introducing the Fourier transform also for the fermion operators, the
electron-phonon coupling takes the expected form

Hel−ph =∑
kσ

∑
qν

gνk,k+q(aqν + a
†
−q,ν)c

†
k+q,σckσ, (4.23)

with electron-phonon coupling matrix element

gνk,k+q = −
1

2

γt1
a

¿
Á
ÁÀ ~2

2MNa2~ωqν
∑
δ

e−i(k+q)⋅δ(eiq⋅δ − 1)eν(q) ⋅ δ. (4.24)

Thus, for the square lattice, only longitudinal modes couple to the electrons.
Above, we have introduced the electron-phonon coupling through a lat-

tice model. In the long-wavelength limit q → 0, the matrix element reduces
to

gνk,k+q = −
1

2

γt1
a

¿
Á
ÁÀ ~2

2MNa2~ωqν
∑
δ

e−ik⋅δi(q ⋅ δ)(eν(q) ⋅ δ), (4.25)
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which apart from the insignificant phase factor eik⋅δ matches the jellium
model electron-phonon coupling [6], and where γt1 plays the role of the de-
formation potential. Furthermore, the electron-phonon coupling vanishes in
the limit q → 0 for acoustic modes with ωq ∝ ∣q∣. Letting ωD be a characteris-
tic phonon frequency, the characteristic energy scale for the electron-phonon
coupling is

g0 = γt1

√

(
~2

2Ma2
)(

1

~ωD
). (4.26)

Thus, it can be thought of as the electron energy scale multiplied with the
square root of the kinetic energy of an ion inside a box of linear size a divided
by the phonon energy scale.

In Paper [2], we generalize the above calculation to systems with two
sublattices. The results are very similar, but it is necessary to also incor-
porate the rotation of the electron basis and the sublattice structure of the
phonon polarizations.

4.2.2 Normal state electron-phonon coupling effects

Due to the electron-phonon coupling, the electronic properties of the system
are in general affected by the phonons, and vice versa. Since we are primarily
interested in whether electron-phonon coupling (and electron-boson coupling
in general) may give rise to superconductivity, we are primarily interested in
the effect the phonons have on the electrons, and not the other way around.
We will be discussing this in the following.

As starting point, we use the model H =Hel +Hph +Hel−ph with

Hel =∑
kσ

ξkc
†
kσckσ (4.27a)

Hph =∑
qν

ωqνa
†
qνaqν (4.27b)

Hel−ph =∑
kσ

∑
qν

gνk,k+q(aqν + a
†
−q,ν)c

†
k+qσckσ, (4.27c)

where we assume that the electron spectrum ξk = εk −µ and phonon spectra
ωqν for are known, and that we also know the form of the electron-phonon
coupling matrix element gνkk′ .

To understand the electronic properties of the system, one may consider
the electronic Green’s function G(k, t). This Green’s function can be cal-
culated using the Matsubara Green’s function technique within many-body
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perturbation theory. In Chapter 5 we will be deriving a perturbative expan-
sion for the renormalization of both normal and anomalous correlations. The
calculation of normal state effects is similar. In this chapter, we therefore
simply outline the procedure and the results to arrive at a qualitative un-
derstanding of some of the normal state effects of electron-phonon coupling.

For the electron-phonon interaction as given, one may use many-body
perturbation theory to show that the electron Green’s function is given by
the self-consistent expansion

G(k, iωn) = G
0
(k, iωn) +G

0
(k, iωn)Σ(k, iωn)G(k, iωn), (4.28)

where G0(k, iωn) is the non-interacting Matsubara Green’s function, and
Σ(k, iωn) the self energy. In the following, we keep only the lowest order
contribution to the self energy, which can be written [6]

Σ(k, z) =∑
qν

∣gνk,k+q ∣
2
[

1 + nB(ωq) − nF (ξk+q)

z − (ξk+q + ωq)
+
nB(ωq) + nF (ξk+q)

z − (ξk+q − ωq)
] .

(4.29)
To obtain the retarded Green’s function GR at real frequency ω, we have to
evaluate the self-energy Σ at frequency z = ω + iδ, where δ > 0 is infinitesi-
mal [45]. Decomposing Σ into its real and imaginary parts Σ′ and Σ′′, we
then obtain the decomposition ΣR(k, ω) = Σ′(k, ω+ iδ)+ iΣ′′(k, ω+ iδ). The
real frequency Green’s function then takes the form

GR(k, ω) =
1

ω − ξk −Σ′
R(k, ω) − iΣ

′′
R(k, ω)

, (4.30)

and the spectral function is

A(k, ω) = −2 ImG(k, ω + iδ) = −
2Σ′′

R(k, ω)

[ω − ξk −Σ′
R(k, ω)]

2 +Σ′′
R(k, ω)

2
. (4.31)

This function is peaked at the so-called effective quasiparticle energy ξ∗k,
which corresponds to the solution of the equation

ξ∗k = ξk +Σ′
R(k, ξ

∗
k), (4.32)

and is shifted with respect to the bare electron value ξk.
To understand the effect of renormalization somewhat better, we now

assume that the quasiparticle energy shift is small. The spectral function
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can then be Taylor expanded around the renormalized quasiparticle energy.
Then, it is useful to introduce the mass enhancement parameter

λ̃k = −
dΣ′(k, ω)

dω

RRRRRRRRRRRω=ξ∗
k

. (4.33)

Subsequently, the Green’s function can be written as

G(k, ω) =
zk

ω − ξ∗k − iΓ
∗
k/2

, (4.34)

where we have expanded the real part of the self energy to linear order
in ω − ξk, but only to zeroth order for the imaginary part. We have here
introduced a wave function renormalization factor zk = 1/(1 + λ̃k) and a
quasiparticle decay rate Γ⋆k = 2zkΣ′′(k, ξ∗k).

From the above quantities, we may now derive various electronic proper-
ties. First, we consider how renormalization affects the Fermi surface group
velocity. From Eq. (4.32), the slope of the renormalized quasiparticle exci-
tation energy is given by

∇kξ
∗
k = ∇kξk +∇kΣ′

(k, ξ∗k). (4.35)

Utilizing that the self energy typically varies much faster with the energy
than with the explicit momentum dependence, we may then express the
renormalized quasiparticle energy slope as

∇kξ
∗
k = (

1

1 + λ̃k
)∇kξk (4.36)

where we have used ∇kΣ′(k, ξ∗k) ≈ −λ̃k∇kξ
∗
k. Thus, the quasiparticle energy

slope velocity is reduced by a factor of 1+λ̃k. This relations also explains the
term “mass enhancement parameter”, as it corresponds to a mass renormal-
ization m → (1 + λ̃)m within the free electron gass picture widely adopted
to understand the properties of normal metals.

To connect this renormalization with physical observables, we may now
calculate the renormalized electronic density of states through

N∗
F =

1

N
∑
k

δ(ξ∗k) ≈ (1 + λ̃)NF , (4.37)

where we for simplicity have assumed that the system is nearly isotropic, so
that λ̃k ≈ λ̃ is weakly dependent on momentum k. Since physical properties
such as the electronic contribution to the heat capacity and the electrical
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resistivity are directly proportional to the density of states [72], the mass
enhancement parameter is necessary to explain observed values for these
quantities in metals.

4.2.3 Dimensionless electron-phonon coupling strength

The quantity λ̃k is dimensionless and a measure of how much the slope of
the energy spectrum is increased by the electron-phonon coupling. Thus, it
also represents a sensible measure of the electron-phonon coupling strength
in the system.

However, we may in fact also introduce a whole hierarchy of quantities
which say something about the electron-phonon coupling strength. Let us
start by introducing the function

α2Fk(ξ,Ω) =∑
qν

∣gνk,k+q ∣
2δ(Ω − ωqν)δ(ξ − ξk+q), (4.38)

which represents the scattering strength of processes with phonon energy Ω
from a state at momentum k to states on the isoenergy contour correspond-
ing to energy ξ. This function can subsequently be used to define what we
will refer to as the state dependent dimensionless electron-phonon coupling
strength

λk = ∫ dΩ
2

Ω
α2F (ξk,Ω) =∑

k′ν

2

ωk−k′,ν
∣gνkk′ ∣

2δ(ξk′ − ξk). (4.39)

Performing Fermi surface averages, we may introduce the function α2F (ω)
given by

α2F (ω) =
1

NF
∑
kk′
∑
ν

∣gνkk′ ∣
2δ(ω − ωk−k′,ν)δ(ξk)δ(ξk′), (4.40)

where NF is the electronic density of states at the Fermi surface. The cor-
responding dimensionless electron-phonon coupling strength λ is given by

λ =
1

NF
∑
kk′
∑
ν

2

ωk−k′,ν
∣gνkk′ ∣

2δ(ξk)δ(ξk′). (4.41)

From Eq. (4.38), it then follows that α2F (ω) and λ are related through
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λ = ∫ dω
2

ω
α2F (ω). (4.42)

In fact, as discussed in Appendix B, it can be shown that when α2Fk(ξ, ω)
is weakly dependent on ξ, which is typically the case, the dimensionless
electron phonon coupling λk and the mass enhancement factor λ̃k introduced
in the previous section are approximately equal for momenta on the Fermi
surface. Thus, we have λ ≈ λ̃.

In Chapter 5, we will be discussing how electron-phonon coupling may
provide an effective interaction between electrons, and scatter electron pairs
from ±k to ±k′ through the pair scattering potential

Vkk′ =∑
ν

∣gνkk′ ∣
2 2ωk−k′,ν

(ξk − ξk′)2 − ω2
k−k′,ν

. (4.43)

Thus, we may also think of the dimensionless electron phonon coupling as
λ = −NF ⟨Vkk′⟩FS, where ⟨Vkk′⟩FS is the average of the potential for momenta
k,k′ ranging over the entire Fermi surface. Since superconductivity is known
to occur due to pairing because of effective interactions mediated by phonons,
we may already now suspect that the quantity λ plays an important role in
the description of superconductivity. We will be discussing this in more
detail in Chapter 5.

Using various spectroscopic methods such as photoemission spectroscopy
and neutron scattering [78], it is possible to map out the spectral function
A(k, ω). Since the spectral function contains information such as quasiparti-
cle energies and their associated linewidths, one may use these to extract the
self energy. This allows experimental determination of the electron-phonon
coupling strength [78, 94, 95].

4.3 Magnetoelastic coupling

When the magnetization of a ferromagnetic material is changed, the change
in magnetization is associated with a deformation of the material. This is
called magnetostriction [96], and indicates that the magnetic and vibrational
degrees of freedom are coupled. The effect is known to give rise to an audible
sound from transformers [97], which have rapidly changing magnetic fields.

Considering a ferromagnetic insulator, we may similarly expect that the
magnetic excitations are coupled to lattice site vibrations. Within the lan-
guage of collective quantum excitations, this corresponds to a coupling be-
tween magnons and phonons. Such an interaction was first studied by Kit-
tel [98, 99], who showed that within a classical model for a system with
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magnetic order along the ẑ-direction, the magnetoelastic interaction can be
written on the form [100]

H3D
me ∝∑

µν
∫ d3rMµMν [

∂uµ

∂xν
+
∂uν
∂xµ

] , (4.44)

where Mµ is the magnetization component along the Cartesian direction µ,
and uµ is the deviation from the equilibrium position. Considering small
magnetic fluctuations around the magnetization Mẑ, the magnetoelastic
coupling in a two-dimensional system can be written

Hme ∝ ∫ d2r (Mx
∂uz
∂x

+My
∂uz
∂y

) , (4.45)

where the magnetization along the ẑ-direction is assumed to be constant.
In a lattice model description where we assume that nearest-neighbour lat-
tices sites are separated by nearest-neighbour vectors δ, the magnetoelastic
coupling then takes the form

Hme = κ∑
i,δ

(δ ⋅Si)(u
z
i+δ − u

z
i ), (4.46)

with magnetoelastic coupling strength κ. Expressing the spin operators in
terms of magnon operators in linear spin wave theory and using the usual
second quantized description for the lattice site deviations uzi , this magneto-
elastic coupling represents a bi-linear magnon-phonon coupling. A more
detailed discussion of lattice models for magnetoelastic coupling is given in
Ref. [101] from a symmetry point of view.

To understand the basic effect of magnon-phonon coupling in a quantum
system, we may use a very simple model describing the coupling of a single
magnon mode to a single phonon mode. Thus, we consider a Hamiltonian
on the form

H =∑
q

ωph
q a†

qaq +∑
q

ωm
q b

†
qbq +∑

q

g(a†
qbq + b

†
qaq), (4.47)

where aq is the annihilation operator for a phonon mode with associated
phonon spectrum ωph

q , and bq the annihilation operator for a magnon mode
with eigenfrequency spectrum ωm

q . Here, g is a magnon-phonon coupling
strength, which we assume to be momentum independent. For simplicity,
we will be assuming that the magnon spectrum is constant and that the
phonon spectrum is acoustic, so that

ωph
q = ω0q/a ωm

q = ω0, (4.48)
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with constant magnon energy ω0, and where a is a momentum scale which
determines the slope of the bare phonon spectrum. The Hamiltonian can
then be written on the matrix form

H =∑
q

(a†
q b†q)(

ωph
q g
g ωmq

)(
aq
bq

) . (4.49)

To diagonalize it, we may introduce a unitary transform U(q) to obtain
eigenmodes dq1 and dq2 given by

(
dq1

dq2
) = U(q)(

aq
bq

) . (4.50)

The resulting eigenvalue spectrum ω±(q) is given by

ω± =
1

2
(ωph
q + ωm

q ) ±

¿
Á
Á
ÁÀ

⎛

⎝

ωph
q − ωm

q

2

⎞

⎠

2

+ g2. (4.51)

When the two uncoupled excitation spectra cross so that ωph
q = ωm

q , the
energy difference between the two bands is 2∣g∣. Thus, the magnon-phonon
coupling strength determines the direct gap in the system.

The eigenmodes in the system are in general linear combinations of
magnons and phonons. The total phonon content P±(q) and magnon content
M±(q) in each mode can be written

P±(q) = ∣U1±(q)∣
2 M± = ∣U2±(q)∣

2, (4.52)

where Ui± is a column in the unitary matrix U and corresponds to the
eigenvector with eigenvalue ω±. The unitarity of the transformation matrix
U gives the relations Pi +Mi = 1 and P1 + P2 =M1 +M2 = 1.

Calculating the magnon and phonon content explicitly for the eigenstate
with energy ω±, we obtain

P± =
1

1 + (p±q)
2

M± =
1

1 + (1/p±q)
2
, (4.53)

where we have introduced the quantity

p±q =

¿
Á
ÁÀ1 + (

∆q

∣g∣
)

2

±
∆q

∣g∣
, (4.54)
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Figure 4.1: Excitation spectrum for hybridized magnons and phonons. The
bare spectra are indicated with dashed lines. Colors indicate the magnon
content M±(q) of each mode, where yellow modes have a predominant
magnon character and purple modes a predominant phonon character.

and where 2∆q = ω
m
q − ωph

q is the energy difference of the bare magnon and
phonon excitations.

When the energy difference is large compared to the coupling, p±q is large
or small depending on the sign of ∆q. Thus, the excitation is either purely
magnon-like or phonon-like. At the crossing point for the uncoupled models,
where ∆q = 0, we have p±q = 1, and therefore, P± =M± = 1/2.

The energy spectrum can be plotted as function of momentum, and this
is shown in Fig. 4.1, where the bands are colored according to their magnon
content M±(q), where yellow color corresponds to a magnon-like excitation
and purple color to a phonon-like excitation. Whereas the bare phonon and
magnon spectra cross at q = a, the coupled spectrum instead has an avoided
crossing. Close to this avoided crossing, the eigenexcitations are magnon-
polarons of hybrid nature [74].
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Chapter 5

Superconductivity

The history of superconductivity is packed with surprises. In 1911, it was
discovered that the electrical resistivity of mercury drops to zero below a
critical temperature [102]. Naturally, this first main characteristic prop-
erty of the superconducting state was at odds with all existing theories for
the low temperature behaviour of resistivity in metals. The magnetic flux
expulsion from bulk superconductors known as the Meißner effect was dis-
covered experimentally in 1933 [103], and is the second main characteristic
property of the superconducting state. At the time, superconductors were
thought of merely as perfect conductors, and solely within the framework
electrodynamics, this property could not be predicted. Only after further
experimental leads, Bardeen, Cooper, and Schrieffer were able to identify
the basic mechanism causing superconductivity and explain these two main
characteristic properties microscopically [104]. With the evolution of BCS
theory into Eliashberg theory [105–107], it seemed like most properties of su-
perconductors could be understood within the established theories. This was
radically changed with the discovery of superconductivity in heavy fermion
compounds [108] and high-Tc cuprates [109]. Challenging established truths
about superconductivity, these discoveries placed theorists in zugzwang, and
stimulated massive activity on new theories and new mechanisms of super-
conductivity.

From the above historic examples, it should be clear that the develop-
ment of theories of superconductivity has always been heavily guided by
experiments, and that understanding the microscopic origin of superconduc-
tivity is very challenging1. The magnitude of the challenge can partly be

1Felix Bloch is known to jokingly have postulated that any theory of superconductivity
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explained by the dramatic nature of the superconducting transition, induc-
ing a qualitative change in the system preventing superconductivity from
being understood within naive perturbation theory around the free electron
gas. Second, the collective and strongly correlated nature of electrons in
superconductors makes it tough to understand what the superconducting
ground state is.

In this chapter, our main goal is to introduce the main theoretical frame-
works which we use to study the possible superconducting instabilities in Pa-
pers [2] and [4]. The BCS theory of superconductivity is reviewed in Sec. 5.1,
which we apply to investigate the possibility of phonon-mediated supercon-
ductivity in graphene in Paper [2]. In Sec. 5.2, we discuss Eliashberg theory,
which is used to study the possibility of magnon-mediated superconductiv-
ity in heterostructures in Paper [4]. In this chapter, we introduce both BCS
theory and Eliashberg theory with a phonon-induced mechanism in mind.
In Sec. 5.3, however, we instead discuss the spin fluctuation mechanism of
superconductivity which had to be investigated in detail with the discovery
of superconductivity in heavy fermion compounds and the cuprates. This
provides important background also for the discussion of magnon-mediated
superconductivity in Chapter 8 and Paper [4].

5.1 BCS theory

The paper “Theory of Superconductivity” by Bardeen, Cooper, and Schri-
effer from 1957 [104] culminated a period of intensive search for a micro-
scopic theory of superconductivity. In addition to providing an explanation
for the basic mechanism behind superconductivity and a description of the
electronic ground state, the theory was able to explain many of the exper-
imentally observed properties of superconductors. In short, the roughly 30
page long paper provides almost everything we can expect from a proper
theory of superconductivity.

BCS theory did not just appear out from nothing. The search for a
theory of superconductivity dates back to its very discovery. From the be-
ginning, these models were naturally of classical nature, and phenomenolog-
ical descriptions were devised based on classical electromagnetism and fluid
models [110]. The works culminated with the Ginzburg-Landau description
of superconductors [111], which accurately describes the superconducting
state, but remains purely phenomenological, and fails to identify a micro-
scopic mechanism and give any description of the microscopic state [112].

is refutable [73].
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This much was however clear: Driven by some sort of interaction, the
electrons in the superconducting state reorganize from the free electron gas
known to describe the normal metal well, and into some other state with
different properties. From measurements of the critical magnetic field hc
where superconductivity breaks down, it was furthermore known that the
energy gained by such a reorganization was tiny [73].

A crucial lead was discovered in 1950 with the discovery of the isotope
effect [113, 114], namely that the critical temperature of an elemental su-
perconductor scales roughly as Tc ∝ M−1/2 with the isotope mass M of
the atoms in the system. Thus, the critical temperature seemed to be re-
lated to the motion of the ions. Independently, Fröhlich had suggested that
electron-phonon interaction was responsible for superconductivity, and had
even derived the isotope effect using perturbation theory [73, 115]. Yet, he
soon came to suspect that perturbation theory is not sufficient to under-
stand superconductivity [73]. Importantly, however, Fröhlich demonstrated
that electron-phonon coupling could provide an effective attraction between
electrons [84].

Previous works using Ginzburg-Landau theory had indicated that su-
perconductivity could be understood due to coherent behaviour of entities
with charge 2e [112]. Motivated by this, Leon Cooper investigated how a
pair of electrons interacting with the Fermi sea would behave [116]. With
an attractive interaction close to the Fermi surface motivated by Fröhlich’s
effective potential [84], he was able to solve a simplified problem exactly. In
the process, he showed that the system gained energy by adding a pair of
electrons on top of the Fermi surface in a coherent manner. This indicated
that the Fermi surface was unstable, and paved the way for the BCS theory
of superconductivity.

5.1.1 Formulation of the theory

Based on the newly gained insights, Bardeen, Cooper, and Schrieffer realized
that the essential physics in superconductivity is contained in the interaction
between pairs of electrons in opposite spin states and with zero net momen-
tum. The starting point for BCS theory is therefore the so-called reduced
BCS Hamiltonian

H =∑
kσ

ξkc
†
kσckσ +∑

kk′
Vkk′c

†
k′↑c

†
−k′↓c−k↓ck↑, (5.1)

which describes the scattering of a pair of electrons with opposite spins
at momenta ±k and to momenta ±k′ through a scattering potential Vkk′ .
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Since other scattering processes take the electrons out of these pair states,
we assume them to play an negligible role in the physics.

The effective potential in BCS theory can in principle be due many dif-
ferent mechanisms. In the most paradigmatic explanation of superconduc-
tivity, however, the potential is due to electron-phonon coupling. Following
Cooper [116], Bardeen, Cooper, and Schrieffer assumed the effective pair
scattering potential to take the form

Vk,k′ = {
−u/N for ∣ξk∣, ∣ξk′ ∣ ≤ ωD
0 otherwise

} , (5.2)

where u is a constant attractive potential, N the number of unit cells on the
Bravais lattice, and ωD is a characteristic phonon frequency in the system.
We may keep this potential in mind for now, but will be discussing the form
of Vkk′ in further detail in Sec. 5.1.4.

In BCS theory, one starts out from the above BCS Hamiltonian, and
derives a so-called gap equation. There are several ways to do this. The
most standard is to perform a mean field theory expansion around a finite
pairing amplitude [6, 112, 117]. Alternately, one may also use a Green’s
function formalism based on an equation of motion approach for the Green’s
functions [83, 118, 119], or a saddle point approximation in a functional
integral formalism [6, 120]. Remarkably, the reduced BCS Hamiltonian is
in fact sufficiently simple that an exact solution exists [73, 117, 121]. In the
following, however, we will be outlining the derivation of the gap equation
within a mean field approach.

5.1.2 Mean field theory and gap equation

To derive the BCS gap equation, we will be following Ref. [117]. Considering
spin singlet pairing, we introduce the mean field parameter bq = ⟨c−q↓cq↑⟩,
while the more general description allowing also for spin triplet pairing is
discussed in Ref. [122] within the BCS approach. Using mean field theory
to neglect deviations from the mean field parameter, we obtain

H = −∑
kk′

Vkk′b
∗
k′bk +∑

k

ξk(c
†
k↑ck↑ + c

†
−k↓c−k↓) +∑

k

(∆∗
kc−k↓ck↑ +∆kc

†
k↑c

†
−k↓),

(5.3)

where we have introduced the gap parameters
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∆k =∑
k′
Vk′kbk′ (5.4)

∆∗
k =∑

k′
Vkk′b

∗
k′ . (5.5)

Consistent with the notation, these are easily shown to be complex conju-
gates of each other by utilizing the property V ∗

kk′ = Vk′k which follows from
the hermiticity of the reduced BCS Hamiltonian.

By introducing the Nambu spinor ψk = (ck↑, c
†
−k↓)

T , the Hamiltonian can
be written as

H = E0 +∑
k

ξk +∑
k

ψ†
khkψk, (5.6)

with matrix hk given by

hk = (
ξk ∆k

∆∗
k −ξk

) , (5.7)

and a constant term E0 originating from the constant term in Eq. (5.3) and
fermionic anticommutation relations.

The Hamiltonian can be diagonalized by a Bogoliubov-Valantin trans-
formation. Introducing a transformation γk = (γk↑, γ

†
−k↓)

T = Ukψk, the new
operators in γk satisfy fermionic anticommutation when Uk is unitary. We
may therefore write2

γk = (
γk↑
γ†
−k↓

) = (
uk −v∗k
vk u∗k

)(
ck↑
c†−k↓

) = Ukψk, (5.8)

where the unitarity of Uk imposes ∣uk∣
2 + ∣vk∣

2 = 1. By computing the eigen-
values of the matrix hk, it is then clear that the diagonalized form of the
Hamiltonian is

H = E0 +∑
k

ξk +∑
k

(γ†
k↑ γ−k↓)(

Ek 0
0 −Ek

)(
γk↑
γ†
−k↓

) , (5.9)

and that the excitation spectrum Ek is

Ek =
√

ξ2
k + ∣∆k∣

2. (5.10)

2The form below is in fact not the only way to introduce fermion operators so that the
Hamiltonian is diagonalized. An alternate version is employed in Refs. [112, 123].
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Furthermore, by computing the eigenvectors, it follows that this diagonal-
ization is achieved by choosing

uk =

√
1

2
(1 +

ξk
Ek

) vk =

√
1

2
(1 −

ξk
Ek

). (5.11)

Writing out the terms in the Hamiltonian explicitly, we now have

H = Ẽ0 +∑
k

Ek(γ
†
k↑γk↑ + γ

†
−k↓γ−k↓), (5.12)

with a ground state energy Ẽ0 depending on the fields {bk},{b
∗
k}.

To determine the mean field parameter ∆k, there are two equivalent
options. Either, one may minimize the free energy with respect to ∆k,
or one may use the the self-consistency equation in Eq. (5.5) to derive an
equation for the gap. Irrespective of the chosen approach, we obtain the
BCS gap equation

∆k = −∑
k′
Vkk′χk′∆k′ , (5.13)

where we have introduced susceptibility

χk =
1

2Ek
[1 − nF (Ek)] =

tanhβEk/2

2Ek
. (5.14)

The key microscopic input in the gap equation is the pair scattering potential
Vkk′ , which we will be discussing in more detail in the next section. We solve
the equation with a simple model for Vkk′ in Sec. 5.1.5, but let us for now
try to understand the behaviour of the equation qualitatively.

The gap equation is a non-linear eigenvalue problem whose solutions are
eigenvectors ∆k of the matrix Mkk′ = Vkk′χk′ corresponding to eigenvalue
1. The eigenvalue problem is non-linear because the matrix Mkk′ depends
on ∆k itself through the excitation spectrum in χ(Ek). Furthermore, we
notice that introducing a gap increases the excitation energy, so that χ(Ek)
is always reduced with increasing ∣∆k∣.

Start at large temperatures, χk is suppressed, and the largest eigenvalue
of Mkk′ is smaller than 1, so that the equation does not have non-zero solu-
tions. At a certain critical temperature Tc, however, the largest eigenvalue
of the matrix becomes 1, and we may have solutions with an infinitesimal,
yet non-zero gap. Decreasing the temperature further, the gap ∆k in the
solution of the gap equation grows beyond infinitesimal values to keep the
eigenvalue of Mkk′ at 1.
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5.1.3 Ground state

From the diagonalized Hamiltonian in Eq. (5.12), it is clear that since the
operators γ represent excitations on top of the ground state, the ground state
itself is the vacuum state in the basis of the γ-operators. It is not yet clear,
however, what the ground state looks like in terms of the original fermion
operators. To obtain such a representation, we start by noticing that in a
fermionic system, the condition γ∣ψ⟩ = 0 uniquely defines the occupation of
the single particle state corresponding to a fermion annihilation operator γ.
Thus, the ground state of the mean field BCS Hamiltonian can be uniquely
defined by demanding

γkσ ∣ψBCS⟩ = 0 ∀k, σ (5.15)

for the BCS mean field ground state ∣ψBCS⟩
3. Since, (γk↑)

2 = (γk↓)
2 = 0, the

operator ∏k γk↑γk↓ acts as projection operator projecting any state down on
its ground state component. Since the state Πkγk↑γ−k↓∣0c⟩ is non-zero, where
∣0c⟩ denotes the vaccuum state in the c-operator basis, it must therefore be
proportional to the ground state. Thus, it is readily shown that the BCS
ground state can be written on the form

∣ψBCS⟩ =
1

N
∏
k

(uk + vkc
†
−k↓c

†
k↑) ∣0c⟩, (5.16)

where N is a normalization constant. Alternately, one may expand the BCS
ground state in terms of the c-operator number states, and derive explicit
conditions for the expansion coefficients to show that the ground state takes
this form.

5.1.4 Effective phonon-mediated potential

Although BCS theory was developed to describe phonon-mediated super-
conductivity, the theory itself is completely indifferent to the origin of pair
scattering potential, as long as it is attractive. Thus, the effective potential
may in principle occur due to phonons, spin fluctuations [125–127], any other
boson [128–131], or be of purely electronic origin [132–134]. In the follow-
ing, we will be discussing how to obtain an effective electron-electron pair
scattering potential for a phonon exchange mechanism, but the methods can

3An alternate route to deriving the ground state is given in Ref. [124], and is based
on an effective isospin description, where the ground state is obtained by rotating the the
ground state for ∆k to align it with the direction of the effective magnetic field nk given
such that hk = nk ⋅σ.
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also be generalized to other boson exchange mechanisms. We thus consider
the electron-phonon coupled Hamiltonian

H =∑
kσ

ξkc
†
kσckσ +∑

qν

ωqνb
†
qνbqν +∑

qν
∑
kσ

gνk,k+q(bqν + b
†
−qν)c

†
k+q,σckσ. (5.17)

The system consists of electronic and bosonic degrees of freedom which in-
teract through a non-linear interaction. Thus, the electrons in the system
affect the phonon system, which again affects the electron system, and so
on.

In the BCS Hamiltonian, the bosons do not appear explicitly, and the
only trace of their presence is the effective interaction Vkk′ . We therefore
need a way to decouple the bosons from the electrons, and transform the
electron-phonon coupling into an effective electron-electron interaction. This
decoupling can be performed through a Schrieffer-Wolff transformation [135–
137] as first shown by Fröhlich [84], and we outline the procedure in the
following.

Following Ref. [138], we write the Hamiltonian on the form

H =H0 + ηH1, (5.18)

where H0 is the non-interacting part of the Hamiltonian describing the free
electrons and bosons, H1 is the electron-phonon interaction, and η is an
expansion parameter. The basic idea of the Schrieffer-Wolf transformation
is to transform the Hamiltonian through the canonical transformation

H →H ′
= e−ηSHeηS , (5.19)

which effectively changes the basis of the many-body Hilbert space slightly.
Using the Baker-Hausdorff-Campbell lemma [33] and expanding in small η,
we then have

H ′
=H0 + η (H1 + [H0, S]) + η

2
([H1, S] +

1

2
[[H0, S], S]) +⋯. (5.20)

Choosing S so that

H1 + [H0, S] = 0, (5.21)

the linear terms in the electron-phonon coupling strength are eliminated.
After also utilizing this identity in the second order contribution in η, we
are left with H ′ =H0 +Heff and an effective interaction Hamiltonian
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Heff =
η2

2
[H1, S]. (5.22)

Furthermore, it can be shown that an appropriate choice is to write S on
the form [138]

S =∑
kσ

∑
qν

gνk,k+q(x
ν
k,qbqν + y

ν
k,qb

†
−qν)c

†
k+qσckσ, (5.23)

and that choosing the parameters xνk,q and yνk,q appropriately, the effective
pair interaction becomes

Vk,k+q =∑
ν

∣gνk,k+q ∣
2 2ωqν

(ξk+q − ξk)2 − ω2
qν

. (5.24)

The above derivation is essentially perturbation theory in the electron-
phonon interaction. BCS theory can thus be viewed as a perturbative
method to compute the effective potential joining forces with non-perturbative
methods to find the ground state of the BCS Hamiltonian [139]. The canon-
ical transformation method can also be generalized to systems with coupling
to magnons, as shown in Refs. [140, 141].

Although Frölich’s canonical transformation is the most standard way to
derive the effective potential, it is not the only one. The effective decou-
pling of the bosonic system can also be performed within a flow equation
approach [142, 143]. Remarkably, since the condition in Eq. (5.21) does
not uniquely determine the matrix S, this approach gives rise to effective
potentials which are on different forms than the Fröhlich effective potential
in Eq. (5.24) [142, 144, 145]. However, as the free electron Hamiltonian
is also affected by the transformation within this approach, these effective
potentials cannot immediately replace the Fröhlich potential.

In a diagrammatic expansion similar to the one we will be considering
in the section on Eliashberg theory, the interaction between electrons is me-
diated by a phonon. Letting DR(q, ω) be the retarded phonon propagator,
the effective potential can therefore be thought of as

V eff
k,k+q(ω) =∑

ν

∣gνk,k+q ∣
2Dν

R(q, ω) =∑
ν

∣gνk,k+q ∣
2 2ωqν

ω2 − ω2
qν

. (5.25)

This is a frequency dependent effective potential, which unlike the effective
potential above should not be thought of as an interaction term occurring in
the Hamiltonian. Instead, the frequency ω occurs in the diagrammatic ex-
pansion for a frequency dependent Green’s function, and has to be summed
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over. Clearly, the Fröhlich effective potential can be obtained from this ef-
fective potential through the replacement ω → ξk+q−ξk, but the formal basis
for this is through the canonical transformation. In BCS theory, one there-
fore replaces the properly frequency dependent potential with an effective
description where, somewhat strangely, the momentum dependence accounts
for the frequency dependence.

5.1.5 Morel-Anderson model

The above approaches give rise to detailed effective potentials. In the original
BCS paper, however, the approach was to simplify the potential as much as
possible while still keeping the main qualitative features. In the Fröhlich
potential, the interaction is attractive close to the Fermi surface, while it
becomes repulsive for electron energy transfers exceeding the characteristic
boson frequency, which acts as resonance frequency and effective cutoff for
the attractive part of the potential.

Bardeen Cooper and Schrieffer therefore postulated that superconduc-
tivity could be explained with the effective interaction in Eq. (5.2), which is
attractive for electrons k and k′ closer to the Fermi surface than the energy
ωD, and that the potential vanishes otherwise. We will instead consider a
somewhat more general potential, where we also include a constant repulsive
potential, which we think of as coming primarily from Coulomb repulsion
between the electrons. This is known as the Morel-Anderson model [146],
and within this model, the effective pair scattering potential is assumed to
take the form

Vk,k′ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(−u + v)/N for ∣ξk∣, ∣ξk′ ∣ ≤ ωD
v/N for ωD ≤ ∣ξk∣, ∣ξk′ ∣ ≤W
0 otherwise

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

, (5.26)

whereW is the electron bandwidth, u the strength of the attractive potential,
and v the strength of the repulsive potential. The potential is illustrated in
Fig. 5.1, and the standard BCS potential is regained by letting v = 0.

With the standard BCS potential, we need the effective pair scattering
potential to be negative on the Fermi surface to be able to find a solution.
Thus, we would naively expect that one may only find solutions to the BCS
gap equation for u > v. However, this is not the case, and we will see why in
the following.

Since the potential takes on different values in the two different regions
corresponding to electron energies ∣ξk∣ < ωD, and ωD < ∣ξk∣ <W , we assume
that the gap can also be written on the form
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Figure 5.1: Morel-Anderson potential and gap Ansatz.

∆k =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∆1 for ∣ξk∣, ∣ξk′ ∣ ≤ ωD
∆2 for ωD ≤ ∣ξk∣, ∣ξk′ ∣ ≤W
0 otherwise

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

, (5.27)

as shown in Fig. 5.1. We now insert the given profiles for the gap and
the potential into the gap equation. Since the potential Vkk′ and the gap
∆k depend on momentum only through the electronic energy ξk, the gap
equation can be written on the form [6, 123]

∆(ξ) = −DF ∫ dξ′V (ξ, ξ′)χ(ξ′)∆(ξ′), (5.28)

where we have introduced the susceptibility

χ(ξ,∆) =
tanh(β

√
ξ2 +∆2/2)

2
√
ξ2 +∆2

. (5.29)

Separating the integrals over the two regions of the Brillouin zone, we obtain
a gap equation

(
∆1

∆2
) = −DF (

(v − u)f1(∆1) vf2(∆2)

vf1(∆1) vf2(∆2)
)(

∆1

∆2
) (5.30)

where we have introduced the functions

f1(∆1) = 2∫
ωD

0
χ(ξ,∆1)dξ (5.31a)

f2(∆2) = 2∫
W

ωD
χ(ξ,∆2)dξ. (5.31b)

Since a homogeneous linear set of equations can only have non-zero solutions
when the determinant vanishes, we may only find non-zero solutions when
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[1 +DF (v − u)f1][1 +DF vf2] − (DF v)
2f1f2 = 0. (5.32)

This condition relates f1(∆1) to f2(∆2), and solving for f1(∆1), we obtain

f1(∆1) = [DFu −
DF v

1 +DF vf2(∆2)
]

−1

. (5.33)

In principle, we should now solve the two coupled equations for ∆1 and ∆2 in
Eq. (5.30) for each temperature T , and any such solution then automatically
satisfies the condition in Eq. (5.32). However, in the weak coupling regime
where βωD ≪ 1, the hyperbolic tangent in the integrand of f2(∆2) can be
considered constant, so that that

f2(∆2) ≈ ∫

W /ωD

1

dx
√
x2 + (∆2/ωD)2

≈ log (
W

ωD
) , (5.34)

where we have assumed that W /ωD ≫ 1 in the last step.
Notably, this makes f2(∆2) independent of ∆2, so that we may simply

solve the equation in Eq. (5.33) by using the constant value logW /ωD for
f2. The equation is then simply the well known gap equation which results
BCS theory letting v = 0, but where DFu ≡ λ has been replaced by λ − µ∗,
and we have introduced the Coulomb pseudo-potential

µ∗ =
DF v

1 +DF v logW /ωD
. (5.35)

Once the gap ∆1(T ) is known, one may obtain ∆2(T ) using

∆2(T ) = −
µ∗

λ − µ∗
∆1(T ), (5.36)

which follows from either of the equations in Eq. (5.30) together with Eq. (5.33).
The gap equation in Eq. (5.33) has solutions with a finite gap ∆1(T )

for temperatures below a critical temperature Tc. Following the standard
calculation [112, 117], one may show that the critical temperature in the
weak coupling limit βωD ≪ 1 is given by

Tc ≈ 1.14ωD exp(−
1

λ − µ∗
) , (5.37)

and the gap ∆1(0) at zero temperature is given by

∆1(0) = 2ωD exp(−
1

λ − µ∗
) . (5.38)
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Although the characteristic phonon energy ωD sets the energy scale for the
critical temperature, the dimensionless electron-phonon coupling strength λ
has to be significantly larger than the Coulomb pseudo-potential to avoid
complete exponential suppression of the critical temperature. If λ is smaller
than µ∗, there are no non-zero solutions of the gap equations, neither at
finite nor zero temperature.

Remarkably, the Coulomb pseudo potential µ∗ is limited to values of
1/ log(W /ωD) even in the limit v →∞. Thus, even an infinitely large repul-
sion v is not able to prevent the superconducting instability.

This can be understood in terms of the processes contributing to the
pairing. While processes from a point k on the Fermi surface to a point k′

close to the Fermi surface contribute repulsively in the gap equation due to
the positive potential v − u, the repulsive part v of the interaction is coun-
teracted by the processes between k and points k′ far away from the surface
acting attractively due to the sign change in the gap amplitude. The dip in
the total pair scattering potential due to the phonon-mediated potential is
then able to produce superconductivity because the gap adapts to the effec-
tive potential to cancel out most of the effect of the repulsion. This effect
is only possible due to the large energy scale separation between the char-
acteristic phonon frequency ωD and the electron bandwidth W . Thus, the
Morel-Anderson model provides a concrete justification for the often para-
phrased saying that superconductivity can occur in spite of strong electronic
repulsion because electrons are able to avoid each other in time.

The Morel-Anderson pseudo-potential is shown as function of the re-
pulsion strength DF v in Fig. 5.2 (a). At intermediates temperatures, the
gap equation has to be solved numerically, and the solutions are shown in
Fig. 5.2 (b) for various values of v, where the gap component ∆1 is shown
with solid lines and the gap component ∆2 with dashed lines. As v in-
creases, the pseudopotential µ∗ also increases, before eventually saturating
at a finite value. As shown in (b), the critical temperature shows similar
behaviour. With the increasing µ∗, the gap component ∆2(T = 0) increases
to compensate for the repulsive interaction, as discussed above.

5.1.6 Experimental consequences

By inspecting the expressions for the critical temperature and the gap at
zero temperature from the calculation in the previous section, we notice
that their functional forms are in fact identical. Using this, one finds the
so-called universal amplitude ratio
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Figure 5.2: (a) Coulomb pseudopotential µ∗ as function of v. (b) Gap
temperature dependence for various v, with solid lines for ∆1 and dashed
lines for ∆2. The gap amplitudes and temperatures are normalized against
the critical temperature Tn and gap ∆n

1 obtained by setting v = 0.

2∆1(T = 0)

Tc
≈ 3.52. (5.39)

This very famous result matches experiments in weak coupling superconduc-
tors well, and provided compelling evidence for the BCS theory. As shown
here, the prediction holds also within the Morel-Anderson model.

The BCS theory is also able to explain the so-called isotope effect, which
was historically one of clues which promoted electron-phonon coupling to
prime suspect as underlying mechanism for superconductivity. In elemental
superconductors, it was noticed that the critical temperature in samples
constructed of different isotopes with different masses M scaled according
to Tc ∼ M−1/2. As seen from Eq. (4.12), the typical phonon frequencies
are proportional to M−1/2, while the electron-phonon coupling strength λ is
typically independent of the isotope mass. For the electron-phonon coupling,
this can be seen from Eqs. (4.41) and (4.24), as both the coupling matrix
element and phonon frequencies scale with M−1/2. Thus the BCS theory is
able to explain the isotope effect in elemental weak coupling superconductors.

Upon inclusion of a Coulomb pseudo-potential, we expect corrections to
the exponent −1/2, as the Coulomb pseudopotential depends on the isotope
mass through the phonon frequency. A simple calculation gives that a small
change dM in the isotope should produce a small change dT in the critical
temperature given by



5.1. BCS THEORY 69

dT

T
=
dM

M
(−

1

2
)[1 − (

µ∗

λ − µ∗
)

2

] . (5.40)

A comparison between experimental results and the isotope effect coefficient
calculated with similar methods shows good agreement [139, 147].

The two primary properties of the superconductor, namely zero resis-
tivity and the Meißner effect, can both be understood from BCS theory if
we couple the system to electromagnetic fields. These properties can conve-
niently be understood within linear response theory and a Green’s function
formulation of BCS theory [45, 118]. In the research in this thesis, we are
primarily concerned with whether various mechanism can give rise to super-
conductivity, and not the properties of the superconducting state itself. We
will therefore not review this in further detail.

5.1.7 Numerical solution of the gap equation

Above, we have solved the gap equation with a simple assumption for the
effective pair scattering potential Vkk′ . If we instead use a detailed potential
Vkk′ , the equations can no longer be solved analytically. Thus, numerical
methods are required.

In this thesis, we will primarily be interested in locating the supercon-
ducting transition and the gap profiles close to the superconducting insta-
bility. In this regime, we expect the gap to be small. The gap equation can
then be linearized in the gap to obtain the equation

∆k = −∑
k′
Vkk′

tanhβξk′/2

2ξk′
∆k′ , (5.41)

where the gap dependent excitation spectrum Ek has been replaced with the
single particle energy ξk.

In the following, we discuss two methods which can be used to solve such a
gap equation, and which are applied to phonon-mediated superconductivity
in graphene in Chapter 7.

Fermi surface averaged equation

In the simplest possible BCS theory, one assumes that the effective potential
is constant close to the Fermi surface, and zero otherwise. An alternate
approach keeping more details of the effective potential is to derive Fermi
surface averaged equations.
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In the linearized gap equation (5.41), the dominant contributions come
from regions close to the Fermi surface. In the spirit of BCS theory, we
then assume that the effective potential Vkk′ for pair scattering of a pair at
momenta ±k on the Fermi surface is attractive for scatterings to momenta
±k′ within a region corresponding to electron energy ∣ξk′ ∣ < ωD, but zero
otherwise. Assuming that the gap and the effective potential vary slowly
along the direction perpendicular to the Fermi surface, we may then sepa-
rate the integration into integrations along and perpendicular to the Fermi
surface. Neglecting the perpendicular momentum dependence of the effective
potential and the gap, we then obtain

∆k∥ = −
1

ABZ
∫ dd−1k∥ ∣

dξ

dk⊥
∣

−1

Vk∥k′∥∆k′
∥
∫

ωD

0
dξ

tanhβξ/2

ξ
, (5.42)

where ABZ is the Brillouin zone volume. This equation now represents an
eigenvalue problem for the gap ∆k∥ on the Fermi surface, where the critical
temperature Tc is determined as the largest value of T which is consistent
with a solution of the equation. While the eigenvalue problem

−
1

ABZ
∫ dd−1k∥ ∣

dξ

dk⊥
∣

−1

Vk∥k′∥∆k′
∥
= λ∆k∥ (5.43)

in general has many eigenvalues λ, we thus have to pick out the largest λeff ,
and the inverse critical temperature βc = 1/Tc is then obtained through

1 = λeff ∫

ωD

0
dξ

tanhβξ/2

ξ
≈ λeff log (

2eγ

π
βωD) , (5.44)

which has the well known BCS solution

Tc ≈ 1.13ωDe
−1/λeff . (5.45)

The gap profile on the Fermi surface close to the critical temperature is
simply the eigenvector ∆k∥ corresponding to the largest eigenvalue λeff .

Although the above approach contains many of the same simplifications
as BCS theory, it does allow a calculation of the gap profile on the Fermi
surface based on detailed information about the pairing potential and the
shape of the Fermi surface.
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Full momentum dependent solution

In Paper [2], we solve the gap equation in two dimensions on a momentum
grid with a finite number of momentum points. To ensure an appropri-
ate resolution in the most important regions around the Fermi surface, we
introduce points on a coarse grid in the entire Brillouin zone and add addi-
tional denser points close to the Fermi surface to pick up the sharply peaked
features in the effective potential and in the susceptibility. Through a trian-
gulation technique, we may then partition the Brillouin zone into triangles
with these points as vertices. Since a point k may be a vertex of several
triangles t, we associate the point k with the weight wk given by

wk =∑
t

Atδk∈t/3, (5.46)

with δk∈t = 1 if k is a vertex in the triangle t, and 0 otherwise. The gap
equation can then be written on the form

∆k = −
1

ABZ
∑
k′
Vkk′χk′wk′∆k′ (5.47)

where ABZ is the Brillouin zone area. Linearizing this equation in the gap
and and setting the largest eigenvalue of the linear eigenvalue problem to
1, we obtain an equation for critical temperature Tc. Furthermore, the gap
structure ∆k just below the critical point is given by the eigenvector corre-
sponding to the largest eigenvalue of the linear eigenvalue problem.

5.2 Eliashberg theory

In the discussion of the Morel-Anderson model in the previous section,
we saw that even a strong Coulombic repulsion only results in a surpris-
ingly small renormalization of the dimensionless electron-phonon coupling
strength. Thus, the qualitative properties of the superconductivity are
hardly changed. From the argument, it was clear that this occurs due to
the time scale separation of the electron and the ion dynamics through the
large ratio W /ωD, and we gave a rough interpretation of this in terms of
electrons avoiding each other in time4.

Yet, when we consider the BCS theory and the Morel-Anderson model,
time does not appear anywhere. The BCS interaction potential is in fact

4The argument can even be extended in terms of a discussion of the screening of the
interaction from an oscillating ion on the lattice [123].
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both instantaneous and non-local, as it depends, not only the scattering
momentum k−k′, but also on k and k′ individually. An alternate description
of BCS theory was formulated by Gorkov based on Green’s functions [83,
118, 148], which give electron correlations at different times. While the
original formulation of the BCS theory was based on mean field theory, this
particular formulation of BCS theory allowed the problem to be studied
within the recently developed methods of quantum field theory [118]. The
natural generalization of this BCS theory formulation lead G. Eliashberg to
develop what we now know as Eliashberg theory [106, 107].

Although the BCS theory described the properties of many supercon-
ductors well, there were some exceptions. In the simplest BCS theory, the
ratio 2∆(0)/kBTc takes on a “universal” value of approximately 3.535. Al-
though this matched well with observed values in most superconductors at
the time, it deviates significantly from the values in lead and mercury, which
have ratios of roughly 4.3 and 4.6 [149]. These were superconductors with
a relatively small phonon Debye frequency and large values for the electron-
phonon coupling strength, as witnessed for instance by the ratio Tc/ωD or
the effective mass enhancement factor extracted from specific heat measure-
ments. At the same time, the dependence of the upper critical magnetic field
in these materials deviated from the BCS expectation [149]. These deviations
therefore called for a theory of “strong coupling superconductors”. When
the amplitude ratio was calculated within Eliashberg theory [150, 151], there
was excellent agreement, and Eliashberg theory seemed to fill this need.

Whereas BCS theory is only able to describe weak coupling supercon-
ductors with small λ ≲ 0.3, Eliashberg theory can describe superconductors
with larger λ. An interesting difference between BCS theory and Eliashberg
theory is in fact that whereas the critical temperature within BCS theory
would saturate at the phonon Deybye frequency as λ→∞, the critical tem-
perature in Eliashberg theory for large λ in principle approaches infinity as√
λ. Yet, even Eliashberg theory is expected to break down at large λ [152],

and for this reason, it is some times referred to as intermediate coupling
theory today [153].

In the following, we discuss how one may formulate a Green’s function
approach for phonon-mediated superconductivity. Using a framework which
can easily be generalized to treat also magnon-mediated superconductivity,
we thus derive the Eliashberg equations. This is a multi-step processes,

5In fact, the “universal” amplitude ratio is not universal anymore even within BCS
theory for larger electron-phonon coupling strength λ. Yet, the value seemed to saturate
at 4 within BCS theory, so that BCS theory did not seem able to explain the values
observed in mercury and lead, as discussed below [149].
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which we discuss in some detail in the following subsections.

5.2.1 Model Hamiltonian

The starting point of BCS theory is the reduced BCS Hamiltonian in Eq. (5.1),
which describes electrons interacting with each other through some potential
Vkk′ . In contrast, the starting point of Eliashberg theory is a more funda-
mental Hamiltonian H =Hel +Hb +Hel−b describing both electrons, bosons,
and their interaction explicitly.

To keep our discussion sufficiently general, we consider a model on the
form

H =∑
kσ

ξkc
†
kσckσ +∑

qν

ωqνb
†
qνbqν +∑

kq

∑
σσ′µ

gσσ
′;µ

k,k+qBqµc
†
k+qσ′ckσ, (5.48)

where ckσ and c†kσ are annihilation and creation operators for electrons with
spin σ and quasimomentum k, while ξk is the electron single particle spec-
trum. Similarly, bqν and b†qν are annihilation and creation operators for a
boson in mode ν with quasimomentum q. Furthermore, Bqµ represents a
bosonic excitation which can in general be constructed as a linear combina-
tion of the boson creation or annihilation operators carrying momentum q,

while gσσ
′,µ

kk′ is the associated matrix element. In this thesis, we will encounter
both phonon-mediated and magnon-mediated superconductivity, which can
both be described within such a model.

To be concrete, the boson operator Bqν for phonon-mediated supercon-
ductivity is given by

Bqν = aqν + a
†
−qν , (5.49)

as seen in the general electron-phonon coupling Hamiltonian of Eq. (4.16),
and where ν labels the phonon modes in the system. For magnon-mediated
superconductivity as considered in Paper [4], we instead let Bqµ correspond

to four different magnon operators MR,U
q , (MR,U

−q )† constructed as linear
combinations of the eigenmagnon operators in the system, as discussed in
more detail in Chapter 8.

5.2.2 Building blocks: Green’s functions

As already mentioned, Eliashberg theory is based on Green’s function tech-
niques and many-body perturbation theory. Thus, the basic building blocks
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for the theory are electron and boson Green’s functions. In the following,
we will be working within a Matsubara Green’s function formalism, and for
an introduction to this, we refer to Refs. [6, 118]. In the following, we define
the Green’s functions we will be interested in. First, the electron Green’s
function Gσσ′(k, τ) is defined as

Gσσ′(k, τ) = −⟨Tτ ckσ(τ)c
†
kσ′(0)⟩, (5.50)

where k is the electron quasimomentum, σ and σ′ are the spins of the elec-
trons in the Green’s function, τ the imaginary time, and Tτ the time ordering
operator in imaginary time. As it will turn out to be useful later, we also
introduce the Green’s function

Ḡσσ′(k, τ) = −⟨Tτ c
†
−k,σ(τ)c−k,σ′(0)⟩. (5.51)

As we saw in the section on BCS theory, the BCS ground state is not a state
with a fixed number of particles. Instead, the BCS ground consists of a linear
combination of states where the single particle states k with opposite spins
are occupied and empty, as given in Eq. (5.16). Thus, cross terms from the
two contributions give rise to a finite BCS ground state expectation value
for the operators c−k↓ck↑ and c†k↑c

†
−k↓. A Green’s function formalism which

can successfully describe superconductivity must therefore also include the
so-called anomalous correlations Fσσ′ and F̄σσ′ defined by

Fσσ′(k, τ) = −⟨Tτ ck,σ(τ)c−k,σ′(0)⟩ (5.52)

F̄σσ′(k, τ) = −⟨Tτ c
†
−k,σ(τ)c

†
k,σ′(0)⟩. (5.53)

Our theory consists of both an electronic and a bosonic part. When
studying superconductivity, however, we are primarily interested in pairing
of the electrons, which interact with the bosons operators Bqν through the
electron-boson coupling. Since it is always the operators Bqν that couple to
the electrons, the relevant boson propagator is therefore

Dµν(q, τ) = −⟨Bqµ(τ)B−qν(0)⟩, (5.54)

which in general has a matrix structure in the presence of several bosonic
operators.

The above Green’s functions are formulated in terms of quasimomentum
and imaginary time. In the following, we will instead be working with their
Fourier representations, which are given through the Fourier series expan-
sion [118]
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H(k, τ) =
1

β
∑
iωn

e−iωnτH(k, iωn) (5.55)

H(k, iωn) = ∫
β

0
dτeiωnτH(k, τ), (5.56)

where the function H represents either electronic or bosonic Green’s func-
tions. Furthermore, ωn = (2n+ 1)π/β in the fermionic case, and ωn = 2nπ/β
in the bosonic case. In the following, we will typically be using the notation
ωn for a fermionic Matsubara frequency and νm for a bosonic Matsubara
frequency.

5.2.3 Spinor representation

To structure the forthcoming calculations, it is useful to collect the interact-
ing electron and boson operators in spinors, and the corresponding Green’s
functions in matrices.

Since we are interested in both normal and anomalous Green’s functions,
we introduce a Nambu spinor ψk given by

ψk = (ck↑ ck↓ c†−k↑ c†−k↓)
T
. (5.57)

The electronic Green’s functions we have introduced this far may therefore
be combined into the electron Green’s function matrix

G(k, τ) = −⟨Tτψk(τ)ψ
†
k(0)⟩ = (

Gσσ′(k, τ) Fσσ′(k, τ)
F̄σσ′(k, τ) Ḡσσ′(k, τ)

) , (5.58)

which in the Fourier representation takes the form

G(k, iωn) = (
Gσσ′(k, iωn) Fσσ′(k, iωn)
F̄σσ′(k, iωn) Ḡσσ′(k, iωn)

) . (5.59)

With a single band and two spin species, this matrix consists of 16 elements.
However, due to various relations between the the operators in the spinors,
the Green’s function matrix satisfies several symmetry relations, so that not
all matrix elements are independent. In particular, the Fourier representa-
tions of the 2 × 2 submatrices of the full electron Green’s function matrix G
satisfy
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G(k, iωn)
†
= G(k,−iωn) Ḡ(k, iωn) = −G(−k,−iωn)

T (5.60a)

F̄ (k, iωn) = F (k,−iωn)
† F (k, iωn) = −F (−k,−iωn)

T . (5.60b)

Similarly, we may collect the relevant boson operators in the system in
a spinor. For the case of phonon-mediated superconductivity, this is trivial,
as the spinor has only one element per phonon mode. In general, however,
the spinor may have several elements. In Paper [4], the boson spinor takes
the form

Bq = (MR
q (MR

−q)
† MU

q (MU
−q)

†)
T
, (5.61)

with magnon operators MR
q and MU

q as discussed in further detail there.
The interaction Hamiltonian in Eq. (5.48) can furthermore be symmetrized

in particle and hole operators by letting

c†k′σ′ckσ →
1

2
(c†k′σ′ckσ − ckσc

†
k′σ′) . (5.62)

The interaction Hamiltonian itself can then be written on the symmetrized
form6

Hel−b →Hs
el−b =

1

2
∑
kq

∑
αβγ

gαβ,νk,k+qBqνψ
†
k+q,αψkβ , (5.63)

where the indices α,β denote elements in the electron spinor, and the index
ν elements in the boson spinor.

5.2.4 S-matrix expansion

Having introduced the model and spinor and matrix representations for op-
erators and Green’s functions, we are now ready to develop an S-matrix
expansion for the electron Green’s function using many-body perturbation
theory. Useful references on the topic are provided by Refs. [6, 118, 119].

Within many-body perturbation theory, the electron Green’s function
can be written

6At this point, it may not be entirely clear why we choose to symmetrize the Hamil-
tonian and write it on this form. Furthermore, it may look like fermion anticommutation
relations should give an additional term. In reality, however, we are simply preparing
for an S-matrix expansion. Using Wicks theorem in the S-matrix expansion, fermion
operators can be switched without introducing additional anticommutators.
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G(k, τ) = −
⟨Tτψk(τ)ψ

†
k(0)S(β,0)⟩0

⟨S(β,0)⟩0
, (5.64)

where ψk is the Nambu spinor defined above, and S is the so-called S-matrix.
With interaction Hamiltonian Hint(τ) in the interaction picture, it can be
written

S(τ,0) =∑
n

(−1)n

n!
∫

τ

0
dτ1⋯dτnTτ [Hint(τ1)⋯Hint(τn)] , (5.65)

and corresponds to the time evolution operator in the interaction picture.
The thermal average should be evaluated with respect to the non-interacting
Hamiltonian, which is quadratic. Thus, we may use Wicks theorem to con-
tract operators in the expansion for the Green’s function. This allows us to
represent the Green’s function as a diagrammatic expansion.

As usual in many-body perturbation theory, the disconnected diagrams
in the numerator of Eq. (5.64) cancel against the denominator, and we may
write

G(k, τ) = −⟨Tτψk(τ)ψ
†
k(0)S(β,0)⟩

con
0 , (5.66)

where the superscript “con” indicates that only connected contributions are
allowed into the propagator expansion.

As shown in Fig. 5.3 (a), we may represent electron Green’s functions by
solid lines and boson Green’s functions by dashed lines, where single lines
denote non-interacting Green’s functions and double lines the corresponding
interacting Green’s functions. Furthermore, an electron-boson interaction is
indicated by a dot.

By combining the incoming and outgoing electron operators in a propa-
gator with electron operators from the interactions, and combining the bo-
son operators in the interactions with each other, we may obtain Feynman
diagram contributions to the interacting Green’s function. The complete
expansion for the electron and boson propagators can then be collapsed into
the compact forms shown in Fig. 5.3 (b) and (c). From this, we obtain

G(k) = G0(k) + G0(k)Σ(k)G(k) (5.67a)

D(q) =D0(q) +D0(q)Π(q)D(q), (5.67b)
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(a)

(b)

(c)

(d)

Figure 5.3: Feynman diagram expansion in terms of matrix Green’s functions
and vertices. (a) Electron and phonon Green’s functions, interaction, and
interaction vertices. (b) Electron Green’s function expansion. (c) Boson
Green’s function expansion. (d) Diagram expansion for the renormalized
vertex.

where k = (k, iωn) and q = (q, iνm), G0 and D0 denote the unperturbed
electron and boson Green’s functions, and we have introduced electron self-
energy Σ(k) and polarization Π(q) given by

Σ(k) = −
1

β
∑
q
∑
γγ′

Dγγ′(q)g
γ
k,k+qG(k + q)Λ

γ′

k+q,k (5.68)

Πγγ′(q) =
1

4β
∑
k

Tr [gγk,k+qG(k + q)Λ
γ′

k+q,kG(k)] . (5.69)

Here, we have introduced a renormalized vertex Λγkk′ , which has a diagram
expansion as shown in Fig. 5.3 (d). Both the self-energy, the electron Green’s
functions, and the coupling g are matrices in the electron indices, which we
have suppressed in the notation, while we keep the boson indices explicit to
avoid confusion between electron and boson matrix operations. The trace in
the definition of the polarization runs over electronic indices.

The latter two equations are referred to as the self-consistent equations,
and together with the Dyson equations in Eq. (5.67) and the diagram expan-
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sion for the renormalized vertex7, they can be used to determine the electron
and boson Green’s functions.

So far, we have assumed that we only have normal and anomalous cor-
relations, and that other correlations which may in principle occur from
spontaneous symmetry breaking are zero. Apart from this, however, our
equations are still exact. They do, however, represent very complicated in-
tegral equations.

In Sec. 5.2.8, we argue that the renormalized vertex can be replaced

by the bare vertex gγ
′

kk′ within phonon-mediated superconductivity. This is
known as Migdal’s theorem, although it is by no means exact. In the follow-
ing, we also assume that boson propagator renormalization is insignificant, so
that we may use the unperturbed Green’s function D0

γγ′ in the self-consistent
equation for the electron self-energy. Then, the self-consistent equation

Σ(k) = −
1

β
∑
q
∑
γγ′

D0
γγ′(q)g

γ
k,k−qG(k − q)g

γ′

k−q,k, (5.70)

determines the electron Green’s function together with the Dyson equation

G
−1

(k) = G−1
0 (k) −Σ(k) (5.71)

relating Σ and G.

5.2.5 Phonon-mediated superconductivity

So far, our discussion has been general and applies to superconductivity me-
diated by any boson with electron-boson coupling on the form in Eq. (5.48).
While in Paper [4], we discuss magnon-mediated superconductivity, we here
specialize to phonon-mediated superconductivity. The procedure to derive
the Eliashberg equations is perfectly analogous for the two cases, but the
details are somewhat different, and we comment on some of these differences
in Chapter 8.

For electron-phonon coupling, the interaction Hamiltonian is given by

Hint = ∑
kqσ

gk,k+qAqc
†
k+q,σckσ, (5.72)

where we have introduced the operator Aq = aq + a
†
−q. Explicit calculation

of the corresponding phonon propagator then gives [6]

7The diagram expansion for the renormalized vertex can also be expressed as an integral
equation [83], but we do not discuss this in further detail here.



80 CHAPTER 5. SUPERCONDUCTIVITY

D0(q, iνm) = −
2ωq

ν2
m + ω2

q

. (5.73)

Introducing again the Nambu spinor ψk, the symmetrized Hamiltonian takes
the form

Hs
int =∑

kq

∑
αβ

fαβk,k+qAqψ
†
k+q,αψkβ (5.74)

with electron-phonon coupling matrix

fαβk,k+q =
1

2

⎛
⎜
⎜
⎜
⎝

gk,k+q 0 0 0
0 gk,k+q 0 0
0 0 −g−k−q,−k 0
0 0 0 −g−k−q,−k

⎞
⎟
⎟
⎟
⎠

. (5.75)

Assuming the system to be time reversal symmetric, the electron-phonon
coupling matrix element satisfies the symmetry relations g−k′,−k = (gk′,k)

∗

and gkk′ = g
∗
k′k. Thus, the electron-phonon coupling matrix can be written

fk,k+q = gk,k+qτ3σ0. (5.76)

Inserting into the self-consistent equation, the self-consistent equation takes
the form

Σ(k) = −
1

β
∑
q

∣gk,k−q ∣
2D0(q)τ3G(k − q)τ3, (5.77)

which is the usual self-consistent equation in Eliashberg theory [154].

5.2.6 Eliashberg equations

As a final step to derive the Eliashberg equations, we decompose the Green’s
function matrix into various terms with associated fields, and derive equa-
tions for these fields based on the self-consistent equation together with the
Dyson equation.

To represent the Green’s function, one may in general express it in terms
of 4 × 4 basis matrices which span the Hermitian matrices8. A set of such
basis matrices are the Pauli matrix outer products

8Although the Green’s function itself is not Hermitian, we can still represent it in
terms of Hermitian basis matrices by multiplying the Hermitian matrices with complex
numbers. Subsequently, by using the symmetry relations for G, it turns out that with our
choice of basis, these complex numbers are either purely real or purely imaginary.
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τα ⊗ σβ α,β ∈ {0,1,2,3}, (5.78)

with Pauli matrices τα acting on the particle/hole and σβ acting on the
spin degree of freedom. In general, we can construct 16 different such basis
matrices, but for simplicity, we assume that the self-energy takes the form

Σ(k) = [1 −Z(k)]iωnτ0σ0 + χ(k)τ3σ0 + φs(k)τ2σ2. (5.79)

Here, Z corresponds to a spin-independent quasiparticle renormalization,
while χ represents a quasiparticle energy shift. Furthermore, since σ2 is
antisymmetric in interchange of spin, φs represents a spin singlet anomalous
pairing. From the symmetry relations in Eq. (5.60), these fields satisfy

Z(−k) = Z(k), Z(k, iωn) = Z(k,−iωn)
∗, (5.80a)

χ(−k) = χ(k), χ(k, iωn) = χ(k,−iωn)
∗, (5.80b)

φs(−k) = φs(k), φs(k, iωn) = φs(k,−iωn)
∗. (5.80c)

From the electron self-energy, the Green’s function can be obtained by
utilizing the Dyson equation. While the non-interacting Green’s function is
given by

G
−1
0 = iωnτ0σ0 − ξkτ3σ0, (5.81)

the inverse of G becomes

G
−1

= G
−1
0 −Σ = iωnZτ0σ0 − ξ̃kτ3σ0 − φsτ2σ2, (5.82)

where we have introduced ξ̃k = ξk + χ(k). This is a 4 × 4 matrix which
decomposes into two blocks of size 2 × 2, and is easily inverted to obtain

G(k) =
1

Θ(k)
[iωnZ(k) + ξ̃kτ3σ0 + φs(k)τ2σ2], (5.83)

where

Θ(k, iωn) = [iωnZ(k)]2 − ξ̃2
k − ∣φs(k)∣

2 (5.84)

is the submatrix determinant.
The Eliashberg equations are simply non-linear equations in the fields

Z(k), χ(k), and φs(k) which can be obtained by inserting the decomposition
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of G and Σ into the self-consistent equation for phonon-mediated supercon-
ductivity in Eq. (5.77). Comparing term by term, one obtains

iωn[1 −Z(k)] = −
1

β
∑
k′
∑
ν

∣gνkk′ ∣
2Dν(k − k

′
)
iωn′Z(k′)

Θ(k′)
(5.85a)

χ(k) = −
1

β
∑
k′
∑
ν

∣gνkk′ ∣
2Dν(k − k

′
)
ξk′ + χ(k

′)

Θ(k′)
(5.85b)

φs(k) = +
1

β
∑
k′
∑
ν

∣gνkk′ ∣
2Dν(k − k

′
)
φs(k

′)

Θ(k′)
. (5.85c)

Considering the more general case of spin triplet pairing, the diagonal-
ization procedure would be somewhat more involved, as the 4 × 4 matrix
would not decouple into two blocks. This is analogous to the discussion of
the spin triplet pairing in BCS theory in Ref. [122]. In Chapter 8, we will
be considering unpolarized spin triplet pairing, which corresponds to a term
φtτ3σ3 in the self energy. When only this triplet contribution is present, the
analysis is again perfectly analogous to the spin singlet case, except for the
symmetry relation satisfied by φt(k).

Contrary to the BCS gap equation, the Eliashberg equations are eigen-
value equations for fields which have both momentum and frequency depen-
dence. While the BCS equation with the Fröhlich effective potential Vkk′

have relatively strong dependence on momentum due to resonances in the
potential, however, this is not the case here, as the effective potential has
been replaced by the frequency dependent phonon propagator instead.

The full Eliashberg equations can be solved numerically with detailed
electron-phonon coupling matrix elements and phonon propagators [155–
157], but this constitutes a heavy numerical problem. In the following, we
therefore discuss how the equations can instead be reduced to an eigen-
value problem in Matsubara frequency by introducing Fermi surface aver-
aged quantities. The quasiparticle renormalization χ(k) is small in typical
superconductors, and at half-filling, it vanishes [154]. We therefore consider
the equations only for the fields Z(k) and φs(k).

Considering an s-wave superconductor, we furthermore assume that both
Z(k) and φs(k) are momentum independent. As shown in Refs. [83, 154,
158], the Fermi surface averaging procedure then gives Eliashberg equations
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Z(iωn) = 1 +
π

βωn
∑
iωn′

λ(iωn − iωn′)
√

(ωn′Z ′)2 + ∣φ′s∣
2
ωn′Z

′ (5.86a)

φs(iωn) =
π

β
∑
iωn′

λ(iωn − iωn′)
√

(ωn′Z ′)2 + ∣φ′s∣
2
φs(iωn′), (5.86b)

where we have introduced

λ(iωn − iωn′) = −
1

NF
∑
kk′ν

δ(ξk)δ(ξk′)∣g
ν
kk′ ∣

2Dν(k − k
′, iωn − iωn′). (5.87)

This quantity can be interpreted as a frequency dependent Fermi surface
averaged electron-phonon coupling strength, and reduces to the dimension-
less electron-phonon coupling strength introduced in Chapter 4 for zero fre-
quency.

5.2.7 Solving the Eliashberg equations

To solve the Eliashberg equations in Eq. (5.86), one may assume that only
a finite number of frequencies are significant, and use an iterative procedure
to calculate the Matsubara frequency dependence of the quasiparticle renor-
malization and anomalous pairing. To determine the critical temperature,
however, we may linearize the equations in the anomalous pairing. Then,
Z(iωn) can be calculated independently of φ(iωn), and be used as input
in the equation for φ(iωn). Thus, we again have to solve a linear eigen-
value problem where the temperature has to be adjusted so that the largest
eigenvalue is 1. This determines the critical temperature.

To gain some understanding of the Fermi surface averaged Eliashberg
equations, it is useful to solve them with a simple model for the frequency
dependent electron-boson coupling strength λ(iνm). Starting from the def-
inition in Eq. (5.87), we assume that the superconducting pairing is domi-
nated by a single phonon frequency, and that the electron-phonon coupling
matrix element can be considered constant for these contributions. Thus,
we assume that λ(iνm) takes the form [83]

λ(iνm) =
λ0

1 + ν2
m/ω2

E

, (5.88)

where ωE is the characteristic boson frequency and λ0 is the value at νm = 0.
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Figure 5.4: (a) Critical temperature as function of the electron-phonon cou-
pling strength λ0 in the Einstein model. (b) Matsubara frequency depen-
dence of Z(iωn) and φs(iωn) just below the critical temperature for λ0 = 0.5.

Inserting this into the Eliashberg equations in Eq. (5.86), the critical tem-
perature is shown in Fig. 5.4 (a), while the Matsubara frequency dependence
of Z(iωn) and φs(iωn) is shown in Fig 5.4 (b).

The procedure above is very convenient for determining the critical tem-
perature, and in Paper [4], this is also what we are interested in. To extract
further superconducting properties such as for instance the excitation gap,
the heat capacity, and the isotope effect exponent, however, we also need
the quasiparticle renormalization and the superconducting gap as function
of real frequency. The usual way of obtaining real frequency Green’s func-
tions from Matsubara Green’s functions is to perform analytic continuation
of the Matsubara Green’s function. This is simple when we know an ana-
lytic expression for the Matsubara Green’s function. Here, however, we only
know Z(iωn) and φs(iωn) for a finite set of Matsubara frequencies. Thus,
it is not immediately clear how the real frequency Green’s functions can be
obtained.

One option is to convert the Eliashberg equations into real frequency
equations before we solve them. This procedure gives a set of integral equa-
tions for the gap and the quasiparticle renormalization [154, 159], which one
may then go on to solve. However, it is also possible to deduce the real fre-
quency dependence of the Green’s function from the values at a finite set of
Matsubara frequencies through the use of so-called Padé approximants [154].

When the real frequency gap function ∆(ω) has been determined, one
may determine the excitation gap ∆e, by solving the equation

∆e = Re ∆(ω = ∆e). (5.89)
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Experimentally, the excitation gap is accessible for instance through tunnel-
ing experiments [159, 160].

For a detailed review of superconducting properties such as the isotope
effect, heat capacity and the “universal” amplitude ratio from an Eliashberg
theory perspective, the reader should consult Refs. [92, 149, 159].

5.2.8 Migdal’s theorem

Eliashberg theory is based on many-body perturbation theory, and as always
in many-body perturbation theory, we pick out our favourite self energy
diagrams and throw away the rest. A natural question to ask is therefore
how this is justified.

The question was first investigated Migdal [161], who formulated what we
today know as Migdal’s theorem [6]. It is built on the observation that there
are two different energy scales in the system; one relatively small charac-
teristic boson energy ωD, and one characteristic electron energy EF , which
is typically much larger. In the expansion for the renormalized vertex in
Fig. 5.3 (d), we disregarded all diagrams beyond the first. Migdal argued
that for electron-phonon coupled systems, the vertex corrections can be dis-
regarded when the ratio ωD/EF is small. Thus, a time scale separation
between the electron and phonon dynamics is an important precondition for
Eliashberg theory to be valid, and also an important reason that BCS theory
works so well.

Vertex correction estimate

In the following, we discuss Migdal’s argument in some more detail. To
see whether the vertex corrections are important, one may try to evaluate
the relative size of the zeroth and first order contributions to the renormal-
ized vertex in Fig. 5.3 (d). Disregarding the momentum dependence of the
electron-phonon coupling matrix element, this relative size can be estimated
as

Γ1
k,k+q =

1

β
∑
q′

∣g∣2G(k + q′)G(k + q + q′)D(q′), (5.90)

where the renormalized vertex is related to the lowest order relative contri-
bution through Λkk′ = gkk′(1 + Γkk′), and the sum over q′ runs over both
momentum and frequency. To estimate this expression, we replace the in-
teracting Green’s functions by their non-interacting counterparts, which are
given by
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G0(k, ikn) =
1

ikn − ξk
(5.91)

D0(q, iqn) = −
2ωq

q2
n + ω

2
q

, (5.92)

where kn and qn denote fermionic and bosonic Matsubara frequencies. For
Matsubara frequencies larger than typical phonon frequencies, the phonon
propagator decays fast. Thus, we may assume that the dominant contribu-
tions to the above sum arise from Matsubara frequencies where ∣q′n∣ < ωD,
and this corresponds to roughly ωD/2πT different frequencies. Since the
typical energy scale for the electrons is EF , we expect the vertex correction
to be of order

Γ1
k,k+q ∼

1

β
∣g∣2 (

ωD
2πT

)(
1

E2
F

)(
1

ωD
) ∼

∣g∣2

E2
F

. (5.93)

As one may realize by considering the definition of the dimensionless electron-
phonon coupling strength in Eq. (4.41), the electron-phonon coupling matrix
element ∣g∣2 is typically of order ∣g∣2 ∼ λωDEF . Thus, the relative importance
of the lowest order vertex correction is of order

Γ1
k,k+q ∼ λ

ωD
EF

. (5.94)

This quantity is typically small in superconductors with a phonon-based
pairing mechanism. By a similar argument, we expect higher order vertex
corrections to be of even higher order in this small quantity.

Above, we considered contributions to the renormalized vertex where the
electron momenta for the Green’s functions in Eq. (5.90) are in general far
away from the Fermi surface. Thus, the Green’s functions are typically of
order 1/EF . Instead, we may consider processes with scattering momentum
q′ such that the intermediate momenta k + q′ and k + q + q′ are close to the
Fermi surface, and the Green’s functions are instead of order 1/ωD. However,
as illustrated in Fig. 5.5, this can only occur for a restricted set of momenta
in the Brillouin zone. Letting DF = NF /N be the intensive density of states
and assuming k and k+q to lie on the Fermi surface, the momentum q′ can
only be picked among a fraction DFωD of the full Brillouin zone if we want
one of the electron Green’s functions in Eq. (5.90) to be on the Fermi surface,
and within a fraction (DFωD)2 to have both electron momenta close to the
Fermi surface. Thus, nothing is gained by considering processes close to
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Figure 5.5: Hierarchy of processes contributing to lowest order vertex correc-
tion with momenta k and k + q on the Fermi surface (black circle). Points
denote electron momenta, which vertices on a parallelogram due to con-
servation of momentum. (a) A general momentum q′ yields intermediate
momenta far away from the Fermi surface. Restricting the momentum sum
to the grey regions in (b) and (c) gives larger electron Green’s functions, but
contributions from fewer momenta.

the Fermi surface, and there is a hierarchy of processes which all contribute
similarly to the vertex corrections.

Finally, we notice that the first order contribution to the renormalized
vertex is small compared to the zeroth order contribution when the electron-
boson coupling matrix element is small compared to the typical electron
energy scale, as seen in Eq. (5.93). It is the relation ∣g∣2 ∼ λωDEF which
we expect with electron-phonon coupling which allows us to rewrite the
estimate in terms of λωD/EF , and which gives the most common formulation
of Migdal’s theorem.

Failure of Migdal’s theorem

The argument above is not very rigorous, but it illustrates that vertex cor-
rections will typically tend to be small. However, there are exceptions. In a
qualitative picture, one may argue that vertex corrections are small because
not all momenta are in general close to the Fermi surface when we choose q′

such that k+q′ is close to the Fermi surface, as shown in Fig. 5.5 (b). If this
were actually the case, the argument would break down. In the following,
we will be discussing two cases where this may be possible.

A simple example is the limit q → 0, when we let the outgoing momentum
labelled by 3 in Fig. 5.6 (a) approach the incoming momentum labelled by
0. Estimating the vertex correction in Eq. (5.90), one may show that [162]
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Figure 5.6: Situations where Migdal’s theorem may break down. (a) Scat-
tering with small momentum q. (b) Strongly nested Fermi surface.

Γ(k, q → 0) ∼
NF ∣g∣2

√
(vF q)2 + q2

m

. (5.95)

Qualitatively, this can be understood as follows: Compared with the esti-
mate in Eq. (5.93), a factor 1/EF has been replaced with

√
v2
F q

2 + q2
m. By

considering electrons at momenta k and k+q close to the Fermi surface, the
dominant contributions come from the situation where k+q′ is also close to
the Fermi surface. This is because the smallness of q allows the electron at
k + q′ + q to be reasonably close to the Fermi surface without having to pay
the cost of restricting the momentum sum any further. The typical energy
scale of this last electron is therefore dominated either by its electronic en-
ergy of order vF q or the frequency iqm depending on their respective values.
The square root interpolates between these two.

A second situation where Migdal’s theorem may not hold, is when the
Fermi surface is strongly nested, as shown in Fig. 5.6 (b). The nesting ensures
the existence of a large set of momenta q which allow us to pick q′ such that
all electrons are close to the Fermi surface. Thus, the vertex correction is
drastically enhanced. Nesting can often be a problem in low-dimensional
systems, where nesting is more common.

5.3 Spin-fluctuation mechanism

With the development of Eliashberg theory, the properties of almost all
known superconductors at the time could be understood9, and it was spec-

9An exception was the so-called A15 compounds [159, 163], which had, on the con-
temporary scale, rather large critical temperatures. However, superconductivity in these
materials turned out to be due to strong electron-phonon coupling [93].
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ulated that electron-phonon coupling is the cause of superconductivity in
all superconductors [150]. Spin fluctuations, on the other hand, were only
believed to suppress superconductivity [140, 164, 165].

In the 1980s, this view was drastically changed, primarily due the discov-
ery superconductivity in two new classes of superconductors; heavy fermion
compounds [108] and high-Tc cuprates [109].

Heavy fermion compounds have their name due to their very large ef-
fective mass, as observed through the rapid increase of specific heat with
temperature [166, 167] at intermediate temperatures. This was believed to
be caused by a Kondo effect [6, 168, 169], and can be described within the
Kondo model [6]. There, coupling to spin fluctuations of local moments
cause strong renormalization, and give rise to a minimum in the heat ca-
pacity and resistivity as function of temperature at the so-called Kondo
temperature. This behaviour motivated detailed experimental studies of the
low-temperature properties of heavy fermion systems [170]. An investigation
of the resistivity, however, showed that in some materials, it instead dropped
to zero below critical temperatures between 0.5 K and 2 K [108, 170, 171].

As the importance of spin fluctuations in heavy fermion systems was
already well established through the behaviour of the specific heat, spin
fluctuations were also a primary candidate as pairing glue for the observed
superconductivity [170]. Heavy fermion superconductivity occurs in close
proximity to antiferromagnetic order [172], and observations indicated that
the gap amplitude had nodes on the Fermi surface [122, 173–175]. This
behaviour was very similar to anisotropic pairing in Helium-3, where spin
fluctuations had been identified as underlying mechanism [176]. Yet, it was
clear that understanding superconductivity in heavy fermion materials was
a huge challenge due to strong correlation effects. The large effective mass
of the heavy electrons makes the characteristic electron energy scale small,
and the time scale separation between the electrons and the bosons which
allows BCS and Eliashberg theory to work so well is missing.

Although the discovery of heavy fermion superconductors was of signif-
icant theoretical interest, the technological implications were minute due
to the small critical temperatures. In contrast, the discovery of high-Tc
cuprates [109] not only reshaped known truths about superconductivity, but
also represented a major technological advancement due to large critical
temperatures quickly reaching beyond 100 K [109, 177–180]. It soon be-
came clear that a phonon-mediated mechanism could not explain the enor-
mous critical temperature within the standard theories of superconductiv-
ity [93, 181], and the spin fluctuation mechanism was a prime suspect [7].
Similar to heavy fermion compounds, superconductivity occurs in close prox-
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(b)(a) (c)

Figure 5.7: Spin-fluctuation mechanisms generating an effective electron-
electron interaction. (a) Kondo lattice. s-d exchange generates RKKY inter-
action and magnetic order, around which localized spins may fluctuate. (b)
Paramagnon mechanism in the Hubbard model. Electron repulsion gener-
ate short ranged antiferromagnetic spin correlations, around which electrons
may fluctuate. (c) Heterostructure. Localized spins in a magnetic insulator
may fluctuate around magnetic order.

imity to antiferromagnetically ordered phases. Furthermore, the pairing
symmetry was shown to be d-wave [182], which again allowed parallels to
Helium-3 to be drawn up [7, 181].

Although spin fluctuations are believed to play an important role in the
superconductivity of both heavy fermion materials and high-Tc cuprates, the
underlying nature of the spin fluctuations is presumably somewhat different,
as illustrated in Fig. 5.7.

First as shown in Fig. 5.7 (a), heavy-fermion compounds can be described
in terms of delocalized electrons interacting with localized spins through
a so-called s-d exchange coupling [6, 172]. Through this interaction, the
itinerant electrons can mediate an RKKY interaction between the localized
spins [6, 183], which may give rise to antiferromagnetic order for a dense
lattice [184, 185]. In turn, fluctuations of the localized spins around the
antiferromagnetic order, typically entangled with spin fluctuations of the
electrons themselves [172, 186], may then mediate an effective interaction
between the electrons.

Second, a spin fluctuation mechanism which may possibly cause super-
conductivity in high-Tc materials is illustrated in Fig. 5.7 (b), and is due to
spin fluctuations in the spins of the electrons themselves. Strong electronic
repulsion may generate short range antiferromagnetic order, and spin fluc-
tuations on top of this order can mediate an effective interaction between
electrons, which may cause superconductivity. This is often referred to as the
paramagnon mechanism, and the paradigmatic Hubbard model is believed
to contain this behaviour [187].

There has been significant efforts in understanding superconductivity in
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high-Tc cuprates through spin fluctuation mechanisms [7, 12, 13, 187], and
a number of other mechanisms have also been proposed [93, 153]. However,
there is still no consensus even on the fundamental mechanism causing super-
conductivity in the cuprates [7, 93]. Quite simply, a microscopic theory for
superconductivity in heavy fermion superconductors and high-Tc cuprates is
still missing [7, 188].

Regardless of the true nature of superconductivity in heavy fermion com-
pounds and high-Tc cuprates, spin-fluctuation mediated superconductivity
is of great fundamental interest. A somewhat different context where it may
in principle occur, is in heterostructures of magnetically ordered insulators
proximity coupled to a normal metal. There, as shown in Fig. 5.7 (c), lo-
calized spins within a magnetic insulator may fluctuate to give rise to an
effective interaction between the electrons in an adjacent normal metal. We
will be studying such a system in Paper [4], and discuss this in more detail
in Chapter 8.
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Chapter 6

Topological magnons

In Chapter 3, we primarily discussed topological classification of electronic
band structures. However, as pointed out in Sec. 3.4, the topological classi-
fication of band structures can equally well be applied also to bosonic band
structures. Thus, the concept of topology may also provide insight into the
physics of collective excitations in magnetic systems, which can often be
described in terms of bosons.

A magnetic insulator modelled by some spin model will have a ground
state, and may host excitations on top of the ground state. As we have
already discussed, there are several ways to describe these spin excitations,
and the suitability of each of these descriptions may depend on the properties
of the system. In Paper [1], we will be considering the fluctuations on top of
a ferromagnetically ordered state, and we will therefore be working within
linear spin wave theory in this chapter. However, the excitations of magnetic
systems may also be classified according to their topology within alternate
descriptions.

Today, several model systems exist which are known to host topologi-
cal magnon band structures [36, 67]. Kagomé and pyrochlore lattices have
received much attention [189–194] motivated by the experimental discovery
of a thermal Hall effect in similar systems [70, 195, 196]. Furthermore,
models with topological magnons have also been investigated on honey-
comb [32, 197, 198], Lieb [199] and Shastry-Sutherland [200, 201] lattices.
The typical mechanism for generating the topologically non-trivial band
structure in these systems is the Dzyaloshinskii-Moriya interaction discussed
in Sec. 2.4. Since the Dzyaloshinskii-Moriya interaction may also give rise to
exotic spin textures such as skyrmion crystals, there has also been significant

93
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interest in systems with such non-collinear magnetic order [202–204]. How-
ever, topological magnons may also occur due to other interactions, such as
the Kitaev interaction [205, 206], dipolar interactions [207, 208], or exchange
couplings in non-coplanar spin textures [209]. Topology can also be used to
classify gapless magnetic systems hosting Dirac cones [210, 211], analogous
to Weyl semimetals [212].

It should by now be clear that topology is a useful tool to study the prop-
erties of magnon band structures, and that a multitude of models displaying
topologically non-trivial band structures are known. The challenge is there-
fore rather to identify fingerprints of topology in magnon band structures
through observable quantities.

The topological nature of the bands is typically manifest in two main
properties. First, topological magnon band structures may give rise to var-
ious Hall conductivities [213]. Yet, since the the Hall conductivity is not
quantized, it cannot uniquely identify a topologically non-trivial band struc-
tures as underlying cause [214], as finite Hall conductivities can for instance
arise in systems which are magnetically disordered and topologically triv-
ial [215].

The second main property of topologically non-trivial systems is the pres-
ence of edge modes. However, the direct observation of these with usual
techniques such as inelastic X-ray and neutron scattering is very challenging
due to the surface nature of the modes [36]. Both experimental progress and
new ideas therefore seem necessary to establish direct proof of the topological
nature of magnon band structures.

In this chapter, we discuss topological magnons, and start with a discus-
sion of magnon Hall conductivities in Sec. 6.1. We then proceed to construct
a topologically non-trivial spin model in Sec. 6.2. Finally, we couple topo-
logical magnons to phonons in Sec. 6.3, and discuss the main results of
Paper [1].

6.1 Hall conductivities

In electronic systems, it was the observation of Hall conductivities that mo-
tivated the classification of electronic band structures according to their
topology. It is therefore also natural to investigate if Hall conductivities in
magnetic systems may also contain information about the topology of exci-
tation bands. In electronic systems, the Hall conductivity we refer to is the
transverse transport of charge due to an electric field. For magnetic systems,
the first question we have to ask is what kind of driving we should subject
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the system to, and which response we are looking for.

Charge in an electronic system is measured by the number operator ni =
c†ici. In a spin system, it is therefore natural to think of the ẑ-component

of the spin, Szi = S − a†
iai in the Holstein-Primakoff representation, as the

analog of charge in the spin system. Furthermore, an electric field can be
generated by a potential energy term on the form V = ∑i Vic

†
ici, where Vi

describes a potential gradient across the sample. Similarly, the analog of an
electric field in the magnetic system is therefore a magnetic field gradient.
In the following, we therefore consider transverse spin currents generated by
magnetic field gradients. The associated Hall effect is some times referred
to as the magnon spin Hall effect [213].

Applying a magnetic field gradient ∂yB, we expect a spin current jx
related to the applied magnetic field gradient through the linear relation

jx = σxy(∂yB), (6.1)

where σxy is the transverse Hall conductivity for the magnon spin Hall effect.

It should however be pointed out that other Hall effects have received
equally much or more attention within topological magnetic systems. In ad-
dition to subjecting the system to a magnetic field gradient, we may subject
it to a temperature gradient and study the transport of both spin and heat.
Generally, the response in spin currents jµ and heat currents jEµ due to mag-
netic field gradients ∂νB or a thermal gradient ∂νT can then be written as
the linear relation

(
jx
jEx

) = (
Lxy11 Lxy12

Lxy21 Lxy22
)(

∂yB
∂y(1/T )

) . (6.2)

Hence, we may generate both spin currents and heat currents by applying
either a magnetic field gradient or a temperature gradient through various
Hall effects. In addition to the magnon spin Hall effect discussed above, spin
currents can be generated by a temperature gradient through the magnon
Nernst effect, while generating a heat current through a temperature gradi-
ent is referred to as the thermal magnon Hall effect. Both the thermal Hall
effect [70, 195, 196, 216–218] and the magnon Nernst effect [219] have been
measured experimentally.

To compute the response of a weak perturbation in a quantum system,
the standard method is to use linear response theory [220]. In the following,
we use it to derive an expression for the matrix element Lxy11 , which we also
denote by σxy. We remark, however, that when considering the response
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due to a temperature gradient, a complication arises because the tempera-
ture gradient cannot strictly speaking be described by adding a term in the
Hamiltonian. Instead, as pointed out in Refs. [221, 222], it is a statistical
force. To account for this, the remaining matrix elements in the transverse
conductivity matrix can for instance be calculated using Luttinger’s pseudo-
gravitational field method [83, 223, 224].

Within the context of electronic systems, we used linear response theory
to derive the Kubo formula for the Hall conductivity, and by manipulating
this formula, it was possible to show that the conductivity was related to
the Berry curvature and the Chern number. Here, we establish a similar
link through an analogous procedure. We first discuss the identification of
the spin current in Sec. 6.1.1, before discussing the Kubo formula and the
relation to Berry curvatures and Chern numbers in Sec. 6.1.2.

6.1.1 Spin currents

We consider a ferromagnetically ordered magnetic system described by a
spin Hamiltonian H consisting of single spin terms and two-spin interactions.
Furthermore, we assume that spin along the ẑ-direction is conserved. This
is not always the case, but does hold for the spin Hamiltonian in Paper [1].

In the Heisenberg picture, the spin component Szi on lattice site i satisfies
the Heisenberg equation of motion1

dSzi
dt

−
i

~
[H,Szi ] = 0. (6.3)

Since we have assumed the Hamiltonian to conserve the quantity Sz = ∑i S
z
i ,

this equation of motion can be interpreted as a continuity equation2

Ṡzi +∑
δ

ji,i+δ = 0, (6.4)

where ji→i+δ is the spin current flowing from lattice site i to lattice site i+δ.
This allows us to identify expressions for the spin currents ji→i+δ in terms
of the spin operators, and to obtain an expression for the local spin current
density vector

ji =
1

Vuc
∑
δ

ji→i+δδ, (6.5)

1Assuming the spin Hamiltonian does not contain any explicit time dependence.
2If H does not conserve Sz , we would in in addition get source and drain terms in the

equation below.
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where Vuc is the unit cell volume.

Within linear spin wave theory, the magnon Hamiltonian takes the form

H =∑
q
∑
αβ

hαβ(q)a
†
qαaqβ , (6.6)

where α and β describe the sublattice degree of freedom. Yet again, we also
introduce the velocity matrix

vαβµ (q) =
1

~
(
∂hαβ

∂qµ
) . (6.7)

Expressing also the spin currents in terms of magnon operators to quadratic
order in linear spin wave theory, we show in Appendix A that the total spin
current j(q = 0) = (1/

√
N)∑i ji can be expressed as

jµ(q = 0) =
1

Vuc

√
N
∑
q
∑
αβ

(
∂hαβ

∂qµ
)a†

qαaqβ . (6.8)

Apart from the prefactor, this expression matches the expression for the elec-
tronic current. Eventually, it will allow us to express the Hall conductivity
in terms of the Berry curvature of the magnon bands.

6.1.2 Transverse conductivities

In the electronic case, we calculated the Hall conductivity by subjecting
the system to an oscillating electric field through an electromagnetic vector
potential. Since the vector potential couples directly to the electric current
in the Hamiltonian, this immediately allowed us to express conductivity as
a current-current response function.

In the present case, the link between the Kubo formula and the current-
current correlation function is less clear, as there is no obvious ways to repre-
sent a magnetic field gradient in terms of some effective vector potential. To
show that the conductivity can still be represented as a correlation between
two spin currents, we therefore choose an alternate approach invented by
Luttinger in the context of electronic systems [83, 224].

To calculate the Hall conductivity, we subject the system to a perturba-
tion

H ′
= −∑

i

hzi (t)S
z
i (6.9)
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with temporally and spatially dependent magnetic field hzi (t). Eventually,
we consider the magnetic field to be time independent, but keep the time
dependence for now.

Using linear response theory for the local spin current

jγ(l, t) =
1

Vuc
∑
δ

jl→l+δ(δ ⋅ γ̂) (6.10)

on lattice site l at time t and in direction γ̂, we obtain

⟨jγ(l, t)⟩ = −∑
j

1

~ ∫
∞

−∞
dt′χ(l, j; t − t′)hzj(t

′
) (6.11)

with response function [220]

χγ(l,m, t − t
′
) = iΘ(t − t′)⟨[jγ(l, t), S

z
m(t′)]⟩. (6.12)

Performing the temporal Fourier transform, cleverly writing

eiωt = (1/iω)(d/dt)eiωt (6.13)

and using partial integration, one may rewrite the correlation function in
terms of a time derivative of Szm. Furthermore, this time derivative can be
replaced by spin currents through the continuity equation. By carefully car-
rying out these steps and taking the limit q → 0, the transverse conductivity
can be extracted from the response function, and this gives

σxy =
Vuc

~ω ∫
∞

0
dt eiωt⟨[jx(q = 0, t), jy(−q = 0,0)]⟩. (6.14)

This is the Kubo formula for the magnon spin Hall effect, which is on exactly
the same form as in the electronic case.

In Appendix A, we show that this Kubo formula for bosonic modes can
be expressed as

σxy =
~
Vuc
∑
q
∑
αβ

nB(Eqα)[1 + nB(Eqβ)]F
αβ

(q) (6.15)

in terms of an antisymmetric curvature tensor

F
αβ

(q) = i~2
ṽαβx ṽβαy − ṽαβy ṽβαx

(Eqα −Eqβ)2
, (6.16)
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where ṽαβµ (q) are the velocity matrix elements in the eigenmagnon basis.
These are related to the velocity matrix elements vρσµ (q) in the the sublattice
basis through

ṽαβµ (q) = U †
αρ(q)v

ρσ
µ (q)Uσβ(q), (6.17)

where Uαβ(q) is the unitary matrix which diagonalizes h(k).
Compared with the electronic result in Eq. (3.15), we see that the Fermi

distribution factors in the Hall conductivity expression have been replaced
with Bose distribution factors according to the replacement

nF (Eqα)[1 − nF (Eqβ)]→ nB(Eqα)[1 + nB(Eqβ)]. (6.18)

In the following, we assume that the temperature is small. Then, the occu-
pation numbers of the states contributing to the Hall conductivity are small,
and we may neglect the term proportional to two Bose distributions. As also
shown in Appendix A, this allows us to identify the quantity ∑β≠αF

αβ(q)
with the Berry curvature Ωα(q) introduced in Eq. (3.20). The transverse
conductivity then becomes

σxy =
~
Vuc
∑
q
∑
α

nB(Eqα)Ω
α
(q), (6.19)

and is calculated as an average of the Berry curvature over the Brillouin
zone weighted with the bosonic thermal occupation numbers. Contrary to
a Fermi distribution with chemical potential inside a band gap, the Bose
distribution weights the states in a band differently. Therefore, we cannot
in general relate the Hall conductivity to the Chern number, and there is
no quantization of conductance. However, the Hall conductivity still does
provide information about the Berry curvature of the band structure, which
is again intimately connected with its topology.

6.2 A magnon Haldane model

In this section, we argue our way to a spin Hamiltonian with a topologically
non-trivial magnon band structure.

A band structure can be thought of as a mapping from the Brillouin zone
to the Hilbert space corresponding to a quasimomentum q. Since we need
this mapping to be topologically non-trivial, we need a two-band system.
In one dimension, a natural place to start would therefore be a dimerized
spin chain. In two-dimensions, a natural starting point is the honeycomb
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lattice, which has a triangular Bravais lattice and two atoms in the basis.
Considering this in the following, we may next ask whether it is possible
to construct a spin model giving rise to a magnon analog of the Haldane
model [51]. In the following, we reverse-engineer such a spin model [197, 225].

The Haldane model consists of three terms. First, it has a hopping term
between nearest neighbours on the lattice. Second, we have a staggered
potential term. Third, we have a next-to-nearest neighbour hopping term
associated with a phase on the links. Finally, we can also think of the
Haldane model as having a chemical potential which has been set to zero, so
that the term does not appear explicitly in the Hamiltonian. We now have
to come up spin interactions giving rise to these terms.

In Chapter 2, we have already seen that for the excitations on top of a
ferromagnet, an exchange interaction gives rise to hopping terms similar to
the electron nearest-neighbour hoppings in the Haldane model. Furthermore,
a potential energy term in the Hamiltonian can be obtained by coupling the
Hamiltonian to a magnetic field oriented along the ẑ-direction.

As a starting point, we may therefore write down a ferromagnetic Heisen-
berg Hamiltonian on the honeycomb lattice, which takes the form

H0
m = −J ∑

⟨i,j⟩
Si ⋅ Sj − B∑

i

Szi . (6.20)

Assuming magnetic order in the ẑ-direction and introducing the linearized
Holstein-Primakoff representation, we obtain the bosonic hopping Hamilto-
nian

H0
m = (3JS + B)∑

i

d†
idi − JS∑

⟨ij⟩
(d†
idj + h.c.). (6.21)

Thus, we already have almost all the terms we need, and the only remaining
term is the Haldane hopping. What does a spin interaction corresponding
to that term look like?

We know that the magnon creation and annihilation operators in linear
spin wave theory correspond to spin raising and lower operators, so a spin
interaction which gives rise to the Haldane hopping term can be written on
the form

HT
m = −

D

2
∑
⟪ij⟫

(eiνijφS−i S
+
j + e

−iνijφS−j S
+
i ), (6.22)

where −D is some constant and νij is the Haldane sign introduced in Chap-
ter 3. Rewritten in terms of Cartesian spin components, this gives
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HT
m = −D cosφ ∑

⟪ij⟫
Si ⋅Sj +D sinφ ∑

⟪ij⟫
νij ẑ ⋅Si ×Sj . (6.23)

Thus, the spin interaction which produces the Haldane hopping with phase
φ is a combination of an exchange interaction and a Dzyaloshinskii-Moriya
interaction on the next-to-nearest neighbour lattice sites.

For simplicity, we disregard the next-to-nearest neighbour exchange cou-
pling in the following, corresponding to φ = π/2. The full spin model analog
of the Haldane model is then

Hm = −J ∑
⟨i,j⟩

Si ⋅ Sj +D ∑
⟪i,j⟫

νij ẑ ⋅ Si × Sj − B∑
i

Szi . (6.24)

After introducing the Holstein-Primakoff transformation to linear order in
magnon operators, the real space magnon Hamiltonian therefore takes the
form

H0 = (3JS +B)∑
i

d†
idi −JS∑

⟨ij⟩
(d†
idj +h.c.)−DS ∑

⟪ij⟫
(iνijd

†
idj +h.c.). (6.25)

This is nothing else to the Haldane model in Eq. (3.31) for φ = π/2, where
the nearest neighbour exchange coupling J plays the role of the nearest
neighbour hopping, and the Dzyaloshinskii-Moriya interaction strength is
associated with the next-to-nearest neighbour Haldane hopping. The onsite
potential term proportional to (3JS + B) shifts the energy, but does not
affect the eigenstates of the system, and is therefore entirely insignificant in
the topological classification of the band structure.

In momentum space, the Hamiltonian can be written

H =∑
q

(a†
q b†q)(

A + hz(q) h−(q)
h+(q) A − hz(q)

)(
aq
bq

) , (6.26)

where aq and bq are the sublattice magnon operators, and we have introduced
quantities A = 3JS+B, hz(q) = 2DS∑β sin(q ⋅β), h−(q) = −JS∑α exp(−iq ⋅
α), and h+ = (h−)∗. Here, the sums over α and β are sums over the nearest
and next-to-nearest neighbour vectors of Fig. 3.2. The bulk spectrum is
shifted with with respect to the Haldane model spectrum in Fig. 3.3, but is
otherwise exactly the same.

Since the above spin model is in the topological regime, the spin model
also has topological edge modes which are exactly the same as in Chap-
ter 3, except, of course, for the fact that the edge states now represent spin
excitations consisting of spin flips on the edges instead of electrons.
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Above, we have shown that the spin Hamiltonian in Eq. (6.24) is topolog-
ically non-trivial within the magnon description in linear spin wave theory.
By instead using a Schwinger boson description [19], the spin excitation band
structure is still topological [32]. There, the spins are represented by two
boson species, and the spin model instead turns into a bosonic version of the
Kane-Mele model [226, 227].

6.3 Topological magnons coupled to phonons

The topological classification of band structures is simple when the system
is non-interacting. Turning on interactions, however, the system can in gen-
eral no longer be diagonalized in terms of well defined bands. Instead, we
typically calculate Green’s functions and spectral functions, and the quasi-
particles which can be identified within this description in general have finite
lifetimes. It is therefore not obvious how the concept of band structure topol-
ogy can be applied.

Of course, however, real life systems typically do have interactions, and
interacting topological systems is an active research topic within electronic
systems. The most natural question to ask may be whether topological insu-
lators are still topological when turning on interaction [228, 229]. However,
interactions may also be the cause of topologically non-trivial phases, such
as for instance in topological Mott insulators [64] and topological Kondo
insulators [6].

Recently, there has also been significant interest in magnetic systems
with interacting magnons. In the standard method to obtain magnon band
structures, one performs a Taylor expansion in magnon operators to obtain
a quadratic Hamiltonian. Thus, third and higher order terms are neglected.
These represent magnon interactions, which may affect topological stability
or induce topologically non-trivial phases [230–232].

Magnons may however also interact with other degrees of freedom such as
phonons [233–237], and in Paper [1], we study this for the magnon Haldane
model above. In the following, we discuss the approach and the main results
in that paper.

6.3.1 Model and diagonalization

We consider a system of ferromagnetically ordered localized spins on a hon-
eycomb lattice described by the magnon Haldane model. Furthermore, the
lattice sites on which the spins reside are allowed to vibrate out-of-plane.
We therefore consider a model Hamiltonian on the form
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H =Hm +Hph +Hme, (6.27)

consisting of three terms. First, Hm is given by Eq. (6.24). Second, we
assume the out-of-plane vibrations to described by the nearest neighbour
force constant model

H =∑
i

(P zi )
2

2m
+

1

2
∑
⟨i,j⟩

C(uzi − u
z
j)

2, (6.28)

which can be rewritten on the same form as the models considered in Chap-
ter 4. Since we consider only nearest neighbour interaction, we only have a
single force constant C.

Finally, we assume the topological magnons to be coupled to phonons
through the magnetoelastic coupling term [1, 236, 237]

Hme = κ∑
D

∑
i∈D
∑
αααD

Si ⋅αααD (uzi − u
z
i+αααD), (6.29)

as also discussed in Sec. 4.3. Here, D ∈ {A,B} labels the sublattices, αA
are the nearest neighbour vectors from the A to the B sublattices shown in
Fig. 3.2, while αB are the nearest neighbour vectors from the B to the A
sublattice.

We now introduce linear spin-wave theory and the phonon representa-
tion for the lattice site deviations uzi . Since the spin components Sxi and
Syi are constructed from spin raising and lowering operators, both magnon
creation and annihilation operators are coupled to the lattice site devia-
tions. Furthermore, since lattice site deviations can be expressed in terms
of phonon creation and annihilation operators, the magnetoelastic coupling
Hamiltonian in general takes the form

Hme =∑
q

µ†
qNqπq, (6.30)

where we have introduced magnon and phonon spinors

µq = (aq bq a†
−q b†−q)

T
(6.31)

πq = (cq,− cq,+ c†−q,− c†−q+)
T
, (6.32)

where cq± are the phonon annihilation operators for the upper and lower
phonon branches labelled by ±. The matrix Nq can be written
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Nq =

⎛
⎜
⎜
⎜
⎝

gA− gA+ fA− fA+
gB− gB+ fB− fB+
f∗A− f∗A+ g∗A− g∗A−
f∗B− f∗B+ g∗B− g∗B−

⎞
⎟
⎟
⎟
⎠

(6.33)

with coupling matrix elements gD± describing boson conserving interactions
between the sublattice D magnons and the phonon mode ±, while the corre-
sponding fD± describe a magnon-phonon coupling which does not conserve
the boson number.

In the following, we employ the so-called rotating wave approximation,
and neglect the terms in the Hamiltonian which do not conserve boson num-
bers. We expect this to be a good approximation when the coupling strength
is small compared to the typical phonon and magnon energies. The Hamil-
tonian then becomes

H =∑
q

ψ†
qMqψq, (6.34)

where we now have introduced the spinor

ψq = (aq bq cq− cq+)
T
, (6.35)

and the matrix Mq is given by

Mq =

⎛
⎜
⎜
⎜
⎝

A + hz h− gA− gA+
h+ A − hz gB− gB+
g∗A− g∗B− ωph

q− 0

g∗A+ g∗B+ 0 ωph
q+

⎞
⎟
⎟
⎟
⎠

. (6.36)

The Hamiltonian can be diagonalized by introducing a new spinor of bosonic

excitations through ψq = Uqφq, where φq = (dq1 dq2 dq3 dq4)
T

.
The resulting bulk spectrum is shown in Fig. 6.1. As we assume the

magnetoelastic coupling to be small, the magnon-phonon coupling has a
significant effect only close to the avoided mode crossings. Consistent with
what we expect from the simple analysis for the two-level system in Sec. 4.3,
the character of the modes becomes of hybrid nature close to the avoided
crossings, whose direct gaps are determined by the coupling strength.

6.3.2 Hall conductivity

To compute the Hall conductivity in the model, we use the spin current
defined according to the prescription in Sec. 6.1.1, and write



6.3. TOPOLOGICAL MAGNONS COUPLED TO PHONONS 105

K M
0

2

4

6

E/
JS

1
2

3

4

Ph

M 

Figure 6.1: Energy spectrum for the system of phonons and topological
magnons with magnetoelastic coupling. The mode character is indicated
with color, where modes with dominant magnon (phonon) content is shown
in yellow (purple).

jγ =∑
q

(a†
q b†q)(

∂hm(q)

∂qγ
)(
aq
bq

) , (6.37)

where hm(q) is the pure magnon Hamiltonian. Through the diagonalization
procedure, we get eigenoperators dqi with i ∈ {1,2,3,4}, which are in general
superpositions of both phonons and magnons. In terms of these eigenbosons,
we may therefore write the current operator as

jµ =∑
q
∑
αβ

jαβµ (q)d†
qαdqβ , (6.38)

where the labels α and β are now ranging over all the four bands in the spec-
trum. The matrix elements can be extracted based on the matrix Uq used
to diagonalize the Hamiltonian, which can be used to replace the original
operators aq and bq in the definition of the current with the eigenbosons.

As discussed in Sec. 6.1.2, this representation for the spin current allows
us to write the magnon spin Hall conductivity as

σxy =
~
Vuc
∑
α

nB(Eqα)F
α
(q) (6.39)
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Figure 6.2: (a-d) Band curvature Fα for the four bands in the absence
of magnon-phonon coupling. The bands are labelled according to energy.
(e-h) Curvature transfer ∆Fα(q;κ) = Fα(q;κ) − Fα(q; 0) in the presence
of magnetoelastic coupling. Close to the avoided crossings, curvature is
transferred between the bands.

with a band curvature Fα(q) = ∑β≠αF
αβ(q) and curvature tensor

F
αβ

(q) = i
jαβx (q)jβαy (q) − jαβy (q)jβαx (q)

(Eqα −Eqβ)2
. (6.40)

We remark that while the band curvature Fα(q) could be related to the
Berry curvature of the bands in the absence of magnon-phonon coupling,
this is not the case here, as the spin current is defined as a derivative of the
magnon Hamiltonian and not the full Hamiltonian. The situation would be
different if we instead considered heat transport, where both phonons and
magnons may contribute.

The band curvature Fα(q) is plotted in Figs. 6.2 (a-d) in the absence
of electron-magnon coupling. In that case, only magnon bands carry a non-
zero Berry curvature, and since we label the energy bands according to
their energy at any given point q in the Brillouin zone, there are abrupt
changes in the Berry curvature where the phonon and magnon frequencies
cross. Turning on magnetoelastic coupling, we instead get band curvature
Fα(q;κ), and in Figs. 6.2(e-g), we plot the quantity ∆Fα(q;κ) = Fα(q;κ)−
Fα(q; 0). Comparing with the location of the avoided band crossings shown
in Fig. 6.1, we see that curvature is transferred between the bands by the
magnon-phonon coupling.

Since the magnon spin Hall conductivity is determined as a weighted av-
erage of the band curvature over the Brillouin zone, this curvature transfer
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Figure 6.3: (a) Magnon spin Hall conductivity as function of magnon-
phonon coupling strength normalized to the value at zero coupling. (b) Hall
conductivity as function of temperature.

also affects the magnon spin Hall conductivity. This is shown in Fig. 6.3 (a),
which shows the transverse conductivity as function of coupling strength κ
normalized to the value at zero magnon-phonon coupling. The curvature
transfer can make significant contributions to the transverse Hall conductiv-
ity, especially at small temperatures. The transverse conductivity as function
of temperature is shown in Fig. 6.3 (b).

6.3.3 Edge modes and transport

The second key property of topologically non-trivial systems is the presence
of topologically protected edge modes. As the model for the topological
magnons is simply the Haldane model, we know that it hosts chiral edge
modes. One may now ask how these are affected by magnetoelastic coupling.

As we have seen, the topological edge magnon modes are conveniently
studied on a ribbon geometry. This time, we do so on a ribbon geometry
with a so-called armchair edge, as shown in the upper left of Fig. 6.5. The
resulting magnon spectrum is shown in Fig. 6.4 (a). As expected, the magnon
spectrum contains localized chiral magnon modes within the bulk gap. In
contrast, the phonon spectrum is not gapped. However, the armchair edge
ribbon still has localized edge modes outside the bulk spectrum. As discussed
in Paper [1], these modes have a localization length inversely proportional
to the momentum qx along the edge of the sample.

When the momenta and energies of these edge modes match, we expect
the chiral edge magnon modes to hybridize with the edge phonons to produce
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Figure 6.4: Energy spectra for magnon (a) and phonon (b) models on an
armchair edge ribbon geometry with 30 layers.

new magnon-polaron excitations. To demonstrate this, we show the energy
spectra for the coupled magnon and phonon modes on a ribbon geometry
in Fig. 6.5. The edge magnons and phonons hybridize within the region
indicated with a red circle. A schematic spectrum for the modes on one
edge of the ribbon is shown in Fig. 6.6 (a).

In Paper [1], we propose that this hybridization imprints on the elastic
properties of the system, and that the chiral nature of the magnon mode
may therefore cause chirality also in the elastic edge transport, as illustrated
in Fig. 6.6 (b). This may provide evidence for the presence of topological
edge magnon modes in the system.

6.4 Further developments

As we have seen, Berry curvatures can be transferred between bands at
avoided crossings [1, 233]. Furthermore, this curvature transfer is not de-
pendent on the existence of a large Berry curvature to begin with3. Thus,
magnetoelastic coupling induces Berry curvature. Building on these ideas,
it has been shown that the magnetoelastic coupling itself may induce topo-
logically non-trivial hybridized magnon and phonon bands [234–236, 238].
Furthermore, these studies show that the magnetoelastically induced contri-
butions to the thermal Hall conductivity may dominate. Similar considera-
tions apply also to the magnon Nernst effect [238]. These findings suggest
that thermal, Nernst and spin Hall conductivity measurements may provide
a somewhat surprising signature of magnetoelastic coupling.

3This can be seen by comparing Fig. 6.2 (e) with Fig. 6.2 (a).
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Figure 6.5: Excitations spectrum for coupled magnon and phonon modes on
an armchair ribbon. The inset shows that topological edge magnon modes
may hybridize with edge phonons.
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Figure 6.6: (a) Schematic spectrum on one armchair edge of the sample.
(b) Elastic excitation of modes is suggested to produce chiral phonon trans-
port since the mode at −kx may hybridize with the chiral magnon mode, in
contrast with the phonon mode at +kx. The chirality at a given excitation
frequency can be tuned through a peak with the magnetic field, as the chi-
ral transport requires hybridization and the magnetic field controls magnon
energies.
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Magnon-phonon coupling in magnetic systems can be detected experi-
mentally in magnetic systems through measurement of the emergent direct
gap at an avoided crossing [239, 240]. Furthermore, magnon-phonon coupling
also has signatures through magnon energy renormalization, spontaneous
magnon decay, and thermal conductivities [241]. Very recently, evidence for
magnon-phonon coupling has been obtained in an antiferromagnet believed
to host topological magnons [241]. This gives hope that magnon-phonon
coupling effects can be studied experimentally also in topological magnetic
systems.



Chapter 7

Graphene
superconductivity

The most impressive property of graphene is arguably its stability in mono-
layer form. A multitude of materials with weakly coupled two-dimensional
layers stacked on top of each other exist, and typical examples are the al-
ready mentioned high-Tc cuprates, graphite, and various other van der Waals
materials. Yet, isolated sheets of single atom thickness are hard to synthe-
size, as they tend to reorganize in other configurations. In fact, due to a
famous theorem by Peierls and Landau [242–244], strictly two-dimensional
materials were believed to be thermodynamically unstable.

The discovery of graphene in 2004 therefore came as a surprise [245, 246],
and the new material was quickly propelled to the forefront of condensed
matter research. In particular, graphene has been celebrated for its ability
to mimic relativistic physics in a condensed matter setting, and astonishingly
even in a material theoretical physicists are able to produce routinely with
their pencils [247].

By now, graphene has established itself as the most prominent two-
dimensional material, and provides an excellent platform to study the physics
in two spatial dimensions. Discussions of a varied number effects are given
in numerous treatises on the subject, for instance Refs. [247–250].

One phenomenon, however, is notably absent in monolayer graphene,
namely superconductivity. The reason is simple: The electron spectrum
of graphene close to half filling consists of two Dirac cones. Exactly at
half-filling, the Fermi surface therefore consists of two single points. As we
have seen, superconductivity occurs due to a Fermi surface instability, and

111
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without a Fermi surface, there cannot be superconductivity. Upon dop-
ing graphene, however, a finite Fermi surface appears. Yet, for small dop-
ings, the density of states is still small, and this limits the dimensionless
electron-phonon coupling strength. Recent experimental progress has, how-
ever, showed that large doping even beyond the van Hove singularity in
graphene is possible [251], and approaching this regime, the density of states
is significant. Thus, one may hypothesize that superconductivity in mono-
layer graphene may be possible after all.

In Paper [2], we discuss the possibility of phonon-mediated superconduc-
tivity in graphene using detailed tight binding and force constant models to
describe the electronic and phononic properties of graphene. In this chap-
ter, we discuss the various physics and models underlying these calculations,
and briefly describe the main results. We start by a brief review of the elec-
tronic properties of graphene in Sec. 7.1, and move on to discuss the phonon
spectrum and electron-phonon coupling in Sec. 7.2. Finally, we introduce
superconductivity in graphene in Sec. 7.3, and move on to describe some of
our main results.

7.1 Electronic properties of graphene

Graphene is a two-dimensional material constructed out of carbon atoms
forming a honeycomb lattice. Carbon has atomic number 6, so that 6 elec-
trons per atom have to be distributed into the bands. Since the honeycomb
lattice can be thought of as a triangular Bravais lattice with two atoms in the
basis, we will be counting the number of states per unit cell in the Bravais
lattice. First, a total of 4 electrons can be placed in the 1s state of the two
atoms, corresponding to the two possible spin orientations. The remaining 8
electrons have to be distributed into the orbitals 2s,2px,2py, and 2pz. Since
these have similar single atom energies, they may hybridize into 8 bands, out
of which 4 should be populated by electrons with spin up and spin down. As
it happens, the three orbitals 2s, 2px and 2py may hybridize to form covalent
bonds with its neighbours in the plane in the so-called σ-bands. Since there
are three electrons contributing to this bonding, graphene forms its char-
acteristic honeycomb lattice. The 2pz orbital, however, does not hybridize
with these orbitals, as it is anti-symmetric with respect to the symmetry
operation z → −z. We therefore get two bands constructed exclusively out of
the 2pz orbital, and we refer to these as the π-bands. Since the 2pz-orbital
cannot hybridize with the remaining bands, the energy of the lowest π-band
is typically larger than the energy of the lowest σ-bands.
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Figure 7.1: Graphene band structure along high symmetry path calculated
using a tight binding model, where σ-bands are shown in green and π-bands
in blue, and the Fermi surface is indicated in magenta. Close to the Fermi
surface (shaded blue), only the π-band is present.

To calculate the band structure of the π- and σ-bands we may use a
tight binding model as described in Ref. [252], and the result is shown in
Fig. 7.1. As indicated by the shaded blue region in the figure, only the
π-band is present close to half filling. Since the electronic properties of
graphene are dominated by the physics close to the Fermi surface, we may
therefore disregard the σ-bands for typical dopings.

To describe the electronic properties of the π-band in graphene, we may
write down the single band hopping model

H = −t ∑
⟨ij⟩,σ

c†iσcjσ − µ∑
i,σ

c†iσciσ + u∑
i

ni↑ni↓, (7.1)

where c†iσ and ciσ are creation and annihilation operators for an electron

with spin σ on lattice site i on the honeycomb lattice, and niσ = c†iσciσ the
corresponding density operator. Here, t is the nearest neighbour hopping
amplitude, and µ is the chemical potential, while u is the onsite repulsion
strength.

In Paper [2], we set the onsite repulsion to a finite value and consider
the competition between an attractive phonon-mediated electron-electron
interaction and this repulsive contribution. In the following discussion, how-
ever, we set u = 0. Then, the graphene tight binding model for the π-band
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Figure 7.2: (a) Electronic band structure and density of states D for the
π-band of graphene. (b) Fermi surface in the first Brillouin zone for values
of the chemical potential indicated with horizontal colored lines in (a).

coincides with the Haldane model in the absence of sublattice asymmetry
and the next-to-nearest neighbour hopping associated with a phase, and in
Sec. 3.2, we discussed how it can be diagonalized.

The resulting electron band structure for graphene is shown in Fig. 7.2 (a)
along the usual high-symmetry path. Close to half-filling, the bands have
the shape of two touching Dirac cones, so that at half filling, the Fermi
surface consists of two points at ±K. The Fermi surface is shown for three
different values of the chemical potential in Fig. 7.2 (b). For small dopings,
the Fermi surface consists of two surfaces growing out from the points ±K,
while at µ = ±t, the Fermi surface topology changes, and the Fermi surface
is instead centered around the Γ-point. The density of states is shown in
the right subfigure of (a), and is linear around half-filling, as expected for
a band on the form εk = v∣k∣ in two dimensions. When the Fermi surface
topology changes, the density of states has a van Hove singularity, which is
a logarithmic divergence in the density of states occurring from the saddle
point structure of the spectrum for µ = ±t at the points in Fig. 7.2 (b) marked
in green1.

7.2 Phonons and electron-phonon coupling

As mentioned in the introduction, graphene was, before its discovery, thought
to be thermodynamically unstable in its monolayer form [242–244, 250, 253].
Since phonons are fluctuations of lattice ions around their equilibrium lat-
tice site positions, the excitations responsible for this instability have to be

1That a saddle point in the energy spectrum gives rise to a logarithmic divergence in
the density of states can be shown by calculating the integral ∫ dkxdkyδ(E − k

2
x + k

2
y).
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phonons. An analysis based on theory of elasticity reveals that even without
quantum fluctuations, 2D materials are unstable with respect to out-of-plane
fluctuations within the harmonic approximation. An analysis beyond sec-
ond order is therefore necessary to study its thermodynamic stability, and
reveals that at higher order, coupling between the in-plane and out-of-plane
modes in fact renders graphene stable [250].

The above considerations are concerned with the long-wavelength proper-
ties of graphene. Phonon-mediated superconductivity, however, is not espe-
cially sensitive to the long-wavelength phonons due to the suppression of the
electron-phonon coupling matrix element in the long-wavelength limit. An
analysis based on the harmonic approximation is therefore sufficient for our
purposes. In this section, we will therefore be discussing the phonon spec-
tra in graphene in Sec. 7.2.1, before turning to electron-phonon coupling in
Sec. 7.2.2.

7.2.1 Phonon spectrum

Already prior to the discovery of graphene, the phonon spectrum of graphite,
which we may think of as weakly coupled layers of graphene, had been
mapped out in great detail. The primary techniques which allows the de-
tailed study of the full momentum dependence of these spectra are in-
elastic neutron scattering [254–257] and electron energy loss spectroscopy
(EELS) [258, 259].

Measuring the phonon spectra of graphene is a far more challenging
task, since a single atomic layer of graphene cannot usually scatter neu-
trons sufficiently strong to make inelastic neutron scattering an efficient tech-
nique [250]. To extract information about the phonon spectra of graphene,
the primary technique has therefore been Raman spectroscopy [260]. This
technique, however, only allows access to the phonon energies at a few special
points in the Brillouin zone, and not a complete mapping of the momentum
dependence. However, recent experimental developments give hopes that
the full momentum characterization of the phonon spectra in graphene are
also within reach [261].

Theoretically, the calculation of phonon spectra is typically based on
force constant model descriptions of the lattice vibrations, as described in
Sec. 4.1. While the diagonalization itself is straightforward, the challenge
is to obtain reasonable values for the force constants. One strategy is to
adopt a model with a finite number of force constants corresponding to
the interactions between some set of the nearest neighbour atoms on the
lattice, and fit these force constants to experimental values for the phonon
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Figure 7.3: Graphene phonon spectrum along high-symmetry path in the
Brillouin zone. Out-of-plane modes in green and out-of-plane modes in blue.
The modes are labelled as acoustic (A) or optical (O), and transverse (T),
longitudinal (L), or out-of-plane (Z) according to their small-q behaviour.

frequencies on special points in the Brillouin zone, as obtained for instance
through Raman spectroscopy methods [77, 262]. Alternately, one may try
to estimate the force constants from some more fundamental model. This
can for instance be done either through ab-initio calculations [263–265], or
through the empirical interatomic potential (EIP) method [266–268].

In Paper [2], we use the former approach. First, however, a somewhat
extensive symmetry analysis is necessary to arrive at the set of independent
force constants describing the model. This symmetry analysis is based on
Refs. [77, 262], and outlined in Paper [2]. Here, we simply point out that the
in-plane and out-of-plane modes are decoupled to quadratic order in lattice
site deviations due to mirror symmetry with respect to the transformation
z → −z. Since we have two atoms in the basis for graphene, we therefore have
two out-of-plane modes. Furthermore, since there are two Cartesian in-plane
directions and two atoms in the basis, we have four in-plane modes. The
graphene phonon spectrum is shown in Fig. 7.3, as calculated in Paper [2]
using appropriate force constants [77].

7.2.2 Electron-phonon coupling

To study phonon-mediated superconductivity in graphene, we also need a
model describing the coupling between electrons and phonons.

Experimentally, the electron-phonon coupling in graphene can be mea-
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sured from kinks and linewidths in angular resolved photo-emission spec-
tra [269–271]. Electron-phonon coupling in graphene can be understood
and analyzed within a tight binding approach [269, 272–277], and has also
been analyzed from a symmetry point of view [278], and calculated us-
ing ab-initio techniques based on density functional theory and the GW -
approximation [269, 279, 280].

To model the electron-phonon coupling in graphene, we use a tight bind-
ing model approach as discussed in Chapter 4, with the proper generalization
to systems with two atoms in the basis. Including the contributions from
nearest-neighbour hoppings, we obtain real space electron-phonon coupling
Hamiltonian

Hel−ph = ∑
i∈A,δA

t0nnγnn

d
(δA/d) ⋅ (u

B
i+δA −u

A
i )(c

†
i+δA,BciA + c

†
iAci+δA,B). (7.2)

This gives rise to the standard electron-phonon coupling

Hel−ph =∑
k,q

∑
ηη′
∑
ν,σ

gηη
′,ν

k,k+q(aqν + a
†
−q,ν)c

†
η′σ(k + q)cησ(k), (7.3)

where an explicit expression for the coupling matrix element is given in Pa-
per [2]. The matrix element is expressed in terms of the phonon energies,
as well as the unitary matrices required to diagonalize the electron Hamil-
tonian on the form in Eq. (3.33) and the phonon Hamiltonian on the form
in Eq. (4.8). Since the system is symmetric with respect to z → −z, the
electron-phonon coupling matrix element for scattering within the π-band
due to out-of-plane modes is zero2. Thus, we may consider only on the
in-plane modes.

The state-dependent dimensionless electron-phonon coupling strength is
given by

λkη =∑
qν
∑
η′

2

~ωqν
∣gηη

′,ν
k,k+q ∣

2δ(εk+q,η′ − εkη). (7.4)

Averaging over the Fermi surface as discussed in Chapter 4, one obtains the
energy dependent electron-phonon coupling strength

2Within the tight binding model for the electron-phonon coupling model, this is easily
seen from Eq. (7.2), as the vectors δA are always in-plane, and therefore only couple to the
in-plane deviations. More generally, the in-plane phonons couple to intraband transitions
π → π and σ → σ, while the out-of-plane phonons couple to the interband transitions
π → σ and σ → π, but not the intraband transitions.
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Figure 7.4: (a) Fermi surface averaged electron phonon coupling strength λ
as function of doping µ. (b) Density of states D. (c) Effective Fermi surface
averaged potential λ/D.

λ(ε) =
1

N(ε)
∑
kqν

∑
ηη′

2

~ωqν
∣gηη

′,ν
k,k+q ∣

2δ(εk+q,η′ − ε)δ(εkη − ε), (7.5)

where N(ε) is the electronic density of states at single particle energy ε.

As we expect the states close to the Fermi surface to dominate the
physics, we may neglect the bands which are far away from the Fermi sur-
face in doped graphene. Thus, we may focus on a single band in the above
electron-phonon coupling Hamiltonian, and only consider the contribution
from η = η′.

In Fig. 7.4, we show the dimensionless electron-phonon coupling λ(ε)
as function of single particle energy ε together with the intensive electronic
density of states D(ε) = N(ε)/Nuc, where Nuc is the number of unit cells.
The two profiles are qualitatively similar, and this emphasizes the important
role played by the electronic density of states.

7.3 Superconductivity in graphene

Superconductivity is well known in a few graphene-like materials. Most
notably, superconductivity was discovered in the C60 molecule buckminster-
fullerene intercalated with potassium in 1991 with a critical temperature
of 18 K [281]. Superconductivity has also been discovered in intercalated
graphite compounds. Whereas the first examples of superconductivity in
these systems were obtained at critical temperatures between 0.15 K and 1.8
K [282–284], graphite intercalation compounds were discovered in 2005 with
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critical temperatures of 6.5 and 11.5 K [285]. Furthermore, superconductiv-
ity has also recently been observed in intercalated bilayer graphene [286, 287],
and it is believed that interlayer states are important for the superconduc-
tivity in many of these systems [288, 289]. Superconductivity in monolayer
graphene has, however, remained elusive, although some evidence for super-
conductivity in monolayer graphene was reported in Ref. [290].

Close to the van-Hove singularity, it has been suggested that repulsive
electron-electron interactions may give rise to d-wave superconductivity. On
the other hand, phonon-mediated superconductivity in intercalated mono-
layer graphene was studied in Ref. [291] using Eliashberg theory and assum-
ing an isotropic gap, while Ref. [292] uses an ab-initio approach. In Pa-
per [2], we use BCS theory based on an electron tight binding and phonon
force constant models to study phonon-mediated superconductivity in doped
monolayer graphene. We discuss this in the following.

Following the Fröhlich procedure as discussed in Sec. 5.1.4, we obtain
effective pair scattering potential

V ph
kk′ =∑

ν

∣gηη;ν
kk′ ∣2

(ξk − ξk′)2 − (ωνk−k′)
2

(7.6)

for singlet pairing. Retaining only pair scattering terms also in the Coulomb
repulsion, we obtain the reduced BCS Hamiltonian

H =∑
kη

ξkηc
†
ησ(k)cησ(k) +∑

kk′
Vkk′c

†
η↑(k

′
)c†η↓(−k

′
)cη↓(−k)cη↑(k), (7.7)

where the effective potential can be written Vkk′ = V el−ph
kk′ + V Ckk′ . Here,

interband scattering processes have been neglected since only one of the
bands is close to the Fermi surface in the doping regime down to the van
Hove singularity. Assuming singlet pairing, we may use mean field theory as
described in Chapter 5 to derive the BCS gap equation

∆k = −∑
k′
Vkk′ (

tanhβEk′/2

2Ek′
)∆k′ , (7.8)

with excitation energy Ek =
√
ξ2
k + ∣∆k∣

2.
As discussed in Sec. 5.1.7, solving this gap equation with the general

potential Vkk′ is a challenging task. However, the numerical complexity
can be simplified massively by instead solving the Fermi surface averaged
equations, as this effectively reduces the dimensionality of the problem. In
Fig. 7.5 (a), we show the results for the largest gap equation eigenvalue λeff
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Figure 7.5: Solutions to the Fermi surface averaged gap equation. (a)
The largest eigenvalue λeff , serving as effective electron-phonon coupling
strength. The inset shows the shape of the Fermi surface at a given doping.
(b) Gap structure on the Fermi surface for dopings as indicated in (a).

within this approach. The corresponding critical temperature can be cal-
culated through the BCS formula Tc ≈ 1.14ωD exp [−1/(λ − µ∗C)], where the
Coulomb pseudopotential µ∗C has to be chosen appropriately. Furthermore,
the gap structures on the Fermi surface are shown in Fig. 7.5 (b) for dop-
ings as indicated in (a). As the doping increases, an anisotropy in the gap
develops.

In Paper [2], we instead solve the gap equation while keeping the full
momentum dependence of the potential, obtaining solutions as shown in
Fig. 7.6. There, (a) shows the critical temperature as function of doping,
while (b) shows the critical temperature as function of onsite repulsion u0 in
pristine graphene3. Dots indicate critical temperatures obtained by solving
the gap equation, and these solutions have been fitted to a Morel-Anderson
functional form agreeing excellently with the obtained results. A sample
gap structure just below the critical temperature is shown in (c), where the
gap structure perpendicular to (orange) and along (green) the Fermi surface
is shown in the insets. The results were obtained with a finite value for
the onsite repulsion, and consistent with what we expect from the Morel-
Anderson model, the gap changes sign a distance away from the Fermi surface
corresponding to the phonon Debye energy. Then, the gap decays to a
finite value. The calculation also confirms the existence of the Fermi surface
gap anisotropy obtained by solving the Fermi surface averaged equations.
Although the anisotropy is small, it can in principle be measured using for
instance angular resolved photo-emission spectroscopy (ARPES).

3We refer to Paper [2] for the precise definition of the quantity u0.
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From the above results, it is clear that phonon-mediated superconductiv-
ity in doped graphene is a viable option. However, since the critical temper-
ature is very sensitive to an already relatively small effective dimensionless
electron-phonon coupling, the critical temperature is on the verge of becom-
ing so small that we cannot expect to observe the superconductivity. It is
also clear that Coulomb interaction plays an important role in suppressing
critical temperatures due to the relatively modest electron-phonon coupling
strength. Furthermore, intercalation is required to reach the necessesary
doping regime. The intercalant atoms may change the properties of the
system, and incorporating this in the analysis could be important.
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Figure 7.6: Solution to gap equation with full momentum dependence. (a)
Critical temperature as function of doping. (b) Critical temperature (dots)
as function of onsite repulsion, where lines are fits to the Morel-Anderson
model. (c) Gap equation structure within triangular part of the Brillouin
zone as shown in inset. Gap structure perpendicular to (orange) and along
(green) the Fermi surface.



Chapter 8

Magnon-mediated
superconductivity

For phonon-mediated superconductivity, electrons interact with a lattice,
which can mediate an effective electron-electron interaction. Similarly, the
spin fluctuations in a magnetic insulator coupled to a normal metal can
mediate an effective interaction between two electrons in the normal metal.
In principle, this may give rise to superconductivity.

Previously, magnon mediated superconductivity in heterostructures of
metallic systems coupled to magnetic insulators has been studied within a
few different settings. A normal metal coupled to ferromagnets with oppo-
sitely aligned magnetic moments was studied in Ref. [293], finding p-wave
superconductivity. By instead coupling to an antiferromagnet, d-wave super-
conductivity was obtained for small doping in Ref. [294], using a somewhat
artificial model for the electron band structure. In contrast, the large doping
regime of a similar model was studied in Ref. [141]. There, p-wave supercon-
ductivity was obtained for large doping by coupling asymmetrically to the
two sublattices of an antiferromagnet. Spin fluctuation mediated supercon-
ductivity in similar systems has also been studied within a Schwinger boson
approach [295], and on the surface of topological insulators [296–298].

In Paper [4], we bring together several of these ideas. Utilizing insights
from Paper [3], we study the possible superconducting phases that may occur
in a normal metal coupled to antiferromagnetic insulators. We study both
the small and large doping regimes, and allow for asymmetry in the coupling
to the two sublattices. This allows a comprehensive qualitative understand-
ing of the various processes, mechanisms, and superconducting phases in

123
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the system. While the previously mentioned studies rely on BCS theory, we
analyze the system with Eliashberg theory, thus properly accounting for the
retarded nature of the effective interaction. As we will discuss, this turns
out to be crucial.

In Sec. 8.1, we discuss Paper [3] and the interpretation of antiferromag-
netic magnons as squeezed bosonic states. In the remainder of the chapter,
we consider magnon-mediated superconductivity as discussed in Paper [4].
In Sec. 8.1, we introduce the model used in the paper, and in Sec. 8.3, we
construct an Eliashberg theory for magnon-mediated superconductivity. In
Sec. 8.4, we discuss some of the main results. Finally, in Sec. 8.3, we com-
ment on some of the underlying assumptions, and some further aspects of
the results.

8.1 Squeezed antiferromagnetic magnons

In Sec. 2.3, we discussed the eigenexcitations of the quantum antiferromagnet
in a Heisenberg model with an easy axis anisotropy using linear spin wave
theory. There, we showed that the ground state was in general not the Néel
state, but rather a superposition of states with multiple pairs of spin flips
on top of the Néel state. In fact, as we discuss in further detail below,
this allows the ground state of the antiferromagnet to be interpreted as a
squeezed state.

8.1.1 Squeezed states

One of the most fundamental properties of quantum mechanics is the un-
certain nature of quantum observables. If we consider two non-commuting
observables X and Y with commutation relation

[X,Y ] = iC, (8.1)

the two observables satisfy the Heisenberg uncertainty relation [299]

⟨(δX)
2
⟩⟨(δY )

2
⟩ ≥

1

4
∣⟨C⟩∣

2, (8.2)

where δX = X − ⟨X⟩ and δY = Y − ⟨Y ⟩. Depending on the operator C, this
places a fundamental lower bound on the the product of the variances of the
quantum variables X and Y in a given quantum state. If we now change the
quantum state so that the fluctuations in one of the operators are reduced
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at the expense of enhancing the fluctuations in the other, we may think of
this as squeezing the state.

Considering two bosonic modes with annihilation operators a and b, one
may construct a so-called two-mode squeezed state [300, 301]

∣ψsq⟩ = exp (ξab − ξ∗a†b†) ∣0,0⟩ ≡ S∣0,0⟩, (8.3)

where ξ = reiθ is some complex number, ∣0,0⟩ is the vacuum state for the
two bosonic modes, and we refer to S as the squeezing operator. To show
that this can indeed be thought of as a squeezed state, we introduce the
quantities X and Y given by

X =
1

2
(a + a†

+ b + b†) (8.4a)

Y =
1

2
(a − a†

+ b − b†) , (8.4b)

which satisfy the commutation relation [X,Y ] = i. Thus, the product of
their fluctuations is fundamentally limited by the Heisenberg uncertainty
relation. By explicit calculation, one may show that for θ = 0, the operator
variances are given by

⟨ψsq∣(δX)
2
∣ψsq⟩ =

1

2
e−2r (8.5)

⟨ψsq∣(δY )
2
∣ψsq⟩ =

1

2
e+2r (8.6)

The two-mode squeezed state is therefore a state where the product of the
two uncertainties is at its fundamental limit, and r = ∣ξ∣ determines their
relative size.

Let us now see how this relates to the quantum antiferromagnet. In
Sec. 2.3, we introduced the Bogoliubov transformation by introducing new
operators

αk = ukak − vkb
†
−k (8.7)

β†
−k = ukb

†
−k − vkak, (8.8)

where uk and vk can be expressed as uk = cosh θk and vk = sinh θk. Alter-
nately, we may think of the Bogoliubov transformation as being generated
by the unitary operator Sk through
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(
αk
β†
−k

) = Sk (
ak
b†−k

)S†
k, (8.9)

where Sk is given by

Sk = exp [−θk(akb−k − a
†
kb

†
−k)] . (8.10)

The equivalence with the usual form of the Bogoliubov transformation in
Eq. (8.8) can be shown using the Baker-Hausdorff-Campbell lemma1. We
now immediately recognize the operator Sk as the two-mode squeezing op-
erator with squeezing parameter ∣θk∣.

This way of expressing the Bogoliubov transformation also implies that
the vacuum state ∣{0k,0k}⟩sq for the eigenmagnons and the vacuum state
∣{0k,0k}⟩subl for the sublattice magnons are related through

∣{0k,0k}⟩sq = Sk∣{0k,0k}⟩subl. (8.11)

The ground state of the antiferromagnet is therefore generated from the sub-
lattice vacuum state by applying the squeezing operator. Thus, the quanti-
ties Xk and Yk defined analogous to Eq. (8.4) do not commute, and instead
satisfy an uncertainty relation. The operators Xk and Yk can be interpreted
in terms of the spin operators in the original model by using the linear spin
wave theory representations. For simplicity, we consider the limit k → 0, for
which we have,

Xk→0 =
1

√
2NS

∑
n

(SxnA + S
x
nB) (8.12a)

Yk→0 =
1

√
2NS

∑
n

(SynA − S
y
nB). (8.12b)

Thus, fluctuations in the net spin of one in-plane spin component are sup-
pressed and enhanced conjugate to the fluctuations in the orthogonal in-
plane component of the Néel order parameter.
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Figure 8.1: (a) Compensated antiferromagnetic interface. The normal metal
couples equally to both sublattices. (b) Uncompensated interface. The nor-
mal metal couples asymmetrically to the two sublattices.

8.1.2 Sublattice interferences and enhanced interaction

In Sec. 2.3, we pointed out that when θk is large, the quantum ground is
a superposition consisting of terms with many spin-flips on top of the Néel
state. Under these circumstances, the magnitude of the coherence factors
uk and vk may also be large.

Consider now a situation where the spins in an antiferromagnet are cou-
pled to some other degrees of freedom. Within linear spin-wave theory these
spins can be represented in terms of sublattice magnons ak and b†−k. When
expressing the coupling in terms of the eigenexcitations, we therefore get
an effective coupling proportional to coherence factors uk and vk. Since
these can become large, the effective interaction strength may be drastically
enhanced.

However, these coherence factors may also interfere destructively to sup-
press the effective coupling strengths. These interferences are sensitive to
how we couple to the two sublattices of the antiferromagnet. In Fig. 8.1,
we show a normal metal coupled to a compensated interface in (a), and to
an uncompensated interface in (b) [302]. Sublattice interferences may then
produce drastically different effective coupling strengths in the two cases.

In Paper [3] we discuss this briefly in the context of electron-magnon and
magnon-magnon coupling. In the remainder of this chapter, we will see how
the mechanism can unfold by studying superconductivity in a normal metal
mediated by magnons in an adjacent antiferromagnet.

1In short, the Baker-Hausdorff-Campbell lemma states that [33]

eBAe−B = A + [B,A] +
1

2!
[B, [B,A]] +

1

3!
[B, [B, [B,A]]] +⋯,

where A and B are operators.
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Figure 8.2: Model system. A normal metal is sandwiched between to antifer-
romagnetic insulators. The spins in the AFMIs interact with the electrons in
the normal metal through their spin, and we allow this coupling to be sublat-
tice dependent, with coupling J̄A = J̄ΩA to the A-sublattice and J̄B = J̄ΩB
to the B-sublattice.

8.2 Heterostructure model system

We study superconductivity in a heterostructure consisting of a normal metal
sandwiched between to antiferromagnetic insulators, as sketched in Fig. 8.2.
We therefore consider a model Hamiltonian on the form H =HNM +HAFMI+

Hint, where the respective terms describe electrons in the normal metal, spins
in the antiferromagnetic insulators, and the interaction between the layers.
We assume that both the normal metal and the antiferromagnetic insulators
can be modelled by matching square lattices.

To describe the normal metal, we use a hopping model

HNM = −t ∑
⟨ij⟩,σ

c†iσcjσ − µ∑
iσ

c†iσciσ, (8.13)

where t is the nearest neighbour hopping amplitude, and µ the chemical
potential controlling the doping.

Furthermore, we assume the antiferromagnetic insulators to be described
by an antiferromagnetic Heisenberg model

HAFMI = ∑
ij,η

JijSiη ⋅Sjη −K∑
i,η

(Sziη)
2, (8.14)
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where Siη is a spin on the lattice site i, η ∈ {H,L} specifies whether the
spin resides in the upper (H) or lower (L) antiferromagnet. We also assume
that the antiferromagnetic order in the two antiferromagnets is such that
the spins of corresponding lattices sites are oriented oppositely, as shown in
Fig. 8.2. The exchange coupling Jij between lattices sites i and j is assumed
to take the value J1 > 0 for nearest neighbour sites and J2 > 0 for the next-
to-nearest neighbour sites. Furthermore, K is an easy axis anisotropy. The
excitation spectrum, eigenexcitations, and ground state of this model have
been discussed within linear spin wave theory in Chapter 2.

Finally, we assume the electrons in the normal metal to interact with the
antiferromagnet through their spin through the interaction Hamiltonian

Hint = −2J̄ ∑
η,Υ

∑
i∈Υ

ΩΥc
†
iσci ⋅Siη, (8.15)

where σ is the Pauli matrix vector in electron spin space, and we have intro-
duced an electron spinor ci = (ci↑, ci↓)

T . While the sum over Υ runs over the
sublattices of an antiferromagnet, the sum over i runs over the lattice sites
i on sublattice Υ, while i is also used to denote the corresponding lattice
sites in the normal metal and the other antiferromagnet. The interfacial ex-
change coupling strength is denoted by J̄ , while the dimensionless parameter
ΩηΥ allows the introduction of a sublattice coupling asymmetry.

8.3 Processes and Eliashberg theory

Although the square lattices of the normal metal and the antiferromagnets
match, the subsystems have different periodicity due to the antiferromag-
netic order in the magnetic insulators, as illustrated in Fig. 8.3 (a). There-
fore, as shown in Fig. 8.3 (b), the magnon Brillouin zone is reduced com-
pared to the electron Brillouin zone. This incompatibility gives rise to two
different kinds of scattering processes in the electron-magnon interaction
Hamiltonian, which takes the form

Hint = V ∑
k∈�
q∈♢

[MR
q c

†
k+q,↓ck,↑ +M

U
q c

†
k+q+Q,↓ck,↑ + h.c.]. (8.16)

Here, the sum over k runs over the electron Brillouin zone, and the sum over
q over the magnon Brillouin zone. Furthermore, ckσ are electron annihila-
tion operators in momentum space, and as discussed further down, MR

q and
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Figure 8.3: (a) The periodicity of the AFMI system is enlarged compared to
the elctrons. (b) The magnon Brillouin zone (orange) is reduced compared to
the electron Brillouin zone (grey). (c) Regular (red) and Umklapp processes
(blue) from a point on the Fermi surface (green). (d) The four different
magnon scattering processes in the system.

MU
q are linear combinations of the eigenmagnon operators in the antiferro-

magnets. Thus, there are two kinds of electron scattering processes. In the
regular processes (R), electrons scatter from a momentum k to a momen-
tum k′ such that k′ − k is within the first magnon Brillouin zone2. In the
Umklapp processes (U), the electron gains an additional momentum kick Q
corresponding to a magnon resiprocal lattice vector. This is also shown in
Fig. 8.3 (c). Since the electron spin can either flip from ↓ to ↑ or ↑ to ↓, this
gives a total of four different scattering processes in the system, which are
shown in Fig. 8.3 (d). We also notice that since the magnon operators carry
finite spin ±1, spin is conserved in the scattering processes.

The explicit expression for the magnon operator Mκ
q is Mκ

q =Mκ
qH+M

κ
qL,

where the contributions from the upper (H) and the lower (L) antiferromag-
nets can be written

2Or, to be precise, a momentum which can be obtain by adding an electron resiprocal
lattice vector to a momentum within the first magnon Brillouin zone.
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Mκ
qH = (ΩAuq + κΩBvq)αqH + (ΩAvq + κΩBuq)β

†
−qH

Mκ
qL = (ΩAuq + κΩBvq)α

†
−qL + (ΩAvq + κΩBuq)βqL,

(8.17)

and κ ∈ {R,U}, where we have associated the indices with the values R → +1
and U → −1. Here, αqη and βqη are eigenmagnon annihilation operators for
antiferromagnet η, as discussed in Chapter 2.

Eventually, we aim at constructing Eliashberg theory for the system. The
key building blocks are therefore the magnon operator propagators, which
are defined by

D
κκ′

(q, τ) = −⟨TτM
κ
q (τ)(M

κ′

q )
†
(0)⟩ (8.18)

in Matsubara space. By explicit calculation utilizing the eigenmagnon propa-
gators in the non-interacting theory, we obtain frequency dependent magnon
propagators

D
κκ′

0 (q, iνm) = − 2Aκκ
′

e (q)
2ωq

ν2
m + ω2

q

, (8.19)

where we have introduced quantities

ARRe (q) =
1

2
[(ΩAuq+ΩBvq)

2
+ (ΩAvq +ΩBuq)

2
], (8.20a)

AUUe (q) =
1

2
[(ΩAuq −ΩBvq)

2
+(ΩAvq −ΩBuq)

2
], (8.20b)

ARUe (q) = AURe (q) =
1

2
(Ω2

A −Ω2
B)(u2

q + v
2
q). (8.20c)

We refer to these as boosting factors.
In addition to terms originating from the A-sublattice proportional to Ω2

A

and terms from the B-sublattice proportional to Ω2
B , the boosting factors

have interference terms proportional to ΩAΩB . Thus, there are sublattice
interferences when coupling equally to the sublattices (Ω ≡ ΩB/ΩA = 1),
while the interferences are completely suppressed when coupling only to one
sublattice (Ω = 0).

The coherence factors and boosting factors are shown in Fig. 8.4 for mo-
menta q corresponding to scattering processes between points on the Fermi
surface. Since uq is positive and vq is negative for small scattering processes,
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Figure 8.4: (a) Scattering of electrons between points on the Fermi surfaces is
described by angle θ. (b) Magnon coherence factors for scattering processes
between points on the Fermi surface. (c) Boosting factor for magnon scatter-
ing processes between points on the Fermi surface coupling asymmetrically
(Ω = 0) and symmetrically (Ω = 1) to the sublattices of the antiferromag-
net. Parameter values for the AFM have been set to K/J1 = 10−4J1 and
J2/J1 = 0.2.

as shown in (b), the sublattice interference effects suppress the regular pro-
cess boosting factors for small scattering momenta. The Umklapp scattering
processes, however, are enhanced. Thus, the sublattice coupling asymmetry
acts as gatekeeper controlling the relative importance of the regular processes
and the Umklapp processes in the system.

Using electron and magnon Green’s functions, we may now derive the
Eliashberg equations for magnon-mediated superconductivity using the ap-
proach discussed in Chapter 5. The details are given in Paper [4], and the
result is

[1 −Z(k)]iωn = −V
2 1

β
∑
k′
D(k − k′)

iωn′Z(k′)

Θ(k′)
(8.21a)

χ(k) = −V 2 1

β
∑
k′
D(k − k′)

ξk′ + χ(k
′)

Θ(k′)
(8.21b)

φs(k) = −V
2 1

β
∑
k′
D(k − k′)

φs(k
′)

Θ(k′)
(8.21c)

φt(k) = +V
2 1

β
∑
k′
D(k − k′)

φt(k
′)

Θ(k′)
, (8.21d)

where we assume that one symmetry channel dominates and consider only
spin singlet pairing or only spin triplet pairing. Here, we have also introduced
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=

Figure 8.5: Feynman diagram for the Eliashberg gap equation. Electron
propagators are represented with arrows with arrowheads corresponding to
creation or annihilation operators pointing in or out from the line. Spin is
flipped at vertices.

the magnon propagator

D(q, iνm) = θqD
RR

(q, iνm) + θq+QD
UU

(q +Q, iνm), (8.22)

where θq = 1 when q is equivalent to a point in the first magnon Brillouin
zone, and zero otherwise. The propagator therefore represents both regular
processes and Umklapp processes depending on electron scattering momen-
tum k′ −k, as indicated with the shaded blue and red regions in Fig. 8.4(a).
The factor Θ is given by

Θ(k, iωn) = [iωnZ(k, iωn)]
2
− ξ̃2

k − ∣φs,t(k, iωn)∣
2, (8.23)

with gap φs,t depending on whether we consider spin triplet or spin singlet
pairing.

Crucially, we notice that the sign in front of the spin singlet and spin
triplet pairing equations are different. Comparing with the Eliashberg equa-
tions for phonon-mediated superconductivity, in Eq. (5.85), the sign in front
of the spin singlet equation has been changed. This can quite easily be
understood by drawing the Feynman diagram corresponding to the equa-
tions, as shown in Fig. 8.5. The vertices of the electron-magnon interaction
are associated with a spin flip since the magnons carry a spin. Therefore,
and in contrast with phonon-mediated superconductivity, the spin singlet
amplitude acquires an additional sign change.

In the Eliashberg equations, both Θ and D(q) above are negative. There-
fore, electron scattering processes are attractive with respect to spin singlet
pairing when φs(k) and φs(k

′) have opposite signs, while the processes are
attractive with respect to spin triplet pairing when φt(k) and φt(k

′) have
the same sign.
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Figure 8.6: (a) Phase diagram for superconducting phases in the µ-Ω plane.
(b) Critical temperature along various lines in the phase diagram.

8.4 Phase diagram and results

Integrating out the momentum perpendicular to the Fermi surface, one may
obtain Fermi surface averaged equations from the fully momentum depen-
dent equations in Eq. (8.21). By introducing various Ansätze for the anoma-
lous correlation momentum structure on the Fermi surface, one may fur-
thermore simplify the equations to an eigenvalue problem in the Matsubara
frequency dependent fields. Solving the linearized eigenvalue problem, we
then obtain the critical temperature of the superconducting instability for
various phases.

In Paper [4], we consider Ansätze for even frequency spin triplet p-wave
and f -wave pairing, as well as even frequency spin singlet d-wave pairing. For
each of these pairing symmetries, we calculate a critical temperature, and
assume the phase with the largest critical temperature to dominate. One
may then calculate a phase diagram in the µ-Ω plane as shown in Fig. 8.6 (a),
while the critical temperature along different lines in the phase diagram is
shown in (b). In the following, we discuss these results in further detail.

8.4.1 Understanding the phase diagram

Depending on sublattice coupling asymmetry Ω and doping µ, we find three
different phases in the phase diagram. For small Ω to the left in the phase
diagram, we find spin triplet phases, with a p-wave phase for large dopings
and small Fermi surfaces, and an f -wave phase for small dopings and large
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Figure 8.7: (a) The dominant scattering processes are regular processes on
the Fermi surface with outgoing momentum k′ close to k and k +Q, corre-
sponding to regular and Umklapp processes. (b) Qualitative explanation for
the general structure of the phase diagram in Fig. 8.6, as discussed in the
main text. (c) The spin singlet (triplet) channel is attractive for processes
where φ(k) and φ(k′) have opposite (the same) signs.

Fermi surfaces. For Ω ≈ 1, however, we find a d-wave phase for small dopings
corresponding to small ∣µ∣.

This can be understood qualitatively based on the various processes that
contribute to the pairing, and the argument is illustrated in Fig. 8.7. The
magnon propagator acts as effective pairing potential in the Eliashberg equa-
tions, and the zero frequency contribution is D(q, iνm = 0) ∝ Aκκ(q)/ωq.
Thus, we expect the processes with small magnon frequency to dominate
the pairing. As illustrated in Fig. 8.7 (a), magnon frequencies may be small
both when the outgoing momentum k′ is close to the incoming momentum
k, and when it is close k +Q. This corresponds to regular processes and
Umklapp processes.

When we couple to only one sublattice, there are no sublattice interfer-
ences magnon propagator. Thus, as shown in (b), we may in principle have
significant contributions both from regular and Umklapp processes. Yet, the
regular processes tend to dominate because they are associated with lower
magnon frequencies and larger boosting factors, as a momentum k′ on the
Fermi surface can come arbitrarily close to the momentum k but not to k+Q.
Small momentum scattering processes must necessarily be between parts of
the Fermi surface where the gap has the same sign. Furthermore, the spin
triplet channel is attractive for scattering processes between momenta k and
k′ where the anomalous pairing has the same sign, as indicated in (c). In
contrast, the spin singlet channel is repulsive. Since the electron pair wave
function has to be antisymmetric in total, we therefore expect pairing which
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is even in frequency, spin triplet, and odd in momentum when coupling only
to one sublattice. As seen on the left side of the phase diagram, this is
exactly what we find.

When we instead couple equally to both sublattices, sublattice interfer-
ences suppress the regular processes with small momentum q and enhance
the Umklapp processes, as also discussed in Sec. 8.3. Thus, Umklapp pro-
cesses dominate the pairing. In principle, both spin triplet and spin singlet
pairing may result from these processes. For the triplet pairing channel,
however, the gap would typically have to be small in one out of two adjacent
corners of the Fermi surface (see the p-wave and f -wave profiles), as the gap
would have to be antisymmetric in momentum. This would suppress pair-
ing. In contrast, spin singlet d-wave pairing matches the Umklapp processes
perfectly, as the Umklapp process connects momenta on the Fermi surface
where the gap has different signs, and the processes are therefore attractive
in the spin singlet channel. In the phase diagram, we therefore find a d-wave
phase for Ω ≈ 1 and small doping. As we increase the doping, the minimum
distance between the a point k′ on the Fermi surface and k +Q increases,
and the critical temperature of the d-wave phase becomes suppressed. No-
tably, sublattice interferences is the very reason that the d-wave phase can
occur, since otherwise, the critical temperature for spin singlet pairing would
be completely suppressed due to the repulsive regular processes with small
momentum scattering.

The above argument explains the general structure of the phase diagram.
However, it does not immediately explain why we find a p-wave solution to
the gap equation for large dopings and an f -wave solution for small dopings
for Ω = 0. This is discussed in somewhat more detail in Paper [4], but it in
short, it can be explained as follows: Regular processes dominate the pairing,
but subleading Umklapp processes become attractive instead of repulsive
when there is an additional node in the gap on the Fermi surface. Moving
from large doping towards the small doping regime, the importance of the
Umklapp processes increases, and eventually, the f -wave phase is preferred
over the p-wave phase.

8.4.2 Characteristic magnon frequency

Comparing our results for the critical temperature with previous results for
the p-wave phase using BCS theory [141], we find that it has been signifi-
cantly reduced. This occurs because Eliashberg theory, unlike BCS theory,
handles the retarded nature of the effective interaction properly through the
frequency dependence of the fields. This is one of the central points in Pa-
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per [4]. We discuss it in detail there, also including an explicit calculation of
the characteristic magnon frequency and the Eliashberg function α2F (ω).

Qualitatively, the effect can be understood based on the knowledge of
which processes that dominate in the pairing interaction. For the p-wave
phase, these are regular processes with a small momentum transfer q, cor-
responding to small magnon frequencies. Thus, the characteristic magnon
frequency in the pairing is significantly reduced, and this also reduces the
critical temperature. For the d-wave phase, we have a similar effect, but the
reduction is less dramatic there, since the typical processes contributing to
the pairing have a larger magnon frequency.

8.4.3 Comparison with phonon-mediated superconduc-
tivity

Our previous discussion allows an instructive and rather general comparison
of magnon-mediated and phonon-mediated superconductivity. This serves to
highlight some special features of magnon-mediated superconductivity, but
also allows us to appreciate some of the properties of the phonon mechanism
of superconductivity which could easily be taken for granted.

The first, and maybe most obvious difference, is that in magnon-mediated
superconductivity, the bosons responsible for the superconducting pairing
carry a spin. This is important because it causes the spin singlet pairing
amplitude to be repulsive for scattering processes where the pairing ampli-
tudes have the same sign. Therefore, the magnon-mediated superconduc-
tivity does not have s-wave pairing symmetry, in contrast with almost all
superconductors with a phonon-mediated pairing mechanism.

Second, the coupling between the electrons and the spin excitations is via
the spin, and the coupling across the interface is therefore effectively local
in space. Thus, the coupling matrix element does not go to zero for scatter-
ing processes q → 0. Since the magnon frequencies are small close to q = 0
and q = Q, this allows scattering processes with magnon momenta close to
these values to dominate the superconducting pairing. As we have already
discussed, this is also the reason that a detailed investigation of the char-
acteristic magnon frequency is necessary. In contrast, the electron-phonon
coupling matrix element goes to zero as q → 0 for acoustic modes because
electron-phonon coupling is a coupling between the electrons and modula-
tions of ion densities. Since the effective pairing potential on the Fermi
surface is then on the form Vk,k+q ∼ ∣gk,k+q ∣

2/ωq for scattering processes on
the Fermi surface, where ∣gk,k+q ∣

2 ∝ q, the effective pairing potential ap-
proaches a constant for acoustic modes. Thus, scattering processes on the
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Fermi surface are roughly equally important. This simplifies the theoretical
treatment of phonon-mediated superconductivity, and also tends to favour
s-wave superconductivity.

8.5 Discussion

Whereas Eliashberg theory is based on several assumptions regardless of
whether we consider superconductivity due to phonons or magnons, some
points should be addressed specifically in light of our model and the magnon-
mediated mechanism. Broadly speaking, a number of these points are related
to two underlying properties of the system.

The first set of points is related to the peaked nature of the effective in-
teraction. As discussed in the previous section, phonon-mediated supercon-
ductivity is rather democratic in the sense that almost all processes between
points on the Fermi surface are allowed to contribute similarly to the pair-
ing. Thus, the magnon propagator typically depends weakly on momentum,
and this allows the Fermi surface averaging procedure to work well. The
situation is less clear within magnon-mediated superconductivity, where the
effective potential is peaked. The electron-magnon interaction also renor-
malizes the effective magnon frequency, and the relative change is larger
for small magnon frequencies. Finally, we know that Migdals theorem for
phonon-mediated superconductivity becomes questionable for small momen-
tum processes with a small scattering momentum q. Since the small mo-
mentum scattering processes are dominant in the spin triplet pairing phases
in our results, the importance of vertex corrections should also be discussed.

The second set of points is related to the shape of the Fermi surface close
to half filling. At half filling, there is a van Hove singularity in the density
of states, and the Fermi surface becomes perfectly nested. Close to half-
filling, we therefore expect on-set of spin density wave correlations [22, 23,
303], which have been neglected. Furthermore, nesting also enhances vertex
corrections. Evaluating the behaviour of the system very close to half-filling
therefore becomes very challenging.

We discuss all these points in significantly more detail in Paper [4], but
a full quantitative investigation is outside the scope of the paper. Although
we expect that some of the effects can be important for properties such as
the critical temperature, it seems likely that the main features of supercon-
ductivity induced by interfacial coupling to antiferromagnets are captured
within the approach in the paper.

We have developed Eliashberg theory for magnon-mediated superconduc-
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tivity in a heterostructure of a normal metal coupled to antiferromagnetic
insulators. We find various superconducting phases such as even frequency
spin triplet p- and f -wave phases, and an even frequency spin singlet d-
wave phase. These phases occur in various regimes depending on doping
and sublattice coupling asymmetry, and this emphasizes the important role
played by sublattice interferences in superconductivity mediated by antifer-
romagnetic magnons. Furthermore, Eliashberg theory captures the retarded
nature of the interaction, and compared with BCS theory estimates, this
impacts critical temperature estimates significantly.
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Chapter 9

Conclusion

The three fundamental degrees of freedom in the solid state are the motion
of the electrons, the vibrations of the lattice, and the spins of electrons and
ions. In this thesis, and in Papers [1–4] which form the core of this thesis,
we have been studying collective effects which occur when these degrees of
freedom interact.

In Paper [1], we considered topological magnons interacting with phonons.
The two main characteristic properties of topologically non-trivial systems
are finite Hall conductivities and the presence of edge modes. We discussed
how these properties are affected by magnon-phonon coupling.

In Paper [2], we considered phonons interacting with electrons in doped
graphene. Specifically, we discussed the possibility of a phonon-induced
superconducting instability within a tight binding approach.

In Paper [3], we interpreted the eigenexcitations of quantum antiferro-
magnets as squeezed magnons, and discussed some implications of this.

In Paper [4], we considered electrons in a normal metal coupled to the
magnons of adjacent antiferromagnets, and discussed the possibility of magnon-
mediated superconductivity in the system. Developing an Eliashberg theory
for the system, we found various superconducting phases, and demonstrated
the importance of handling the retarded nature of the effective electron-
electron interaction properly.

Understanding interacting quantum systems is in general a highly non-
trivial task, as we have seen numerous examples of throughout this thesis. To
understand a particular effect, a common tactic is to isolate the interaction
believed to be responsible for the effect, and hope that the resulting prob-
lem is sufficiently simple to be analytically or numerically tractable. This

141
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approach has generally been very successful in condensed matter physics,
but there is always a risk of oversimplifying the system or missing out on
fascinating physics which occur due to the interplay of interaction effects.
With this in mind, we may identify a few possible avenues for further inves-
tigations.

Since the concept of topological classification of band structures is de-
signed specifically to describe quadratic Hamiltonians, the presence of inter-
actions introduces significant complications. While typical interactions in
an electronic system such as electron-phonon coupling or Coulomb interac-
tion conserve electron numbers, in topological bosonic systems, however, we
are often working with systems where the boson number is not conserved.
There are several unresolved matters concerning how the concept of topol-
ogy should be applied to these systems, and how it can be connected to
observables.

Although simple models exist to incorporate the effect of Coulomb in-
teractions in superconductors, a detailed understanding of their effect is a
notoriously difficult task. Also in graphene, attempts to understand possible
superconductivity have typically been based on very simple approaches to
include Coulomb interaction, and going beyond these approaches is of high
interest. Furthermore, a study of possible phonon-mediated superconductiv-
ity in graphene at the van Hove singularity would require the incorporation
also of the strong correlation effects occurring in that doping regime.

Within Eliashberg theory for magnon-mediated superconductivity, we
already discussed correlation effects such as vertex corrections and magnon
renormalization. More detailed studies of these effects are desirable, but also
very challenging. Close to half-filling, we expect the onset of spin density
wave correlations, and these have previously been studied within Eliash-
berg theory due to a phonon-induced mechanism. An interesting avenue for
further research is therefore to see whether the expected magnon induced
instability is similar, and potentially how spin density wave correlations in-
terplay with superconductivity.



Appendix A

Currents and Hall
conductivities

In this Appendix, we discuss the derivation of the linear response expressions
for the Hall conductivity in somewhat more detail. We first discuss electron
and spin currents in Sec. A.1. In Sec. A.2, we then discuss how the Hall
conductivity can be expressed in terms of band structure Berry curvatures
in bosonic and fermionic systems.

A.1 Current operators

A.1.1 Electron current

To discuss the calculation of operator expressions for electron currents, we
consider a system of electrons described by a tight binding hopping model
on a lattice. In the absence of an electromagnetic field, this system can be
described by a Hamiltonian on the form

H = −∑
ij

tijc
†
icj , (A.1)

where tij = t
∗
ji is in general complex. We aim at deriving an expression for

the current operator in second quantization. The Fourier representation of
the Hamiltonian is

H =∑
k

∑
αβ

hαβ(k)c
†
kαckβ , (A.2)
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where the matrix hαβ(k) is given by

hαβ(k) = −∑
δαβ

t(δαβ)eik⋅δ
αβ

. (A.3)

Here, the sum over δαβ denotes a sum over neighbour vectors from sublat-
tice α to sublattice β, where t(δαβ) = tiα,iα+δαβ for any lattice point iα on
sublattice α.

In general, the current operator jµ along direction µ for a system in
an electromagnetic field consists of a paramagnetic and a diamagnetic part,
since the canonical and kinematic momenta are in general different [45].
However, since the diamagnetic part does not contribute to Hall conductiv-
ities [46], we focus on the paramagnetic part in the following.

Electron charge is a conserved quantity, and it must therefore satisfy the
continuity equation

eṅi +∑
δ

ji,i+δ = 0, (A.4)

where ji,i+δ is the current flowing from lattice site i to lattice site i+δ. Within
the Heisenberg picture [33], the continuity equation is an operator equation,
describing the relation between the time evolution of the density operator ni
and the current operators. Furthermore, we know that the time evolution
of this density operator is given by the Heisenberg equation of motion1

eṅi = −
ie

~
[ni,H], (A.5)

where H is the Hamiltonian describing the system in the absence of the
electromagnetic field. Using the explicit form of the Hamiltonian in Eq. (3.4),
the bond currents can be written

jij = −
ie

~
(tijc

†
icj − tjic

†
jci) (A.6)

From this, we may define the paramagnetic current density associated with
lattice site i as

ji =
1

Vuc
∑
j

jijδij , (A.7)

where δij is the displacement vector between lattice sites i and j, and Vuc

is the real space unit cell volume. We may now also introduce the Fourier
transform of the current through

1Assuming that the Hamiltonian is not explicitly time dependent.
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j(q) =
1

2
√
N
∑
i

eiq⋅xiji, (A.8)

where N is the number of unit cells in the system and xi the position of
lattice site i. Expressing this Fourier transformed current in terms of the
Fourier transformed creation and annihilation operators, we obtain current

j(q) = −
e

2~∑αβ
∑
k

∑
δαβ

(t(δαβ)eik⋅δ
αβ

iδαβc†k+q,αck,β + h.c.) . (A.9)

When calculating Hall conductivities, we are interested in the homogeneous
zero frequency response. We therefore let q → 0, and obtain

jµ(q = 0) =
e

~
(

1

Vuc

√
N

)∑
k

(
∂hαβ(k)

∂kµ
) c†kαckβ . (A.10)

When the matrix is diagonal, the result has a very simple interpretation, as
it is simply the number of electrons in a given state multiplied by the group
velocity.

This important result eventually allows us to express Hall conductivities
in terms of Berry curvatures and Chern numbers.

A.1.2 Calculation of spin current

To illustrate how one may derive an expression for the spin current of the
component along the ẑ-direction, we use the Hamiltonian of Paper [1] as an
example. As we will see, the derivation is very similar to the electronic case
above.

We consider the spin model

H = −J ∑
⟨ij⟩
Si ⋅Sj +D ∑

⟪ij⟫
νij ẑ(Si ×Sj) −B∑

i

Szi , (A.11)

as discussed in more detail in Sec. 6.2. The model can be rewritten

H = −J ∑
⟨ij⟩

[Szi S
z
j +

1

2
(S+i S

−
j + S

−
i S

+
j )] +

D

2
∑
⟪ij⟫

(eiφνijS+i S
−
j + h.c.) −B∑

i

Szi ,

(A.12)

where we let φ = π/2 and have utilized that νij = ±1. Introducing the lin-
earized Holstein-Primakoff transformation and the Fourier representation of
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the sublattice magnon creation and annihilation operators, the Hamiltonian
takes the form

H =∑
k

∑
αβ

hαβ(k)a
†
kαakβ , (A.13)

where α and β label the sublattice degree of freedom.
From the Heisenberg equation of motion, we may again extract the spin

current jij from lattice site i to lattice site j. Introducing the Fourier compo-
nent j(q) of the spin current density vector similar to Eqs. (A.7) and (A.8),
we obtain zero momentum component on the form j(q = 0) = jH+jDM, with
Heisenberg and Dzyaloshinskii-Moriya contributions on the form

jH
(q = 0) =

1

Vuc

√
N

(−
J

2
)∑
⟨ij⟩

[(S+i S
−
j − S

−
i S

+
j )] iδij (A.14)

jDM
(q = 0) =

1

Vuc

√
N

(
D

2
) ∑
⟪ij⟫

(eiφνijS+i S
−
j − e

−iφνijS−i S
+
j )iδij . (A.15)

We notice that the only different between the representations here and the
kinetic terms in the Hamiltonian on the form in Eq. (A.12) is the sign be-
tween the two contributions and the factor iδij . Furthermore, we remark
that the terms in the Hamiltonian in Eq. (A.12) constructed from Szl do not
contribute to the spin current since they necessarily commute with Szi .

By replacing the spin raising and lowering operators with annihilation
and creation operators through the linearized Holstein-Primakoff represen-
tation, we then obtain

jµ(q = 0) =
1

Vuc

√
N
∑
k

∑
αβ

(
∂hαβ(k)

∂kµ
)a†

kαakβ . (A.16)

Thus, we have perfectly analogous results for the charge current density in
the electronic system and the spin current density in the magnetic system,
where electrons carry charge and the magnons spin.

A.2 Kubo formula manipulations

In this appendix, we show that the Hall conductivity in electronic and
bosonic systems can be written in terms of the Berry curvature of the un-
derlying bands in fermionic and bosonic systems.
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In both cases, we start from the Kubo formula for the Hall conductivity
σxy in the limit q → 0, which takes the form

σxy = −
Vuc

~ω ∫
∞

0
dt eiωt⟨[jx(t), jy(0)]⟩, (A.17)

where the brackets ⟨⋯⟩ denote a thermal average. Here, jµ are current
operators for the current along the Cartesian direction µ, which we assume
can be written on the form

jµ =
K

Vuc

√
N
∑
k

(
∂hαβ(k)

∂kµ
) c†kαckβ , (A.18)

where ckα is an annihilation operator for the underlying electronic or bosonic
particles, and K is a constant depending on whether we consider the elec-
tronic or magnetic system. Furthermore, we introduce the velocity matrix

vαβµ =
1

~
(
∂hαβ

∂kµ
) , (A.19)

so that the current can be written on the form

jµ =
K~

Vuc

√
N
∑
k

vαβµ (k)c†kαckβ . (A.20)

We now let U(k) be a unitary matrix diagonalizing the Hamiltonian in
Eq. (A.3), so that U †hU = D with some diagonal matrix D. The current
operators in Eq. (A.18) can then be written

jµ =∑
k

jρσµ (k)d†
kρdkσ, (A.21)

where dkα are annihilation operators for electrons in the energy band α, and
with the transformed current matrix elements jρσ(k) given by

jρσ(k) =
~K

Vuc

√
N
U †
ρα(k)v

αβ
µ (k)Uβσ(k) ≡

~K
Vuc

√
N
ṽρσµ . (A.22)

A.2.1 Summing out particle statistics

Knowing the expression for the Hall conductivity in linear response theory, it
is now somewhat tedious, but fairly straightforward to derive an expression
for the Hall conductivity in terms of the eigenstates and -energies of the
system.
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Making use of the equilibrium density matrix ρeq = e
−βH/Z and inserting

a resolution of the identity into the Kubo formula, we have

σxy = −
Vuc

~ωZ ∫
∞

0
dteiωt∑

mn

e−βEn[⟨n∣jx∣m⟩⟨m∣jy ∣n⟩e
i(En−Em)t/~

− ⟨n∣jy ∣m⟩⟨m∣jx∣n⟩e
−i(En−Em)t/~]. (A.23)

When n = m, the two contributions cancel, so we may restrict the sum
over m to m ≠ n in the following. Integrating out the time, we get [47]

σxy = −
Vuc

ωZ
∑

n,m≠n
[
⟨n∣jx∣m⟩⟨m∣jy ∣n⟩

~ω +En −Em
−

⟨n∣jy ∣m⟩⟨m∣jx∣n⟩

ω −En +Em
] . (A.24)

Since we are interested in the static limit ω → 0, we may now Taylor expand
the denominators in each term using [47, 304]

1

~ω −En +Em
≃

1

Em −En
−

~ω
(Em −En)2

+O(ω2
). (A.25)

The zeroth order contribution in the above expansion vanishes when we
insert it in Eq. (A.24) due to gauge invariance [47]. We are then left with
the linear term. There, the factor ω cancels the prefactor 1/ω, and the
transverse conductivity can be written

σxy = −
i~Vuc

Z
∑

m,n≠m

⟨n∣jx∣m⟩⟨m∣jy ∣n⟩ − ⟨n∣jy ∣m⟩⟨m∣jx∣n⟩

(En −Em)2
e−βEn . (A.26)

Inserting expressions for the current operators, we then get

σxy = −
~K2

VucN
∑

n,m≠n
∑
kk′
∑
αβγδ

e−βEn

Z
i~2

(ṽαβx ṽγδy − ṽαβy ṽγδx )

(En −Em)2

⋅⟨n∣d†
kαdkβ ∣m⟩⟨m∣d†

k′γdk′δ ∣n⟩ (A.27)

Here, the states labelled by indices n and m are general many particle states.
Thus, we may think of them as states specified by the occupation numbers
for all single particle states. Furthermore, we notice that since we only have
terms with n ≠ m in our sum, we need k = k′, α = δ, and γ = β to have
non-zero contributions. Furthermore, since n and m have to be different, we
need α ≠ β.
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Since ∣n⟩ can be obtained from ∣m⟩ by moving a particle from state β to
α, we have

En −Em = Ekα −Ekβ . (A.28)

Thus, we may write

σxy = −
~K2

VucN
∑

n,m≠n
∑
k

∑
αβ

e−βEn

Z
i~2

(ṽαβx ṽβαy − ṽαβy ṽγδx )

(Ekα −Ekβ)2
∣⟨m∣c†kβckα∣n⟩∣

2.

(A.29)

Her, the sums over n and m represents sums over the the many particle
states in the system. To proceed, we now want to sum over the states n.
To to this, we have to calculate the matrix element ⟨m∣d†

kβdkα∣n⟩. In the

following, we let the many-particle state ∣n⟩ have occupation number nkα
for the single particle state specified by k and α. With bosonic particles, we
then get2

∑
m

∣⟨m∣d†
kβdkα∣n⟩∣

2
= nkα(nkβ + 1), (A.30)

while for fermions, we have3

∑
m

∣⟨m∣d†
kβdkα∣n⟩∣

2
= n2

kα(1 − nkβ)
2
= nkα(1 − nkβ). (A.31)

Thus, the conductivity σB,Fxy for bosonic and fermionic particles can be writ-
ten

σB,Fxy = −
~K2

VucN
∑
k

∑
n
∑

α,β≠α
nkα(1 + ζB,Fnkβ)

e−βEn

Z
i~2

(ṽαβx ṽαβy − ṽαβx ṽαβy )

(Ekα −Ekβ)2
,

(A.32)
where ζB = +1 and ζF = −1. Summing over the occupation numbers nkα
and nkβ , they are replaced by either Bose or Fermi distributions nB or nF .
Introducing

WB,F
k,αβ = nB,F (Ekα)[1 + ζB,FnB,F (Ekβ)], (A.33)

2Recall the identities a∣n⟩ =
√
n∣n − 1⟩ and a†∣n⟩ =

√
n + 1∣n + 1⟩.

3Recall n2
kα = nkα.
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we then have

σB,Fxy = −
~K2

VucN
∑
k

∑
α,β≠α

WB,F
k,αβ

(ṽαβx ṽαβy − ṽαβx ṽαβy )

(Ekα −Ekβ)2
(i~2

), (A.34)

Introducing also the curvature tensor

F
αβ

(k) = i~2
ṽαβx ṽβαy − ṽαβy ṽβαx

(Ekα −Ekβ)2
, (A.35)

we may then rewrite the Hall conductivity as

σB,Fxy = −
~K
2π

∑
α,β≠α

∫
BZ

d2k

2π
WB,F
k,αβF

αβ
(k), (A.36)

where we have utilized that VucVBZ = (2π)2, and VBZ is the Brillouin zone
area.

As discussed in the main text of Sec. 3.1, the Fermi distributions can be
replaced by step functions when the temperature is small compared to the
gap, and this allows the Hall conductivity to be related to the Brillouin zone
integral of the quantity

F
α
(k) = ∑

β≠α
F
αβ

(k). (A.37)

In the bosonic case, the Hall conductivity is given as an average of this
quantity weighted with a Bose distribution when the occupation number
nB(Ekβ) is small compared to 1. As we show next, the quantity Fα(k) is
simply the Berry curvature of band α.

A.2.2 Berry curvature

The curvature tensor Fαβ(k) is given in terms of the velocity matrix ele-
ments ṽρσ. Denoting the column vector α of Uβα(k) by ∣ukα⟩, we the have

ṽαβµ = ⟨ukα∣vµ∣ukβ⟩. (A.38)

Since we may furthermore write

~ṽαβµ = ⟨ukα∣
∂h

∂kµ
∣ukβ⟩ = ⟨ukα∣∂µ[h∣ukβ⟩] − ⟨ukα∣h∣∂µukβ⟩, (A.39)
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and ∣ukα⟩ is an eigenvector of h with eigenvalue Ekα, we then get

⟨ukα∣
∂h

∂kµ
∣ukβ⟩ = (Ekβ −Ekα)⟨ukα∣∂µukβ , ⟩ (A.40)

where we have used that ⟨ukα∣ukβ⟩ = 0 when α ≠ β. Similarly, by letting the
derivative act on the bra vector instead of the ket, we have

⟨ukα∣
∂h

∂kµ
∣ukβ⟩ = (Ekα −Ekβ)⟨∂µukα∣ukβ⟩. (A.41)

Inserting these two in the definition of Fα(k), we then have

F
α
(k) = i ∑

β≠α
[⟨∂xukα∣ukβ⟩⟨ukβ ∣∂yukα⟩ − ⟨∂yukα∣ukβ⟩⟨ukβ ∣∂xukα⟩] . (A.42)

For each k, the eigenfunctions ∣ukα⟩ form an orthonormal basis. Thus, we
have a completeness relation

1 − ∣ukα⟩⟨ukα∣ = ∑
β≠α

∣ukβ⟩⟨ukβ ∣ (A.43)

Exploiting this, we then obtain

F
α
(k) = i[⟨∂xukα∣∂yukα⟩ − ⟨∂yukα∣∂xukα⟩] = Ωα(k). (A.44)

This is precisely the Berry curvature as introduced in the main text. Thus,
both fermionic and bosonic Hall conductivities can, subject to some assump-
tions regarding the thermal occupation factors, be expressed in terms of the
Berry curvature of the band structure.
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Appendix B

Dimensionless
electron-phonon coupling

In this Appendix, we discuss the electron-phonon coupling, and aim at show-
ing that the mass enhancement parameter λ̃k can in fact be approximated by
the dimensionless electron-phonon coupling λk when we use the assumption
that the electron energy scale is much larger than the phonon energy scale.

As discussed in the main text, the self-energy of the system is given by

Σ1(k, z) =∑
qν

∣gνk,k+q ∣
2
[

1 + nB(ωq) − nF (ξk+q)

z − (ξk+q + ωq)
+
nB(ωq) + nF (ξk+q)

z − (ξk+q − ωq)
] .

(B.1)
By introducing δ-functions δ(Ω − ωqλ) and δ(ξ′ − ξk+q) and integrating

over the energies Ω and ξ′, we may then rewrite the self energy as

Σ(k, z) = ∫ dξ′ ∫ dΩ [
1 + nB(Ω) − nF (ξ′)

z − ξ′ −Ω
+
nB(Ω) + nF (ξ′)

z − ξ′ +Ω
]α2

kF (ξ′,Ω),

(B.2)
where we have introduced the function

α2Fk(ε, ω) =∑
qν

∣gνk+q,k∣
2δ(Ω − ωqν)δ(ε − εk+q) (B.3)

containing the two delta functions in energy which we used to rewrite the
above expression.
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At zero temperature, one may now calculate the real part of the self
energy under the assumption that the function α2Fk(ξ, ω) depends slowly
on ξ compared to the square brackets. The result is

Σ(k, z) = ∫
∞

0
dΩ α2Fk(Ω) log (

Ω − z

Ω + z
) . (B.4)

By inserting z = ω + iη with an infinitesimal η, differentiating with respect
to ω, and evaluating at ω = εk, we then get

λ̃k = ∫ dΩ
2

Ω
α2
kF (εk,Ω). (B.5)

We recognize this as λk, and have thus shown that λ̃k ≈ λk for momenta k
close to the Fermi surface.
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The plethora of recent discoveries in the field of topological electronic insulators has inspired a search
for boson systems with similar properties. There are predictions that ferromagnets on a two-dimensional
honeycomb lattice may host chiral edge magnons. In such systems, we theoretically study how magnons
and phonons couple. We find topological magnon polarons around the avoided crossings between phonons
and topological magnons. Exploiting this feature along with our finding of Rayleigh-like edge phonons in
armchair ribbons, we demonstrate the existence of chiral edge modes with a phononic character. We predict
that these modes mediate a chirality in the coherent phonon response and suggest measuring this effect via
elastic transducers. These findings reveal a possible approach towards heat management in future devices.

DOI: 10.1103/PhysRevLett.122.107201

Introduction.—Topological electronic insulators [1–5]
are characterized by an insulating bulk with conducting
“chiral” edge states. The unidirectional propagation of
these chiral modes is “topologically protected” against
defects at low temperatures when we can disregard inelastic
scattering from phonons [5]. This has led to the develop-
ment of a wide range of essential concepts, including
Majorana modes [6–9], topological quantum computation
[10,11], and chiral transport. Inspired by these findings,
there has been an upsurge of efforts towards finding similar
states in other systems [12] with an emphasis on bosonic
excitations [13–19]. There are predictions of topological
magnons [15–17] in honeycomb ferromagnets with an
engineered Dzyaloshinskii-Moriya interaction [20,21] that
induces the necessary band gap. In contrast to fermionic
systems with Fermi energy within this band gap, the bulk is
not necessarily insulating in bosonic systems [22].
The field of magnonics [23–26] focuses on pure

spin transport mediated by magnons [27]. It is possible
to exploit the low-dissipation and wavelike nature of these
excitations in information processing [28,29]. The coherent
pumping of chiral surface spin wave (Damon-Eshbach)
modes induces cooling via incoherent magnon-phonon
scattering [30]. Besides application oriented properties,
the bosonic nature of magnons, combined with spintronic
manipulation techniques [24,31], allows for intriguing
physics [32–35]. The coupling [36] between magnons
and phonons fundamentally differs from the electron-
phonon interaction and results in a coherent hybridi-
zation of the modes [37], in addition to the temperature
dependent incoherent effects [30,38] discussed above. The
direct influence of the hybridization between magnons
and phonons, known as magnon polarons [39,40], has
been observed in spin and energy transport in magnetic
systems [41–46].

In this Letter, we address the robustness of the topo-
logical magnons in a honeycomb ferromagnet [15–17]
against their coupling with the lattice vibrations. In contrast
to the case of electron-phonon coupling, where phonons
can be disregarded at low temperatures, the magnon
dispersion may undergo significant changes with new
states emerging in the band gap [45,46]. We find that in
the honeycomb ferromagnet with spins oriented orthogonal
to the lattice plane, only transverse phonon modes with out-
of-plane displacement couple to spin. To understand the
eigenmodes, we evaluate and analyze the coupled spin and
out-of-plane phonon modes for an infinitely large plane
as well as for a finite ribbon geometry. We quantify the
effect of the magnetoelastic coupling on the magnon Hall
conductivity and find a nonmonotonic dependence on
the coupling strength. Our analysis of the finite ribbons
shows that topological magnons hybridize with bulk
phonons around the avoided crossings in their coupled
dispersion, forming magnon polarons with topological
chiral properties. Hence, while their edge localization is
weakened, the magnetoelastic coupling does not com-
pletely remove the topological magnons. Furthermore,
we find that armchair edges support Rayleigh-like edge
phonon modes in sharp contrast to the zigzag edges. When
topological magnons hybridize with these edge phonons,
edge magnon polarons with almost undiminished chirality
are formed. We suggest a setup that utilizes this induced
chirality in coherent phonon transport. Such systems enable
the observation of the topological physics and serve as a
prototype for a unidirectional heat pump. This offers a
highly feasible alternative to producing topological phonon
diodes [47–49].
Model.—We consider a ferromagnetic material with

localized spins on a two-dimensional honeycomb lattice,
allow for out-of-plane vibrations of the lattice sites, and
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assume there is magnetoelastic coupling. This system can
be modelled by a Hamiltonian of the form H ¼ Hmþ
Hph þHme, where Hm is the magnetic Hamiltonian, Hph

describes the phonons, and Hme represents the magnetoe-
lastic coupling.
The Hamiltonian we consider is inspired by the Haldane

model [1], and given by [15–17]

Hm ¼ −J
X
hi;ji

Si · Sj þD
X
⟪i;j⟫

νijẑ · Si × Sj − B
X
i

Szi : ð1Þ

The first term describes the ferromagnetic exchange cou-
pling between nearest neighbor sites, while the second
accounts for the Dzyaloshinskii-Moriya interaction [20,21]
between next-to-nearest neighbors [50]. The Haldane sign
νij ¼ �1 depends on the relative orientation of the next-
to-nearest neighbors as shown in Fig. 1(a), and is the root
of nontrivial topological properties. We let the nearest
neighbor distance be d and the next-to-nearest neighbor
distance be a. References [16,17] discuss the dispersion
relation and Berry curvature of this spin model in linear
spin wave theory.

For the phonon Hamiltonian, we consider only the
out-of-plane degrees of freedom since only these modes
couple to the spin to lowest order in the linear spin wave
expansion. We assume nearest-neighbor interactions with
elastic constant C, let the mass associated with the spins on
the lattice sites be m, and disregard substrate coupling.
Introducing Sk ¼

P
β cosðk · βÞ, where the sum is over the

three next-to-nearest neighbor vectors β of Fig. 1(a), we
obtain the dispersion relation

ωph
� ðkÞ ¼

ffiffiffiffi
C
m

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2Sk

pq
ð2Þ

for the free phonon modes.
Motivated by the continuum limit description [36,37],

we write down the lattice magnetoelastic coupling to linear
order in the magnon amplitude, obtaining

Hme ¼ κ
X
D

X
i∈D

X
αD

Si · αDðuzi − uziþαD
Þ; ð3Þ

where κ parametrizes the strength of the magnon-phonon
coupling,

P
D denotes the sum over sublattices,

P
i∈D is

the sum over the lattice sites on theD sublattice, and αD are
the corresponding nearest neighbor vectors. The out-of-
plane deviation for lattice site i is denoted by uzi.
Bulk spectrum.—We introduce the Holstein-Primakoff

representation of spins and use linear spin wave theory in
the spin- and magnetoelastic terms [27]. Within the rotating
wave approximation [51], the resulting Hamiltonian des-
cribing the phonon and magnon modes of the system is
obtained asH¼P

kψ
†
kMkψk, where ψ

†
k¼ða†k;b†k;c†k−;c†kþÞ.

Here, ak and bk are annihilation operators for the sublattice
magnon modes on the A and B sublattices, while ck� are
the annihilation operators for the phonon modes. The
matrix Mk takes the form

Mk ¼

0
BBBBB@

Aþ hz h− gA− gAþ
hþ A − hz gB− gBþ
g�A− g�B− ωph

k− 0

g�Aþ g�Bþ 0 ωph
kþ

1
CCCCCA
; ð4Þ

where A ¼ 3JSþ B, hzðkÞ ¼ 2DS
P

β sinðk · βÞ, h−ðkÞ ¼
−JS

P
α expð−ik · αÞ, and hþ ¼ ðh−Þ�. The coupling

between the D-sublattice magnons and the phonon
branch � is captured by gD�, which is proportional
to the dimensionless coupling strength κ̃ ¼ ðκd=JSÞ×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2S2=16m2ðC=mÞ4

p
. The spectrum obtained by diagonal-

izing this matrix is plotted in Fig. 1(c) along the paths
displayed in Fig. 1(b).
Hall conductivity.—The topological nature of the spin

model is manifested in the magnon Hall conductivity that

(a)

(c)

(b)

FIG. 1. (a) Lattice geometry showing the nearest neighbor
vectors α, next-to-nearest neighbor vectors β, and the Haldane
sign νij ¼ �1. (b) The first Brillouin zone in reciprocal space,
including the paths along which we plot the dispersion relation in
(c). The parameter values used are D ¼ 0.1J, B ¼ 0.4JS,ffiffiffiffiffiffiffiffiffiffi

C=m
p ¼ 1.5JS, and rescaled coupling strength κ̃ ¼ 0.03 (see
main text). The magnon (yellow) and phonon (purple) character
of the modes is indicated with colors. The modes are significantly
affected by the magnetoelastic coupling only close to avoided
crossings.
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arises because of the time-reversal symmetry breaking
caused by the Dzyaloshinskii-Moriya interaction.
The spin current operator Jγ may be found from a

continuity equation or magnon group velocity approach
[52], both yielding

Jγ ¼
X
k

�
a†k b†k

��∂HmðkÞ
∂kγ

��
ak
bk

�
ð5Þ

along the Cartesian direction γ. Here, HmðkÞ is the matrix
representation of the magnon Hamiltonian. Assuming we
apply a weak in-plane magnetic field gradient ∇B, we are
interested in the current j ¼ σ∇B, which is determined by
the conductivity tensor σ [52]. The Hall conductivity can be
calculated using the Kubo formula, giving

σxy ¼
X
k

X
α;β≠α

nBðEkαÞCαβðkÞ; ð6Þ

where Ekα is the energy eigenvalue of band α and nBðEkαÞ
is the corresponding Bose factor. The curvature tensor Cαβ

is given by

CαβðkÞ ¼ i
Jαβy ðkÞJβαx ðkÞ − Jαβx ðkÞJβαy ðkÞ

ðEkα − EkβÞ2
; ð7Þ

where ðα; βÞ are band indices, and Jαβγ ðkÞ are the energy
eigenstate matrix elements of the current operator at
quasimomentum k. Disregarding the magnetoelastic cou-
pling, the band curvature Cα ¼

P
β≠αCαβ can be identified

as the Berry curvature.
Expressing the sublattice magnon operators in terms of

the eigenmode operators, one may identify the current
matrix elements Jαβγ and integrate the curvature over the
Brillouin zone to obtain the Hall conductivity. We are
particularly interested in the effect of the magnetoelastic
coupling, and therefore present the dependence of the Hall
conductivity on the dimensionless coupling κ̃ in Fig 2.
To understand this dependence, we consider the curva-

ture tensor Cαβ. When the bands α and β both have a
predominant magnon content, the topological nature of the
underlying magnons gives a finite curvature. This magnon
curvature is largest close to the Dirac points [16,17]. Close
to an avoided crossing, the magnetoelastic coupling
changes the spectrum and causes transfer of band curvature
between the relevant bands α and β. The latter can be seen
by plotting the curvature tensor element Cαβ for the band
pairs with avoided crossings, as shown in the insets of
Fig 2. The resulting change in Hall conductivity is given by
these curvature tensor elements weighted with the differ-
ence between the Bose factors of the relevant bands. This
follows from the antisymmetry property of the curvature
tensor. The two band pairs in the insets contribute oppo-
sitely to the Hall conductivity, and the competition between

their curvature transfer explains the nonmonotonic behav-
ior of the Hall conductivity.
Ribbon geometry and coherent transport.—Due to the

topological nature of the magnon model under consider-
ation and the bulk-boundary correspondence, there are
gapless magnon edge states in a finite sample [5,15–17].
Considering an armchair ribbon with finite width, the one-
dimensional projection of the energy spectrum is plotted in
Fig. 3. The corresponding spectrum for the zigzag edge
ribbon is given in the Supplemental Material [53], where
also Refs. [54–58] appear. Magnon and phonon modes
hybridize in regions with an avoided crossing. When the
upper phonon band lies within the band gap of the pure
magnon spectrum, there are modes with a mixed content
of chiral magnon edge states and phonons. Although the
spectra look qualitatively similar, there is a crucial dis-
tinction between the two cases. For the zigzag edge
configuration, all the phonon modes are delocalized
throughout the sample, while the armchair edges host
“Rayleigh-like” edge phonon modes. In direct analogy
with Rayleigh modes on the surface of a three-dimensional
material, the localization length of these modes is directly
proportional to their wavelength, as shown in the
Supplemental Material [53]. These edge phonon modes
are supported by the half-hexagon protrusions of the
armchair edge that can pivot around the bonds parallel
to the edges connecting these protrusions, see Fig. 3. No
such parallel bonds exist for the zigzag edge.
The Hall conductivity is a hallmark of topological elec-

tronic properties and motivates a similar role for the Hall
conductivity mediated by topological magnons. However,

FIG. 2. Dependence of the Hall conductivity on the magne-
toelastic coupling strength κ̃ for parameter values D ¼ 0.1J,
B ¼ 0.4JS, and

ffiffiffiffiffiffiffiffiffiffi
C=m

p ¼ 1.5JS for different temperatures T in
units of JS. The insets show the quasimomentum dependence of
the curvature tensor at κ̃ ¼ 0.03 for band pairs (1,2) and (2,3),
where the bands are labeled according to their energy, and band 1
is the lowest band. The dominant contribution in these band
pairs comes from the regions with avoided crossings of the
respective bands.
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in contrast to electrons, the bosonic nature of the magnons
results in the lack of a general proportionality between the
magnon Hall conductivity and the Chern number [52].
Furthermore, the observation of a magnon planar Hall
effect [59] in a cubic, nontopological magnet suggests that
this Hall conductivity may not be regarded as a smoking-
gun signature for topological properties. Thus, we suggest a
complementary approach to observe the topological nature
of the underlying magnons by elastically probing the
chirality of the magnetoelastic hybrid modes.
We propose to observe coherent chiral phonon propa-

gation in the experimental setup of Fig. 4(b) by utilizing the
edge modes, as depicted schematically in Fig. 4(a) [60], on
the upper armchair edge of the sample. Taking inspiration
from previous related experiments [41,61], we suggest
injecting elastic energy into the sample middle at the upper
edge using a nanoscale variant of the interdigital transducer
design [62,63], elaborated further in the Supplemental
Material [53]. For a given transducer design, modes are
excited with fixed wave vectors �kx and a tunable
frequency. Similar transducers can be used to detect the
elastic response pL=R on the left (L) and right (R) edges of
the sample. Here, pL=R is the elastic power detected at the
transducers.
Figure 4(a) schematically depicts the dispersion for

the magnetoelastic modes localized on an armchair edge.
Disregarding magnetoelastic coupling, the edge hosts two
counterpropagating Rayleigh-like edge phonons and a
single chiral edge magnon. There is thus no chirality in
the phononic response. Due to magnetoelastic coupling, the
Rayleigh-like phonon with wave vector −kx hybridizes

with the chiral magnon to form a magnon polaron while the
other phonon remains unchanged. This breaks the sym-
metry between the counterpropagating phononic modes
and the result is nonzero chirality χ¼ðpR−pLÞ=ðpRþpLÞ.
Furthermore, as shown in Fig. 4(a), the hybridization with
the magnon mode reverses the group velocity direction of
the participating phonon mode. In principle, this gives
perfectly chiral phonon transport.
The wave vector location of the avoided crossing can

be tuned via the Zeeman shift in the magnon dispersion.
Performing a frequency integrated measurement over an
energy range of the same order as the magnetoelastic
coupling, one obtains a peaked chirality when the magnetic
field is such that the wave vector of the avoided crossing
coincides with the wave vector of the transducer, obtaining

FIG. 3. One-dimensional projection of the dispersion relation
for the magnetoelastic modes on a honeycomb ribbon with
armchair edges. In addition to the bulk bands, there are two
topological edge magnon states crossing the magnon band gap, as
well as Rayleigh-like edge phonons. The inset shows the avoided
crossing of a topological magnon edge mode with the two
quasidegenerate edge phonon modes. The parameter values are
B ¼ 0,

ffiffiffiffiffiffiffiffiffiffi
C=m

p ¼ 1.37JS, D ¼ 0.1J, and κ̃ ¼ 0.03.

(b)

(a)

FIG. 4. (a) Schematic spectrum for the coupled Rayleigh-like
edge phonons and the topological edge magnon on the upper
armchair sample edge. The phonon at quasimomentum −kx
hybridizes with the chiral magnon, while the phonon at quasi-
momentum þkx is unaffected due to the lack of a magnon with a
matching wave vector at this edge. At the avoided crossing, there
is propagation direction reversal for the modes with a phononic
content. The color of the dispersion represents its nature with
purple representing phononic and yellow magnonic character.
(b) Proposed experimental setup for detecting coherent chiral
transport through excitation of phononic modes. Elastic energy is
injected in the sample middle on the upper armchair edge and
detected at the left (L) and right (R) edges using wave vector and
frequency resolved elastic transducers (purple). By exciting
modes at the avoided crossing in (a), only the elastic excitations
at one of the two quasimomenta �kx are converted into
hybridized modes (green arrows). This gives a chiral response,
and the chirality is peaked when the wave vector of the avoided
crossing coincides with the fixed wave vector of the transducer.
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a chirality as shown in Fig. 4(b). Performing a similar
transport experiment on the zigzag edge does not give
chiral phonon transport since the delocalized phonons
hybridize with counterpropagating magnons on both the
edges, thereby destroying the overall chirality. In addition,
the size of the avoided crossing is smaller due to the smaller
overlap with the localized chiral magnon. The armchair
edge is therefore crucial for obtaining the chirality.
Summary.—We have examined the robustness of topo-

logical magnons in a honeycomb ferromagnet against
their interaction with phonons. Their topological proper-
ties, albeit weakened, survive the magnetoelastic coupling.
The magnon Hall conductivity of the system is found
to depend on the magnetoelastic coupling strength in a
nonmonotonic, temperature-sensitive manner. Exploiting
the Rayleigh-like edge phonons in armchair ribbons,
we predict the existence of topological magnon polarons
confined to the boundary. We have suggested an exper-
imental setup capable of probing the chiral nature of the
topological magnon polarons by elastic means, which thus
serves as a platform for chiral coherent phononic transport.
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RAYLEIGH-LIKE PHONON EDGE MODES

To describe the phonons, as discussed in the main paper, we consider a force constant model for

out-of-plane phonon modes on the honeycomb lattice with only nearest neighbour interaction. This

is described by the Hamiltonian

H =
∑

i

p2i
2m

+
1

2

∑

〈i,j〉
C(ui − uj)2, (1)

where i and j are lattice site indices running over both the A and B sublattices of the honeycomb

lattice.

To investigate edge modes in the system, we consider a finite ribbon geometry with periodic

boundary conditions in one direction, and with a finite number of unit cells in the other direction.

The edges of such ribbons can mainly be of two types: zigzag and armchair. The lattice geometries

of these cases are shown in Fig. 1.

To find the phonon energy spectrum for these lattice geometries, we introduce the partial Fourier

transform of the lattice site deviations and momenta, which for the lattice site deviation takes the

form

uDx,y =
1√
Nx

∑

k

uky exp
(
ikx̂ · rDn

)
, (2)

where uDx,y is the lattice site deviation on sublattice D in unit cell (x, y), rDx,y is the corresponding

equilibrium position, and Nx is the number of unit cells in the horizontal direction. The periodicity

requirement uDx,y = uDx+Nx,y
then gives k = 2πn/Nxλ, where λ is the periodicity of the lattice in

the horizontal direction and n is an integer. For the zigzag edge ribbon, λ =
√

3d, while λ = 3d

for the armchair edge ribbon. This determines the size of the Brillouin zone.
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FIG. 1. Lattice geometries for the zigzag- and armchair edge ribbons, including unit cell labelling. We assume

periodic boundary conditions in the horizontal direction and a finite number of hexagon layers in the vertical

direction.

Introducing

u†k = (uA−k1, u
B
−k1, u

A
−k2, u

B
−k2, . . . , u

A
−kNy

, uB−kNy
) (3)

with similar notation for the momentum, the phonon Hamiltonian can be written on the form

H =
1

2m

∑

k

p†kpk +
C

2

∑

k

u†kMkuk, (4)

with a matrix Mk coupling the deviations on the various sublattices and neighbouring unit cell lay-

ers. This Hamiltonian is diagonalized through a unitary transform of the deviations and momenta

followed by introducing phonon creation and annihilation operators c†k and ck [1]. The excitation

spectrum is then given by the phonon frequencies ωkn, where ω2
kn = (C/m)λkn and {λkn} are the

eigenvalues of Mk.

Following this procedure for the ribbon geometry with zigzag edges, we obtain the spectrum in

Fig. 2(a). The upper and lower branches of the phonon spectrum meet at kxd = 2π/3
√

3 and

kxd = 4π/3
√

3, consistent with the result obtained by taking the 1-dimensional projection of the

bulk bands. In Fig. 3, we plot the spatial profile of some selected eigenstates at quasimomentum

kxd = 2π/3
√

3. All the modes are delocalized.

Examining the armchair ribbon spectrum in Fig. 2(b), one may notice that the modes marked with

green arrows stand out from the rest. If we were to compute the bulk spectrum and then perform
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FIG. 2. One-dimensional projection of the energy spectrum for phonon modes on the honeycomb ribbon geometry

with zigzag and armchair edges for Ny = 30 unit cells in the vertical direction (see Fig. 1). For the armchair

ribbon, in addition to the bulk modes, there are edge modes marked with green arrows.

a 1D projection, the two modes marked in green would not be found. We therefore conclude that

they must originate from an edge effect.

This is confirmed by examining the spatial profile of the modes, as shown in Fig. 4 for the modes

between the upper and lower bulk phonon branches. The deviation amplitudes are finite on the

outer armchair edges of the sample, and exponentially decaying into the interior of the sample. The

inset shows the decay length as function of the inverse quasimomentum, and demonstrates that

ξ ∝ 1/kx. This is perfectly analogous to the behaviour of so-called Rayleigh modes on the surface

of a three-dimensional material [2]. Our modes can therefore be characterized as one-dimensional

analogs of Rayleigh modes.

From the above discussion, it follows that that while the armchair edges support edge modes, the

zigzag edge does not. This is rooted in the fact that on the edge unit cells of the armchair ribbon,

both atoms have 2 nearest neighbours. For the zigzag ribbon, one atom has 2 nearest neighbours,

but the other has 3. Vibrations are therefore easier to excite on the edges of the armchair ribbon.

COUPLED MAGNETOELASTIC MODES IN ZIGZAG RIBBON

To compute the excitation spectrum for the model with coupled magnon and phonon modes, we

first calculate the phonon and magnon edge modes for the uncoupled model. The phonon modes
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FIG. 4. (a) Rayleigh mode schematic. At a given armchair edge, two Rayleigh-like modes propagate along the

edge with quasimomenta ±kx. The modes are localized within a distance ξ(kx) from the edge. (b) Deviation

amplitudes for the Rayleigh-like edge modes as function of the vertical position y in units of the Bravais lattice

constant a for different momenta kx. The amplitudes are normalized to the value on the edge for easier compar-

ison. The inset shows the localization length ξ(kx) as function of the inverse quasimomentum, demonstrating

that ξ ∝ 1/kx, consistent with the behaviour expected from ordinary Rayleigh modes.

were discussed in the previous section, and we refer to the literature for the magnon spectrum

[3]. Expressing the magneto-elastic coupling in terms of these eigenmodes and diagonalizing the

resulting matrix, we obtain the excitation spectra.

For the zigzag edge ribbon, the spectrum is shown in Fig. 5. All phonon modes are delocalized. In

the inset, we show the hybridization of the chiral edge magnon mode with some of these delocalized
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OutputInput
Acoustic wave

FIG. 6. Schematic depiction of an interdigital transducer employed to excite Rayleigh waves via an ac voltage

on the left hand side. The same structure converts the acoustic waves back to ac voltage on the right and

enables their detection. The metallic electrodes are lithographically patterned on top of a piezoelectric

material, such as Lithium Niobate, into the depicted comb structure.

modes. The armchair ribbon spectrum has already been discussed in the main text.

INTERDIGITAL ELASTIC TRANSDUCERS

General principles and qualitative description

The interdigital transducer [4, 5] (IDT) consists of two metallic electrodes with a series of sections,

called fingers, which are patterned into a comb-like structure on top of a piezoelectric material

(Fig. 6). When a voltage is applied across the two electrodes, it creates a pattern of alternating

charges on adjacent fingers via the capacitive effect. Via the constitutive properties of the piezo-
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electric material, this results in a pattern of alternating strains. An applied ac voltage with angular

frequency ω thus excites acoustic waves at the same frequency in the piezoelectric material. The

wavelength is determined by the corresponding dispersion relation ω = ck [6], where c is the speed

of sound in the material and k is the wavenumber. If the ensuing wavelength λ = 2π/k is equal

to the spacing between the adjacent fingers belonging to the same electrode, the acoustic signal

interferes constructively and the excitation efficiency is high. If there is a mismatch between the

finger spacing and the wavelength excited at the applied ac voltage frequency, the acoustic waves

tend to cancel each other and excitation efficiency is low. With an increasing number N of fingers,

the reinforcement or cancellation effect is stronger and the excitation resonances become sharper.

Thus, the operation principle of an IDT is similar to that of a Bragg grating. Then, it is easy

to understand that peaks in excitation are observed at multiple frequencies (and wavelengths)

corresponding to the finger spacing being multiples of the acoustic wavelength. The fundamental

peak is the strongest and subsequent overtones are progressively weaker as demonstrated by the

frequency transfer characteristics discussed below.

Conventionally, IDTs have been employed in applications such as analog filters, and their desired

operation frequency range has been from MHz to several tens of GHz [4]. A typical piezoelectric

material employed is Lithium Niobate with a Rayleigh wave speed of 3.3 km/s. Thus, the fun-

damental peak corresponding to a center frequency of 1 GHz requires finger spacing of around 1

µm, which could easily be achieved via photolithography techniques. With contemporary electron-

beam lithography techniques, a finger spacing of several tens of nanometers is readily possible,

thus allowing a fundamental frequency of tens of GHz. Employing higher overtones allows push-

ing the operation frequency to several tens of GHz, and is predominantly limited by the driving

electronics [5]. Due to the purview of their conventional applications, attempts to achieve higher

frequencies have been limited. With recent advances in ultrafast lasers, several conventional meth-

ods have been adapted to achieve coherent phonon generation in the THz regime [7]. Thus, the

operation range of the proposed method is estimated to be rather wide with up to hundreds of

GHz in frequency and tens of nanometers in wavelength. The wavenumber selectivity can also be

increased, in principle to arbitrary values, by using a large number of fingers. Combined with the

tunability of the exact magnon-phonon anticrossing point (via an applied field, for example) across

a broad range of frequencies and wavevectors, the proposed experimental method is well within

the range of the contemporary state-of-the-art technology.
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z

FIG. 7. Modeling the acoustic output of an interdigital transducer within the delta function model. An

applied voltage generates charges on the metallic electrodes via the capacitive effect. The accumulated

charge (or equivalently electric field) is converted into strain via the piezoelectric effect.

Frequency resolved acoustic output

To supplement the above qualitative discussion of the operating principles of an IDT, we now discuss

its frequency resolved excitation efficiency within the so-called delta function model (Fig. 7). This

model assumes that the charge accumulated on each finger is distributed uniformly and that the

acoustic output is a linear superposition of the strain produced by the full charge distribution. In

evaluating the strain (and thus the acoustic output) at a given point due to different fingers, the

phase difference due to wave propagation from the fingers needs to be accounted adequately. The

amplitude of the excited acoustic wave A(z, ω) at a position z is thus given by

A(z, ω) =α

∫
σ(ω, z′)e−ik(z−z

′)dz′, (5)

where α is the charge-strain coupling factor of the piezoelectric material and σ(ω, z′) is the charge

density accumulated at position z′. The acoustic output of the IDT is thus simply the Fourier

transform of the accumulated charge density. The square-wave like pattern of the accumulated

charge on the comb-like structure thus suggests a sinc function response.

Referring the readers to detailed derivations and discussion in Ref. 4, we simply present the key

result here. For an N -finger comb, the overall acoustic amplitude outside the IDT region becomes

A(ω, z) =iαQ
sin (kNl/2)

cos (kl/4)
sinc

(
l1
λ

)
eik(N−1)l/2 ei(ωt−kz), (6)

where Q is the charge on a single finger, l and l1 are defined in Fig. 7, and sinc(x) = sin(πx)/(πx).

The equation above fully describes all the design characteristics of the device. Its further analysis
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shows that the center or fundamental frequency ω0 is determined by the condition k0l = 2π (Note

that ω0 = ck0), while the bandwidth between the zeros in the response is given by ∆ω/ω0 = 2/N ,

in consistence with the qualitative discussion above.
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Insight into why superconductivity in pristine and doped monolayer graphene seems strongly suppressed
has been central for the recent years’ various creative approaches to realize superconductivity in graphene and
graphene-like systems. We provide further insight by studying electron-phonon coupling and superconductivity
in doped monolayer graphene and hexagonal boron nitride based on intrinsic phonon modes. Solving the
graphene gap equation using a detailed model for the effective attraction based on electron tight binding and
phonon force constant models, the various system parameters can be tuned at will. Consistent with results in
the literature, we find slight gap modulations along the Fermi surface, and the high-energy phonon modes are
shown to be the most significant for the superconductivity instability. The Coulomb interaction plays a major role
in suppressing superconductivity at realistic dopings. Motivated by the direct onset of a large density of states
at the Fermi surface for small charge dopings in hexagonal boron nitride, we also calculate the dimensionless
electron-phonon coupling strength there, but the comparatively large density of states cannot immediately be
capitalized on, and the charge doping necessary to obtain significant electron-phonon coupling is similar to the
value in graphene.

DOI: 10.1103/PhysRevB.101.214513

I. INTRODUCTION

The discovery of graphene has attracted massive attention
in condensed matter physics, stimulating an enormous number
of theoretical and experimental investigations into a class of
novel materials broadly denoted as Dirac materials [1–5].
Among their interesting properties is the Dirac-cone-shaped
electron band structure at half filling, enabling the study of
relativistic physics in a condensed matter setting [3,6–8].
However, the cone structure with a vanishing density of states
and Fermi surface at the Dirac point suppresses phenomena
such as superconductivity, which precisely rely on the exis-
tence of a Fermi surface.

In spite of this obstacle, there is a plethora of graphene-like
systems where superconductivity has been predicted or
observed. In carbon nanotubes and the carbon based fullerene
crystals also known as “buckyballs,” superconductivity was
observed already decades ago in crystals intercalated with
potassium [9,10]. Superconductivity is also well known
in graphite intercalation compounds [11–15], where the
interlayer interactions and the additional dopant phonon
modes enhance superconductivity [12]. A similar picture
arises also for intercalated bilayer graphene, where interlayer
interactions are crucial for the resulting superconductivity
[16,17]. In bilayer graphene, a different route to superconduc-
tivity is the magic angle twist approach [18–21], where strong
correlations are believed to play a key role. Superconductivity
has also been demonstrated in effectively one-dimensional
carbon nanotubes [22,23], which have strong screening of the
repulsive Coulomb interaction. In addition to these intrinsic
mechanisms, superconductivity may also be induced by
proximity [24–27]. There, the resulting superconductivity
in graphene will necessarily inherit extrinsic key properties
from the superconductor it is placed in proximity to [27].

Although superconductivity is already well established in
a multitude of these graphene-like systems, its observation
in monolayer graphene has proven very challenging. For
phonon-mediated superconductivity, the key quantity is the
dimensionless electron-phonon coupling (EPC) strength λ,
which is determined by both the density of states at the
Fermi level and the strength of the effective phonon-mediated
potential. The first challenge that has to be overcome is
therefore doping the system away from the Dirac point. The
primary ways of doing this are chemical doping [28–32] and
deposition of elements onto (or under) the graphene sheet
[33–43]. Using these methods, doping levels approaching
the van Hove singularity have been achieved [35]. Second,
one must make sure that λ has a sufficiently large value
at the achievable doping. Additional dopant phonon modes
and modifications of the electron band structure in decorated
monolayer graphene may enhance the electron-phonon cou-
pling strength [36,41–44], and in these systems, one has even
observed some evidence [43,45] for the desired monolayer
graphene superconductivity.

The EPC strength λ can be measured by examining kinks
and broadening in the electronic band structure using angular-
resolved photoemission spectroscopy (ARPES) [46–48]. At
realistic doping energies in the vicinity of the van Hove
singularity in the π band, λ values of the same order as in
many known conventional superconductors [49] have been
predicted and measured experimentally [48,50,51]. In light
of this, superconductivity in single-layer graphene with rea-
sonable critical temperatures does not seem inconceivable
even without dopant phonon modes and special electron band
structure modifications. Why superconductivity in monolayer
graphene remains so hard to achieve is therefore not entirely
clear.

2469-9950/2020/101(21)/214513(15) 214513-1 ©2020 American Physical Society
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In conventional superconducting materials, the Coulomb
interaction does not play a significant role in reducing Tc,
since the effective phonon-mediated potential is attractive
only in a small region around the Fermi surface, whereas
the repulsive Coulomb interaction has much longer Brillouin
zone variations. The mechanism at work, retardation, can be
seen by solving the gap equation with a simplified model
[52] for the combined potential. In graphene, however, we
do expect the Coulomb interaction [53] to reduce the critical
temperature significantly [41,44,54,55] due to the modest
electron-phonon coupling strength. A crude estimate of the
Morel-Anderson renormalization of the dimensionless EPC
strength λ shows that the renormalization is of the same order
as λ itself. A detailed study of phonon-mediated superconduc-
tivity in graphene is therefore necessary.

Eliashberg theory for doped monolayer graphene was de-
veloped in Ref. [55], where the pair scattering processes
within and between the Fermi surface segments centered
around the inequivalent Brillouin zone points K and K ′ were
accounted for explicitly. The authors estimate the critical
temperature based on the assumption of an isotropic gap,
Fermi surface averaged Coulomb interaction [41,53] in the
linear spectrum regime, and various estimates for the electron-
phonon coupling strength based on other works. The resulting
critical temperature is of order 10 K with the optimistic
estimates.

In Ref. [44], the electron-phonon coupling strength and
superconducting gap were calculated with anisotropic Eliash-
berg theory based on ab initio calculation of the quasimomen-
tum and energy dependent electron-phonon coupling strength.
Coulomb interaction effects are incorporated through a Morel-
Anderson pseudopotential, which is treated as a semiempirical
parameter. For n-type doping, they find that superconductivity
may be possible due to the presence of a free-electron-like
(FEL) band. For p-type doping, this band is not present, and
the Coulomb interaction seems likely to suppress supercon-
ductivity.

In this paper, we perform detailed calculations of the
electron-phonon coupling based on an electron tight binding
model and a phonon force constant model in the presence
of a Hubbard-type Coulomb interaction. We then solve an
anisotropic BCS-type gap equation, which should give rea-
sonable estimates for the superconducting properties due to
the relatively modest electron-phonon coupling strength. The
various system parameters in our model can easily be tuned
to investigate how various physical mechanisms affect the
superconducting properties. Understanding this is essential
in the pursuit of realizing superconductivity in monolayer
graphene based on the intrinsic in-plane phonon modes.

Our results show that superconductivity with an experi-
mentally measurable gap may be possible for large dopings
approaching the van Hove singularity. We find an electron-
phonon coupling strength and gap anisotropy qualitatively
similar and of the same order as in Ref. [44], and the Coulomb
interaction is shown to be crucial in reducing the critical tem-
perature of the system. We also look into the contributions to
the electron-phonon coupling from the various phonon modes
in the system [41], and identify the high-energy phonons as
the most significant for the superconducting instability in the
realistically achievable doping regime.

The two-dimensional material hexagonal boron nitride (h-
BN) was discovered shortly [2] after graphene [1] using

the same micromechanical cleavage technique to exfoliate
monolayers from the stacks of weakly interacting layers also
known as van der Waals materials. In many respects, the two
are very similar [56]. They have the same lattice structure
and a similar lattice constant, which makes h-BN a good
substrate for graphene [57,58] and suitable for graphene
heterostructure engineering [59]. Like graphene, it also has
strong chemical bonding, and a comparable phonon Debye
frequency [60]. Unlike graphene, however, boron nitride has
two different ions, boron and nitrogen, on the two honeycomb
sublattices. This has dramatic consequences for the electronic
band structure, since the Dirac cone in graphene is protected
by time-reversal and inversion symmetry. Breaking of the
latter symmetry therefore renders hexagonal boron nitride a
large-gap insulator [61].

The possibility of superconductivity in doped hexagonal
boron nitride is a lot less studied than in doped graphene, but a
recent density functional theory study [62] suggests that dec-
orated h-BN may become superconducting with a transition
temperature of up to 25 K. Although the dopant phonon modes
are again responsible for this relatively large transition tem-
perature, this also hints at possibilities for superconductivity
mediated by intrinsic in-plane phonon modes. Furthermore,
and very different from graphene, the parabolic nature of the
electron band close to the valence band maximum gives a
direct onset of a large density of states even at small charge
doping. Motivated by this, we use the same methodology as
in the graphene case to calculate the dimensionless electron-
phonon coupling strength λ for hexagonal boron nitride.
Due to suppression of the electron-phonon coupling matrix
element due to the small Fermi surface, however, this effect
cannot be capitalized on, and we find that h-BN has an
electron-phonon coupling strength similar to graphene.

In Sec. II of this paper, we first present the free electron and
the free phonon models for graphene briefly, followed by a
more thorough derivation of the tight binding electron-phonon
coupling. In Sec. III, we introduce and discuss the Hubbard-
type Coulomb interaction used in this paper. In Sec. IV, we
introduce the assumed pairing, resulting gap equation, and
effective phonon-mediated potential, before presenting the
numerical results for graphene in Sec. V. In Sec. VI, we
discuss some qualitative aspects of these results. Switching
to boron nitride in Sec. VII, we discuss how the opening of a
gap changes the band structure and electron-phonon coupling.
Finally, the paper is summarized in Sec. VIII.

II. ELECTRONS, PHONONS, AND ELECTRON-PHONON
COUPLING

We consider a model for electrons on the graphene lattice,
and allow for lattice site vibrations. For the electrons, we
use a nearest neighbor tight binding model [4] describing
the π bands, as explained in further detail in Appendix A.
Other bands are disregarded, since only the π bands are
close to the Fermi surface for realistically achievable doping
levels in graphene. For the phonons, we use a force constant
model with nearest and next-to-nearest neighbor couplings
as introduced in Refs. [63,64] and elaborated in Appendices
B and C. These models give a realistic band structure and
realistic phonon spectra.
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The electron-phonon coupling model is derived by assum-
ing the electrons to follow the lattice site ions adiabatically,
and by Taylor-expanding the overlap integral ti j in the hopping
Hamiltonian

H = −
∑

〈i, j〉,σ
(ti jc

†
iσ c jσ + H.c.) (1)

to linear order in the deviations. Here, c†
iσ and ciσ are creation

and annihilation operators for an electron at site i with spin
σ ∈ {↑,↓}. Considering only the nearest neighbor hoppings,
we obtain

ti+δA,i = t1 + (ui+δA − ui ) · ∇δt1(δ), (2)

where t1 is the nearest neighbor hopping amplitude, ui is the
ionic displacement of lattice site i from its equilibrium posi-
tion, and the overlap integral t1(δ) is regarded as a function
of the relative position δ of the two lattice sites i and i + δA,
where δA is the equilibrium nearest neighbor vector from the A
to the B sublattice. Due to the mirror symmetry about the line
connecting the lattice sites i and i + δA, the electron-phonon
coupling can be written as

Hel−ph = γ t1
d2

∑
i∈A,δA,σ

δA · (ui+δA − ui )(c
†
i+δA,σ

ci,σ + H.c.),

(3)
where γ = −d ln t1/d ln d is a dimensionless number of order
1, and d is the equilibrium nearest neighbor distance, which
we use as our unit of length. In quasimomentum space, this
gives the electron-phonon coupling

Hel−ph =
∑
k,q

∑
ηη′

∑
ν,σ

gηη′,ν
k,k+q(aqν + a†

−q,ν )c†
η′σ (k + q)cησ (k),

(4)

where aqν and a†
−q,ν are creation and annihilation operators

for in-plane phonons labeled by ν ∈ {0, 1, 2, 3}, and η, η′ =
± denote electron bands. To linear order in the lattice site
deviations, the out-of-plane phonon modes do not couple to
the electrons due to the assumed z → −z mirror symmetry of
the system [65]. The coupling matrix element gηη′,ν

k,k+q is given
by

gηη′,ν
k,k+q = g0√

NA

√
ω	

ωqν

∑
δA

(
δA

d

)[
eiq·δA eB

ν (q) − eA
ν (q)

]
× [eik·δA F ∗

Aη′ (k + q)FBη(k)

+ e−i(k+q)·δA F ∗
Bη′ (k + q)FAη(k)], (5)

where FDη(k) is the sublattice amplitude of electron band η

at quasimomentum k and follows from the diagonalization
of the free electron model, as elaborated in Appendix A.
Similarly, eD

ν (q) is the phonon polarization vector at sub-
lattice D ∈ {A, B} for the phonon mode (q, ν), and follows
from diagonalization of the in-plane phonon Hamiltonian (see
Appendix B for details). The phonon mode frequencies are
denoted by ωqν , NA is the number of lattice sites on the A
sublattice, and the energy scale g0 is given by

g0 =
√(

h̄2

2Md2

)
1

h̄ω	

γ t1, (6)

where M is the carbon atom mass, and ω	 is a phonon energy
scale given by the optical phonon frequency at the 	 point
q = (0, 0).

To quantify the strength of the electron-phonon coupling,
one may introduce the dimensionless electron-phonon cou-
pling strength parameter [47,66]

λkη =
∑
qν

2

h̄ωqν

|gηη,ν

k,k+q|2δ(εk+q,η − εkη ), (7)

where εkη is the electron single-particle energy. We have
neglected interband scattering processes since the π band only
overlaps with the lower lying σ bands at unrealistic doping
levels [48,67].

Averaging λkη over the Fermi surface corresponding to
the energy of the incoming momentum often provides a
simple and useful tool for understanding the dependence of
the critical temperature of a superconductor on other system
parameters through the BCS formula kBTc ≈ h̄ωD exp(−1/λ),
where λ is the Fermi surface average of λkη.

III. COULOMB INTERACTION

To include the effect of the Coulomb interaction, we use
the repulsive Hubbard interaction

V C = u0

∑
i

ni↑ni↓, (8)

where niσ is the electron number operator. The on-site re-
pulsion u0 has been calculated from ab initio in undoped
graphene [54]. At significant doping of order 2 eV, as dis-
cussed in Appendix D, the screening length is a small fraction
of the nearest neighbor bond length, and we therefore disre-
gard longer ranged interactions.

For doped graphene, we expect the onset of π -band screen-
ing to reduce the on-site repulsion. A simple model for u0(μ)
is obtained by calculating the polarization bubble in the linear
spectrum approximation for intravalley scattering processes
[53]. The resulting polarization bubble is momentum indepen-
dent, and this gives

u0(μ) = u0(0)

1 + αu0(0)ρ(μ)Acell
, (9)

where ρ(μ) is the density of states per area in the linear
spectrum approximation, and Acell is the real-space area as-
sociated with the unit cell. We have introduced a factor α

to be able to study polarization strength dependence. The
doping dependence can also be interpreted as an interpolation
between the known on-site Coulomb repulsion u0(0) for pris-
tine graphene, and the known result of doping-independent
Coulomb pseudopotential μC at the Fermi surface [41,44],
requiring u0 ∝ 1/ρ(μ).

In momentum space, the Coulomb interaction takes the
form

V C = u0

2NA

∑
kk̃q

∑
η1···η4

c†
η1↑(k + q)c†

η2↓(k̃ − q)cη3↓(k̃)cη4↑(k)

(10)
in terms of the momentum band basis annihilation operators
cησ (k).
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FIG. 1. (a) Electron spectrum for the π bands of graphene in a tight binding hopping model. (b) Phonon spectrum for freestanding graphene
in the force constant model. In-plane modes are shown in blue, with out-of-plane modes in green. At any point in the Brillouin zone, the in-plane
phonon modes are labeled according to energy.

IV. PAIRING AND GAP EQUATION

The in-plane phonons yield an effective interaction be-
tween the electrons in the system that may cause pairing and
superconductivity. Assuming spin-singlet pairing at ±k and
considering only the electron band π−, the relevant interaction
can be written in the form

V =
∑
kk′

Vkk′c†
−↑(k′)c†

−↓(−k′)c−↓(−k)c−↑(k) (11)

with a potential Vkk′ that contains contributions both from the
Coulomb potential and an effective phonon-mediated poten-
tial V ph−m

kk′ , so that

Vkk′ = V C
kk′ + V ph−m

kk′ . (12)

The Coulomb contribution is given by Eq. (10). The ef-
fective phonon-mediated potential follows from a canonical
transformation [68], and is given by

V ph−m
kk′ =

∑
ν

|g−−,ν
k,k+q|2

2h̄ωqν

(εk+q − εk )2 − (h̄ωqν )2
, (13)

where the quasimomentum q is defined by k′ = k + q.
Due to the singlet pairing assumption, the gap has to be

symmetric under k → −k, and therefore, the potential Vkk′

can be replaced with the symmetrized potential

V symm
k,k′ = 1

2 (Vk,k′ + Vk,−k′ ), (14)

which is symmetric under k → −k and k′ → −k′, as well as
interchange of the incoming and outgoing momenta k and k′.

To proceed, we have to solve the gap equation

�k = −
∑

k′
V symm

kk′ χk′�k′ , (15)

with susceptibility

χk = tanh βEk/2

2Ek
, Ek =

√
ξ 2

k + |�k|2, (16)

where Ek is the quasiparticle excitation energy, and ξk =
εk − μ is the single-particle energy εk measured relative to
the Fermi surface at chemical potential μ.

To find the critical temperature and the gap structure �k
just below the critical temperature, it suffices to neglect the
gap in the excitation spectrum Ek in the gap equation. This
gives an eigenvalue problem linear in the eigenvectors and

nonlinear in the eigenvalue, which is solved as discussed
in Appendix E to obtain the critical temperature and gap
momentum dependence.

V. GRAPHENE NUMERICAL RESULTS

A. Parameter values and free spectra

We set the equilibrium electron hopping amplitude t1 to
2.8 eV [53]. The resulting electron band structure for the π

bands of graphene is shown in Fig. 1(a). For the phonon force
constant model used to derive the phonon spectrum, we use
the same parameter values as Ref. [63], and the resulting
excitation spectrum is shown in Fig. 1(b).

The dimensionless parameter γ can be estimated from ab
initio, and is roughly 2.5 [69]. This gives reasonable values
[50] for the dimensionless electron-phonon coupling strength
λ. With phonon energy scale h̄ω	 = 0.20 eV and nearest
neighbor distance d = 1.42 Å [70], this gives g0 = 0.15 eV.
All system parameters involved in the calculation of the
energy scale are tabulated in Appendix F.

B. Electron-phonon coupling strength and effective potential

Using the parameter values in the preceding subsection,
one may calculate the electron-phonon coupling strength λ

as function of the chemical potential μ. This is shown in
Fig. 2(a), with contributions from the four in-plane phonon
modes shown in color. The parameter λ incorporates both the
strength of the effective potential at the Fermi surface and
the density of states. Since the latter has a very systematic
variation with the chemical potential, λ and the electronic den-
sity of states have similar profiles. In the low-doping regime,
the optical phonon modes, and the highest-energy mode in
particular, dominate the electron-phonon coupling strength
completely. Figure 2(b) shows the angular dependence of λk
on the Fermi surface for various dopings. As shown also in the
inset, the Fermi surface anisotropy is increasing with doping,
reaching values of order 2% close to the van Hove singularity.

The effective potential V ph−m
kk′ is shown in Fig. 3(a) for

incoming momentum k at various outgoing momenta k′. The
potential is attractive in a finite region around the Fermi
surface corresponding to the energy of the incoming momen-
tum, and becomes repulsive when the kinetic energy transfer
exceeds the phonon energy scale.
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FIG. 2. (a) Calculated electron-phonon coupling strength λ averaged over the Fermi surface (black) and electronic density of states
(magenta) as function of chemical potential. Since λ is highly dependent on the density of states but also dependent on the electron-phonon
coupling element |g−−,ν

kk′ |, the two have similar but not identical shapes. The contributions to λ from the various in-plane phonon modes are
shown in colors. (b) Electron-phonon coupling strength along the Fermi surface normalized to the mean value for various doping levels. As
shown in the inset, the electron-phonon coupling strength modulations are increasing with doping toward the van Hove singularity.

The potential has contributions from the four in-plane
phonon modes, and these contributions are shown in Fig. 3(b)
for the incoming momentum as indicated in Fig. 3(a). The
size of the region with attractive interaction is determined
by the energy of the relevant phonon mode. The optical
high-energy phonon modes therefore give the largest attrac-
tive Brillouin zone area. The effective potential for intra-
and intervalley scattering processes on the Fermi surface is
shown in Fig. 3(c). Comparing the effective potential con-
tribution from the various in-plane phonon modes on the
Fermi surface reveals that the high-energy phonon modes
corresponding to high mode index or large quasimomen-
tum scattering also give rise to a stronger attractive poten-
tial at the important Fermi surface than their low-energetic
counterparts.

C. Solutions of the gap equation

To contain the divergences of the effective electronic po-
tential, we introduce an energy cutoff � = 6 eV in the po-
tential. Solving the linearized self-consistent equation (15) in
the full Brillouin zone as discussed in Appendix E, we obtain
the gap structure at the critical temperature Tc for which the
superconducting instability occurs. This is shown in Fig. 4,
where the superconducting gap at a given point is given by
color. The gap equation solution shows that the gap has a
given sign within the attractive region of the Brillouin zone for
incoming momenta at or close to the Fermi surface. Outside
this region, the gap changes sign, and subsequently decays
to a roughly constant value far away from the Fermi surface.
Furthermore, the gap has modulations of the same order as λk
along the Fermi surface.
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FIG. 3. (a) Graphene effective interaction V ph−m
kk′ in eV for incoming electron momentum k (yellow dot) at outgoing momentum k′

indicated by position in the plot. There can be both intra- (green) and intervalley (magenta) scattering processes to the Fermi surface. The
potential is attractive close to the Fermi surface, before it turns repulsive at a characteristic phonon frequency, and then decays to zero.
(b) Decomposition of effective potential in phonon mode contributions. The size of the attractive region clearly depends on the phonon
energy. (c) Effective potential Vkk′ (black) for incoming momentum k given by the yellow dot in (a) to outgoing momentum given by angle θ1

for intravalley and θ2 for intervalley scattering processes. Phonon mode contributions are shown in colors. Although the electron-phonon
coupling strength λk has only slight modulations, the effective potential is strongly dependent on the scattering momentum for a given
incoming momentum.
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FIG. 4. Typical superconducting gap structure at the indicated chemical potential μ just below the superconducting transition at critical
temperature Tc. (a) Hexagonal Brillouin zone of the triangular Bravais lattice in blue. The rhombus (black) contains an equivalent set of
quasimomenta. The green contours indicate the Fermi surface, and the short orange line is perpendicular to the Fermi surface. (b) Position on
the Fermi surface is specified with the angle θ . (c) Gap structure around the point K ′ in color for the given doping and on-site repulsion. The
insets show the gap structure perpendicular to (orange) and along (green) the Fermi surface.

The critical temperature is shown as a function of doping
in Fig. 5(a). As expected, the critical temperature increases
rapidly with increasing doping due to the increasing electron-
phonon coupling strength.

The presence of the Coulomb interaction decreases the
critical temperature significantly. This is shown in Fig. 5(b),
which shows the dependence of the critical temperature on the
on-site Coulomb repulsion strength u0. The data points from
the solution of the gap equation have been fitted to the simple
functional form that is expected from the Morel-Anderson
model [52], as discussed in Appendix G.

VI. DISCUSSION OF GRAPHENE RESULTS

In conventional superconductors, the effect of a Coulomb
interaction is small, and the quantitative effect on the criti-
cal temperature can be incorporated through renormalization
[52,71] of the electron-phonon coupling strength λ in the
simple BCS result kBTc ≈ h̄ωD exp(−1/λ) according to λ →
λ − μ∗, where

μ∗ = N0u

1 + N0u ln(W/h̄ωD)
. (17)

FIG. 5. Critical temperature for the superconducting transition. (a) Critical temperature as function of doping with Hubbard repulsion
given by Eq. (9) for various polarization strengths parametrized by α. The green dashed line indicates the van Hove singularity. (b) Critical
temperature as function of on-site interaction u0. The calculated data points are fitted to the simple functional form (line) that follows from the
Morel-Anderson model. The black points correspond to points in (a).
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Here, u is the constant repulsive interaction strength that is
added on top of the attractive interaction close to the Fermi
surface, N0 is the density of states at the Fermi surface, W
is the electron bandwidth, and ωD the Debye frequency. For
strong Coulomb repulsion, the renormalization is suppressed
down to values of 1/ ln(W/h̄ωD), so that Cooper pair forma-
tion is possible despite the Coulomb repulsion being much
stronger than the attraction at the Fermi surface.

In the graphene case, simple estimates for the renormaliza-
tion μ∗ give a value of 0.2 in the presence of a strong Coulomb
interaction. This is larger than, but not very far away from, es-
timates [41,44] based on the long-wavelength limit, arriving at
0.10–0.15. Since the simple Morel-Anderson model predicts
the absence of superconductivity for μ∗ � λ and we expect to
be quite close to this situation, we would expect the Coulomb
interactions to have a dramatic effect on the critical temper-
ature of the superconducting transition. Our detailed solution
of the gap equation in the presence of the Coulomb interaction
confirms this picture. Although boosting the electron-phonon
coupling λ would be essential for realizing superconductivity
in graphene or graphene-like materials, within the realistic
regime for λ, the repulsive Coulomb interaction also has to
be taken into account explicitly.

Calculations of the critical temperature are notoriously
unreliable. On the other hand, the Fermi surface structure
of the gap calculated in this paper should give reasonable
estimates for the k-space modulation of the gap on the Fermi
surface. The modulations we find within our methodology are
similar and of the same order as in Ref. [44]. The modulations
are small, but could in principle be measured by ARPES.

In our calculations, we have considered the electron and
phonon band structures of pristine graphene. The presence of
intercalant atoms may affect the electron band structure and
phonon modes significantly, and this would be dependent on
the method chosen to dope graphene [42,44]. To understand
why realizing superconductivity in graphene is so challeng-
ing, it is nevertheless useful to study superconductivity based
on the intrinsic phonon modes and electronic properties.

In practice, graphene is often mounted on a substrate. A
small substrate coupling can be included in our phonon spec-
trum analysis by adding an on-site potential quadratic in the
displacement. This modifies the phonon spectrum by lifting
the low-energy modes to finite values. Our analysis clearly
indicates that it is primarily the high-energy phonons that are
responsible for the superconducting instability. Thus, we do
not expect a slight alteration of the low-energy phonon modes
to significantly impact our results. Since the introduction of
a substrate may break the z → −z mirror symmetry of the
system, the out-of-plane modes could in principle also give
some contribution to the effective potential, but we expect this
to be a higher-order effect in the lattice site deviations.

VII. BORON NITRIDE

So far, we have only considered graphene, but our method-
ology can easily be carried over to other graphene-like materi-
als. In particular, we consider hexagonal boron nitride (h-BN),
which is a two-dimensional material very similar to graphene,
but where the atoms on the two different sublattices are boron
and nitrogen. The associated sublattice symmetry breaking

opens a gap in the electronic spectrum, and in this section,
we discuss how this affects the electron-phonon coupling.

Due to the sublattice symmetry breaking of boron nitride,
the electron tight binding model in Eq. (1) has to be modified
by the addition of a sublattice asymmetric potential term

Himb = �BN

2

⎛
⎝∑

i∈A

c†
i ci −

∑
j∈B

c†
j c j

⎞
⎠. (18)

The resulting electron band structure is shown in Fig. 6(a),
where t1 = 2.92 eV and �BN = 4.3 eV [61,72].

For the phonon excitation spectrum, we again use a force
constant model as outlined in Appendix B. Values for the
boron nitride force constants are obtained by fitting the ex-
citation energies at the high-symmetry points to values from
density functional theory values in Ref. [60], as discussed in
Appendix C. The resulting excitation spectrum is shown in
Fig. 6(b).

As in the graphene calculation, the electron-phonon cou-
pling is obtained by Taylor-expanding the hopping element
integral in Eq. (1), and the resulting electron-phonon coupling
matrix element is similar [73] to Eq. (5). To compare the
boron nitride results with graphene, we set the value of the
dimensionless quantity γ to the same value that was used
for graphene. All quantities involved in the calculation of
the electron-phonon coupling energy scale g0 are listed in
Appendix F.

Averaging the dimensionless electron-phonon coupling
strength λk over the Fermi surface at chemical potential μ

gives the result shown in Fig. 7. The inset shows the same
electron-phonon coupling λ as function of the charge doping
n corresponding to each chemical potential μ for both boron
nitride and graphene.

Unlike the graphene electron-phonon coupling strength
shown in Fig. 2, the electron-phonon coupling strength of
boron nitride is qualitatively different from the electronic den-
sity of states. At the valence band edge, the electron density of
states has a discontinuous jump, whereas λ increases linearly.
Due to the direct onset of a large density of states in boron
nitride, it is tempting to assert that even small charge dop-
ings could quickly give rise to appreciable electron-phonon
coupling strengths. This is not the case. The electron-phonon
coupling matrix element |g−−,ν

kk′ |2 in Eq. (5) also plays an
essential role for the overall value of the electron-phonon
coupling strength, and is suppressed when the Fermi surface
is small. As a result of this, graphene and boron nitride have
similar electron-phonon coupling strengths at a given charge
doping.

In light of these results, we would expect the difficulty
of realizing intrinsic phonon-mediated superconductivity in
boron nitride to be similar to that for graphene. Further-
more, the importance of the electron-phonon coupling matrix
element underlines the importance of treating the electron-
phonon coupling in a detailed manner.

VIII. SUMMARY

In summary, we have studied electron-phonon coupling in
graphene and hexagonal boron nitride based on an electron
tight binding and a phonon force constant model giving
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FIG. 6. (a) Electron spectrum for the π band of hexagonal boron nitride (h-BN) in a tight binding hopping model. Contrary to graphene,
the band structure is gapped due to sublattice asymmetry. (b) Phonon spectrum for freestanding h-BN in force constant model. In-plane modes
are shown in blue, with out-of-plane modes in green.

realistic electron and phonon spectra. The ability to tune the
relevant system parameters in this detailed model provides a
platform for investigating the superconducting properties of
graphene and graphene-like systems.

In graphene, our results indicate that superconductivity
may be possible at sufficiently large doping. We have identi-
fied the phonon modes which couple most strongly to π -band
electrons, which are the electronic states of most relevance
for realistic doping levels in graphene. These modes are the
high-energy in-plane phonon modes. Solving the gap equa-
tion assuming singlet pairing, we find the critical tempera-
ture and the superconducting gap structure in the Brillouin
zone. The gap has small modulations along the Fermi sur-
face, but is surprisingly uniform even for highly anisotropic
Fermi surfaces. Introducing the Coulomb interaction gives a
dramatic suppression in the critical temperature, in contrast
with the moderate reduction in most normal superconductors.
We understand this in terms of the Morel-Anderson model,
where the calculated electron-phonon coupling strength and
estimates for the renormalization are of the same order. En-
hancing the electron-phonon coupling strength is important

FIG. 7. Electron-phonon coupling strength λ for boron nitride
averaged over the Fermi surface at chemical potential μ. The con-
tributions to the total electron-phonon coupling (black) from the
various phonon modes are shown in colors. The density of states is
shown in magenta. A given energy doping μ corresponds to a charge
doping n per site, and the inset shows the electron-phonon coupling
as a function of this charge doping for graphene and boron nitride.

to realize phonon-mediated superconductivity in monolayer
graphene, but the effect of the Coulomb interaction also has
to be discussed in detail.

Motivated by the direct onset of a large density of states in
the gapped hexagonal boron nitride, we also calculate the di-
mensionless electron-phonon coupling there within the same
framework. In spite of the large density of states, however, the
charge doping required to obtain a sizable electron-phonon
coupling is similar to the doping required in graphene since
the electron-phonon coupling matrix element is suppressed
due to the small Fermi surface at small charge doping.
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APPENDIX A: ELECTRON BAND STRUCTURE

To calculate the graphene electron band structure, we use
the nearest neighbor tight binding Hamiltonian [4],

Hel = −t1
∑
〈i j〉,σ

(c†
iσ c jσ + H.c.), (A1)

as our starting point. By introducing the Fourier-transformed
operators, this model becomes

Hel =
∑
k,σ

(
c†

kσA c†
kσB

)
Mk

(
ckσA

ckσB

)
, (A2)

where the matrix Mk is given by

Mk =
(

0 −t1
∑

δA
eik·δA

−t1
∑

δA
e−ik·δA 0

)
, (A3)

and δA are the nearest neighbor vectors from sublattice A to
sublattice B. Diagonalizing this matrix, we get eigenvectors
FDη(k) for the two eigenvalues εkη corresponding to the two
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π bands, where η is the band index. Thus, the D-sublattice
Fourier mode is given by

ckσD =
∑

η

FDη(k)ckση, (A4)

where η denotes the band and an eigenvector of the matrix Mk.
This provides the definition of the factors FDη(k) appearing in
the main text.

APPENDIX B: PHONON MODEL DIAGONALIZATION

The phonon dispersion relation calculation in this paper
follows Refs. [63,64], where the phonon excitation spectrum
is calculated for graphene. We take the same approach, and
use a force constant model with up to third nearest neighbor
interactions to calculate the dispersion relations for graphene
and boron nitride. Since boron nitride has a broken sublat-
tice symmetry, we have to account for the different sublat-
tice masses, and the intersublattice force constants become
sublattice dependent. In this Appendix, we discuss how the
force constant model can be diagonalized, leaving the discus-
sion of the force constants and their symmetry relations to
Appendix C.

We write the phonon Hamiltonian in the form

Hph =
∑

j

P2
j

2Mj
+ 1

2

∑
i, j

∑
μν

�
κiκ j
μν (δi j )u

κi
iμu

κ j

jν, (B1)

where i, j are lattice site indices on the honeycomb lattice,
κi, κ j are the corresponding sublattices, μ, ν are Cartesian
indices, and uκi

iμ is the deviation of site i on the sublattice
κi (uniquely determined by i) in direction μ. The deviation
coupling constants are �

κiκ j
μν (δi j ). In the kinetic term, P j is the

momentum of the particle at site j, and Mj is the mass.
We next express the phonon Hamiltonian in terms of un-

coupled harmonic oscillators. To do this, we first symmetrize
the sublattice sectors of the kinetic term. Introducing effective
mass M̃ = √

MAMB and relative masses μD given by MD =
μDM̃, we introduce rescaled deviations and momenta

P̃D = PD/
√

μD, ũD = uD√
μD, (B2)

where the rescaling of the deviations is chosen to retain
the canonical commutation relations [uiμ, Pjν] = ih̄δi jδμν . To
proceed, we rewrite the Hamiltonian in Fourier space, obtain-
ing

Hph = 1

2M̃

∑
κ,q

P̃κ
−qP̃κ

q + 1

2

∑
κκ ′

∑
μν

∑
q

Dκκ ′
μν (q)ũκ

−q,μũκ ′
qν,

(B3)
where κ, κ ′ are sublattice indices and the matrix elements
Dκκ ′

μν (q) are given by

Dκκ ′
μν (q) = 1√

μκμκ ′

∑
j∈κ ′

�κκ ′
μν

(
δκ

j

)
eiq·δκ

j , (B4)

where δκ
j is the vector from a lattice site on sublattice κ to

lattice site j on sublattice κ ′.
Using the symmetries of the system, as discussed further in

Appendix C, the number of independent real-space coupling
constants can be reduced drastically. Here, we only point out
the effect of the mirror symmetry under z → −z. Considering

the lattice deviation coupling term in the phonon Hamiltonian,
this symmetry implies that there cannot be any coupling
between the in-plane and the out-of-plane modes, and hence
that the phonon eigenmodes are either purely in-plane or
out-of-plane. The potential energy term can thus be written
in the form Vph = V z

ph + V xy
ph , where

V xy
ph = 1

2

∑
q

(
ũxy

q

)†
Mxy

q ũxy
q ,

V z
ph = 1

2

∑
q

(
ũz

q

)†
Mz

qũz
q,

(B5)

and the deviations ũq are given by

ũz
q = (

ũA
q,z ũB

q,z

)T
,

ũxy
q = (

ũA
q,x ũA

q,y ũB
q,x ũB

q,y

)T
.

(B6)

The matrices Mz
q and Mxy

q are 2 × 2 and 4 × 4 matrices,
and the matrix elements for graphene are given in Ref. [63].
For the boron nitride case, similar expressions are derived by
inserting values for the coupling constants using the symmetry
relations and force constants in Appendix C.

To obtain a system of uncoupled harmonic oscillators, we
introduce a new basis vν

q given by

ũD
qμ =

∑
ν

[
eD
ν (q)

]
μ
vν

q, (B7)

in which the phonon potential energy is diagonal. Here,
[eν (q)]μ is given by the eigenvectors of Mk, ν is an eigenvec-
tor label, eD

ν (q) is the phonon polarization vector on sublattice
D at quasimomentum q, and the index μ picks out a Carte-
sian component. This relation provides a definition for the
phonon polarization vectors occurring in the electron-phonon
coupling in the main text.

Since the kinetic term remains diagonal in the new basis,
the system is reduced to a system of uncoupled harmonic
oscillators, from which we obtain [75] the excitation spectrum
through ω2

qν = dqν/M̃, where dqν are the eigenvalues of D(q).
In our paper, the phonon spectrum and associated polar-

ization vectors eD
ν (q) are determined using numerical diag-

onalization. At the high-symmetry point K, one may derive
reasonably simple expressions for the eigenfrequencies.

APPENDIX C: FORCE CONSTANTS AND SYMMETRIES

The discussion in this Appendix is a generalization of the
graphene force constant model in Refs. [63,64] to the case of
honeycomb lattices without sublattice symmetry. We provide
an overview of how the symmetries of the system impose rela-
tions between the force constants in the model, and determine
the force constants by fitting the force constant dispersion
relation to density functional theory results in Ref. [60].

1. Chiral basis and double counting

The phonon Hamiltonian can be written in the form

Hph =
∑

j

P2
j

2Mj
+ 1

2

∑
i, j

∑
μν

�
κiκ j
μν (δi j )u

κi
iμu

κ j

jν,
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FIG. 8. Labeling of vectors to neighboring sites on the honey-
comb lattice.

where
∑

i denotes the sum over all lattice sites on the honey-
comb lattice, and all bonds (i, j) are being double counted. To
symmetrize these contributions, we may therefore impose

�
κiκ j
μν (δi j ) = �

κ jκi
νμ (δ ji ), (C1)

where the indices μ, ν are initially considered to be Cartesian.
We may however also introduce the chiral basis

ξ = x + iy, η = x − iy, (C2)

so that μ, ν ∈ {ξ, η, z}. Under rotation with angle φ around
the z axis, the new coordinates do not mix, and transform
according to

ξ → ξeiφ, η → ηe−iφ. (C3)

In terms of the old coupling coefficients, the coefficients
for the deviations in the new basis are given by

�ξξ = (�xx − �yy − i�xy − i�yx )/4,

�ηη = (�xx − �yy + i�xy + i�yx )/4,

�ξη = (�xx + �yy + i�xy − i�yx )/4,

�ηξ = (�xx + �yy − i�xy + i�yx )/4.

(C4)

Now, both deviations and coupling constant are in general
complex.

2. Force constant symmetry relations

The hexagonal boron nitride system has infinitesimal trans-
lation symmetry, Bravais lattice translation symmetry, in-
finitesimal rotation symmetry, lattice C3 rotation symmetry,
σz mirror symmetry, and, with the choice of lattice orienta-
tion indicated in Fig. 8, σx mirror symmetry. We use these
symmetries to reduce the number of independent coupling
coefficients.

a Translation symmetries

From translation symmetry with a Bravais lattice vector a,
it follows trivially, as already indicated by the force constant
notation, that

�
κiκ j
μν (δi j ) = �

κiκ j
μν (δi+a, j+a ). (C5)

Due to the infinitesimal translation symmetry of a single
graphene sheet under uκi

iμ → uκi
iμ + aμ, it furthermore follows

that ∑
j

�
κiκ j
μν (δi j ) = 0. (C6)

Following Refs. [63,64], we call this the stability condition,
and use it to determine the local force constants with δi j = 0.

Although infinitesimal lattice translation symmetry holds
for a freestanding graphene sheet, it breaks down if the
monolayer sheet is placed on a substrate. This would give
rise to additional free parameters through the force constants
�DD

μν (0).

b Rotation symmetries

Application of the C3 symmetry under 3-fold rotations R3

gives force constant relations

�
κiκ j

ξξ (R3δi j ) = �
κiκ j

ξξ (δi j )e
+i2π/3,

�
κiκ j
ηη (R3δi j ) = �

κiκ j
ηη (δi j )e

−i2π/3,
(C7)

whereas �
κiκ j
μν (R3δi j ) = �

κiκ j
μν (δi j ) if μ and ν are not equal

chiral in-plane components, as in the two cases listed above.
We also note that the infinitesimal rotation symmetry does

not give restrictions on the force constants in addition to the
ones we have already discussed.

c Mirror symmetries and complex conjugation

The mirror symmetry σz implies that there cannot be any
coupling between the in-plane and the out-of-plane devia-
tions, i.e.,

�ξz = �ηz = �zξ = �zη = 0. (C8)

As already discussed in Appendix B, this completely decou-
ples the in-plane and the out-of-plane phonon modes.

The σx mirror symmetry implies

�
κiκ j
μν (δi j ) = �

κiκ j

μ̄ν̄ (σxδi j ), (C9)

where ξ̄ = η, η̄ = ξ , and z̄ = z.
Finally, we note that the requirement of a real potential

gives the relation

�
κiκ j
μν (δi j ) = �

κiκ j

μ̄ν̄ (δi j )
∗, (C10)

and this can be combined with the above mirror symmetry σx

to obtain

�
κiκ j
μν (δi j ) = �

κiκ j
μν (σxδi j )

∗. (C11)

For the case of neighbor vectors parallel to the y axis, invari-
ance of the neighbor vector under the mirror symmetry σx

implies that the coupling constant has to be real.

3. Boron nitride force constants

Applying the above symmetry relations, the independent
force constants in the system are listed in Table I along the
bonds illustrated in Fig. 8. The graphene force constants are
taken from Ref. [63], and the boron nitride force constants
have been obtained by fitting the phonon frequencies at the
high-symmetry points to density functional theory results
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TABLE I. Force constants for graphene and boron nitride
phonons up to next-to-nearest neighbor for graphene and third near-
est neighbor for boron nitride. The graphene force constants are taken
from Ref. [63]. The tabulated values give �/M̃ in spectroscopic units
of 105 cm−2, related to frequency through factors of 2πc, where c is
the speed of light.

Parameter Coupling R/C Graphene h-BN

α �AB
ξη (α1) R −4.046 −3.15

β �AB
ξξ (α1) R 1.107 1.69

γA �AA
ξη (β1) C −0.238 −0.32 + 0.05i

γ ∗
B �BB

ξη (β1) C −0.238 −0.36 − 0.07i

δA �AA
ξξ (β1) R −1.096 −0.68

δB �BB
ξξ (β1) R −1.096 −0.66

α′ �AB
ξη (γ1) R 0.00

β ′ �AB
ξξ (γ1) R −0.23

αz �AB
zz (α1) R −1.176 −1.06

γ A
z �AA

zz (β1) R 0.190 0.00

γ B
z �BB

zz (β1) R 0.190 0.24

in Ref. [60]. Other force constants in the system can be
determined from the force constant symmetry relations listed
above.

Note that contrary to what Refs. [63,64] claim, the force
constants γD are in general complex, whereas the other inde-
pendent force constants up to third nearest neighbors, includ-
ing δD, are real. This can be seen from the symmetry relation
in Eq. (C11) and the double counting symmetrization relation
in Eq. (C1), as well as the mirror symmetry σx in combination
with the Cartesian component expressions in Eq. (C4).

APPENDIX D: COULOMB INTERACTION MODEL

The Coulomb interaction in a lattice model such as ours
can be modeled with the Hubbard type interaction

V C = u0

∑
i

ni↑ni↓ +
∑
〈i, j〉

ui jnin j . (D1)

In this Appendix, we discuss how one may model the doping
dependence of the nonlocal interaction strength parameters.
The doping dependence of the on-site repulsion is discussed
in the main text.

The on-site and two nearest neighbor interaction strength
parameters were calculated for pristine graphene in Ref. [54]
based on density functional theory and the constrained ran-
dom phase approximation. Any pristine interaction strength
parameter can therefore be modeled through the combination
of these values and Coulombic decay [76].

At finite doping, we expect the onset of π -band screening
to reduce the interaction coefficients ui j (μ). To obtain an esti-
mate for the nonlocal interaction parameters, one may write

ui j (μ) = V sc
μ (ri j )

V0(ri j )
ui j (0), (D2)

where V0(r) is the potential screened only by the σ bands
and the substrate, and V sc

μ (r) is the potential screened also
by π -band Dirac electrons. In the long-wavelength limit, the

screened interaction is [42,53]

V sc
μ (q) = 1

2ε0

(
e2

q + q0

)
, (D3)

where the Thomas-Fermi momentum q0 is given by [42]

q0 = e2|μ|
π h̄2v2εrε0

. (D4)

Here, v is the Dirac cone velocity, and εr a relative permittivity
depending on the substrate [53]. Inserting parameter values,
we obtain the screening length 1/q0d = 0.43εr eV/|μ|.

In real space, the screened interaction takes the form

V sc
μ (r) = 1

4πεrε0

{
1

r
− π

2
q0

[
H0(q0r) − N0(q0r)

]}
, (D5)

where H0(x) is the Struve function and N0(x) the Bessel func-
tion of the second kind [77]. Through asymptotic expansion
of the Struve and Bessel functions [78], one may show that
the screened potential has long-distance behavior V sc

μ (r) ∼
1/r3. The screening length 1/q0 determines the crossover
point to this rapidly decaying long-distance behavior from the
Coulombic small-distance behavior.

Since the screening length is a small fraction of the lattice
constant for significant doping of order 2 eV, we keep only the
on-site Hubbard interaction. For this on-site term, Eq. (D2)
can no longer be used, and as discussed in Sec. III of the
main paper, we instead use the direct polarization bubble
renormalization.

APPENDIX E: SOLVING THE GAP EQUATION

The gap equation is given by

�k = − 1

ABZ

∫
d2k′ Ṽ symm

kk′ χk′�k′ , (E1)

where ABZ is the Brillouin zone area and we let Ṽ symm
kk′ =

NAV symm
kk′ .

To find a proper solution to the discretized version of this
gap equation, it is important to have sufficiently good resolu-
tion in the important regions of the Brillouin zone. The factor
χk is peaked around the Fermi surface with a peak width ∝ T
and necessitates a good resolution there. Furthermore, good
resolution is also required in the regions around the corners of
the triangle-like Fermi surface at significant doping. To make
sure of this, we select points on a uniform grid in the Brillouin
zone, add additional points close to the Fermi surface, and
further additional points close to the Fermi surface corners.

To solve the gap equation, we rewrite the gap equation
in the integral form of Eq. (E1) in terms of a weighted sum
over the points described in the previous paragraph. To find
the appropriate weights wk, we split the Brillouin zone into
triangles {t} with the points {k} as vertices using Delaunay
triangulation. Denote the area of a triangle t by At . The weight
of a single point then becomes one third of the sum of the areas
of all the triangles that has the point as a vertex, i.e.,

wk =
∑

t

Atδk∈t/3, (E2)

where δk∈t is 1 if k is a vertex in the triangle t and 0 otherwise.
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The gap equation then becomes

�k = − 1

ABZ

∑
k′

Ṽ symm
kk′ wk′χk′�k′ . (E3)

The symmetrized potential Ṽ symm
kk′ is symmetric under the

exchange of incoming and outgoing momenta, but to sym-
metrize the eigenvalue problem in this exchange, we multiply
this equation with

√
wkχk on both sides, to obtain a gap

equation in the form

�̃k =
∑

k′
Mkk′ (β )�̃k′ , (E4)

where we introduced the weighted gap �̃k = √
wkχk�k, and

the matrix

Mkk′ = − 1

ABZ

(√
wkχkṼ symm

kk′
√

wk′χk′
)

(E5)

is symmetric in the interchange of k and k′.
To reduce the size of the matrix M and improve computa-

tional efficiency, we split the Brillouin zone into small trian-
gles similar to the shaded red triangle in Fig. 4(a), and assume
that the gap takes the same value at corresponding points
in all the triangles. The effective potential corresponding to
a scattering process within the shaded red triangle is then
the sum of contributions for scatterings to outgoing momenta
in all the small triangles which correspond to the outgoing
momentum within the shaded triangle. This reduction of the
problem excludes gap equation solutions without the full
symmetry of graphene, but we have checked that we obtain
the same solutions by solving the gap equation in the full
Brillouin zone.

We now have a matrix eigenvalue problem linear in the
eigenvectors and nonlinear in the eigenvalue. We find the gap
structure at the superconducting instability by determining
the smallest β, i.e., the largest temperature, for which the
largest eigenvalue of Mkk′ becomes 1. The corresponding
eigenvector must be a solution of our eigenvalue problem. The
critical temperature Tc = 1/βc is located using the bisection
algorithm.

APPENDIX F: PARAMETER VALUES

The parameter values used in the electron tight binding
model and the electron-phonon coupling for graphene and
boron nitride are listed in Table II. The electron-phonon
coupling scale g0 can be written as

g0 = γ t1

√(
h̄2

2mea2
0

)
1

h̄ω	

(me

M

)(a0

d

)2
, (F1)

where me is the electron mass, and a0 the Bohr radius. This
quantity is calculated based on the listed parameter values,
and also given in the table.

APPENDIX G: MOREL-ANDERSON MODEL

The Morel-Anderson model is a simple model describing
the effect of a repulsive potential in the entire Brillouin zone
on top of an attractive potential in a small region around
the Fermi surface giving rise to superconductive pairing [52].

TABLE II. Values for the quantities involved in the calculation
of the electron-phonon coupling amplitude strength g0, where the
A sublattice of boron nitride is assumed to host boron and the B
sublattice nitrogen.

Quantity Graphene h-BN Description

d 1.42 Å 1.45 Å NN distance
t1 2.8 eV 2.92 eV Hopping amplitude
� 0 4.30 eV Band gap
h̄ω	 0.20 eV 0.17 eV Phonon energy scale
M̃ 12.0 u 12.3 u Effective mass
μA 1 0.88 Relative mass, A subl.
μB 1 1.14 Relative mass, B subl.
γ 2.5 2.5 −d ln t1/d ln d
me 5.49 × 10−4 u Electron mass
1 Ry 13.6 eV Rydberg energy
a0 0.53 Å Bohr radius
g0 0.15 eV 0.16 eV El-ph coupling scale

This model illustrates why there can be a superconducting
instability even though the interaction potential is repulsive
even close to the Fermi surface.

In the Morel-Anderson model, one assumes that the poten-
tial Vkk′ occurring in the gap equation takes the form Vkk′ =
V rep

kk′ + V attr
kk′ with

V rep
kk′ =

{
u, for −W � ξk, ξk′ � W,

0, otherwise,

V attr
kk′ =

{−v, for −εD � ξk, ξk′ � εD,

0, otherwise,

(G1)

where u, v � 0, W is the bandwidth cutoff, and εD = h̄ωD

represents the size of the region with attractive interactions
around the Fermi surface. In the case of phonon-mediated
superconductivity, this is the phonon Debye frequency.

The gap equation for singlet BCS pairing can now be
solved by turning the momentum integral into an energy
integral, approximating the density of states by the density of
states NF at the Fermi surface, and assuming the gap to take
on two different constant values close to (|ξk| � εD) and far
away from (|ξk| > εD) the Fermi surface.

This gives a critical temperature given by

kBTc = 1.14 εD exp

(
− 1

λ − μ∗

)
, (G2)

where λ = NF v is the potential strength of the attractive
potential, and

μ∗ = NF u

1 + NF u ln(W/h̄ωD)
(G3)

is the renormalization due to the presence of the repulsive
interaction. The effect of the repulsive Coulomb potential
is therefore to renormalize the strength λ of the attractive
potential in the critical temperature formula. At sufficiently
large renormalization (μ∗ � λ), the analysis breaks down, and
there is no superconducting instability.

After solving the gap equation with different Coulomb re-
pulsion strengths, we fit the critical temperature to a function
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of the form

kBTc = 1.14 h̄ωD exp

(
− 1

λ − au
1+abu

)
, (G4)

with two fitting parameters a and b in addition to
the electron-phonon coupling strength λ, which is fixed
by the critical temperature at zero repulsive Coulomb
interaction.
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Employing the concept of two-mode squeezed states from quantum optics, we demonstrate a revealing
physical picture for the antiferromagnetic ground state and excitations. Superimposed on a Néel ordered
configuration, a spin-flip restricted to one of the sublattices is called a sublattice magnon. We show that an
antiferromagnetic spin-up magnon is composed of a quantum superposition of states with n + 1 spin-up and
n spin-down sublattice magnons and is thus an enormous excitation despite its unit net spin. Consequently,
its large sublattice spin can amplify its coupling to other excitations. Employing von Neumann entropy as a
measure, we show that the antiferromagnetic eigenmodes manifest a high degree of entanglement between the
two sublattices, thereby establishing antiferromagnets as reservoirs for strong quantum correlations. Based on
these insights, we outline strategies for exploiting the strong quantum character of antiferromagnetic (squeezed)
magnons and give an intuitive explanation for recent experimental and theoretical findings in antiferromagnetic
magnon spintronics.

DOI: 10.1103/PhysRevB.100.174407

I. INTRODUCTION

As per the Heisenberg uncertainty principle, the quan-
tum fluctuations of two noncommuting observables cannot
simultaneously be reduced to zero. However, it is possible to
generate a state with the quantum noise in one observable
reduced below its ground-state limit at the expense of en-
hanced fluctuations in the other observable [1,2]. Considering
a single mode or frequency of light, such states, generally
called squeezed vacuum [1,2], have proven instrumental in
the detection of gravitational waves [3] with a sensitivity
beyond the quantum ground-state limit [4–6]. Furthermore,
squeezed vacuum states have applications in quantum infor-
mation [7–11] since they exhibit quantum correlations and
entanglement. These are best represented and exploited via
the two-mode squeezed vacuum states, where the two partic-
ipating modes are entangled and correlated [1]. The widely
studied [1,2] single- and two-mode squeezed vacuums may
be considered a special case, corresponding to zero photon
number(s), of a wider class: squeezed Fock states [12,13].
While investigated theoretically, the latter have been largely
forgotten, probably owing to the experimental challenge of
generating them. The squeezing concept applies to bosonic
modes in general, and squeezed states of magnons [14–17]
and phonons [18] have also been achieved experimentally.

The concept of squeezed Fock states [12,13] has proven
valuable in understanding the spin excitations of ordered
magnets [19,20]. Squeezed magnons have been shown to be

*akashdeep.kamra@ntnu.no

the eigenexcitations of a ferromagnet [19,21]. A squeezed
magnon is composed of a coherent superposition of the differ-
ent odd-number states of the spin-1 magnon [19,20,22]. This
bestows it a noninteger average spin larger than 1. The rela-
tively weak spin-nonconserving interactions, such as dipolar
fields and crystalline anisotropy, underlie the magnon squeez-
ing in ferromagnets. These spin-nonconserving interactions
were further found to result in two-sublattice magnets hosting
excitations with spin varying continuously between positive
and negative values [20]. In contrast, exchange interaction in
a two-sublattice magnet leads to a strong squeezing effect,
which does not affect the excitation spin and forms a main
subject of the present paper. Being eigenexcitations, squeezed
magnons are qualitatively distinct in certain ways from the
squeezed states of light discussed above, which are nonequi-
librium states generated via an external drive. At the same
time, the two kinds of states share several similar features on
account of their wave functions being mathematically related.
To emphasize this difference, we employ terminology in
which “squeezed state of a boson” refers to a nonequilibrium
state, while a “squeezed boson” is an eigenmode [23].

Instigated by recent experimental breakthroughs [24–29],
interest in antiferromagnets (AFMs) for practical applica-
tions has been invigorated [30–34]. Due to the well-known
strong quantum fluctuations in AFMs, they have also been
the primary workhorse of the quantum magnetism community
[35]. The Néel ordered configuration, which is consistent with
most of the experiments, is not the true quantum ground
state of an AFM. Furthermore, quantum fluctuations destroy
any order in a one-dimensional isotropic AFM. These and
related general ideas applied to AFMs bearing geometrically

2469-9950/2019/100(17)/174407(9) 174407-1 ©2019 American Physical Society
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(a)

(b)

(c)

FIG. 1. Schematic depiction of spatially uniform antiferromag-
netic (a) vacuum and (b) spin-up eigenmodes. (a) The vacuum
mode, represented as |0〉sq = ∑

n Pn|n, n〉sub, is a superposition over
states with an equal number of spin-up and -down sublattice
magnons. (b) The spin-up squeezed magnon, represented as |↑〉sq =∑

n Qn|n + 1, n〉sub, is composed of states with one extra spin-up
sublattice magnon. (c) Squared amplitudes corresponding to the
sublattice-magnon states constituting the uniform squeezed vacuum
and spin-up eigenmodes for squeeze parameters of 3 (main) and 1
(inset).

frustrated interactions underlie quantum spin liquids [36–38],
which are devoid of order in the ground state and host ex-
otic, topologically nontrivial excitations embodying massive
entanglement.

We here develop the squeezing picture for the ground state
and excitations of a simple, two-sublattice AFM. It continu-
ously connects and allows a unified understanding of classical
and quantum as well as ordered and disordered antiferromag-
netic states. We show that the AFM eigenmodes are obtained
by pairwise, two-mode squeezing of sublattice magnons, the
spin-1 excitations delocalized over one of the two sublattices.
Focusing on spatially uniform modes, the antiferromagnetic
ground state is a superposition of states with an equal number
of spin-up and -down sublattice magnons [Figs. 1(a) and 1(c)].
The result is a net spin on each sublattice diminished by an

FIG. 2. (a) An external excitation bath (shaded green) interacts
weakly with the AFM squeezed magnon if coupled via its unit net
spin (left) but strongly if exposed to only one of the sublattices
(right). (b) Schematic depiction of a metal (N) coupled to an AFM
via a fully uncompensated interface.

amount dictated by the degree of squeezing, parametrized by
the non-negative squeeze parameter r. Similarly, a spin-up
AFM (squeezed) magnon is composed of a superposition of
states with n + 1 spin-up and n spin-down sublattice magnons
[Figs. 1(b) and 1(c)]. Thus, despite its unit net spin, it car-
ries enormous spins on each sublattice, which allows it to
couple strongly with other excitations via a sublattice-spin-
mediated interaction (Fig. 2). Owing to a perfect correlation
between the two sublattice-magnon numbers, AFM squeezed
magnons are shown to embody entanglement quantified by
von Neumann entropy [1,39] increasing monotonically with r
(Fig. 3). The degree of squeezing and entanglement embodied
by these eigenmodes is significantly larger than that in hitherto
achieved nonequilibrium states. We also comment on existing
experiments [40,41] where this squeezing-mediated coupling
enhancement (Fig. 2) has been observed and strategies for
exploiting the entanglement contained in antiferromagnetic
magnons. While the squeezed states of light are generated
via external drives and are nonequilibrium states [1], the

FIG. 3. Entanglement between the two constituent sublattice
magnons quantified via von Neumann entropy for the squeezed
vacuum (S0) and magnon (S1) eigenmodes. The inset shows a zoom
of the small-r range.
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antiferromagnetic squeezed magnons are eigenmodes of the
system with their squeezing being equilibrium in nature and
resulting from energy minimization.

II. AFM EIGENMODES AS SQUEEZED FOCK STATES

We consider a Néel ordered ansatz with sublattice A and
B spins pointing along ẑzz and −ẑzz, respectively. The antifer-
romagnetic Hamiltonian may then be expressed in terms of
the corresponding sublattice-magnon ladder operators ãkkk, b̃kkk

as [20,42]

H̃ =
∑

kkk

Akkk (ã†
kkk ãkkk + b̃†

kkkb̃kkk ) + Ckkk (ãkkk b̃−kkk + ã†
kkk b̃†

−kkk ), (1)

where we assume inversion symmetry and disregard applied
magnetic fields for simplicity. Consistent with the assumed
Néel order, sublattice B (A) magnons represented by b̃kkk (ãkkk )
are spin up (down). In addition to the general considerations
captured by Eq. (1), we will obtain specific results for a
uniaxial, easy-axis AFM described by

H̃uni = J

h̄2

∑
i,δδδ

S̃SSA(rrri ) · S̃SSB(rrri + δδδ)

− K

h̄2

∑
i

[S̃Az(rrri )]
2 − K

h̄2

∑
j

[S̃Bz(rrr j )]
2. (2)

Here, the positive parameters J and K account for intersub-
lattice antiferromagnetic exchange and easy-axis anisotropy,
respectively. S̃SSA,B represent the respective spin operators,
rrri (rrr j ) runs over the sublattice A (B), and δδδ are vectors to the
nearest neighbors. Executing Holstein-Primakoff transforma-
tions [43] and switching to Fourier space, Eq. (2) reduces to
Eq. (1) apart from a constant-energy offset [20,44], with Akkk =
JSz + 2KS and Ckkk = JSzγkkk . Here, S is the spin on each site, z
is the coordination number, and γkkk ≡ (1/z)

∑
δδδ exp (ikkk · δδδ).

The Hamiltonian [Eq. (1)] is diagonalized to H̃ =∑
kkk εkkk (α̃†

kkk α̃kkk + β̃
†
kkk β̃kkk ) via a Bogoliubov transformation [43]

described by [45]:

α̃kkk = ukkkãkkk + vkkkb̃†
−kkk, β̃kkk = ukkkb̃kkk + vkkkã†

−kkk, (3)

ukkk =
√

Akkk + εkkk

2εkkk
, vkkk =

√
Akkk − εkkk

2εkkk
, (4)

where εkkk =
√

A2
kkk − C2

kkk . α̃kkk and β̃kkk represent the spin-down and
-up eigenmodes of the AFM, which are subsequently called
squeezed magnons. Denoting the resulting antiferromagnetic
vacuum or ground-state wave function by |G〉sq, we have
α̃kkk|G〉sq = β̃kkk|G〉sq = 0 for all kkk.

Let us first consider the spatially uniform modes, i.e.,
kkk = 000. We denote states in the corresponding reduced sub-
spaces via |Nb000 , Na000〉sub and |Nβ000 , Nα000〉sq, where Nb000 denotes
the number of spin-up sublattice magnons and so on. Within
the reduced subspaces, the Néel ordered state is thus denoted
by |0, 0〉sub, while the antiferromagnetic ground state obtained
above is represented by |0, 0〉sq. We define the relevant two-
mode squeeze operator [1]: S̃2(r000) ≡ exp (r000ã000b̃000 − r000ã†

000b̃†
000),

with the non-negative squeeze parameter r000 given via u000 ≡
cosh r000 and v000 ≡ sinh r000 [Eq. (4)] [46]. Employing the

identities [1,19]

α̃000 = S̃2(r000)ã000S̃−1
2 (r000), β̃000 = S̃2(r000)b̃000S̃−1

2 (r000), (5)

where α̃000 and β̃000 are given by Eq. (3), in the condition
α̃000|0, 0〉sq = β̃000|0, 0〉sq = 0, we obtain

|0, 0〉sq = S̃2(r000)|0, 0〉sub. (6)

Thus, the uniform modes’ antiferromagnetic ground state
is a two-mode squeezed vacuum of sublattice magnons.
The complementary demonstration of quadrature squeez-
ing is detailed in Appendix A. Working along the same
lines as above, it is straightforward to show that |m, n〉sq =
S̃2(r000)|m, n〉sub, thereby demonstrating the antiferromagnetic
eigenmodes are two-mode squeezed sublattice-magnon Fock
states. Therefore, the eigenmodes are henceforth called
“squeezed magnons.”

Based on the analysis above, it becomes evident that the
antiferromagnetic ground state is obtained by pairwise, two-
mode squeezing of the Néel ordered state:

|G〉sq =
[∏

kkk

S̃2(rkkk )

]
|Néel〉sub, (7)

where S̃2(rkkk ) ≡ exp (rkkkãkkkb̃−kkk − rkkkã†
kkk b̃†

−kkk ), with the squeeze
parameters rkkk given via ukkk = u−kkk ≡ cosh rkkk . The α̃kkk eigen-
mode is thus a two-mode (ãkkk and b̃−kkk) squeezed magnon
[Eq. (3)]. Similarly, the β̃kkk eigenmode is also a two-mode
squeezed magnon formed by b̃kkk and ã−kkk modes [Eq. (3)].
Due to this mathematical equivalence, it suffices to analyze
the spatially uniform eigenmodes, which is what we focus on
in the following.

III. SPATIALLY UNIFORM EIGENMODES

For ease of notation, we denote the wave functions for
a spatially uniform squeezed vacuum by |0〉sq and spin-up
squeezed magnon by |↑〉sq, while the corresponding squeeze
parameter is denoted by r. Considering a uniaxial AFM
[Eq. (2)], we obtain cosh r ≈ (1/2)(Jz/K )1/4 [Eq. (4)], which
translates to r ≈ 3 for a typical ratio of J/K ∼ 104. To get
a feel for numbers, the most squeezed vacuum state of light
generated so far corresponds to a squeeze parameter of about
1.7 [2,47]. Furthermore, in the limit K → 0, the squeeze
parameter is found to diverge. This feature is general and
a direct consequence [Eq. (4)] of the Goldstone theorem,
according to which ε000 → 0 in the limit of isotropy.

Employing the relation α̃000|0〉sq = (cosh r ã000 +
sinh r b̃†

000)|0〉sq = 0, the squeezed vacuum is obtained in
terms of the uniform sublattice-magnons subspace [1]:

|0〉sq =
∞∑

n=0

(− tanh r)n

cosh r
|n, n〉sub ≡

∑
n

Pn|n, n〉sub. (8)

The ensuing wave function is schematically depicted in
Fig. 1(a), and the distribution over constituent states is plotted
in Fig. 1(c). With an increasing r, the number of states that
contribute substantially to the superposition increases mono-
tonically. This presence of sublattice magnons in the ground
state constitutes quantum fluctuations.

A similar representation for the spin-up squeezed magnon
is obtained via |↑〉sq = β̃

†
000 |0〉sq = (cosh r b̃†

000 + sinh r ã000)|0〉sq
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and Eq. (8):

|↑〉sq =
∞∑

n=0

√
n + 1(− tanh r)n

cosh2 r
|n + 1, n〉sub

≡
∑

n

Qn|n + 1, n〉sub. (9)

A schematic depiction and the distribution over constituent
states are shown in Figs. 1(b) and 1(c). In stark contrast
to the squeezed vacuum, where the contribution from states
decreases monotonically with n, the highest contribution to
the superposition here comes from n ≈ sinh2 r. No such peak
exists for weak squeezing when sinh r < 1. The average num-
ber of spin-up magnons comprising a squeezed magnon is
evaluated as cosh2 r + sinh2 r. Thus, a typical AFM squeezed
magnon, corresponding to r ≈ 3 estimated above, is com-
posed of around 200 spin-up magnons on one sublattice and
nearly the same number of spin-down magnons on the other.
It is thus an enormous excitation, despite its unit net spin.

IV. ENHANCED INTERACTION

This enormous nature of the AFM squeezed magnon re-
veals an approach to exploit it. When it couples to excitations,
such as itinerant electrons or phonons, via its net spin, the
interaction strength is proportional to the relatively small unit
spin. On the other hand, if an interaction is mediated via
the sublattice spin, it will be greatly enhanced (by a factor
∼ cosh2 r ≈ 100 for r ≈ 3) on account of its large sublattice
spin content [Fig. 2(a)]. Such a situation arises, for example,
when an AFM is exposed to a metal via an uncompensated
interface [Fig. 2(b)] [26,48–50]. This effect provides a physi-
cal picture for the theoretically encountered enhancement in
spin pumping current from AFM into an adjacent conduc-
tor coupled asymmetrically to the two sublattices [49]. The
same mechanism has also been exploited in predicting an
enhanced magnon-mediated superconductivity in a conductor
bearing an uncompensated interface with an AFM [51]. Rig-
orous derivations of electron-magnon and magnon-magnon
couplings presented, respectively, in Appendixes B and C
demonstrate an enhancement of the interactions consistent
with the intuition above, reinforcing the generality of this
phenomenon.

V. ENTANGLEMENT

In a two-mode squeezed vacuum, the participating modes
are entangled with the degree of entanglement quantified by
the von Neumann entropy [1,39] S0:

S0 = −
∑

n

|Pn|2 ln(|Pn|2)

= 2 ln(cosh r) − 2(sinh2 r) ln(tanh r). (10)

Such two-mode squeezed vacuum states of light have been
exploited for obtaining useful entanglement [7]. This high von
Neumann entropy content of our squeezed-magnon vacuum
can be exploited, for example, in entangling two qubits [52]
coupled respectively to sublattices A and B. Furthermore, the
squeezed magnons themselves embody strong entanglement,

quantified by an even larger von Neumann entropy S1 =
−∑

n |Qn|2 ln(|Qn|2) (Fig. 3), which may be transferred to
external excitations. This can be achieved by coupling the
systems to be entangled with the opposite sublattices [53–57]
via uncompensated interfaces [Fig. 2(b)], for example, as
has been detailed further in Appendix D. In comparison,
von Neumann entropy [58] of about 1 has been measured
in cold-atom systems [59]. This high von Neumann entropy
content and the large number of entangled spins (∼cosh2 r)
that comprise the AFM squeezed magnon make it an entan-
gled excitation complementary to the “massively entangled”
excitations hosted by some quantum spin liquids [36–38].

VI. QUANTUM FLUCTUATIONS IN
“CLASSICAL” EXPERIMENTS

The interaction enhancement effect [Fig. 2(a)] is rooted in
high magnon squeezing and the underlying quantum super-
position of a large number of states [Eq. (9)]. It is a direct
consequence of the strong quantum fluctuations in the anti-
ferromagnetic ground state, which hosts this excitation, and
is thus a quantum fluctuation effect itself. Nevertheless, this
coupling enhancement is observed as an increased magnetic
damping around the compensation temperature in a com-
pensated ferrimagnet [40], which mimics an AFM [20,60].
Recently, this enhancement was observed and exploited in a
compensated ferrimagnet for an ultrastrong magnon-magnon
coupling, resulting in hybridization between the two enor-
mous spin-up and -down squeezed magnons [41]. These clas-
sical experiments at high temperatures may thus be considered
an observation of the antiferromagnetic quantum fluctuations.
As detailed in Appendix C, this large squeezing-mediated
enhancement (∼√

J/K for our uniaxial AFM), suggested
recently in the context of light-matter interaction [61,62], is
reproduced by the classical theory of spin dynamics [41,60],
where it is termed “exchange enhancement.” This is under-
standable since the classical dynamics is captured by the quan-
tum system being in a coherent state [49,63,64], which fully
accounts for the average effect of these quantum fluctuations.

VII. GENERALIZATIONS

The description in terms of squeezed Fock states developed
herein is a mathematical consequence of the Bogoliubov
transformation and goes beyond AFMs. It should allow a sim-
ilar physical picture and subsequent exploitation of quantum
effects in other systems such as cold atoms [65–67]. Here, we
have disregarded the relatively weak spin-nonconserving in-
teractions. Inclusion of those necessitates a four-dimensional
Bogoliubov transform [20], thereby precluding the simple
two-mode squeezed Fock state description employed here.
Similar complications also arise when considering AFMs
lacking inversion symmetry. Nevertheless, an analogous gen-
eral picture can be developed.

VIII. CONCLUSION

We have developed a description and physical picture of
an antiferromagnetic ground state and excitations based on
the concept of two-mode squeezed Fock states. Capitalizing
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on the tremendous progress in quantum optics, these fresh
insights pave the way for exploiting the quantum properties
of antiferromagnetic squeezed magnons towards potentially
room temperature quantum devices.
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APPENDIX A: DEMONSTRATION OF
QUADRATURE SQUEEZING

In this Appendix, we clarify the squeezed nature of the
antiferromagnetic ground state by evaluating the quantum
fluctuations in the appropriate quadratures. This approach is
complementary to the more general discussion in terms of
the two-mode squeeze operator [1] presented in the main
text. Once again, we focus on the uniform modes, i.e., kkk = 000,
recognizing that the corresponding results for kkk 
= 000 follow
in a similar fashion. We first demonstrate the quadrature
squeezing following the standard approach within quantum
optics [1] and physically interpret the quadratures later.

For the two-mode squeezing of ã000 and b̃000 that is operational
here, the relevant quadratures are formed via a combination of
both modes’ ladder operators [1]:

X̃1 ≡ 1√
8

(ã000 + ã†
000 + b̃000 + b̃†

000), (A1)

X̃2 ≡ 1

i
√

8
(ã000 − ã†

000 + b̃000 − b̃†
000). (A2)

Employing the bosonic commutation relations of the ladder
operators, we obtain [X̃1, X̃2] = i/2, demonstrating that the
chosen quadratures of Eqs. (A1) and (A2) represent two non-
commuting observables. Denoting the reduced subspace of
the uniform modes within the Néel ordered state by |0〉sub, the
quantum fluctuations in the two quadratures are evaluated as

〈0|sub(δX̃1)2|0〉sub ≡ 〈0|sub(X̃1 − 〈X̃1〉)2|0〉sub = 1
4 , (A3)

〈0|sub(δX̃2)2|0〉sub = 1
4 . (A4)

Therefore, the two quadratures host equal quantum noise
in the Néel ordered state, that is, 〈0|sub(δX̃1)2|0〉sub =
〈0|sub(δX̃2)2|0〉sub.

We now consider fluctuations in the antiferromagnetic
ground state with the uniform modes’ reduced subspace de-
noted by |0〉sq, as in the main text. Employing the Bogoliubov
transformation relations ã000 = cosh r α̃000 − sinh r β̃

†
000 and b̃000 =

cosh r β̃000 − sinh r α̃
†
000 , the two quadratures can be expressed as

X̃1 =cosh r − sinh r√
8

(α̃000 + α̃
†
000 + β̃000 + β̃

†
000 ), (A5)

X̃2 =cosh r + sinh r

i
√

8
(α̃000 − α̃

†
000 + β̃000 − β̃

†
000 ). (A6)

Employing the quadrature expressions thus obtained, quantum
fluctuations in the antiferromagnetic ground state are conve-
niently evaluated as

〈0|sq(δX̃1)2|0〉sq = (cosh r − sinh r)2

4
= e−2r

4
, (A7)

〈0|sq(δX̃2)2|0〉sq = (cosh r + sinh r)2

4
= e2r

4
, (A8)

thereby demonstrating the quadrature squeezing [1] of the
antiferromagnetic ground state, that is, 〈0|sq(δX̃1)2|0〉sq <

〈0|sq(δX̃2)2|0〉sq.
We now relate the two quadratures [Eqs. (A1) and (A2)]

with physical observables of the antiferromagnet (AFM).
Employing Fourier relations of the kind

ãkkk = 1√
N

∑
i

ãi eikkk·rrri , (A9)

in conjunction with the linearized Holstein-Primakoff trans-
formations for the AFM [42,44],

S̃A+(rrri ) = S̃Ax(rrri ) + iS̃Ay(rrri ) = h̄
√

2S ãi, (A10)

S̃B+(rrr j ) = S̃Bx(rrr j ) + iS̃By(rrr j ) = h̄
√

2S b̃†
j, (A11)

we obtain

X̃1 = 1

2h̄
√

NS
(S̃Ax + S̃Bx ), (A12)

X̃2 = 1

2h̄
√

NS
(S̃Ay − S̃By). (A13)

Here, N is the total number of sites on each sublattice, S is
the spin at each site as defined in the main text, and S̃Ax ≡∑

i S̃Ax(rrri ) is the x component of the total spin on sublattice A
and so on. Thus, the two quadratures are related to the x and y
components of the total spin and the Néel order, respectively.

In the qualitatively distinct case of single-mode squeezing
manifested by the uniform mode in an anisotropic ferromag-
net [19], the two quadratures are simply the x and y compo-
nents of the total spin, providing a geometrical “ellipticity”
interpretation to the squeezing effect [68]. In contrast, the
situation is less intuitive for the case of two-mode squeezing
as the ellipticity of quantum fluctuations exists in a more
abstract space. In the present case, this space is defined by
the transverse orthogonal components of the total spin and the
Néel order associated with the AFM [Eqs. (A12) and (A13)].

APPENDIX B: ELECTRON-MAGNON COUPLING

Heterostructures in which a magnetic insulator layer inter-
faces with another material hosting conduction electrons have
emerged as basic building blocks in a wide range of spintronic
concepts and devices. The interfacial exchange-mediated cou-
pling between the magnons in the former and the electrons in
the latter have enabled magnon-based information processing
schemes, magnon-mediated condensation phenomena, and so
on. Thus, an ability to engineer and amplify the electron-
magnon coupling is expected to have a strong and broad im-
pact. In this section, we discuss the electron-magnon coupling
in an AFM/normal-metal (N) bilayer with the goal of high-
lighting this tunability and amplification of electron-magnon
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coupling by exploiting the squeezing effect, as discussed in
the main text. A thorough analysis of this system along with
spin transport effects has been provided elsewhere [49]. We
here focus on highlighting the amplification effect for an
uncompensated AFM with respect to other related systems,
providing mathematical expressions complementary to the
intuitive physical picture discussed in the main text.

The AFM and N layers are assumed to interact via inter-
facial exchange, resulting in the following contribution to the
Hamiltonian [49] within a continuum model:

H̃int = − 1

h̄2

∫
A

d2ρ
∑

G=A,B

JiG S̃G(ρρρ ) · S̃N(ρρρ), (B1)

where A is the interfacial area, ρρρ is the two-dimensional
position vector in the interfacial plane, S̃N is the conduction
electron spin density operator in N, S̃G is the spin density op-
erator in the magnet for sublattice G, and JiG parametrizes the
exchange interaction between the two spin densities, allowing
it to be sublattice asymmetric. In terms of the ladder operators
for the conduction electrons and magnons, the Hamiltonian
above takes the form

H̃int = h̄
∑

qqq1,qqq2,kkk

c̃†
qqq1+c̃qqq2−

(
W A

qqq1qqq2kkkãkkk + W B
qqq1qqq2kkkb̃†

kkk

) + H.c., (B2)

where c̃qqq+ denotes the annihilation operator for the N conduc-
tion electron with wave vector qqq and spin +h̄/2 along the z
direction and so on, ãkkk and b̃kkk are the annihilation operators
for the sublattice magnons as discussed in the main text,
and W A

qqq1qqq2kkk is the appropriate amplitude given by the overlap
integral between the participating excitation wave functions
[49]. With the aim of focusing on the key ingredient in en-
hancing the coupling, we henceforth consider the relevant and
simplified part of the Hamiltonian [enclosed by parentheses in
Eq. (B2)] describing electron-magnon coupling:

P̃ = W Aã000 + W Bb̃†
000, (B3)

where we have again specialized the expression to uniform
(kkk = 000) modes for simplicity and W A,B ∝ JiA,iB capture the
sublattice-asymmetry in the interfacial coupling.

For comparison, we first consider the case of a single-
sublattice isotropic ferromagnet [19] for which the interaction
is described simply by P̃ = W ã000, with ã000 representing the
normal magnon mode. The transition rate � for the electron-
magnon scattering process is thus simply determined by W ,
i.e., � ∝ |W |2. For the case of AFMs, in contrast, Eq. (B3)
becomes

P̃ = (cosh r W A − sinh r W B)α̃000

+ (cosh r W B − sinh r W A)β̃†
000 (B4)

in terms of the normal magnon modes. Now considering
W A = W B ≡ W for a compensated interface, in which the two
sublattices couple equally to the N electrons, we obtain

P̃ = W (cosh r − sinh r)α̃000 + W (cosh r − sinh r)β̃†
000 , (B5)

where we see that the transition rate is reduced: � ∝
(cosh r − sinh r)2|W |2 ≈ |W |2/(4 cosh2 r), accounting for
the large squeezing such that cosh r  1. The electron-
magnon coupling for this case is thus suppressed compared
to that for ferromagnetic magnons considered above. Arriving

at the crux of this Appendix, as discussed in the main text,
when the coupling is mediated by the sublattice spin of the
magnon via an uncompensated interface (W A = W , W B = 0),
we obtain

P̃ = W cosh r α̃000 − W sinh r β̃
†
000 . (B6)

The transition rates for the electron-magnon scattering pro-
cesses are thus given by � ∝ cosh2 r|W |2 for the α̃000 mode
and � ∝ sinh2 r|W |2 ≈ cosh2 r|W |2 for the β̃000 mode. Thus,
we find a squeezing-mediated enhancement in the electron-
magnon coupling for the case of sublattice spin-mediated
interaction. Furthermore, this is consistent with the simple
picture discussed in the main text, and the interaction en-
hancement factor is related to the sublattice spin associated
with a single eigenexcitation: the antiferromagnetic squeezed
magnon.

APPENDIX C: MAGNON-MAGNON COUPLING

In this Appendix, we investigate coupling between the two
opposite-spin antiferromagnetic eigenmodes caused by a spin-
nonconserving interaction [20]. In particular, we demonstrate
that a sublattice spin-mediated magnon-magnon coupling is
amplified via the squeezing effect, in agreement with the
general picture discussed in the main text. This also provides
a derivation, within the quantum picture, for the recently
observed “exchange-enhanced” ultrastrong magnon-magnon
coupling in a compensated ferrimagnet [41] without account-
ing for all the experimental complexities therein.

In the main text, we considered only interactions that
conserve the z-projected spin of the AFM. The diagonalized
Hamiltonian therefore assumes the form

H̃ =
∑

kkk

εkkk (α̃†
kkk α̃kkk + β̃

†
kkk β̃kkk ), (C1)

with the two opposite-spin squeezed magnons as degenerate
excitations of the system, in the absence of an applied field.
However, breaking the spin conservation [69] in the system
allows us to couple these opposite-spin excitations, resulting
in a lifting of degeneracy and the concomitant hybridization
[20]. As discussed in the main text, accounting for such spin-
nonconserving terms necessitates a four-dimensional Bogoli-
ubov transform for an exact diagonalization of the Hamilto-
nian [20]. Here, we circumvent this mathematical complexity
by describing the mode coupling in a perturbative manner,
treating Eq. (C1) and squeezed magnons as our unperturbed
Hamiltonian and eigenexcitations, respectively. This allows
us to obtain an analytic expression for the coupling rate
while appreciating and justifying the typical approximations
employed in such descriptions [1].

For concreteness, we consider the following spin-
nonconserving and sublattice spin-mediated contribution to
the Hamiltonian that may stem from the magnetocrystalline
anisotropy [41]:

H̃coup = Ka

h̄2

∑
i

[S̃Ax(rrri )]
2 + Ka

h̄2

∑
j

[S̃Bx(rrr j )]
2, (C2)

where Ka parametrizes this axial-symmetry-breaking
anisotropy and the rest of the notation was already introduced
in the main text. Employing the Holstein-Primakoff
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transformation and switching to Fourier space, the coupling
Hamiltonian above is brought to the following form:

H̃coup = KaS

2

∑
kkk

ã†
kkk ã†

−kkk + b̃†
kkkb̃†

−kkk + ãkkk ã−kkk + b̃kkk b̃−kkk . (C3)

In writing Eq. (C3), we have neglected terms of the type
∼ã†

kkk ãkkk since they can be absorbed into Eq. (C1), leading to
a small renormalization of the unperturbed squeezed-magnon
energies. We again focus on the uniform modes (kkk = 000) as
they are also the ones observed experimentally [41]:

H̃coup(kkk = 000) = KaS

2

(
ã2

000 + b̃2
000 + H.c.

)
. (C4)

Employing the Bogoliubov transformation relations ã000 =
cosh r α̃000 − sinh r β̃

†
000 and b̃000 = cosh r β̃000 − sinh r α̃

†
000 , the cou-

pling Hamiltonian may be expressed in terms of the unper-
turbed eigenexcitations:

H̃coup(kkk = 000) = − cosh r sinh r 2KaS(α̃000β̃
†
000 + α̃

†
000 β̃000)

+ KaS(cosh2 r + sinh2 r)

2

(
α̃2

000 + β̃2
000 + H.c.

)
(C5)

≈ − cosh r sinh r 2KaS(α̃000β̃
†
000 + α̃

†
000 β̃000). (C6)

In the last simplification above, we have employed the rotating
wave approximation [1] and disregarded terms which merely
cause rapid oscillations.

Equation (C6) constitutes the main result of this Appendix,
where the coupling rate can be read off as cosh r sinh r 2KaS.
The squeezing-mediated enhancement in the coupling of
cosh r sinh r ≈ cosh2 r ∼ √

J/K is evident and consistent
with the intuitive picture presented in the main text. In com-
parison, if we consider a net spin-mediated magnon-magnon
coupling via, for example,

H̃coup = Ka

h̄2

∑
[S̃Ax(rrri ) + S̃Bx(rrr j )]

2, (C7)

an analogous procedure yields a suppressed coupling rate
of KaS/(4 cosh2 r), in agreement with the electron-magnon
coupling considerations discussed above.

Thus, these two instances (electron-magnon and magnon-
magnon couplings) of detailed calculations reinforce the gen-
erality of the intuitive picture discussed in the main text. This
also suggests these coupling properties are intrinsic to the
antiferromagnetic squeezed magnons and therefore applicable
to a yet wider class of phenomena involving antiferromagnets.
We further note that the squeezing-mediated coupling en-
hancement that we describe here is mathematically analogous
to similar nonequilibrium enhancements suggested recently in
the context of light-matter interaction [61,62]. Our suggestion
for magnets bears advantages such as stronger enhancement,
an equilibrium nature of the effect, tunability via temperature

FIG. 4. Schematic depiction of a trilayer heterostructure that al-
lows coupling the two antiferromagnetic sublattices to two different
normal metals.

[41], and the recent experimental observation [41] along with
the concomitant proof of concept.

APPENDIX D: ACCESSING ENTANGLED SUBSYSTEMS

The von Neumann entropy is widely employed as a mea-
sure to quantify entanglement between two subsystems. Thus,
its value depends on how a larger system is partitioned into
its entangled constituents. In the case of quantum spin liquids,
it is common to draw an imaginary boundary and partition
the magnet spatially into inside and outside regions. The
entanglement entropy may then be evaluated between these
two spatial regions and allows us to determine the entangled
and/or topological nature of the ground state as well as exci-
tations. On the other hand, in the case of two-mode squeezed
states, the participating modes provide a natural partitioning
for entanglement [1]. The participating modes are entangled,
which may be exploited for useful protocols [1]. However,
to this end, it is crucial to access the two entangled modes
separately.

As discussed in the main text, antiferromagnetic squeezed
magnons are composed of the two-mode squeezing of
the sublattice magnons. Therefore, in order to utilize the
squeezing-mediated intrinsic entanglement between the sub-
lattice magnons, it is important to access the sublattice
magnons individually. This can be achieved by employing
AFMs with two uncompensated interfaces in a trilayer struc-
ture as depicted in Fig. 4. Similar heterostructures have also
been proposed to host magnon-mediated indirect exciton
condensation [56]. The experimental methods and relevant
materials for achieving uncompensated interfaces have been
discussed elsewhere [50]. Furthermore, the recently discov-
ered layered van der Waals AFMs [57] provide another
promising route towards achieving the desired coupling to the
two sublattices. While Fig. 4 depicts an example of coupling
two normal metals to the antiferromagnetic sublattices, the
general objective is to couple the two systems to be entangled,
which are not necessarily metals, to the opposite sublattices.
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We perform Eliashberg calculations for magnon-mediated superconductivity in a normal metal, where the
electron-magnon interaction arises from interfacial coupling to antiferromagnetic insulators. In agreement with
previous studies, we find p-wave pairing for large doping when the antiferromagnetic interfaces are uncompen-
sated, and d-wave pairing close to half-filling when the antiferromagnetic interfaces are compensated. However,
for the p-wave phase, we find a considerable reduction in the critical temperature compared to previous weak-
coupling results, as the effective frequency cutoff on the magnon propagator in this case is found to be much
smaller than the cutoff on the magnon spectrum. The d-wave phase, on the other hand, relies less on long-
wavelength magnons, leading to a larger effective cutoff on the magnon propagator. Combined with a large
density of states close to half-filling, this might allow the d-wave phase to survive up to higher critical tempera-
tures. Based on our findings, we provide new insight into how to realize interfacially induced magnon-mediated
superconductivity in experiments.

I. INTRODUCTION

For conventional superconductors, the fluctuations respon-
sible for Cooper-pairing of electrons are provided by phonons
[1]. As the role of the phonons is simply to introduce attrac-
tive interaction between electrons, superconductivity can in
principle arise from exchange of any bosonic quasiparticle
that is able to provide a similar attractive interaction [2–5].
One alternative that has received much attention is exchange
of paramagnetic spin-fluctuations [6, 7]. The idea is that the
spins in a paramagnet, close to magnetic ordering, can act
like a medium that can be polarized by the spin of an electron.
Another electron can then interact with the polarized medium,
giving rise to an effective interaction between the electrons.
The quasiparticle mediating the interaction, the paramagnon,
represents a damped spin-wave propagating in an ordered
patch of the paramagnet [8, 9].

The paramagnon exchange mechanism has been proposed
to be closely related to the superconductivity of heavy
fermion materials [10–12] and high-Tc cuprates [13, 14]. In
the context of the Hubbard model, paramagnon exchange has
been found to give rise to p-wave superconductivity for small
isotropic Fermi surfaces, and d-wave superconductivity closer
to half-filling [11]. This d-wave superconductivity arises
from antiferromagnetic fluctuations, so that the interaction
is peaked at finite momentum. Although the spin-singlet
s-wave channel is repulsive, the d-wave channel is then able
to become attractive by taking advantage of sign changes in
the gap function [6].

In these systems, superconductivity arises from interactions
between fermions due to their own collective spin excitations
[13–15]. Spin-fluctuation mediated superconductivity may
also occur in heterostructures with itinerant fermions prox-
imity coupled to the spins of insulating materials [16–24].
Since the spins and the itinerant fermions are then separate
degrees of freedom, this provides a simpler context to study

∗ These authors contributed equally to this work
† Corresponding author: asle.sudbo@ntnu.no

superconductivity mediated by spin-fluctuations.
Magnon-mediated superconductivity induced in a normal

metal (NM) due to proximity-coupling to a magnetic insulator
has so far been investigated within a weak-coupling BCS
framework [18, 20–22]. The first case to be considered was
a NM coupled to ferromagnetic insulators, which was found
to give rise to p-wave pairing [18]. Similarly, for a NM
coupled to an antiferromagnetic insulator (AFMI), p-wave
solutions were obtained for large dopings by exploiting the
inherent squeezing of antiferromagnetic magnons [25] by
coupling the conduction electrons in the NM asymmetrically
to the two sublattices of the AFMI [21]. This sublattice
coupling asymmetry suppresses sublattice interferences in
the pairing potential, which are very unfavorable for the
p-wave phase. A general asymmetry of this type can be
realized by employing an antiferromagnetic interface where
both sublattices are exposed (compensated interface), but
further breaking the sublattice symmetry by using an anti-
ferromagnetic material with two different atoms on the two
sublattices. The particularly relevant case of coupling to only
one of the two sublattices is, however, achieved through an
uncompensated antiferromagnetic interface where only one
of the two sublattices is exposed [26–28].

For the case of a compensated antiferromagnetic interface,
the magnons live in a Brillouin zone which is reduced
compared to the electron Brillouin zone. This introduces
electron-magnon scattering processes of two types: regular
and Umklapp [29, 30]. In the regular processes, the electrons
are scattered with a momentum within the first magnon
Brillouin zone. In the Umklapp processes, on the other
hand, the outgoing electron receives an additional momentum
corresponding to a magnon reciprocal space lattice vec-
tor. The Umklapp processes are of little relevance for the
small Fermi surfaces considered in Ref. [21], but closer to
half-filling they have been predicted to give rise to d-wave
superconductivity in a normal metal sandwiched between two
compensated antiferromagnetic interfaces [20]. Analogously
to the case of paramagnon exchange in the Hubbard model,
the d-wave pairing arises from a repulsive s-wave channel
and an interaction that is peaked at finite momentum.



2

We also note that a normal metal coupled to a compensated
antiferromagnetic interface is similar to a single material with
antiferromagnetically ordered localized spins and itinerant
electrons treated as separate degrees of freedom, considered
e.g. in Refs. [31–33]. While Ref. [31] simply found the spin
singlet s-wave channel to be repulsive for magnon-mediated
pairing, Ref. [32] also considered the spin triplet channel and
found p-wave superconductivity due to their treatment not
probing the interference effects discussed in Ref. [21]. Ref.
[33], on the other hand, found that two-magnon scattering
processes were dominant for small Fermi surfaces due to the
strong destructive interference for one-magnon processes,
while spin singlet d-wave pairing driven by one-magnon
processes could be possible for larger Fermi surfaces.

A notable difference between the electron-phonon cou-
pling in common weak-coupling superconductors and the
electron-magnon coupling considered in the present study,
is the behaviour of the coupling matrix element in the limit
of small momentum transfers. Since the electron-phonon
coupling represents a coupling between electrons and spatial
fluctuations of ion densities, it vanishes at zero momentum. In
contrast, the coupling between the spins of itinerant electrons
and the localized spins of the magnetic insulator is local, and
therefore constant in momentum space. For the magnon-
mediated superconductivity discussed in the above references,
this allows processes with small scattering momentum and
small magnon frequencies to dominate the superconducting
pairing. In turn, these small momentum processes can com-
pensate for the relatively small interfacial coupling strength
of order 10 meV [18, 34], which is typically smaller than the
energy scale for the electron-phonon coupling giving rise to
phonon-mediated superconductivity [35, 36].

When the dominant contributions to the pairing arise from
long-wavelength magnons, one should expect that it may no
longer be reasonable to use the cutoff on the boson spectrum
as the characteristic boson energy setting the energy scale for
the critical temperature. This is not captured in simple BCS
theory, which does not consider the frequency dependence
of the bosonic fluctuation spectrum responsible for pairing.
Furthermore, renormalization of both electrons and bosons
is neglected in BCS theory, and these effects could turn out
to play a more essential role here. Although BCS theory ex-
plains phonon-mediated superconductivity in weak-coupling
superconductors reasonably well, a more detailed analysis
may be required when other pairing mechanisms are involved.

In this paper, we therefore investigate superconductivity
induced in a NM by interfacial coupling to antiferromagnetic
insulators using an Eliashberg theory framework. In addition
to exploring how the existing results change when the electron
renormalization and the proper frequency dependence of the
electron-magnon interaction are taken into account, we also
study the effect of magnon renormalization and discuss the
importance of vertex corrections. Instead of focusing only on
regular [21] or Umklapp processes [20], we simultaneously
take both types of processes into account and examine how
the superconductivity varies with both chemical potential
and asymmetry in the coupling to the two sublattices of the
antiferromagnet.

In agreement with earlier results, we find a p-wave phase
for large sublattice coupling asymmetry and large doping, and
a d-wave phase for small sublattice coupling asymmetry and
small doping. For the p-wave phase, the critical temperature
is considerably reduced compared to previous weak-coupling
studies due to the reduction of the effective magnon frequency
cutoff. However, the d-wave phase is found to be less reliant
on exchange of long-wavelength magnons. This leads to a
larger effective cutoff. Near half-filling, the reduction in the
contributions from long-wavelength magnons for the d-wave
phase can be compensated by a larger density of states,
opening up for the possibility of larger critical temperatures.
For a strongly nested Fermi-surface, however, one needs to
consider e.g. the possibility of a competing spin-density wave
instability. Moreover, while a sufficiently large gap in the
magnon spectrum may be necessary to protect the ordering
of the magnet upon inclusion of magnon renormalization,
the net effect on possible critical temperatures is found to be
small.

In Sec. II, we present the model of our system. In III,
we outline the Eliashberg theory for magnon-mediated
superconductivity. We further derive the Fermi surface
averaged Eliashberg equations in Sec. IV, and present results
for these equations in Sec. V. In Sec. VI we move on to the
effect of renormalization of the magnons. Finally, we discuss
the validity of the results, as well as additional neglected
effects in VII, and experimental considerations in VIII, before
we summarize in Sec. IX. Additional details, as well as a
discussion of the role of vertex corrections can be found in
the appendices.

II. MODEL

We consider a trilayer heterostructure consisting of a nor-
mal metal sandwiched between two antiferromagnets, as
shown in Fig. 1. The experimental realization of the sys-
tem would consist of a thin NM layer between two thicker
AFMI layers. For simplicity, we model the system using two-
dimensional lattice models for the three distinct layers. We as-
sume that the antiferromagnets have staggered magnetic order
along the z-direction in spin space, and that this order is op-
posite in the two antiferromagnets. In general, the spin space
z-direction can be either in-plane or out-of-plane in real space
for our model.

We model the system with the Hamiltonian H = HNM +
HAFMI +Hint, where

HNM = −
∑

ij,σ

tijc
†
iσcjσ − µ

∑

iσ

c†iσciσ, (1a)

HAFMI =
∑

ij,η

JijSiη · Sjη −K
∑

i,η

(Sziη)2, (1b)

Hint = −2J̄
∑

η,Υ

∑

i∈Υ

ΩηΥc
†
iσci · Siη, (1c)

and the terms describe the normal metal, the antiferromag-
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FIG. 1. A trilayer consisting of a normal metal (NM) layer sand-
wiched between two antiferromagnetic insulator (AFMI) layers. The
A and B sublattices of the AFMIs consist of the blue and red lat-
tice sites, respectively. The two AFMIs are oppositely ordered so
that the spins associated with a specific sublattice are oppositely ori-
ented for the highest (H) and lowest (L) AFMI. The coupling to the
A sublattices of both AFMIs is taken to be of equal strength (J̄ΩA),
and similarly for the B sublattices, so that the itinerant electrons in
the NM experience no net magnetic field. The coupling to the A
sublattices is however allowed to differ from the coupling to the B
sublattices.

netic insulators, and the interfacial coupling between the ma-
terials. The sums over i, j denote sums over lattice sites, the
sum over η ∈ {H,L} denotes a sum over the the two antifer-
romagnetic insulators, and the sum over Υ ∈ {A,B} denotes
a sum over the sublattices. All three layers are modelled by
square lattices with periodic boundary conditions. In the nor-
mal metal, our model describes spinful electrons with annihi-
lation and creation operators ciσ and c†iσ for an electron on site
i with spin σ. The electron chemical potential is expressed as
µ, and tij is the hopping amplitude, which we set to t for near-
est neighbours and zero otherwise. The AFMIs in our model
consist of localized lattice site spins, where Siη denotes the
spin on site i in antiferromagnet η. The exchange coupling
between the spins on lattice sites i and j is Jij , which we as-
sume to take the value J1 > 0 for nearest neighbour and J2

for next-nearest neighbour sites. Moreover, K > 0 denotes
the easy axis anisotropy, The interfacial coupling between the
materials is included as an effective exchange interaction J̄
between the lattice site spins in the antiferromagnets and the
spins of the conduction band electrons that are confined to
the normal metal [18, 20, 34, 37, 38]. We use the notation
ci = (ci↑, ci↓)T , and have taken σ to denote the Pauli matrix
vector in spin space. In order to be able to introduce asym-
metry in the coupling between the normal metal and the two
sublattices of the antiferromagnets, we have included a di-
mensionless, sublattice- and layer-dependent, parameter ΩηΥ
in the interaction Hamiltonian [21–23]. In order to eliminate
any magnetic fields, we will focusing on equal coupling to the
two antiferromagnets [20], and therefore let ΩηΥ ≡ ΩΥ. In the
following, we set ~ = a = 1, with a being the lattice constant.

The normal metal Hamiltonian can be diagonalized to ob-
tain

HNM =
∑

k∈�,σ
ξk c
†
kσckσ, (2)

where the quasimomentum sum runs over the full Brillouin
zone, we have defined ξk = εk − µ, and the single particle
electron dispersion relation is given by εk = −2t(cos kx +
cos ky).

To determine the eigenexcitations of the antiferromagnetic
insulator, we introduce the linearized Holstein-Primakoff
transformation to represent the spins in terms of bosons aiη
and biη on the two sublattices of the system. Further, intro-
ducing the Fourier transformed operators aqη and bqη , one
may diagonalize the AFMI Hamiltonian using a Bogoliubov
transformation

aqη = uqαqη + vqβ
†
−qη, (3a)

b†−qη = uqβ
†
−qη + vqαqη, (3b)

as detailed in Appendix A. By suitable choice of coherence
factors uq and vq , the AFMI Hamiltonian takes the form

HAFMI =
∑

q∈♦,η
ωq(α†qηαqη + β†qηβqη), (4)

with eigenmagnon operators αqη and βqη , magnon dispersion
ωq , and where the quasimomentum q runs over the reduced
Brillouin zone, as illustrated in Fig. 2 (a).

As shown in Refs. [21, 23], the electron-magnon coupling
in this system in general consists of staggered and net mag-
netic fields, as well as electron scattering processes of both
regular and Umklapp type. In our case, all net and staggered
magnetic fields from the two opposing antiferromagnetic lay-
ers cancel.

R
U

(a) (b)

FIG. 2. (a) Electron (grey) and magnon (orange) Brillouin zones with
labelling of high symmetry points. We refer to the magnon Brillouin
zone as the reduced Brillouin zone (RBZ). The antiferromagnetic
ordering vector Q is also indicated. (b) Fermi surface (green) at
moderate doping. Electrons can be scattered from k (black) to points
k+q inside the shaded red part of the Brillouin zone through regular
processes, and to points k + q + Q in the shaded blue part of the
Brillouin zone through Umklapp processes.
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The interaction Hamiltonian then takes the form

Hint = V
∑

k∈�
q∈♦

[
MR

q c
†
k+q,↓ck,↑ +MU

q c
†
k+q+Q,↓ck,↑

+(MR
−q)†c†k+q,↑ck,↓ + (MU

−q)†c†k+q+Q,↑ck,↓
]
, (5)

where we have defined the magnon operators Mκ
q = Mκ

qH +
Mκ

qL with

Mκ
qH = ΩAaqH + κΩBb

†
−qH , (6a)

Mκ
qL = ΩAa

†
−qL + κΩBbqL. (6b)

Here, κ ∈ {R,U} is an index characterizing whether the cor-
responding electron scattering process is of regular or Umk-
lapp type, which we associate with the values R → +1 and
U → −1 in the definition of Mκ

q . Examples of regular and
Umklapp scattering processes are shown Fig. 2 (b). We have
also defined the momentum shift vector Q = π(x̂ + ŷ) oc-
curring in the Umklapp scattering processes, and the interac-
tion strength parameter V ≡ −2J̄

√
S/N , where S is the spin

quantum number of the AFMI lattice site spins, and N the
number of lattice sites.

In terms of the eigenmagnon operators αqη, βqη , we may
also express the magnon operators Mκ

q as

Mκ
q =

(
ΩAuq + κΩBvq

)(
αqH + α†−qL

)

+
(
ΩAvq + κ ΩBuq

)(
β†−qH ,+βqL

)
,

(7)

so that we may think of the magnon operators Mκ
q as lin-

ear combinations of antiferromagnetic eigenmagnon opera-
tors with a given spin and momentum.

III. ELIASHBERG THEORY

A. Magnon propagators

Since the magnon operators in the electron-magnon interac-
tion only occur in the particular linear combinations Mκ

q , the
propagators of Mκ

q will be key building blocks in our Eliash-
berg theory. In the imaginary time formalism, we therefore
define the magnon propagator

Dκκ′
(q, τ) = −〈TτMκ

q (τ)(Mκ′
q )†(0)〉, (8)

where Tτ is the time-ordering operator and the expectation
value is computed with the full Hamiltonian. In the non-
interacting theory, one may utilize the eigenmagnon propa-
gators to show that

Dκκ′
0 (q, iνm) =− 2Aκκ

′
e (q)

2ωq

ν2
m + ω2

q

, (9)

where νm = 2mπ/β is a bosonic Matsubara frequency, and
β the inverse temperature. The boosting factors Aκκ

′
e (q) are

given by

ARRe (q) =
1

2
[(ΩAuq+ΩBvq)2 + (ΩAvq + ΩBuq)2], (10a)

AUUe (q) =
1

2
[(ΩAuq − ΩBvq)2+(ΩAvq − ΩBuq)2], (10b)

ARUe (q) = AURe (q) =
1

2
(Ω2

A − Ω2
B)(u2

q + v2
q). (10c)

Here, uq and vq are the magnon coherence factors, arising
from the Bogoliubov transformation, discussed in Appendix
A. Inspecting the boosting factor corresponding to regular
scattering processes, we see that it coincides with the boost-
ing factor occurring from the canonical transformation used
to obtain the effective interaction potential in Ref. [21].

From the expressions for the regular and Umklapp boosting
factorsARRe (q) andAUUe (q), it is clear that in addition to con-
tributions from only the A and B sublattices proportional to
factors of Ω2

A and Ω2
B , there are in general also interferences

between contributions from the two sublattices. Since uq is
typically positive and vq is typically negative, as discussed
in Appendix A, we typically expect destructive interference
in the regular process boosting factor ARRe (q) [21] and con-
structive interference in the Umklapp process boosting fac-
tor AUUe (q). The significance of these interference effects is
controlled by the asymmetry in the coupling to the two sub-
lattices, where we find the strongest sublattice interferences
when we couple equally to both sublattices, and that all in-
terference effects are removed when we couple to only one
sublattice. The mixed propagator boosting factors ARUe and
AURe do not experience similar interferences.

B. Spinor representations

To study magnon-mediated superconductivity, we now con-
struct the Eliashberg theory for the system. To do this, we first
introduce the Nambu spinor

ψk =




ck↑
ck↓
c†−k↑
c†−k↓
ck+Q↑
ck+Q↓
c†−k−Q↑
c†−k−Q↓




. (11)

The corresponding Green’s function can then in general be
written as the 8× 8 matrix

G(k,k′, τ) = −〈Tτψk(τ)ψ†k′(0)〉, (12)
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where we will also be using the notation G(k,k, τ) =
G(k, τ). After a Fourier transform, the imaginary time
propagators can be expressed through the Fourier coeffi-
cientsG(k, iωn), with fermionic Matsubara frequencies ωn =
(2n+ 1)π/β. The 8× 8 matrix can in general be spanned by
the Pauli matrix outer products

ρα ⊗ τβ ⊗ σγ , (13)

where α, β, γ ∈ {0, 1, 2, 3} and the Pauli matrix ρα acts on
the momentum sector degree of freedom, τβ on the particle/-
hole degree of freedom, and σγ on the spin degree of freedom.

We also introduce the magnon spinor

Bq =
(
MR

q (MR
−q)† MU

q (MU
−q)†

)T
, (14)

where each magnon operator in the spinor corresponds to the
destruction of an excitation with momentum q and spin −1,
or the creation of an excitation with momentum −q and spin
+1. The magnon operator propagators can now be collected
in the magnon propagator matrix

Dγγ′(q, τ) = −〈TτBγq (τ)Bγ
′

−q(0)〉. (15)

After a Fourier transform, the propagator matrix takes the
form

D(q) =




0 DRR(q) 0 DRU (q)
DRR(−q) 0 DUR(−q) 0

0 DUR(q) 0 DUU (q)
DRU (−q) 0 DUU (−q) 0


 ,

(16)

in terms of the previously introduced propagatorsDκκ′
. Here,

q = (q, iνm) is a three-vector containing both momen-
tum and the Matsubara frequency. As the magnon propaga-
tors respect time-reversal and inversion symmetry, we have
Dκκ′

(−q) = Dκκ′
(q). Further, the magnon propagators also

satisfy DRU (q) = DUR(q).
In spinor notation for the magnon and electron operators,

the interaction Hamiltonian can be written on the form

Hint =
V

4

∑

k∈�
q∈♦

∑

αβγ

gαβγ Bγqψ
†
k+qαψkβ , (17)

where the sum over k runs over the full Brillouin zone, the
sum over q runs over the reduced Brillouin zone, and the index
γ corresponds to the various operators in the magnon spinor
Bγq . The matrices gγ are given by

g1 = f1 ⊗ ρ0, g2 = f2 ⊗ ρ0, (18a)
g3 = f1 ⊗ ρ1, g4 = f2 ⊗ ρ1, (18b)

k

k - q′

q
q′

k - q′ - q

k - q

(a) k

q

k - q′

k - q′ + q′′ q′

q′′

k - q

k - q′ + q′′ - q

k + q′′ - q

(b)

+

= +

=

G

G0
γ′

γ′γ
Dγγ′

γ
D0
γγ′ ψk

ψ†
k+q

Bγ
q

V
4 gγ

V
4 gγ(1 + Γ)

FIG. 3. Feynman diagram expansion for interacting electron and
magnon propagators. Each vertex is associated with a factor V gγ/4,
and electron and magnon propagators G and D are represented by
solid and dashed lines.

where we have introduced the 4× 4 matrices

f1 =
1

2
(σ1τ0 − iσ2τ3), (19a)

f2 =
1

2
(σ1τ0 + iσ2τ3), (19b)

acting on the spin and particle/hole degrees of freedom to sim-
plify the notation.

C. S-matrix expansion

Starting from the non-interacting electron Hamiltonian and
the spinor form of the interaction, we may now apply the S-
matrix expansion and use Wicks theorem to obtain a Feyn-
man diagram expansion for the electron Green’s function
G(k, iωn), as shown in Fig. 3.

The resulting equation can be solved for the electron
Green’s function to obtain the Dyson equation

G−1(k) = G−1
0 (k)− Σ(k), (20)

where Σ(k) is the self-energy, and G0(k) is the non-
interacting electron Green’s function given by

G−1
0 (k, iωn) = iωnρ0τ0σ0 − εkρ3τ3σ0 + µρ0τ3σ0. (21)

In the following, we neglect vertex corrections, which are
discussed more in Appendix D. We may then consider only
sunset type diagrams in the self-energy. Performing the S-
matrix expansion, we extract the self-energy

Σ(k) = −V
2

2β

∑

k′

∑

γγ′

θk−k′Dγγ′(k − k′)gγG(k′)gγ′ , (22)

as evident from the diagrammatic representation in Fig. 3 up
to signs and prefactors. Here, θq is defined by
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θq =

{
1, q ∈ RBZ
0, q ∈ QBZ

}
, (23)

and ensures that the magnon propagator momentum q =
k − k′ is restricted to the reduced Brillouin zone (RBZ) [39].
Here, QBZ refers to the conjugate Brillouin zone which, to-
gether with the RBZ, comprises the full electron Brillouin
zone.

In the discussion so far, we have been using a Nambu spinor
ψk containing electrons at both k and k+Q. Thus, the 8× 8
matrix Green’s function G(k) may in general have correla-
tions between electrons at momenta k and k +Q. In the fol-
lowing, we assume that the processes close to the Fermi sur-
face dominate the self-energy. Away from half-filling, we may
then neglect the correlations which are off-diagonal in the mo-
mentum sector, as they are suppressed by the large electronic
energy at momentum k + Q when k is close to the Fermi
surface. This is discussed in more detail in Appendix C. The
Green’s function G(k) and the self-energy Σ(k) then reduce
to two uncoupled blocks of size 4 × 4 which are related by
k→ k+Q. In the following, we therefore consider only one
of the two blocks.

D. Eliashberg equations

To derive the Eliashberg equations, we decompose the self-
energy matrix into contributions corresponding to the various
basis matrices σα ⊗ τβ for Hermitian 4× 4 matrices. We set

Σ = (1− Z)iωnσ0τ0 + χσ0τ3 + φsσ2τ2 + φtσ1τ1, (24)

where Z is the electron renormalization, χ is the quasiparticle
energy shift, φs is the spin singlet pairing amplitude, and φt
the amplitude for unpolarized spin triplet pairing.

Among the 16 possible terms on the form σα⊗ τβ , we have
kept only 4. Of the remaining 12 combinations, the 8 which
do not conserve spin cannot occur because they are incompat-
ible with the spin structure of the self energy diagram. The
combinations τ3σ3 and τ0σ3 are disregarded because they in-
troduce spin-dependent quasiparticle renormalization, which
is not expected to be present due to the spin symmetry of the
fermions in the system. Finally, we could have introduced
terms φ̃sτ1σ2 and φ̃tσ1τ2. However, the associated fields φ̃s
and φ̃t would play exactly the same roles as φs and φt, and
we therefore set them to zero.

Due to symmetry relations between the electron correla-
tions in the Nambu spinor Green’s function matrix G(k) [40],
the normal Green’s function fields satisfy

Z(−k) = Z(k), Z(k, iωn) = Z(k,−iωn)∗, (25)
χ(−k) = χ(k), χ(k, iωn) = χ(k,−iωn)∗, (26)

and the anomalous correlations satisfy

φs(−k) = +φs(k), φs(k, iωn) = φs(k,−iωn)∗, (27)
φt(−k) = −φt(k), φt(k, iωn) = φt(k,−iωn)∗. (28)

We may now derive equations for the fields Z, χ, φs, φt by
inserting the form for Σ into the Dyson equation, inverting the
inverse G−1(k) and inserting G(k) into the self-energy in Eq.
(22). Comparing term by term, we then obtain the equations

[1− Z(k)]iωn = −V 2 1

β

∑

k′

D(k − k′) iωn′Z(k′)
Θ(k′)

, (29a)

χ(k) = −V 2 1

β

∑

k′

D(k − k′)ξk′ + χ(k′)
Θ(k′)

, (29b)

φs(k) = −V 2 1

β

∑

k′

D(k − k′)φs(k
′)

Θ(k′)
, (29c)

φt(k) = +V 2 1

β

∑

k′

D(k − k′)φt(k
′)

Θ(k′)
, (29d)

under the assumption that a single symmetry channel domi-
nates, so that either φs = 0 or φt = 0 [41]. We have also
introduced the combined magnon propagator

D(q) = θqDRR(q, iνm) + θq+QDUU (q +Q, iνm), (30)

where the argument q can now take on values in the full elec-
tron Brillouin zone. The submatrix determinant Θ(k) is given
by

Θ(k) = [iωnZ(k)]2 − ξ̃2
k − |φs,t(k)|2, (31)

with anomalous correlation φs,t depending on whether we
consider a singlet or triplet instability, and where have intro-
duced ξ̃k = ξk + χ(k). In the following, we will assume
that the quasiparticle energy shift χ is small compared to the
electron bandwidth, and that it can be neglected. Note the
opposite signs on the right hand side of the equations for φs
and φt. This occurs because the spin flips in the vertices of
the self-energy diagrams introduce a sign change for the spin
singlet amplitude, but not for the spin triplet amplitude.

IV. FERMI SURFACE AVERAGED EQUATIONS

When the electron energy scale is large compared to the
magnon energy scale, the regions close to the Fermi surface
dominate the momentum sums in the Eliashberg equations.
We assume that the quasiparticle renormalization field close
to the Fermi surface is weakly dependent on momentum, so
that we may write Z(k, iωn) = Z(iωn). Furthermore, for
a single dominant pairing symmetry channel, we assume that
the anomalous correlations can be written in the product form
φs,t(k, iωn) = ψ(k)φs,t(iωn), where we assume some sim-
ple functional form ψ(k) for the momentum dependence of
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the relevant anomalous correlation.
Since we expect regions close to the Fermi surface to dom-

inate the momentum sum, we may split it into a perpendicu-
lar and a parallel part, and neglect the perpendicular momen-
tum dependence of the magnon propagator. Close to the criti-
cal temperature, one may furthermore linearize the Eliashberg
equations in the anomalous correlations. Converting the per-
pendicular momentum integration into an energy integral, one
then obtains

(1− Z)iωn=
1

βNF

∑

ωn′

λ1(iωn − iωn′)iωn′Z ′
∫
dξ

N(ξ)

Θ(ξ, iωn′)
,

(32a)

φs,t = − 1

βNF

∑

ωn′

λs,t2 (iωn − iωn′)φ′s,t

∫
dξ

N(ξ)

Θ(ξ, iωn′)
.

(32b)

We have here introduced the dimensionless electron-magnon
coupling strength λ1(iωn − iωn′) occurring in the quasi-
particle renormalization equations and the modified coupling
strength λs,t2 (iωn− iωn′) occurring in the anomalous correla-
tion equations. We have further denoted Z(k) by Z and Z(k′)
by Z ′, with similar notation also for the remaining fields, and
denoted the electron density of states byN(ξ), which takes on
the value NF at the Fermi level. The dimensionless coupling
strengths are given by

λ1(iωn − iωn′) = − V
2

NF

∑

kk′

δ(ξk)δ(ξk′)D(k − k′), (33)

λs,t2 (iωn − iωn′) = −ζs,t
1

〈ψ2(k)〉FS

V 2

NF

∑

kk′

δ(ξk)δ(ξk′)

ψ(k)D(k − k′)ψ(k′),
(34)

where ζs = −1 for spin singlet and ζt = +1 for spin triplet is
the sign associated with a spin flip in the anomalous pairing.
The brackets 〈 〉FS denote a Fermi surface average.

In the following, we assume that the density of states can
be approximated by a constant in the dominant region close to
the Fermi surface. We may then perform the energy integral
analytically to obtain

(1− Z)iωn = − iπ
β

∑

ωn′

λ1(iωn − iωn′) sgn(ωn′), (35)

φs,t = +
π

β

∑

ωn′

λs,t2 (iωn − iωn′)
φ′s,t
|ωn′Z ′| . (36)

We next assume that the magnon propagator D can be re-
placed by the non-interacting propagator D0. Solving the
Eliashberg equations is then reduced to calculating dimen-
sionless coupling strengths λ1,2, and solving eigenvalue prob-
lems in the Matsubara frequencies. In Sec. VI, we investigate
the effect of including the magnon self-energy.

In addition to introducing the dimensionless coupling
strengths λ1,2, we may follow the conventional routine and
also introduce frequency dependent functions α2

1,2F (ω) de-
fined such that

λ1,2(iωn − iωn′) =

∫
dω α2

1,2F (ω)
2ω

(ωn − ωn′)2 + ω2
.

(37)

Comparing with the definition of λ1,2, this gives

α2
1F (ω) =

V 2

NF

∑

kk′

δ(ξk)δ(ξk′)δ(ω − ωk−k′)Ae(k − k′),

(38)

α2
2F (ω) = ζs,t

1

〈ψ2(k)〉FS
V 2

NF

∑

kk′

δ(ξk)δ(ξk′)δ(ω − ωk−k′)

ψ(k)Ae(k − k′)ψ(k′),
(39)

where the boosting factor

Ae(q) = θqA
RR
e (q) + θq+QA

UU
e (q +Q), (40)

has been defined analogously to D(q).
The Eliashberg functions α2

1,2F (ω) and the electron-
magnon coupling strengths λ1,2(iνm) are central quantities
in the Fermi surface averaged Eliashberg equations. Through
the approximate formula

TAD
c =

ωlog

1.2
exp

(
−1.04[1 + λ1(0)]

λ2(0)

)
, (41)

they can therefore be used to qualitatively understand the crit-
ical temperatures resulting from actually solving the Eliash-
berg equations. The above formula was suggested by Allen
and Dynes [42] for weak and intermediate electron-boson
coupling. We have set the Coulomb pseudo-potential to zero,
and use the logarithmic average

ωlog = ωa exp

[
2

λ2(0)

∫
dω ln

(
ω

ωa

)
α2

2F (ω)

ω

]
(42)

as the effective cutoff frequency, where ωa is an arbitrary fre-
quency scale.

V. SOLVING THE ELIASHBERG EQUATIONS

We now solve the Fermi surface averaged equations using
realistic material parameters, as detailed in Appendix E. We
set ΩA = 1, and use ΩB ≡ Ω ∈ [0, 1] to tune the sublattice
coupling asymmetry.

In order to compute the dimensionless coupling strengths
λ1,2, the momentum sums are transformed into integrals over
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FIG. 4. (a) Phase diagram in terms of sublattice coupling asym-
metry Ω = ΩB/ΩA and chemical potential µ below half filling.
We find spin triplet p-wave, spin triplet f -wave, and spin singlet d-
wave phases. The phase diagram is colored according to the criti-
cal temperature normalized to the largest value in the phase diagram
within the same phase. Parameter regimes supporting multiple super-
conducting instabilities are colored according to the phase with the
largest critical temperature. The insets show the spin structure and
momentum structure on the Fermi surface for the various phases. The
various subfigures in (b) show the critical temperature Tc as function
of Ω (left) and µ (right) along different lines in the phase diagram.

momenta on the Fermi surface. The quasiparticle renormal-
ization field Z(iωn) can then be calculated using Eq. (35).
Subsequently, we use Eq. (36) to determine the critical tem-
perature for the superconducting instability by finding the
temperature for which the largest eigenvalue of the eigen-
value problem becomes 1 [43, 44]. This gives the critical
temperature Tc of the superconducting instability. We con-
sider three different Ansätze for the superconducting pairing,
namely even frequency spin triplet p-wave pairing, even fre-
quency spin triplet f -wave pairing and even frequency spin
singlet d-wave pairing. These pairings dominate in different
parts of the parameter space of our model. Other pairing sym-
metries like even frequency spin singlet s-wave and different
odd frequency variants were not found to give rise to super-
conductivity. Fig. 4 (a) presents the phase diagram for our
model in the Ω-µ-plane, where critical temperature normal-
ized to the maximum value within each phase is indicated by

color intensity. The type of pairing is indicated by choice of
color (green/blue/red), where regimes supporting multiple so-
lutions are colored according to the phase with the largest crit-
ical temperature.

In the following, we discuss the different superconducting
phases in the phase diagram in more detail.

A. Spin triplet p-wave and f -wave pairing

For the even frequency spin triplet p-wave and f -wave pair-
ings, we consider anomalous pairing momentum dependence
on the form

ψp(k) = cosφk, (43a)
ψf (k) = cos 3φk, (43b)

where φk is the polar angle between the quasimomentum
k on the Fermi surface and the x-axis. These momentum
dependencies are shown in the insets of the phase diagram.

As expected, and in agreement with the results of Ref. [21],
we find even frequency spin triplet p-wave superconductiv-
ity for small Fermi surfaces and large sublattice coupling
asymmetry, corresponding to small µ and Ω. For small Fermi
surfaces, all processes between points on the Fermi surface
are of the regular type. Since the magnon energy is smallest
for small q, minimizing the denominator of the magnon
propagator, the dominant contribution to the momentum sums
in the Eliashberg equations originate from small q. Without
sublattice coupling asymmetry (i.e. Ω = 1), coherence factor
interference effects suppress the boosting factor ARRe (q),
whereas Ω = 0 removes these interference effects completely
and makes p-wave superconductivity possible.

Setting Ω = 0, we also find an even frequency spin
triplet f -wave solution in the entire chemical potential range
we have considered. As shown in Fig. 4 (b), the critical
temperature of the p-wave solution is larger than the critical
temperature of the f -wave solution for small Fermi sur-
faces. For Fermi surfaces approaching half filling, however,
the situation is reversed due to emergence of subleading
Umklapp processes. The interaction providing spin triplet
pairing is attractive for scattering processes between k and
k′ only when φ(k, iωn) and φ(k′, iωn) have the same sign.
Consider now the scattering processes between points on the
Fermi surface where the momentum transfer is closest to Q,
bringing the electron from one side of the Fermi surface to
the opposing side. From the f -wave and p-wave momentum
structure of the anomalous correlations shown in the insets of
Fig. 4 (a), it is clear that these processes are always repulsive
in the p-wave phase and typically attractive in the f -wave
phase. This explains why the f -wave phase has a higher
critical temperature than the p-wave phase upon approaching
half-filling. As discussed in more detail in Sec. VIII, the
combination of Ω = 0 and the presence of Umklapp processes
may, however, be challenging to access experimentally.

Compared with the results of Ref. [21], we find signif-
icantly lower critical temperatures for the p-wave phase.
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FIG. 5. Eliashberg functions and Eliashberg equation solutions for
the p-wave regime (µ/t = −3.5 and Ω = 0) to the left and d-
wave regime (µ/t = −0.2 and Ω = 1) to the right. Subfigures
(a) and (b) show the Eliashberg function α2

2F (ω). Subfigures (c)
and (d) show the dimensionless electron-magnon coupling strengths
λ1,2(iνm) as well as the Matsubara frequency dependence of the
quasiparticle renormalization Z(iωn) and the anomalous correlation
φ(iωn) at the critical temperatures for the respective superconduct-
ing instabilities. The logarithmic average ωlog is shown with vertical
dashed lines.

We attribute this difference to the magnon energy cutoff.
As long-wavelength processes dominate, the characteristic
magnon frequency in the pairing interaction is much smaller
than the upper cutoff on the magnon spectrum. Since the
characteristic frequency serves as the energy scale for the crit-
ical temperature, the critical temperature is then significantly
reduced, which is captured in the Eliashberg theory analysis.

More quantitatively, this argument can be understood in
terms of the Allen-Dynes formula of Eq. (41). Since the
boosting factor ARRe (q) is peaked for small momenta q,
and the electron-magnon coupling strength V is momentum-
independent, the electron-magnon coupling function α2

2F (ω)
is peaked at small frequencies. This is shown in Fig. 5 (a),
where the logarithmic average ωlog is indicated with a dashed
line. The effective magnon frequency for the superconducting
pairing is therefore significantly reduced compared to the
largest magnon frequency in the system. Further, the lower
panel of Fig. 5 (b) shows λ1,2(iνm), which decays quickly
beyond the effective cutoff. Solving the Eliashberg equations
gives the solutions for the anomalous correlation φ(iωn),
which also decays quickly beyond the cutoff, and the quasi-
particle renormalization Z(iωn), which decays to 1.

B. Spin singlet d-wave pairing

In the Eliashberg equations, the difference between the spin
triplet case in Eq. (29d) and the singlet case in Eq. (29c) is the
sign. Thus, the small momentum process pairing potential that
was attractive for spin triplet pairing becomes repulsive for
spin singlet pairing. To obtain singlet pairing attraction, we
therefore need to rely on dominant processes with a relative
sign between the anomalous pairing φs(k) on the left-hand-
side and right-hand-side of the equation. Since small momen-
tum processes cannot provide this sign change, we need to
rely on Umklapp processes. As an s-wave Ansatz does not
change sign around the Fermi surface, we instead choose the
d-wave Ansatz

ψd(k) =
1

2π
(cos kx − cos ky), (44)

shown in the inset of the phase diagram in Fig. 4 (a). Since
the d-wave phase relies on Umklapp processes, it occurs
for chemical potentials µ approaching half-filling in the
phase diagram. Furthermore, the Umklapp processes benefit
from the coherence factor interference in the boosting factor
AUUe (q), which is maximized for Ω = 1. Crucially, these
interferences also suppress the competing regular processes
with small momentum q, which would otherwise prevent spin
singlet superconductivity. The d-wave phase therefore occurs
only for large Ω in the phase diagram. This picture is also
verified in Fig. 4 (b), which shows the critical temperature
for the spin singlet d-wave phase as function of coupling
asymmetry, and as function of chemical potential at Ω = 1.

The electron-magnon coupling strength function α2
2F (ω)

is shown in Fig. 5 (b). With Ω = 1, the regular small mo-
mentum processes are suppressed, and away from half-filling,
the Umklapp processes between points on the Fermi surface
require the magnons to carry momentum which differs from
Q by a finite amount. Therefore, α2

2F (ω) takes on significant
values only beyond a relatively large lower frequency cutoff.
This cutoff corresponds to the magnon energy associated
with the smallest momentum necessary to bring an Umklapp
scattered electron with incoming momentum k from k + Q
and back to the Fermi surface. Moreover, it should be noted
that this smallest momentum depends on where on the Fermi
surface the electron was situated to begin with. At the lowest
relevant frequencies in α2

2F (ω), only a few momenta k bring
k +Q to a position where the momentum transfer necessary
to get back to the Fermi surface is associated with a magnon
energy that is small enough to match the frequency ω. The
function α2

2F (ω) then only obtains contributions from a few
points k that bring k +Q close enough to the Fermi surface.
As the frequency ω increases, α2

2F (ω) obtains contributions
from more points k as the restriction on how close k + Q
needs to be to the Fermi surface is relaxed. Therefore,
α2

2F (ω) is not peaked at small frequencies. The situation
should be contrasted with the p-wave case, where regular
scattering on the Fermi surface with vanishing momentum is
possible regardless of where on the Fermi surface the initial
electron is situated. Denoting the magnon spectrum gap by
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ω0, α2
2F (ω → ω0) therefore receives large contributions

from k − k′ ≈ 0 regardless of where on the Fermi surface k
is situated.

The reduced reliance of the d-wave pairing on processes
with small magnon energy gives rise to a larger effective
magnon frequency ωlog. This larger characteristic magnon
frequency suppresses the magnon propagator occurring in
λ1,2(iνm) for small Matsubara frequencies, but also increases
the frequency scale over which the magnon propagator
decays compared to the p-wave regime. Together with a large
density of states close to half filling, this causes the significant
critical temperatures that are observed for the d-wave regime
in Fig. 4 (b). As shown in Fig. 5 (d), the dimensionless
electron-magnon coupling strength λ1,2(iνm) decays to zero
beyond the effective cutoff frequency, whereas φ(iωn) has a
crossover from behaviour 1/ωn to 1/ω3

n.

C. Effect of frustration

Since the superconductivity in our system relies on spin
fluctuations, we expect interactions in the AFMI spin model
that enhance fluctuations to also enhance the critical temper-
ature. Earlier weak-coupling studies have investigated the
effect of a frustrating next-nearest neighbor exchange cou-
pling J2 > 0 in the antiferromagnet on superconductivity
dominated by regular fermion-magnon scattering processes
[22, 23]. In Fig. 6 (a), we show how the critical temperature
increases with J2 for both the p-wave and d-wave instabili-
ties. The effect of J2 on the superconductivity can be under-
stood in terms of the magnon excitation energies in Fig. 6 (b),
showing that the magnon bands are flattened as J2 increases.
As displayed in Fig. 6 (c) and (d), this shifts weight from
large to the more significant small frequencies in the electron-
magnon coupling function α2

2F (ω), leading to a higher crit-
ical temperature. Notably, increasing J2 does not affect the
gap in the magnon spectrum, meaning that the effective cutoff
for the p-wave phase is not much affected. For the d-wave
phase, the effective cutoff is somewhat reduced for larger J2,
but trading some cutoff for a larger dimensionless coupling
strength λ2(0) is nevertheless found to be beneficial. As the
d-wave phase has a smaller dimensionless coupling strength
than the p-wave phase, the increase of the dimensionless cou-
pling strength arising from J2 leads to a more dramatic in-
crease in critical temperature for the d-wave curve in Fig. 6
(a).

VI. MAGNON RENORMALIZATION

To consider the effect of magnon renormalization, we con-
sider the electron bubble diagram shown in Fig. 3, and once
again neglect vertex corrections. Performing the S-matrix ex-
pansion, one may show that magnon propagators Dγγ′ satisfy
the Dyson equation

D−1(q) = D−1
0 (q)−Π(q), (45)

(b)

(c)
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FIG. 6. Effect of frustrating the antiferromagnet with an next-to-
nearest neighbour exchange coupling J2. (a) Critical temperature for
the p-wave (at µ = −3.5t and Ω = 0) and d-wave (at µ = −0.2t
and Ω = 1) instabilities as function of J2 frustrating the antiferro-
magnet. (b) Magnon spectrum for different values of J2, as indicated
by the vertical dashed lines in (a), between Brillouin zone high sym-
metry points as shown in Fig. 2 (a). (c) Electron-magnon coupling
function α2

2F (ω) in the p-wave regime. (d) α2
2F (ω) in the d-wave

regime. Frustration reduces the magnon excitation energies and en-
hance the spin fluctuations in the system. Thus, weight is shifted
from high magnon energies to low magnon energies in the electron-
magnon coupling function α2

2F (ω), and this increases the critical
temperature.

where the polarization matrix is given by

Πγγ′(q) =
V 2

4β

∑

k

Tr
[
gγG(k + q)gγ′G(k)

]
. (46)

From the matrix structure of the matrices gγ , it follows that
Πγγ′ takes the form

Π(q) =




0 ΠRR(q) 0 ΠRU (q)
ΠRR(−q) 0 ΠUR(−q) 0

0 ΠUR(q) 0 ΠUU (q)
ΠRU (−q) 0 ΠUU (−q) 0


 .

(47)

In principle, we should now solve the coupled equations
for the electron and magnon propagators. However, to esti-
mate the effect of magnon renormalization, we use the non-
interacting electron Green’s functions to calculate the polar-
izations. Using the previous assumption of neglecting terms
in the electron Green’s function which are off-diagonal in mo-
mentum sector, we may furthermore neglect the mixed pro-
cess polarizations ΠUR and ΠRU . This leaves the the regular
and Umklapp polarizations ΠRR and ΠUU , which reduce to

ΠRR
0 (q) =

V 2

β

∑

k

G11
0 (k + q)G22

0 (k), (48)

ΠUU
0 (q) =

V 2

β

∑

k

G11
0 (k + q +Q)G22

0 (k), (49)
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whereG11
0 andG22

0 are matrix elements in the non-interacting
electron Green’s functionG0 corresponding to different spins.

Solving the Dyson equation for the magnon propagator, one
may show that the regular and Umklapp propagators become

DRR(q) =



(

1−DUU0 ΠUU
0

1− rDUU0 ΠUU
0

)
−DRR0 ΠRR

0



−1

DRR0 (q),

(50)

DUU (q) =



(

1−DRR0 ΠRR
0

1− rDRR0 ΠRR
0

)
−DUU0 ΠUU

0



−1

DUU0 (q),

(51)

where we have introduced the quantity

r(q) = 1− AURe (q)ARUe (q)

ARRe (q)AUUe (q)
. (52)

Here, the Umklapp polarization occurs in the regular prop-
agator and vice versa due to the presence of mixed magnon
propagators.

We note that in the special case Ω = 0 where we found spin
triplet pairing, we have r = 0 since all the boosting factors are
equal. In the opposite limit of Ω = 1 where we found spin sin-
glet d-wave pairing approaching half-filling, the mixed prop-
agators vanish, so that r = 1 and each of the two magnon
propagators Dκκ(q) are just renormalized by the correspond-
ing polarization Πκκ(q).

We may now calculate the regular and the Umklapp polar-
izations. Performing the Matsubara frequency sums in Eqs.
(48) and (49), we obtain the standard result

ΠRR
0 (q, iνm) = V 2

∑

p

(
nF(ξp)− nF(ξp+q)

iνm + ξp − ξp+q

)
, (53)

ΠUU
0 (q, iνm) = V 2

∑

p

(
nF(ξp)− nF(ξp+q+Q)

iνm + ξp − ξp+q+Q

)
, (54)

where the momentum sums are evaluated in the thermody-
namic limit through numerical integration [45]. Using that
ξp = ξ−p, one may show that the imaginary part of the polar-
ization vanishes, so that only the real part remains.

For Ω = 0 and a small Fermi surface, the relevant
processes are regular processes. The renormalization of
the regular propagator then depends on ΠR+U

0 (q, iνm) ≡
ΠRR

0 (q, iνm) + ΠUU
0 (q, iνm), where the Umklapp polariza-

tion ΠUU
0 is small. In Fig. 7 (a) we present the polariza-

tion ΠR+U
0 (k − k′, iνm) together with the contributions to

λ2(iνm = 0) from the various momenta k′ on the Fermi sur-
face given incoming electron momentum k as shown in the
inset. The dominant contributions to λ2(iνm = 0) arise from
θ ≈ 0, which corresponds to scattering processes with small
momentum q = k − k′. In this region, the zero frequency
polarization is more or less constant. Consistent with what
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FIG. 7. Polarization renormalizing the magnon propagator for
magnon scattering momenta q between points k and k′ on the Fermi
surface, corresponding to angles 0 and θ, as shown in the inset of
(a). The relative contributions λkk′ from the various points on the
Fermi surface to λ2(iνm = 0) is shown in purple. (a) shows the
combined polarization ΠR+U

0 (q, iνm) and the contributions to λ2(0)
for µ/t = −3.5 and Ω = 0, where we expect p-wave supercon-
ductivity. The dominant contributions to λ2(0) come from small
momentum processes close to θ = 0. (b) shows the polarization
Π̄(q, iνm), corresponding to ΠRR when k − k′ = q is inside, and
ΠUU when k− k′ = q is outside the reduced Brillouin zone. Dom-
inant contributions to λ2(0) come from Umklapp processes in vicin-
ity to k−k′ = Q. The temperature has been set to T = 1 K in both
subfigures.

we expect from Eq. (53), the finite frequency polarizations
approach zero as q → 0. The region where the finite fre-
quency polarizations deviate significantly from the zero fre-
quency polarization is, however, small compared to the region
over which we expect the dominant contributions to λ2 [46].
Hence we may approximate the polarization for Ω = 0 and
small Fermi surface by a constant value ΠC ≈ ΠRR

0 (q →
0, iνm = 0) = −NFV 2.

For Ω = 1, the regular and Umklapp propagators are sim-
ply renormalized by the regular and Umklapp polarizations,
respectively. Fig. 7 (b) therefore presents the polarization
Π̄0(q, iνm) ≡ θqΠRR

0 (q, iνm) + θq+QΠUU
0 (q + Q, iνm),

which is relevant for the d-wave phase. Also shown are the
contributions to λ2(iνm = 0) as in Fig. 7 (a). The polar-
ization is now weakly dependent on frequency, but it varies
somewhat with momentum in the relevant region. Qualita-
tively, it should also in this case be possible to extract the ef-
fect of magnon renormalization by setting the polarization to
a constant value.

In the following, we consider the same two special cases
as above. For Ω = 0 and large doping, where we found p-
wave superconductivity, the relevant magnon propagator is
DRR(q), which can be written
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DRR(q) = − 4ωqA
RR
e (q)

ν2
m + ω2

q + 4ωqARRe (q)ΠC
. (55)

Thus, the magnon frequency in the denominator has been re-
placed by an effective magnon frequency ωeff

q , given by

(ωeff
q )2 = ω2

q + 4ωqA
RR
e (q)ΠC . (56)

Since the polarization is negative, the effective magnon fre-
quency may turn imaginary, indicating that it is no longer rea-
sonable to start out from a Néel ordered state. At q = 0,
where the magnon energy is the smallest, it happens for

|ΠC | ≥ 2KS

(
1 +K/2z1J1

1 +K/z1J1

)
, (57)

where z1 is the number of nearest neighbors.
For Ω = 1 and large Fermi surface, where we found d-

wave superconductivity, the two relevant propagators DRR
and DUU are given by

Dκκ(q) = − 4ωqA
κκ
e (q)

ν2
m + ω2

q + 4ωqAκκe (q)Πκκ
0

, (58)

with κ ∈ {R,U}. Similar to the previous special case, we
may now introduce an effective magnon frequency. Since the
unrenormalized magnon frequency is the smallest for q = 0
and the regular boosting factorARRe (q = 0) is suppressed due
to coherence factor interference, we expect that the effective
magnon frequency may primarily turn imaginary for Umklapp
processes close to q = 0. One may show that this happens for

∣∣∣ΠUU
0

∣∣∣ ≥ 1

2
KS. (59)

Although the coupling to the electrons may therefore in
principle destroy the magnetic order in the antiferromagnet,
unsurprisingly, this does not happen as long as the easy axis
anisotropy is sufficiently large compared to the polarization.

A picture now emerges where the easy-axis anisotropy
and the magnon renormalization play opposite roles stabi-
lizing and destabilizing the magnetic order in the antiferro-
magnet, respectively. Retaining magnetic order upon inclu-
sion of magnon renormalization requires a larger easy axis
anisotropy. The larger easy axis anisotropy has little effect on
the numerator of the magnon propagator, but shifts the square
of the magnon energies in the denominator upwards by an al-
most constant value with respect to momentum when J2/J1 is
small. By choice of the easy-axis anisotropy, the effect of the
magnon renormalization on the effective magnon frequencies
can then be compensated. Superconductivity may therefore
still occur at critical temperatures similar to those obtained by
disregarding magnon renormalization.

VII. DISCUSSION

The Eliashberg equation solutions in this paper are obtained
using Fermi surface averaged equations, thus neglecting the
dependence of the magnon propagator and the fields appear-
ing in the Eliashberg equations on momentum perpendicular
to the Fermi surface. The justification for this is as follows:
Although the magnon propagator is momentum dependent,
the behaviour of the right-hand-side of the Eliashberg equa-
tions when moving k′ away from the Fermi surface is still
dominated by the suppression arising from the fermion ener-
gies in the denominator due to the large energy scale of the
electrons. In this case there are additional variations arising
from the momentum dependence of the magnon propagator.
Thus, a possible avenue for further work could be to take the
full momentum dependence in the Eliashberg equations into
account in order to test the accuracy of our approximation.

The results also rely on vertex corrections being small, so
that the series of vertex diagrams can be cut off after the
zeroth-order contribution. For phonon-mediated supercon-
ductivity, the smallness of the higher-order vertex diagrams is
ensured by Migdal’s theorem [47], which states that higher-
order diagrams are smaller by a factor ωE/EF , where ωE
is a characteristic phonon frequency. Migdal’s theorem is
however known to break down for long-wavelength phonons
[47, 48] and in systems with strong Fermi surface nesting [49–
51]. Moreover, for reduced spatial dimensionality, the reduc-
tion of the higher-order diagrams should be expected to be
less dramatic [51, 52]. As the superconductivity studied in
this work relies on long-wavelength magnons and/or a two-
dimensional Fermi surface close to half-filling, it then seems
plausible that vertex corrections could be of importance. A
discussion of the effect of vertex corrections in the present
system is presented in Appendix D. For large doping, we find
that vertex corrections can become of relevant magnitude, but
that the region in momentum space where the corrections are
large might be small enough to limit their effect. Exactly at
half-filling, the vertex corrections are expected to be quite
large, but their effect can be reduced by moving away from
half-filling.

Upon approaching half-filling, we would also at some point
expect on-set of spin density wave correlations. Exactly at
half-filling, one may straightforwardly generalize the above
Eliashberg theory to accommodate the expected commensu-
rate spin density wave instability. Previously, this has been
done for the phonon-induced instability [53]. Below half fill-
ing, the commensurate wave-vectorQ does not connect points
on the Fermi surface. We therefore expect the commensurate
spin density wave to be suppressed relative to superconduc-
tivity due to the large electronic energy for processes between
states which are not on the Fermi surface. However, we may
still have incommensurate spin density waves, which are far
more challenging to investigate theoretically. In this paper, we
have been investigating the properties of the superconducting
phases, and the highly non-trivial interplay between supercon-
ducting and spin density wave orders that we could potentially
obtain is beyond the scope of the present study.

Another effect that could be included is the effect of the
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quasiparticle energy shift χ. For the present system, χ was
found to be small compared to the Fermi energy for chemi-
cal potentials ranging from half-filling and down towards the
vicinity of the bottom of the band. Apart from the limit where
the Fermi level approaches the bottom of the band, inclusion
of χ would typically amount to a small, weakly frequency-
dependent, shift of the effective chemical potential in the
Eliashberg equations, and it was therefore neglected in the
presented calculations.

The effect of Coulomb interactions on the electron self-
energy is in general challenging to calculate [48]. Their ef-
fect on the Fermi surface averaged Eliashberg equations for
the anomalous pairing amplitudes is typically included by ne-
glecting vertex corrections and including an extra repulsive
and frequency-independent potential in the equations. The
Coulomb repulsion will then have a limited effect on the crit-
ical temperatures as long as λ2(iνm = 0) is somewhat larger
than the Coulomb pseudopotential µ∗ [48]. Moreover, tak-
ing the Coulomb interaction to be momentum independent,
its contributions to the gap equation will cancel for uncon-
ventional pairing symmetries like the ones considered in this
work. For a momentum dependent Coulomb potential, the
Coulomb contributions to the gap equation no longer cancel
identically for unconventional pairing symmetries, but µ∗ will
still be reduced compared to the s-wave case.

In the system setup we have considered, the antiferromag-
netic order and interfacial coupling to the two antiferromag-
nets has been chosen such that any magnetic fields cancel.
If we instead consider a single antiferromagnetic layer and
Ω 6= 1, there would be a net magnetic field, as shown in Eqs.
(B1c) and (B1d). In addition, there would also be a term in
the magnon propagator that is odd in frequency, as shown in
Eq. (B4). The odd part of the propagator would renormal-
ize and reduce the magnetic field h, and produce an effective
magnetic field h̃. Together with the odd part of the propagator,
this effective magnetic field could in principle give rise to an
exotic coexistence of odd- and even frequency superconduc-
tivity [54]. For the experimentally most relevant parameters,
we would however expect the magnetic field to be too strong
to give significant critical temperatures.

We also note that a previously studied system consisting
of a normal metal sandwiched between two ferromagnetic in-
sulators [18] gives rise to a p-wave phase that bears many
similarities with the p-wave phase considered in the present
study. The main difference between the two systems is the
absence of the magnon coherence factors in the ferromagnetic
case. The numerator of the magnon propagator (or effective
potential in a weak-coupling framework) for the ferromagnet
therefore scales as ωFMq ∼ K for long-wavelength magnons,
while the numerator of the magnon propagator for the antifer-
romagnet scales as ARRe (q)ωq ∼ J1. For superconductivity
dominated by long-wavelength magnons, with K/J1 � 1,
the dimensionless electron-magnon coupling λ2(iνm = 0)
may however still be of the same magnitude in both cases,
corresponding to similar dimensionless coupling constants in
a weak-coupling framework. This is because the ferromag-
net propagator can simply rely on having a smaller gap in the
magnon spectrum, making the denominator of the propaga-

tor smaller for the long-wavelength processes. As the crit-
ical temperature in a simple weak-coupling framework only
depends on the dimensionless coupling constant and the cut-
off on the boson spectrum, sizeable critical temperatures can
then be obtained for both ferromagnets and antiferromagnets.
Within an Eliashberg framework, on the other hand, the ef-
fective cutoff frequency is determined by the characteristic
magnon energies in the pairing interaction. Since, with ferro-
magnets, the large values for λ2(iνm = 0) were obtained by
relying on smaller magnon energies in the denominator of the
propagator, the effective frequency cutoff will be smaller, and
the critical temperatures obtainable with ferromagnets should
be smaller than with antiferromagnets.

In the current antiferromagnetic case, magnon renormaliza-
tion was found to have little effect on the available critical
temperatures. This is because the larger easy axis anisotropy
K, required to protect magnetic order in the AFMIs, is com-
pensated by the magnon energy renormalization in the denom-
inator of the propagator. The larger easy-axis anisotropy has
little effect on the numerator of the propagator. For the case
of the ferromagnet, on the other hand, increasing K so that it
compensates the renormalization would also lead to a larger
numerator in the propagator. Magnon renormalization could
then open the way for slightly higher critical temperatures.

VIII. EXPERIMENTAL CONSIDERATIONS

The model employed in this study allows us to tune the
interfacial coupling between the normal metal and the two
different sublattices of the antiferromagnet independently. In
principle, such a general asymmetric coupling could be engi-
neered, as discussed in the introduction. However, the experi-
mentally most promising route to realizing superconductivity
in systems well described by our model appears to be through
fully compensated and uncompensated interfaces, where the
conduction band electrons in the normal metal are coupled to
only one AFMI sublattice (Ω = 0), or equally to both AFMI
sublattices (Ω = 1). There is however a significant difference
between our model and the intended realization with an un-
compensated interface for the case Ω = 0. In the intended
realization, the square lattice of the normal metal matches the
exposed sublattice of the antiferromagnet, and not the square
lattice of the antiferromagnet itself, as in our model. Thus,
the electron Brillouin zone coincides with the Brillouin zone
of the antiferromagnet. Although it is possible to imagine a
compensated interface where the magnons at the interface live
in a smaller Brillouin zone than the electrons, this would not
be the typical case.

Within our model, Umklapp processes are included for both
Ω = 0 and Ω = 1. In the intended realization for Ω = 0, how-
ever, Umklapp processes are absent. For a small Fermi sur-
face, the effect of Umklapp processes in our model is small,
since all processes between points on the Fermi surface are of
the regular type. The p-wave phase we expect for uncompen-
sated interfaces and large doping is therefore well represented
by our model. For small doping, however, the f -wave phase
of our model takes precedence over the p-wave phase pre-
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cisely because of the Umklapp processes. The f -wave phase
is therefore of less experimental relevance, and we expect that
the p-wave phase would dominate regardless of doping for a
normal metal sandwiched between two uncompensated inter-
faces.

For the p-wave phase with Ω = 0, having a trilayer het-
erostructure in order to cancel all magnetic fields seems neces-
sary, as the critical temperature is significantly reduced com-
pared to previous predictions [21]. For the d-wave phase with
Ω = 1, the result of coupling to a single antiferromagnet
would lead to the presence of a staggered field. As a staggered
field might be less detrimental to superconductivity than a uni-
form spin-splitting [55], a bilayer heterostructure might be a
viable option in this case.

When it comes to choice of parameters, it is clear that a
strategy of simply taking a very small gap in the magnon spec-
trum in order to increase the dimensionless coupling strength
λ2(0) has its limitations, as this leads to a very small effective
cutoff frequency and slow increase in critical temperature with
dimensionless coupling strength. In order to realize supercon-
ductivity in this system it is then essential that the constant
prefactor that appears in the gap equation is sufficiently large.
A sizeable interfacial exchange coupling and electron density
of states is then preferable. Moreover, as the effective induced
interaction experienced by the electrons in the normal metal
might be reduced with the thickness of the normal metal [18],
the metallic layer should be kept quite thin.

The easy-axis anisotropy governs the size of the gap in the
magnon spectrum, and appears to play a crucial role in realiz-
ing superconductivity. A sufficiently large gap in the magnon
spectrum could be important for both the p-wave and d-wave
phases in order to stabilize the antiferromagnet. The p-wave
phase does, however, rely more heavily on fine-tuning of the
easy-axis anisotropy in order to produce a nonzero, but suffi-
ciently small, effective magnon gap producing a sizeable crit-
ical temperature. This could make the p-wave phase more dif-
ficult to realize experimentally. The d-wave pairing receives
contributions from a wider range of magnon energies, and the
critical temperature is therefore more robust to a shift of the
magnon energies. For larger Fermi surfaces, a larger easy-
axis anisotropy is however needed to preserve magnetic or-
der in the antiferromagnet, which could in itself be an exper-
imental complication. However, using a magnetically more
stable three-dimensional antiferromagnet instead of the two-
dimensional magnet considered in our model, could poten-
tially lead to a reduction in the easy-axis anisotropy required
to stabilize the magnets.

In contrast to earlier results, the present study indicates
that the d-wave phase may be able to produce higher criti-
cal temperatures than the p-wave phase. However, the d-wave
phase is, in our model, dependent on proximity to half-filling,
where it e.g. needs to compete with spin-density wave order.
This competition may push the superconducting phase down
towards lower filling-fractions associated with lower critical
temperatures. It should also be noted that since the d-wave
phase relies on Umklapp processes, it is more sensitive to
the detailed structure of the Fermi surface. In comparison
with the p-wave phase, the d-wave phase may therefore place

stricter requirements on the electron band structure of the nor-
mal metal in the experimental realization. Compared with
the third option of coupling to ferromagnetic insulators, how-
ever, both phases considered in the present study seem more
promising.

IX. SUMMARY

We use Eliashberg theory to study interfacially induced
magnon-mediated superconductivity in a normal metal-
antiferromagnet heterostructure. For large doping and uncom-
pensated antiferromagnetic interfaces, we find p-wave super-
conductivity, while for small doping and compensated anti-
ferromagnetic interfaces, we find d-wave superconductivity.
This can be understood in terms of sublattice interferences
suppressing and enhancing scattering processes in the sys-
tem. Although the qualitative results are in accordance with
earlier weak-coupling studies, the critical temperature achiev-
able for the p-wave phase is found to be significantly reduced
as the characteristic magnon frequency in the pairing inter-
action is much smaller than the cutoff on the magnon spec-
trum. The d-wave phase, on the other hand, is found to rely
less on long-wavelength magnons and can therefore poten-
tially produce larger critical temperatures when approaching
half-filling. Close to half-filling the d-wave instability may
however have to compete with a spin-density wave instability,
potentially reducing the available critical temperatures. A suf-
ficiently large gap in the magnon spectrum might be necessary
to stabilize the magnetic order in the antiferromagnets due to
feedback from the electrons, but this is found to have limited
effect on the critical temperatures.
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Appendix A: Antiferromagnetic magnons

Starting from the AFMI Hamiltonian, we introduce the lin-
earized Holstein-Primakoff transformation [56]

S+
i∈A,H =

√
2SaiH S+

i∈A,L =
√

2Sa†iL (A1a)

S+
j∈B,H =

√
2Sb†jH S+

j∈B,L =
√

2SbjL (A1b)

S−i∈A,H =
√

2Sa†iH S−i∈A,L =
√

2SaiL (A1c)

S−j∈B,H =
√

2SbjH S−j∈B,L =
√

2Sb†jL (A1d)

Szi∈A,H = S − a†iHaiH Szi∈A,L = −S + a†iLaiL (A1e)

Szj∈B,H = −S + b†jHbjH Szj∈B,L = S − b†jLbjL, (A1f)

where we have assumed oppositely aligned antiferromagnetic
order in the spin space z-direction for the two antiferromag-
nets.

Inserting this into the AFMI Hamiltonian and expressing it
in terms of sublattice magnon Fourier modes aqη and bqη , the
AFMI Hamiltonian takes the form

HAFMI =
∑

q,η

Cq(a†qηaqη + b†qηbqη)

+Dq(aqηb−qη + a†qηb
†
−qη), (A2)

where Cq and Dq are given by

Cq = 2z1J1S − 2z2J2S(1− γ̃q) + 2KS, (A3a)
Dq = 2z1J1Sγq, (A3b)

and we have defined

γq =
1

z1

∑

δδδ1

eiq·δδδ1 , γ̃q =
1

z2

∑

δδδ2

eiq·δδδ2 . (A4)

Here, z1 and z2 are the number of nearest and next-nearest
neighbour vectors, which are summed over and denoted by δδδ1

and δδδ2. The Hamiltonian is diagonalized through the Bogoli-
ubov transform

aqη = uqαqη + vqβ
†
−qη, (A5a)

b†−qη = uqβ
†
−qη + vqαqη, (A5b)

where the coherence factors uq and vq can be written as

uq = cosh θq, vq = sinh θq, (A6)

in terms of the hyperbolic angle

θq = −1

2
tanh−1

(
Dq

Cq

)
. (A7)

The resulting magnon spectrum is

ωq =
√
C2

q −D2
q. (A8)

By expressing the inverse hyperbolic tangent in terms of a log-
arithm, one may show the relations

u2
q + v2

q = +Cq/ωq, (A9a)

2uqvq = −Dq/ωq, (A9b)

for the coherence factor combinations which appear in the
magnon propagator.

Whereas uq is positive, vq is typically negative. Further-
more, we notice that when K and J2 are small compared to
J1, |θq| becomes large when q → 0, as Dq approaches Cq .
This causes uq to grow large and positive and vq to grow large
and negative in this limit.

Appendix B: Interfacial coupling Hamiltonian

In the main text, we presented expressions for the interfa-
cial coupling and the magnon propagators under the assump-
tion that the two antiferromagnets couple to the normal metal
with equal strength. In this appendix, we generalize the results
beyond this assumption.

The interfacial coupling Hamiltonian describing the cou-
pling to a single antiferromagnetic insulator labelled by η can
be writtenHη

int = Hh,η
int +HV,η

int , where the magnetic exchange
field contributions Hh,η

int = Hh,A,η
int + Hh,B,η

int from the two
sublattices are

Hh,A,H
int = −J̄ ΩHAS

∑

k∈�,σ
σ
(
c†kσckσ + c†k+Q,σckσ

)
, (B1a)

Hh,B,H
int = +J̄ ΩHBS

∑

k∈�,σ
σ
(
c†kσckσ − c

†
k+Q,σckσ

)
, (B1b)

Hh,A,L
int = +J̄ ΩLAS

∑

k∈�,σ
σ
(
c†kσckσ + c†k+Q,σckσ

)
, (B1c)

Hh,B,L
int = −J̄ ΩLBS

∑

k∈�,σ
σ
(
c†kσckσ − c

†
k+Q,σckσ

)
, (B1d)

and where the exchange coupling strengths J̄ΩηΥ are in gen-
eral different for the two antiferromagnets. Coupling to only
one antiferromagnet can be realized by e.g. setting ΩLΥ = 0.
Assuming ΩHΥ = ΩLΥ, however, all magnetic fields cancel.

The electron-magnon interaction is given by

HV,η
int = V

∑

k∈�
q∈♦

[
MR

qηc
†
k+q,↓ck,↑ +MU

qηc
†
k+q+Q,↓ck,↑

+(MR
−qη)†c†k+q,↑ck,↓ + (MU

−qη)†c†k+q+Q,↑ck,↓
]
, (B2)
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where we have defined magnon operators Mκ
qη associated

with the antiferromagnet η as

Mκ
qH = ΩHAaqH + κΩHB b

†
−qH , (B3a)

Mκ
qL = ΩLAa

†
−qL + κΩLBbqL, (B3b)

so that the operator Mκ
q introduced in the main text is given

by Mκ
q = Mκ

qH + Mκ
qL. Expressing the magnon operators

in terms of the eigenmagnon operators resulting from the Bo-
goliubov transformation, the corresponding magnon propaga-
tors are

Dκκ′
0,η (q, iωn) =−Aκκ′

e,η (q)
2ωq

ω2
n + ω2

q

−Aκκ′
o,η

2iωn
ω2
n + ω2

q

.

(B4)

Here, the first term is even under the three-vector transforma-
tion q → −q, and the second term is odd. The expressions for
Aκκ

′
e,η (q) can be obtained from Eq. (10) in the main text by the

simple generalization Aκκ
′

e (q) → Aκκ
′

e,η (q) and ΩΥ → ΩηΥ.
The odd part prefactor Aκκ

′
o,η is q-independent, and given by

Aκκ
′

o,η =
1

2
η
[
(ΩηA)2 − κκ′(ΩηB)2

]
, (B5)

where we associate the index η with the values H → 1 and
L → −1. We notice that the odd part of the propagator has
different signs for the two antiferromagnets, so that their con-
tributions cancel out when we couple equally to the two anti-
ferromagnets.

Appendix C: Suppression of electron correlations which are
off-diagonal in momentum

In this appendix, we argue that terms in the electron Green’s
function which are off-diagonal in momentum are suppressed
as long as the electron propagator renormalization is small
compared to the difference in electron energies at the mo-
menta k and k +Q.

The self-energy is in general an 8 × 8 matrix in the mo-
mentum, particle/hole, and spin degrees of freedom. The self-
energy can then be written

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, (C1)

where Σij is now a 4 × 4 submatrix in the particle/hole and
spin degrees of freedom corresponding to momentum sec-
tor (i, j). The self-energy is related to the Green’s function
through the Dyson equation, so that

G−1(k) =

(
G−1

0 (k)− Σ11(k) −Σ12(k)
−Σ21(k) G−1

0 (k +Q)− Σ22(k)

)
.

(C2)

Away from half-filling, both k and k +Q cannot both be on
the Fermi surface, so one of the submatrices on the diagonal
will have a term proportional to the identity matrix and pref-
actor of the same order as the electron energy scale. We now
assume that k is close to the Fermi surface, so that this ap-
plies toG−1

0 (k+Q). To obtain the Green’s functionG(k), we
then make use of the following matrix inversion identity [57]:
Given a matrixG−1 which can be partitioned into submatrices
and written on the form

G−1 =

(
N11 N12

N21 N22

)
, (C3)

where N11 and N22 are invertible matrices [58], the inverse
can similarly be expressed

G =

(
M11 M12

M21 M22

)
, (C4)

with submatrices

M11 = (N11 −N12N
−1
22 N21)−1, (C5a)

M12 = −(N11 −N12N
−1
22 N21)−1N12N

−1
22 , (C5b)

M21 = −N−1
22 N21(N11 −N12N

−1
22 N21)−1, (C5c)

M22 = (N22 −N21N
−1
11 N12)−1. (C5d)

In our case, N22 can now be thought of as an elec-
tronic energy that is much larger than the other submatrices,
which have contributions from the self-energy and the non-
interacting Green’s function close to the Fermi surface. As
long as the renormalization is small compared to the electron
energy scale in the problem, N−1

22 N21 is then small, and M21

and M12 are suppressed relative to M11. By similar reason-
ing,M22 is also small, andM11 can be approximated byN−1

11 .
When k+Q is close to the Fermi surface, we may similarly

neglect M11 and the off-diagonal terms, but not M22 ≈ N−1
22 .

For a general k, we may therefore neglect the off-diagonal
terms, which is exactly what we use in the main text.

Appendix D: Vertex corrections

In order to obtain some insight into the importance of ver-
tex corrections, we will attempt to estimate the magnitude of
the lowest-order vertex corrections. Focusing on regular pro-
cesses for the time being, a magnon-equivalent of the lowest-
order vertex correction for phonon-mediated superconductiv-
ity is presented in Fig. 8 (a). Due to conservation of spin, this
diagram vanishes for our system. Starting with the upper ver-
tex of the vertical magnon line, we see that the electron spin is
flipped from ↑ to ↓, meaning that the outgoing magnon carries
a spin +1. In the lower vertex of the vertical magnon line,
this spin needs to be returned to the electrons, but the incom-
ing electron already has spin ↑ instead of spin ↓, and spin can
therefore not be conserved in this vertex. Including Umklapp
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FIG. 8. (a) Typical lowest-order vertex correction, which vanishes
in this case due to conservation of spin. (b) Lowest-order vertex
correction for our model.

processes, the momentum structure of Fig. 8 (a) will differ,
but the spin structure stays the same. The lowest-order vertex
corrections are therefore of the type represented by the dia-
gram in Fig. 8 (b). As the diagram in (b) is of higher order,
the effect of vertex corrections should then be expected to be
smaller than what would have been the case if the diagram in
(a) had not vanished.

The diagram in Fig. 8 (b) represents a correction to the
electron-magnon vertex V

4 gγ → V
4 gγ(1 + Γ), where

Γ(k, q) ∼ V 4

β2

∑

q′,q′′

DRR0 (q′)DRR0 (q′′)G11
0 (k + q′′ − q)

×G22
0 (k − q′ + q′′ − q)G11

0 (k − q′ + q′′)G22
0 (k − q′).

(D1)

A quick estimate for Γ can be obtained in the following way
[36]. We approximate the magnon propagators as

DRR0 (q) ∼ −A
RR
e (0)

ωc
, (D2)

for Matsubara frequency qm less than some cutoff frequency
ωc ∼ ω0, where ω0 is the magnon gap. For qm > ωc, we
take the magnon propagator to be zero. The number of terms
that should be included in each of the Matsubara sums is then
roughly βωc. When performing the sums over momentum,
the fermions will typically be away from the Fermi surface.
We then approximate the momentum sums with the number of
lattice sites N , and the electron Green’s functions by Gaa0 ∼
1/EF , where EF is the Fermi energy, which is taken as a
measure of the electron energy scale ∼ 1 eV. We then obtain

Γ ∼
(
V 2NARRe (0)

E2
F

)2

∼
(

1

100

)2

, (D3)

where we have inserted typical values for the relevant energy
scales, and taken Ω = 0 which is suitable for the case of a rel-
atively small Fermi surface where regular processes dominate.
This estimate would indicate that vertex corrections are typi-
cally small. It does however not take into account that there

can be large contributions arising from fermions being close
to the Fermi surface when q → 0. In order to pick up such
contributions, we need to perform a more detailed estimate.

Starting from Eq. (D1), we can perform the Matsubara
sums. Following Ref. [59], we focus on the term that arises
from the poles of the boson propagators, limiting the number
of factors with fermion energies in the denominator. At zero
temperature, this term becomes

Γ1(k, q) = −4V 4
∑

q′,q′′

ARRe (q′)ARRe (q′′)

×
(

1

ωq′ + ikn − ξk−q′

)(
1

ωq′′ + ξk+q′′−q − i(kn − qm)

)

×
(

1

ωq′ + i(kn − qm)− ωq′′ − ξk−q′+q′′−q

)

×
(

1

ωq′ + ikn − ωq′′ − ξk−q′+q′′

)
.

(D4)

To estimate this term in the limit of small q, we need to an-
alyze which regions of the Brillouin zone that dominate the
momentum sums. The momentum scattering processes in the
vertex correction diagram can be represented by a hexagon
where opposing sides are parallel and equally long due to con-
servation of momentum, as shown in Fig. 9. Each vertex in the
hexagon represents the momentum of an electron propagator
in the Feynman diagram. We consider processes where k and
k − q are close to the Fermi surface. Consider the variables
q′ and q′ − q′′ ≡ π to be the integration variables of our mo-
mentum sums. For small q, the vertices 2 and 3 in Fig. 9 are
reasonably close to each other. The dominant contributions to
the diagram should therefore arise when k − q′ + q′′ is close
to the Fermi surface. With q′ − q′′ fixed, the position of the
remaining two vertices 1 and 4 is fixed by choosing q′. Tak-
ing vertex 1 to be close to the Fermi surface, vertex 4 will now
typically end up away from the Fermi surface. The number of
terms in the sum over q′ where vertex 1 is close to the Fermi

k

k - q′

q
q′

k - q′ - q

k - q

(a)

1

3 4
2

0
5

k

k - q

k + q′′ - q

k - q′

k - q′ + q′′

k - q′ + q′′ - q

FIG. 9. The momentum scattering processes in the simplest non-
vanishing vertex correction of Fig. 8 (b) can be represented as a
hexagon. Opposing sides in the hexagon are parallel and equally
long due to conservation of momentum. The Fermi surface (assum-
ing large doping) is shown as a circle.
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surface is of order NFωc. The Green’s functions correspond-
ing to points 1 and 4 in the hexagon can then be approximated
by 1/ωc and 1/EF , respectively. By also approximating the
boosting factors by their maximum values ARRe (0) and the
remaining magnon energies by ωc, we may then approximate
the vertex correction by

Γ1(k, q) = −4NF [V 2ARRe (0)]2

EF

∑

πππ

(
1

ikn − ξk−πππ

)

×
(

1

i(kn − qm)− ξk−πππ−q

)
.

(D5)

Alternatively, one can attempt to further restrict the sum over
q′ in order to keep all the fermions close to the Fermi surface,
producing a similar result as in Eq. (D5).

Introducing p = k−πππ, the diagram can now be calculated
by Taylor expanding in small q, using

ξp−q ≈ ξp − (∇ξp) · q = ξp − vF q cos
(
θq(p)

)
, (D6)

where vF is the Fermi velocity and θq(p) is the angle between
∇ξp and q. Writing the momentum integral in terms of polar
coordinates and integrating out the radial momentum, we then
obtain

Γ1(k, q) ≈ −i4[NFV
2ARRe (0)]2

EF

×
[

Θ(kn)−Θ(kn − qm)

]∫ 2π

0

dθ

(
1

iqm − vF q cos(θ)

)
.

(D7)

Performing also the angular integration, one may show that
the vertex correction contribution for nonzero bosonic Mat-
subara frequency is of order

Γ1(k, q) ∼
(
NFV

2ARRe (0)

EF

)2(
EF√

v2
F q

2 + q2
m

)
. (D8)

In short, this result can be interpreted as follows: Domi-
nant contributions to Eq. (D4) arise from NFωc terms in each
of the momentum sums where two of the electron propagators
then are of order 1/ωc as these electrons are close to the Fermi
surface. One of the electron propagators is replaced by a fac-
tor 1/EF , as the electron in this case is not close to the Fermi
surface. The last propagator momentum is reasonably close
to the Fermi surface due to the small momentum scattering
q. This propagator is found to be of order 1/

√
(vF q)2 + q2

m,
where the square root can be interpreted as an interpolation
between the frequency and the momentum energy scales for
the scattering process with three-momentum (q, qm).

For q → 0, qm ∼ 1 K, and typical values for the remain-
ing energy scales, the expression in Eq. (D8) is found to be of

order 1, indicating that vertex corrections could become im-
portant for long-wavelength magnons. As vF q in the denom-
inator grows quickly with q, the momentum region where our
estimate for the vertex corrections is of importance is quite
limited. Whereas the above expression is quickly reduced
when q surpasses qm/vF , the corresponding momentum cut-
off for the magnon propagator depends on the magnon group
velocity close to the bottom of the band, meaning that the mo-
mentum region where the estimated vertex corrections are of
importance is typically significantly smaller than the momen-
tum region where we obtain large contributions to the Eliash-
berg equations. A more rigorous treatment of the vertex cor-
rections would treat both momentum sums in detail and could
potentially give rise to contributions that are larger and/or less
quickly reduced with increasing q.

As the diagram in Fig. 8 (a) vanishes for our model, one
might imagine that it could be possible to obtain signifi-
cant vertex corrections by going to higher-order in magnon
operators in the electron-magnon interaction, giving rise to
electron-magnon scattering processes without spin flips. In-
cluding higher-order terms in the interaction Hamiltonian aris-
ing from the z-component of the antiferromagnetic spins, one
may construct a diagram like the one in Fig. 8 (a) where the
vertical magnon line has been replaced with a magnon loop
and the vertices of the magnon loop does not involve an elec-
tron spin flip, conserving the electron spin in the diagram. Per-
forming estimates like those presented above, such diagrams
are found to be of similar magnitude and displaying a similar
suppression with increasing momentum q as the diagram in
Fig. 8 (b).

For larger Fermi surfaces and Ω = 1, the regular processes
are of little importance and the physics is dominated by Umk-
lapp processes. Modifying the diagram of Fig. 8 (b) to only
include Umklapp processes, all spin-↓ electron propagators
therefore attain an additional momentum shiftQ. Below half-
filling, for k on the Fermi surface, placing k − q +Q on the
Fermi surface now requires a finite momentum q. Contrary
to the case with regular processes and q → 0, choosing the
hexagon vertex 2 reasonably close to the Fermi surface does
therefore not necessarily mean that the hexagon vertex 3 is
also reasonably close.

Exactly at half-filling, the Fermi surface is perfectly nested,
and the electron momenta can all be chosen reasonably close
to the Fermi surface for a wide range of integration momenta
and relevant values of q. Thus, we would get large vertex cor-
rections [49, 50, 60]. Moving away from half-filling, the nest-
ing of the Fermi surface is no longer perfect. Our simplest
estimate in Eq. (D3) will then eventually be restored, where
ARRe (0) needs to be replaced with the maximum value of
AUUe (q) for scattering processes on the Fermi surface. Thus,
we would expect vertex corrections to become unimportant
sufficiently far away from half-filling.
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Appendix E: Material parameters

Typical parameter values are shown in Table I. The electron
density of states is calculated by numerical evaluation of the
elliptical integral in Ref. [61].

TABLE I. Parameter values used in the numerical results. We refer
to the main text for an explanation of their meanings.

Quantity Value
J1 2 meV
J2 0.2 J1
K 1 × 10−4 J1
J̄ 15 meV
S 1
t 1 eV
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