NTNU

Norwegian University of Science and Technology

Philosophiae Doctor

Thesis for the Degree of
Faculty of Information Technology and Electrical

Doctoral theses at NTNU, 2021:331
Bjgrn Magnus Mathisen
Using similarity learning to

enable decision supportin
aquaculture

Engineering

Department of Computer Science

NTNU

Norwegian University of
Science and Technology

Bjgrn Magnus Mathisen

Using similarity learning to
enable decision supportin
aquaculture

Thesis for the Degree of Philosophiae Doctor
Trondheim, Oktober 2021
Norwegian University of Science and Technology

Faculty of Information Technology and Electrical Engineering
Department of Computer Science

NTNU

Norwegian University of
Science and Technology

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Department of Computer Science

© Bjgrn Magnus Mathisen

ISBN 978-82-326-5184-9 (printed ver.)
ISBN 978-82-326-5625-7 (electronic ver.)
ISSN 1503-8181 (printed ver.)

ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2021:331

Printed by NTNU Grafisk senter

To my daughters Ane and Nora. And to my partner Astrid.

Abstract

Aquaculture (AQ) is an industry that cultivates food in water. This
includes many types of seafood such as salmon, trout, and whitefish, as
well as shellfish and algae. Farms for seafood production are typically
described as sites by the industry. In Norway, the site locations
are normally regulated and allocated by the government. Artificial
intelligence (AI) and machine learning (ML) has not yet been widely
adopted in the industry. AI/ML would potentially be able to support
the industry in automation, operation and decision support.

The aquaculture industry is expanding across the globe. This is
a result of technological development and the need for more food
production to feed a growing population. In 2012, the Norwegian
seafood industry was expected to grow five-fold from 2007 until
2050 []. According to industry representatives and the government®2,
this is still the case today. As a result of this expansion, the
industry needs to increase the number of production sites. While
expanding, the industry needs to keep the environmental impact of
such production sites to a minimum. As production sites pollute
their immediate surroundings, they should ideally not be in constant
production over a long period of time. Additionally, the production
sites cannot be too concentrated geographically to minimize the
environmental impact and risk of spreading diseases such as sea lice.
As a result, the number of available sites is decreasing, and the
industry now looks to increasingly more exposed locations for their
aquaculture operations. Exposed aquaculture sites are subject to
rough conditions and are often inaccessible. Typical aquaculture sites
are well sheltered. To ensure the same level of safety, aquaculture
sites that are more exposed would require more resources and a more
robust physical infrastructure. Also, the level of exposure often leads
to more downtime, where personnel is waiting for the weather to clear
up to perform their tasks.

The aquaculture industry is a conservative industry and has
not progressed far in terms of digitalization and instrumentation
compared to many other comparable industries such as oil and
gas. The push towards more exposed aquaculture operations is

Thttps:/ /www.nrk.no/trondelag/sjomat-norge-onsker-a-femdoble-
sjomatnaeringen-_ -vil-koste-500-milliarder-1.14501218
2https://www.pwc.no/no/publikasjoner /pwc-seafood-barometer-2017.pdf

now changing this, where increasing the level of automation and
remote work would significantly contribute to decreasing the risks
to personnel. Such automated operations require the application of
digital technologies both for operations and decision-support. This
development is supported by the availability of more operational data
from the aquaculture industry in recent years. As a result, the
connectivity and data availability allows for data-driven services and
utilization of ML.

Data-driven models and ML support in the aquaculture industry
include both operational use cases and decision support systems
(DSSs). Operational use cases for aquaculture include 1) computer
vision for situation recognition needed for automatic fish feeding,
and 2) robotics that can perform necessary operations such as cage
cleaning or extracting fish. As such, operational use cases are use
cases where ML models are used in real-time or close to real-time.
In contrast, DSSs are typically used as a planning tool. DSSs use
data-driven models in the context of supporting decision-making or
operational planning. Such systems are designed to help operators
by predicting operational properties, such as production, structure
movements, or waves.

Most decision-makers, especially from conservative industries,
prefer an understandable and explainable DSS. When the DSS
explains the recommendation it produces, it increases the trust in
that recommendation, and as a result, the usefulness of the DSS. Many
machine learning methods and their resulting models are not easy to
explain to most users. One way of alleviating this is to use case-based
reasoning (CBR)[2]. CBR captures previous experiences or situations
in the form of cases that consist of a problem description and the
corresponding solution. As part of a DSS, CBR would store previous
situations where the DSS was used and the resulting action or solution.
In this way, the DSS user can be presented with the previous situation
most similar to the current situation and the resulting action for that
situation. The input of a DSS can be the current state. In the case of
using CBR for planning in a DSS, the CBR input can be a prediction
(e.g., a predicted situation for which the CBR can retrieve a solution).
Presenting an actual recorded situational experience and resulting
action along with the prediction provides an indirect explanation and
strengthens the user’s confidence in the DSS.

The work described in this thesis investigates the use of machine
learning to increase the level of automation in aquaculture operations,
focusing on decision support. A general framework for designing a
DSS is introduced, from data gathering to the user interface. This
framework outlines the steps from sensors readings, preprocessing of
the data, combining the data with knowledge and experience from the

iv

users of the DSS, using the data to feed machine learning, knowledge
models, and numerical models to then predict a future state which can
be used to make informed decisions. In addition, a CBR-based DSS
can store previously recorded situations where the DSS was applied
(cases). The DSS can then use this repository to retrieve and present
the user with the previously recorded cases that are most similar to
the predicted state. To do this, the DSS must retrieve the case most
relevant (similar) to the one predicted by the DSS or input by the
DSS user (query case). Retrieving the most similar case requires the
DSS to compute the similarity between the query case and the cases
in the repository.

Measuring similarity between cases is a focus of research within
machine learning and case-based reasoning. Manual modeling this
similarity can be challenging. Building on previous state-of-the-art
machine learning methods, we propose a new method for learning
such similarity measures from data (similarity learning), which can
be used for retrieving cases: Extended Siamese Neural Networks
(ESNN). ESNN is a similarity learning (SL) method that outperforms
the accuracy and training speed of state-of-the-art methods across
domains. Extending the testing of ESNN, we developed a dataset
for describing situations in aquaculture operations. We demonstrated
that ESNN also outperformed state-of-the-art methods for retrieving
the most similar operational situations.

Preface

This thesis is submitted in partial fulfillment of the requirements
for the degree of Philosophiae Doctor in Computer Science at the
Department of Computer Science, Norwegian University of Science
and Technology (NTNU). The research presented here was conducted
under the supervision of Professor Agnar Aamodt (until 2020),
Associate Professor Kerstin Bach (from 2020) and my co-supervisors
Professor Helge Langseth and Gunnar Senneset, and supported by
the Norwegian Research Council through the EXPOSED Aquaculture
Research Centre (grant number 237790). The PhD project started
15th of September 2015. During the PhD project, several major events
happened. I became a father for the second time, and the world was
hit by Covid-19. While working on this PhD project, I also had a
part-time position (25%) at the SINTEF research institute.

The thesis is a collection of four papers presented in chronological
order of writing. The included papers have been published or accepted
for publication for scientific conferences or journals. The papers have
been reformatted to have consistent formatting within the thesis and
deviates visually from the published versions.

Acknowledgements

First and foremost, thanks to Professor Agnar Aamodt, Associate
Professor Kerstin Bach and Professor Helge Langseth for guiding
this work from its fumbling beginning to the end. Agnar was my
supervisor until 2020. After his retirement, Kerstin stepped in as
my supervisor in 2020. Helge Langseth has been a co-supervisor
who gave more support than required. They have all guided me
with wisdom, kindness, and patience. The work has been challenging
and seemed insurmountable at times. It could not have been done
without the support from them. I would like to thank my MSc
advisor Keith Downing for guiding me into the field of AT & ML
and creating my deep interest in the field. In addition, I would
like to give my thanks for the support I received from EXPOSED
Aquaculture Research Centre through my mentor Gunnar Senneset
and center director Hans Vanhauwaert Bjelland. My partner Astrid
gave me motivation, support and helped with proofreading. I also
received much motivation from my children Ane and Nora, and my

Vi

Preface

friends and family. T also want to thank my parents that raised me to
be curious.

I would also like to thank my colleagues who have made my
working days in the department a true joy; Hakon, Heri, Birgit, Berit,
Ellen, Eliezer, Tarik, Joakim and many more.

Bjorn Magnus Mathisen
Trondheim, October 2021

viii

List of Papers

Paper |

Bjorn Magnus Mathisen, Agnar Aamodt, Kerstin Bach and Helge
Langseth “Data driven case base construction for prediction of success
of marine operations”. In: A.A. Sanchez-Ruiz and A. Kofod-Petersen
(Ed.): Proceedings of ICCBR 2017 Workshops (CAW, CBRDL, PO-
CBR), Doctoral Consortium, and Competitions co-located with the
25th International Conference on Case-Based Reasoning (ICCBR
2017), Trondheim, Norway, 2017, June 26-28, pp 102-111, CEUR-
WS.org, 2017.

Faper I

Bjgrn Magnus Mathisen, Agnar Aamodt, Kerstin Bach and Helge
Langseth “Learning similarity measures from data”. In: Progress in
Artificial Intelligence (2019), 9(2), 129-143.

Paper 11l

Bjorn Magnus Mathisen, Kerstin Bach, Espen Meidell, Hakon Malgy
and Edvard Schreiner Sjgblom. “FishNet: A unified embedding
for salmon recognition”. In: Giuseppe De Giacomo and Alejandro
Catald and Bistra Dilkina and Michela Milano and Senén Barro and
Alberto Bugarin and Jéréme Lang (Ed.): ECAI 2020 - 24th European
Conference on Artificial Intelligence - Including 10th Conference
on Prestigious Applications of Artificial Intelligence (PAILS 2020),
Santiago de Compostela, Spain, 2020, 29 August-8 September, pp
3001-3008, IOS Press, 2020.

» * \/

Bjgrn Magnus Mathisen, Agnar Aamodt and Kerstin Bach. “Using
Extended Siamese Networks in a CBR system to provide decision
support in aquaculture operations” Applied intelligence (2021), online
publication: https://doi.org/10.100//s10489-021-02251-3.

https://doi.org/10.1007/s10489-021-02251-3

Contents

Pxefacd

| Papers

Caonfentd

U Introduction
L1 Motivationl
IL.2 Challengey
IL.o Riesearch goals and research questiony .
4 Research contextt
|1 5Y I hesis structird

2 Bbackground

E.1 Decision support systemy
.2 Case-based reasoning
2 Neural networkd
4 Dimilarity learning and metric learnin:
5] Decision support systems in_aquacultureg
a2l Introduectiod L.
b2 NMethod
§ A d ...

4 RHesearch results
|| Research contributiond
B.2 List of publicationd
. wards researcn questiony
B.o Contributions towards research questiony
4 summary ot auxiliar apery
| 205 Source codd oL oL L L L L L L L e
b Conclusion
bl Conclusionlo oL
b2 bFufure research directiond
Beferenced
Papers

vii

ix

xi

© 00 Ul W = =

11

12
16
16

23
23
24
26
32

35
35
36
39
49
51

53
93
95
56

66

Xi

Contents

Data driven case base construction for prediction ol
Buccess of marine operations

| Introduction00 o000 o0
2 helated world
Il 5 MNMethod o000
CI—TResulfd i
| S Conclusions and mture world
Lo Acknowledementdo ...
Referenced

T Inirednefionl . . . 0 . o 0 0 000000000
L2 A framework for similarity measure§
a3 helated workl o000
[T4 NMefthod o0 o0 oo
.o Bxperimental evaluation
Lo Conclinsions and tture world L L L.

L./ Acknowledgementy

67
69
71
2
76
7
78
78

FishNet: A Unified Embedding for Salmon Recognition 115

/NN Introduction
2 helated Worlkdh 0oL

Lil.o — I'he FishlNet Approachy
Ll 4 Dataset and BEvaluation

s Discussionl L0 L0 oo e
Lo Conclusionl oL Lo e e
WWLL. 7 Acknowledgementy
Beferenced

|Using Extended Siamese Networks to Frovide Decision
pupport in Aquaculture Uperationg
|| YA Introduction
2 Related Waorkl

LV.o Uperational situation dataset and Case dehinition
0,4 Extended Siamese Neural Networkd

|| AVARS Evaliation

|| VA& Conclusions and Future World

LV.(Acknowledgementy

Referencedo
ADD d S

Xii

117

139
141
143
145

Contents

Defining the 1nitial case-base for a CBR operatoy

Bupport system in digital finishing] 165
AT mifroduction 167
........................ 174
B3 Resulld e 177
A Discussion and Jessons learned 181
AR Conclusion and turther work 182
A6 Acknowledgmenty 182
Referenced 182
Demonstrating the myCBR Rest API 187
b1 Introduction Lo L. 189
B2 MYCBR Rest API. 0. 00000 oL 190
B3 Ixperiments and Applicationd 191
=4 Conclusion and Outlook 193
Referenced 194

Use Case applying machine-learning techniques 1io
LImproving operation of the distribution network| 197
I nfroduction 199

2z Machine Learning Techniques In Fault Handling . 200
Lo Uutage and Fault Management - an example foi

ppplication of new technique§d 202
4 iscussion and amitationd 0 L L L L L. 205
Ca Conclusions and Tuture workl 206
o Acknowledgementy 207
Referenced oo 207

xiii

Chapter 1
Introduction

1.1 Motivation

The Norwegian aquaculture industry has ambitious growth targets.
This is a goal from the industry itself as well as a goal set by the
Norwegian government. However, the industry and its operations are
already straining on the environment surrounding the aquaculture
operation. This includes waste on the seafloor from fish feed and fish
excrement. Escaping salmon and sea lice transmitting to wild salmon
is a recurring problem. Sea lice are one of the biggest challenges
in the aquaculture industry. Additionally, many of these problems
increase in severity when the density of aquaculture operations
increases. Many of the best locations for aquaculture operations are
already overcrowded, and regulators will not let these sites be host to
more aquaculture operations. Thus the industry has two options to
grow: it can change the way it operates to reduce its environmental
impact (e.g., closed cages to reduce pollution, escaping, and sea lice
spreading), or the industry can try to utilize unused locations such as
exposed locations. Exposed aquaculture sites have been under-utilized
because they are more resource-demanding to operate. In addition,
such sites have an increased risk for personnel.

Aquaculture is already one of the occupations with the highest
work-related risk in Norway [8, d]. The aquaculture industry can
alleviate the work-related risks by increasing the robustness of the
aquaculture site structures. While creating more robust structures
may increase the safety of the personnel and fish at the site, it is not
guaranteed to ensure continuous operations at an exposed location.
The operation of an aquaculture location requires the use of different
types of boats which perform different types of operations on the
location. As a result, most of these operations involve interaction
between a moored flexible structure and a boat. Such operations are
inherently sensitive to rough conditions such as wind, weather, and
waves because these conditions quickly introduce relative movement
between the structure and the boat. Most exposed locations are also
more remote, with longer travel time from any on-shore site to the
aquaculture site. This results in longer personnel-transport in rougher
conditions, increasing the number of days where personnel stay on-
shore because of bad weather.

1. Introduction

Currently, there are multiple efforts to alleviate the above-
mentioned obstacles to exposed aquaculture operations. One of the
obvious efforts is to increase the robustness of the aquaculture in-
stallations. This includes efforts such as Ocean Farm 17 by Salmar
and “Jostein Albert”™ by NordLaks. However, as previously men-
tioned, these do not negate the problems that arise from rough weather
affecting the interaction between structures and boats. Reducing
the amount of manual work on aquaculture sites overall will have a
broader positive impact on risk to personnel on exposed aquaculture
installations. Additionally, the digitalization of industry and society
increases. This development results in cheaper and better sensors,
cameras, and connectivity (e.g., 5G). These developments will pro-
vide the industry with more high-quality data from its operations.

Decision-makers within the aquaculture® industry faces complex
decision problems. “Will the conditions at my aquaculture site be
good enough to successfully de-lice the salmon stock?” This is just one
example, but answering these types of questions relies on knowledge
from different fields of science and heterogeneous data from many
different sources. Accurately predicting the success of a delouse
operation requires knowledge from many different fields of science. It
requires knowledge from meteorology, fish biology, economics, ocean
modeling, and more. In addition, the task could require collecting
data from previous aquaculture installations (location, time, and
amount), weather forecast, ocean model output, fish stock models,
and previous logs of fuel consumption. Coming to a decision that is
well-grounded in that knowledge is demanding. However, successfully
making a well-grounded decision help decision-makers optimize the
operation of the business. As stated earlier, aquaculture is a
growing industry, and as a result, the industry needs to hire more
workers. Digitalization of operations and DSSs can support retaining
knowledge from workers that retire and transferring knowledge to
newly hired workers.

Increasing the level of automation primarily reduces the amount of
manual work needed per production unit(i.e., increased productivity).
It also means that more tasks can be done from a remote location,
so that personnel can operate without being on-site, increasing the
safety of the operations while still enabling growth and productivity.

In recent years, machine learning has matured and is currently
used across industries to increase automation and for use in decision
support. To further increase the level of automation in the aquacul-

Thttps://www.salmar.no/havbasert-fiskeoppdrett-en-ny-aera,/

?https://www.nordlaks.no/havfarm /havfarm1

3For this study we define “aquaculture” as the industry dealing with cultivation
and farming of aquatic biomass.

2

Challenges

ture industry, and especially to enable the industry to operate safely
in exposed locations, the potential in ML is high and expected to
grow.

1.2 Challenges

There are two main challenges with applying machine learning to
advance the aquaculture industry in terms of automation; 1) Lack
of relevant and high-quality data and 2) no strong culture for data-
driven analysis.

The low digital maturity and overall lack of digitalization culture
are apparent in the low adoption rate of sensors and data gathering
in aquaculture site operations. The lack of digitalization also means
less adoption of digital tools into the work processes in the industry.
Finally, it means less trust in digital tools. The lack of data comes as
a result of this lack of digitalization.

Lack of data and trust in digital tools present technology suppliers
and researchers with challenges when developing automation solutions
for the aquaculture industry. Methods which require high volumes of
data may not be suitable in all aspects of the aquaculture industry.
Likewise, the aquaculture industry requires machine learning models
that are explainable. Deep learning (DL) is based on artificial neural
networks (ANN) and is a highly successful method for building ML
models of complex phenomenons. It could help the industry solve
and automate problems. At the same time, DL models require a
large amount of labeled training data that are often not available in
the aquaculture industry. Even tasks connected to video data, which
seems like a natural fit for deep learning, are laborious [G] as there
are little to no labels attached to the data. In other aquaculture
applications, there is both little data and little to no labels [8, @].

In addition to strict requirements for volumes of high-quality
data, DL models have lower explainability than many other ML
methods because of a high level of complexity. Methods for generating
explanations for how DL models work exists, such as LIME [§] and
SHAP [9]. These systems depend on the user having some knowledge
of how machine learning models work for the user to understand the
explanations. These systems may not be a satisfactory solution in
industries where users may not have that knowledge.

Building systems that are useful for the aquaculture industry
means building systems that create trust in the system and are
constructed in the context of data scarcity. CBR is one way of
addressing both explainability and data scarcity. CBR explains
by example, which is more intuitive to inexperienced users than

3

1. Introduction

explaining models through frameworks such as LIME and SHAP. CBR,
does not only give a true/false or success/failure prediction to its
users but presents the user with several of the most similar previously
recorded cases with their recorded solution. If the user agrees with this
similarity assessment, the output of a CBR-based DSS is the user’s
solution to previous cases. Availability of cases in such a system will
improve the trust in the system as the system is transparent. A DSS
that reads data through sensors and other data sources and provides
an aquaculture operator with the most similar previous case would
then alleviate some of the challenges listed above.

The similarity measure used in CBR is often hard to model
manually. Many CBR systems encode expert knowledge in the
similarity measures, but this process is resource-demanding. Learning
the similarity measure from recorded data alleviates this. This process,
while still requiring labeled data, requires less training than many
other machine learning problems [i1].

To summarize, a DSS for aquaculture built on machine learning
methods needs to be able to learn from data sets that are typically
smaller than most used in deep learning. The DSS also needs to be
able to explain the output presented to the user. This explanation
needs to be intuitive so that it can be understood by a wide range of

users.
Predicted
State

' |
Sensor Pre- | Simulators/ Knowledge Machine \ Decision
Readin roveosing [| Numerical Modats Leaming | —] CBR [—»| Support
g p 9] Models Models 1 System
1 ~—

Knowledge
and
Experience

Model
parameteres

Figure 1.1: The general architecture of a modern decision support
system employing sensor readings through preprocessing, and also
using an ensemble of different types of models to provide decision
support for the user. The highlighted modules of the DSS architecture
are the focus of the work in this PhD project.

A general architecture for a DSS is shown in Figure . This shows
the flow of information through a DSS from start to end, from the
state of the decision problem to the output presented to the user. The

4

Research goals and research questions

DSS reads the current state of the decision problem through sensors
or user input. This input is then preprocessed before being used as
input to the models. This preprocessed data can be used for setting
parameters for numerical-, analytical- or machine learning models.
These models are then used to predict a future state of the decision
problem (e.g., how much movement will the predicted weather induce
on the aquaculture installation). DSSs typically support the user in
making a decision that will have an impact in the future, e.g., planning
a service operation on an aquaculture operation. Contrastively, DSSs
are typically not used to support processes that require an immediate
or instant reaction. In cases where a system wants to support
immediate situations, automation without user input is better suited.

During the design and implementation phase of a DSS, the
preprocessed data can also be converted to a dataset for training
machine learning models. However, as DSSs are never fully automated
by design, user input is always required. DSSs typically help users
make decisions about future events, and as such, date and time are
needed user input (e.g., the user is planning on cleaning a fish cage in
two days). The DSS then uses the models to compute a prediction for
the future state (e.g., the DSS predicts local weather conditions for
that location two days from now). These predictions can be used by
the DSS directly or used as input to a CBR system. This enables a
CBR to retrieve previous situations which are similar to the predicted
situation (“Future State” in I, e.g., the weather conditions in two
days are similar to weather conditions when a cleaning operation failed
at the same location). Knowledge and experience are often used for
designing an effective DSS for a decision problem. DSS designers will
apply this knowledge if designing numerical or analytical models for
a DSS. It will also be important for specifying how cases and their
solutions are stored in a CBR system.

1.3 Research goals and research questions

This thesis focuses on increasing automation within the aquaculture
industry through data-driven models. Increasing the level of automa-
tion reduces the amount of manual work needed per production unit,
which increases productivity. More automation also means that more
tasks can be done remotely. Working remotely reduces the worker’s
exposure to harsh conditions on the aquaculture site. This will in-
crease the safety of the operations while still enabling growth and
productivity.

We investigate how ML can enable DSS to increase the level of
automation in the aquaculture industry. Increasing automation will

5

1. Introduction

allow the industry to operate safely in exposed locations.

This section describes the main objectives of this PhD project.
First, an overall research goal is presented. This goal answers some
of the challenges outlined in Section T2. This overall goal is then
materialized into four more specific research questions (RQs 1-4).
The work presented later in the thesis contributes to answering these
research questions and work towards the research goal.

Research goal

Advancing our understanding of how machine learning can help
the aquaculture industry expand into exposed areas.

The research goal is achieved through answering four research
questions, further split into two groups. The first two research
questions (RQ1 and RQ2) address the domain-specific parts of the
questions on using DSS and ML in aquaculture. The final research
questions (RQ3 and RQ4) are domain-independent. They pertain to
how the methods examined through RQ1 and RQ2 can be adapted
and extended.

. RQ4:
RQ1: How can RQ2: What ML Simmfy' lg:pning Can SL be
ML fulfil the methods have assist in developed further
requirements set —| been used for [designing CBR > to improve
by aquaculture to DSS in systems for performance of
DSS? aquaculture? DSSs? a SL based CBR
) DSSs?

t

Figure 1.2: The relation betwen the research questions in the
PhD thesis. RQ1 asks how ML can fulfil the requirements set
by aquaculture to DSSs. RQ2 examines which ML methods that
have already been applied to DSSs for aquaculture. RQ3 examines
if similarity learning (SL) can assist in designing CBR systems for
DSSs.Finally, RQ4 addresses the if SL methods can be developed
further to increase performance of similarity learning based CBR

DSSs.

1.3.1 Domain related research questions

To work towards the research goal, one must understand how machine
learning can be applied to DSS in aquaculture. The solution has to
address the two main challenges listed in Section 2, namely low
digital maturity that increase the need for explainable models and

6

Research goals and research questions

low availability of high-quality data in the aquaculture industry. This
problem can be formulated as the following research question.

Research question 1

How can we use ML to make useful DSSs for aquaculture that
are explainable and work in a data-scarce domain?

Previous work may have addressed some of the challenges listed
in Section T2A. If the goal is to innovate and not replicate previous
work, it is important to extend and build upon results from previous
work. More concretely, we need to investigate if ML has been applied
in DSSs for the aquaculture industry. And, if ML has been applied
to DSSs for the aquaculture industry, what types of ML methods and
how they were applied. This leads to the next research question.

Research question 2

What types of machine learning methods have been used in
decision support systems within the aquaculture application
domain?

1.3.2 Method research questions

As mentioned in Section 2, the hypothesis is that using CBR and
similarity learning as parts of a DSS can result in beneficial tools
for industries that have low trust in digital solutions as well as
low amounts of gathered data. The following research question is
formulated to investigate the applicability of similarity learning to
extend the state-of-the-art for CBR as a DSS.

Research question 3

How can similarity learning assist in designing CBR systems
for DSSs?

Finally, if similarity learning can be used as a machine learning
method to create CBR-based decision support systems, can it be
developed further to improve performance in this context? This
question is formulated in the final research question.

1. Introduction

Research question 4

How can similarity learning methods be developed further to
improve performance of a similarity learning based CBR DSSs?

1.4 Research context

The research done in this thesis was done as a part of the SFI?
EXPOSED center. This center was created to develop knowledge,
technology, and innovation to enable more effective and sustainable
aquaculture production in exposed aquaculture environments. The
PhD project described in this thesis was one of the first PhD projects
started in the SFI EXPOSED center. The goal of this PhD project was
described as applying Machine Learning to study and design enabling
technology, to further the goals of the center.

Some of the data used in the PhD project were gathered through
EXPOSED partners (such as Anteo ASA providing data for [Paper).
Other data were gathered by SINTEF as the main research partner
in the project (such as data for [Paper 1V]). Finally, the data used in
was provided by aquaculture technology companies (Sealab,
now part of Cageeye).

The work presented in this thesis can be split into three different
phases. At the early stages of SFI EXPOSED, the data gathering
part of the project was only starting up. Thus the first phase of
this PhD project consisted of experimenting and exploring early data
sources. This included the work presented in where we
gathered and preprocessed multiple data sources that were relevant
to the aquaculture sites that took part in our use case. After this, we
explored how to make ML models adapt to the local conditions. To
enable the identification of differences between aquaculture sites, we
developed ESNN, which is an extension of Siamese Neural Networks
(SNNs). We introduced this novel method in and showed how
it outperforms SNNs in terms of accuracy while matching the training
time of SNNs. Finally, ESNN was used to develop a prototype DSS for
aquaculture operations. In ESNN and two other similarity
learning methods were tested and evaluated on aquaculture data.

o Phase one: Early data exploration (Paper 1 and experiments
shown in [Figure 4.4 and [Figure 4.9)

4A SFI center is a Norwegian research council center for research-driven
innovation

8

Thesis structure

o Phase two: Method development (Paper 11)

o Phase three: Method testing in domain (Paper 1] and
ap)

1.5 Thesis structure

This thesis is composed of two parts. Part one provides the overall
motivation, structure, and main results from the thesis work and is
divided into five chapters. Chapter 0 presents the context of the thesis
research, including the motivation behind developing automation and
decision support systems for the aquaculture industry and the main
challenges to address as part of the thesis work. Chapter B presents
the scientific background of the PhD thesis for the reader. Chapter B
answers RQ2 and presents a systematic mapping of scientific literature
that describes state-of-the-art for DSSs in aquaculture. D]
presents a summary of the results produced in the thesis as a response
to the research questions described in Bection T3. [Chapter J evaluates
and discusses the results in the context of the original motivation
and state-of-the-art of the research field and points to interesting and
promising future directions of research that spring from the results of
this thesis. Part two contains the four main papers published as part
of the thesis work and three auxiliary papers.

Chapter 2
Background

This chapter gives an overview of the scientific fields that this thesis
builds upon. Topics that are covered in this thesis are DSSs, ML in
DSSs, artificial neural networks (ANN), CBR, and similarity learning
(SL). First, we describe DSS that encapsulates CBR systems. Then we
introduce CBR and how CBR systems can be described and designed.
ANNSs are then described. ANNs are used to learn similarity functions
which are an important part of designing CBR systems. Finally, we
present methods for learning similarity functions (similarity learning)
and a framework for categorizing similarity learning methods.

2.1 Decision support systems

Decision-makers are faced with complex strategic or operational
decisions when managing businesses or organizations. DSSs are
designed to enable decision-makers to be well informed when making
such decisions. DSSs are built to support decision-makers by
integrating information from different sources and present them in
ways that enable the user to make more informed decisions. DSSs try
to combine domain and technical knowledge and package it in a way
that can be of practical use for non-scientists [IC1].

DSSs originated in the 1960s [12] and have been used in multiple
domains such as medicine [I3, 4], power grid [iH], fisheries [16] and
aquaculture [I77].

Typically, a DSS reads the current state of the decision problem
through user input or sensors, then uses models (learned, analytical or
knowledge-based) to predict a future state. It could also use models
for classification, e.g. classifying if a salmon in an image has a disease.
Decision-making is usually motivated by optimizing some future goal:
revenue or plans for future business operations. Thus DSSs usually try,
through models, to answer how a decision will impact such a future
goal (e.g. will performing a de-licing operation be successful if done
in five days)

DSSs can be categorized based on the underlying methods used to
produce the predictions that are presented to the user. Alternatively,
categorization can be based on the type of problem that the methods
are applied to. We divide DSSs into five different categories:

11

2. Background

e Model-driven DSSs employs numerical or analytical models
to produce predictions for the DSS. Using a model-driven DSS,
the user inputs parameters that are relevant to the decision
problem. These parameters are then used to initialize the
models that the DSS is based on, producing and output aiming
to help the user make better decisions.

e Geographical DSSs/Spatial DSSs are a type of DSS that
is structured and designed to assist the user with decision
problems that are of a spatial or geographical nature. Such
decision problems can be e.g., land allocation planning, resource
allocation planning, or urban planning. The underlying methods
to produce the output for decision support can be model,
knowledge, data, or ml-driven. However, the focus and structure
of the DSS will be on how to group the information and DSS
output according to geographical or spatial dimensions.

e Multi-criteria DSSs defines a group of DSSs that supports
the user in decision making according to more than one criteria.
Many DSSs support the user in making decisions to optimize
one criterium (e.g. revenue or productivity). However, multi-
criteria DSSs will support the user with making decisions that
are optimal in relation to more than one criteria (e.g. production
and environmental impact for an aquaculture production site)

e Data-driven DSS is a type of DSS where great emphasis is
put into integrating as much operating data as possible into the
DSS. This includes manipulating the data or forming the DSS
to fit the data.

e Machine learning DSS is a type of DSS where the DSS is
based on models that are learned from the data pertaining to
the decision problem. Where ML-based DSS always uses the
data to create models for the DSS, data-driven DSS does not do
so through ML methods.

Decision support systems are discussed in more detail in
where a systematic mapping of DSSs in aquaculture is presented.

2.2 Case-based reasoning

Case-based reasoning [I¥] is a computational method based on a model
of human cognition. CBR is founded on the observation that humans
often solve novel problems by remembering past experiences that
are similar, i.e., the assumption that similar problems have similar

12

Case-based reasoning

solutions. Presenting the user with the previous problem that led to
the solution (output) makes CBR-based systems more transparent and
intuitive for users. CBR can be seen as a machine learning method
that works in a way that is very explainable to the user. Case-based
reasoning is a lazy machine learning method. Eager machine learning
methods such as neural networks and decision trees try to find a
general model that fits each data point (or batch of such) at training
time. In contrast, CBR delays generalization until query time. As
a result, lazy learning methods are often preferred in situations with
less data, where generalization through all data points is not possible.

CBR stems from, among others, Schank’s work on language|[i9].
This work introduced Memory Organization Packets (MOPs) that
organized episodic memory, which could be used to understand new
experiences. MOPs can be seen as an early version of cases in CBR.

This work then led to Schank’s work on dynamic memory[20] which
is a predecessor of CBR. Janet Kolodner developed MOPs further into
episodic MOPS (EMOPS) [21] that moved the theory closer to what
we know as CBR now.

A new problem input to a CBR system is solved by reusing
solutions of a similar problem solved earlier. In CBR, previously
recorded problems and their solutions are called cases. Cases are
stored in a case base. Cases are designed as two sets of features, with
one set describing the problem while the other set is describing the
solution. These features of a problem are usually implemented as
attribute values. The solution can be described by attribute values,
single values, predictions, instructions, or a decision. CBR systems
are designed so that the features of a case describes a problem in a way
that distinct problems that have distinct solutions can be separated
using these features. A CBR system will typically start out with a
case base populated by a low number of archetypical cases that cover
previously seen problems and their solutions. New problems that the
CBR system are queried with that are sufficiently novel will be stored
in the case base for future use. The complete CBR process, as seen
when queried with a new case, is a cyclic four-step process as shown
in Figure P:

1. A new query case is compared with the cases stored in the case
base. The most similar cases are then retrieved.

2. The most similar cases are then combined with the query case
and reused to solve the problem posed by the query problem.

3. The solution generated is then tested for success and possibly
revised and updated accordingly.

13

2. Background

Case | 71—\
Retrieved
New

Case
Learned * Case

Case ~ , ™

Previous
Cases

General
Knowledge

Tested/ f
Repaired S(c; ved
Case ase

Figure 2.1: The CBR cycle [2] depicting the 4 R’s: Retrieve, Reuse,
Revise and Retain.

4. Finally, useful new cases and their solution are retained in the
case base for future use.

Concretely, cases represent previous experiences or instances of a
problem coupled with their solutions. Storing input that is associated
with a specific solution/classification differentiates CBR from many
other machine learning methods. A CBR system can give the user
output in the form of a prediction or classification. CBR systems
can also attach the previously recorded case that was the reason
for that prediction or classification. This enables the CBR system
user to view the problem description and solution part of the case
simultaneously. Cases are typically as descriptive as possible for that
reason and to make similarity calculation as accurate as possible. The
solution of a case describes how to solve the problem. This could be a
programmatically described solution for automatic problem resolution
or a textual description for a user to implement. Implementations
of CBR systems can differ in many ways, such as how to calculate
the similarity or how many similar cases are retrieved and used. The
design and implementation of a CBR system as well as the cases stored
in the CBR system is the knowledge of that CBR system.

Richter et al. [22] grouped this CBR system knowledge into four
knowledge containers: 1) Vocabulary, 2) Similarity measure, 3) Case

14

Case-based reasoning

base and, 4) Solution transformation. The vocabulary contains
what the CBR system can represent (e.g., a fish farmer cannot
use a CBR system with features designed for sheep farming). The
similarity measure specifies which cases are similar as a function of
the features of the cases. Thus this knowledge creates a mapping
of which solutions are most suited for which problem. A case
base is a repository containing the problem descriptions and their
associated solutions that the system can present to the user. Solution
transformation contains knowledge about how to adapt the previously-
stored solutions to fit new problems.

A case in CBR is then typically described through a vector x with
a set of features n, from which similarity can be measured across
different cases.

For cases © and y with n features and a weight vector w the
equation for locally weighted similarity is:

Z?:o LocSim;(x;,y:) * w;

Z:‘l:o w; ’

where w; weights the importance of the i-th feature when calculating
the similarity between cases. The weight vector w is typically
defined for all cases, but may be defined for each individual similarity
calculation. Finally, the function LocSim;(-,-) calculates the local
similarity between each feature and can be defined per feature or be
uniform across features.

A visual explanation of the mapping done by the similarity
function from the problem to the solution space is shown in Figure EZ2.

GlobSim(z,y,w) =

(2.1)

Problem space

Solution space

Figure 2.2: The mapping from problem space (x,y and z) to solution
space (xs,Y, and z,) for the query case y and the cases stored in the
case base and z. In line with the CBR model that states that similar
problems have similar solutions, this example would retrieve x as the
most similar case to y as the distance § between y and x is smaller
than the distance between y and z.

15

2. Background

The similarity function in CBR can be modeled using a knowledge-
based, analytical or numerical -model. Similarity functions can also
be learned from data (Similarity Learning).

2.3 Neural networks

Artificial neural networks (ANN) have been used in machine learning
for a long time and are universal approximators [23, 24]. Typically,
neural networks are used as an approximator of a unary function, such
as a function that maps inputs to a classification. ANNs are also used
for regression or time series prediction. In the case of time series
prediction, the input can be a sequential or stacked time series. The
corresponding output is the n predicted next values of that time series.
ANNSs are also used for seq2seq mapping (used for NLP). Figure 23
shows an example of an ANN which maps an input vector ¢ of six
values to an output vector of o of four values.

Figure 2.3: Tllustration of an ANN with four hidden layers of three
neurons, six input neurons and three output neurons. The input
vector of six values is denoted as ¢ and the output vector is denoted

as o.

The architecture of ANNs can be designed to solve different
types of tasks. Long-short term memory (LSTM) [25] is an ANN
designed to compute its output based on a sequence of data as input.
Convolutional neural networks (CNNs) [28, 27] are designed to tackle
datapoints with inherent spatial geometry such as pictures.

2.4 Similarity learning and metric learning

Similarity learning (SL) is a type of machine learning where the goal
is to learn a relationship between two data points. More specifically,
SL learns a binary function that maps two data points to an output
that represents some relation between them (S(x,y) = s). This is in
contrast to many machine learning methods that try to learn a unary
function between one data point and its label (F'(x) = 1). Outside of
CBR, SL is often called deep metric learning (DML), Siamese Neural
networks (SNN), or triplet networks. Contrastive learning (CL) is
highly related to DML but encompasses a larger set of goals (not

16

Similarity learning and metric learning

only learning the similarity between two data points) and methods.
Typically, the relationship that SL aims to learn is the distance (8) or
the similarity (1 — 0) between the two data points.

SL is suited for different sets of problems than unary ML methods.
SL is applicable to clustering problems or matching [28]. A general
type of problem that unary ML methods are ill-suited for is when
the number of possible classes/labels grows too large. A normal
way of representing labels at the output of a neural network is one-
shot encoding. One such example would be facial recognition or
re-identification, as illustrated by our work presented in [Paper IT1.
In re-identification tasks, the number of classes/labels is equal to
the number of individuals you want to identify. In such cases, the
number of labels quickly grows to an unmanageable number for output
encodings such as one-hot encoding. Formed as a SL problem, a SL
method would try to learn a binary function of the similarity between
two pictures of faces. This way, the re-identification system would
compare new pictures with already identified pictures to identify
unlabeled pictures of faces. This SL architecture is invariant with
the number of possible individuals or labels.

Another benefit of using SL over unary ML methods is that it can
learn easier from small datasets. Solving complex problems with deep
neural networks requires large models. Large neural networks need
thousands of examples per class to correctly model the relationship
between input and output [29]. Similarity learning, on the other hand,
uses CL (comparing instances of classes to each other), so for each
class, you would have a point of learning per instance for every other
class. CL can also use other instances of the same class for training.
Using pairs of data points connected to classes is not the only useful
setting for contrastive learning. Contrastive learning could also be
set up with a pair of series as input where the output would be a
similarity of a future value in those two series (regression or time-
series prediction). The fact that contrastive learning learns more
from a dataset compared to traditional feed-forward networks means
that similarity learning is well suited to tasks where we want to learn
the relationship between many classes, such as facial re-identification.
As such, similarity learning has been applied to tasks where the
number of classes is high. This includes tasks such as signature fraud
detection re-identification [30, G], visual tracking [3, 82, B3], matching
networks [2X].

In practice, such similarity functions are learned from a dataset
compromised of pairs or triplets of datapoints [B4]. In the case of pairs
of data points, if the datapoints’ labels are the same, the similarity
should be high or the distance low. Typically the weights of such
networks are set by using backpropagation [33, B6] (e.g. as seen in [B7,

17

2. Background

38]). Another way of setting the weights of neural networks is using
evolutionary algorithms (EAs) [B9, d0]. EAs are also being used to
evolve the topology in addition to the weights [d1].

Learned similarity functions or metric functions are used in
machine learning applications and machine learning methods such
as CBR. CBR system designers apply similarity learning to learn a
function used for retrieving similar cases. The retrieved cases should
be similar to the query case in terms of the problem description.

Similarity learning can be fully or partially based on data or user-
feedback through some learning process. However, SL based on user
feedback, such as the work done by Stahl et al. [42] is not considered
in this SL comparison. This is because, in the context of the goal of
this PhD thesis, we want to increase the level of automation, and SL
based on user feedback involves less automation.

Given a pair of data points (z,y), an embedding function G(-)
and C(+) which models the distance between two embeddings, we can
define a similarity function S as:

S(z,y) = C(G(z), G(y)), (2.2)

where G(z) = & and G(y) = ¢ represents embedding or information
extraction from data points « and y, i.e. G(-) highlights the parts of
the data points most useful to calculate the similarity between them.
C(G(x),G(y)) = C(&,9) models the distance between the two data
points based on the embeddings & and g. An illustration of this
process can be seen in Figure E4. In the example shown in Figure 24,
the query datapoint is . Assuming a linear distance metric, e.g.
d(x,y) = || — y|l2. Let x5 be the true solution/target of . Notice
how @, is closer to y, than z, (ds(xzs,y,) < ds(xs, z5)) in the solution
space shown in our example in Figure ZZ. However by just looking at
the input feature vectors , y and z - one can see that z is closer to @
than y (0p(x,y) > dp(x, 2)). One way of solving this is to embed the
features vectors into an embedding space where the distance between
them is closer to the true distance in solution space:

10(®,y) = 05 (s, ys) || < [10p(®, y) = Is(2s, ys) | (2:3)

Similarity functions can satisfy the inequality in Equation 223 through
modelling the embedding function G(+) or the distance function itself
C(+) (6(+)), or both. The main difference between these approaches
being that G(-) is a function of one data point, while C'(-) is a function
of both data points (or their embeddings).

18

Similarity learning and metric learning

Problem space

Embedding space

Solution space

Figure 2.4: This figure illustrates similarity functions using embed-
ings in the context of the framework described by Equation 2.

The functions C' and G can be either manually modeled or
learned from data. With respect to this, we enumerate all of the
different configurations (similarity function types) of Equation 22
and describe their main properties and give examples of literature for
each type below. Note that we will use S(-) to annotate the similarity
measurement and C|(-) for the sub-part of the similarity measurement
that calculates the distance between the two outputs of G(+). S(-) is
distinct from C(-) unless G(z) = x.

Table 271 lists how different types of similarity metrics implement
Equation 2. Similarity functions can implement S four different
ways. Type 1 is similarity functions where the embedding function
G() and the distance function C(-) is modeled. In this type of
similarity function, the designer models G(-) to extract the most
important parts of a data point for calculating similarity. C(-) is then
designed to calculate similarity based on the output of G(-). C(-) is
designed such that it highlights which differences between the two
outputs of G(+) should have the greatest effect on the similarity. The
work done by Nikpour et al. [43] shows a type 1 similarity function.
Type 1 similarity functions are typically used where the designer
already has a model for similarity or where the similarity function
is well known. In type 2 similarity functions the embedding function
G(+) is modeled while the distance function C(+) is learned from data.
Examples of type 2 similarity functions are described in works done
by Stahl et al. [#4] which learns local similarity measures using an

19

2. Background

evolutionary algorithm. Gabel et al. [BX] models G(x) = x (identity
function), then uses an ANN to model the similarity function based
on a concatenation of the two inputs. Type 2 similarity functions are
typically applied in cases where the designer of the function does know
which parts of the data point are important for similarity calculation
but not how to combine the two data points.

C.9)
Modeled Learned
Gl) Modeled | Type 1: [d3] Type 2: [d2, 45, 46, 47
Learned | Type 3: [g8, 87, @9] | Type 4: [60]

Table 2.1: Different types of similarity measures in the proposed
framework.

In type 3 similarity functions the embedding function G(-) is
learned while the distance function C(-) is modeled. A popular
example of this is the Siamese Neural Network (SNN) [48] where G(-)
is modeled as an ANN. SNNs uses each data point as an input to
an ANN (G(+)) which converts the input vector to an embedded data
point. This embedding is then used to calculate similarity through
a static function, typically euclidian distance or manhattan distance.
Type 3 similarity functions can be applied in cases where the function
designer does not know which parts of the data points are important
for calculating similarity.

Finally, in type 4 similarity both G(-) and C(-) are learned from
data. There are few examples of type 4 similarity functions used in
literature. During our literature study, done as part of Paper 11, we
found none. However, later work by Xiamoeng et al. [51] applied
a type 4 similarity function that was very similar to the similarity
function presented in [Paper 1. As shown by type 4 similarity
functions are similar in terms of performance to type 3 similarity
functions. However, when calculating measuring performance on
datasets that are known to be hard to classify, type 4 similarity
measures outperform type 3.

In most examples of how similarity learning is applied above,
including the work done in [Paper II1 and [Paper IV], the similarity
function is being applied on datasets meant for classification. This
means the similarity learning objective is to output 100% similarity if
two data points belong to the same class. However, this not the only
objective of similarity learning. In the context of CBR, the usefulness
of a similarity function is often measured on how useful the retrieved
solution is. This is also called the utility of the retrieved case.

20

Similarity learning and metric learning

This aspect of similarity functions is not made distinct in this
framework. One such aspect is the utility of the similarity function as
discussed in Stahl et al. [€2]. The utility is a measure of the usefulness
of the classification or solution computed by the similarity function.
Typically similarity metrics only use the feature vector (or problem
description) to compute the similarity between two data points. The
work by Stahl [£2] expands upon this to include the utility of the
solution. The retrieved case does not solely have the most similar
problem but the most useful solution given the query case.

In re-identification tasks, the utility of a similarity function would
be akin to not only retrieving the correct individual but also the most
useful picture of that individual. E.g., return a nighttime picture
of person X if the query picture is a nighttime picture of person X.
However, this is built on feedback from users, so if users report that
a daytime picture of the same person is more useful even if the query
is a nighttime picture, the system is designed to learn that utility
function. The utility of a similarity function could also include the
adaptability of a retrieved case based on this similarity function, e.g.,
how easy is it to adapt the retrieved case to be a solution for the query
case. Such a similarity function can be learned or modeled, and while
it can still be described by Equation 22 it is not made distinct in that
framework.

21

Chapter 3

Decision support systems in
aquaculture”

3.1 Introduction

In this chapter, we present a systematic mapping study done to
establish what recent (1980 to 2018) research had been done on
the application of DSSs and ML-supported DSSs in aquaculture.
This was needed as the goal of this PhD thesis was to apply ML
through DSSs to enable aquaculture to expand to more exposed
locations. Although the taxonomy and general process of creating,
using, and maintaining DSSs is well documented both in case studies
and research, the literature provides little information regarding
assessments of its effectiveness and implementation in aquaculture.
During our literature search, we found very few systematic literature
reviews of DSS research. Those existing were exclusively within the
domain of clinical medicine and, they targeted effects of DSSs [I3,
4] and how to improve such systems [63]. There have been some
non-systematic reviews of DSSs in aquaculture, including studies by
Bergara-Solana et. al [54] and Leung [565]. Also, closely related to
research on DSS in aquaculture is research on spatial DSS, which has
been studied in non-systematic surveys [56, 57]

The primary research hypothesis of this systematic literature
mapping is that there is little empirical knowledge of the effectiveness
of DSS in the aquaculture domain. The secondary research hypothesis
is that little research has been done on DSSs using machine learning
in aquaculture.

Context: There has been little research into ML-based DSSs
for aquaculture. Neither does there exist a DSS that uses real-time
information from the aquaculture location.

Objectives: To conduct a mapping study to survey existing
research on DSSs in aquaculture in order to identify useful approaches
and clarify needs for further research.

IThis chapter is based on a systematic mapping previously published to
arXiv pre-print archive[62]. The mapping has since been updated with literature
published up until 2019. The original and updated versions did include literature
describing DSSs used in both fisheries and aquaculture. However, only literature
related to aquaculture are included in the present exposition.

23

3. Decision support systems in aquaculture

Method: A systematic mapping study of the available literature
following the best-practice methods laid out by previous systematic
review practitioners[bg|.

Results: 12 papers have been identified by topic, system classifica-
tion, and relevance for the aquaculture domain. The study found that
aquaculture DSSs rarely evaluate their system empirically. The study
also identified only one study applying ML for a DSS in aquaculture.

Conclusions: The majority of studies on aquaculture decision
support systems published over the last 30 years do not use DSSs
based on machine learning. We also found that descriptions of data-
driven methods for creating the models that the DSSs rely on are
scarce in the literature discussing DSS in aquaculture.

3.2 Method

To gather data on the current state of DSS research within the domain
of aquaculture, we conducted a systematic literature review, more
specifically, a systematic literature mapping. This mapping study has
been conducted in compliance with a pre-defined protocol created for
this study to reduce the possibility of researcher bias [68]. As a result,
the study complies with a well-known and defined method, providing
reproducibility and rigor while at the same time acquiring knowledge
about the field and answering our research questions.

The review protocol presented in this section is an essential
component for providing context and domain classification. A
protocol must be developed separately for each mapping study in
order to define the main guidelines for conducting systematic mapping
studies. Both Kitchenham [68] and Budgen et al. [59] states that the
research questions in mapping studies are likely to be broader than
in traditional Systematic Literature Reviews (SLRs) to adequately
address the wider scope of the study. Kitchenham [68] also states that
mapping studies will likely return a large number of studies which in
turn will give a much broader coverage then the outcome of the SLR.
On the basis of this, the systematic mapping study was selected as the
method for achieving a broad resolution on the research questions as
opposed to an SLR. Below we specify our review protocol used for this
systematic mapping study. This protocol includes research questions,
search questions, search engines, inclusion and exclusion criteria.

The following three research questions (RQs) were formulated
in order to characterize the field of DSS within the aquaculture
domain and, as a result, answer Research Question 2 (RQ2) raised
in Section [3:

24

Method

RQ2.1 What decision support systems exist for aquaculture?

RQ2.2 What are the most investigated aquaculture DSS topics, and

how have DSS topics changed over time?

RQ2.3 Does DSSs in aquaculture use ML, and do they build ML models

using captured and grounded data?

The following sources were used for this study:

IEEE Explore

CM Digital Library
Google Scholar
Citeseer library
Springer

Ei Compendex

These sources were selected because they are among the most impor-
tant repositories for acquiring data in computer science, and collec-
tively they addressed the main digital libraries deemed appropriate
for this study. No researchers were contacted directly in this sur-
vey. The results retrieved from executing a search on the sources of
literature were either dismissed or accepted into the study selection
process, based on inclusion- and exclusion criteria. The inclusion- and
exclusion criteria were used to exclude papers that are not relevant to
answer the research questions. The study used the following inclusion
criteria:

Only studies written in English or Norwegian;

Studies noting or referencing any of the subjects described
in the research questions (e.g. “Decision support system’
or “Aquaculture”; see search strings below) in their title or
abstract;

i

Studies published after 19902;

Studies that had no restriction on geographical placement
(studies tying their results to geographical locations).

2 And not after 2018 as this is when this study finished.

25

3. Decision support systems in aquaculture

And the following exclusion criteria:
1. Meta-studies or reviews (we only included primary studies);
2. Duplicate results found in another search engine;

3. Analogous studies reporting similar results, only the most
complete study was considered;

4. Inaccessible studies or books;
5. Literature that was not in the form of a pdf file.

6. No studies exclusively describing DSSs aquaculture in lakes or
ponds were considered.

No quality assurance or assessment was performed during the
search phase in order to achieve maximum coverage. In agreement
with our review protocol, search terms were used for identifying
relevant papers in the field of aquaculture DSSs. The process for
synthesizing the query strings in our review protocol was derived from
Kitchenham et al. [60, 58]. The search terms from a candidate set were
selected using a trial. The candidate set was populated by deriving
terms from the research questions. The Boolean “AND” was used to
link keywords from different populations in the search strings. This
resulted in the following final search strings:

e "Decision support system" AND "empirical evidence" (Q1)

e “Decision support system” OR “Decision support system in
aquaculture” (Q2)

It is important to note that we chose to not include “operator sup-
port”/“operational support” that can be considered a weak synonym
of DSS. However, operational support does not share the main moti-
vation/stakeholder as DSS and focuses more on operational aspects.

3.3 Analysis

The method applied in order to identify relevant studies can be
divided into three discrete steps, where the first stage was applying
the search query on the literature sources. All query strings were
applied to all of the search engines. This resulted in 1537 papers.
After removing duplicates and applying all inclusion and exclusion
criteria, this resulted in 12 papers.

26

Analysis

The analysis is focusing on the research questions in the mapping
study and is primarily confined into two issues: what decision making
systems from aquaculture exists, and which empirical results do these
systems provide, especially regarding real-time analytics.

3.3.1 Classification of selected studies and results

This study presents findings in the form of a qualitative synthesis,
close to what Kitchenham [58] describes as a line of argument synthesis
as this study tries to infer as much domain knowledge as possible.
Consequential to the research questions and future work is the
research regarding aquaculture DSSs, therefore, we start by presenting
the number of journals found during the search phase, sorted by
publishing year. It should be noted that the numbers presented in
Figure B represent the 12 publications that were selected for this
study and subsequently. These 12 publications form the basis for
answering the research questions.

@ Model Driven
o Geographical
() Multi-criteria
(@) Data-driven
o Machine learning

2002— @)

2001—
2003—
2004—
2005—
2006—
2007—

- - - - - -

Figure 3.1: Number of publications per year that was gathered as
part of this literature review. The search did not result in any papers
published before 1993.

While DSSs for aquaculture have a long history going back to the
early 1980s, e.g., Scuse et al.[61], the literature surrounding them is
sparse. Figure B shows several periods during the last 25 years in
which the systematic mapping study did not identify any relevant
literature published with regards to the criteria previously defined.
These periods include the years 1995-1999, 2001, 2003-2008, and 2012-
2016. These periods of elevated interest are consistent with the result
presented in Figure 3 of Arnott et al. [62]. Arnott et al. [62] describes
a declining trend in DSS publications. However, the year 2000 seems
to be an outlier. This could be a coincidence. Another possibility

27

3. Decision support systems in aquaculture

is that the year 2000 was at the start of the decline in research of
aquaculture DSS.

The declining DSS publishing trend of the last five years is not
unique to the aquaculture disciplines as pointed out in [62], noting
an overall decline in the number of DSS related publications since
the early 1990’s. Arnott et al. [62] speculates that the decline in DSS
publications might stabilize in the coming years as DSS reaches a more
balanced position within the domain of information systems, noting
that the declining use of DSS might be due to the adoption of other
models like the technology acceptance model. While the publishing
trend is currently declining, Figure BXl shows that decision support
systems within aquaculture is still being researched, but to a lesser
degree than in previous years.

The following sections provide a discussion of how each research
question was addressed in the mapping study. Results from the
mapping study will be presented for each RQ, followed by a discussion
of their implications.

3.3.2 (RQ-2.1) What decision support systems for
aquaculture exists?

The results of this mapping are presented in Table BTl

Table 3.1: The selected studies.

Study year

Bourke, G., Stagnitti, F., and Mitchell, B. “A decision 1993
support system for aquaculture research and

management”. In: Aquacultural Engineering vol. 12,

no. 2 (1993), pp. 111-123

Silvert, W. “A decision support system for regulating 1994
finfish aquaculture”. In: Ecological modelling vol. 75
(1994), pp. 609615

Bolte, J., Nath, S., and Ernst, D. “Development of 2000
decision support tools for aquaculture: the POND

experience”. In: Aquacultural engineering vol. 23, no. 1

(2000), pp. 103-119

El-Gayar, O. F. and Leung, P. “ADDSS: a tool for 2000
regional aquaculture development”. In: Aquacultural
Engineering vol. 23, no. 1 (2000), pp. 181-202

28

Analysis

Table 3.1: (Cont.) The selected studies.

Study year

Ernst, D. H., Bolte, J. P., and Nath, S. S. “AquaFarm: 2000
simulation and decision support for aquaculture facility

design and management planning”. In: Aquacultural
Engineering vol. 23, no. 1 (2000), pp. 121-179

Nath, S. S., Bolte, J. P., Ross, L. G., and 2000
Aguilar-Manjarrez, J. “Applications of geographical

information systems (GIS) for spatial decision support in
aquaculture”. In: Aquacultural Engineering vol. 23, no. 1

(2000), pp. 233-278

Hargrave, B. T. “A traffic light decision system for 2002
marine finfish aquaculture siting”. In: Ocean € coastal
management vol. 45, no. 4 (2002), pp. 215-235

Halide, H., Stigebrandt, A., Rehbein, M., and 2009
McKinnon, A. “Developing a decision support system for
sustainable cage aquaculture”. In: Environmental

Modelling & Software vol. 24, no. 6 (2009), pp. 694-702

Silvert, W. “Decision support for stakeholders”. English. 2010
In: vol. 1. Ottawa, ON, Canada, 2010, pp. 523-529

Radulescu, C. and Rahoveanu, M. “A multi-criteria 2011
evaluation framework for fish farms”. English. In:

Studies in Informatics and Control vol. 20, no. 2 (2011),

pp. 181-6

Magno-Tan, M., Alejandrino, A., Dela Cruz, C., Inoc, A., 2017
and Coronado, A. “Web-based decision support system

for broodstock management of Siganus guttatus (Bloch,

1787) in open fish cage”. English. In: International

Journal of Machine Learning and Computing vol. 7, no. 6
(2017), pp. 208-12

Cobo, A., Llorente, I., Luna, L., and Luna, M. “A 2018
decision support system for fish farming using particle

swarm optimization”. In: Computers and FElectronics in
Agriculture (2018)

A further classification of the type of DSS used in each paper
has been performed and is shown in Table B2. As can be seen from
the table, the majority of the aquaculture DSS systems are either
model-driven, geographical, or multi-criteria. Only one data-driven
and ML-based DSS were found in this study.

29

3. Decision support systems in aquaculture

This indicates that up until 2018, model-driven, geographical
and multi-criteria DSS were the most studied DSS types within the
aquaculture domain. This ML DSS and is the most fitting and
applicable methodologies for the aquaculture DSS domain.

DSS type Studies
Model-driven DSS (63, 7, BY, 70, 73]
Geographical DSS (64, 672, 7]
Multi-criteria DSS (65, 66, 07, 7]
[
[

Data-driven DSS
Machine learning DSS

nN

B &

Table 3.2: DSS studies grouped by DSS methodology.

Table B2 shows that model-driven systems remain the overall most
popular design, but also suggest that the aquaculture domain contain
distinct requirements, which are best solved by differing methods.
Also one can observe that there is little overlap between the DSS
types. The sum of types of DSSs in Table B2 is 13 and the number
of studies is 12 so only on study actually inhabits more than one type.
There is no reason why a DSS using geographical models cannot also
be using neural networks as well. The most likely reasons is research
method (focusing on measuring effect of one type of DSS rather than
multiple) and effort (implementing more than one is more resources
demanding)

3.3.3 (RQ-2.2) What are the most investigated
aquaculture DSS topics and how they have
changed over time.

In addition to classifying the result set based on their type, as seen
in Table B2, the papers were also classified by their problem domains.
The results of this classification are presented in Table B3, which
shows what papers corresponds to what topic which shows how the
popularity of the different topics has changed over time.

30

Analysis

Associated DSS topic Study ID (SID)
]

63], [67]

]

], [63], [6G], 2], [69], [z, [,
[, 3]

Research
Scheduling and planning
Sustainability

R

Management decisions

SEE AT

]

Table 3.3: DSS systems grouped by topics.

Decision support systems for aquaculture are complex, as can be
seen in e.g. Ernst et al. 7). Discovering all parameters influencing
decisions that can be mapped to real-world scenarios is difficult. This
study shows that most aquaculture DSS only takes a small subset of
criteria into consideration, as shown in Table B33. While there are
some exceptions to the case where papers cover multiple topics, e.g.
[B9], it is worth noting that some of the topics covered are often closely
related, as is the case with sustainability and management decisions.
As such, it is natural that papers will often go into related topics.

The study could not find any trends regarding the popularity of
different topics, and how these topics changed over time, a result most
likely due to the small data-set.

From Table B33 we may infer that management decisions are the
most researched form of DSS topics during the most recent years.
Scheduling and planning are also related to management decisions, as
both concern productivity. Thus it is not surprising to see both of the
topics in the literature, as productivity and efficiency is a universal
concern of all business, including aquaculture.

Lastly, the analysis of the studies shown in Table BZ3 shows that
only one study [69] addresses more than one aquaculture DSS topic.
Similarly, Table B2 shows only two studies [7, [70] that studies more
than one DSS method. This supports the assumption that DSSs
are complex, e.g., by way of involving models from different fields of
science. This complexity makes a resource threshold for implementing
and studying combinations of DSS methods or combinations of DSS
topics given the same method. Another possibility can also be that
it is much easier to do one analysis at a time, both in terms of
experimental method and presentation to the reader.

31

3. Decision support systems in aquaculture

3.3.3.1 (RQ-2.3) Does DSSs in aquaculture use ML and do they
build ML models using captured and grounded data?

An important quality for a DSS is how well it represents the true
situation of the decision problem. This quality can be threatened by
using out-of-date models or out-of-date input data (e.g., simulation or
model parameters). We searched the retrieved literature for research
on applying machine learning in DSSs for aquaculture.

In this context, the study defines machine learning as creating
models of phenomena based on data. This is in opposition to more
static Al methods such as rule-based expert systems (e.g., see the
traffic light system of Hargrave in [68]), which is not considered
machine learning in this work. Our search did only find one study
applying machine learning as part of the DSS design. Magno-Tan et
al. [72] used machine learning to build prediction models that were
used in a DSS to support aquaculture operations. The DSS uses
different prediction modules based on ANNSs to predict features about
the welfare of the fish including, dissolved oxygen, water temperature,
and salinity. The predicted values are then used to produce graphs,
reports, prediction of fish-kill and recommended tasks/actions to the
DSS user.

There are several possible reasons for the scarcity of ML usage in
DSS in aquaculture. One of which is the lack of digitalization within
the field. Until recently (2018), very few commercial aquaculture op-
erations gathered data for usage in DSS or ML. In aquaculture, data
should be available through operational requirements (e.g. video mon-
itoring, production logging, operational logging, positional logging of
ships). It is an obvious disadvantage for DSS scientists not to draw
on these resources for model creation and prediction. This should be
an area of focus in future DSS research within this domain.

3.4 Discussion

Noticeably throughout the study, only one [6¥] of the papers found
contained rigorous empirical evaluation. However, most contained an
overview of the system and an outline of their methodology. Some
studies used validation data sets. Hargrave et al. [68] validated
their results against experts and actual decisions. Some studies
claim to present validation of their results but providing such a
short description that the reader is left uncertain with regards to the
validation process.

Although the resulting set of papers does not provide a unified
view of DSS practice, it offers a broad picture and experience of the
problem domain. The resulting set of papers could provide those

32

Discussion

looking to create new DSS within the aquaculture domain with some
helpful insights regarding what methodologies are best suited in the
design of the DSS depending on the target domain, and an indication
of the possibilities within DSSs.

It can be noted that only one of the resulting papers used machine
learning for creating models as the basis for a decision support system.
Additionally, none used real-time information as a basis for the
decision support system. The results of the mapping study provide
the reader with useful and relevant sources of information that could
be helpful in the design or research on DSSs in aquaculture.

Ideally, in aquaculture, a DSS should aid management at a high
level of abstraction on the basis of large quantities of data. The DSS
should build predictive models based on gathered data. A DSS then
uses predictions from these models to aid management in increasing
the probability of an optimal outcome. However, designing a system
that uses constant up-to-date data for running simulations/applying
these data to models poses difficulties. First and foremost such the
system is required to keep continuous connections to the various data
sources to manage the data; furthermore, the system is responsible for
completing its analysis within a given deadline. These responsibilities
often conflict as no downtime can be expected to complete the deadline
responsibilities of the system, and updating data can cause analytics
processes to be invalidated during its execution.

Most DSSs for aquaculture do not need to be real-time systems
to aid management, and the increased value to the customer of such
a real-time system is often given low priority because of the cost of
implementation.

The research questions require an assessment of the selected data
sources to determine whether we identified all relevant publications
and whether our initial classification of the problem domain is denoted
correctly for analysis. As there did not exist any previous systematic
mapping study on the search terms, some publications in the result-set
could be missing due to narrow search terms.

How well our study answered the research questions is influenced
by the choices made as part of the review protocol. This includes
the search criteria, the scope of the search, and the search terms
used that are again limited by the search engine’s capabilities. Our
primary method for avoiding these pitfalls has been to employ our
third-party reviewers to perform a random test on the search queries
to find papers we missed in our systematic mapping study. The
third-party reviewer did not find any significant articles missed in
this study; therefore, we argue that we did manage to provide the
most relevant documents published in scientific journals and computer
science literature. However, studies that were not peer-reviewed

33

3. Decision support systems in aquaculture

have not been considered for this study. Thus, it is possible that
we might have missed relevant studies. Still, given this limitation,
we presume the study adequately addresses the principal research
questions. There exists no former mapping study on this particular
domain that the authors could find. Because the topics addressed in
this study are selective, there exists little evidence in either direction
that we have omitted a major topic that provides a substantial
empirical evaluation that is in direct relevance to this paper.

We did find some studies which fell outside our criteria but are still
interesting. However, we found that extending the criteria in any way
to include these studies resulted in too large of a data corpus to be
handled within the time frame of our project. We will include them for
reference for the readers. These include big data in aquaculture [I74],
short-term prediction of marine sensors data [[75], decision support for
feeding systems [I76], expert systems based on CBR for diagnosis of fish
disease [[77] and operational support in fish farming through CBR [7g].
More recent works also involve ML for computer vision|i79].

Finally, this study identified that there is a need for investigation
on how to build DSSs for aquaculture that is based on ML models and
how they perform. This thesis will try to address this by investigating
how ML can fulfill the requirements set by the aquaculture industry
to DSSs.

34

Chapter 4
Research results

This chapter describes the results from the PhD project using the
research questions set down in Section 3. The PhD project has
set a research goal to “Develop and evaluate new technology for the
aquaculture industry using machine learning” and listed four research
questions to help make the research goal more concrete. Answering
these four research questions will contribute to the research goal.
Below we briefly summarize the contributions of this PhD project.
Then the contributions to each research question are summarized.

4.1 Research contributions

The research done throughout this thesis has six main contributions.

C1 A systematic literature mapping study of previous studies
of DSSs in aquaculture (Chapter J). The mapping study
helped establish the current state of research on DSSs in the
aquaculture domain and identified open areas.

C2 A framework to combine important data and align across
different datasets (Paper 1 and [Paper II1). This contribution
helped map out data sources for enriching domain-specific
datasets with data from public data sources such as the FROST
API" and useful models such as NORA10 [R0, K1].

C3 A framework to analyze current methods for learning similarity
measures (Paper I1). This framework describes a similarity
function formally, then enumerates the different configurations
such a function can have. These configurations are then
exemplified through different similarity functions in machine
learning research. The framework also describes features of the
different configurations.

C4 An extension of current methods for calculating similarity or
distance between two data points; Extended Siamese Neural
Network (ESNN [Paper 10). As a result of the framework listed
above, an ESNN was developed as an extension of SNNs, with a

L https://frost.met.no

35

https://frost.met.no

4. Research results

second layer of learning compared to SNNs. It was shown that
this enables ESNN to learn similarity better on some data sets.

C5 A demonstration of the usefulness of similarity learning in the
aquaculture domain through the application of SNNs. ([Ead
per II0). The study of similarity learning in the aquaculture do-
main showed that similarity learning applied as re-identification
could be used on salmon.

C6 A demonstration of how ESNNs outperforms SNNs for similarity
learning (Paper IV]) in the aquaculture domain. We demonstrate
that ESNN outperforms SNNs for similarity learning used as a
basis for a CBR system that is used as a DSS for aquaculture
operation planning.

4.2 List of publications

This section gives an overview of the publications included in this
thesis. This selection represents a subset of the publications produced
in this project, some additional relevant publications are summarized
in Section 4.

The first paper addresses how to apply machine learning and
CBR to build a decision support system for the aquaculture industry.
We collected data from aquaculture operations and combined the
operational data with weather data and ocean models to create a
dataset of operational situations. This dataset is then used as a basis
to try to predict the failure of an aquaculture operation.

Paper 1 (Mathisen 2016)

Title:
Data driven case base construction for prediction of success
of marine operations

Published at conference:
Case-Based Reasoning and Deep Learning Workshop -
CBRDL-2017

Following up on the work in Paper 1, a function that combined the
level of exposure of an aquaculture site and the weather at the time
of an operation was missing. This led to applying SNNs to embed
and combine such features into an embedding space (see [Figure 2.4).
The next paper presents an Extended SNN (ESNN) architecture to
model which differences of these two embeddings are most important
to accurately calculate the similarity between two data points, in

36

List of publications

addition to the regular SNNs that extract which features (and non-
linear combinations of features) of the two data points are important
for calculating their similarity. To illustrate the performance of ESNN,
we presented results from testing the performance ESNNs on 14
different datasets.

Paper LI (Mathisen 2019)

Title:

Learning similarity measures from data
Publised in journal:

Progress in Artificial Intelligence

The third paper presents work on applying facial recognition
research on salmon. A dataset with pictures of individual salmon was
created from a video stream of salmon swimming in an aquaculture
cage. Bounding boxes of salmon heads were extracted from each
of the video frames using YOLOv3 [82] and clustered according to
individuals using DBSCAN [83] combined with a custom distance
metric. This dataset was then used for training of a fishnet, inspired
by FaceNet[30]. Fishnet was tested with three different neural network
architectures for computing embeddings (VGG-16, Mobilenet v2 and
Inception ResNet v2) and trained using triplets. Fishnet achieved a
96,4% true positive rate (TPR) at 1% false positive rate (FPR).

Paper 111 (Mathisen 2020)

Title:

FishNet: A Unified Embedding for Salmon Recognition
Publised at conference:

Twenty-fourth European Conference on Artificial In-
telligence (ECAI), tenth Conference of Prestigious Appli-
cations of Artificial Intelligence

The last paper combines the data collected in with the
ESNN method developed in to develop the foundations of a
DSS on a CBR system using ESNN as a similarity function. The paper
demonstrates how ESNN enables decision support for aquaculture
operations. We train an ESNN on operational data captured from
aquaculture sites to calculate similarity according to whether or not
an operation was successful. This ESNN was then used as a similarity
function to retrieve the most similar previous operations in response
to a query. This design was evaluated quantitatively and qualitatively.

37

4. Research results

Paper 1V (Mathisen 2021)

Title:
Using Extended Siamese Networks to Provide Decision
Support in Aquaculture Operations

Publised in journal:
Applied Intelligence

In Figure BT we show how the publications listed above relate
to each other. is used as the basis to establish how DSS
systems are constructed and used in aquaculture. This systematic
literature mapping also showed that ML is not yet widely adopted in
aquaculture. In [Paper 1, we mapped different data sources together
to create a dataset to use as a basis for a case base. Furthermore,
the investigations of how to combine the exposure level of each site
with the weather at the time and location of each operation led
to the method developed in [Paper II. The knowledge about SNNs
and how they work was applied in the development of fishnet in
[Paper 110. Finally, in Paper IV], the data sources and framework for
combining them presented in was reused to create a dataset
for operational situations in aquaculture. Results from all previous
papers were used when applying ESNN to prototype a CBR-based
DSS for operational situations in aquaculture.

Figure B2 shows how the different research questions relate to
the contributions produced by this PhD project. Research question 1
“How can machine learning fulfill the requirements set by aquaculture
to decision support systems?” relates to the systematic literature
mapping done in (C1), the framework to combine data
sources from aquaculture sites (C2) and the framework to analyze
similarity functions (C3). Research question 2, “What types of
machine learning methods have been used in decision support systems
within the aquaculture application domain?” is answered by the
systematic literature mapping (C1). Research question 3 “Can
similarity learning be used as a machine learning method to enable
CBR for decision support systems?” is answered by the framework
for comparing similarity functions (C3), ESNN (C4), Fishnet (C5)
and demonstrating that ESNN outperforms SNNs (C6). Research
question 4, “Can similarity learning methods be developed further to
improve performance?” is answered by demonstrating that ESNNs
outperform SNNs (C5).

38

Contributions towards research questions

Chapter 3:
Decision Support
Systems in
Aquaculture: A
systematic
mapping
\
Paper I: Data Paper IlI: FishNet:
driven case base . . e
. Paper II: Learning A Unified
construction for P o)
o »| similarity measures »| Embedding for
prediction of
. from data Salmon
success of marine i
. Recognition
operations

\J
Paper IV: Using
Extended Siamese
Networks to
Provide Decision
Support in
Aquaculture
Operations

Figure 4.1: The relation between the research outputs of the PhD
thesis. was used as input for all publications. Methods
and data from was used in and inspired [Paper 11
Knowledge about SNNs from was used for [Paper IT1. [Paper IV]
used knowledge and methods developed in all previous publications.

4.3 Contributions towards research questions

The following section summarizes the contributions made towards
each research question.

RQ1l: How can we use ML to make useful DSSs for
aquaculture that are explainable and work in a data-scarce
domain? The systematic mapping presented in could
only find one study that used ML as part of a DSS for aquaculture.
The study by Magno et al. [72] applied ML to predict parameters

39

4. Research results

C1: Systematic

literature mapping Chapter 3

RQ1: How can we use
ML to make DSSs for
AQ that are explainable
and work in a data-
scarce domain?

C2: Framework for
aquaculture data

A,

i

Paper |

C3: Framework for

similarity learning Paper Il

C3: Framework for
RQ2: What ML similarity learning
methods have been

used in DSS for AQ?

Paper Il

C4: Extended Siamese
Neural Network (ESNN)

C3: Framework for

similarity learning
Paper Il
. PR C4: Extended Siamese
RQ3: How can similarity
learning assists in Neural Network (ESNN)
designing CBR systems - Paper Il
for DSSs C5: Dernonstrahon of
SNNs in aquaculture
Paper IV
C6: Demonstration of

ESNNSs in aquaculture

C4: Extended Siamese

Neural Network (ESNN) Paper Il

RQ4: How can similarity
learning be improved?

C6: Demonstration of
ESNNSs in aquaculture

L

Paper IV

Figure 4.2: The four research questions and how they are answered
by the six different contributions presented in this thesis. The
contributions are then linked to the four papers and the literature
mapping in chapter 3 that constitutes the contributions.

related to the welfare of the fish (e.g. salinity, temperature, and
oxygen levels), and shows one way of applying ML in the context
of DSS systems. In general, a DSS can use the current state of the
data related to the DSS as input. This input would then be used
by a ML model to predict features that are important in the DSS
context (such as oxygen levels for fish). The aquaculture industry
is lagging behind other industries in terms of the technical level of
digitalization, such as data gathering, data quality, and data labeling.
At the same time, the industry is also lagging behind on non-technical
level of digitalization. General trust and thus reliance on IT systems
are low. This means that any ML practitioner needs to apply methods
that can work with small datasets - while also creating trust in the
user through intuitive explanations. Frameworks like LIME [8] and

40

Contributions towards research questions

SHAP [d] may not provide an explanation that provides the necessary
intuition for users that are not ML experts. More specifically, the user
of the system needs to be able to interpret the output of the model.

CBR uses previous instances or situations to learn and can thus
expand on methods such as LIME and SHAP by explaining by
example. The users of a DSS get a recommendation “Next week’s
operation should be performed in the same way as the operation you
did three weeks ago because it is the most similar operation in terms
of operational parameters and external factors” and also displays the
previous operation. This leaves the user to reflect upon why these two
operations are similar according to the system. Specifically, the user
would need to understand the similarity using their domain expertise,
not the details of the underlying machine learning method. This could
be expanded to present the user with not only the most similar case
but the n most similar cases. The user could also report errors and
enable the CBR-based DSS to learn over time.

demonstrates how to augment and enrich data gathered
from aquaculture. Aquaculture is, still, a data-poor application
domain in comparison to other domains such as oil or energy. In this
paper, we demonstrated how to augment the aquaculture data with
relevant data sources such as ocean and weather models. Finally, we
demonstrated how dependent modeling operations aquaculture sites
are on local conditions and augment the site data with data describing
the local conditions of each site.

In we showed that a DSS based on CBR could be
designed and implemented using ESNN as a similarity learning tool.
In this work, we showed that ESNN could learn a similarity function
from a relatively small dataset (800 data points). We also showed that
this similarity function performed well in terms of retrieving relevant
cases. In addition, ESNN created functions that resulted in a more
smooth transition in the calculated similarity between irrelevant cases
and the most relevant case. This enables the user to not only two sets
of cases, one containing irrelevant cases and one containing relevant
cases. Thus a user of a DSS that employs a similarity function learned
by ESNN could present a user with a set of very similar cases in
addition to the most similar case.

RQ2: What types of machine learning methods have been
used in decision support systems within the aquaculture
application domain?

41

4. Research results

Predicted
State
Prediction ¥

Sensor Pre- Simulators/ Knowledge Machine SL Decision
Readin roceosing [| Numerical Monis. Learning CBR || Support
g P 9 Models Models System
Model Knowledge
and
parameteres N
Experience

Figure 4.3: This figure shows the general DSS architecture introduced
in Figure I modified to highlight the two different ways ML can be
applied in this DSS architecture. ML models are mainly used for
predictive modeling in DSSs. These models produce a predicted state
that can interpreted directly by the user (like water temp or salinity
for aquaculture). Parts of the same predicted state could also be used
to query a CBR system to see if any predicted problematic state was
similar to any recorded states. The other way of applying ML in
DSS is to train models to calculate this similarity between recorded
cases/situations (shown as SL in the figure).

The systematic mapping study in only found one study
on DSS that applies ML in the aquaculture industry. Very little
research on DSS in aquaculture has been done, and there is a lack
of empirical evaluation of these systems. Another concern raised by
the study indicates that there exist few to no well-documented multi-
criteria DSS systems for aquaculture. Our findings suggest that as the
digitalization and data capture increase in the aquaculture industry,
there is a great potential for applying machine learning to support
DSSs in the industry. This will help ground the DSSs in real data,
and when deployed, in real-time data feeding into the systems. One
could even design systems that continuously re-trains the models with
on-site data to increase overall test performance.

We still don’t see large-scale adoption of ML for DSSs in the
aquaculture industry because of the lack of data needed to create
the ML systems.

When digitalization increases, we will see more use of ML in DSSs
for aquaculture.However, successful use of ML in aquaculture is not
only dependent on how much data the aquaculture industry gathers,
but also on the quality of that data and how well the practitioners
annotate and describe it.

ML models can contribute to DSSs in aquaculture in many ways,

42

Contributions towards research questions

such as directly optimizing control or predicting the effect of actions
(through reinforcement learning). However, in we illustrate
two ways ML can be used in a DSS. The first way is prediction
(illustrated by “Prediction” in [Figure 4.3). Through predicting a state
that describes the problem that concerns the DSS the user can use the
DSS to plan. This state is typically parameters describing important
aspects of the problem being addressed by the DSS. For aquaculture,
this could typically be salinity, water temperature, and water current.
This future state could also be used to query a CBR system to retrieve
previous past experiences that are similar to this predicted state. The
second way is to use SL to model similarity between two situations
(illustrated by “SL” in the figure). Typically the SL model would use a
predicted state to retrieve a set of previously recorded situations that
are most similar. This set of previously recorded situations would
then support the DSS user in choosing the best decision.

The study [72] we did find in the literature mapping falls within
the former category. In this work, they used ML to predict parameters
that were important to the system described by the DSS.In this
case, the crucial parameters were oxygen levels, salinity, and water
temperature. These parameters are all important in terms of
aquaculture production, and thus a good prediction of the parameters
can be a substantial addition to the information presented to the
DSS user. This is also the case with other important parameters of
aquaculture production, such as the physical or mechanical situation
of an aquaculture site. As motivated in Beciion 19 this is even
more important in DSSs that are used for EXPOSED aquaculture
operations. Thus predicting environmental factors such as wind,
waves and currents can also be useful for planning operations on
aquaculture installations.

In an early stage of this PhD project, we implemented and
evaluated models to predict the effects of these environmental factors
such as movement in installations. Figure B shows an experiment
where data gathered from a buoy close to an exposed aquaculture
location Figure B8 shows the accuracy of two predictive ANN models.
The first model, “4” uses 4 steps of history as input to predict a future
timestep. The second model, “6” uses 6 timesteps as input. The figure
shows how the accuracy of predictions decreases when the model is
trained and tested to predict further into the future.

Predicting the effects of environmental factors instead of directly
predicting the environmental factors have the added benefit that
such a model would inherently have to take into account the local
conditions. Wind of the same strength and from the same direction
would not have the same effect on different aquaculture installations,
as the local conditions are different.

43

4. Research results

1.0 — target

windspeed

= prediction

N o e
'S = o

Normalized winedspeed/movement

o

0.0

0 20 40 60 80 100 120
Timesteps (hours)

Figure 4.4: A graph showing a neural network predicting (blue
line) the variation on the x-axis of an accelerometer mounted on the
aquaculture cage (black line). This variation of the accelerometer
values would be indicative of how much the cage is moving and how
hard it would be to stand on the cage platform. All values are shown
over 120 hours. All values on the graph are normalized from 0 to 1
(with original wind speed ranging from 0.82 m/s to 15.32 m/s and
target/prediction of change in acceleration ranging from 0.003 %3 to
0.042 %)

As discussed earlier in this section and illustrated in [Figure 4.3,
ML models can also be used to learn similarity (SL). This can be
used to retrieve recorded situations that are similar to the predicted
or current situations. This will be detailed in the next section.

RQ3: How can similarity learning assists in designing
CBR systems for DSSs? Similarity learning makes the creation
of CBR systems much less dependent on domain experts, as the
similarity function does not need to be created manually. Modeling
the similarity function using data that describes the problem being
solved by the DSS reduces the design decisions down to what features
need to be part of that data. DL models can automate this by learning
an accurate representation [29] of the data. This enables an SNN to

44

Contributions towards research questions

0.01715= .
"™ history

4
— 6

s)

£0.01710—

&

0.01705=

0.01700=

0.01695=

loss (normalized tonn

0.01690 =

| | | | 1
2 4 6 8 10

Prediction horizon (hours)

Figure 4.5: A graph showing a neural network predicting the
anchor load (loss is normalized with 0 being equivalent to 21.454 kg
and 1 being equivalent to 469.48 kg) of an aquaculture cage where
the horizontal axis is the amount of hours forward in time for the
prediction. The graph shows two different neural networks, one which
takes into account four hours of history to predict, and one who uses
six hours as input data.

determine which features of the data are most important in terms of
measuring similarity.

The work done in demonstrates an application of ESNN
in the aquaculture domain. There we retrieve past operational
situations, characterized by the location and the weather effect (effect
of the given weather at a specific location). The system presents the
user with a list of previous operational situations that is sorted by
how similar they are with the planned or current situation. That
way, the user is informed of the way prior users handled previous
situations. Figure B8 shows the validation loss of ESNN and
two reference similarity learning methods (chopra[87] and gabel[B¥]).
ESNN outperforms the two reference similarity methods. ESNN
also learns the model quickly, almost as quickly as a standard SNN
(chopra). In many cases, SNNs have a head start in terms of
accuracy as SNNs compute the final similarity resulting from the two
embeddings using a static distance metric. In comparison, ESNN has
to learn the function for the similarity computation based on the two
embeddings.

45

4. Research results

label

esnn.val

~—— chopra.val
gabel.val

0.4

0.2 4

0.14

0 200 400 600 800 1000
epoch

Figure 4.6: Validation results across 1000 epochs for the different
similarity functions for comparing different aquacuture operational
situations. chopra.val is the validation performance of chopra[87] and
gabel.wal is the valdiation performane of gabel[38]. Finally, esnn.val
is the validation performance of ESNN. ESNN converges almost as
quick as SNNs (chopra.val) and then quickly outperforms chopra.val.
gabel converges much slower, as it has to learn the ordering of the
datapoints (S(x,y) = S(y,x) is not a part of the architecture design
as in chopra or ESNN). However, gabel.val does converge to the same
accuracy as esnn.val given enough epochs.

In the Fishnet architecture shown in we apply SL in a
more direct way. Here the ML model is used as a similarity function
to measure the likeness of salmon individuals within one aquaculture
cage. Re-identifying individual salmon enables a DSS to build
statistics for growth and disease for individual salmon. Individual
statistics and prediction of growth and disease are very beneficial
for optimization of production. An example of this can be seen in
Figure B2 where three different fish (per row) are shown with two
different pictures of each fish (columns). The similarity of the images
of salmon is shown between the salmon pictures, and all of the pictures
of the same salmon have higher similarity than to other salmon. In this
work, we trained a SNN based on Facenet[80] to re-identify salmon.
We trained the SNN architecture using a dataset of labeled salmon
heads. This dataset contained 15000 images of 715 individual salmon.
We applied five augmentations to each of the salmon heads and ended
up with 225000 images. A validation test performed was done on a
test-set of 6000 images from 29 different salmon. This test showed

46

Contributions towards research questions

that the fishnet architecture has good performance in re-identifying
salmon with a 96.4% true positive rate given a 1% false positive rate
using the Inception ResNet v2 as an embedding network.

Simen- 0.303
Eirik— 0.475
Egil- 0.287

Figure 4.7: An illustration of the distances between six images from
salmon with three different identities. Each row contains two images
of the same salmon: “Simen” at the top, “Eirik” in the middle and
“Egil” at the bottom. The average distance between the same salmon
is 0.36 while comparisons between different salmon average at 1.40.

RQ4: How can similarity learning methods be developed
further to improve performance?

This research question asks how we can augment the design of
SNNs to increase performance.

Siamese Neural Networks were introduced by Bromley et.al [#R] to
measure the similarity of two signatures to detect signature fraud. At
the time, SNNs were not adopted by CBR systems to learn similarity
functions.

SNNs and other similarity functions enable users to calculate the
similarity between any pairs of objects. It can be used for different
applications, including fraud detection [AR], face verification [B7],
gesture classification [84] and as part of matching architectures [2].

47

4. Research results

The SNN architecture can also be expanded to train on triplets of data
points instead of pairs like in the work done by Lefebvre et al. [85]
and Hoffer et al. [34].

SNNs learn to embed data points into an embedding space where
two data points that are labeled as similar are closer than in non-
embedding space. The SNNs extract the parts of the data points
that are most important for calculating the similarity. After doing
this embedding on two data points, SNNs use a static distance metric
like L2 or manhattan distance to calculate the distance in embedding
space. Through the work described in [Paper 11, we designed an
extension to the SNN architecture called extended siamese neural
networks (ESNN). In addition to extracting the most important parts
of a data point and using that as a basis for embedding, ESNN has
an additional step in similarity calculation. Instead of calculating the
similarity between the two embedding points via a static function,
ESNN uses a neural network to calculate the similarity. To do
this, ESNN calculates the distance between the two embeddings
and the absolute value of the resulting vector. This vector is then
used as input to a neural network that calculates the similarity.
The ESNN architecture is end-to-end trainable as the error of the
similarity calculation is the basis for backpropagation back through
the similarity network and the embedding network.

This means that an SNN can learn a function to extract and
embed the most important parts for each data point in terms of
similarity. ESNN can use that same embedding to also compute which
differences of the two embeddings are most important to compute
similarity. This enables ESNN to learn ways to compute similarity
based on both datapoint, not only indirectly through a static function
and the computed loss, but also directly. In our experiments, this
enables the ESNN to compute accurate similarity on datasets that
are harder to separate (e.g., the mammography dataset from UCI ML
repository[86]) compared to SNNs. This can be seen in Figure B8
which shows the training loss for ESNN, a SNN (chopra), and gabel
(a SL method by developed Gabel [B8] introduced in Section P).
Similar accuracy can also be achieved by the gabel method for learning
similarity. This is because the gabel method concatenates both data
points into a single data vector before doing similarity computation.
As a result, gabel sees both data points while learning similarity in the
same way ESNN does. This does, however, introduce more complexity
in training as the ordering of the two data points affects the output
(gabel is not invariant to input pair ordering), in contrast to SNNs and
ESNN. Figure B9 shows training performance for a chopra and gabel
and ESNN. The figure shows that while the performance increases
slowly for the gabel method, the SNN and ESNN methods reduces

48

Summary of auxiliary papers

method

0.5 — eSNN

—— chopra

% gabel
— 0.4

)
=
2
=
I

o
o
|

0.2+

I I I
0 50 100 150 200
epochs

Figure 4.8: Validation retrieval loss during training on the Mammo-
graphic mass UCI ML dataset [86].

the loss during training much faster. Finally, Figure 10 shows the
validation loss during training on the balance UCI ML dataset[R6] as
a function of how many data points are seen by the training method.
ESNN and SNNs have to evaluate fewer data points because both of
these architectures are invariant to the ordering of the two input data
points (S(x,y) = S(y,x)). For the architecture used by gabel this
is not the case, and this model has to train on more data points
to learn the same similarity function. To summarize, we can see
that the experiments done in shows that architectures based
on SNNs (invariant to input datapoint ordering) are faster to train.
On the other hand, the same experiments show that architecture
that can perform learning on the part of the architecture that sees
both data points (as is the case with gabel and ESNN) outperforms
architectures that only see single datapoints while learning (SNNs) on
hard problems such as seen in Figure E8. Our experiments show that
ESNN is a SL method that combines fast training with the ability to
achieve high accuracy on hard problems.

4.4 Summary of auxiliary papers
In addition to the main publications listed in the previous section,
the PhD work done in the project has also contributed to other

publications. These publications are not directly connected to the

49

4. Research results

method
0.6 —— eSNN
chopra
n
2 gabel
— 0.4+
=
=
=
2
0.2
LA SAA A ST A e A
0.0
I I I I I
50 100 150 200
epochs

Figure 4.9: Validation retrieval loss during training on the Iris UCI
ML dataset [Rf].

0.6
S
— 0.4
g
2
=
2

0.2

0.0 =rrrm—rrrrm— T
103 101 10° 106 107
datapoints evaluated

Figure 4.10: Validation retrieval loss during training on the balance
UCI ML dataset [86], which illustrates the difference in amount of
evaluations needed to achieve acceptable performance.

50

Source code

research topic. The work described in these auxiliary publications
and the main publications of the PhD thesis share methods in that
they study CBR and ML as a central part of a decision support system.
These auxiliary papers are as such part of the same methodological
theme as the main papers described earlier. These publications added
indirectly to the contributions of this thesis.

Leendert Wilhelmus Marinus Wienhofen and Bjgrn
Magnus Mathisen. “Defining the initial case-base for a CBR
operator support system in digital finishing”. In: Goel, Ashok;
Diaz-Agudo, M Belén; Roth-Berghofer, Thomas (Ed.): Case-
Based Reasoning Research and Development - 24th International
Conference, ICCBR 2016, Atlanta, GA, USA, October 31 -
November 2, Proceedings, pp. 430444, Springer, 2016.

In this paper, we described the initial design and prototype
implementation of a CBR-based operator support system.

Kerstin Bach and Bjorn Magnus Mathisen and
Amal Jaiswal. Demonstrating the myCBR Rest API. In
Kapetanakis, Stelios; Borck, Hayley (Ed.): Workshops Pro-
ceedings for the Twenty-seventh International Conference on
Case-Based Reasoning co-located with the Twenty-seventh Inter-
national Conference on Case-Based Reasoning (ICCBR 2019),
Otzenhausen, Germany, September 8-12, 2019, pp. 144155,
CEUR-WS.org, 2019.

A paper detailing the expansion of myCBR with a REST in-
terface and demonstrating how this increases usefulness for
practitioners, researchers, CBR students, and teachers.

Jorn Foros and Maren Istad and Andrei Z. Morch and
Bjorn Magnus Mathisen. Use Case applying machine-
learning techniques for improving operation of the
distribution network. In: 25th International Conference on
FElectricity Distribution (CIRED 2019), Madrid, Spain, June 3-
6, 2019, paper 2114, ISSN 2032-9644, AIM, 2019.

This paper describes a use case that illustrates how machine
learning and CBR can be used as a decision support system for
power distribution networks.

4.5 Source code

In addition to scientific progress and publications, the PhD work
has produced significant source code to run experiments. The main
contributions are summarized in the following.

51

Research results

52

Extended siamese neural network and surrounding test suite,
implemented in Keras 2 and tensorflow 2 - Used in paper
ap

https://github.com/ntnu-ai-lab/esnn

New version of Extended siamese neural network and surround-
ing test suite - Used in paper Paper 1V].
https://github.com/ntnu-ai-lab/esnn-aqcbr

As part of the work paper - Expansion of features
in the myCBR, CBR implementation https:/github.com/ntnu-ai-
lab/mycbr-sdk and co-creation of the REST API of myCBR
https://github.com/ntnu-ai-lab/mycbr-rest

As part of the work done to replicate the similarity learning
method from in paper https://github.com/ntnu-ai-lab/
RProp

https://github.com/ntnu-ai-lab/esnn
https://github.com/ntnu-ai-lab/esnn-aqcbr
https://github.com/ntnu-ai-lab/mycbr-sdk
https://github.com/ntnu-ai-lab/mycbr-sdk
https://github.com/ntnu-ai-lab/mycbr-rest
https://github.com/ntnu-ai-lab/RProp
https://github.com/ntnu-ai-lab/RProp

Chapter 5
Conclusion

This chapter summarizes the main research contributions of this
PhD project as they relate to the research questions defined in
Section T3. Furthermore, future research directions that build on
the work conducted throughout this thesis are included.

5.1 Conclusion

This thesis has presented the work done in the PhD project. Through
the EXPOSED SFT center, this PhD project set the goal of developing
enabling digital technologies for the aquaculture industry. More
specifically, to provide tools to increase the level of automation in
the aquaculture industry. This would enable the industry to expand
into more exposed locations without the increased risk or loss of
production. Data-driven methods and machine learning models are
especially promising for providing such automation. At the same time,
the aquaculture industry has two fundamental challenges that limit
the adoption of new technologies, namely low digital maturity and
lack of high-quality data.

In this thesis, we have investigated if machine learning can con-
tribute towards the goal of more automated and optimized aquacul-
ture operations by enabling data-driven DSSs. The thesis explored
developing ML models for DSS based on both traditional data col-
lection (buoy data seen in Figure B4) and more novel data usage as
illustrated by Fishnet in [Paper I11. [Chapter 3 presented a systematic
literature mapping where we discovered that there was very little re-
search on using machine learning for DSSs in aquaculture. This shows
there is a need for doing more research on this topic.

We argue that the aquaculture industry requires an intuitively
explainable DSS to get true adoption in the aquaculture industry due
to the low digital maturity and lack of trust in digital tools. CBR
represents such a solution. A CBR system can retrieve previously
recorded situations that are similar to the current or predicted
situation and present them to the user. This could include the
recorded solution to that situation.

However, designing CBR systems can be demanding as encoding
knowledge/expertise is non-trivial in most cases. This is especially
true for the similarity function. The similarity function computes the

53

5. Conclusion

similarity between the input and the previously recorded situations.
Designing this function typically requires deep domain expertise. In
our work, we investigated how to learn a similarity function from
gathered data. Through this investigation, we showed that similarity
learning could help make DSSs for aquaculture be less dependent on
design and domain expertise. This way, DSS designers can easier
adapt DSSs to the local conditions of each aquaculture site without
redesigning the DSS.

Basing DSS design for aquaculture on machine learning methods
enables the design to stay constant across aquaculture sites. The DSS
users and designers would only need to retrain the ML models used
by the DSS. In we also showed that it is possible to improve
current methods for similarity learning to fit in such a solution.

In we extended the Siamese neural network architecture.
SNNs extract the most important parts of each data point into
embeddings and learn which parts of each data point are essential for
similarity. In designing ESNN, we extended this to learn the essential
parts of the differences between those two embeddings.

We demonstrated that learning to model the similarity of two
embeddings, not only embedding the two data points, are important
to achieve good performance on datasets that have been shown hard
to classify.

The aquaculture industry is important for Norway, and moving
more aquaculture sites to exposed locations demand more automation
and optimized operations. The work presented in this thesis have
both shown promising results in terms of which methods to use for
CBR systems for DSS in aquaculture, as well as providing important
guidance into which data to collect in order to improve DSS in
aquaculture further.

This thesis introduced four research questions in Becfion T3. In
Bection 73 we demonstrated how the work done throughout this PhD
project has answered these research questions. Through this work,
we illustrated how SL could be used to create DSSs for a data-scarce
domain such as aquaculture. We did not evaluate our experimental
system (AQCBR from [Paper IV]) in actual deployment. However,
our experiments based on real data illustrated the viability. We
also introduced a new SL method which we named extended siamese
neural networks (ESNN). Our experiments showed that ESNN has
the accuracy of a SL method like gabel while retaining the training
speed of SNNs. We did not extend testing of ESNN to larger datasets
(except for MNIST), nor to sequence similarity learning. However,
in accordance with our experiments and the architecture, we see no
reason that the performance should not be similar relative to SNNs
for larger or sequential datasets.

54

Future research directions

5.2 Future research directions

This PhD project was done in an applied context. As a result,
many of the directions of future investigations are within testing the
technologies developed in this PhD project in operational systems
rather than simulated environments or testing based on historical data.
However, there are also methodological results from the PhD project.
As a result, there are future directions of investigation that center
around the ESNN method and how it performs in other tasks that
are suitable for SL/DML/CL methods.

How CBR-based DSSs can help data-scarce industries
such as aquaculture: Data gathering is increasing in aquaculture,
but high-quality labeled data is still far between. Applying CBR as
part of a DSS for supporting aquaculture industry operations could
have an impact on how the industry can use ML-based technologies.
However, the effect of how presenting the most relevant recorded case
when facing planning tasks on actual operations is still unknown.
To evaluate this, we would need to test systems such as AQCBR
presented in in actual operations, then evaluate its effect on
operations through metrics and questionnaires.

How SL could benefit DSS for aquaculture via salmon re-
identification: As shown by SL could also be applied more
directly in DSS for aquaculture by identifying individuals. This would
enable the operator of an aquaculture site to make decisions based on
individual-level data. How to best make use of re-identification in such
a use case would need to be studied more and evaluated in cooperation
with industry stakeholders.

In what type of applications is the added model capacity
of Extended Siamese Neural Networks (ESNN) needed: The
work presented in and M shows that ESNN does outperform
other similarity learning methods on some types of tasks. However, SL
can be used for many other types of tasks than retrieval /classification
of unlabeled data points. SL can also be used to cluster unlabeled data,
e.g., using a pre-trained ESNN for clustering a related but unlabeled
dataset. This could have benefits above pure unsupervised methods.
ESNN could also be used as a custom metric in combination with
methods such as DBSCAN (as done in [Paper I, but with a pre-
trained ESNN instead of a static custom metric).

55

5. Conclusion

References

56

1]

Olafsen, T., Winther, U., Olsen, Y., and Skjermo, J. “Value
created from productive oceans in 2050”. In: SINTEF Fisheries
and Aquaculture (2012), p. 83.

Aamodt, A. and Plaza, E. “Case-based reasoning: Foun-
dational issues, methodological variations, and system ap-
proaches”. In: AI communications vol. 7, no. 1 (1994), pp. 39—
59.

Holen, S. M., Utne, I. B., Holmen, I. M., and Aasjord,
H. “Occupational safety in aquaculture-Part 1: Injuries in
Norway”. In: Marine Policy vol. 96 (2018), pp. 184-192.

Holen, S. M., Utne, I. B., Holmen, I. M., and Aasjord,
H. “Occupational safety in aquaculture-Part 2: Fatalities in
Norway 1982-2015". In: Marine Policy vol. 96 (2018), pp. 193~
199.

Mathisen, B. M., Bach, K., Meidell, E., Malgy, H., and Sjgblom,
E. S. “FishNet: A unified embedding for salmon recognition”.
In: Proceedings of the Twenty-fourth Furopean Conference on
Artificial Intelligence. 2020, pp. 3001-3008.

Mathisen, B. M., Aamodt, A., and Langseth, H. “Data driven
case base construction for prediction of success of marine
operations”. In: Proceedings of ICCBR 2017 Workshops (CAW,
CBRDL, PO-CBR), Doctoral Consortium, and Competitions
co-located with the 25th International Conference on Case-
Based Reasoning (ICCBR 2017). 2017, pp. 102-111.

Mathisen, B. M., Bach, K., and Aamodt, A. “Using extended
siamese networks in a CBR system to provide decision support
in aquaculture operations”. In: Applied Intelligence (2021).

Ribeiro, M. T., Singh, S., and Guestrin, C. “"Why Should
I Trust You?": Explaining the Predictions of Any Classifier”.
In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, August 13-17, 2016. 2016, pp. 1135-1144.

Lundberg, S. and Lee, S.-I. “A unified approach to interpret-
ing model predictions”. In: arXiv preprint arXiv:1705.0787/
(2017).

References

[10]

[14]

[15]

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. “Imagenet
classification with deep convolutional neural networks”. In:
Advances in Neural Information Processing Systems 25. Ed. by
Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q.
Vol. 25. 2012, pp. 1097-1105.

Lannan, J. “Users Guide to PONDCLASS: Guidelines for Fer-
tilizing Aquaculture Ponds”. In: Pond Dynamics/Aquaculture
CRSP, Oregon State University, Corvallis, Oregon (1993).

Power, D. J. “Decision support systems: a historical overview”.
In: Handbook on Decision Support Systems 1. 2008, pp. 121—
140.

Garg, A. X., Adhikari, N. K., McDonald, H., Rosas-Arellano,
M. P., Devereaux, P., Beyene, J., Sam, J., and Haynes, R. B.
“Effects of computerized clinical decision support systems on
practitioner performance and patient outcomes: a systematic
review”. In: Jama vol. 293, no. 10 (2005), pp. 1223-1238.

Hunt, D. L., Haynes, R. B., Hanna, S. E.; and Smith, K.
“Effects of computer-based clinical decision support systems
on physician performance and patient outcomes: a systematic
review”. In: Jama vol. 280, no. 15 (1998), pp. 1339-1346.

Golshani, A., Sun, W., Zhou, Q., Zheng, Q. P., and Tong, J.
“Two-stage adaptive restoration decision support system for a
self-healing power grid”. In: IEEE Transactions on Industrial
Informatics vol. 13, no. 6 (2017), pp. 2802-2812.

Mardle, S. and Pascoe, S. “A review of applications of multiple-
criteria decision-making techniques to fisheries”. In: Marine
Resource Economics (1999), pp. 41-63.

Ernst, D. H., Bolte, J. P., and Nath, S. S. “AquaFarm: simu-
lation and decision support for aquaculture facility design and
management planning”. In: Aquacultural Engineering vol. 23,
no. 1 (2000), pp. 121-179.

Kolodner, J. L. “An introduction to case-based reasoning”. In:
Artificial intelligence review vol. 6, no. 1 (1992), pp. 3-34.

Schank, R. C. “Language and memory”. In: Cognitive science
vol. 4, no. 3 (1980), pp. 243-284.

Schank, R. C. Dynamic memory: A theory of reminding and
learning in computers and people. 1983.

Kolodner, J. L. “Reconstructive memory: A computer model”.
In: Cognitive science vol. 7, no. 4 (1983), pp. 281-328.

57

5. Conclusion

22]

[23]

[32]

58

Richter, M. M. “Knowledge containers”. In: Readings in Case-
Based Reasoning vol. Morgan Kaufmann Publishers (2003).

Cybenko, G. “Approximation by superpositions of a sigmoidal
function”. In: Mathematics of control, signals and systems

vol. 2, no. 4 (1989), pp. 303-314.

Zhou, D.-X. “Universality of deep convolutional neural net-
works”. In: Applied and Computational Harmonic Analysis
vol. 48, no. 2 (2020), pp. 787-794.

Hochreiter, S. and Schmidhuber, J. “Long short-term memory”.
In: Neural computation vol. 9, no. 8 (1997), pp. 1735-1780.

Fukushima, K. “Neural network model for a mechanism of pat-
tern recognition unaffected by shift in position-Neocognitron”.
In: IEICE Technical Report, A vol. 62, no. 10 (1979), pp. 658
665.

LeCun, Y., Boser, B., Denker, J. S.,; Henderson, D., Howard,
R. E., Hubbard, W., and Jackel, L. D. “Backpropagation
applied to handwritten zip code recognition”. In: Neural
computation vol. 1, no. 4 (1989), pp. 541-551.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.
“Matching networks for one shot learning”. In: Advances in
Neural Information Processing Systems. 2016, pp. 3630-3638.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. Deep
learning. Vol. 1. 2. 2016.

Schroff, F., Kalenichenko, D., and Philbin, J. “Facenet: A
unified embedding for face recognition and clustering”. In:
Proceedings of the IEEE conference on computer vision and
pattern recognition. 2015, pp. 815-823.

Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., and
Torr, P. H. “End-to-end representation learning for correlation
filter based tracking”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2017, pp. 2805
2813.

Gao, P., Zhang, Q., Wang, F., Xiao, L., Fujita, H., and Zhang,
Y. “Learning reinforced attentional representation for end-to-
end visual tracking”. In: Information Sciences vol. 517 (2020),
pp- 52-67.

Gao, P., Yuan, R., Wang, F., Xiao, L., Fujita, H., and Zhang,
Y. “Siamese attentional keypoint network for high performance
visual tracking”. In: Knowledge-Based Systems vol. 193 (2020),
p- 105448.

References

38]

39]

Hoffer, E. and Ailon, N. “Deep metric learning using triplet
network”. In: International Workshop on Similarity-Based
Pattern Recognition. Springer. 2015, pp. 84-92.

Kelley, H. J. “Gradient theory of optimal flight paths”. In: Ars
Journal vol. 30, no. 10 (1960), pp. 947-954.

Linnainmaa, S. “The representation of the cumulative rounding
error of an algorithm as a Taylor expansion of the local
rounding errors”. In: Master’s Thesis (in Finnish), Univ.
Helsinki (1970), pp. 6-7.

Chopra, S., Hadsell, R., and LeCun, Y. “Learning a similarity
metric discriminatively, with application to face verification”.
In: Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on. Vol. 1. IEEE.
2005, pp. 539-546.

Gabel, T. and Godehardt, E. “Top-down induction of similarity
measures using similarity clouds”. In: Case-Based Reasoning
Research and Development. Ed. by Hiillermeier, E. and Minor,
M. Cham, 2015, pp. 149-164.

D. J. Montana, L. D. D. “Training feedforward networks
using genetic algorithms”. In: Proceedings of the FEleventh
International Joint Conference on Artificial Intelligence. 1989,
pp. 762-767.

Kitano, H. “Designing neural networks using genetic algo-
rithms with graph generation system”. In: Complex Systems
vol. 4, no. 4 (1990), pp. 461-476.

Stanley, K. O. “Efficient evolution of neural networks through
complexification”. PhD thesis. The University of Texas at
Austin, 2004.

Stahl, A. “Learning feature weights from case order feedback”.
In: Proceedings of the 4th International Conference on Case-
Based Reasoning (ICCBR 2001). Springer. Vancouver, 2001,
pp. 502-516.

Nikpour, H., Aamodt, A., and Bach, K. “Bayesian-supported
retrieval in BNCreek: A knowledge-intensive case-based rea-
soning system”. In: International Conference on Case-Based
Reasoning. Springer. 2018, pp. 323-338.

Stahl, A. and Gabel, T. “Using evolution programs to learn
local similarity measures”. In: Proceedings of the 5th Inter-
national Conference on Case-Based Reasoning (ICCBR 2003).
Trondheim, 2003, pp. 537-551.

59

5. Conclusion

[45]

[46]

[47]

[54]

60

Langseth, H., Aamodt, A., and Winnem, O. M. “Learning
retrieval knowledge from data”. In: Sizteenth International
Joint Conference on Artificial Intelligence, Workshop ML-
5: Automating the Construction of Case-Based Reasoners.
Stockholm. Citeseer. 1999, pp. 77-82.

Reategui, E. B., Campbell, J. A., and Leao, B. F. “Combining
a neural network with case-based reasoning in a diagnostic
system”. In: Artificial Intelligence in Medicine vol. 9, no. 1
(1997), pp. 5-27.

Abdel-Aziz, A., Strickert, M., and Hiillermeier, E. “Learning
solution similarity in preference-based CBR”. In: Proceedings
of the 22nd International Conference on Case-Based Reasoning

(ICCBR 2014). Springer. 2014, pp. 17-31.

Bromley, J., Guyon, I., LeCun, Y., Siackinger, E., and Shah, R.
“Signature verification using a" siamese" time delay neural net-
work”. In: Advances in neural information processing systems.
1994, pp. 737-744.

Maggini, M., Melacci, S., and Sarti, L. “Learning from pairwise
constraints by similarity neural networks”. In: Neural Networks
vol. 26 (2012), pp. 141-158.

Mathisen, B. M., Aamodt, A., Bach, K., and Langseth, H.
“Learning similarity measures from data”. In: Progress in
Artificial Intelligence (Oct. 2019), pp. 129-143.

Ye, X., Leake, D., Huibregtse, W., and Dalkilic, M. “Applying
class-to-class siamese networks to explain classifications with
supportive and contrastive cases”. In: International Conference
on Case-Based Reasoning. Springer. 2020, pp. 245-260.

Mathisen, B. M., Haro, P., Hanssen, B., Bjork, S., and Walder-
haug, S. “Decision support systems in fisheries and aquaculture:
A systematic review”. In: arXiv preprint arXiv:1611.0837/
(2016).

Kawamoto, K., Houlihan, C. A., Balas, E. A., and Lobach, D. F.
“Improving clinical practice using clinical decision support
systems: a systematic review of trials to identify features
critical to success”. In: Bmj vol. 330, no. 7494 (2005), p. 765.

Vergara-Solana, F., Araneda, M. E., and Ponce-Diaz, G. “Op-
portunities for strengthening aquaculture industry through
multicriteria decision-making”. In: REVIEWS IN AQUACUL-
TURE vol. 11, no. 1 (Feb. 2019), 105-118.

References

[55]

Leung, P. “Multiple-criteria decision-making (MCDM) appli-
cations in fishery management”. English. In: International
Journal of Environmental Technology and Management vol. 6,
no. 1-2 (2006). multiple-criteria decision-making;fishery man-
agement;analytic hierarchy process;decision support system;
pp. 96-110.

Crossland, M. D., Wynne, B. E.; and Perkins, W. C. “Spatial
decision support systems: An overview of technology and a test
of efficacy”. In: Decision support systems vol. 14, no. 3 (1995),
pp- 219-235.

Malczewski, J. “GIS-based multicriteria decision analysis: a
survey of the literature”. In: International Journal of Geograph-
ical Information Science vol. 20, no. 7 (2006), pp. 703-726.

Kitchenham, B. A. and Charters, S. Guidelines for performing
systematic literature reviews in software engineering. Tech. rep.
Keele University, 2007.

Budgen, D., Turner, M., Brereton, P., and Kitchenham, B. “Us-
ing mapping studies in software engineering”. In: Proceedings
of PPIG. Vol. 8. Lancaster University. 2008, pp. 195-204.

Kitchenham, B. A.; Mendes, E., and Travassos, G. H. “Cross
versus within-company cost estimation studies: A systematic
review”. In: Software Engineering, IEEE Transactions on
vol. 33, no. 5 (2007), pp. 316-329.

Scuse, D. H. and Arnason, A. N. “Information manipulation
in biological decision-support systems”. In: Proceedings of the
Sizteenth Hawaii International Conference on System Sciences,
1983. Vol. 1. Western Periodicals Company. 1983, p. 377.

Arnott, D. and Pervan, G. “A critical analysis of decision
support systems research revisited: the rise of design science”.
In: Journal of Information Technology vol. 29, no. 4 (2014),
pp. 269-293.

Bourke, G., Stagnitti, F., and Mitchell, B. “A decision support
system for aquaculture research and management”. In: Aqua-
cultural Engineering vol. 12, no. 2 (1993), pp. 111-123.

Silvert, W. “A decision support system for regulating finfish
aquaculture”. In: Ecological modelling vol. 75 (1994), pp. 609—
615.

Bolte, J., Nath, S., and Ernst, D. “Development of decision
support tools for aquaculture: the POND experience”. In:
Aquacultural engineering vol. 23, no. 1 (2000), pp. 103—-119.

61

5. Conclusion

(6]

62

El-Gayar, O. F. and Leung, P. “ADDSS: a tool for re-
gional aquaculture development”. In: Aquacultural Engineering
vol. 23, no. 1 (2000), pp. 181-202.

Nath, S. S., Bolte, J. P., Ross, L. G., and Aguilar-Manjarrez,
J. “Applications of geographical information systems (GIS)
for spatial decision support in aquaculture”. In: Aquacultural
Engineering vol. 23, no. 1 (2000), pp. 233-278.

Hargrave, B. T. “A traffic light decision system for marine
finfish aquaculture siting”. In: Ocean & coastal management
vol. 45, no. 4 (2002), pp. 215-235.

Halide, H., Stigebrandt, A., Rehbein, M., and McKinnon, A.
“Developing a decision support system for sustainable cage
aquaculture”. In: Environmental Modelling € Software vol. 24,
no. 6 (2009), pp. 694-702.

Silvert, W. “Decision support for stakeholders”. English. In:
vol. 1. Ottawa, ON, Canada, 2010, pp. 523-529.

Radulescu, C. and Rahoveanu, M. “A multi-criteria evaluation
framework for fish farms”. English. In: Studies in Informatics
and Control vol. 20, no. 2 (2011), pp. 181-6.

Magno-Tan, M., Alejandrino, A., Dela Cruz, C., Inoc, A.,
and Coronado, A. “Web-based decision support system for
broodstock management of Siganus guttatus (Bloch, 1787) in
open fish cage”. English. In: International Journal of Machine
Learning and Computing vol. 7, no. 6 (2017), pp. 208-12.

Cobo, A., Llorente, I., Luna, L., and Luna, M. “A decision
support system for fish farming using particle swarm optimiza-
tion”. In: Computers and Electronics in Agriculture (2018).

Duan, Q., Liu, Y., Zhang, L., and Li, D. “State-of-the-art
review for application of big data technology in aquacul-
ture”. Chinese. In: Nongye Jizie Xuebao/Transactions of the
Chinese Society for Agricultural Machinery vol. 49, no. 6
(2018). Analysis techniques;Aquaculture industry;Automatic
decision;Big data platforms;Big data technologies;Development
trends;Intelligent analysis;State-of-the art reviews; pp. 1-16.

O’Mara, A. and Shahriar, M. S. “Short-term prediction of ma-
rine sensor data with fuzzy clustering”. English. In: Interna-
tional Journal of Pattern Recognition and Artificial Intelligence
vol. 29, no. 3 (2015). Conductivity data;Environmental Mon-
itoring;Fuzzy pattern;Marine sensors;Novel techniques;Short
term;Short term prediction;Water quality variables;

References

(80]

[81]

(84]

Zhou, C., Lin, K., Xu, D., Chen, L., Guo, Q., Sun, C.,
and Yang, X. “Near infrared computer vision and neuro-
fuzzy model-based feeding decision system for fish in aqua-
culture”. English. In: Computers and FElectronics in Agri-
culture vol. 146 (2018). Adaptive network based fuzzy in-
ference system;Automatic adjustment;Delau-nay triangula-
tions;Feeding behavior;Implementation process;Near- infrared
images;Theoretical foundations;Water quality parameters;
pp. 114-124.

Yuan, H., Mao, Z., and Zhao, B. “Research of vannamei ex-
pert system based on CBR and Grey AHP”. In: 2010 Interna-
tional Conference on Intelligent Computation Technology and
Automation. Vol. 2. May 2010, pp. 1065-1068.

Tidemann, A., Bjgrnson, F. O., and Aamodt, A. “Operational
support in fish farming through case-based reasoning”. In:
Advanced Research in Applied Artificial Intelligence. 2012,
pp. 104-113.

Malgy, H., Aamodt, A., and Misimi, E. “A spatio-temporal
recurrent network for salmon feeding action recognition from
underwater videos in aquaculture”. In: Computers and Elec-
tronics in Agriculture vol. 167 (2019), p. 105087.

Breivik, @., Reistad, M., and Haakenstad, H. “A high-
resolution hindcast study for the North Sea, the Norwegian
Sea and the Barents Sea”. In: 10th International Workshop on
Wave Hindcasting and Forecasting. 2007.

Reistad, M., Breivik, (., Haakenstad, H., Aarnes, O. J.,
Furevik, B. R., and Bidlot, J.-R. “A high-resolution hindcast
of wind and waves for the North Sea, the Norwegian Sea, and

the Barents Sea”. In: Journal of Geophysical Research: Oceans
vol. 116, no. C5 (2011).

Redmon, J. and Farhadi, A. “Yolov3: An incremental improve-
ment”. In: arXiv preprint arXiv:1804.02767 (2018).

Xu, X., Ester, M., Kriegel, H.-P., and Sander, J. “A
distribution-based clustering algorithm for mining in large
spatial databases”. In: Proceedings 14th International Confer-
ence on Data Engineering. Feb. 1998, pp. 324-331.

Berlemont, S., Lefebvre, G., Duffner, S., and Garcia, C.
“Siamese neural network based similarity metric for inertial
gesture classification and rejection”. In: Automatic Face and
Gesture Recognition (FG), 2015 11th IEEE International Con-
ference and Workshops on. Vol. 1. IEEE. 2015, pp. 1-6.

63

5. Conclusion

(85]

64

Lefebvre, G. and Garcia, C. “Learning a bag of features
based nonlinear metric for facial similarity”. In: Advanced
Video and Signal Based Surveillance (AVSS), 2013 10th IEEE
International Conference on. IEEE. 2013, pp. 238-243.

Dheeru, D. and Karra Taniskidou, E. UCI Machine Learning
Repository. 2017.

Papers

Data driven case base
construction for prediction of
success of marine operations

Bjorn Magnus Mathisen, Agnar Aamodt, Helge
Langseth

67

Data driven case base construction for prediction of success of
marine operations

68

Introduction

Abstract

It is a common situation to have lots of recorded data that
you want to use for improving a process in your organization
or make use of this data to provide new services or products.
Starting with one primary data set we describe a system that
enhances this data set to a level such that it can be used
by a deep learning system. This deep learning system then
creates a model based on this data set, trying to predict
operational windows for marine operations. Using this model
the system extracts cases for use in a CBR-system aimed at
providing operational support. This paper describes the partial
implementation and results of this system.

l.1 Introduction

Critical operations are often meticulously planned and subject to
many parameters that decide if and how these operations are per-
formed. Some of these parameters are called operational time win-
dows, which in marine environments often are connected to external
factors such as weather.

This paper uses machine learning to predict favorable operational
time windows or warn of unfavorable operational windows, so that
critical operations can be planned with better accuracy, e.g. when the
operation should ideally take place. One way of doing this is to look at
historical data of previously executed operations. By combining data
on successful and unsuccessful operations with the relevant context
of that operation, we create a data set that can be used to find
indicators for success or failure in advance. Which context that is
relevant is dependent on the nature of operational window; wind and
fog are important contexts for aviation, while waves and current are
important for marine operations but not aviation.

This paper focuses on marine operations, and we analyze event
data captured from boats moving in and out of zones connected to
aquaculture installations. Next, we calculate the duration of these
events and connect them to the relevant context and the associated
success or failure classification.

The data used in this analysis is gathered as part of the EXPOSED
project®. This project aims to develop enabling- and applied technolo-
gies for exposed aquaculture operations. The work we describe aims
to improve planning of operations on aquaculture installations on ex-
posed locations.

! http://exposedaquaculture.no/en

69

http://exposedaquaculture.no/en/

Data driven case base construction for prediction of success of
marine operations

The data is a subset of boats moving across geofences attached to
aquaculture installations. This system consists of two zones around
every aquaculture installation in Norway: One outer zone 400 meters
from the outer points of the structures holding the fish themselves
(not including the control building/fishfeed silos). The inner zone
is 20 meters from the structure. These limits are in adherence to
government regulations that no boat should fish within the outer zone
and no boat should move within the inner zone unless the boat is there
to operate on the installation.

An example of geofencing zones are shown in Fig. 1 below.

Figure I.1: The Green line show the outer geofence zone, the red line
shows the inner geofence zone.

An event is created each time a boat crosses any of the geofence
zones, marking the time. Table 1 below shows an example of a typical
event.

Event ID | Location-ID | Vessel Name | Time LZ | ET
81766 12966 | Vessel A 2014-09-02 21:39:32 1 1
81767 12966 | Vessel A 2014-09-02 21:40:11 1 2

Table I.1: This table shows an example of two events with correspond-
ing location id, vessel name, time, LocationZone (LZ) and EventType
(ET). These two events show a vessel entering (ET=1) and leaving
(ET=2) the outer zone (LocationZone=1) of location 12966.

In data gathered in the EXPOSED project, the aquaculture industry
reports on several possible problems with fish feed carriers interacting with
aquaculture installations: Approaching the feed barges, often placed in
shallow waters; Knowing which barge container to fill with what feed;
Planning according to weather and route to enable the installation crew
to attend the operation; And the fact that impact and currents from the
boat can damage the installation.

70

Related work

As our data only gives us the time spent in two different proximities to
the aquaculture installation there will be limits to which types of operational
problems we can detect, and it will be very hard to discern between different
causes (other than bad weather which is very general) of any detected
problem.

The architecture of the full decision support system for EXPOSED is
illustrated in Fig. [2. In this paper we only present results from parts of
the system. Future work will integrate these results with the other modules
(e.g. knowledge models) to complete the system to a state where it can be
verified in the field.

Simulators/
Pre- F— Numerical
processing Models
/V
N Y
Decision
Pre-_ L— | Ki Support
processing Models System
N
Machine
Learning
Knowledge Models
and
Expori
T —

Case Base

Figure 1.2: The architecture of the planned systems. The parts
implemented are highlighted, the case base and the future state is
highlighted in red as being the current target for development.

Our main hypothesis is that given enough contextual weather data a
deep neural network should be able to predict the length of a maritime
operation at a aquaculture installation, enabling us to predict favorable
operational windows. The main contribution of this paper is to show the
reader the process of gathering, collating, filtering of data and subjecting
this data to an analysis.

This paper is structured as follows; Section 2 introduces related work
and our work in the light of this previous work. Section 3 describes the
methods used in our work as well as the data sources used. Section 4 shows
the result of our experiments, while section 5 presents the conclusion along
with a discussion of the results.

.2 Related work

In this work we aim to extract cases from a time series of events, CBR
research has been done on several aspects of automatic case-authoring.

In CBR there has been a lot of focus on how to measure competence and
utility of a case-base [87, BR]. In [RY], they do this via reversing deletion
policies constructed in [d0] that try to improve case base utility without
degrading competence.

71

Data driven case base construction for prediction of success of
marine operations

Several works [0, 82, B3] use NLP to extract cases from structured and
unstructured ([94, 05, 96]) text.

More specifically connected to the task of extracting cases from time
series is the work done by Bach et.al. [97] where they employ clustering of
time-series events in time and space, in combination with other detection
methods. Funk et. al [O8] uses different models of how predictive
(or discriminatory) different time-series patterns are to different medical
diagnosis of stress. For more insight into work done in time-series analysis
connected to CBR research we suggest chapter 3.3 in [99]

The work presented in this paper shares the approach of Bach et al.
[@7] in that we try to extract the useful data points from the time series via
clustering and filtering. Our work differs from the previous work in that
we have very few verified cases apriori or during learning. In other words,
the time-series is in all practical sense unlabeled for our use. We will try
to apply common knowledge about how long an operation usually takes to
perform. Then we can extract failed operations from the even time series
to create cases that exemplify failed operations.

1.3 Method

To enable the deep learning system to correctly model and predict the time
spent at an installation, we need to provide it with as much context data
as possible for each of the event data points. In addition, we need the
data to be as noise free as possible, thus we want to filter away operations
that naturally have a high degree of variation in time spent at the location.
We address these two requirements by combining the primary data set with
other data sets, to enable us to provide filtering and context. An illustration
of this process can be seen in Fig. 233 . Below we describe each of the data
sets.

n: 3188925 n:92910 n: 28260 n:3099 n:2717 n:2717

o] S <
0 22c =
[} S oR 3 = ©
ot s o8 2 @ <%
g8 | 223 [|82l |88 [3¢
3 c » < o
with Boat Sc | ot Pl -cH 2O od
T O + 0= Q> [T} oL
Type o O © >3 30 o= o]
o E >0 < o =)
[4] S% o o) s
= [SRCIFA =

Site
Exposur
e

3
Weather
Data

Figure 1.3: This figure illustrates how the different data sources are
combined and filtered to provide the deep learning system as much
context as possible.

72

Method

Boat data set As mentioned in the introduction we do not want to
analyze all the traffic data of all of the boats. To verify that our method is
usable in at least one instance, we want to look at a specific type of boat
that has stable characteristics when it comes to the parameters (e.g. time
and stability of time) of the operations it executes on the installation. We
chose fishfeed boats in this case, as they only do one type of operation.
That way we do not need to deduce the type of operation from the event
data (one less hidden variable). In addition, this operation should be stable
in the time it takes to execute it. To filter the data accordingly we need
to combine the event data set with a data source that describes the boats.
We can then easily extract the fishfeed boats.

NORA10 data set NORA10 [R0, &1 is a data set that describes output
of a precise weather model (hind-cast), that is validated by measurements.
It has a higher resolution (10km) than most other models (e.g. the much
used ERA? model with 80km resolution) as it is re-sampled for this specific
region around Norway. We sample this model for each of the installations
and at each time of each event (in the case of long events we use the median
time of the event). We sample every datatype that we think will have an
impact on the time spent on an operation: wind speed, wave direction, wind
direction, significant swell wave height and significant wave height.

Exposure data set SINTEF EXPOSED has produced a data set [00]
that describes the degree of exposure for a large number of the installations
that are used in the event data set. This data set provides a level of exposure
for 360 degrees around the installation (from 0 to max, where max is no land
in sight). We combine our weather data with this (described above), thus
we combine the wind direction of the wind with how exposed the location
is in the direction of the wind using a filter that combines exposure level
from +/- 10 degrees around the direction of the wind.

1.3.1 Extracting time spent in zones.

The data set needs to contain the time spent in the zones around the
aquaculture installations. The raw data only contains events of entering
and exiting the zones. To extract this we sequentially find each exit from
a zone then search backwards for the entry to that zone by the same boat,
then compute the time spent in that zone.

1.3.2 Grouping events close in time

After converting all discrete events into events with a duration, we still
ended up with a lot of extremely short events. This is most probably caused
by boats trying to stay close to the installation but the dynamic positioning
system moves them in and out of the inner or outer zones. To counter this
fact we grouped all events with the same boat at the same location within
1 hour into one event. However, after this grouping there is still 63% (or
244) of the events within the first 10 minute window. These are events

2 nttp://www.ecmwt.int/en/research/climate-reanalysis/era-interim

73

http://www.ecmwf.int/en/research/climate-reanalysis/era-interim

Data driven case base construction for prediction of success of
marine operations

within a zone that is less than ten minutes in duration and without another
event in the same location within one hour of the original event. There are
three possible explanations for these strange events: 1. The boat is passing
through the location, and not returning for at least one hour. Or otherwise
briefly enters and exists the zone, without this fact having any effect on the
operation. 2. The boat tries to perform an operation at the location but
has to abort and leaves within ten minutes. 3. The event was not registered
correctly when the data was gathered. The most probable cause for most
of these events are boats that travel through the zone heading for another
location. This hypothesis can be tested by removing outer zone events
from the distribution. As the inner zone is small, very few of these big
fishfeed carrier boats would drive through the inner zone of an aquaculture
installation when heading somewhere else. We can still see 244 events that
are of duration 10 minutes or less within the inner zone of an aquaculture
installation. Figure 4 looks at the 1 minute distribution within the first 10
minutes to try to find the causes for the high number of short stay events.
And once again we can see that many of the events are very short, with
very few events lasting more than 3 minutes. This further supports our first
hypothesis.

17 5 6 7 8 9 10

80
7% 3%

S
]
=

7.

0 0 30 7.0 7.0 20
31% 2a% 20% 7 1% 3% 3% 1%

&

Figure 1.4: Distribution of events over length of stays in all inner zone
after grouping all events within a 1 hour time window. Zoomed into
the first 10 minutes.

One problem with our approach so far is that some events are very far
apart in time as well as having different zone types. One example being
one boat having a 0 second stay in the inner zone of location 31437 at
18:23 the 28th of November, however the boat entered the outer zone of
the same site at 17:04 the same day, and exited zone 1 of that location at
18:24. We can then conclude that the boat spent approximately 1 hour and
20 minutes at the location in the outer zone, then very briefly entered the
inner zone before leaving the location. Again supporting the first hypothesis.
From this we can see that including inner zone in analyzing fishfeed carrier
operations adds very little information to our analysis as the fishfeed carriers
do not enter the inner zone when transferring fishfeed. As a consequence
we discard the inner zone data. We are still left with 2401 events with a
duration shorter than 10 minutes. Fig [Cd shows the distribution of these
events length in stay. We can see that most of these are shorter than 5

74

Method

minutes, and most probably does not represent actual maritime operations
(or failed tries), but rather traveling through the zone. Thus we discard
events shorter than 10 minutes, giving us the final distribution shown in
Fig. [B.

2000

1500

: ;
% i 2 3 4 5 6
5190 620.0 4940 3750 200.0 1100 430

22% 76% 21% 16% 8% 5% b

7240 % 90 9 70 10
1% 0% 0%

Figure 1.5: Distribution of events over length of stays in all outer zone
after grouping all events within a 1 hour time window. Zoomed into
the first 10 minutes.

0
0 0.0 1042.02033.03062.0%078.0 90114.0%0 79.0 70 82.0 0 59.0 90 46.010028.011015.012016.013015.0140 4,0 150 4.0 160 7.0 170 4 ¢ 180
0% 6% 5% 9% 1% 16% 11% 12% 8% 7% 4% 2% 2% 2% 1% 1% 1% 1%

Figure 1.6: Distribution of events over length of stays in all outer zone
after grouping all events within a 1 hour time window. With all stays
smaller than 10 minutes removed.

1.3.3 Predicting the operational time using Deep
Learning

To extract cases that exemplify instances where the weather conditions
stops a fishfeed operation from being successfull, we are currently building
a deep learning model aimed at predicting the time spent at the installation,
with the given weather and level of exposure at the time and location. The
input to the model is: draft and length of the boat, wind speed®, distance
between the model grid point and actual site coordinate, wave direction®,
wind direction®, maximum level of exposure at location, significant swell
wave height®, month, hour, wind effect (wind speed combined with exposure

3Measured at the closest grid point in NORA10

75

Data driven case base construction for prediction of success of
marine operations

levels in the wind direction +/- 10 degrees) and significant wave height. The
output of the model is the amount of time spent on the installation.

The regression was implemented using python. We used sklearn
for preprocessing and scaling (MinMax scaling) of input data (including
regression target). The Keras library for deep learning was used for the
regression itself, with a input layer of inputcolumns + 1 = 14 nodes. We
used 3 hidden layers with 13 nodes each and a output layer of 1 node. All
nodes used the ReLU activation function.

1.4 Results

The current results show that there is little information in the gathered
data (through the NORA10 model and exposure levels) that account for
the variance shown in the time spent at the locations. The neural network
models presented in the previous Section 2373 gets very low accuracy (0.11%,
which means the predictor is very slightly better than just outputting
the average) in terms of predicting how long a fish feed boat stays at a
aquaculture installation. Figure [T shows the length of all of the events in
the chronologically in blue and the predicted length in orange. The "Time
Spent" axis is normalized values of the time spent in near a installation
where y = 1.0 represents the longest stay recorded in the training data.
There are obvious differences between predicted and true values; predicted
values consistently returns too high values, and fails to predict short stays.
A cross validated (cv = 5) hyper parameter grid search was performed and
showed no better performance at 10 hidden layers with 56 nodes in each
hidden layer.

After we received the disappointing results we created scatter plots of
two weather variables in relation to the length of stay at the installations.
Typically most would assume there would be a pattern of some correlation
between the weather and the length of stay. However Figure L3 shows that
neither wind (ZXd) or waves (ICXH) reveals any obvious correlation patterns
against time spent at installations.

In addition we did a principal component analysis of the data,
to discover if there where any clear principal components that could
contain the variance in the data. The components returned: C =
(0.127,0.117,0.109, 0.099, 0.091, 0.039, 0.034, 0.028
,0.020,0.011, 0.008,0.004, 0.002,0.000) Where the sum of components
sum(C) = 0.6967 indicating that the total of the components could ac-
count for little of the variance. Finally we tried a standard method for
non-linear regression as a base-line result to measure the DNN against. We
tried Epsilon-Support Vector Regression (SVR) which scored with a coeffi-
cient of determination R? = —0.83 which is worse than constantly predict-
ing the mean of the target (which would give R? = 0.0). This final result
shows in the context of the other results listed above us that the data set
may not contain the features needed to predict the length of the stay at a
installation.

76

Conclusions and future work

— real

e — predicted

0.8

o
o

Time Spent

I
IS

0.2

It | |
0.0 m.ﬂ UL U Iﬂlll"I\ll”\!l\l."lll‘ JURIL AL YL
0

500 1000 1500 2000 2500
Events

Figure 1.7: This shows the DNN model try to predict the amount of
time spent at a installation in orange, and the actual time spent in
blue. The X-axis is simply the record number, where the record are
ordered along the time axis.

Histogram cutoff at time < 30 and time > 300 Histogram cutoff at time < 30 and time > 300

200

Z 150 o
H
£ 125
£

100 o

— T T T T T T T T T T
000 025 050 075 100 125 150 175 200 o 1 2 3 4 5 6
Wind with exposure Wave height

(a) Wind correlation (b) Wave correlation

Figure 1.8: Scatter plot illustrating correlation between the weather
and the time spent at the installation

1.5 Conclusions and future work

We started the work with a hypothesis that whether or not a fishfeed boat

operation (loading of fishfeed from boat to barge) succeeded depended on
the weather, and that such a failure could be detected from the length of

77

Data driven case base construction for prediction of success of
marine operations

time the fishfeed boat stayed at the aquaculture installation. Our analysis
did not find any deterministic correlation between the weather and location
data and the length of the stay at the installation. There can be many
reasons for this, we will try to list some of the reasons we think are probable;

The first possibility is that despite our efforts to remove noise from the
data, the data still contains noise. This includes the three factors listed in
the introduction section and other possibilities we have not considered.

Second, given the size of the boats and their stability, they can operate
during harsh conditions. In addition these boats are expensive in operation,
and even more expensive if they fail to deliver feed at the appointed time,
possibly starving the fish at the installation. Thus these boats are already
subject to careful operational planning. It may therefore be that there
is none to very few failed fishfeed operations in the data captured. An
additional consequence is that the time spent during operations has very
low variance.

Extending this work would start with confirming these possible expla-
nations for the lack of correlation found in our data. We would also like
to gather further data, extending the number of events beyond the current
2700. This would enable us to train and test our models with more rigor
and less uncertainty.

1.6 Acknowledements

None of the work done in this paper would have been possible without
the support of the EXPOSED project. Special thanks to ANTEO (httpi
lanteonol) for providing data to this experiment and working with us to
make use of this data.

References

[80] Breivik, @., Reistad, M., and Haakenstad, H. “A high-
resolution hindcast study for the North Sea, the Norwegian
Sea and the Barents Sea”. In: 10th International Workshop on
Wave Hindcasting and Forecasting. 2007.

[81] Reistad, M., Breivik, ()., Haakenstad, H., Aarnes, O. J.,
Furevik, B. R., and Bidlot, J.-R. “A high-resolution hindcast
of wind and waves for the North Sea, the Norwegian Sea, and
the Barents Sea”. In: Journal of Geophysical Research: Oceans
vol. 116, no. C5 (2011).

[87] Smyth, B. and McKenna, E. “Modelling the competence of
case-bases”. In: Proceedings of european Workshop on Advances
in Case-Based Reasoning. 1998, pp. 208-220.

78

http://anteo.no/
http://anteo.no/

References

Smyth, B. and McKenna, E. “Building compact competent
case-bases”. In: Proceedings of the third International Confer-
ence on Case-Based Reasoning. 1999, pp. 329-342.

Zhu, J. and Yang, Q. “Remembering to add: competence-
preserving case-addition policies for case-base maintenance”.
In: IJCAL Vol. 99. 1999, pp. 234-241.

Smyth, B. and Keane, M. “Remembering to forget: A
competence-preserving deletion policy for cbr”. In: Proceed-
ings IJCAI-95. 1995.

Yang, C., Farley, B., and Orchard, B. “Automated case creation
and management for diagnostic CBR systems”. In: Applied
Intelligence vol. 28, no. 1 (Feb. 2007), pp. 17-28.

Yang, Q. and Cheng, H. “Case mining from large databases”.
In: Lecture Notes in Computer Science (), pp. 691-702.

Zaluski, M., Japkowicz, N., and Matwin, S. “Case authoring
from text and historical experiences”. In: Lecture Notes in
Computer Science (2003), pp. 222-236.

Bach, K., Althoff, K.-D., Newo, R.., and Stahl, A. “A case-based
reasoning approach for providing machine diagnosis from ser-
vice reports”. In: Case-Based Reasoning Research and Develop-
ment. Case-Based Reasoning Research and Development. 2011,
pp. 363-377.

Dufour-Lussier, V., Ber, F. L., Lieber, J., and Nauer, E.
“Automatic case acquisition from texts for process-oriented
case-based reasoning”. In: Information Systems vol. 40, no. nil
(2014), pp. 153-167.

Farley, B. “From free-text repair action messages to automated
case generation”. In: Proceedings of AAAI 1999 Spring Sympo-
sium: AI in Equipment Maintenance Service € Support, Tech-
nical Reprot S55-99-02, Menlo Park, CA, AAAI Press. 1999,
pp. 109-118.

Bach, K., Gundersen, O. E., Knappskog, C., and Oztiirk,
P. “Automatic case capturing for problematic drilling situa-
tions”. In: International Conference on Case-Based Reasoning.
Springer. 2014, pp. 48-62.

Funk, P. and Xiong, N. “Case-based reasoning and knowledge
discovery in medical applications with time series”. In: Com-
putational Intelligence vol. 22, no. 3-4 (Aug. 2006), pp. 238
253.

79

Data driven case base construction for prediction of success of
marine operations

9]

[100]

80

Gundersen, O. E. “Enhancing the situation awareness of
decision makers by applying case-based reasoning on streaming
data”. PhD thesis. NTNU, 2014.

Lader, P., Kristiansen, D., Alver, M., Bjelland, H. V., and
Myrhaug, D. “Classification of aquaculture locations in norway
with respect to wind wave exposure”. In: Proceedings of the
ASME 2017 36th International Conference on Ocean, Offshore
and Arctic Engineering OMAE2017. 2017.

Learning similarity measures
from data

Bjorn Magnus Mathisen, Agnar Aamodt, Kerstin
Bach, Helge Langseth

81

Learning similarity measures from data

82

Introduction

Abstract

Defining similarity measures is a requirement for some machine
learning methods. One such method is case-based reasoning
(CBR) where the similarity measure is used to retrieve the
stored case or set of cases most similar to the query case.
Describing a similarity measure analytically is challenging, even
for domain experts working with CBR experts. However, data
sets are typically gathered as part of constructing a CBR
or machine learning system. These datasets are assumed to
contain the features that correctly identify the solution from
the problem features, thus they may also contain the knowledge
to construct or learn such a similarity measure. The main
motivation for this work is to automate the construction of
similarity measures using machine learning. Additionally, we
would like to do this while keeping training time as low as
possible. Working towards this, our objective is to investigate
how to apply machine learning to effectively learn a similarity
measure. Such a learned similarity measure could be used for
CBR systems, but also for clustering data in semi-supervised
learning, or one-shot learning tasks. Recent work has advanced
towards this goal, relies on either very long training times or
manually modeling parts of the similarity measure. We created
a framework to help us analyze current methods for learning
similarity measures. This analysis resulted in two novel
similarity measure designs. One design using a pre-trained
classifier as basis for a similarity measure. The second design
uses as little modeling as possible while learning the similarity
measure from data and keeping training time low. Both
similarity measures were evaluated on 14 different datasets.
The evaluation shows that using a classifier as basis for a
similarity measure gives state of the art performance. Finally
the evaluation shows that our fully data-driven similarity
measure design outperforms state of the art methods while
keeping training time low.

1.1 Introduction

Many artificial intelligence and machine learning (ML) methods, such
as k-nearest neighbors (k-NN) rely on a similarity (or distance)
measure [A49] between data points. In Case-based reasoning (CBR) a
simple k-NN or a more complex similarity function is used to retrieve
the stored cases that are most similar to the current query case. The
similarity measure used in CBR systems for this purpose is typically
built as a weighted Euclidean similarity measure (or as a weight matrix
for discrete and symbolic variables). Such a similarity measure is

83

Learning similarity measures from data

designed with assistance of domain experts by adjusting the weights
for each attribute of the cases to represent how important they are
(one example can be seen in [0, or generally described in chapter 4
of [Im2])

In many situations the design of such a function is non-trivial.
Domain experts with an understanding of CBR or machine learning
are not easily available. However, before or during most CBR projects,
data is gathered that relates to the problem being solved by the CBR
system. This data is used to construct cases for populating the case
base. If the data is labeled according to the solution/class, it can
be used to learn a similarity measure that is relevant to the task
being solved by the system. Exploring efficient methods of learning
similarity measures and improving on them is the main motivation of
this work.

Problem space

Solution space

Figure I1.9: Illustration of problem and solution spaces [IT3]. p, and
p, are two problem descriptions with features describing a problem
each of which has a corresponding (s, and s.) solution in solution
space. 0, illustrates the distance between a new problem p, and a
stored problem p,. Correspondingly J, is the distance between the
solution s, and the solution s, which is the (unknown) ideal solution
to pp. A fundamental assumption in CBR is that if the similarity
between p, and p, is high then the similarity between the unknown
solution s, to p, is high (4, ~ d,): Similar problems have similar
solutions.

In the CBR literature, similarity measurement is often described
in terms of problem- and solution spaces. Problem space is where the
features of a problem describe the problem; this is often called feature
space in non-CBR ML literature. Solution space, also referred to as

84

Introduction

target space, is populated by points describing solutions to points in
the problem space. The function that maps a point from the problem
space to its corresponding point in the solution space is typically the
goal of supervised machine learning. This is illustrated in Figure [TJ.

A similarity measure in the problem space represents an approx-
imation of the similarity between two cases or data points in the so-
lution space (i.e. whether these two cases have similar or dissimilar
solutions). Such a similarity measure would be of great help in situ-
ations where lots of labeled data is available, but domain knowledge
is not available, or when the modeling of such a similarity measure is
too complex.

Learned similarity measures can also be used in other settings,
such as clustering. Another relevant method type is semi-supervised
learning in which the labeled part of a dataset is used to cluster or
label the unlabeled part.

How to automatically learn similarity measures has been an active
area of research in CBR. For instance, Gabel et al. [BR] train a
similarity measure by creating a dataset of collated pairs of data
points and their respective similarities. This dataset is then used
to train a neural network to represent the similarity measure. In this
method the network needs to extract the most important features in
terms of similarity for both data points, then combine these features
to output a similarity measure. Recent work (e.g. Martin et al. [I04])
has used Siamese neural networks (SNN) [AR] to learn a similarity
measure in CBR. SNNs have the advantage of sharing weights between
two parts of the network, in this case the two parts that extract the
useful information from the two data points being compared. All of
these methods for learning similarity measures have in common that
they are trained to compare two data points and return a similarity
measurement. Our work of automatically learning similarity measures
is also related to the work done by Hiillermeier et al. on preference-
based CBR [i05, 006]. In this work the authors learn a preference
of similarity between cases/data points, which represents a more
continuous space between solutions than a typical similarity measure
in CBR. This type of approach to similarity measures is similar to
learning similarity measures by using machine learning models, in
that both can always return a list of possible solutions sorted by their
similarity.

In this work we have developed a framework to show the main
differences between various types of similarity measures. Using this
framework, we highlight the differences between existing approaches
in Section M=3. This analysis also reveals areas that have not received
much attention in the research community so far. Based on this
we developed two novel designs for using machine learning to learn

85

Learning similarity measures from data

similarity measures from data. Both of the two designs are continuous
in their representation of the estimated solution space.

The novelty of our work is three-fold: First showing that using
a classifier as a basis for a similarity measure gives adequate perfor-
mance. Then we demonstrate similarity measure designed to use as
little modeling as possible, while keeping training time low, outper-
forms state of the art methods. Finally to analyze the state of the art
and compare it to our new similarity measure design we introduce a
simple mathematical framework. We show how this is a useful tool
for analyzing and categorizing similarity measures.

The remainder of this paper describes our method in more detail.
Section M2 describes the novel framework for similarity measurement
learning, and Section =3 then summarizes previous relevant work in
relation to this framework. In Section T4 we describe suggestions
of new similarity measures, and how we design the experimental
evaluation. Subsequently, in Section IITd we show the results of
this evaluation. Finally, in Section A we interpret and discuss the
evaluation results and give some conclusions. We present some of the
limitations of our work as well as possible future paths of research.

1.2 A framework for similarity measures

We suggest a framework for analyzing different functions for similarity
with S as a similarity measure applied to pairs of data points (z,y);

S(z,y) = C(G(z), G(y)), (IL.1)

where G(x) = & and G(y) = y represents embedding or information
extraction from data points « and y , i.e. G(-) highlights the parts of
the data points most useful to calculate the similarity between them.
An illustration of this process can be seen in Figure ITI0.

C(G(x),G(y)) = C(&,y) models the distance between the two
data points based on the embeddings & and y. The functions C
and G can be either manually modeled or learned from data. With
respect to this we will enumerate all of the different configurations of
Equation I and describe their main properties and how they have
been implemented in state of the art research. Note that we will use
S(-) to annotate the similarity measurement and C(-) for the sub-part
of the similarity measurement that calculates the distance between the
two outputs of G(+). S(+) is distinct from C(-) unless G(x) = I(z) = x.

In the following we characterize the different types of similarity
measures:

86

A framework for similarity measures

Problem space

Embedding space

Solution space

Figure I1.10: Ilustrating how G(-) from Equation I adds another
space, the embedding space, between the problem and the solution
space [[03] (see Figure MY). C(-) then combines the two embeddings
of p, and p, (e, and e, respectively) and calculates the similarity J.
between them. The main assumption is that distance in embedding
space (d.) is close to the distance in solution space (ds) ; if the
embedded points e, and e, are similar, then the true (unknown)
solution s, is similar to solution s,. The main contribution of G(-)
is to create a embedding space such that the distance in embeddings
space (d.) is a better estimate of the distance in solution space (ds)
than the distance in problem space (dp).

Type 1 A typical similarity measure in CBR systems would model
C(2,9) and G(-) from domain knowledge. Such a similarity
measure is typically modeled by experts with the relevant
domain knowledge together with CBR experts, who know how
to encode this domain knowledge into the similarity measures.

For example when modeling the similarity measure of cars for
sale, where the goal is to model the similarity of cars in terms
of their final selling price. In this example, domain experts
may model the embedding function G(-) so that the amount of
miles driven has a greater importance than the color of the car.
C(&,y) could be modeled such that difference in miles driven
is less important than difference the number of repairs done on
the car. More details and examples can be found in [I107].

87

Learning similarity measures from data

C(.9)
Modeled | Learned
G(-) | Modeled | Type 1 Type 2
Learned | Type 3 Type 4

Table I1.2: Table showing different types of similarity measures in
our proposed framework.

Type 2 This type represents similarity measures that models G(-) and

learns the function C'(&,9). In this context G(-) can be viewed
as an embedding function. Since G(-) is not learned from the
data it is not interesting to analyze it as part of learning the
similarity measure, as processing the data through G(-) could
be done in batch before applying the data to S(x,y). Learning
C(&,9) needs to be done with a dataset consisting of triplets of
the data points & and g, and s being the true similarity between
& and 9.
A special case of Type 2 is when G(-) is set to be the identity
function I(x) = G(x) = x, while C(x,y) is learned from data.
Examples of this type are presented for example in Gabel et al.
[38] where the similarity measure always looks at the two inputs
together, never separately.

Type 3 In this type of similarity measure the embedding/feature
extraction G(-) is learned and C(Z,¥) is modeled. Typically
the embedding function learned by G(-) resembles the function
that is the goal during supervised machine learning. Within
the similarity measurement & = G(z) is used as an embedding
vector for calculating similarity, when in classification & would
be the softmax vector output. Using a pre-trained classification
model as a starting point for G(x) = & as input to e.g.
C(@,9) = ||& — 9||1 should give good results for similarity
measurements if that model had high precision for classification
within the same dataset.

However it is not given that the best embedding vector for
calculating similarity is the same as the embedding vector
produced by a G(z) trained to do classification.

Type 4 This measure is designed so that both G(-) and C(&,y) are
learned.

We will design, implement and evaluate similarity measures based
on Type 1, Type 3, Type 2 and Type 4 in Section [MT4. These results

88

Related work

will be shown in Sections [T3.

To allow S as a similarity measurement for clustering e.g. k-
nearest neighbors, a similarity measure should fulfill the following
requirements:

Symmetry S(z,y) = S(y,) The similarity between x and y should
be the same as the similarity between x and y.

Non-negative S(x,y) > 0|Va,y The similarity between to data-

points can not be negative.

Identity S(x,y) = 1 <= x = y The similarity between two data-
points should be 1 iff x is equal to y.

Some of these requirements are not satisfied by all types of
similarity measures, i.e. symmetry is not a direct design consequence
of Type 2 but of Type 3 if C(&,9) is symmetric. Even if symmetry
is not present in all similarity measures [[08] it is important for
reducing training time, as the training set size goes from N(N — 1) to
N (% —1). Symmetry also enables the similarity measure to be used
for clustering.

In the next section, we will relate current state of the art to the
framework in context of the different types.

1.3 Related work

To exemplify the framework presented in the previous section we will
relate previous work to the framework and the types of similarity
measurements that derive from the framework. This will also enable
us to see possibilities for improvement and further research.

As stated in Section I our motivation is to automate the
construction of similarity measures. Additionally, we would like to
do this while keeping training time as low as possible. Thus we
will not focus on Type 1 similarity measures as this type uses no
learning. Both Type 2 and Type 4 require a different type of training
dataset than a typical supervised machine learning dataset, as C(x, y)
is typically dependent on the order of the data points (see Section
[2). Thus given our initial motivation, Type 3 similarity measures
seems to be the most promising type of similarity measure to focus
on. However, it is worth investigating similarity measures of Type 4,
to see if the added benefit of learning C(x,y) outweighs the added
training time. Or if it is possible to make it symmetric (as defined in
the previous section) so that the training time could become similar
to Type 3.

89

Learning similarity measures from data

Thus we will focus on summarizing related work from Type 3
similarity measures, but also add relevant work from Type 1, Type 2
and Type 4 for reference.

Type 1 is a type of similarity measure which is manually con-
structed. A general overview and examples of this type of similarity
measure can be found in [107]. Nikpour et al. [E3] presents an alter-
native method which includes enrichment of the cases/data points via
Bayesian networks.

Type 2

In Type 2 similarity measures only the binary C(«,y) operator of
the similarity measure S(z,vy) is learned, while G(-) is either modeled
or left as the identity function (G(z) = I(x) = x). Stahl et al.
have done a lot of work on learning Type 2 similarity measures
from data or user feedback. In all of their work they formulate
C(z,y) = > w; x sim;(x;,y,;) where for each feature i, sim; is the
local similarity measure and w; is the weight of that feature. In [A7]
Stahl et al. describe a method for learning the feature weights.

In [@4] Stahl et al. introduce learning local similarity measures
through an evolutionary algorithm (EA). First they learn attribute
weights (w;) by adopting the method previously described in [22].
Then they use an EA to learn the local similarity measures for each
feature (sim;(z,y)). In [09] Stahl and Gabel present work were they
learn weights of a modeled similarity measure, and the local similarity
for each attribute through an ANN. Reategui et al. [46] learn and
represent parts of the similarity functions (C(&,¢)) through ANN.
Langseth et al. [d5] learn similarity knowledge (C(&,9)) from data
using Bayesian networks, which still partially relies on modeling the
Bayesian networks with domain knowledge.

Abdel-Aziz et al. [d7] use the distribution of case attribute values
to inform a polynomial local similarity function, which is better than
guessing when domain knowledge is missing. So this method extracts
statistical properties from the dataset to parametrize C(&, 9).

Gabel and Godehardt [38] use a neural network to learn a similarity
measure. Their work is done in the context of Case-based Reasoning
(CBR) which uses the measure to retrieve similar cases. They
concatenate the two data points into one input vector. Thus in
the context of our framework G(-) is modeled as a identify function
I(z) = z and C(x,y) is learned.

Maggini et al. [29] uses SIMNNs which they also see as a special
case of the Symmetry Networks [010] (SNs). In SIMMNs C(&, ¢) and
G(+) are both a function of both & and y data points and there is thus
no distinct G(-). They also have a specialized structure imposed on
their network to make sure the learned function is symmetric. SIMNN
is in essence an extended version of a Siamese neural network, but

90

Related work

without a distinct distance layer usually present in SNN architectures.
They focus on the specific properties of the network architecture and
the application of such networks in semi-supervised settings such as
k-means clustering. The pair of data points (z and y) are being
compared two times, the first time at the first hidden layer, then
at the output layer. Since there are no learnable parameters before
this comparison all the learning is done in C(&,y) and G(x) is the
activation function of the input layer.

Type 3

One way of looking at a similarity measure is as an inverse distance
measure, as similarity is the semantic opposite of distance. There has
been much work on learning distance measures. Most of this work can
be categorized as a Type 3 similarity measure as the learning tasks
only aims to learn the embedding function G(-) then combine the
output of this function with a static C(-) (e.g. a L2 norm function).
The most well known instance of a Type 3 learned distance measure
is Siamese neural networks (SNNs), it is highly related to the Type
2 similarity measure by Maggini et al’s Similarity neural networks
(SIMNN) [29].

The main characteristic of SNNs is sharing the weights between the
two identical neural networks. The data points we want to measure
the similarity for are then input to these networks. This frees the
learning algorithm of learning two sets of weights for the same task.
This was first used in [ER] (using C(Z,y) = cos(Z,y) and G(-) being
learned from data) to measure similarity between signatures. Similar
architectures are also discussed in [I710].

Chopra et al. [87] uses a SNN for face verification, and pose the
problem as an energy based model. The output of the SNN are
combined through a L1 norm (absolute-value norm C(&,) = ||z—9||)
to calculate the similarity. They emphasize that using a L2 norm
(Euclidean distance) as part of the loss function would make the
gradient too small for effective gradient descent (i.e. create plateaus in
the loss function). This work is closely related to Hadsell et al. [I11],
where they explain the contrastive loss function used for training the
SNN (also used in [37, 04]) by analogy of a spring system.

Related to this Vinyals et al. [28] uses a similar type of setup
for matching an input data point to a support set. It is framed
as a discriminative task, where they use two neural networks to
parametrize an attention mechanism. They use these two networks to
embed the two data points into a feature space where the similarity
between them are measured. However, in contrast to SNNs and
SIMNNS, their two networks for embedding the data points are not
identical, as one network is tailored to embed a data point from the
support set, but also given the rest of the support set. Thus the

91

Learning similarity measures from data

embedding of the support set data point is also a function of the rest
of the support set. With C(&, ¢) being modeled as a cosine softmax,
this is similar to the examples of Type 3 similarity measures mentioned
previously (e.g. [ER, RBd]). However a major difference is that signal
extraction functions are not equal: S(xz,y) = C(f(x),g(x)) with
f(x) # g(x) (only stating that f(-) may potentially equal g(-)). Since
f(-) and g(+) are not sharing weights between them, the architecture
is variant (or asymmetric) to the ordering of input pairs. Thus the
architecture needs up to twice as much training to achieve the same
performance as a SNN.

In much of the same fashion as Chopra et al. did in [37], Berlemot
et al. [84] uses SNNs combined with an energy based model to build a
similarity measure between different gestures made with smart phones.
However they adapt the error estimation from using only separate
positive and negative pairs to a training subset including; a reference
sample, a positive sample and a negative sample for every other class.
They train G(-) while keeping a static C(&,9) = cos(Z,y). This
training method of using triplets for training SNNs was also described
by Lefebvre et al. [85]. A similar approach can be seen in Hoffer et al.
[34], however they do not use a set of negative examples per reference
point for each class as Berlemont et al do. Instead they use triples of
(z,x,x7), = being the reference point, £+ being the same class and
x~ being a different class.

Koch et al. [I12] uses a Convolutional Siamese Network (CSN),
with G(-) implemented as a CNN and C(&,¢y) implemented as
L1(&,). This is done in a semi-supervised fashion for one-shot learn-
ing within image recognition. They learn this CSN for determining if
two pictures from the Omniglot [113] dataset is within the same class.
The model can then be used to classify a data point representing an
unseen class by comparing it to a repository of class representatives
(Support Set).

CSNs are also used in the context of CBR by Martin et al. [I04] to
represent a similarity measure in a CBR system. The CSN is trained
with pairs of cases and the output is their similarity. During training
they have to label pairs of cases as ’genuine’ (both cases belong to the
same class) or 'impostor’ (the cases belong to different classes). This
requires that the user has a clear boundary for the classes. In relation
to our framework this similarity measure learns G(-), while C(Z,y)
is static. With G(-) implemented as a convolutional neural network,
and C(&,y) implemented as Euclidean distance (L2 norm).

In general using SNNs for constructing similarity measures have
a major advantage as you can easily adopt pre-trained models for
G(+) to embedding/preprocess the data points. For example to train
a model for comparing two images one could use ResNet [I14] for

92

Method

G(-) then use the L1 norm as C(&,y). This would be a very similar
approach to the similarity measure used by Koch et al. [[12] with
S(z,y) = [|[(G(x),G(y))]|1, the main difference being that G(-) is
designed for bigger pictures.

There are only very few examples of Type 4 similarity measures in
the literature. In Zagoruyko and Komodakis’s work [I15] they inves-
tigate different types of architectures for learning image comparison
using convolutional neural networks. In all of the architectures they
evaluate C(&,9y) is learned, but in some of these architectures G(-)
is not symmetric, i.e. S(z,y) = C(G(x), H(y)) where G(x) # H(x).
Arandjelovi¢ and Zisserman’s work [I16] use a very similar method to
many Type 3 similarity measures for calculating similarity. However
their input data is always pairs of two different data types and is as
such different from most of the other relevant work leaving G(-) un-
symmetrical just as in Zgoruyko et al. [I15] and Vinyals et al. [2X]. In
contrast to the Type 3 similarity measures including [2X], Arandjelovié
et al. also learns C'(&, ¢), which they call a fusion layer.

All similarity measure of Type 3 we found in the literature use a
loss function that includes feedback from the binary operator part of
S (C(z,9)). In the case of SNNs even if C(x,y) is non-symmetric
(C(z,y) # C(y,x)) the loss for each network would be equal as they
are equal and share weights. That means that ordering of the two
data points being compared during training has no effect, i.e. the
training effect of (x,vy) is equal to that of (y,x). This means a lot
of saved time during training, as the training dataset could be halved
without any negative effect on performance.

However the implementation of C'(&,9y) would then decide how
much training one would need to adapt a pre-trained model from
classifying single data points to measuring similarity between them.
One could view the process of starting with a pre trained model for
the dataset, then training the model with loss coming from C(&, %)
as adapting the model from classification to similarity measurement.

One way of creating a Type 3 similarity measure using a minimal
amount of training would be to pre-train a network on classifying
individual data points. Then apply that network as G(-) that feeds
into a C(&,9) = || — || in a similarity measurement. Evaluation
of such a similarity measurement has not been reported in literature,
and such a similarity will be explored in the next section.

1.4 Method

The framework presented in Section M and the subsequent analysis
of previous relevant work presented in Section =3 shows that there are

93

Learning similarity measures from data

unexplored opportunities within research on similarity measurements.

Given the initial motivation we seek methods that work well
in domains where domain knowledge is very resource demanding.
This requires that as much as possible of the similarity measure
S(z,y) = C(G(&),G(9)) is learned from data rather than modeled
from domain knowledge. There are some exceptions to this, such
as applying general binary operations, such as norms (e.g. L1 or
L2 norm), on the two data points (& and g) preprocessed by G(-).
In these cases there is little domain expertise involved in designing
C(&,) other than intuition that the similarity of two data points is
closely related to the norm between & and .

The most promising type of similarity measures from this perspec-
tive are Type 3 and Type 4 where G(-) is learned in Type 3 and both
C(z,y) and G(-) are learned in Type 4. However, to test any new
design we need to have reference methods to compare against. For
reference, we chose to implement one Type 1 similarity measure, two
similarity measures of Type 2 (including Gabel et. al’s) similarity
measures and Chopra et. al’s Type 3 similarity measure. The Type 1
similarity measure uses a similarity measure that weights each feature
uniformly. The Type 2 is identical to the Type 1 similarity measure
except that it uses a local similarity function for each feature which
is parametrized by statistical properties of the values of that feature
in the dataset.

One unexplored direction of creating similarity measures is cre-
ating a SNN similarity measure (Type 3) through training G(-) as
a classifier on the dataset later being used for measuring similarity.
Then using that trained G(-) to construct a SNN similarity measure.
This is in contrast to the usual way of training SNNs (as seen in e.g
[37, BR]) where the loss function is a function of pairs of data points,
not single data points. The motivation for exploring this type of de-
sign is that it shows the similarity measuring performance of using
networks pre-trained on classifying data points directly as part of a
SNN similarity measure. This will be detailed in Subsection [T-232.

Finally, we will explore Type 4 similarity measures which have seen
little attention in research so far. To make our design as symmetric as
possible we will use the same design as SNNs for G(+) and introduce
novel design to also make C'(&,) symmetric. That way our design is
fully symmetric (invariant to ordering of the input pair) and thus
training becomes much more efficient. All of the details of this
design will be shown in Subsection IZ3. Both of our proposed
similarity methods implement G(-) as neural networks. The Type 4
measurement design implements C'(&,¢) as a combination of a static
binary function and neural network.

94

Method

I.4.1 Reference similarity measures

As a reference for our own similarity measure we implemented several
reference similarity measures of Type 1, Type 2 and Type 3. First
we implemented a standard uniformly weighted global similarity (¢; 1)
measure which can be defined as:

M
tl,l(wa y) = S($, y) = C(wvy) = Zwi . Simi(xivyi)a (112)

7

where sim;(x;,y;) denotes the local similarity of the i-th of M
attributes. In t1; all weights and local similarity measures are
uniformly distributed, and not parametrized by the data.

We extended this with a Type 2 similarity measure ¢, which
is based on the work from Abdel-Aziz et al. [@7], where the
local similarity measures are parametrized by the data from the
corresponding features.

Furthermore we implemented a Type 2 similarity measure gabel
as described by Gabel et al. [BR]. The architecture of gabel can be
seen in Figure [T,

L= L v |

| I(z) | I(z) |

\/

| Cly |
l

Similarity

Figure II.11: Architecture of a ANN similarity measure as used in
Gabel [B8] (Type 2), where G(-) is set to be the identity function
G(zx) =I(x) =w.

Lastly we implemented the Type 3 similarity measure chopra
described by Chopra et al. We did not implement the extension
done to the contrastive loss function as seen in [B4, B5] as the change
in the training dataset would be too big. This change would make
comparisons between the methods harder to justify. Also none of
these works showed any comparisons with previous SNNs in terms of
any increased performance in relation to regular contrastive loss.

95

Learning similarity measures from data

I.4.2 Type 3 similarity measure

In this subsection we will detail how we model the Type 3 similarity
measure t3; which uses an embedding function G(-) trained as a
classifier. This embedding function maps the input point, x, to an
embedding space (see Figure [TI0) which dimensions represents the
probabilities of belonging to a class. We then model the similarity
measure between two points as the a static function (C(-) between
their two respective embeddings.

For this we choose the L2 norm. So replacing C(-) for L2 in
Equation TT: C(&,y) = ||& — §l|2, we can redefine Equation [T to
be:

S(@,y) = ts1(x,y) = 1.0 - [|G(z) — G(y)]2 (IL.3)

where G(-) outputs the modeled solution as a n dimensional vector
(the feature vector output from the network to the softmax function
for n classes) for the case based on the problem attributes of data
point z. This means that if the G(x) evaluates the two cases as very
similar in terms of classification G(x) ~ G(y) and ||G(x) — G(y)| ~ 0
then S(x,y) ~ 1.0. This architecture is also illustrated in Figure [T

x)
G(x) G(y)
\/
2 — 9l
l
Similarity

Figure I1.12: Architecture of the t3 ; similarity measure where G(-) is
trained to output softmax vectors for classification and the similarity
is calculated as a modeled L2 norm between these two vectors (Type
3).

Following the model for the ¢3; similarity measure we define the
loss estimate as log-loss between G(x) = & and t, where ¢ is the is true
classification softmax vector, & is the class probability vector output
from G(x). Notice that the error estimate of 31 does not depend on
the output of C(&, 7).

96

Method

A data-set of size N would then be defined as:
T = |(z',th)... (xV,tY)], (I1.4)

where ! is the problem part of the N-th data point and ¢V is the
solution /target part of the N-th data point.

If the relation between the problem part of the data point (x)
and the solution part of the data point (¢) is complex, the network
architecture needs to be able to represent the complexity and any
generalizations of patterns in that complexity.

1.4.3 Type 4 similarity measure

As previously explained, Type 4 similarity measures are currently the
most unexplored type of similarity measure. It is also the type of
similarity measure that requires the least amount of modeling. In
principle Type 4 similarity measures learns two things: G(-) learns a
useful embedding, where the most useful parts of and y is encoded
into & and . C(&,9y) learns how to combine those embeddings to
calculate the similarity of the original and y.

In Type 4 similarity measures both C(Z,y) and G(-) are learned.
In our Type 4 similarity method we will use an ANN to represent both
G(-) and C(&,). This has the advantage that the learning on S(z, y)
is an end to end process. The loss computed after C'(&, ¢) can be used
to compute gradients for both C(&,9) and G(-). C(&,9) will learn
the binary combination best suited to calculate the similarity of the
two embeddings, while G(-) will learn to embed the two data points
optimally for calculating their similarity in C(&,). In principle any
ML method could be used to learn G(-) and C(&,%), but not all
ML methods lend themselves naturally to back-propagating the error
signal from C(&,) through G(-) and back to the input.

We define our Type 4 similarity method, Extended Siamese Neural
Network (eSNN) as shown in figure ITT3.

Given that this similarity method outputs similarity and the loss
function is a function of the input, we get a new general loss function
for similarity, defined per data-point as follows:

Ly(,y,s) = [s — C(G(z),G(y))]; (IL.5)

where s is the true similarity of case and y. Since this loss function
is dependent on pairs of data points and the true similarity between
them, we need to create a new dataset based on the original dataset.
This new dataset consists of triplets of two different data points from
the original dataset and the true similarity of these two data points:

97

Learning similarity measures from data

T = |(z',y', s ... (N, y",sV)], (I1.6)

where sV is 1 if £V and y" belong to the same class and 0 otherwise.

It is worth to mention that this dataset is of size N(N — 1) for
the similarity measure to train on all possible combinations of the N
data points. Certain similarity measure architectures (e.g. gabel from
Gabel et al.[38] or Zagoruyko et al’s similarity measures [[15]) needs
to train on a dataset containing all possible combinations of data
points (of size N(N — 1)) as training on the triplet (x,y, s) does not
guarantee that the model learns that S(y,«) = s. Thus the training
dataset must also include the triplet (y,x,s). However this may be
largely avoided by using architectures (such as those seen in SNNs
and SNs) that exploit symmetry and weight sharing. To achieve this
we modeled C(z,y) as a ANN where the first lay.er is an absolute
difference operator on two vectors: z = ABS(& — §). where z is
the element-wise absolute difference between & and &. The rest of
C(&,) is hidden layers of ANN that operate on z. This way C(Z, &)
becomes invariant to the ordering of inputs to S(z,y). Consequently
the model only needs to train on order-invariant unique pairs of data
points, reducing training set size from N(N — 1) to N(% —1). The
resulting architecture of eSNN can be seen in [ITT3.

In Subsection A3 we argue why G(-) trained to correctly classify
its input is a good embedding function for calculating similarity. As
a result we added two loss signals to G(-) during training. These loss
signals are calculated from the difference between the embedding of
the data point produced by G(-) and the correct soft-max classification
vector.

This also introduced an opportunity for exploring the relative
importance of the embedding function G(-) and the binary similarity
function C(+) in terms of the performance of the similarity measure.
This could be done by weighting the three different loss signals (&, ¢
and similarity as shown in Figure [ITT3) during training and measuring
the effect of that weighting on the performance. We define our
weighted loss function as such:

(1 . %) (Lo(@.ts) + Loy, 1))

+ 'Ls(mayvs)v (117)

Lo, x,y,8) =

where Lg(+) is defined in Equation I3, ¢, is the true label of data
point @, t, is the true label of data point y and L.(vq,vs) is the
categorical cross entropy loss between two softmax vectors. We use

98

Method

T Yy
G(z) G(y)
& ABS(& — 1
!

)

!

Similarity

Figure II.13: Architecture of a eSNN where we combine the
symmetry of SNNs with the ability to learn C(&,9). C(&,9y) is
expanded in this picture to highlight the ABS(& — ¢) operation done
as the first operation of C'(&, 4) to keep C invariant to the ordering of
inputs. It also illustrates the two additional loss signals to G(-) which
helps train the similarity measure.

this formula and tested with different 100 different values of « in the
range [0, 1] to find the weighting scheme best for performance. The
results can be seen in Figure [ITT4.

Figure [TT4 seems to indicate that o = 0.15 is ideal for this
dataset. We have used a = 0.15 throughout the experiments reported
in Section 3.

11.4.4 Network parameters

For all similarity measures tested using ANN and all datasets except
MNIST, G(-) and C(-) where implemented with two hidden layers of
13 nodes. This was done to replicate the network parameters used by
Gabel et al. to ensure we had comparable results. For the MNIST
dataset test both chopra and eSNN used three hidden layers of 128
nodes for G(-), and the same for C(-)

Other than the network architecture we also wanted to choose
which optimizer to use for learning the ANN model. We wanted to
chose the RProp [[17] to be more comparable with the results from
Gabel et al. which also used RProp optimizer. Our tests seen in
Figure T3 shows that RProp outperforms all other optimizer tested
(ADAM and RMSProp). This is consistent with the results reported
by Florescu and Igel [I1X]. This should hold true until the the run-

99

Learning similarity measures from data

o
w
|

o
bo
|

retrieval loss

<
—
|

0.0 0.2 0.4 0.6 0.8

Figure I1.14: Showing results from weighting the three different output
in terms of signal strength to loss measured on the UCI dataset
balance scale [86] (5-fold cross validation and repeated 5 times). This
measurement was done using training data of size N (g —1). The
effect of a is much less impactful on the validation result after 200 or
more epochs of training when training on N(N —1) datasets. However
choosing the correct o using N(% —1) datasets does impact the speed
of training for eSNN when training on N(N — 1) datasets.

time performance of RProp degrades with dataset size, as RProp uses
full batch sizes.

1.4.5 Evaluation protocol and implementation

The different similarity measures presented earlier in this section
requires different training data sets. The reference Type 1 similarity
measures (f1,1) requires no training. While ¢5; and ¢3; does not
require a similarity training consisting of triplets as described in
Equations Md. All other similarity measures evaluated was trained
using identical training datasets. As a result, all similarity measures
were trained on a dataset consisting of all possible combinations of
data points (as explained in [MZ3) as this is required by the gabel
similarity measure. However, results highlighting the differences in
training performance when using the different training datasets can
be seen in Figure 2.

100

Method

0.30
method
025 — —— eSNN:xprop
—— eSNN:rmsprop
% 0.20 eSN N:adam
T 015
g
£
£ 0.10
0.05
0.00
car iris glass use eco heart
dataset

Figure I1.15: Testing how the RProp algorithm performs in compari-
son with ADAM and RMSProp. Our proposed architecture performs
best using the RProp algorithm (5-fold cross validation and repeated
5 times).

The results reported in the next section are all 5-fold stratified
cross validation repeated 5 times for robustness. The performance
reported is an evaluation of each similarity measurement using the
part of the dataset (validation partition) that was not used for
training. Using the similarity measure being evaluated, we computed
the similarity between every data point in the validation partition (V')
and every data point in the training partition (7"). For each validation
data point (z, € V') we find the data point in the training set 7" with
the highest similarity (z; = argmax, cp(S(zy,2;))). If 2; has the
same class as x, from the validation partition, we scored it as 1.0, if

not, we scored it as 0.0.

The implementation was done in Keras ® with Tensorflow as

backend. The methods was measured on 14 different datasets available
from the UCI machine learning repository [R6]. Results was recorded
after 200 epochs and 2000 epochs (the latter number to be consistent
with Gabel et al. [BR]) to reveal how fast the different methods were
achieving their performance.

4Code available at NTNU OpenAl lab github page: hitps://github.com/ntnu-an
lap

101

https://github.com/ntnu-ai-lab
https://github.com/ntnu-ai-lab

Learning similarity measures from data

I.5 Experimental evaluation

To calculate the performance of our similarity measure we chose to
use the same method of evaluation as Gabel et al. [BR] to make the
similarity metrics more easily comparable. In addition this evaluation
method of using publicly available datasets from the UCI machine
learning repository [86] make the results easy to reproduce. We
selected a subset of the original 19 datasets, choosing not to use
regression datasets, resulting in a set of 14 classification datasets. The
datasets’ numerical features were all normalized, categorical features
were replaced by a one-hot vector.

The validation losses from evaluating the similarity measures on
the 14 datasets are shown in Figures [MII8 and IT4A. Figure 1A
shows the results after training for 200 epochs, while Figure IT14
shows the results after 2000 epochs. This has been done to illustrate
how the differences between the similarity measures develop during
training. In addition the 200 and 2000 epoch runs are independent
runs (i.e. Figure T4 is not the same models as seen in Figure 10
1800 epochs later)

The numbers that are the basis of these figures are also reported in
Table M3 for 200 epochs and Table T4 for 2000 epochs. The tables
are highlighted to show the best result per dataset. In some cases the
differences between two methods for one dataset was smaller than the
standard deviation thus highlighting more than one result.

Finally, to illustrate that eSINN scales to larger datasets we report
results from the MNIST dataset in Figure II8. The MNIST results
are not validation results, as calculating the similarity between all the
data points in the test set and the training set (as per the evaluation
protocol described in Section [MTAF) was too resource demanding.

Table I3 shows the validation losses of the different similarity
measures on the different datasets. Our proposed Type 4 similarity
measure eSNN has 11% less validation loss than the second best
(Type 3) similarity measure chopra (Chopra et al. [37]). The other
Type 3 similarity measures follow with ¢35 1 having 51% higher loss and
gabel (Gabel et al. [BX]) with 52% more loss. The Type 1 similarity
measure had 61% more loss but managed to be the best similarity
measure for the glass dataset. At last Type 2 similarity measure had
69% higher loss than eSNN on average.

The results when training for 2000 epochs are quite different
from those at 200 epochs, as seen by how much closer the other
similarity measures are in Figure T4 than in Figure I8. eSNN
still outperforms all other similarity measures on average, but the
second best similarity measure 3 1 is much closer with just 6.9% higher
loss. gabel is 11.8% worse, chopra is 14.7% worse, t1 1 is 61.2% worse

102

Experimental evaluation

method
0.8 —— eSNN
—— chopra
—— gabel
— t31

— t21

0.6

I
=

retrieval loss

0.2

0.0

bal ttt car iris use glass hay heart mam eco mon pim who cmc
dataset

Figure I1.16: Performance of eSNN in comparison to reference
similarity measures and state of the art similarity methods over all
test datasets trained over 200 epochs.

0.8

0.6

I
=

retrieval loss

0.2

0.0

bal ttt car iris use glass hay heart mam eco mon pim who cmc
dataset

Figure I1.17: Performance of eSNN in comparison to reference
similarity measures and state of the art similarity methods over all
test datasets trained over 2000 epochs.

103

Learning similarity measures from data

’ ‘ eSNN ‘ chopra ‘ gabel ‘ 131 ‘ ti1 ‘ (ZR] ‘

bal 0.01 0.00 0.14 | 0.10 | 0.42 | 0.81
car 0.04 0.02 0.19 | 0.16 | 0.25 | 0.25
cme 0.52 0.53 0.54 | 0.55 | 0.54 | 0.58
eco 0.22 0.20 0.46 | 0.35 | 0.21 | 0.22
glass 0.08 0.08 0.12 | 0.10 | 0.06 | 0.07
hay 0.19 0.21 0.26 | 0.17 | 0.33 | 0.37
heart 0.21 0.24 028 | 0.24 | 0.24 | 0.23
iris 0.04 0.03 0.18 | 0.07 | 0.05 | 0.04

mam 0.21 0.25 0.26 | 0.27 | 0.28 | 0.29
mon 0.28 0.33 039 | 045 | 0.29 | 0.29

pim 0.28 0.30 035 | 035 | 0.31 | 0.32
ttt 0.03 0.03 0.17 | 0.07 | 0.32 | 0.07
use 0.07 0.08 0.08 | 0.39 | 0.21 | 0.18
who 0.29 0.45 0.33 | 045 | 0.46 | 0.45
Sum 2.47 2.75 3.75 | 3.72 | 3.97 | 4.17

Average | 0.18 0.20 0.27 | 0.27 | 0.28 | 0.30

Table I1.3: Validation retrieval loss after 200 epochs of training, in
comparison to state of the art methods. eSN N has the smallest loss
in 8 of 14 datasets. The best result for each dataset is highlighted in
bold.

and finally ¢ 1 is 69% worse than eSNN.

The gap between eSNN and the state of the art is considerable
at 200 epochs. This gap shrinks from 11% at 200 epochs to 6.9% at
2000 epochs, which is still a considerable difference.

To illustrate the difference in terms of training efficiency between
different types similarity measure, we show the validation loss for
gabel, chopra and eSN N during training. Specifically, for each epoch
we test the loss of each similarity measure by the same method as
described in subsection IZ3E. Figure MT9 and Figure shows
validation loss during training of eSNN, chopra and gabel on the
UCI Iris and Mammographic mass datasets [86] respectively. This
exemplifies the training performance of these methods in relation to
the Iris and Mammographic mass dataset results reported in the tables
above. One can also note that in training for the Mammographics
dataset as seen in Fig. [MTY9 chopra never achieves the same
performance as eSNN. In contrast, while training on the Iris dataset
(as seen in Fig. [20), which is a less complex dataset than the
Mammographic dataset, chopra achieves the same performance as
eSNN.

Figure =21 shows the validation loss during training when chopra

104

Experimental evaluation

’ ‘ eSNN ‘ chopra ‘ gabel ‘ 3.1 ‘ t11 ‘ to ‘

bal 0.02 0.00 0.08 | 0.01 | 043 | 0.83
car 0.01 0.01 0.06 | 0.02 | 0.24 | 0.24
cme 0.52 0.53 0.54 | 0.53 | 0.54 | 0.58
eco 0.22 0.20 0.22 | 0.18 | 0.19 | 0.21
glass 0.06 0.07 0.08 | 0.09 | 0.05 | 0.06
hay 0.18 0.21 0.20 | 0.15 | 0.32 | 0.34
heart 0.21 0.27 0.23 | 0.22 | 0.24 | 0.23
iris 0.08 0.05 0.07 | 0.04 | 0.06 | 0.05

mam 0.21 0.27 0.25 | 0.27 | 0.29 | 0.28
mon 0.26 0.30 0.33 | 0.27 | 0.32 | 0.32

pim 0.27 0.31 0.25 | 0.30 | 0.30 | 0.31
ttt 0.03 0.03 0.07 | 0.03 | 0.32 | 0.08
use 0.08 0.10 0.07 | 0.08 | 0.18 | 0.16
who 0.30 0.46 0.29 | 043 | 047 | 045
Sum 2.45 2.81 2.714 | 262 | 395 | 4.14

Average | 0.18 0.20 0.20 | 0.19 | 0.28 | 0.30

Table I1.4: Validation retrieval loss after 2000 epochs of training, in
comparison to state of the art methods. eSNN has the smallest
validation retrieval loss in 6 of 14 datasets in addition to the lowest
average loss. The best result for each dataset is highlighted in bold.

| method
15 ‘ eSNN
5=
chopra
|
=2
20 1.0~
E
0.5
0.0

T T T T
0 50 100 150 200

epochs
Figure II.18: Training loss (not validation retrieval loss) during
training on the MNIST dataset for chopra and eSNN. gabel could
not be evaluated as training on a N(N — 1) sized dataset for MNIST
is too resource demanding.

105

Learning similarity measures from data

method
0.5 —— eSNN
——— chopra
% gabel
— 0.4
g
B
B
0.3
A AMAAAANAAS N A A AA AN S A AN AR
0.2
I I I I I
0 50 100 150 200
epochs

Figure I1.19: Validation retrieval loss during training on the Mammo-
graphic mass UCI ML dataset [86]. The Figure shows that the mam-
mograph dataset is a dataset that needs learning outside of embedding
via G(-). chopra starts out good as C(&, &) is already designed as the
L1 norm. However eSNN and gabel catches up when it learns an
equivalent and better C'(&, &) function.

method
0.6 —— eSNN
~—— chopra
% gabel
= 0.4
<
Z
—_
B
0.2
0.0=
I I I I I
0 50 100 150 200
epochs

Figure I1.20: Validation retrieval loss during training on the Iris UCI
ML dataset [B6] . Since chopra starts out with very low validation loss.
It seems probable that the static L1 norm C(&,&) used by chopra
is close to optimal for correctly identifying if the two data points
belong to the same class or not. The performance increase done by
chopra is a slight optimization of G(-). The performance increase done
during training by gabel and eSNN is mainly by learning a C(&, &)
equivalent in function to that used by chopra, and secondary a slight
optimization of G(-). eSNN catches up to chopra in performance
after around 20 epochs, however gabel takes longer (5% validation
loss at 2000 epochs) as shown in Table T4

106

Conclusions and future work

0.6 =1
% method
= 047 eSNN
.é chopra
bS] gabel
0.2

0.0 =TT
10 10t 100 100 107

datapoints evaluated
Figure 11.21: Validation retrieval loss during training on the balance
dataset, which illustrates the difference in amount of evaluations
needed to achieve acceptable performance. Chopra achieves good
performance very quickly, but is outperformed by eSNN soon. Both
have very good performance before having evaluated less (N) data

points than used by one epoch needed by gabel (N(N — 1))

and eSNN are using a training dataset of size N and gabel is using
a training dataset of size N (N — 1). This figure illustrates how much
fewer evaluations a SNN similarity measure like chopra or symmetric
Type 4 similarity measure such as eSNN needs than a similarity
measurement that is not invariant to input ordering, while still having
excellent relative performance.

Finally in Figure 22 and M2Z3 we show how eSNN can be
used for semi-supervised clustering. The figures show PCA and T-
SNE clustering of embeddings produced untrained and trained eSN N
networks respectively from the MNIST dataset. The embeddings are
the vector output of G(-) for each of the data points in the test set.
The embeddings shown are computed from a test set that is not used
for training. The figures show that eSNN learns a way to correctly
cluster data points that it has not used for training.

1.6 Conclusions and future work

Section M3 shows that all of the learned similarity measures outper-
formed the classical similarity measure ¢;; and also t3; where the
local (per feature) similarity measures were adapted to the statistical
properties of the features [@7]. In practice one should weight the im-
portance of each feature according to how important it is in terms of
similarity measurement. In many situations the number of possible

107

Learning similarity measures from data

[} oo o
0.75 Cluster 30 Cluster
0.50~ ° ! ° !
e 2 o 2
o 0.25 e 3 ° 3
¥ e 14 o 4
0.00 e 5 ® 5
e 6 e 6

5
—025 e 7 o 7
—0.50— e 8 °
9 T T 9
—20 0 20
PC1 PC1

(a) PCA clustering on the MNIST (b) PCA clustering on the MNIST
dataset before training dataset after training

Figure 11.22: PCA clustering showing the two first principal compo-
nents (PC Al and PC A2) of the embeddings produced by eSNN from
MNIST input before (ICZZA) and after (IZ22H) training.

Cluster

104 o 1 159 - Cluster
o 2 10 e 1
£ o 3 e 2
T 0 o 4 £ 7 ‘ o 3

= M L]
=z o 5 & o ‘. e 4
—10 o 7 =51 §O8 P e 6
o 8 _104 e 7
T T T 9 M e 8
—50 —-25 0 -15 T T T 9

tsne-one —10 0 10
tsne-one

(a) T-SNE clustering of the
MNIST dataset before train-
ing

Figure 11.23: T-SNE clustering of embeddings produced by eSNN
from MNIST input before (I'2Z3d) and after (I"2Z38) training.

(b) T-SNE clustering of the
MNIST dataset after training

attributes to include in such a function can be overwhelming, and
modeling them in the way we did in ¢;,; and ¢3,; also overlooks possi-
ble co-variations between the attributes. Both of these problems can
be addressed using the proposed method to model the similarity using
machine learning on a dataset that maps from case problem attributes
to case solution attributes.

However one should be careful to note that all of the learned
similarity measure are built on the assumption that similar data points
have similar target values (d; ~ 0. ~ ¢, in Figure). If this
assumption does not hold, learning the similarity measure might be
much more difficult.

108

Conclusions and future work

We have also presented a framework for how to analyze and
group different types of similarity measures. We have used this
framework to analyze previous work and highlight different strengths
and weaknesses of the different types of similarity measures. This also
highlighted unexplored types of similarity measures, such as Type 4
similarity measures.

As a result we designed and evaluated a Type 3 similarity measure
t3,1 based on a classifier. The evaluations showed that using a classifier
as a basis for a similarity measure achieves comparable results to
state of the art methods, while using much less training evaluations
to achieve that performance.

We then combined strengths from Type 4 and Type 3 similarity
measures into a new Type 4 similarity measure, called Extended
Siamese Neural Networks (eSNN), which:

e Learns an embedding of the data points using G(-) in the same
way as Type 3 similarity measures, but using shared weights in
the same way as SNNs to make the operation symmetrical.

o Learns C(&,), thus enabling extended performance in relation
to SNN and other Type 3 similarity measurements.

e Restricts C(Z,y) to make it invariant to input ordering, and
thus obtaining end to end symmetry through the similarity
measure.

Keeping eSNN symmetrical end-to-end enables the user of this
similarity measure to train on much smaller datasets than required by
other types of similarity measures. Type 3 measures based on SNNs
also have this advantage, but our results show that the ability to learn
C(&,9) is important for performance in many of the 14 datasets we
tested. Our results showed that eSNN outperformed state of the
art methods on average over the 14 datasets by a large margin. We
also demonstrated that eSN N achieved this performance much faster
given the same dataset than current state of the art. In addition,
the symmetry of eSNN enables it to train on datasets that are
orders of magnitude smaller. Our case-study of clustering embeddings
produced from eSNN show that the eSINN model can be used for
semi-supervised clustering.

Finally we demonstrated that the training of this similarity
measure scales to large datasets like MNIST. Our main motivation
for this work was to automate the construction of similarity measures
while keeping training time as low as possible. We have shown that
eSNN is a step towards this. Our evaluation shows that it can learn
similarity measures across a wide variety of datasets. We also show

109

Learning similarity measures from data

that it scales well in comparison to similar methods and scales to
datasets of some size such as MNIST.

The applications for eSNN as a similarity measure are not only
as a similarity measure in a CBR system. It can also be used for
semi-supervised clustering: training eSNN on labeled data, then use
the trained eSNN for clustering unlabeled data. In much the same
fashion it could be used for semi-supervised clustering, using eSN N
as a matching network in the same fashion as the distance measure is
applied in Vinyals et al. [28].

In continuation of this work we would like to explore what is
actually encoded by learned similarity measures. This could be done
by varying the different features of a query data point g in S(x,q)
and discovering when that data point would change from one class
to another (when the class of the closest other data point changes)
- this would form a multi-dimensional boundary for each class. This
boundary could be explored to determine what the similarity measure
actually encoded during the learning phase.

Another interesting avenue of research would be to apply recurrent
neural networks to embed time series into embedding space (see Figure
[Td) to enable the similarity measure to calculate similarity between
time series which is currently a non-trivial problem.

The architecture of similarity measures still require more investi-
gation, e.g. is the optimal embedding from G(-) different from the
softmax classification vector used in normal supervised learning? If
so it is worth investigating why it is different.

1.7 Acknowledgements

We would like to thank the EXPOSED project and NTNU Open Al
Lab for the support to do this work. Thanks also to Gunnar Senneset
and Hans Vanhauwaert Bjelland for their great support during our
work.

References

[28] Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.
“Matching networks for one shot learning”. In: Advances in
Neural Information Processing Systems. 2016, pp. 3630-3638.

[34] Hoffer, E. and Ailon, N. “Deep metric learning using triplet
network”. In: International Workshop on Similarity-Based
Pattern Recognition. Springer. 2015, pp. 84-92.

110

References

38]

[42]

[45]

[47]

[48]

[49]

Chopra, S., Hadsell, R., and LeCun, Y. “Learning a similarity
metric discriminatively, with application to face verification”.
In: Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on. Vol. 1. IEEE.
2005, pp. 539-546.

Gabel, T. and Godehardt, E. “Top-down induction of similarity
measures using similarity clouds”. In: Case-Based Reasoning
Research and Development. Ed. by Hiillermeier, E. and Minor,
M. Cham, 2015, pp. 149-164.

Stahl, A. “Learning feature weights from case order feedback”.
In: Proceedings of the 4th International Conference on Case-
Based Reasoning (ICCBR 2001). Springer. Vancouver, 2001,
pp. 502-516.

Nikpour, H., Aamodt, A., and Bach, K. “Bayesian-supported
retrieval in BNCreek: A knowledge-intensive case-based rea-
soning system”. In: International Conference on Case-Based
Reasoning. Springer. 2018, pp. 323-338.

Stahl, A. and Gabel, T. “Using evolution programs to learn
local similarity measures”. In: Proceedings of the 5th Inter-
national Conference on Case-Based Reasoning (ICCBR 2003).
Trondheim, 2003, pp. 537-551.

Langseth, H., Aamodt, A., and Winnem, O. M. “Learning
retrieval knowledge from data”. In: Sizteenth International
Joint Conference on Artificial Intelligence, Workshop ML-
5: Automating the Construction of Case-Based Reasoners.
Stockholm. Citeseer. 1999, pp. 77-82.

Reategui, E. B., Campbell, J. A., and Leao, B. F. “Combining
a neural network with case-based reasoning in a diagnostic
system”. In: Artificial Intelligence in Medicine vol. 9, no. 1
(1997), pp. 5-27.

Abdel-Aziz, A., Strickert, M., and Hiillermeier, E. “Learning
solution similarity in preference-based CBR”. In: Proceedings
of the 22nd International Conference on Case-Based Reasoning
(ICCBR 2014). Springer. 2014, pp. 17-31.

Bromley, J., Guyon, I., LeCun, Y., Sackinger, E., and Shah, R.
“Signature verification using a" siamese" time delay neural net-
work”. In: Advances in neural information processing systems.
1994, pp. 737-744.

Maggini, M., Melacci, S., and Sarti, L. “Learning from pairwise
constraints by similarity neural networks”. In: Neural Networks
vol. 26 (2012), pp. 141-158.

111

Learning similarity measures from data

[84]

[85]

[86]

[101]

[102]
103]

[104]

[105]

[106]

[107]

[108]

112

Berlemont, S., Lefebvre, G., Duffner, S., and Garcia, C.
“Siamese neural network based similarity metric for inertial
gesture classification and rejection”. In: Automatic Face and
Gesture Recognition (FG), 2015 11th IEEE International Con-
ference and Workshops on. Vol. 1. IEEE. 2015, pp. 1-6.

Lefebvre, G. and Garcia, C. “Learning a bag of features
based nonlinear metric for facial similarity”. In: Advanced
Video and Signal Based Surveillance (AVSS), 2013 10th IEEE
International Conference on. IEEE. 2013, pp. 238-243.

Dheeru, D. and Karra Taniskidou, E. UCI Machine Learning
Repository. 2017.

Wienhofen, L. W. M. and Mathisen, B. M. “Defining the initial
case-base for a cbr operator support system in digital finishing”.
In: Case-Based Reasoning Research and Development: 24th
International Conference, ICCBR 2016, Atlanta, GA, USA,
October 31 - November 2, 2016, Proceedings. Ed. by Goel,
A., Diaz-Agudo, M. B., and Roth-Berghofer, T. Cham, 2016,
pp. 430-444.

Bergmann, R. Ezperience management: foundations, develop-
ment methodology, and internet-based applications. 2002.

Leake, D. B. Case-Based Reasoning: Experiences, lessons and
future directions. 1996.

Martin, K., Wiratunga, N., Sani, S., Massie, S., and Clos,
J. “A convolutional siamese network for developing similarity
knowledge in the SelfBACK dataset”. In: Proceedings of the
25th International Conference on Case-Based Reasoning Work-
shops (CBRDL 2017). CEUR Workshop Proceedings. Trond-
heim, 2017, pp. 85-94.

Hiillermeier, E. and Schlegel, P. “Preference-based CBR: First
steps toward a methodological framework”. In: International
Conference on Case-Based Reasoning. Springer. 2011, pp. 77—
91.

Hiillermeier, E. and Cheng, W. “Preference-based CBR: Gen-
eral ideas and basic principles”. In: IJCAIL 2013, pp. 3012—
3016.

Cunningham, P. “A taxonomy of similarity mechanisms for
case-based reasoning”. In: IFEE Transactions on Knowledge
and Data Engineering vol. 21, no. 11 (2009), pp. 1532-1543.

Tversky, A. “Features of similarity.” In: Psychological review
vol. 84, no. 4 (1977), p. 327.

References

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

Stahl, A. and Gabel, T. “Optimizing similarity assessment
in case-based reasoning”. In: Proceedings of the National
Conference on Artificial Intelligence. Vol. 21. 2. Menlo Park,
CA; Cambridge, MA; London; AAAT Press; MIT Press; 1999.
2006, p. 1667.

Shawe-Taylor, J. “Symmetries and discriminability in feedfor-
ward network architectures”. In: IEEFE Transactions on Neural
Networks vol. 4, no. 5 (1993), pp. 816-826.

Hadsell, R., Chopra, S., and LeCun, Y. “Dimensionality re-
duction by learning an invariant mapping”. In: 2006 IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06). IEEE. 2006, pp. 1735-1742.

Koch, G., Zemel, R., and Salakhutdinov, R. “Siamese neural
networks for one-shot image recognition”. In: ICML Deep
Learning Workshop. Vol. 2. 2015.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
“Human-level concept learning through probabilistic program
induction”. In: Science vol. 350, no. 6266 (2015), pp. 1332
1338.

He, K., Zhang, X., Ren, S., and Sun, J. “Deep residual learning
for image recognition”. In: Proceedings of the IEEFE conference
on computer vision and pattern recognition. 2016, pp. 770-778.

Zagoruyko, S. and Komodakis, N. “Learning to compare image
patches via convolutional neural networks”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition. 2015, pp. 4353-4361.

Arandjelovic, R. and Zisserman, A. “Look, listen and learn”.
In: 2017 IEEE International Conference on Computer Vision
(ICCV). IEEE. 2017, pp. 609-617.

Riedmiller, M. and Braun, H. “A direct adaptive method for
faster backpropagation learning: The RPROP algorithm”. In:
Neural Networks, 1993., IEEE International Conference on.
IEEE. 1993, pp. 586-591.

Florescu, C. and Igel, C. “Resilient backpropagation (Rprop)
for batch-learning in TensorFlow”. In: ICLR 2018 workshop
permission (2018), To appear in.

113

FishNet: A Unified Embedding
for Salmon Recognition

Bjorn Magnus Mathisen, Kerstin Bach, Espen Meidell,
Hakon Maloy, Edvard Schreiner Sjgblom

This work was supported by the Research Council of Norway through the
EXPOSED project(grant number 302002390) and the Norwegian Open AI Lab

115

FishNet: A Unified Embedding for Salmon Recognition

116

Introduction

Abstract

Identifying individual salmon can be very beneficial for the
aquaculture industry as it enables monitoring and analyzing
fish behavior and welfare. For aquaculture researchers iden-
tifying individual salmon is imperative to their research. The
current methods of individual salmon tagging and tracking rely
on physical interaction with the fish. This process is inefficient
and can cause physical harm and stress for the salmon. In this
paper we propose FishNet, based on a deep learning technique
that has been successfully used for identifying humans, to iden-
tify salmon.We create a dataset of labeled fish images and then
test the performance of the FishNet architecture. Our experi-
ments show that this architecture learns a useful representation
based on images of salmon heads. Further, we show that good
performance can be achieved with relatively small neural net-
work models: FishNet achieves a false positive rate of 1% and
a true positive rate of 96%.

1.1 Introduction

The Atlantic salmon farming industry in Norway has experienced a
massive growth in the past four decades. The industry has gone from
producing 4.300 tonnes of salmon in 1980, to almost 1.240.000 tonnes
in 2017 [19]. In 2017, the total economical results from salmon
production was calculated to be over 61 billion Norwegian kroner
(NOK) [1T9]. This makes salmon farming one of the most profitable
industries in Norway, and it is considered as one of the most important
industries in a post oil Norway [[20]. However, the industry is still
largely driven by manual labor. For example, the total number of lice
in a breeding cage is indicative of fish welfare and an important metric
for deciding whether delousing measures should be initiated. Today’s
method for lice counting relies on manually inspecting individual
fish and then estimating the total number of lice in the cage from
these numbers. Other measurements such as disease and weight
measurements also use similar methods, based on a few individual
fish measurements. These methods are highly reliant on the fish
inspected to be representative for the total population within the cage.
However, salmon is a schooling fish and organize themselves according
to hierarchical structures [[21, 22]. This means that different types
of individuals will be present at different layers of the school. As
the sampling methods used in the industry relies on small samples
the methods are prone to selecting the same type of individuals for
inspection every time. This could result in skewed estimations and
lead to wrong operations being performed. As these operations are

117

FishNet: A Unified Embedding for Salmon Recognition

often both costly and harmful for the fish, large economic gains can
be made from more precise estimates.

To improve measurement quality, a method of ensuring that
different individuals are measured every time is needed. Previous
attempts at solving this problem have included a variety of techniques.
However, the techniques have almost exclusively relied on physical
engagement with the salmon. The techniques include surgical
implantation of tags and external mutilation, such as fin-clipping,
freeze brands, tattoos, visible implant tags, and external tag identifiers
attached by metal wire, plastic, or string [I23]. This is a problem both
from an animal welfare and product quality perspective. Bacterial
growth and unpleasant sensory properties has shown to increase more
quickly in salmon experiencing stress in their lifetime prior to being
slaughtered. This results in reduced shelf life of the finished product
[[24]. A computer vision method for uniquely identifying individuals
would solve this problem by minimizing the impacts from invasive
techniques.

In this paper, we introduce an approach for accurately identifying
individual salmon from images, using a deep neural network called
FishNet. By accurately identifying individual salmon, we can ensure
that no salmon is measured multiple times, thereby guaranteeing a
more accurate estimation of the total population. Our approach is
based on FaceNet [80] and DeepFace [125] which have been proven to
work well in the field of face verification in humans. These networks
are able to verify the identity of people in images with human levels of
accuracy. They have also been shown to be robust to noise in terms
of changing lighting conditions. By training a similar architecture
on images of fish rather than humans, we enable accurate identity
predictions without physical interaction.

Being able to track salmon at an individual level could enable
tracking a single individual throughout its lifespan, from salmon
spawn to finished product, linking salmon fillets to the life-story of
the individual. Other opportunities include monitoring individual
weight development, treating salmon only when the need arise and
delousing only the individuals that suffer from lice, thereby preventing
unnecessary harm to healthy salmon. Individual salmon tracking
could also enable new research areas that require monitoring of
individuals over time such as feeding behavior, detection of diseases
and social behavior. FishNet can facilitate such research through
offering a non-invasive and efficient approach to identifying salmon.

The rest of this paper is structured in the following way. In Section
[IT2 we outline the current state-of-the-art within the problem area
of individual recognition of salmon. And as a results of the method
chosen to solve the problem we also outline the current state-of-the-

118

Related Work

art of using machine learning to identify individuals from pictures.
Following this, we present our approach to the problem of individually
recognizing salmon in Section M3, The dataset used for evaluation
and the evaluation of our proposed solution are presented in [IT4. We
present a discussion of our results in Section [MIF. Finally Section ITA
presents our conclusions and thoughts on future directions of research
for this work.

1.2 Related Work

Since the problem we address is inter-disciplinary, related work is
two-fold: one area of research covers the detection and identification
of fish and salmon in particular while the other one focuses on the
classification of images. In this section well discuss the relevant work
representing the state-of-the-art.

There has only been very limited work conducted to identify
unique fish/salmon without engaging directly with the fish. Earlier
attempts of uniquely identifying salmons have relied on insertion of
RF-ID chips or other physical marking systems [[26]. This is approach
is only feasible in research settings and should be minimized as it
potentially injures the fish. In real-world deployments with hundreds
of cages and millions of fish a more scalable approach is desirable.
Throughout the recent years the field of automatically identifying
salmon has grown as the fish-farming industry collaborate more and
more with data-driven approaches. Especially in Norway, projects
such as the Exposed Aquaculture Operations Center for research
based innovation® or the Seafood Innovation Cluster® emphasize on
applying Internet of Things, Big Data and Artificial Intelligence
methods.

Figure II1.24: Melanin patterns on a salmon head.

SINTEF SalmID [iZ6] is a study that investigated the possibility
of recognizing individual salmon based on the assumption that each
individual has an unique pattern. They found that there was done
little work on this area regarding Atlantic salmon, but point at other
work using the melanophore pattern of different animals to uniquely

5 https://exposedaquaculture.no/en/
6 nttp://www.seaftoodinnovation.no/

119

https://exposedaquaculture.no/en/
http://www.seafoodinnovation.no/

FishNet: A Unified Embedding for Salmon Recognition

identify them. The constellation of such melanin patterns on the head
of the fish can be utilized for identification. In the SalmID approach
the recognition part is based on manually selected features of the
salmon rather than learned representations.

Additional work utilizing melanophore patterns has been presented
by Hammerset [127] who apply deep neural networks to discover the
location of salmon heads and eyes. In this work a simple blob detection
algorithm is used to discover the melanophore spots. The locations of
the spots and the eye are then translated into a polar representation
which is saved in a database with the identity of the salmon. On the
test set with images from 333 individuals the algorithm recognized
40.4% (5922 of 14652 images) of the images as belonging to an
individual salmon, of these 40.4% the algorithm correctly identified
the individual with an accuracy of 99.7% (5902 of 5922). Thus the
total test accuracy was 40.2% (5902 of the total 14652 images classified
as the correct individual)

Identifying individuals among humans has been an active research
field for a long time. Earlier work has been based on eigen value
analysis of data matrices such as EigenFaces [[28] and its successors
in FisherFaces [129] and Laplacianfaces [I30].

More recent work on individual recognition is based on deep
learning approaches such as the model presented in the DeepFace
paper [[25] in which they are making the images of faces more uniform
(frontalization). These frontalizations are fed into a convolutional
layer followed by a max pooling layer and another convolutional layer.
According to the authors, these three layers mainly extract low level
features and make the network robust to local translations. The last
convolutional layer is followed by three locally connected layers. This
is done because the different regions of an aligned image have different
characteristics, so the spatial invariance assumption of convolution
does not hold. An example of this is that the eyes of a person will
always be above the nose. The final two layers of the network they
use are fully connected. These layers are able to identify relations
between features in different locations in the feature maps. The first
fully connected layer is used as the face representation vector, and
the output of the second one is fed into a softmax which produces a
class distribution for an input image. To verify whether two images
are of the same person, the authors propose three approaches: (1) an
unsupervised method in which the similarity of two images is simply
defined as the inner product of the two representation vectors, (2) a
weighted 2 distance in which the weight parameters are learned using
a linear support vector machine and (3) a siamese network, in which
the network (except the top layer used for softmax classification) is
duplicated. One image is fed into each part of the network and the

120

The FishNet Approach

absolute difference between the feature vectors is computed. A fully
connected layer is added and the network is trained to predict a single
logistic unit (whether the images are of the same person). Training is
only enabled for the new layers, and they are trained using standard
cross entropy loss. All three methods yielded good results compared
to the state-of-the-art at the time. The siamese network approach
required a lot more training data to avoid overfitting compared to the
other approaches.

A related approach has been presented as FaceNet [80] which
describes a system that learns and optimizes a vector representation
directly, rather than extracting the representation from a bottleneck
layer (like DeepFace). FaceNet learns a 128-dimensional feature vector
(embedding) that represents a face. Unlike the DeepFace approach
there is no 2D or 3D alignment done on the images. FaceNet is
a variant of a Siamese Neural Network (SNN) originally proposed
by Bromley [28]. In contrast with the original SNNs FaceNet uses
triplet loss to train the network. The network is presented with
three images (the anchor image, the positive image (same person, but
different image and the negative image (image of any other person).
According to the authors, it is important to select triplets that are
hard for the model to correctly discriminate, to ensure that the
network converges as quickly as possible during training. The triplets
are chosen from within each mini-batch, and all anchor-positive pairs
are used in combination with negative examples. The authors describe
several different deep neural network architectures, where the major
differences between them are the number of trainable parameters. The
number of parameters in the networks range from about 4 million to
140 million. When evaluating the networks the Lo-distance between
two images is compared. If the distance is above a certain threshold
they are classified as different. According to the authors they are able
to reduce the error reported by the DeepFace paper by a factor of
seven. The smaller inception networks perform nearly as good as the
very deep networks.

.3 The FishNet Approach

To recognize individual salmons we adapt the FaceNet [80] architec-
ture and training method. FaceNet is a type of Siamese neural net-
work[2®, 60] which has two datapoints as input, and the output is the
distance between them. This can also be extended to work on e.g.
triplets of data points, outputting more than one distance. FaceNet is
trained on a dataset consisting of triplets consisting of a anchor data
point, a positive data point and a negative data point. The anchor

121

FishNet: A Unified Embedding for Salmon Recognition

data point with a given label, the positive data point is a different
data point with the same label, in contrast the negative data point
has a different label. Figure T3 illustrates this with three example
images of salmon, two of which are from the same individual salmon,
while the third image is of another individual salmon.

Loss

1

| Triplet Loss Layer |

I 1

Anchor Embedding | | Positive Embedding | | Negative Embedding |

128-dimensional dense layer 128-dimensional dense layer 128-dimensional dense layer

T] T

Convolutional Convolutional Convolutional
Architecture Architecture Architecture
Anchor Input Positive Input Negative Input
(175 x 175 x 3) (175 x 175 x 3) (175 x 175 x 3)

k = Ll . -

Figure II1.25: Generic architecture with triplet loss. Parts of the
network with shared weights are colored green. the input size is
the size of the images (175x175x3) and the output is the 128-length
embedding vector. The differences between the model architectures
tried in our experiments is how the convolutional architecture is
modeled, and the size of that convolutional model. This figure shows
an example of salmon heads, with the anchor input to the left, positive
input (same individual as the anchor input) in the center and finally
the negative input (different indivdual than the anchor input).

The goal of training FaceNet is to minimize the distance between
the anchor and positive data point, while maximizing the distance to
the negative data point. This training process is illustrated in Figure
4.

122

The FishNet Approach

Negative Negative

Anchor m Anchor
Positive

Positive

Figure I11.26: Triplet loss minimizes the distance between images of
the same salmon and maximizes the distance to images of other salmon
(adapted from [30]).

To compute the loss during the training, a custom triplet loss
layer was used. Equation IR defines how the loss L is computed for
a minibatch of size m.

~a o 2 AQ AN 2
L= (a2 - #2013 - N3¢ - 2213 + o] (I1L3)

Here & = f(z) is the embedding of image x, z* is the anchor data
point, xP is the positive data point, ™ is the negative datapoint and
« is a parameter that encourages better learning.

This is identical to how the triplet loss is defined in the FaceNet
[B0]. The loss computes the distance between the anchor and the
positive, and the anchor and the negative. The goal is to have the
positive distance be smaller than the negative distance. The difference
between the positive and negative distance are summed. To encourage
larger distances the margin « is added to the loss function. To avoid
negative loss, the loss is set to the maximum of the loss of the triplet
and 0.

Careful triplet selection is important [80] for the training process of
the network. The training goal of the algorithm is to ensure that the
embeddings of two images (anchor and positive) of the same salmon
are closer to each other than any images of other salmon (negatives)
by a margin «. In our experiments, the value for o was set as 0.2, the
same as used in the FaceNet paper.

To ensure effective training, it is important to select triplets that
violate this constraint. To do this, the method computes the embed-
dings for images during training, and then select samples only among
the triplet that violate this training samples. For efficiency purposes,
this is done within each batch. First, a random set of salmon im-
ages are sampled from the training dataset. Then the images are fed
through the network to generate embeddings. Finally, the embeddings
are used to select triplets where the difference between the negative
and positive embeddings are within «. Algorithm 0 describes this

123

FishNet: A Unified Embedding for Salmon Recognition

process.

Algorithm 1: Triplet selection

Input: embedding vectors

Input: number of fish

Input: number of embeddings per fish
Input: o

Data: triplets = []

foreach fish do

for anchor in embeddings of current fish do
negative distances = Lo-distances from anchor to

embeddings of other fish

for positive in remaining embeddings of current fish do
compute distance between anchor and positive

negatives = find all negative embeddings where
negative__dist — positive_dist < «
select a random negative from negatives and
append (anchor, positive, negative) to triplets
end

end

end
shuffle triplets
return list of triplets

Using Algorithm @O to select the triplet used for training, we
ensure that training is performed on triplets the network can learn
from. Using triplets that already satisfy the constraint of o would
not contribute to further training, and only slow down the process.
Calculating the hardest triplets for the entire dataset every epoch
would be computationally very slow. Additionally, if we were to select
the hardest triplets every time it could cause poor training. This
is because selection of hardest triplets would be dominated by for
example mislabeled or low quality images.

I11.3.1 Neural Network Architectures

During our experiments, we trained different neural network archi-
tectures to produce embeddings. All the networks shared a general
architecture of a convolutional neural network where the top layer
(classification layer) was replaced by a 128-dimensional dense layer
to represent the embedding of the input image. Figure MIT23 shows
an illustration of this architecture, which is used to compute the em-

124

Dataset and Evaluation

Network Architecture # Parameters Pretrained with
FishNet1 (Inception ResNet v2) 55M ImageNet
FishNet2 (MobileNet v2) 2.4M ImageNet
FishNet3 (VGG-16) 15M ImageNet

Table IIL1.5: The different neural network architecture models used in
the experiments. From a large model (FishNetl based on Inception
ResNet v2) to a model that is 20 times smaller (FishNet2 based on
MobileNet v2) that can be deployed on a mobile device.

bedding for one image. Table M3 we show the different types of
architectures we evaluated as part of this work. This was done to in-
vestigate the effect of using different convolutional architectures and
model sizes to produce embeddings. The corresponding results to the
architectures listed in this table is listed in Table [TTA.

To train the network using triplet loss, the network needs to use
more than one image at once. To achieve this, the convolutional and
embedding parts need to be replicated once for each image. Note that
the weights are shared between the instances. The output from the
embedding layers is fed into a custom layer that computes the triplet
loss, which in turn is used to train the model. Figure IT2F illustrates
the model used for training. Table IIIH shows the neural network
architectures used in the experiments.

All models were initialized with the convolutional weights pre-
trained on the ImageNet dataset [[31]. The assumption being that
features learned for image classification may be a useful starting point
for learning how to distinguish salmon from each other, thereby reduc-
ing the amount of training data needed to train the models.

1.4 Dataset and Evaluation

As far as we know, there is currently no data set of labeled fish to use
for training and evaluating methods for identity recognition. Thus, to
evaluate the FishNet method we needed to create a dataset of labeled
pictures of salmon heads. To do this we aquired a video clip of salmon
swimming from SeaLab?.

The original data was a video stream of salmon swimming across
the view of the camera. The video was filmed at 30 FPS (frames
per second) meaning we had 30 images per second of video. Figure
[OT274 shows a frame captured from this video. Salmon heads in
the images were marked manually with a bounding-box tool. After
manually labeling approximately 500 bounding-boxes as salmon heads

7 https://www.sealab.no;

125

https://www.sealab.no/

FishNet: A Unified Embedding for Salmon Recognition

(a) An example of a frame from the original video.

(b) An example of bounding-boxes of salmon heads
detected by the YOLOv3 model trained to detect
salmon heads.

Figure I11.27: Overview of different stages the dataset creation.

the bounding-boxes were used to train a YOLOv3 ([82]) network to
recognize salmon heads. This YOLOv3 model was then used to create
bounding-boxes on every salmon head in all video frames, as seen in
Figure OT2Z7H. Figure and Figure T34 shows examples of
the resulting cropped bounding-boxes of two salmon heads. These
bounding boxes is then extracted as a 1752175 image. These images
are then clustered to achieve clusters of images for each individual
salmon. Equation MY describes the distance function used in the
clustering algorithm. If two bounding-boxes are in the same frame, the
distance is set to an arbitrarily high value. If the bounding-boxes are
not in the same frame, the intersection over union is measured to check
how closely the bounding-boxes overlap. Then a temporal distance is
added by computing a weighted distance of the frame numbers. This
is done to ensure that overlapping bounding-boxes in frames next to
each other receive a low distance value. These distance metrics are
combined into one single distance (Equation TJ) metric which is
used by DBSCAN][R3] to cluster the images. This process produces
clusters of images of the same individual salmon. This approach works

126

Dataset and Evaluation

fairly well except in cases where a salmon disappears behind a different
salmon and then reappears again. In those cases it is frequently
misidentified as a new salmon. This problem was solved by manually
reviewing the labels, and replacing the labels for misidentified salmon.

s 10p =0

D(bl, b2) - {110U(b1,b2)+ (111‘9)
2

: otherwise

Here (Sf = bl_frame - bzframe and

Intersection Area

IoU(v1,62) = Union Area

After the salmon heads are extracted they were clustered and
finally labeled. This resulted in a dataset of 15000 images of 715
individual salmon. The images were then augmented by tilting the
image, moving the image vertically and shifting the brightness of the
image. Examples of these augmentations can be seen in Figure IT2X.
Five augmented images were created for each original image, resulting
in a data set containing a total of 225 000 images divided over 715
individuals. The data set was then divided into test and training sets,
with 90% of the images being used for training and the remaining 10%
being used for testing.

Figure I11.28: Augmenting images during the dataset creation. The
top right and top left images show tilting augmentation. Centre
bottom is color shifting (making the image brighter).

127

FishNet: A Unified Embedding for Salmon Recognition

Figure I11.29: Illustration of IOU. The top image is frame 61 in the
video, the middle is from frame 73, and the bottom image shows the
two images stacked on top of each other. Despite being 12 frames
apart, the IOU is still quite high. The red and blue area is the
union between the bounding boxes, and the blue area alone is the
intersection.

128

Dataset and Evaluation

Loss Plot FishNet1

—— Training Loss
Validation Loss

Triplet Loss
2
2

!
Y AAVLALY, m "w‘

\y WY |
Lt A el

o 2% 50 ™ 100 125 150 e 200
Epoch

Figure II1.30: The loss curves during training for FishNet1.

I11.4.1 Evaluation

The experimental setup consisted of a single computer containing an
AMD Ryzen Threadripper 2920x 12-core CPU, two GeForce RTX
2080Ti GPUs and 128 GB of RAM. The models were implemented
using Tensorflow [132]. Figures O30, OT31, and 32 show the loss
curves during the training of the three models presented in section
OT3T. One notable observation in the loss curves for FishNet1 is that
both the training and validation loss start to fluctuate and increase
greatly towards the middle and end of training. This occurs due to
the nature of the triplet selection algorithm used during the training
phase. The algorithms only uses triplets that fail the triplet constraint
test described in section 3. This means that if the model learns
to separate salmon well, there are fewer triplets available for training
as the training progresses. By examining the training logs we can
see that this in fact happens. Figure 33 shows show many of the
sampled triplets the network was able to use for training.

As seen in Figure MI230, when the models become increasingly
good at recognizing individuals the loss starts to fluctuate. This is
most likely due to the fact that the training process is down to a
very small set of triplets that is very hard to discriminate. When the
training process seeks for a model that can discriminate these last
triplets, the loss value of the rest of the dataset increases.

The goal of the face verification task is to easily be able to separate
the embeddings generated by different identities in the euclidean space.
Figure M3 and Figure T33 illustrates how the embeddings are
distributed in the space before and after training. The points in
the plots are of 6000 images from 29 different salmon from the test

129

FishNet: A Unified Embedding for Salmon Recognition

Loss Plot FishNet2

= Training Loss
14 ~ Validation Loss

Triplet Loss

0] 50 5 100 125 150 175 200

Figure II1.31: The loss curves during training for FishNet2.

Loss Plot FishNet3

35 —— Training Loss
—— Validation Loss

Triplet Loss

o 25 50 75 100 125 150 175 200
Epoch

Figure II1.32: The loss curves during training for FishNet3.

set. The models used are FishNetl before and after 200 epochs of
training. As we can see from the t-SNE-reduced plots the grouping
of embeddings from salmon of the same identity is far better after
training. This indicates that the model is able to learn some mapping
from the images to embeddings.

To compute metrics such as true positive rate, false positive rate,
accuracy etc., a similarity threshold needs to be set. To compare the
models we can examine what the true positive rate (the sensitivity)

130

Dataset and Evaluation

30000

—— Number of samples

25000

20000

15000

samples

10000

5000

V] 25 50 75 100 125 150 175 200
Epoch

Figure II1.33: Number of triplets available for training each epoch for
FishNetl. Towards the end of the training only about 100 samples
were available for training.

Network Architecture AUC TPR @ FPR = 10e-3
FishNetl (Inception ResNet v2) 0.9977 0.964
FishNet2 (MobileNet v2) 0.9974 0.961
FishNet3 (VGG-16) 0.9919 0.870

Table IT1.6: The area under the curve and true positive rate (measured
when the false positive rate is 10e-3) of the models.

of the system is at a set false positive rate. We have compared the
models where the false positive rate is 0.01, that is, where 1% of the
negative samples are misclassified as positive. As we can see in Table
[OT4 FishNetl and FishNet2 perform approximately equally with a
true positive rate of about 96%. FishNet3 performs significantly worse
with a true positive rate of 87%.

Figure MI38 shows the ROC curve for the three models we
tested. By comparing the area under the curve we can compare
the performance of the models across all thresholds. As we can see
FishNet1 and FishNet2 perform better than FishNet3, with FishNet1
being the best of the models tested in our experiments. It is interesting
to note that the improved results of FishNetl come at quite a high
computational cost compared with FishNet2, a network designed to be
able to run on mobile devices. Lastly Figure =31 shows an example
of a visual evaluation of 2 images of 3 different salmon individuals
(“Simen”, “Eirik” and “Egil”). This shows us that the calculated

131

FishNet: A Unified Embedding for Salmon Recognition

100 []

SeesereeseseRORRORRRORRORRRE O
HENENENNEEEESRRESSREER R Nomewn ~ob

T T T T T T T
=75 50 25 0 25 50 =

Figure II1.34: T-SNE clustering of embeddings produced by a
untrained FishNetl model. The slight clustering visible in the figure
is an effect of the inherent clustering done by T-SNE.

distances between different individuals are at least three (on average
3.88) times bigger than the distances between two images of the same
individual in this example.

1.5 Discussion

The results shown in the Section T4 demonstrate that machine
learning methods successfully applied for identifying humans from
pictures can also be used to identify individual salmon. However it
should be noted that this was done with frames extracted from a single
video captured over a short period of time. Thus the different frames
representing the same individuals in the data set created for this work
are very similar. This is somewhat amended by the augmentation
done to the frames as described in Section M. However, the results
from evaluating the method on a data set with these augmentations

132

Discussion

100 '

HENENENNEEEESRRESSREER R Nomewn ~ob

2
YN,
§%

T T T T T
-100 =50 o 50 100

Figure I11.35: T-SNE clustering of embeddings produced by a trained
FishNetl model. This is clearly a better clustering than shown in
Figure MI34, illustrating that the embedding process extracts useful
signals for identifying individuals.

does not enable us to conclude that the method works under all
conditions, or over longer periods of time. The video used in this
work is a video with very favorable conditions, both in terms of light
and water clarity. Training FishNet in more challenging conditions
might reduce the performance of the architecture. Thus adversarial
regularization using both artificial noise and adversarial examples
could be beneficial or even necessary for the architecture to handle
such conditions, as this has been shown to increase robustness of deep
architectures [I33]. The fish may also be damaged mechanically or
contract diseases which changes the way individual fish looks over
time. This could drastically affect the performance of FishNet on
such individuals.

133

FishNet: A Unified Embedding for Salmon Recognition

Receiver Operating Characteristic

True Positive Rate

= Fishnet1 (InceptionResnetV2), AUC: 0.9977

—— Fishnet2 (MobileNet\/2), AUC: 0.9974

— Fishnet3 (VGG-16), AUC: 0.9919
10 10 10 10 107 10" 10 10’

False Positive Rate

Figure I11.36: The ROC curves of FishNet1 (blue), FishNet2 (orange),
and FishNet3 (green). The true positive rate and false positive rate
is computed across similarity thresholds in the range [0.0, 2.0] in
increments of 0.2. The model with the largest area under the curve
has the best overall performance (FishNet1, with InceptionResnetV2).
Note that the axes in the plot are in logarithmic scale.

1.6 Conclusion

In this paper we presented FishNet, a novel approach for individual
fish recognition using a convolutional deep neural network as part of
a Siamese neural network architecture based on FaceNet [30]. We
trained this model using images of salmon to make the model identify
individual salmon. FishNet achieves a false positive rate of 1% and a
true positive rate of 96%.

As future work we would like to investigate the model’s ability to
recognize individuals from spawn to grown fish. We would also like

134

Acknowledgements

Simen- 0.303
Eirik— 0.475
Egil- 0.287

Figure I11.37: An illustration of the distances between six images from
salmon with three different identities. Each row contains two images
of the same salmon: “Simen” at the top, “Eirik” in the middle and
“Egil” at the bottom. The average distance between the same salmon
is 0.36 while comparisons between different salmon average at 1.40.

to test if we can increase performance by employing other variants
of Siamese neural networks such as eSNN[BO]. Finally, we would
like to investigate what the architecture is actually looking at when
recognizing individuals.

.7 Acknowledgements

This work is an extension of the MSc Thesis “FishNet: A Unified
Embedding for Salmon Recognition”® by Espen Meidell and Edvard
Schreiner Sjgblom. This research has been funded by the Research
Council Norway, EXPOSED Aquaculture Research Center (grant
number 237790) and the Norwegian Open AI Lab. In addition the

8http://hdl.handle.net/11250/2628800

135

http://hdl.handle.net/11250/2628800

FishNet: A Unified Embedding for Salmon Recognition

data that formed the basis for the data set was provided by Sealab

Ag®

References

[30]

[48]

[50]

(82]

[83]

[119]

[120]

[121]

[122]

Schroff, F., Kalenichenko, D., and Philbin, J. “Facenet: A
unified embedding for face recognition and clustering”. In:
Proceedings of the IEEE conference on computer vision and
pattern recognition. 2015, pp. 815-823.

Bromley, J., Guyon, I., LeCun, Y., Siackinger, E., and Shah, R.
“Signature verification using a" siamese" time delay neural net-
work”. In: Advances in neural information processing systems.
1994, pp. 737-744.

Mathisen, B. M., Aamodt, A., Bach, K., and Langseth, H.
“Learning similarity measures from data”. In: Progress in
Artificial Intelligence (Oct. 2019), pp. 129-143.

Redmon, J. and Farhadi, A. “Yolov3: An incremental improve-
ment”. In: arXiv preprint arXiv:1804.02767 (2018).

Xu, X., Ester, M., Kriegel, H.-P., and Sander, J. “A
distribution-based clustering algorithm for mining in large
spatial databases”. In: Proceedings 14th International Confer-
ence on Data Engineering. Feb. 1998, pp. 324-331.

SSB. Akvakultur - drlig, endelige tall - SSB, retrived from
https://www.ssb.no/fiskeoppdrett 23.05.2019. 2018.

Richardsen, R., Stoud Myhre, M., Bull-Berg, H., and T. Grind-
voll, I. L. “Nasjonal betydning av sjgmatneeringen”. In: Pub-
likasjoner fra CRIStin - SINTEF Ocean (2018).

Hvas, M., Folkedal, O., Solstorm, D., Vagseth, T., Fosse, J.,
Gansel, L., and Oppedal, F. “Assessing swimming capacity
and schooling behaviour in farmed Atlantic salmon Salmo salar

with experimental push-cages”. In: Aquaculture vol. 473 (Mar.
2017).

Cubitt, K. F., Winberg, S., Huntingford, F. A., Kadri, S.,
Crampton, V. O., and Qverli, @. “Social hierarchies, growth
and brain serotonin metabolism in Atlantic salmon (Salmo
salar) kept under commercial rearing conditions”. In: Physi-
ology € Behavior vol. 94, no. 4 (2008), pp. 529-535.

Ohttps://www.sealab.nc

136

https://www.sealab.no

References

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132)

Merz, J. E., Skvorc, P., Sogard, S. M., Watry, C., Blankenship,
S. M., and Nieuwenhuyse, E. E. V. “Onset of melanophore
patterns in the head region of Chinook salmon: A natural
marker for the reidentification of individual fish”. In: North
American Journal of Fisheries Management vol. 32, no. 4
(2012), pp. 806-816.

Adland Hansen, A., Rodbotten, M., Eie, T., Lea, P., Rudi, K.,
and Morkgre, T. “The effect of crowding stress on bacterial
growth and sensory properties of chilled Atlantic salmon fillets”.
In: Journal of food science vol. 77, no. 1 (2012), S84-S90.

Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. “Deepface:
Closing the gap to human-level performance in face verifica-
tion”. In: Proceedings of the IEEE conference on computer vi-
sion and pattern recognition. 2014, pp. 1701-1708.

Eilertsen, A. B. “Identifikasjon av lakseindivider Biometri fase
1 (SalmID)”. In: Publikasjoner fra CRIStin - SINTEF Ocean
(2017).

Hammerset, I. “Biometric recognition and individual tracking
of salmon in large-scale sea cages.” eng. MA thesis. Norway:
Norwegian University of Science and Technology, 2018.

Turk, M. A. and Pentland, A. P. “Face recognition using eigen-
faces”. In: Proceedings. 1991 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition. IEEE. 1991,
pp. 586-591.

Belhumeur, P. N., Hespanha, J. P., and Kriegman, D. J.
“Eigenfaces vs. fisherfaces: Recognition using class specific
linear projection”. In: IEEE Transactions on pattern analysis
and machine intelligence vol. 19, no. 7 (1997), pp. 711-720.

He, X., Yan, S., Hu, Y., Niyogi, P., and Zhang, H.-J. “Face
recognition using laplacianfaces”. In: IFEE Transactions on
Pattern Analysis & Machine Intelligence, no. 3 (2005), pp. 328—
340.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,

L. “ImageNet: A large-scale hierarchical image database”. In:
CVPR09. 2009.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, lan Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Jia, Y., Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris

137

FishNet: A Unified Embedding for Salmon Recognition

[133]

138

Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vi-
jay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on heteroge-
neous systems. Software available from tensorflow.org. 2015.

Sun, S., Guo, P., Xie, L., and Hwang, M. “Adversarial regu-
larization for attention based end-to-end robust speech recog-
nition”. In: IEEE/ACM Transactions on Audio, Speech, and
Language Processing vol. 27, no. 11 (Nov. 2019), pp. 1826-
1838.

Using Extended Siamese
Networks to Provide Decision
Support in Aquaculture
Operations

Bjorn Magnus Mathisen, Kerstin Bach, Agnar Aamodt

139

Using Extended Siamese Networks to Provide Decision Support in
Aquaculture Operations

140

Introduction

Abstract

Aquaculture as an industry is expanding quickly. As a
result, new aquaculture sites are being established at more
exposed locations, previously deemed unfit because the are
more difficult and resource demanding to safely operate. To
help the industry deal with these challenges, we have developed
a decision support system to make better plans and decisions
to facilitate operating these sites in an optimal manner. We
propose a case-based reasoning system called aquaculture case-
based Reasoning (AQCBR), that is able to predict the success
of an aquaculture operation on a specific site, based on
previously applied and recorded cases. In particular, AQCBR
is trained to learn a similarity function between recorded
operational situations/cases and use the most similar case
to provide explanation-by-example for it’s predictions. The
novelty of AQCBR is that it uses extended Siamese neural
networks to learn the similarity between cases. Our extensive
experimental evaluation shows that extended Siamese neural
networks outperform state-of-the-art methods for similarity
learning in this task, demonstrating the effectiveness and the
feasibility of our approach.

IV.1 Introduction

Aquaculture is currently a growing industry in Norway, expected to
grow five-fold by year 2050 [0]. As a result the industry needs to
expand to new locations that are increasingly more exposed to harsh
weather conditions, as they are located further away from the coast.
As the aquaculture industry is set to grow it also faces scrutiny for
its environmental impact through lice growth on salmon and downfall
of waste to the seabed underneath the locations. Traditionally, the
industry has selected locations that are sheltered in fjords or behind
islands as more exposure makes the operation of the location more
expensive and dangerous. However, as a result of the environmental
impact from these aquaculture locations, government agencies do not
allow locations to be too closely grouped geographically. Thus new
locations for aquaculture operations will be more exposed to weather.
The aquaculture industry is already the second most dangerous
profession in Norway with regard to work related accidents[8, &]. An
important task in the future is to develop new technology for the
aquaculture industry that helps alleviate the increased risk resulting
from more exposed locations. Hence it becomes a priority to reduce
the amount of manual work and raise the level of automation. Decision

141

Using Extended Siamese Networks to Provide Decision Support in
Aquaculture Operations

support systems (DSS) can help managers to plan operations on the
sites better, and thus minimize the amount of manual work.

Decision support systems for the aquaculture industry have been
developed for many years, and utilize a wide range of different machine
learning and artificial intelligence techniques [62]. Aquaculture is an
industry that traditionally relies upon experience built up over years.
As a result the aquaculture industry does not have a tradition for
establishing methods and frameworks to create a more formal frame
for the industry practices.

Case-Based reasoning (CBR) is a machine learning method where
the learning is done via storing cases that describe previously encoun-
tered problems and their solutions. A new unseen problem can then
be solved by retrieving the stored case which most closely resembles
the new problem. The whole process can be described via the CBR
cycle [2]: Retrieve the most similar case, Reuse this case to solve the
new problem, revise the retrieved case in case the solution had to be
adapted to work for the new problem, and finally retain/store the re-
vised case. All parts of this cycle can be adapted when designing a
CBR system to solve a problem. However a natural point of focus is
the retrieval phase, where the CBR system must calculate the simi-
larity or distance between the problem case and all the stored cases.
This is usually done via similarity functions, which can be modeled
by domain experts or learned from data. Introducing a DSS system
using the CBR methodology for the aquaculture industry can benefit
from being able to capture and reuse past concrete experiences for
predictions or recommendations produced by the system. Applying
DSS in this fashion builds on the tradition in industry of drawing
upon previous experiences.

In this work, we propose AQCBR, which is a DSS that supports
aquaculture site operators in planning operations for their locations.
The procedures in the aquaculture industry is traditionally based
on a lot of experience and intuition. For a DSS to be effective in
such a work culture, any prediction made by the DSS should also
be explained to the user. Although not the main focus of our work,
Case-Based Reasoning (CBR) is an established method for explainable
systems (234, [35]. AQCBR provides this by using previously recorded
cases as a basis for predictions to the user. In our work, we created a
case base from a dataset that was collected previously in our project
for studying exposed aquaculture operations named EXPOSED™.
This case base was populated when developing AQCBR. We then
adapted several similarity learning methods to AQCBR to learn a
representation of the similarity between the operations. We have

10Rhtips://exposedaqguaculiure.noj

142

https://exposedaquaculture.no/

Related Work

evaluated the different similarity learning methods quantitatively
focusing on AQCBR’s usefulness for classification, then qualitatively
using similarity matrices. Our work focuses on evaluating the
similarity learning methods, and for retrieval we use a standard linear
retrieval method that compares all stored cases against the query case.

The main contribution of this paper is to adapt apply Extended
Siamese Neural networks [60] (ESNN) to learn the similarity between
cases of aquaculture operations that are stored in AQCBR. ESNN is
then evaluated in the context of the problem of comparing aquaculture
operations and shown to outperform other similarity state of the art
learning/distance metric learning methods.

The paper is organised as follows. In Section N4 we outline pre-
vious work related to machine learning applied to DSS in aquaculture.
Section M3 describes the different data sources, how the data was
gathered, how the data is interpreted, how we combine the different
data sources into a case and how the cases are grouped into a case-base.
In Section N4 we describe the method used for learning the similar-
ity function as well as the other methods used as reference. Section
O3 presents the results of evaluating the methods on the target task.
Finally we discuss and interpret the results from the experiments in
Section V4.

To make this work reproducible, the code for the experiments
described in this paper is available at https://github.com/ntnu-ai-lab/
esnn-aqcbr.

IV.2 Related Work

CBR has been applied to DSS systems in aquaculture before, such
as the work done by Tidemann et al. [78] on operational support in
fish farming, in addition to previous work on CBR for prediction of
success of marine operations [B]. As part of the work presented in
this paper we will focus on learning a similarity function to correctly
retrieve the most similar case for supporting the aquaculture operator
in planning operations.

Learning similarity functions from data reduces the work of the de-
veloper and domain expert for modeling the similarity function man-
ually when designing a CBR system. Methods for learning similarity
measure has been a topic of research for the CBR community for many
years [38, [37] and has also been of hightened focus recently [38, 38,
39]. Different types of methods for learning similarity have been used
for many tasks, such as deep metric learning for human activity recog-
nition [40] and Extended Siamese Neural Networks for 14 different
domains [50]. Dieterle et al’s work [41] where the features of cases

143

https://github.com/ntnu-ai-lab/esnn-aqcbr
https://github.com/ntnu-ai-lab/esnn-aqcbr

Using Extended Siamese Networks to Provide Decision Support in
Aquaculture Operations

are weighted by an ANN is another example of a learned similarity
function.

Siamese neural networks are a subset of a class of machine learning
techniques grouped under the term Deep Metric Learners (DML).
DML are optimized to learn an embedding function for datapoints and
then calculate the similarity or distance between two such embeddings.
One of the first examples of DML was Siamese Neural Networks
(SNN), that are trained on pairs of cases. The first example of this
was Bromley et al. [A8] where a SNN was used to compare signatures.
This usage of DML follows a pattern where DML are applied to
problems where the number of classes is large such as identification
of human activity [040], signature [48] or persons [B0]. Typically
SNN learns on pairs of datapoints and the loss function is typically
calculated from whether the two most similar cases fall within the
same class. Recent developments within DML has expanded this
to triplet-networks [B4] where the DML are trained in triplets of
an anchor datapoint, a positive datapoint (same class as the anchor
datapoint) and a negative datapoint (different class than the anchor
case). Matching networks [28] are also a subclass of DML where DML
are trained on representatives from clusters in the dataset. Some
methods of Similarity Learning fall outside the DML class of methods,
such as the work done by Gabel et al. [38] which learns the similarity of
two data points by training on concatenations of each pair of dataset.

Another application of Siamese neural networks is target tracking,
i.e. tracking objects across video frames [[42, 81, B3, B2] where the
siamese architecture is used to compute the distance/correlation of
two image patches. In this type of application of SNN the siamese
networks are typically convolutional neural networks that extract
information from parts of images. Some of the SNNs also employ long-
short term memory modules to capture patterns over time between
and within frames [83, B2]. The two embeddings computed by the
SNNs in tracking problems are combined using a correlation operation.
The output of the correlation operation can then be used to estimate
the distance between the two data points. Typically SNNs are fully
symmetric end-to-end with regards to the two inputs, in contrast some
of the SNN methods for visual tracking [31, 82, B3] apply an operation
to only one of the signals before they are combined to calculate the
distance/correlation.

In previous work we have developed a method we call Extended
Siamese Neural Networks (eSNN) as described in [60]. eSNN is an
extension of a SNN that has been shown to have greater capacity
than SNN for learning to differentiate between classes/categories in
a metric learning task. In addition to learning embeddings in the
way SNN does, eSNN also learns how to use the differences between

144

Operational situation dataset and Case definition

two such embeddings to calculate the distance. This makes eSNN a
Type 4 similarity function [50] which has shown the best performance
in terms of similarity learning on datasets which are hard to classify.
We use eSNN to create a DSS based on a CBR system (AQCBR) to
predict failures in operations on exposed aquaculture locations.

IV.3 Operational situation dataset and Case
definition

As part of the EXPOSED project operational data was gathered
at three different aquaculture locations. Each of the locations was
exposed to weather and harsh environments at a level well above
average in this industry.

IV.3.1 Reports

The operators on the sites were tasked with recording if a set of
possible operations was possible to perform that day or if the weather
or environment would be too challenging to safely execute these
operations.

The operations considered each day were:

o Go out to the site (all of the personnel typically do not live/sleep
on the location).

e Do the daily inspection, go out on the seacage structure and
inspect the structure itself, as well as the fish, to ensure good
fish welfare.

e Use of a crane on boat in relation to the location structures.
Typically strong winds or waves makes operating a crane from
a boat very difficult as the length of the crane amplifies the
movement generated by the waves on the boat.

o Use winch from a boat to operate on the location (e.g. pull up
different parts of the underwater structure)

e Operate a wellboat on location. Wellboats are used to collect
fully grown fish for slaughter or deliver spawn to the fishfarm
cages.

e Do de-licing operations on location. Typically done by wellboats
using either chemical, temperature or mechanical means of de-
licing.

145

Using Extended Siamese Networks to Provide Decision Support in
Aquaculture Operations

e Deliver fishfood and freshwater via feedboat equipped without
dynamic positioning.

e Deliver fishfood and freshwater via feedboat equipped with
dynamic positioning.

In addition, if any operation was deemed too difficult because of
weather or environment, each of the reports had to specify whether
it was wind, waves, currents or a combination of them that was a
hindrance for that operation. Table N1 shows example reports from
four days over two weeks.

In total, 708 reports were recorded from 05.12.2016 to 30.12.2018.

IV.3.2 Weather reports

The Norwegian Meteorological Institute provides historical records of
weather data through its API™. This API provides recorded weather
data from the closest weather station to a given point in Norway.
Thus we could collect wind speed and wind direction at the location
and time for each report. However, the different weather stations and
their sensors do fail from time to time, so for some days the closest
operational weather station may be further away from the location of
the aquaculture operation than others. As a result we calculate the
distance from the weather station to the location for each report as a
feature in this dataset.

IV.3.3 Exposure level and wind effect

The EXPOSED project has produced a dataset [[43] that describes
the degree of exposure for most of the aquaculture installations in
Norway. The data set provides a level of exposure for 360 degrees
around the installation. Exposure level is quantified in the range
from 0 to 1, where 0 represents where the installation is shielded
by landmass close to the installation and where 1 represents no land
within 40km. This dataset provides the exposure level in the direction
of the wind at any point in time.

It is intuitive to incorporate the exposure level data into the cases
so that a learned similarity function can compare levels of exposure
between sites when computing similarity between operational situa-
tions. Including all 360 data points per site for every report would
be counter productive for several reasons. Firstly, the exposure data
does not change over time for each site. Secondly, only a small por-
tion of the exposure data in the direction of the wind on a particular

M htips:7/trost.met.nc

146

https://frost.met.no

Operational situation dataset and Case definition

Parameter/Week number Week 39 Week 40
Date 30.09.2017 02.10.2017
Go out to site wind

Go out to site wave

Go out to site current

Daily inspection wind

Daily inspection wave

Daily inspection current

Use of crane on boat wind

Use of crane on boat wave

Use of crane on boat current

Use of nokke on boat wind

Use of nokke on boat wave

Use of nokke on boat current
Usage of wellboat wind

Usage of wellboat wave

Usage of wellboat current

Usage of service boat wind

Usage of service boat wave

Usage of service boat current
Delicing wind

Delicing wave

Delicing current

Usage of feedboat w/anchor wind
Usage of feedboat w/anchor wave
Usage of feedboat w/anchor current
Usage of feedboat w/DP wind
Usage of feedboat w/DP wave
Usage of feedboat w/DP current

OO O OO OO OO ODODODODOODOODOODOODODODODODOO O OO
O OO OO OO MO MMOMPMOOOOMMROMMKOOOO

o

Table IV.7: Example of two cases from different aquaculture sites
from two days over the period of two calendar week. The features
of the cases are binary where “17” (also highlighted with bold in the
table) indicates a failure of that operation for that time and location.
Conversely “0” indicates that the operation was successful. The
features of the cases has values for each operation type, indicating
whether it was wind, waves or currents respectively that was the
reason for failure. The example from week 39 shows a case where
all operations were successful. The second example case from week
40 shows a failure to do daily inspection, use a crane on a boat, use
wellboat and service boat as well as de-licing. All of these failures
in the case from week 40 was due to wind and waves, not because of
currents. We can also see that usage of feedboat was still possible, this
is because these boats are bigger and their operations less sensitive to
weather.

147

Using Extended Siamese Networks to Provide Decision Support in
Aquaculture Operations

Largest
open sector —-1

o e
‘:m%/{ Hitra é’ 2[~<} (;:"U
Site no. 57{9@%}/" : A;%’

Figure IV.38: Level of exposure for one of the sites [143] that provided
data for our work. One can see that the site is exposed to wind and
waves from the North (marked as an open sector).

day has an effect on the operations for that day (being exposed in
the direction of no wind has little effect). Our solution is to combine
the exposure level with the wind direction at the location and time
of the report. This way the learned similarity function can take into
account the exposure level in the same direction as the wind direction
at that time. This is implemented as a lookup function that returns
the exposure level for a given wind direction. To make the function
more smooth in terms of wind effect we add a Gaussian filter. This
will let neighboring exposure levels have an effect on the calculated
wind effect. This lookup function gf is defined as follows:

gf(wd, el,wis) = G(wis + 1) e el(wd, wis), (IV.10)

where G(-) returns a Gaussian filter of size wis as a vector, and
el(wd,wis) returns the exposure level in the wind direction wd as
well as wis exposure levels adjacent to the wind direction wd. This
enables the model to take into account the level of exposure adjacent
to the wind direction, and not only the single degree of direction from
the wind. In our model we set this window wis to 10 thus accounting
for the exposure level +5 degrees of the wind direction. This vector of
wind exposure levels around the wind direction can then be combined
with the wind speed to give us the wind effect. This is defined as we:

we(w, wd, el, wis) = gf(wd, el,wis) - w, (IV.11)

where w is the wind speed at the site at that current time and all
other function parameters are as defined in Equation [N_TO.

148

Operational situation dataset and Case definition

IV.3.4 Case Definition and Case Base Population

For all eight different types of operations listed in subsection IN-371
there can be four different outcomes: No failure or failure because of
wind, waves or current. This results in 4 * 8 = 32 classes, which is too
many classes to learn to separate from 708 data points. However, from
the perspective of a DSS user in the setting of aquaculture operation
planning, a general prediction of operational failure is useful. Thus,
grouping the failure types and causes together reduces the resolution,
but retains most of the utility of AQCBR as a DSS. After grouping
all the failures, we can evaluate AQCBR’s ability to predict failures
related to weather. Given that these operational failures occur seldom,
the dataset is unbalanced, with 88% of all cases not reporting any
failures. Given a failed operation, it is highly likely that more wind
from the same direction would also be a failure. This makes it simple
to generate realistic failure cases from the existing failure cases to
expand the training dataset. To generate a realistic case we pick a
random failed operation and add a small random value to the wind
speed. This is done while making sure the data point is not noise (i.e.
has low wind speed, see Figure IV-34). Figure shows a pairplot
of a subset of the case features, with the cases colored according to
class (failure/success). The pairplot shows that most failure cases
occur during high wind speeds, but that some occur during low wind
speeds. The failure cases of the latter type is not considered during
re-balancing of the dataset.

Given this, we can now define the case base for AQCBR. Formally,
let the farms data be d = x1,22,...,2, where x; is one report
containing an operation’s success or failure(sf). Further let el =
ely,...,el, be the dataset of exposure levels where el; corresponds to
the exposure level at the location of report x;. And let w = wq,...,w,
be the dataset of weather reports collected for these sites where w;
corresponds to the report x;. These weather reports contain wind
speed (ws), wind direction (wd) and distance to weather station (di).
Thus the case can be represented as:

Ci(mi, el w;) = wi(ws, wd, di), we(w; (ws), w; (wd), el;, wis), z;(sf),

(IV.12)
where we(-) is defined by Equation INTT and wis is the window size
of the weather effect (how much of the exposure levels to either side of
the wind direction should be taken into account). Cases bases are then
split up into test (query) and train parts via stratified cross-validation
for evaluation of AQCBR (see Section INH). Example cases following
this definition can be seen in Table V3.

149

Using Extended Siamese Networks to Provide Decision Support in
Aquaculture Operations

wind speed

0.01

1.04
0.8
0.6 4

class
° ® success

wind from direction

o failure

=
=
L

wind effect

wind speed wind from direction o0 w'\ndoe“fsfect e

Figure 1V.39: Pair plot which shows the correlation between three of
the features of the cases of the EXPOSED dataset. The coloring of
the data points shows if operation was successful (blue) or failures
(orange). All values are normalized (e.g. wind speed=1 is the
maximum wind speed in the dataset). We can see that the wind speed
feature has two clusters according to failure or success. However, there
are also a number of failure cases with low wind speed.

Ex| WS | WD | Di | WE| SJF
A [0.78 (15.6) | 0.725 (261) | 0.14 (8844) | 0.08 | failure
B | 0.22 (4.5) | 0.741 (267) | 0.14 (8844) | 0.026 | success

Table IV.8: This table shows two example cases from the recorded
data used for the training and testing done in this work. Each
example (Ex) case is described with associated wind speed (WS), wind
direction (WD), distance (Di) between site and weather station, the
wind effect (WE) and if the case represents a success or a failure (S/F).
Example A shows a failed operation with high wind speed (15.6 m/s)
from 261 degrees recorded at a weather station 8844 meters from
the aquaculture location. Example B shows an operation which did
not fail, with much lower wind speeds (4.5 m/s) from the same wind
direction reported from the same weather station.

150

Extended Siamese Neural Networks

IV.4 Extended Siamese Neural Networks

For AQCBR to perform well it needs to retrieve the most appropriate
case from the case base when presented with a query case. Thus
after populating the case base (Section IN-3d) we need to define a
similarity function that captures the connection between weather data
and exposure level at the site, and if an aquaculture operation could be
successful given those circumstances. This could be done in different
ways, including manual/analytical modeling. However, in this paper
we are focusing on automatic learning of this similarity function using
similarity learning. This is because differences between localities, and
how these differences change the way weather affects operations, are
hard to model manually. Our approach is to learn this connection
through induction by creating a machine learning model based on
collected data.

Below we briefly describe our method for similarity learning in
AQCBR as well as the reference methods used for comparison.

Extended Siamese Neural Networks (ESNN) has been shown to
have good performance compared to other methods [60] and was
chosen as the primary method of similarity learning for AQCBR. We
refer to the implementation of ESNN in this work as esnn. For
reference we also implemented the similarity learning from Chopra
et al.[37] (implementation referred to as chopra) and Gabel et al. [B]
(implementation referred to as gabel). chopra is a type 3 similarity
function that learns to create useful embeddings and then calculate
the L2&a(Euclidian) distance between pairs of embeddings. Figure
shows the general architecture of the Extended Siamese Neural
Network (ESNN).

As seen in Figure N0, esnn has three outputs, with two outputs
used for calculating loss (;f_c' and 5) The third output is the distance
between the two data points. As seen in Figure INAQ esnn is
comprised of an embedding function G(-) and a binary function C(, -)
that uses the two embeddings (5 and]j) to compute the similarity
between the two input datapoints (# and #). More specifically,
C(%,7) = C(ABS(% — 9)). Let F(Z) be the features of the case and
S(Z) the solution (or target) of case . For a pair of two cases (T, i)
the loss function of ESNN can then be defined as:

L(a, 2,9, s) = (Le(G(7), S(F)) + Le(G(9), S(¥)))
+ - Ls(Z,7,s),

(IV.13)

where « is a parameter to weight the importance of the three different
outputs of the loss function and s is the true similarity. L.(p,q) is

151

Using Extended Siamese Networks to Provide Decision Support in
Aquaculture Operations

Similarity

Figure 1V.40: Architecture of the ESNN method that provides a
similarity function. This shows how the two datapoints Z and ¥ are
embedded through G(+) (implemented by a neural network) to produce
embeddings 7 and § A vector absolute difference between the two
embeddings are then calculated and used as input to a second neural
network. In addition the two embeddings are used to calculate loss
against the classification of each of the data points.

the categorical cross entropy loss between p and ¢. Finally, Ly is the
similarity loss, the difference between the models predicted similarity
and the true similarity, this is defined as:

Ly(%,9,5) = |s — C(G(7), G(9)| (IV.14)

The loss function for chopra is Ls(Z, 9, s) with C(G(Z), G(y)) =
|G(Z) — G(7)|, as C(&,9) is modeled as the L2-distance between the
embeddings 7 and zj gabel uses the same loss L, (Z, ¢, s), but as gabel
does not learn embeddings, G(-) becomes the identity function I(-)
while C(I1(Z), I(¢)) is learned as a neural network model.

Early experiments showed that for the case base defined in the
previous section, a high « produces the best results as a similarity
function for AQCBR. As a result, an a equal to 1 was chosen, as can be
seen from Equation INT3 this results in; L(a = 1, %, ¥, s) = L(Z, 7).
Thus in our experiments all loss functions are identical in how they
measure model performance.

IV.5 Evaluation

The results shown in Figures AT and N22 were generated with five-
fold stratified cross-validation and repeated five times resulting in a
mean and standard deviation for each epoch. The embedding part
G(+) of the similarity functions esnn and chopra was implemented as
a fully connected ANN with three layers of size 40, 6 and 3. esnn

152

Evaluation

had additional two fully connected layers of size 4 and 2 to learn
the binary function C(-,-). The results in Figure IN-ZT and N2
show that the esnn similarity assessment performs better than chopra
and gabel. A retrieval validation was run every 10th epoch, where
every data point from the test set of that fold is used as a query
case. The training set is used as the case base. The validation
performance was then calculated based on whether the most similar
case had the same solution as the query case. Figures N-21 and V42
show the training and validation performance across 1000 epochs.
The training performance shows that esnn outperforms the reference
methods chopra and gabel in training speed and accuracy, as well
as having slightly better validation accuracy. In addition, one can
observe that chopra achieves performance very quickly, while gabel
achieves performance much more slowly.

label
= esnn.train
0.7 .
~—— chopra.train
—— gabel.train
0.6 1
k A ———
P
& 0.5
0.4 4
0.3 1
0 200 400 600 800 1000

epoch

Figure IV.41: Training results across 1000 epochs for the different
similarity functions. The experiment was done with five fold cross-
validation and then repeated five times for validity. Like the results
reported in [60] we can see that esnn and chopra achieves high training
accuracy early on while gabel needs more training time as a result
of its architecture. We can also observe that chopra thresholds in
performance at around 0.55 loss while esnn and gabel improves it’s
loss beyond this threshold.

After 1000 epochs of training the retrieval performance (measured

153

Using Extended Siamese Networks to Provide Decision Support in
Aquaculture Operations

label
0.5 1 = esnn.val
~—— chopra.val
——— gabel.val
0.4 4
2
< 0.3
0.2 4
0.14
T T T T T T
0 200 400 600 800 1000
epoch

Figure IV.42: Validation results across 1000 epochs for the different
similarity functions. Data was recorded along with the data shown
in Figure IV, thus with 5 fold cross validation and repeated five
times. Validation loss val was calculated every 10 epoch. This graph
shows that the difference between esnn and chopra in terms of the
validation accuracy is much smaller than in the training loss as shown
in Figure O 1. As with the training performance gabel catches up
after some epochs, while chopra seems to overfit after 600 epochs.

as described in last paragraph) is 90% (£0,7%) for esnn, 85,57%
(£3,4%) for chopra and 82,32% (£8,7%) for gabel.

To illustrate the qualitative results of the retrieval for each of the
methods we generated similarity matrices. Figure INA3, N2 and
V23 show the similarity matrices and retrieval results for esnn, gabel
and chopra respectively. These figures were generated by sampling
ten random cases, then calculating the similarity between them for
each method. The second to last row of each figure shows the class
(failure or success) of the cases in each column. The cell values are the
similarity, where 1 is high similarity and 0 is low similarity. The colors
of the cells also illustrate the degrees of similarity with high similarity
(1) being dark blue and low similarity (0) being a light color. The last
row shows the name of the most similar case (except itself) of the case
for that column, the color of the cell indicates if this was a correctly
retrieved case.

154

Evaluation

opsitul opsitu2 opsitud opsitud opsitud opsitu6 opsituT opsituS opsitud opsituld
} \ \ } } \ \ \ l)

0.059

1 0.059 0.059

0.059

opsitul 0.0027 0 02 0.033 0.13 0.038

opsitu2 - 0.059

00029 0.00017 02 0.033 0.13 0.039

opsitud 0.059 0.003 0.00025 0.034 0.039

opsitus - 0.0027 0.0029 0.003

opsitu6 = 0 000017 0.00025

opsitu7 = 0.2

opsitus = 0.033 0.033 0.034

opsitug - 0.13

opsitul0 - 0.038 0.039 0.039

Figure IV.43: Similarity matrix for esnn. One can see that the matrix
is symmetric, which is a result of the architecture of the ESNN method
being based on Siamese Neural Networks(SNN). The retrieved cases
are all correctly retrieved. However, esnn still seems to output some
similarity across classes (e.g. the failure opsitu7 is 0.2 similar to the
success cases opsitul, 2 and 3.) This is in contrast to the similarity
matrix of chopra.

Figure V23 and V43 show that both esnn and chopra perform
well as a similarity measure in AQCBR, retrieving the correct cases
most often. Figure 44 shows that gabel performs slightly worse
in practice. The figure also shows that gabel is not a symmetric
similarity measure: the diagonal is not a static value and similarities
change when the ordering of cases change gabel(opsitu2, opsitu3) #
gabel(opsituld, opsitu2). One can also observe that chopra has a less
smooth similarity matrix, compared to esnn and gabel. chopra seems
to clearly mark that a query case is part of a class (success or failure),
with near zero similarity with cases in the case base with a different
class from the query class. This is not the case with esnn and gabel
which outputs possibilities of similarities between a query case with

155

Using Extended Siamese Networks to Provide Decision Support in
Aquaculture Operations

opsitul opsitu2 opsitud opsitud opsitud opsitu6 opsituT opsituS opsitud opsituld
} \ \ } } \ \ \ l)

0.022

0.99 0.015 0.014

0.019 0.95 0.95

0.0052 0.0098 046 0.018 0.024 0.0066

0.005 0.013 038 0.016 0.023 0.0065

opsitul

opsituz = 0.019

opsitu3

opsitud 0.005 0.015 0.015 0.023 0.0065

opsitu5 - 9.9¢-05 6.70-05

0.0066 0.0085 0.97

0.068

0.59

opsitu6 = 0.0038

opsitu7 4046

opsitug = 0.015 0.013 0.012

opsitug = 0.021 0.02 0.02

opsitul0 = 0.0024 0.0025 0.0027

opsitu3 opsitu6

Figure IV.44: Similarity matrix for gabel. This matrix shows signs
that this similarity learning method is not based on SNN as it is not
quite symmetric and the diagonal is not 1. In agreement with esnn,
this method measures the failure case opsitu7 to be close to the success
cases opsitul, 2 and 3. In contrast to esnn gabel measures opsitu 5
(failure) to be less close to opsitu7 (failure) than opsitu3 (success),
which is an inaccurate measurement.

one class and other cases with a different class. This is likely a
result of how chopra implements its binary function C(-,-) as a static
L2 distance function. As a result chorpa approximates a threshold
function after training. This suggests that similarity learning methods
that learn the binary part of similarity functions (denoted as C(-,-)
in Section INA) can provide more insight into similarities between
cases of different classes than similarity functions that does not learn
the binary part. However, in the context of AQCBR, esnn and gabel
could help users find insight into which parts of failed operations are
similar to successful operations.

156

Conclusions and Future Work

opsitul opsitu2 opsitud opsitud opsitud opsitu6 opsituT opsituS opsitud opsituld
} \ \ } } \ \ \ l)

opsitul 0.00047 0.0018 0.0059 0.062 0.0032

opsitu2 - 0.00047 00005 0.00051

0.0005 0.0018

0.016

0.0059 0.062 2.9¢-05 0.0033

opsitud 0.00051 0.0018 0.0059 0.062 1.6e-05 0.016 0.0033

opsitus - 0.0018 0.0018 0.0018

opsitu6 = 0.0059 0.0059 0.0059

opsitu7 - 0.062 0.062 0.062

opsitus - 29¢:05 46605

0.016 0.016

opsitug - 0.016

opsitul0 = 0.0032 0.0033 0.0033

- ' -

opsitus

Figure IV.45: Similarity matrix for chopra. This similarity matrix is
very binary in comparison with the ones from gabel and esnn, only
finding similarity within the same class.

IV.6 Conclusions and Future Work

In this work we have shown the need for decision support tools to help
support the aquaculture industry increase the level of automation and
planning. To this end, we have presented AQCBR, a DSS based on
CBR which uses the novel Extended Siamese neural networks method
for learning similarities.

Our results presented in the last section show that the similarity
learning method esnn outperforms gabel and chopra. This is
consistent with previously reported results from Mathisen et al.
[BO]. In addition, the similarity matrices and retrieval results in
Figures INA3 and A3 show that AQCBR performs well in terms of
retrieving previous cases with the same outcome as the query cases.
These figures also confirm that all three methods of similarity learning
perform well, even with esnn giving the best overall performance. We
also showed that esnn performs well with relatively little data (a total

157

Using Extended Siamese Networks to Provide Decision Support in
Aquaculture Operations

of 708 data points) given that the learning is reasonable (see Section

In this paper we have shown that AQCBR can serve as a
decision support system for aquaculture operators, as it does not only
differentiate feasible from unfeasible operations, it also comes with the
explanation capability given by the CBR system providing example
cases.

An extension to this work would be to not group all the different
types of operations into one as described in Section [M-3. However,
this would require more data points to allow esnn to correctly separate
more categories of operational successes and failures. As waves
typically build over days, especially if the location is very exposed,
including a time series of weather in relation to the location could
improve accuracy even more.

IV.7 Acknowledgements

We would like to thank the EXPOSED SFI project (Research Council
of Norway - grant number 237790) and Norwegian Open AI Lab for
the support to do this work. Thanks also to Helge Langseth, Gunnar
Senneset and Hans Vanhauwaert Bjelland for their great support
during our work.

References

[1] Olafsen, T., Winther, U., Olsen, Y., and Skjermo, J. “Value
created from productive oceans in 2050”. In: SINTEF Fisheries
and Aquaculture (2012), p. 83.

[2] Aamodt, A. and Plaza, E. “Case-based reasoning: Foun-
dational issues, methodological variations, and system ap-
proaches”. In: AT communications vol. 7, no. 1 (1994), pp. 39—
59.

[3] Holen, S. M., Utne, I. B., Holmen, I. M., and Aasjord,
H. “Occupational safety in aquaculture-Part 1: Injuries in
Norway”. In: Marine Policy vol. 96 (2018), pp. 184-192.

[4] Holen, S. M., Utne, I. B., Holmen, I. M., and Aasjord,
H. “Occupational safety in aquaculture-Part 2: Fatalities in
Norway 1982-2015". In: Marine Policy vol. 96 (2018), pp. 193
199.

158

References

28]

[30]

38]

Mathisen, B. M., Aamodt, A., and Langseth, H. “Data driven
case base construction for prediction of success of marine
operations”. In: Proceedings of ICCBR 2017 Workshops (CAW,
CBRDL, PO-CBR), Doctoral Consortium, and Competitions
co-located with the 25th International Conference on Case-
Based Reasoning (ICCBR 2017). 2017, pp. 102-111.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.
“Matching networks for one shot learning”. In: Advances in
Neural Information Processing Systems. 2016, pp. 3630-3638.

Schroff, F., Kalenichenko, D., and Philbin, J. “Facenet: A
unified embedding for face recognition and clustering”. In:
Proceedings of the IEEE conference on computer vision and
pattern recognition. 2015, pp. 815-823.

Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., and
Torr, P. H. “End-to-end representation learning for correlation
filter based tracking”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2017, pp. 2805—
2813.

Gao, P., Zhang, Q., Wang, F., Xiao, L., Fujita, H., and Zhang,
Y. “Learning reinforced attentional representation for end-to-
end visual tracking”. In: Information Sciences vol. 517 (2020),
pp. 52-67.

Gao, P., Yuan, R., Wang, F., Xiao, L., Fujita, H., and Zhang,
Y. “Siamese attentional keypoint network for high performance
visual tracking”. In: Knowledge-Based Systems vol. 193 (2020),
p. 105448.

Hoffer, E. and Ailon, N. “Deep metric learning using triplet
network”. In: International Workshop on Similarity-Based
Pattern Recognition. Springer. 2015, pp. 84-92.

Chopra, S., Hadsell, R., and LeCun, Y. “Learning a similarity
metric discriminatively, with application to face verification”.
In: Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on. Vol. 1. IEEE.
2005, pp- 539-546.

Gabel, T. and Godehardt, E. “Top-down induction of similarity
measures using similarity clouds”. In: Case-Based Reasoning
Research and Development. Ed. by Hiillermeier, E. and Minor,
M. Cham, 2015, pp. 149-164.

159

Using Extended Siamese Networks to Provide Decision Support in
Aquaculture Operations

[48]

[134]

[135]

[136]

[137]

138

[139)]

160

Bromley, J., Guyon, I., LeCun, Y., Sdckinger, E., and Shah, R.
“Signature verification using a" siamese" time delay neural net-
work”. In: Advances in neural information processing systems.
1994, pp. T37-744.

Mathisen, B. M., Aamodt, A., Bach, K., and Langseth, H.
“Learning similarity measures from data”. In: Progress in
Artificial Intelligence (Oct. 2019), pp. 129-143.

Mathisen, B. M., Haro, P., Hanssen, B., Bjork, S., and Walder-
haug, S. “Decision support systems in fisheries and aquaculture:
A systematic review”. In: arXiv preprint arXiv:1611.0837/
(2016).

Tidemann, A., Bjgrnson, F. O., and Aamodt, A. “Operational
support in fish farming through case-based reasoning”. In:
Advanced Research in Applied Artificial Intelligence. 2012,
pp. 104-113.

Sgrmo, F., Cassens, J., and Aamodt, A. “Explanation in
case-based reasoning—perspectives and goals”. In: Artificial
Intelligence Review vol. 24, no. 2 (2005), pp. 109-143.

Keane, M. T. and Kenny, E. M. “How case-based reasoning
explains neural networks: A theoretical analysis of XAI using
post-hoc explanation-by-example from a survey of ANN-CBR
twin-systems”. In: Case-Based Reasoning Research and Devel-
opment. Ed. by Bach, K. and Marling, C. Cham, 2019, pp. 155—
171.

Aha, D. W. “Case-based learning algorithms”. In: Proceedings
of the 1991 DARPA Case-Based Reasoning Workshop. Vol. 1.
1991, pp. 147-158.

Stahl, A. “Learning similarity measures: A formal view based
on a generalized CBR model”. In: International Conference on
Case-Based Reasoning. Springer. 2005, pp. 507-521.

Hoffmann, M., Malburg, L., Klein, P., and Bergmann, R. “Us-
ing siamese graph neural networks for similarity-based retrieval
in process-oriented case-based reasoning”. In: Case-Based Rea-
soning Research and Development: 28th International Confer-
ence, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Pro-
ceedings. Accepted for publication. 2020.

Ye, X., Leake, D., Huibregtse, W., and Dalkilic, M. “Apply-
ing Class-to-Class Siamese Networks to Explain Classifications

with Supportive and Contrastive Cases”. In: Case-Based Rea-
soning Research and Development: 28th International Confer-

References

[140]

[141]

[142]

[143]

ence, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Pro-
ceedings. Accepted for publication. 2020.

Martin, K., Wijekoon, A., and Wiratunga, N. “Human activity
recognition with deep metric learners.” In: CEUR Workshop
Proceedings. 2019.

Dieterle, S. and Bergmann, R. “A hybrid CBR-ANN approach
to the appraisal of internet domain names”. In: International
Conference on Case-Based Reasoning. Springer. 2014, pp. 95—
109.

Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A.,
and Torr, P. H. “Fully-convolutional siamese networks for

object tracking”. In: Furopean conference on computer vision.
Springer. 2016, pp. 850-865.

Lader, P., Kristiansen, D., Alver, M., Bjelland, H. V., and
Myrhaug, D. “Classification of aquaculture locations in norway
with respect to wind wave exposure”. In: Proceedings of the
ASME 2017 36th International Conference on Ocean, Offshore
and Arctic Engineering OMAE2017. 2017.

161

Appendices

Defining the initial case-base
for a CBR operator support
system in digital finishing

Leendert Wienhofen, Bjorn Magnus Mathisen

165

Defining the initial case-base for a CBR operator support system in
digital finishing

166

Introduction

Abstract

Case-based reasoning (CBR) literature defines the process of
defining a case-base as a hard and time-demanding task though
the same literature does not report in detail on how to build
your initial case base. The main contribution of this paper is
the description of the methods that we used in order to build
the initial case-base including the steps taken in order to make
sure that the quality of the initial case set is appropriate. We
first present the domain and argue why CBR is an appropriate
solution for our application. Then we detail how we created
the case base and show how the cases are validated.

A.1 Introduction

Case-based reasoning (CBR) literature defines the process of defining
a case-base as a hard and time-demanding task though do not report
in detail on how to actually build your initial case base. Oztiirk and
Tideman say in their 2014 review paper [144]: "Initial population of
a case base is a daunting task in classical CBR because it is manually
crafted by knowledge engineers who make use of domain experts or
written material to extract the case content. ... We believe case
grounding problem is the reason why CBR has not seen wide-spread
adoption in the industry - because manual extraction of cases from
reports and records is costly and time consuming". In this context, we
present a knowledge acquisition process that was applied to create an
initial set of cases while constructing a CBR system in an industrial
setting. We explain the domain in which we applied CBR and argue
why it is an appropriate solution for our application. This is followed
by a description of a methodological approach for building an initial
case base. Revision and validation of the case base and the similarity
features are presented in the discussion section.

The main contribution of this paper is the description of the
methods that we used in order to build an initial case-base for our
CBR system in an industrial domain, including the steps taken in
order to make sure that the quality of the initial case set is appropriate.

A.1.1 Background

The case-based decision support system described in this paper is part
of a project that is trying to increase the speed of digital conversion.
Digital conversion is the process of cutting or milling various types of
materials into shapes, based on a digital design. The speed is to be

167

Defining the initial case-base for a CBR operator support system in
digital finishing

increased concerning the actual cutting speed as well as the time to
shift between different jobs.

This paper will focus on the latter and the main objective, as set
forward in the project proposal, is to decrease the time an operator
uses between jobs by 80%.

Graphics)

Figure A.46: A digital conversion table from Esko Graphics (Copy-
right Esko

Digital conversion machines (such as shown in Fig. [BEHA), also
referred to as cutting tables, offer a plethora of different settings
and the intervention is suggested to be an intelligent operator user
interface to the conversion machine, based on case-based (CBR) and
rule-based reasoning (RBR). By automating parts of the process
relating to load shifts, the job for the operator will be easier and faster,
with a lower margin for errors compared to the current situation.

The finished system should facilitate and automate learning from
past experiences (meaning cutting/milling jobs with settings specific
for a design and material) within a specific company. Future work will
enable the system to share data between deployments of the system,

168

Introduction

so that even competing companies can share their experiences without
sharing their competitive advantage.

A cutting table is a further development of a flatbed pen plotter,
where the pen can be substituted by knives and millings bits, and
the drawing paper by other types of material. Operations on the X
and Y-axis (given a certain depth and pressure on the Z-axis) vary
per material type. The optimal speed and acceleration for a given
actuator depend not only on the material type, but also on the vendor
(as quality can vary from vendor to vendor), the wear and tear of the
actuator as well as the complexity of the design to be cut/milled out
from the material, just to name a few. Therefore, these cutting tables
have a myriad of settings and require an experienced operator in order
to get the best results. Most of the knowledge required for configuring
the machine correctly is currently implicit, and knowledge transfer is
typically done on a face-to-face basis between operators. Generally
speaking, we can say that inexperienced operators do not dare to use
the full potential of the table in fear of damaging the materials on
which the cutting or milling operation is to be carried out on.

By making domain knowledge explicit in the form of a domain
model with instances, an inexperienced user can find similar cases
and re-use the settings. In our approach, we take this one step
further by applying case-based reasoning, which automatically selects
the most applicable case and related setting for the user so that the
full potential of the machine can be used.

A.1.2 Case-based reasoning as an enabler for
experience transfer

Based on interviews and observations at companies using digital
conversion tables, we conclude that experience is typically not stored
in a structured manner and knowledge transfer happens in an informal
way between co-workers. Operators of these machines typically learn
by doing, and because of this the full potential of a machine is
not always reached, especially when operated by inexperienced users.
Users report that they are afraid of breaking something when they
apply parameters they are unsure of.

In some cases a note with settings is taped on the operator console,
though these contain proven safe settings for a typical material and
tool combination. Another company uses a whiteboard for settings,
though it is rarely updated and personnel indicate that they actually
do not use the settings that are noted there and rather trust their
own feelings concerning the settings. There is no structured means
of storing experiences among the companies that have been observed
during the case study.

169

Defining the initial case-base for a CBR operator support system in
digital finishing

As the working situation is based on a known desired outcome, case
based reasoning is an appropriate manner of addressing the problem
at hand.

We intend to create a knowledge base where the digital finishing
machine retains the settings, material type and other relevant param-
eters.

A.1.3 Distributed case-based reasoning

In the digital finishing industry companies use many different material
types, some on a more regular basis than others. As this is a very
experience-based process, chances are that the proper expertise is not
available in all companies. By providing access to case bases created
in other (competing) companies, one can draw from the experience.

A.1.4 Related work

It has been shown [143] that CBR is well suited as a means of decision
support for operators in a manufacturing setting. CBR is a form of
AT where the decision making support is based on a known outcome.
It takes a case (which is the product to be made) as input and tries
to find the most similar case in a case base. This means that cases
with a similar profile are suggested.

Competing companies can help each other increase their efficacy
by sharing case bases can be achieved via distributed case-based
reasoning. Distributed CBR has been around for a while and is well
described in among others [14G, 047, [48]. However, it seems to
be limited to non-competing companies, making knowledge sharing
a clear-cut benefit. In order to avoid potential problem with patented
designs, we decouple the geometry information from the design,
reducing it to an indication of the complexity of the design based
on a float where 0.0 is the least complex and 1.0 the most complex.
From the technical point of view there is no real difference in the
implementation.

Our CBR system will implement explanatory features enabling
the operator to choose to either apply the suggested settings or
retain the self-chosen setting based on the suggested settings and the
corresponding explanation. Based on the interviews, we can state that
it is important that the CBR system does not actually make a decision,
rather suggests a decision based on the most similar case. This way
the system supports the operator in his decision. The explanation
helps the operator to understand why a certain proposal has been
made by the system and therewith enables to operator to make an

170

Introduction

informed decision. The fundamental issues of explanations in CBR
are described well in [149].

Aamodt and Plaza [2] have formalized Case-based reasoning for
purposes of computer reasoning as a four-step process: Retrieve, reuse,
revise and retain.

In order to retrieve a case, one needs to identify features, collect
descriptors, interpret problem and infer descriptors. Prior to being
able to do that, one needs to have a case base. It is of importance
that the right features are extracted from a case as it will be the
fundament for further reasoning.Case acquisition is often manually
intensive. According to [95], a manually intensive approach for
storing experiences of individuals has been widely used in many CBR
applications. The general approach —as case bases are very domain
specific- is to talk to a domain expert and extract which parameters
are of most value and use that as a starting point. Getting the full
picture, however, requires talking to more than one expert and an
iterative approach in order to make sure that the right parameters
are used for the case base. In the following sections we present such
an approach.

The case quality needs to be safeguarded as the case base must
contain a representative set of problem solution pairs from the domain
at the initial stage of the CBR system. At the same time we
need to ensure that the case-base yields high quality results. Little
attention has been given to case-quality in the available literature, and
therefore the CBR expands without inspecting itselfa[gl]. We want
to address the quality problem by making sure that both the initial
case information as well as the cases to be learned will be initiated
and checked by humans.

If the case template is wrong, the result will be wrong. There is
a need to understand how the case template is defined, in practice.
Next we will see who has addressed this central issue and what they
can tell us about how to do address it.

Oztiirk and Tideman’s [44] statement "We believe case grounding
problem is the reason why CBR has not seen wide-spread adoption
in the industry - because manual extraction of cases from reports and
records is costly and time consuming" is one of the main reasons why
we report our approach related to knowledge acquisition. We do agree
that it is a time consuming effort, though, when consulting existing
literature for knowledge acquisition for CBR to learn how to extract
and categorize the relevant information, we did not find any clear
guidelines or methodological descriptions for case grounding. This
might be an additional reason to why CBR has not seen a widespread
adoption in the industry.

The recent trend is to (semi)-automate the case acquisition process

171

Defining the initial case-base for a CBR operator support system in
digital finishing

[95, O3, 050, 050, 152]. The approach sketched by [95] is based on
initiating the case base with random values, though still based on
a formalized data-sheet template for case representation. However,
there is no mentioning on how the template was established (the
assumption is that domain experts have been asked). They state:
"Case engineering is among the most complicated and costly tasks in
implementing a case-based reasoning system".

The cases that are part of the case-base are supposed to yield
solutions to the problems with minimal adaptation or human input.
This is desirable as otherwise the major usefulness of a CBR system to
reuse existing knowledge would be substantially harmed [I53]. This
implies that the case base must support this type of knowledge.

Richter [22] describes knowledge containers as keepers of case
information. The first requirement is that the case base should only
contain cases (p, s) where the utility of s is maximal or at least very
good for the problem p. This is knowledge contained in the individual
cases.

The case acquisition process itself, meaning the initiation of a case
base, is not described though 4 different sources are mentioned in
Richter’s invited talk at ICCBR in 1995 [i54]: domain knowledge,
cases, similarity knowledge and adaptation knowledge.

The domain knowledge is what fills the template which can be used
for matching cases. According to, template retrieval is similar to SQL
queries in databases, where all cases fitting a template of parameters
are retrieved. The main merit of using of template retrieval is that
the faster retrieval and high currency by prevents irrelevant case from
being considered in similarity matching.

Aamodt [I55] described a framework for modeling the knowledge
contents of CBR systems based on Richters knowledge containers.
The model suggests decomposition in three perspectives. The power of
using three perspectives (tasks, methods, and models) for knowledge
level modeling lies in the interaction between the perspectives, and
the constraints they impose on each other. However, there is no
description on how to initiate the case base.

Cordier et al [(56] state that when there is a lack of domain
knowledge, the system may infer a solution that is correct with
respect to the knowledge base but not with the real world: making
the results invalid in the real world. The FRAKAS system [[57] is
an approach for interactive domain knowledge acquisition. Learning
takes place during the use of the system and aims at acquiring domain
or adaptation knowledge. The evaluation of the adapted solution
may highlight that it does not meet the requirements of the target
problem. In this situation, a reasoning failure occurs and is processed
by a learning process. The expert is involved in the process of

172

Introduction

identifying inconsistent parts of the solution which helps to augment
the knowledge base. The expert is involved in a simple manner
to point out faulty knowledge and he/she may provide a textual
explanation of the identified error to support complementary off-line
knowledge acquisition. The approach defined here is interesting with
respect to further population of a knowledge base, and a similar
approach can be used both to fill the knowledge base once a basic
case set has been established as well as a part of the regular learning
curve (one of the 4 R’s).

As in the CBR literature little is mentioned on how to populate
the initial case-bases, we turn to the cognitive science domain where
the fundamental concept is that "thinking can best be understood in
terms of representational structures in the mind and computational
procedures that operate on those structures."™ Cognitive science
in turn is related to the knowledge management and knowledge
engineering field where extracting information from experts in order
to create the foundation for among others expert systems has matured
over the past decades. Watson [I58] does describe how to apply
knowledge management for CBR, however, it lacks detail on the
establishing of the case base. Cognitive science is also mentioned
in [159] and regarding representation of knowledge they state the
following: "more generic issues of knowledge representation are seldom
addressed". Followed by "The case base plays a special role because
the cases can be entered without understanding them. The main point
is that knowledge can be shifted between containers (their content is
not invariant), which can be modeled using a learning process. In
addition, the shifting can be done manually without the support of a
learning method".

Our guiding motivating hypothesis is that an operator support
system based on case-based reasoning can help speed up the cut-
ting/milling process while maintaining satisfactory quality results.

As the intention is to create an operator support system using
CBR, we need a formal representation of the cases. By creating a
domain model, we separate domain knowledge from the operational
knowledge, enable the reuse of domain knowledge and make domain
assumptions explicit. Once the domain model is in place, we can
also populate the case base with relevant cases. Finding out what
a relevant case is and what needs to be represented in the domain
model go hand in hand. Our second hypothesis is that a user-
centered iterative approach is a good method to create a good formal
representation as a basis for the operator support system.

12Thagard, Paul, Cognitive Science, The Stanford Encyclopedia of Philosophy
(Fall 2008 Edition), Edward N. Zalta (ed.).

173

Defining the initial case-base for a CBR operator support system in
digital finishing

A.2 Method

While many publications (i.e. [IB0, 061, 062, (63, [64]) do describe
the knowledge acquisition approach for their domain, most do it on
a relatively technical level. We have applied several methods for
knowledge acquisition and the focus has been on a user-centered
iterative process. In the subsections below we give a brief explanation
of these methods and highlight our experience with these forms of
knowledge acquisition.

A.2.1 Research method

To systematically guide our research in this project we used the design
science research method is used according to [I65], as depicted in Fig.
B=T1. The research environment consists of machine supplier experts,
as well as machine operators. The research is driven by the need to use
the machines in an optimal manner, with the assumed outcome a more
optimal operation and therewith cost reductions. The knowledge base
is based on the existing literature on CBR and knowledge acquisition
as well our own findings.

Relevance Rigor

Environment — IS Research <—— Knowledge Base

People Develop/Build Foundations
-Roles -Theories -Theories
-Capabilities -Artifacts -Frameworks
-Characteristics A -Instruments
L Business Applicable | -Constructs
0rgam;ahon Needs Knowledge | _Models
-Stategies Assess Refine [-Methods
-Structure & Culture _Instantiations
-Processes
Technology A J Methodologies
-Infrastructure Justify/Evaluate -Data Analysis
-Applications -Analytical Techniques
-Communications -Case Study -Formalisms
Architecture -Experimental -Measures
-Development -Field Study -Validation Criteria
Capabilities -Simulation
A A
Application in the Additions to the
Appropriate Environment Knowledge Base

Figure A.47: Conceptual framework for IS research [I65]

e What is the effect of introducing an expert system based on
CBR on the effectiveness of operators?

174

Method

e What is the effect of introducing a distributed expert system
based on CBR?

User-centered design is conducted prior to the development of
complex systems to ensure deep understanding of user and stakeholder
roles. The aim is to ensure that system designed support the daily
work of end users and the role of stakeholders [[68, 7]

We have applied user-centered design in all activities in the
iterative process of assessing and refining our artifacts, adding it to
our knowledge base. The activities are carried out in close cooperation
with real stakeholders by means of various methods for data collection,
as described in the sections below.

A.2.2 Data collection

In our study we focus on a single manufacturer of digital conversion
tables. The study is based on design science research and evaluation
research and has been implemented at 3 different locations that
represent a typical customer of this manufacturer.

The intervention is the introduction of a distributed case-based
decision support system to support operators to make the right
decisions quicker and therewith both reduce the number of errors and
speed up the full process of job shifting.

The artifact to be created for this intervention is a research
challenge itself as populating a knowledge base is a non-trivial task.
A step wise approach for populating a CBR knowledge base will be
developed and the effect will be tested.

Some of the needed information can be retrieved from logs, though
this is a non-validated information source.

The study is divided in two parts: data collection participants and
intervention participants. The data collection methods are described
in the sub-sections below.

In both cases the population is recruited the manufacturer of
digital conversion tables- and the inclusion criterion is that the
participant is currently a customer operating digital conversion
machines. We focus on the data collection part in this paper.

For the data collection, we focus around the following questions

e Which information to extract from the operators?
e What is/are the bottleneck(s) in the load shift?
e Which factors impact the time used?

¢ What is the mean time?

175

Defining the initial case-base for a CBR operator support system in
digital finishing

e Does the knowledge of an operator impact the operation? And
in what way?

e How much information are companies willing to share with
competitors?

e How and when to present suggestions from the expert system to
operators?

In the sub-sections below we first present which methods we have
used for the data collection and in section B we provide the results of
the activities.

A.2.2.1 Observation

The first data gathering activity was based on observations. The
intention was to form a structure for later interviews and the first
subject was asked to explain (while preparing and operating the
cutting table) what he was doing and why he was doing it this way.
The observer did not interfere with the process.

A.2.2.2 Semi-structured interviews

We have conducted interviews at digital finishing companies in
Norway, Belgium and The Netherlands. The interview subjects were
mainly cutting table operators, though also managers/owners. As the
companies were relatively small, the latter category also in all cases
were table operators, yet not on a daily basis. The interview questions
were based on the results from the observation session and have been
expanded based on finding between the interviews. We used a set
with main questions and expanded while commencing the interview.

A.2.2.3 Questionnaire

We have developed a questionnaire in order to map the time operators
use when operating the machines. It was sent to 100 digital finishing
companies throughout the world.

A.2.2.4 Workshops

The technology provider catered for a workshop with employees with
a computer science background. During this workshop technical
boundaries were explored and details regarding the integration of the
operator support system discussed.

176

Results

A.2.2.5 Re-use of available data

We have gained access to a product guide describing which tools
can be used for which materials, and for some of these also a set of
settings for certain material types. However, the settings are relatively
conservative as they pertain to a material family. Specific materials
use material specific settings which can be much faster than the
material family setting. For the most used specific materials, specific
settings are available. Also an operator manuals of the current Esko
machines with i-cut software has been used as an information source.

A.3 Results

A.3.1 Case study: As is situation

Input for the study uses the data gathering methods described above,
in addition, one of the researchers took a table operator course to get
a real hands-on feel of using the system.

In Fig. B8 you see the repetitive and cyclic process of enhancing
the input, which can be mapped to the IS research part of Fig. B=2Q;
both Develop/build and justify/evaluate to ensure both relevance and
rigor.

The methods have been applied to digital finishing companies in
Norway, Belgium and The Netherlands.

Unfortunately, the response rate for the questionnaire was so low
that we were unable to use the results as a pinpoint for the average
type of operator and other information regarding machine use.

From the observation and interview activities, we learned that
machine operation to a large degree is completely experience based
and that the experience transfer is sub-optimal. Some factors that
influence the choices are the quality of the material that is used,
the wear and tear of the used actuator, the desired output quality
(not all customers demand a high quality finish) as well as the time
available between jobs. An ideal situation according to one of the
shop managers is that the machine is in use continuously. We did a
test using optimal speed settings with new actuators and high quality
material vs the regular settings with a new actuator and high quality
material. We found that the cutting speed in this specific case was
13 minutes vs 22 minutes. This supported the assumption that the
operators do not use the optimal settings and that an operator support
system indeed can be useful. For this specific case, relating to RQ1,
we can state that there is a good effect in using the operator support
system recommendations.

177

Defining the initial case-base for a CBR operator support system in
digital finishing

Company Aand B Feedback from project
members and colleagues

Observation and Questionnaire ‘ ‘ Questionnaire
un.strucFured Qvo.1 ‘ ‘ Qvo.2
interview
Method
Mixed-method approach Company Cand D Feedback from colleagues

» Observation

* Unstructured interview
Transcribe ‘ ‘Questiunnaire

i i Structured interviews
= Structured interview) /
interviews ‘ ‘ Quo.3

based on Q0.2 +
Observe

* Questionnaire

Company B and D

Structured
Interview
And observation

Result
analysis

Transcribe ‘ ‘Queslionnaire | Send Qv1.0to
interviews ‘ ‘ Qvi.o | 100 prospects

Figure A.48: Knowledge acquisition

Knowing the type of information the operators wish to use and
how they wish to use it, we discussed the technical boundaries with
the table and cutting table software provider. We gained access to
subsets of the required information required to create an operator
support system. All of the gathered information has been structured
into a domain model. See the next subsection for more details.

A.3.2 Domain model

In order to model the domain, we need to map domain knowledge (for
an impression, see Fig. B29). The main parameters that need to be
contained can be summarized as such:

/A cutting/milling job is performed by an operator on a cutting
table which uses a tool set with different actuators on a material
type following patterns stemming from a design. Considerations
regarding the speed and quality of the job are done by the operator
based on previous experiences and customer demands./

The previous sentences describe what the domain model needs to
include on an overall level. In short, it needs to include all relevant
information for an operator to be able to do a job in the fastest possible
manner or with the highest quality possible. These two are not always
mutually exclusive, though high speeds can sometimes lead to a lower
end-product quality. In some cases, the lower quality is still within
the quality assurance threshold.

178

Results

e Some questions that the operator support system needs to be
able to help answer are: Which settings should I avoid to use?

e What is the most optimal setting for this particular job with
regards to either quality or speed?

e What is the maximum speed I can use?

o Will these settings break stuff?

e Which settings should I change?

o Will this actuator (bit/blade) work with this material?

e What are the limitations of this tool applied on this material?

These questions imply that we need to know about the properties
of the materials, design, tools and table. During the domain
knowledge gathering process, we have identified the relevant terms
to include in the domain model. Due to space restrictions, we do not
include the domain model in this paper, though some of it can be seen
in the screenshots from MyCBR.

One of the results from the interviews shows that operators are
more likely to trust a recommendation if an explanation is given. If
the settings are presented following a pattern such as "in a similar case
we have successfully applied the following settings with a satisfactory
quality" followed by a question if the operator wishes to use these
settings instead, the operators responded positively. However, without
such explanation, the operators would not simply accept new settings.

A3.3 CBR

We have applied the domain model and created a CBR system
prototype using MyCBR [I68)].

The initial case base has been made in close cooperation with
experts from the company. Instances with proven cases in different
levels of aptness have been entered. It is important to note that these
cases are based on material family and not a specific instance of the
material itself. As properties are supplier specific, different settings
should be used. These settings will during the course of the use of the
system be formed as cases.

The similarity features (Fig. BZH) are based on conversations
with a tool and material experts. Fach specific material combined
with specific actuators have specific settings, also pertaining to the
complexity of the output to be generated.

179

Defining the initial case-base for a CBR operator support system in
digital finishing

File Model CaseBase Help
G| 1] 5 s () B B
Drjects| % @ 6f X = O |[@lobl3 | @ ESKOflotwi. | @ Job | ® Loyerhccelen, 17| 2 =0
4 ® Job - .

@ LayerAcceleration || Attribute

@ LayerActustor Name | LayerAcceleration]

@l lexity

@ LayerLayerType Type Integer

@ LoyerSpeedt - ||| Multiple

@ Loyerspeedz Minimum 0

F il Maimum 100

@ LoyerToolType
@ LayerToolTypeName =
@) Material MaterialName
Q Material MaterialQuality
@ Material Materia Thickness
@ Material MeasurementUnit

Ll 0

Emmlﬁlmnm\ = 8
%3 -
[E=1ob0. 4
[t=]sok1 H
] Job10
[Job11
[Job12
[l Job12
[Job14.
ElJob15

Attribute | Concept [(planaliun‘

4

(a) Domain model

File Model CaseBase Help

Quick Access | | [Vodiing) 7 coseboees 0F 8 o
& [o default function; 5 | = &
O | symmetry © symmetric @ asymmetric
& | Distance Function @ difference) quetient
(&l

© cons e
R T —
@ Polynomial with 1.0) Polynomial with
T T —
fease < query lcase > query

1,0
09
08
07
0,6
05
04
03
0,2
01
0,0

-100 73 -50 25 1} 25 50 75 100

(b) Similarity measure

Figure A.49: A screenshot of the domain model (A=9a) and an
example of a similarity measure (A=Z9H).

180

Discussion and lessons learned

A.3.4 Validation

Testing has been done based on the different cases with each their
rating. For material types two or more different cases have been
entered in the initial case base, including an indication in the aptness.
Similarity values and weights have been tuned in order to get the
closest case to match. This was later tried with new cases and the
results were satisfactory. A screenshot of matching results is shown

in Fig. B0

2 ESKO apertor uppert potaype 02 =)
Table Type: e Tabie Ty e
Layer Type: o LayerTypez loesse
atoria Type: Materai Type: |
ateria Descripton Type: Typez: G
ateiaFamiy Tye: Comugatea papersoare) ateril Famiy Typez: Comgaes papervcars)
atoialFamit Descripton atoil Family Description?
ateria Quaty: 00 m
ateria Thickness: a Wateria Thickness2: n
Layer Actuator: rsRezzs Layer Actustorz Cresse Wneei5 pant
Goometry complexiy: Low Goometry complexiyz: ow
Speedx: 0000000 Specaxvz: 50000000
Accetration n Acceterationz: @
Namber of cases tortriove n Number of cases to etrisvs - n
cetautuncion = setauttuncion
Comersation: Comrsationz:
1 found Job0) with a similarity of 0.771875 as the best match The 4 best cases shown in a table: “ 1 found Job7 with a similarity of 0.633125 as the best match The 4 best cases shown in a table 4
” 55), 3 (Papecboacd) BCA (-5 mm),
Lay ¢ fateral Layer . L fateal 50, Layer .
Layer ToolTspe=V, MateriaFamily MeasurementUnit=mm, Layer Actator=BLD-SR6223, Laser ToolTspe, MateralFamiy MessurementUrntemm, Layer Actustor=Crease Whesl -
OvecaL Sin-0.771875, L A 150mm - U Stape, Overal CottingTable-XP, Sm=0.653125
Jobo | MaterialFamily MaterialType=Corrugated (paperboard), Layer.LayerType=Cut, Job7 | Laver-GeometryComplexity=Medium, MaterialFamily MaterialType=Corrugated
Nteia MatertName-L W1, Materisl MeasurementUiite_uricaow (pspecbose), Layer LaserType-Creas, Materal MteraName-L WS
. sLina- - Prefered i igh qualsy, aeral . unnown, . MaterFamity
Laser ToolSubtype-Round Sttt Krife, Layer.ToolTypeName=Vib. Kaie, Test RatingByLins=2 - Alterntiveif medim qualty, Layer TolSubispe=HD Cresse,
f ecaFamis s Laser ToolTypeName-HD Crezse 20, Laer Acceeraion-100
[Material MaterialThickness=4} | MaterialFamily. MeasurementMaximum=>5, Material Material Thickness=4}
o @5), Descrpton=Cormogated (Faperboar®) BCA (-5)
L r fateal Layer Layer SpeeaxY- fateal 50,1
Layer ToolTspe=. MaterFamily MeasurementUnt-m. Layer Actutor-BLD-SR6224, Layer ToolTspe-, MatraFamily. Layer. Wheel -
OveraL 5P, S Lay » A 150 mm - 6 piar, Overal CotingTbie-XP, Sim=0.653125,
[Job27 L LayerType=Cut, Job6 - :
| Material MaterialName=L W1, Material MeasurementUnit=_unknown_, (paperboard), Layer LayerType=Crease, Material MateriaName=LW7,
ByLina=1 - Prfered i high quily, | ol vekown, MateclFarm; -
Layer TooiSubiype=Round Stift Kife, LayerToo[TypeName=Vib. Krife, et RatngbyLina=1 - refrredif medium qualy, Layer.ToolSubtype=HD Creas,
Ly 100, MterFami s Laser ToolTypeName-HD Cresse 20, Lser Acceleraton-100
Nisterial MateralThickaess—4) GteiFamity 5. Mteral MateraThickoess=4)
MaeraFamiy Descrpton—Cormugated (Paperboard) BCA (-3), NaeraFamiy Descrpton—Cormugated (Paperboard) BCA (-3),
Laser 5000000, Material Layer . Laser Mteial MaterQualty-10, Layr. .
Lave ToolType-W, MteraFamis it-r, Layer Actustor-3LD-SR6224, Lave ToolType=8, MateriaFami Layer Whed -
Overai Sim=0. L . y=Medium, 150mm - U Stape, Oseal CttingTsbie=XP, Sim=0 575125,
MteralFamiy MateralType=Corrugated (aperboard), Layer LaserType-Cat, L fxecilFanmiy Mater Type-Cortugated

Tos

s
[s [|

Figure A.50: Matching results screenshot

A.4 Discussion and lessons learned

The variety of knowledge elicitation methods we have used and the
variety of companies visited may seem like an too rigorous information
gathering, though we feel that in our case this was the right thing
to do. It is time and resource demanding, though by presenting
the various approaches, we hope to contribute to the knowledge gap
that seems to exist concerning creating an initial case-base. Different
situations cater for different methods of knowledge elicitation, and in
many cases, a less rigorous approach might be sufficient. Creating
a sound and valid foundation for the case template and case base is
resources demanding. However creating a CBR system that is neither
valid or useful is even more resource demanding. In general we can
recommend to talk to the system owner and a variety systems users

181

Defining the initial case-base for a CBR operator support system in
digital finishing

multiple times in order to best understand the problem at stake and
validate that the researchers (CBR system builders) really understand
the problem that the CBR system is to solve in a manner that is useful
for the end-users.

A.5 Conclusion and further work

This study has presented a use case for how to create a CBR system
with focus on building the initial case base, and the case template or
domain model. To create grounded basis for our CBR system, case
template and domain model we; observed the operators, performed
interviews with the operators, organized interactive workshops with
the operators, collected questionnaires and utilized available product
data.

These data sources all went into the design of the case base, case
template and domain model. An initial validation at one of the
companies shows that operators recognize and understand the CBR
system inputs and outputs. This serves as an example use case that
works toward solving the problems highlighted by [44]. With regards
to the main motivating hypothesis of this work initial tests also shows
increase in the operation of the machine that is augmented by the
CBR system. In the next part of this project the system will be
tested more thoroughly in terms of performance increase in the target
domain of the CBR system. In addition, we will develop a method for
abstracting and extracting high level knowledge from cases to be sent
into a distributed case base to ensure both knowledge sharing across
competing stakeholders while not disclosing competitive advantages.

A.6 Acknowledgments

The authors gratefully acknowledge the Norwegian Research Council
and the BIA program for financial support of the project (partially
through grant 235427) as well as the participating case companies,
which together enabled this study.

References

[2] Aamodt, A. and Plaza, E. “Case-based reasoning: Foun-
dational issues, methodological variations, and system ap-

proaches”. In: AT communications vol. 7, no. 1 (1994), pp. 39—
59.

[22] Richter, M. M. “Knowledge containers”. In: Readings in Case-
Based Reasoning vol. Morgan Kaufmann Publishers (2003).

182

References

[144]

[145]
[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

Yang, C., Farley, B., and Orchard, B. “Automated case creation
and management for diagnostic CBR systems”. In: Applied
Intelligence vol. 28, no. 1 (Feb. 2007), pp. 17-28.

Dufour-Lussier, V., Ber, F. L., Lieber, J., and Nauer, E.
“Automatic case acquisition from texts for process-oriented
case-based reasoning”. In: Information Systems vol. 40, no. nil
(2014), pp. 153-167.

Oztiirk, P. and Tidemann, A. “A review of case-based reason-
ing in cognition—action continuum: a step toward bridging sym-
bolic and non-symbolic artificial intelligence”. In: The Knowl-
edge Engineering Review vol. 29, no. 01 (2014), pp. 51-77.

Hinkle, D. and Toomey, C. “Applying case-based reasoning to
manufacturing”. In: AI magazine vol. 16, no. 1 (1995), p. 65.

Nagendra Prasad, M. V., Lander, S. E., and Lesser, V. R. On
retrieval and reasoning in distributed case bases. Generic. 1995.

Plaza, E. and McGinty, L. “Distributed case-based reasoning”.
In: The Knowledge Engineering Review vol. 20, no. 03 (2005),
pp. 261-265.

Leake, D. B. and Sooriamurthi, R. When Two Case Bases Are
Better than One: Exploiting Multiple Case Bases. Conference
Paper. 2001.

Roth-Berghofer, T. R. “Explanations and case-based reason-
ing: Foundational issues”. In: Advances in Case-Based Rea-
soning (In Peter Funk and Pedro A. Gonzdlez-Calero, editors).
September 2004, pp. 389-403.

Manzoor, J., Asif, S., Masud, M., and Khan, M. J. “Automatic
case generation for case-based reasoning systems using genetic
algorithms”. In: 2012 Third Global Congress on Intelligent
Systems. Nov. 2012, nil.

Shokouhi, S. V., Aamodt, A., and Skalle, P. A semi-automatic
method for case acquisition in CBR a study in oil well drilling.
Generic. 2010.

Shokouhi, S. V., Skalle, P., and Aamodt, A. “An overview of
case-based reasoning applications in drilling engineering”. In:
Artificial Intelligence Review vol. 41, no. 3 (2014), pp. 317-329.

Cunningham, P. “CBR: Strengths and weaknesses”. In: Tasks
and Methods in Applied Artificial Intelligence. Ed. by Pobil,
A. P. d., Mira, J., and Ali, M. Lecture Notes in Computer
Science. 1998, pp. 517-524.

183

Defining the initial case-base for a CBR operator support system in
digital finishing

[154]

[155]

[156]

[157]

158

159

[160]
[161]
[162]
[163]

[164]

[165]

[166]

[167]

184

Veloso, M. and Aamodt, A. Case-Based Reasoning Research
and Development: First International Conference, ICCBR-95,
Sesimbra, Portugal, October 23-26, 1995. Proceeding. Vol. 1010.
1995.

Aamodt, A. Modeling the knowledge contents of CBR systems.
Conference Paper. 2001.

Cordier, A., Fuchs, B., Lieber, J., and Mille, A. Failure analysis
for domain knowledge acquisition in a knowledge-intensive
CBR system. Conference Paper. 2007.

Cordier, A. “Interactive and opportunistic knowledge acqui-
sition in case-based reasoning”. Thesis. Université Claude
Bernard-Lyon I, 2008.

Watson, 1. Applying Knowledge Management: Techniques for
Building Corporate Memories. 2003.

Richter, M. M. and Aamodt, A. “Case-based reasoning founda-
tions”. In: The Knowledge Engineering Review vol. 20, no. 03
(2005), pp. 203-207.

Bach, K. Knowledge Acquisition for Case-Based Reasoning
Systems. 2012.

Bergmann, R. Ezperience Management Foundations, Develop-
ment Methodology, and Internet-Based Applications. 2002.

Tautz, C. Costumizing Software Engineering Experience Man-
agement Systems to Organizational Needs. 2000.

Bergmann Ralph, e. a. Developing industrial case-based reason-
ing applications: The INRECA methodology. 2003.

Kezunovic, M. and Rikalo, I. “Detect and classify faults using
neural nets”. In: IEEE Computer Applications in Power vol. 9,
no. 4 (1996), pp. 42-47.

Hevner, A. R., March, S. T., Park, J., and Ram, S. “Design
science in information systems research”. In: MIS Quarterly
vol. 28, no. 1 (2004).

Kubie, J., Melkus, L. A., Johnson, R. C., and Flanagan,
G. a. “User-centred design”. In: IS Management Handbook: 7th
Edition. Ed. by Brown, C. V. and Topi, H. 7th. Boca Raton,
FL, USA, 1999.

Shluzas, L. A., Steinert, M., and Katila, R. “User-centered
innovation for the design and development of complex products
and systems”. In: Design Thinking Research. 2014, pp. 135-
149.

References

[168] Stahl, A. and Roth-Berghofer, T. R. “Rapid prototyping of
CBR applications with the open source tool myCBR”. In:
European conference on case-based reasoning. Springer. 2008,
pp. 615-629.

185

Demonstrating the MmYCBR
Rest API

Kerstin Bach, Bjern Magnus Mathisen, Amar Jaiswal

187

Demonstrating the MYCBR Rest API

188

Introduction

Abstract

Case-based reasoning (CBR) tools are important to reduce the
effort of developing CBR systems. MYCBR has been a tool
for researchers and practitioners over the last ten years provid-
ing CBR system building blocks and functionality through the
MYCBR-SDK and means to develop CBR models in the My-
CBR-workbench. In this paper we present the MYCBR Rest
API which exposes the functionality of both MYyCBR-SDK and
MYCBR-workbench though a RESTful API. It includes the
MYCBR-SDK functionality to enable researchers the fast de-
velopment and experimentation of CBR applications from not
only Java, but from the programming language of the devel-
opers choice. Most of the MYCBR-workbench functionality
has also been exposed in the same fashion enabling users to
programmatically create, modify and delete CBR models and
case-bases, so that the Rest APT also allows MYCBR to act as a
service, and be accessed by the client software through HTTP.

B.1 Introduction

CBR tools have been developed since the very beginning of the
CBR research activities. The most general CBR tools developed and
provided as bundled or open source software are COLIBRIStudio (and
their predecessors COLIBRI, jCOLIBRI) [i69], CBRworks [I70] and
its successor MYCBR|[I6R]. Furthermore there are more specific CBR
tools targeting certain domains or case representations. For process-
oriented CBR, the Collaborative Agent-based Knowledge Engine
(CAKE) [r71] has been introduced, while CREEK [I77] is a tool
for knowledge-intense CBR and (B)EAR [I73, [74] focuses on the
adaptation in CBR systems. In addition there are also application
specific tools such as eXiT*CBR for medical diagnosis.

MYCBR™, which is the basis of this work, was developed by
German Research Center for Artificial Intelligence (DFKI) and has
been introduced as rapid prototyping tool for research and industrial
applications. Initially, MYCBR was introduced as an add-on to
the Protégé ontology tool [I75], but later re-implemented as a Java
standalone tool and software development kit (SDK) [I'76]. Up until
today, using MYCBR still required the CBR system to be integrated
in a Java environment.

Allowing users to model a CBR system using MYCBR’s workbench
and then deploying the application as a web service would make it
easier to build, test, compare and deploy CBR applications.

Bhttp://mycbr-project.org

189

Demonstrating the MYCBR Rest API

Much of the current success of Machine Learning can be linked to
the availability of machine learning models in tools like Scikit-learn
[C77] and Keras [I'78]. Such tools allows researchers and developers
to use the methods more easily and provide reproducible results
[C79]. Currently successful Machine Learning APIs are DialogFlow™,
TensorFlow.js™ or the Microsoft Cognitive Toolkit™. They all have
in common that users interact with them via web pages or web
services. Users of such services take responsibility for the provision of
data, configuration of each method’s parameters, and validation and
verification of the results. The services provide the functionality of
the core methods.

RESTful (REpresentational State Transfer) Application Program-
ming Interface (API) [IR0] is the current state-of-the-art to provide
web services. Restful APIs, or Rest APIs, have been developed and
their services have been deployed in industry over many years. How-
ever, in research they have not received a lot of attention. We believe,
however, that implementing research prototypes using a Rest API can
be a way forward to ease the development of systems in general, and
CBR systems in particular.

B.2 mYCBR Rest API

MYCBR applications are typically built as a Java application on top
of the MYCBR-SDK Java library. MYCBR-REST is designed to
expose MYCBR’s modeling functionality (e.g. creating concepts and
similarity functions) and MYCBR’s runtime functionality through a
HTTP REST API. This enables the user to programatically access the
features of what was previously exposed through two different tools
(MYCBR workbench and MYCBR-SDK) into an API. This API is also
conveniently accessible from all programming languages that support
accessing HTTP REST APIs. Figure B3 shows the architecture of
this design.

HTTP request _—

HTTP response +«——

Spring Boot
myCBR SDK
myCBR Rest API

Figure B.51: Components of the MYCBR-REST architecture.

Mhttps://dialogflow.com/
Bhttps://www.tensorflow.org/js/
16https://docs.microsoft.com/en-us/cognitive-toolkit/

190

Experiments and Applications

The Rest API has been implemented using the Spring Boot
Framework and configured to expose its documentation via a tool
called swagger. From swagger a developer can use the interactive
documentation for testing requests and developing applications.

Name Descrption

caselD

17w

casebaselD.

CaseBase0

Figure B.52: Example of the Swagger tool that shows how a Rest
call can be tested against a CBR application

During the demo, we will show how use the Rest API to obtain
information about the case representation, carry out the retrieval as
well as evaluating the results. We will provide examples using Python
3, however the Rest API can be used with all programming languages
languages that support Rest API and parsing JSON objects.

B.2.1 Retrieval

Figure Bh3 shows how the retrieval against the Rest API can be
implemented. The JSON data returned by the API can be directly
included in data frames and further evaluated from there.

B.3 Experiments and Applications

The MYCBR Rest API described in this demo has been used to
build and experiment with CBR systems over the last years. In the
following, we will describe the different areas of application.

191

Demonstrating the MYCBR Rest API

server = 'localhost'

port = 's080'
url = 'http://' + server + ':' + port + '/'

def retrieve_k_sim_byID_content(concept, casebase, amalfct, queryID, k):
raw = pd.DataFrame(requests.get(url + 'concepts/' + concept + '/casebases/'
+ casebase + '/retrievalByIDWithContent?amalgamation%20 functions' +amalFct+' &caseIDs='
+ queryID + '8k=' + k).json())
results = raw.apply(pd.to_numeric, errorss'coerce’).fillna(raw).sort_values(by='similarity’, ascending=False)
returned_df = results.apply(pd.to_numeric, errors='coerce'}.fillna(results)
return returned_df

Find most similar cases and get the full case content for them
retrieve_k_sim_byID_content('Car', 'CaseBase@', 'Carfunc', '17_ww', 'S'}

Body CCM CarCode Color Doors Gas Manufacturer Miles Model Power Price Speed Year ZIP caselD similarity

0 sedan 1900 17 dark_blue 4 diesel ww 71433 passat 90 22009 183 1995 6 17vw 1
1 sedan 1900 891 blue 4 diesel vw 68993 passat 110 23599 183 1995 2 891lvw 0658371
2 sedan 1900 532 dark blue 4 diesel ww 13701 passat 90 33199 183 1996 3 532vw 0.658114
3 sedan 1900 602 blue 4 gasoline vw 80748 passat 193 26499 183 1996 1 602vw 0632703
4 sedan 1900 467 dark blue 4 gasoline ww 91911 passat 100 16699 183 1995 8 467vw 0632574

Figure B.53: Example of the Python Code carrying out a retrieval
using the Rest API

B.3.1 Application in Research Projects

Up to today the integration of a CBR component as a web service
required a Java-based framework. With the presented work, a CBR
engine can be developed and easily deployed. One of the currently
running CBR applications developed in the SELFBACK project [1&1]
uses this infrastructure. Here the MyYCBR-driven engine is the core of
the decision support system to compare patient profiles and generate
self-management plans for low back pain patients. Moreover the
extended RESTful services are used to monitor and evaluate the
patient’s progress and provide responses to clinicians.

Furthermore, research prototypes have been developed in the last
three years. Skjold et al. [I82] presented an application focusing
on adapting sandwich recipes using CBR™. In this application the
Rest API has been used as the backend to carry out the similarity-
based retrieval and building ephemeral case bases for the adaptation
processes. In Engin et al. [I83], Verma et al. [IR4] and Jaiswal et al.
[I85] the Rest API was used in combination with Python to prototype
and evaluate different CBR methods.

In Mathisen et al. [60] Rest API is used to evaluate the
performance of different neural network architectures used as a
amalgamation function. The neural amalgamation function can be
used to add different pre-trained neural networks to be used a global
similarity function.

17The prototype of IntelliMeal is available at http://hv-6151.idi.ntnu.no

192

Conclusion and Outlook

B.3.2 Application in Education

During the last two years while the API has been developed, we
introduced it to students who then implemented CBR systems during
courses at Master’s and PhD level. Especially web-based applications
such as IntelliMeal ([I82]) were created. In the beginning of the
courses we gave an introduction explaining on how to create a MYCBR
project using the MYCBR tutorial™, followed by the introduction
to the MYCBR Rest API similar to the examples given in the
aforementioned iPython Notebook. Until now, about ten MYCBR
applications have been developed and experimented with at NTNU
using the introduced approach while four more are currently under
development.

Compared to the Java-only approach we see that the time until
the first prototype is up and running is dramatically reduced. Also,
for a basic CBR system, no Java knowledge is needed and students
can focus on case representations, similarity measure development or
adaptation strategies. The students found it convenient to interact
through the REST interface, so that the integration of a CBR
component in a more comprehensive data processing pipeline is
feasible.

B.4 Conclusion and Outlook

This demo presents a further development of the MYCBR tool that
allows developers and researchers easier prototyping, integration and
deployment of CBR systems. The MYCBR Rest API creates CBR
services that can be deployed and used anywhere as well as it allows
a systematic evaluation of the CBR systems. All content provided
in this paper is made available on GitHub under LGPL to be shared
with the community™. In conclusion, the MYCBR Rest API provides
a flexible framework for creating CBR systems and developing new
components. Moreover, it lowers the entry bar to experiment with
Case-Based Reasoning and compare it with other AT methods.

Acknowledgement

This work has been supported by the Norwegian Open AI Lab as
well as NTNU’s rector’s funds for multidisciplinary research. Further,
parts have been conducted within the SELFBACK research project,
which has received funding from the European Unions Horizon 2020

8http://mycbr-project.org/tutorials.html
https://github.com/orgs/ntnu-ai-lab/teams/mycbr/repositories

193

Demonstrating the MYCBR Rest API

research and innovation programme under grant agreement No 689043
and the EXPOSED Aquaculture centre for research-based innovation
funded by the centre partners and the Research Council of Norway.

References

[50]

168

169

[170]

[171)

[172]

[173]

[174]

175

194

Mathisen, B. M., Aamodt, A., Bach, K., and Langseth, H.
“Learning similarity measures from data”. In: Progress in
Artificial Intelligence (Oct. 2019), pp. 129-143.

Stahl, A. and Roth-Berghofer, T. R. “Rapid prototyping of
CBR applications with the open source tool myCBR”. In:
European conference on case-based reasoning. Springer. 2008,
pp. 615-629.

Diaz-Agudo, B., Gonzalez-Calero, P. A., Recio-Garcia, J. A.,
and Sanchez-Ruiz-Granados, A. A. “Building CBR systems
with jcolibri”. In: Science of Computer Programming vol. 69,
no. 1 (2007). Special issue on Experimental Software and
Toolkits, pp. 68-75.

Schulz, S. “CBR-Works - A state-of-the-art shell for case-
based application building”. In: Proceedings of the 7th German
Workshop on Case-Based Reasoning, GWCBR’99, Wrzburyg.
1999, pp. 3-5.

Bergmann, R., Gessinger, S., Gorg, S., and Miller, G. “The
collaborative agile knowledge engine CAKE”. In: Proceedings
of the 18th International Conference on Supporting Group
Work. GROUP 14. New York, NY, USA, 2014, pp. 281-284.

Aamodt, A. “Knowledge-intensive case-based reasoning in
CREEK”. In: Advances in Case-Based Reasoning, 7th Furo-
pean Conference, ECCBR 2004, Madrid, Spain, August 30 -
September 2, 2004, Proceedings. 2004, pp. 1-15.

Jalali, V. and Leake, D. “CBR meets big data: A case study
of large-scale adaptation rule generation”. In: Case-Based
Reasoning Research and Development. Ed. by Hiillermeier, E.
and Minor, M. Cham, 2015, pp. 181-196.

Jalali, V. and Leake, D. “Enhancing case-based regression
with automatically-generated ensembles of adaptations”. In: J.
Intell. Inf. Syst. vol. 46, no. 2 (Apr. 2016), pp. 237-258.

Musen, M. A. “The Protégé project: A look back and a look
forward”. In: AT Matters vol. 1, no. 4 (June 2015), pp. 4-12.

References

[176]

[177]

[178]
179

[180]

[181]

[182]

[183]

[184]

[185]

Bach, K. and Althoff, K.-D. “Developing case-based reasoning
applications using myCBR 3”. In: Case-Based Reasoning Re-
search and Development. Ed. by Agudo, B. D. and Watson, 1.
Berlin, Heidelberg, 2012, pp. 17-31.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss,
R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. “Scikit-learn:
Machine learning in Python”. In: J. Mach. Learn. Res. vol. 12
(Nov. 2011), pp. 2825-2830.

Chollet, F. et al. Keras. https://keras.ig. 2015.

Recio-Garca, J. A., Daz-Agudo, B., and Gonzélez-Calero,
P. A. “The COLIBRI open platform for the reproducibility of
CBR applications”. In: Case-Based Reasoning Research and
Development - 21st International Conference, ICCBR 2013,
Saratoga Springs, NY, USA, July 8-11, 2013. Proceedings.
2013, pp. 255-269.

Fielding, R. T. “Architectural styles and the design of network-
based software architectures”. AAI9980887. PhD thesis. Uni-
versity of California, Irvine, 2000.

Mork, P. J. and Bach, K. “A decision support system to
enhance self-management of low back pain: Protocol for the
selfBACK project”. In: JMIR Res Protoc vol. 7, no. 7 (July
2018), el67.

Skjold, K., @ynes, M., Bach, K., and Aamodt, A. “IntelliMeal
- Enhancing creativity by reusing domain knowledge in the
adaptation process”. In: ICCBR 2017 Workshops Proceedings,
Trondheim, Norway, June 26-28, 2017. 2017, pp. 277-284.

Engin, H. K., Nadim, F., Carotenuto, P., and Bach, K.
“Estimation of pile capacities using case-based reasoning (CBR)
method”. In: Proceedings of 4th International Symposium on
Computational Geomechanics. 2018.

Verma, D., Bach, K., and Mork, P. J. “Modelling similarity for
comparing physical activity profiles - a data-driven approach”.
In: Case-Based Reasoning Research and Development. Ed. by
Cox, M. T., Funk, P.; and Begum, S. Cham, 2018, pp. 415-430.

Jaiswal, A., Bach, K., Meisingset, 1., and Vasseljen, O. “Case
representation and similarity modeling for non-specific mus-
culoskeletal disorders - a case-based reasoning approach”. In:
FLAIRS-32 Conference. 2019.

195

https://keras.io

Use Case applying
machine-learning techniques
for improving operation of the
distribution network

Jorn Foros?, Maren Istad?!, Andrei Morch??, Bjorn
Magnus Mathisen?

197

Use Case applying machine-learning techniques for improving
operation of the distribution network

198

Introduction

Abstract

This paper discusses the use of machine learning (ML) tech-
niques to improve fault handling in distribution networks. The
paper includes a short survey on the use of ML techniques in
fault handling and shows that little published work has been
done on using weather data and smart metering data as data
sources. It can be argued that this is desired to increase the per-
formance and usability of ML in operational support systems.
Previous work also focuses almost exclusively on statistical ma-
chine learning aiming to replace traditional simulation models,
overlooking other ML methods which can support operations.
Here it is illustrated that Case based reasoning (CBR) can be
used to aid the decision-making for example, when trying to re-
store service after an outage. The paper also describes the use
of experience databases to aid the operator during fault han-
dling. To illustrate potential use of ML and CBR, the paper
presents a use case for future fault handling in low voltage dis-
tribution network and discusses the usefulness of this approach.
This example shows that implementation of ML techniques in
daily operation can be expected to contribute to reduction of
costs for the network companies and increased security of sup-
ply for the customers.

C.1 Introduction

A distribution system operator (DSO) naturally wants to avoid
outages in the power supply. Outages can cause large costs for
repairs and incur penalties like cost of energy not supplied (CENS).
In addition, outages are inconvenient for the customers and might
damage the reputation of the DSO. During localisation and repair
of the faults, the personnel can suffer injuries, especially during
demanding weather conditions such as strong winds and snow. Hence,
improving the precision of fault localization is desirable to reduce the
outage duration and increase personnel safety.

Localising a fault can at present be time consuming and it is
difficult to provide customers with precise and timely information
during the outage. All customers connected to the distribution
network in Norway must have a smart meter installed by 1.1.2019,
and this provides new source of information for the DSOs that can be
useful for fault handling, as well as other applications. Smart meters
can notify the DSO when power is lost, and this is a large improvement

23SINTEF Energy Research — Norway SINTEF Energy Research - Norway
SINTEF Energy Research - Norway
jorn.foros@sintef.no maren.istad@sintef.no Andrer morch@sintef no

199

mailto:andrei.morch@sintef.no

Use Case applying machine-learning techniques for improving
operation of the distribution network

compared to current practice where the DSO rely on customers
alerting them. At the same time development of information and
communication technologies (ICT) and cost reductions for computing
power allows application of advanced techniques such as machine
learning (ML) to resolve many operational issues, including fault
handling, more efficiently. The planned introduction of CENS
for households by 1.1.2020% is expected to increase the focus on
fault localization and repair in the low voltage distribution network.
According to a white paper [I86], analytics is becoming a part of
core business processes for an increasing number of utilities. Three
high priority areas for analytics are reported to be energy forecasting,
smart metering analytics and asset management. In a review paper
[I87] four analytics areas for smart metering data are highlighted; load
analysis, load forecasting, load management and miscellaneous, with
the latter including outage management.

This paper starts with a short survey of the application of machine
learning techniques in fault handling. The perpetual challenge of
outage and fault management for DSOs is then discussed. Finally,
the paper presents and discusses a use case for improved future fault
handling in low voltage distribution networks utilising ML techniques.
The paper constitutes the first results of the activity "Smart Grid
Operation", which is a part of the Norwegian program Centre for
Intelligent Energy Distribution (CINELDI), which is a Centre for
Environmentally-Friendly Energy Research (2016-2024) Z.

C.2 Machine Learning Techniques In Fault Handling

Machine learning has been applied within the energy domain to solve
several types of problems such as predicting power generation from
solar panels [I8%], detecting cyber-attacks in the grid, optimizing
power consumption in large data centres and predicting failures in
grid components [I89]. Here we focus on the handling of faults in the
distribution network from the perspective of the DSO. Thus, we have
chosen to specifically identify machine learning techniques previously
used for identifying causes and locations of faults. Most ML methods
train models to fit a set of data (the training data). The output from
the ML method can be seen as a function of the ML method and the
training data. Thus, the results from ML methods are very dependent
on the data used to train the models. As a result, the current state

24 nitps //Www.nve.no/requleringsmyndigheten-for-energi-rme-marked-og+
monopol/okonomisk-reqgulering-av-nettselskap/aktuelle-prosjekter/kile-for-
nusholdninger;

25nitps//www.sintet.no/cineld|

200

https://www.nve.no/reguleringsmyndigheten-for-energi-rme-marked-og-monopol/okonomisk-regulering-av-nettselskap/aktuelle-prosjekter/kile-for-husholdninger/
https://www.nve.no/reguleringsmyndigheten-for-energi-rme-marked-og-monopol/okonomisk-regulering-av-nettselskap/aktuelle-prosjekter/kile-for-husholdninger/
https://www.nve.no/reguleringsmyndigheten-for-energi-rme-marked-og-monopol/okonomisk-regulering-av-nettselskap/aktuelle-prosjekter/kile-for-husholdninger/
https://www.sintef.no/cineldi

Machine Learning Techniques In Fault Handling

of the art of applying ML to fault handling has three main features:
The machine learning method, the specific problem that is targeted,
and the data used to train the model.

A short survey on the use of ML techniques for fault handling in
the power system domain has been conducted. In short, the survey
(for details see [90]) finds that a multitude of ML methods are being
applied within fault handling: Fuzzy systems [I91], expert systems
[192], artificial neural networks (ANN) [193], support vector machines
(SVM) and Q-learning [192]. The most prominent method by a large
margin was ANN;, see e.g. [193, 195, 196, 197] followed by SVM, see
e.g.[T93, 95, 197, [98]. The most targeted problem was fault location,
see e.g. [[93, 96, MIR].

The survey found that most of the research done on applying ML to
fault handling has been done on transmission networks, as is also seen
in the survey done by Ferreira et al. [199]. Some of that knowledge is
transferable to distribution networks, which is the main focus of this
paper. In terms of sources for training data, mainly simulated data
has been used, and very little data collected from the real world. This
is probably because the number of real outages is limited. Surprisingly,
we found little research done on using smart meters as a data source
for fault handling.

Fault handling is in general comprised of four phases; detection, lo-
cation and diagnosis, and finally repair/response. Most of the research
found in our survey was focused on detecting, locating and classifying
(diagnosing) the faults. Very little work has been done on applying
ML to suggest responses to faults. This contributes to explaining the
absence of some ML methods such as case-based reasoning (CBR)[2].
CBR is well suited for mapping similar problems (or cases) to similar
solutions, especially when solutions are best described with text and
not numbers. CBR is inspired by psychological models, as humans
use past experiences (cases) to solve new problems. Presented with a
new problem (case) a CBR system will search it is case-base (a repos-
itory of stored cases) for similar cases, then present the user with the
solution to the most similar case adapted to the new case. The new
solution will be stored in the case-base along with the original case
description.

Based on the survey, we propose a new general architecture for
fault handling in distribution networks that takes advantage of several
data sources, such as smart meter data and weather data, and state-of-
the-art machine learning techniques including CBR. The architecture
is shown in Figure 54,

201

Use Case applying machine-learning techniques for improving
operation of the distribution network

C.3 Outage and Fault Management - an example for
application of new techniques

Managing an outage in distribution networks and restoration of power
supply are important tasks for a DSO. Different ways of doing this
have been described in numerous use cases. A use case is commonly
defined as a list of steps defining interactions between different actors
in order to achieve a certain goal. Therefore, considering changes
in operation of distribution networks in the future, e.g. for the
time horizon 2030-2040, it is reasonable to expect that the triggering
event (outage for one or several customers) and the final result
or goal (restoration of the power supply) will remain unchanged.
The composition of interactions among the involved actors from the
initiating event to the goal is however going to be modified in the
future by applying the most up-to-date technologies.

Smart Grid data
meter last
gasp
Weather Datasetof |4 in 5l Model of faults
data faults
Satelite
pictures

Figure C.54: A proposed architecture for fault handling in distribu-
tion networks based on machine learning techniques.

Fault loca- Decision/

tion and Operation
classification support

CBR System

Experience
database

retrieve past matching cases and solutions —|

The way of dealing with faults and outages has certain limitations
at present, which can be improved:
Fault handling:

e Localisation of the fault can be very demanding, especially in
rural areas and in bad weather conditions

e Prioritisation of customers for reconnection during restoration
of power supply can be necessary in case there are multiple
faults involving many customers, such as during severe weather
conditions

Work processes:

o Mobobilisation and dispatching of working crews can be signifi-
cantly improved if the fault localisation and fault type are well

202

Outage and Fault Management - an example for application of new
techniques

predicted. This may be especially relevant during for example
bad weather and holiday periods with high electric loads

o Automation of (the mandatory) registration of faults. Today
this requires manual work that is time consuming and poten-
tially error prone.

At the same time, there is an emerging desire at DSOs to utilise
the smart metering infrastructure as much as possible in order to
improve planning and operation of the distribution network. Until
recently, observability of the low voltage (LV) distribution network
was minimal, and DSOs were normally informed about outages
directly by the affected customers. Installation of smart meters brings
an opportunity to modify the process by utilising the meters so-called
last gasp function. This function sends an alarm to the DSO in case
the voltage drops below a pre-defined threshold or in case of an outage.
Combining signals from several smart meters can allow the DSO to
identify the affected area and the actual fault location more accurately

The working hypothesis for this paper is that ML techniques,
together with improved data availability from e.g. smart meters, can
substantially improve fault handling in the future. The following
use case tries to address how the above-mentioned limitations can
be resolved by deploying the new techniques and data.

C.3.1 Use Case: Fault handling in low voltage
distribution network in 2030/2040

The use case is inspired by the proposed architecture in Figure 1 and
focuses on fault handling in the low voltage distribution network in
the coming decades. In Figure 53 a flow chart for the use case is
provided. The triggering event for the use case is an outage, that
may be detected in three possible ways: By smart meters, by breaker
operation at the secondary substation, or by a customer. The number
of outage reports/complaints from customers is expected to decrease
in the future, as the use case will enable DSOs to rapidly inform the
customers about an outage and how it is being handled.

Additionally, the use case will enable automatic and precise fault
localization and fault handling. The ultimate objective of the use
case is to improve the security of supply in low voltage networks by
reducing the time to restoration after an outage.

203

Use Case applying machine-learning techniques for improving
operation of the distribution network

Outage detected by
Outage detected by secondary Outage detected by
smartmeter customer
substation

Faultlocalization
(LR LT T —Train offlin training [«
dataand ML database

No=in MV Reconnectand
network restore supply
No-in customer,
installation
\‘;s

Notification of
outage to
customers

Faultlocalization

Identification of
faulttype using
‘smart meter data.
and ML

Prioritization of
repair using CBR

Proposal for repair
and restoration of
supply using CBR

Faulttype

training
database

e |

Lo
— —Update databases if added value- — —

Normal operation

Figure C.55: Flow chart for fault handling in low voltage distribution
networks in 2030/2040 utilising ML

C.3.1.1 Description of the Use Case

After receiving the alarm, fault localization occurs automatically by
analyzing data from smart meters using machine learning algorithms.
Although focus here is on machine learning, other methods may also
be relevant for fault localization. With the large number of smart
meters, both redundancy and missing or bad data is important to be
properly handled [200]. Another concern is that training of the ML
model may pose a challenge due to limited number of experienced
outages. This problem may be mitigated by utilising simulated data
as discussed in the above ML survey.

If only one smart meter reports an outage, the fault is probably in
that installation, and it is then the customers’ responsibility to rectify
this. If the fault is located to the medium voltage (MV) distribution
network, it is for simplicity assumed that automatic reconnection and

204

Discussion and Limitations

restoration is possible. The remainder of the use case hence applies
to the LV distribution network.

After notification of customers, the fault type is identified using
ML techniques. Here several data sources may be relevant, including
grid data, weather data, satellite pictures, and smart meter data.
Machine learning algorithms are well suited to take into account
data from several data sources. Identification of fault type includes
identifying the component (cable, overhead line, substation) and
phases (one phase, multiple phases, grounding) involved, as well as
the cause of the fault.

Following identification of fault location and fault type, the
operator needs to identify appropriate actions. For multiple faults,
this may include prioritization of repairs. A CBR system can use the
predicted location and cause of a fault as a new problem description to
search within an experience database for similar problem descriptions.
If one is found, the previous solution can be retrieved, adapted and
presented to the user of the system. If the retrieved solution is
straightforward and recognized as identical to the current problem it
can lead to automatic actions such as resource allocation, prediction
of type of repair needed, and issuing of work orders. Prioritization of
repairs may be especially relevant in the future, when high penetration
of renewables (PVs etc.) may enable customers to be self-sufficient for
a while during the outage such that they can be given a lower priority.

Finally, it is verified that normal supply has been restored and
the resolved outage case is documented in the experience database if
it provides added value compared to the data already stored in the
database. The fault location and fault type are also stored in the ML
training databases.

C.4 Discussion and Limitations

Being set in the years 2030 — 2040, the use case relies on a number of
assumptions and prerequisites. Smart meters must be installed with
data reporting capabilities of enough resolution, including last gasp-
functionality. This requires that the meters have sufficient battery
supply to send data also during an outage. Time stamping of data
must be well-synchronized between all smart meters (e.g. using GPS)
in order to be enough for improved fault localisation. There must
be communication between systems that enables transmission of data
at sufficiently high frequency, speed, bandwidth, and with sufficiently
low latency to conduct outage analysis timely. (E.g., today’s radio
mesh technology for communication from smart meters is replaced by
other technology, such as 5G).

205

Use Case applying machine-learning techniques for improving
operation of the distribution network

It is in the use case assumed that all outage handling takes place
centrally, i.e. in the DSO control centre. Alternatively, part of
this functionality may be decentralized. The system responsible for
collecting smart meter data, e.g. located in the secondary substation,
could also include functionality for localizing the fault and identifying
the fault type. The present study does not consider complete
automation of the LV distribution network e.g. using remotely-
operated breakers. Such breakers may allow to combine the use case
with self-healing techniques and corresponding analytics.

The functionality included in the present use case may also
be useful in similar use cases for improving the operation of the
distribution network. An example is anomaly detection. Such a use
case can benefit from the same machine learning algorithms and data,
with the objective to identify unnormal conditions by comparing with
normal behaviour. An advantage is that in such a scheme, the ML
algorithm can be trained with data from normal operation, of which
there is an abundance. The challenge then becomes to evaluate the
severity of the anomalies, i.e. what constitutes an anomaly severe
enough that some action needs to be taken. CBR techniques can be
a nice fit for this decision-making challenge.

C.5 Conclusions and future work

ML appears to be a viable tool for improving the most common
processes in fault handling, such as decision support and fault
type classification. Deployment of ML will require that certain
technological prerequisites are met, such as availability of smart
metering with required functionality, availability of sufficient ICT
infrastructure, and computational power.

Further work may include integration of other technologies such
as self-healing and new types of customers as for example prosumers
into the use case. The ML- and CBR-based support can provide
probabilities of potential faults and causes of these, and hence thus
give input to long term planning of required manpower and materials.
The presented use case does not include exceptions from the steps
in Figure 53, such as missing data from smart meters, but these
exceptions are important to identify in further work.

The use case has not been tested. An option for testing is
simulated tests of the last gasp functionality for fault localization. For
testing of ML functionality, a first step is to prepare an appropriate
data set for simulation of outages or increase the number of outages
by sharing information among different DSOs. The sharing of
information can also increase the number of cases in the databases

206

Acknowledgements

of Figure C53.

Deployment of new techniques will probably require substantial
efforts and investments and is unlikely to happen without sufficient
incentives for the network operators, such as e.g. CENS.

C.6

Acknowledgements

The Centre for Intelligent Energy Distribution (CINELDI) receives
funding from the Research Council of Norway. The authors appreciate
contributions from CINELDI partners and in particular Hafslund Nett

AS.

References

2]

[186]

187

188

[189)]

[190]

[191]

Aamodt, A. and Plaza, E. “Case-based reasoning: Foun-
dational issues, methodological variations, and system ap-
proaches”. In: AT communications vol. 7, no. 1 (1994), pp. 39—
59.

SAS. Utility analytics in 2017: Aligning data and analytics with
business strategy. Tech. rep. 2017.

Wang, Y., Chen, Q., Hong, T., and Kang, C. “Review of
smart meter data analytics: Applications, methodologies, and
challenges”. In: IEEE Transactions on Smart Grid vol. 10,
no. 3 (2018), pp. 3125-3148.

Sharma, N., Sharma, P., Irwin, D., and Shenoy, P. “Predicting
solar generation from weather forecasts using machine learn-
ing”. In: 2011 IFEFE international conference on smart grid
communications (SmartGridComm,). IEEE. 2011, pp. 528-533.

Rudin, C., Waltz, D., Anderson, R. N., Boulanger, A., Salleb-
Aouissi, A.; Chow, M., Dutta, H., Gross, P. N., Huang, B.,
Terome, S., et al. “Machine learning for the New York City
power grid”. In: IEEFE transactions on pattern analysis and
machine intelligence vol. 34, no. 2 (2011), pp. 328-345.

Morch, A. Z., Istad, M., Ingebrigtsen, K., Garnas, S., Foros, J.,
and Mathisen, B. M. Use cases for future (2030-2040) smart
distribution grid operation. Tech. rep. 2019.

Lee, H.-J., Park, D.-Y., Ahn, B.-S., Park, Y.-M., Park, J.-K.,
and Venkata, S. “A fuzzy expert system for the integrated fault

diagnosis”. In: IEEFE Transactions on Power Delivery vol. 15,
no. 2 (2000), pp. 833-838.

207

Use Case applying machine-learning techniques for improving
operation of the distribution network

[192]

193]

[194]

[195]

[196]

197]

198

199

200]

[201]

208

Yang, C., Okamoto, H., Yokoyama, A., and Sekine, Y. “Expert
system for fault section estimation of power systems using time-
sequence information,” in: International Journal of FElectrical
Power & Energy Systems vol. 14 (1992), pp. 2-3.

Thukaram, D.; Khincha, H., and Vijaynarasimha, H. “Artifi-
cial neural network and support vector machine approach for
locating faults in radial distribution systems,” in: IEEE Trans-
actions on Power Delivery vol. 20, no. 2 (2005), pp. 710-721.

Q.Wei, D. and Shi, G. “A novel dual iterative Q- learning
method for optimal battery management in smart residential
environments,” in: IEEE Transactions on Industrial Electron-
ics vol. 62, no. 4 (2015), pp. 2509-2518.

J. Morales, E. O. and Rehtanz, C. “Classification of lightning
stroke on transmission line using multi- resolution analysis

and machine learning,” in: International Journal of Electrical
Power & Energy Systems vol. 58 (2014), pp. 19-31.

Rafinia, A. and Moshtagh, J. “A new approach to fault
location in three-phase underground distribution system using
combination of wavelet analysis with ANN and FLS,” in:
International Journal of FElectrical Power & Energy Systems

vol. 55 (2014), pp. 261-274.

Samantaray, S., Dash, P.; and Panda, G. “Distance relaying
for transmission line using support vector machine and radial
basis function neural network,” in: International Journal of
FElectrical Power & FEnergy Systems vol. 29, no. 7 (2007),
pp. 551-556.

Ekici, S. “Support Vector Machines for classification and locat-
ing faults on transmission lines,” in: Applied Soft Computing
vol. 12, no. 6 (2012), pp. 1650-1658.

Ferreira, V. “A survey on intelligent system application to
fault diagnosis in electric power system transmission lines,” in:
Electric Power Systems Research vol. 136 (2016), pp. 135-153.

Ingrid, M. Smartgrid conference. Danske Bank. May 2, 2019.
(Visited on 05/04/2019).

Jiang, Y. “Outage management of distribution systems incorpo-
rating information from smart meter,” in: IEEE Transactions
on power systems vol. 31, no. 5 (2016), pp. 4144-4154.

ISBN 978-82-326-5184-9 (printed ver.)
ISBN 978-82-326-5625-7 (electronic ver.)
ISSN 1503-8181 (printed ver.)

ISSN 2703-8084 (online ver.)

< NTNU

Norwegian University of
Science and Technology

	Preface
	List of Papers
	Contents
	Introduction
	Motivation
	Challenges
	Research goals and research questions
	Research context
	Thesis structure

	Background
	Decision support systems
	Case-based reasoning
	Neural networks
	Similarity learning and metric learning

	Decision support systems in aquaculture
	Introduction
	Method
	Analysis
	Discussion

	Research results
	Research contributions
	List of publications
	Contributions towards research questions
	Summary of auxiliary papers
	Source code

	Conclusion
	Conclusion
	Future research directions
	References

	Papers
	Data driven case base construction for prediction of success of marine operations
	Introduction
	Related work
	Method
	Results
	Conclusions and future work
	Acknowledements
	References

	Learning similarity measures from data
	Introduction
	A framework for similarity measures
	Related work
	Method
	Experimental evaluation
	Conclusions and future work
	Acknowledgements
	References

	FishNet: A Unified Embedding for Salmon Recognition
	Introduction
	Related Work
	The FishNet Approach
	Dataset and Evaluation
	Discussion
	Conclusion
	Acknowledgements
	References

	Using Extended Siamese Networks to Provide Decision Support in Aquaculture Operations
	Introduction
	Related Work
	Operational situation dataset and Case definition
	Extended Siamese Neural Networks
	Evaluation
	Conclusions and Future Work
	Acknowledgements
	References

	Appendices
	Defining the initial case-base for a CBR operator support system in digital finishing
	Introduction
	Method
	Results
	Discussion and lessons learned
	Conclusion and further work
	Acknowledgments
	References

	Demonstrating the myCBR Rest API
	Introduction
	myCBR Rest API
	Experiments and Applications
	Conclusion and Outlook
	References

	Use Case applying machine-learning techniques for improving operation of the distribution network
	Introduction
	Machine Learning Techniques In Fault Handling
	Outage and Fault Management - an example for application of new techniques
	Discussion and Limitations
	Conclusions and future work
	Acknowledgements
	References

	Blank Page

