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Animal models contribute greatly to our understanding of brain develop-

ment and function as well as its dysfunction in neurological diseases. Epi-

lepsy research is a very good example of how animal models can provide

us with a mechanistic understanding of the genes, molecules, and patho-

physiological processes involved in disease. Over the course of the last two

decades, zebrafish came in as a new player in epilepsy research, with an

expanding number of laboratories using this animal to understand epilepsy

and to discover new strategies for preventing seizures. Yet, zebrafish as a

model offers a lot more for epilepsy research. In this viewpoint, we aim to

highlight some key contributions of zebrafish to epilepsy research, and we

want to emphasize the great untapped potential of this animal model for

expanding these contributions. We hope that our suggestions will trigger

further discussions between clinicians and researchers with a common goal

to understand and cure epilepsy.

Introduction

Epilepsy is the most common group of brain disorders

affecting more than 50 million people worldwide [1].

Spontaneous and synchronous neuronal hyperactivity

is the main hallmark of epilepsies, which can result in

a variety of clinical features, ranging from a simple

twitch of a few fingers to a generalized seizure with

tonic–clonic manifestations, as well as other accompa-

nying symptoms [2]. Despite the available therapies,

approximately 30% of epilepsy patients still suffer

from drug-resistant seizures [3]. This is partly because

the current drugs against epilepsy mostly aim at sup-

pressing seizures, rather than interfering with the

underlying mechanisms [4,5]. Hence, investigating fun-

damental principles and alterations leading to epilepsy

is crucial for developing mechanistic therapies that can

help epilepsy patients.

Mammalian seizure models have contributed

tremendously to our understanding of the mechanisms

underlying epilepsy, complementing clinical research in

human patients. The zebrafish seizure models came

into play a lot later than mammalian models, but have

already made significant contributions to our under-

standing of the epilepsies and to the development of

treatments. With its ever-expanding genetic toolbox

[6–9] for perturbing and monitoring neural or glial

activity in the entire brain [10–13] during specific

behaviors [14–17], together with available neural/glial

transcriptome [18–20], and whole brain connectome

[21,22] embedded in standardized atlases [14,22,23],

zebrafish offers tremendous possibilities to investigate

the principles underlying seizure generation in various

epilepsy models [11–13,24–29]. We argue that
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combining such mechanistic investigations with the

incredible advantage of zebrafish for designing high-

throughput experiments [30–33] will further boost our

understanding of genetic and environmental causes of

epilepsy and will foster discoveries of novel antiseizure

and epilepsy therapies. In this viewpoint article, we

aim to summarize the contributions of zebrafish to

various concepts in epilepsy research. Moreover, we

also highlight some of the future opportunities that

zebrafish can provide for a better mechanistic under-

standing of epilepsy and inspire novel therapies. We

hope that this review will provide a framework for

clinicians and researchers to make the most out of zeb-

rafish seizure and epilepsy models.

Causes of epilepsy

Trauma, tumors, neurodegeneration, and stroke-

induced epilepsies

Traumatic brain injury, tumors, neurodegeneration,

encephalitis, and stroke are common causes of epilepsy

[34–38] (Fig. 1). The epileptogenic process after such

insults to brain tissue is often attributed to glutamate

excitotoxicity [2] and loss of inhibitory interneurons

followed by network reorganization and a net increase

in excitability [36]. Moreover, several of such insult-re-

lated epilepsies are also thought to be associated with

the disruption of the blood–brain barrier, altered cere-

bral blood flow, imbalanced microenvironment, and

electrochemical milieu leading to impaired neural and

glial function and neuroinflammation [36,37,39–41]. In
line with these observations, the rodent models of

post-traumatic epilepsy and postencephalitic epilepsy

exhibit similar pathological findings, that is, reduced

inhibition, neurolysis, gliosis, inflammation, disrupted

blood–brain barrier, hyperexcitability, and sponta-

neous epileptiform neuronal discharges [42–44]. These
studies also revealed changes in neural connectivity,

reorganization of extracellular matrix, and metabolic

disruptions in the brain after trauma [39,43,44].

Brain injury models are often used in adult zebrafish

for studying neuroregenerative processes, inflamma-

tion, and scar tissue formation, due to its high regener-

ative capacity [45–49]. Similarly, the zebrafish has been

a very popular vertebrate model for studying neurode-

generative diseases [20,50]. These studies successfully

revealed the molecular and cellular processes following

the brain injury and neurodegeneration [20,45–48,50].
Yet, there is still a great potential in investigating

whether such brain injury or neurodegenerative disease

models in zebrafish would lead to epileptogenesis by

integrating functional recordings of neural network

activity. A recent zebrafish study showed that brain

trauma in the adult telencephalon can induce epilepto-

genesis with spontaneous seizures which was associated

with neuroinflammation, increase in phosphorylated

tau and mTOR, and blood–brain barrier damage [51],

thus resembling processes observed in rodents. Since

the exceptional regenerative capacity of the zebrafish

brain leads to eventual healing of the brain tissue

[45,46,52], it would be exciting to identify whether tis-

sue regeneration can cure trauma-induced epilepsy.

This would further validate stem cell-based therapies

in non-regenerative species, including humans.

In analogy to rodent models of stroke and hypoxia-

induced epilepsies via middle cerebral artery occlusion

and cortical photothrombosis [53], zebrafish with their

well-described cerebrovascular system [54,55] and

accessible brains also presents a great potential for

developing stroke-induced epilepsy models. In fact,

there are currently several zebrafish stroke models

readily available via genetic interventions [56], reduced

oxygen levels [57], and photochemical thrombosis [58].

Yet, at this point, none of these studies investigated

the long-term outcome of stroke, hypoxia, or the dis-

ruption of blood–brain barrier in the zebrafish. Hence,

whether seizures would develop in these models is still

an open question. All these findings suggest that there

is a lot of untapped potential to investigate epileptoge-

nesis in zebrafish brain injury, stroke, hypoxia, and

blood–brain barrier disruption.

Febrile seizures

Febrile seizures often occur in children and are symp-

tomatically treated by the administration of antiseizure

drugs [59] (Fig. 1). Febrile seizures are thought to have

little long-term consequences, but in some cases can

lead to epileptogenesis later in life, which is a process

that is insufficiently understood [60]. Rodent models of

febrile seizures have been instrumental for identifying

the neural basis of febrile seizures [61,62]. These stud-

ies revealed that prolonged febrile seizures did not lead

to excessive neural death, and there was no obvious

effect on neurogenesis [62]. However, prominent alter-

ations of neural circuit connectivity and plasticity as

well as alterations in the levels of interleukin-1beta,

hyperpolarization-activated cyclic nucleotide-gated

channels, and of endocannabinoid signaling were

observed [61,62].

Zebrafish is a cold-blooded aquatic vertebrate,

which can tolerate a large range of temperatures [63].

Hence, it is in principle a lot more straightforward to

induce hyperthermia in zebrafish by controlling its

bath temperature to study potential effects on seizure
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generation. Indeed, a recent study showed that hyper-

thermia can induce seizures in zebrafish [64]. Also, a

de novo mutation causing febrile seizures in humans

was shown to elicit abnormal electrical activity in zeb-

rafish brain [65]. Such hyperthermia-induced seizures

in zebrafish can be potentially used for high-through-

put screening approaches [30–33]. It is yet to be seen,

whether zebrafish hyperthermia-induced seizures can

reveal what biophysical and neural processes lead to

febrile seizures, and whether early exposure to such

seizures results in epileptogenesis at later developmen-

tal stages.

Genetic causes of epilepsies

Genetic polymorphisms or mutations in an individual

may greatly affect the risk for epilepsy in all above-

mentioned epilepsy etiologies and influence the out-

come of antiseizure treatments [66,67]. Genetic

mutations can also alone be the cause of epilepsy, in

the case of monogenic epilepsy or epileptic

encephalopathy [68,69] (Fig. 1). The latter, which is a

heterogeneous group of severe epilepsies where the

epileptic activity itself contributes to cognitive and

behavioral deficits [68,70], includes among others the

Dravet syndrome [30]. Most epileptic encephalopathies

are clinically sporadic and commonly associated with

de novo mutations [71,72], which are usually detected

by DNA sequencing of gene panels or whole genome

sequencing. During the analysis of sequencing results,

o major challenge faced by clinical geneticists is to

confirm the causality of novel genetic variants for the

disease [67] to provide a personalized treatment. This

is where research in genetic model organisms is crucial.

Being able to identify whether the genetic variant is

solely causative of the disease and to understand the

molecular and functional impact of this mutation on

the brain are crucial for the management of the

patients. In this regard, zebrafish has been a model of

choice to test the causative effect of human mutations

on organ physio- and pathophysiology due to its

highly conserved genome [73], widely available collec-

tions of mutants, well-optimized transient knockdown

methods [74], transgenesis [75], genetic engineering

Fig. 1. Causes of epilepsy and commonly used animal models to study these conditions. Rodents have contributed extensively to our

mechanistic understanding of different epilepsies and associated seizures. Over the last two decades, zebrafish has had growing popularity

as an animal model for studying seizures, and the already broad contribution of zebrafish to epilepsy research, will most likely grow over the

coming years. The introduction of trauma-induced zebrafish epilepsy models and especially the expansion of genetic zebrafish seizure

models used as avatars in precision therapy are important factors.
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approaches [9,76], and its low maintenance cost in

comparison with mammalian models [77].

The first and most widely studied zebrafish model of

epilepsy is the Dravet model with a homozygous muta-

tion in the SCN1A sodium channel orthologue gene

scn1lab [78]. Various zebrafish models with scn1lab loss

of function have been reported to exhibit hallmarks of

epileptic seizures, including spontaneous electric dis-

charge measured by local field potential, altered loco-

motor bouts, enhanced response to light stimuli, in

addition to altered gene expression profiles, and pre-

mature death at larval stage [29,32,78–80]. Since the

original discovery of the scn1lab zebrafish Dravet

model, many mutant zebrafish lines have been gener-

ated for epilepsy-related genes [28,29,81–85]. Many of

these genetic mutants displayed epilepsy-related pheno-

types already in larval stages, which include altered

spontaneous and/or sensory-driven brain activity,

aberrant locomotion activity with or without neurode-

velopmental defects, and early mortality. However, sei-

zure phenotypes are not always apparent at larval

stage but develop later in life. For instance, zebrafish

mutants for the gamma-aminobutyric acid (GABA)-A

receptor subunit gabra1 gene, associated with juvenile

myoclonic epilepsy, present light-induced seizures

resulting in sudden unexpected death at around

1 month of age [28]. Interestingly, this study revealed

progressive transcriptional changes prior to seizure

onset unraveling novel molecular processes underlying

the transition of the brain from a healthy to an epilep-

tic stage [28]. Despite showing variability in the onset,

severity, and underlying mechanisms of the disease, all

these zebrafish mutant lines display common epilepsy-

related phenotypes. Thus, they offer the possibility to

perform comparative analysis to identify common and

divergent pathophysiological mechanisms in epilepsy.

Due to its small size, the zebrafish larva is commonly

used for high-throughput phenotypic drug screening

[86]. For example, screens in scn1lab Dravet model iden-

tified novel molecules that reduce the enhanced locomo-

tor activity associated with the mutation [78,80,87,88].

In fact, some of these molecules are now in clinical trials

as antiseizure drug in humans [30], highlighting the

great potential of this approach. It is, however, impor-

tant to stress that different zebrafish epilepsy models

may display very different locomotor behaviors, mim-

icking human patients suffering from different forms of

epilepsy. It is also likely that the manifestation of sei-

zures in zebrafish may depend on multiple factors such

as age, mutation, and genetic background of the ani-

mals, as well as experimental settings, including light,

temperature, physiological states (i.e., sleep), and even

the size of behavioral arenas.

Thus, relying solely on increased locomotor activity

or velocity as a high-throughput screening readout may

miss certain types of seizures. In fact, simultaneous

imaging of brain activity and locomotion (Fig. 2A,B,

Movie S1) in head-restrained tail-free zebrafish larvae

[26,89] can be very informative for revealing the rela-

tionship between different types of seizures and locomo-

tor activity. Our analysis of elavl3:GCaMP6s zebrafish

larvae expressing GCaMP6s pan-neuronally [11]

revealed that during baseline, small locomotor bursts

coincides very well with bursts of brain activity (Fig. 2D

left). However, after the addition of the GABA-A recep-

tor antagonist pentylenetetrazol (PTZ) to induce sei-

zures [11], locomotor bursts coincide only with less than

half of the brain activity bursts during the pre-ictal per-

iod (Fig. 2D middle). These results are in line with ear-

lier observations [26] and highlight that at least in the

PTZ-induced seizure model, monitoring locomotor

activity alone might not be sufficient to follow abnormal

pre-ictal brain activity. In fact, our observation and ear-

lier studies [26] suggest that only those large bursts of

abnormal pre-ictal neural activity (Fig. 2B) and general-

ized seizures (Fig. 2C) invading the brainstem lead to

locomotor bursts. All these findings are in line with the

idea that recording brain activity is crucial for accu-

rately evaluating new zebrafish seizure models or all

high-throughput locomotion-based screens, prior to

making conclusions on the presence or absence of sei-

zure-like activity. Especially while assessing novel

genetic seizure models, a good alternative to recording

of spontaneous seizures can be the use of simple sensory

stimuli (i.e., light, vibrations). Using sensory stimulation

can be a very powerful method to reliably assess neu-

ronal hyperexcitability or even trigger seizure in a time-

controlled manner. This approach also increases the

robustness of high-throughput drug screening, as it was

successfully demonstrated in the zebrafish Dravet

model, scn1lab mutants [32,79].

Increasing accessibility of genome sequencing-based

diagnostics boosted our knowledge on the genetics of epi-

lepsy and lead to a surge in personalized medicine or pre-

cision therapies tailored for specific seizure disorders [90].

Such personalized medicine requires rapid and economi-

cally viable investigation of disease-associated genes to

identify potential therapies. As discussed above, zebrafish

offers well-optimized genetic tools to recapitulate human

mutations, as well as high-throughput and low costs drug

screening platforms. Therefore, zebrafish is an optimal

animal model that can serve as patient avatars for discov-

ering precision drugs for a variety of diseases [91]. In fact,

zebrafish-based precision therapies have already started

saving patients’ lives [92]. Over the coming years, it is

very likely that we will see further precision therapies
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Fig. 2. Monitoring brain activity is crucial while evaluating zebrafish seizure models. (A) Simultaneous fluorescence calcium imaging of brain

activity (green) and video recording of locomotor tail beats (black) in 7-day-old elavl3:GCaMP6s zebrafish larvae expressing GCaMP6s pan-

neuronally, treated with PTZ to induce seizures [11]. Red dashed line marks the time point where PTZ reaches the animals. Scheme (top-

left) represents a head-restrained zebrafish larva with a free tail to measure locomotor activity. (B) Examples of different calcium bursts

(green) detected during pre-ictal (c1, c2) and ictal (c3) activity, and the locomotor tail beats (black) associated with these selected events

(left). Note that pre-ictal calcium bursts ‘c2’ do not elicit any detectable tail beat. (C) Spatial distribution of neural activity across the

zebrafish brain regions optic tectum (TeO) and brainstem, during pre-ictal (c1, c2) and ictal (c3) calcium bursts (right). Warm colors represent

stronger neural activity. Note that the small signals in the brainstem during pre-ictal calcium bursts ‘c2’ do not elicit locomotor tail beats. (D)

The relationship between the number of locomotor tail beats and the amplitude of detected calcium bursts during baseline, pre-ictal period,

and generalized seizure. Black dots represent calcium bursts that coincide with locomotor tail beats. Gray dots represent calcium bursts that

do not elicit any detectable locomotor tail beat. Pie charts represent the ratio of calcium bursts overlapping (black), and not overlapping

(gray) with locomotor activity. Note that during baseline and generalized seizures almost all calcium bursts coincide with locomotor activity.

However, half of the pre-ictal calcium bursts do not elicit any detectible locomotor activity. These results highlight the importance of

measuring brain activity ideally across the entire brain, while evaluating zebrafish seizure models and associated high-throughput screens.
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developed using zebrafish, especially for those patients

suffering from genetic epilepsies.

It is also important to highlight that the functional

and mechanistic studies are missing for several new

genetic seizure models of zebrafish as well as for newly

identified antiseizure drugs. Thus, the next challenge

will be to perform comparative functional studies

using these mutant lines and identify both neuronal

and glial correlates of hyperexcitability and seizure

generation, and the action mechanisms of novel anti-

seizure drugs. Understanding the common and diver-

gent neuronal or glial causes leading to seizures and

the molecular/cellular pathways underlying the action

of new antiseizure drugs will be crucial to design per-

sonalized therapies in the context of both genetic and

nongenetic forms of epilepsy.

Mechanisms of seizure generation and
seizure spread

The role of inhibition in seizures

Generation of epileptic seizures can be seen as a transi-

tion of the brain activity and connectivity from a

balanced into an unbalanced state with excessive syn-

chrony [93]. Breakdown of the inhibition is one of the

main hypotheses for the triggering of seizures in several

different forms of epilepsy [94–96]. Hence, similar to

rodent seizure models, suppressing inhibition in the zeb-

rafish brain leads to generation of seizures, both in phar-

macologic [11–13,24–27] and in genetic perturbations of

GABA receptors [28]. In fact, a recent study showed that

the zebrafish brain regions rich in GABAergic neurons

(Fig. 3A) display symptoms of synchronous hyperactiv-

ity earlier than other parts of the brain, even before full

blown generalized seizures [11]. There are several trans-

genic zebrafish lines that effectively label and allow con-

trol of large groups of inhibitory neuron populations

such as dlx4/6 [97] or gad1b [98,99] across the entire

brain (Fig. 3A). Moreover, histological studies clearly

demonstrated the presence of markers of several mam-

malian inhibitory interneuron markers (parvalbumin,

calbindin, calretinin) in the zebrafish brain [100–102].
Investigating the activity of these inhibitory neuron pop-

ulations across the entire brain before and during sei-

zures, and revealing their cellular and molecular

alterations during the epileptogenic processes, will open

new avenues. An example was beautifully demonstrated

Fig. 3. Visualizing and perturbing diverse neuronal and astroglial populations of zebrafish brain. (A) Confocal microscopy image of a 7-day-old

zebrafish larvae. Excitatory neurons are labeled by Tg(vglut2a:dsRED) [140] (cyan). Inhibitory neurons are labeling by Tg(gad1:GFP) [98]

(magenta) transgenic expression. Note that the distribution of excitatory and inhibitory neurons across the brain regions are not

homogenous. Arrows highlight brain regions with increased synchrony during pre-ictal activity in the PTZ-induced seizure model. (B)

Confocal microscopy image of a 4-week-old old juvenile zebrafish. Scattered groups of astroglia (red) are labeled by Tg(GFAP:Gal4)nw7;Tg

(UAS:ChR2-mCherry) [11]. Individual neurons (black) are filled by neurobiotin using a patch-clamp electrode. Note that neuronal and astroglial

processes are in close proximity. Astroglia-neuron interactions play important roles in regulating neuronal excitability during seizure

generation and propagation, by controlling extracellular glutamate via glutamate transporters and potassium levels via gap junctions.
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in a recent study, which unravels a whole new set of gene

alterations in a zebrafish mutant lacking the gabra1 gene,

a GABA-A receptor subunit [28].

Spreading of seizures through hubs in the brain

Another well-accepted hypothesis with respect to spread-

ing of the seizures is the concept of epileptogenic hubs,

also known as choke points [103]. Such epileptogenic hubs

are important for spreading of seizures from a focal point

toward the entire brain, leading to generalized seizures.

Excitingly, interfering with pathological hubs was also

shown to be effective in preventing seizure propagation

[104,105]. Two potential choke points in the mammalian

brain that can interfere with seizure generation are the tha-

lamus [104,106] and the cerebellum [107,108]. In fact, the

anatomy and the connectivity of these brain regions are

well conserved in vertebrates including in zebrafish

[109,110]. Moreover, both of these regions were shown to

exhibit excessive synchronous neural activity preceding

generalized seizures in a pharmacologically induced zebra-

fish seizure model [11,13] (Fig. 3A). Several transgenic

zebrafish lines are readily available for labeling and manip-

ulating the thalamus [111] and the cerebellum [112,113].

Hence, future studies investigating the role of thalamic

and cerebellar pathways in seizures can shed light on how

or whether the stimulation of these brain regions can inter-

fere with seizure generation and propagation.

The role of glia in promoting and preventing

seizures

The role of glia and glial dysfunction in epilepsy is an

expanding field [114,115]. Several mutations in glia-asso-

ciated genes are linked with epilepsy [116]. Moreover,

multiple aspects of glial biology from metabolism

[117,118] to signaling [119–121], gap junctions [122–124],
and even the immune responses [125–127] are attributed

to the manifestation of epileptic seizures. All these results

also highlight the potential of targeting glia biology as a

potential alternative therapy against epileptic seizures

[128,129]. Major glial types of the vertebrate brain are

present in zebrafish, and they serve similar functions in

regulating neural activity, neural development and the

brain’s immune response [52,130–132] (Fig. 3B). Accu-

mulating evidence in zebrafish seizure models also high-

light the role of glia in epilepsy. For example, a recent

study showed that several astroglial marker genes are dif-

ferentially expressed in a zebrafish model of Dravet syn-

drome [29]. Moreover, an earlier study revealed that

zebrafish astroglia express gap junction protein connexin

43 (Cx43) similar to mammals and they exhibit highly

synchronized astroglial calcium signals preceding

epileptic seizures [11]. A computational model further

showed how such gap junction coupled astroglial net-

works can contribute to the propagation of seizures [133].

Despite the correlated glial and neuronal activity during

generalized seizures, glial calcium signals during ‘the pre-

ictal state’ preceding the seizures were shown to be anti-

correlated with neural activity. This is indeed in line with

the function of glial glutamate transporter excitatory

amino acid transporter 2 (EAAT2) balancing excess glu-

tamate and thus dampening excessive neural activity. In

fact, mutations in EAAT2 in human patients [116,134]

and in rodents [135] are directly associated with epileptic

seizures. Not surprisingly, EAAT2 is proposed to be an

interesting target for epilepsy [129,136]. Given the high-

throughput nature of zebrafish for discovering antiseizure

drugs [30–33,78–80,87,88], identifying new molecules to

modulate glial glutamate transporters can help clearing

excess glutamate and potentially dampen seizures. Similar

approaches might also be interesting for targeting astro-

glial gap junction Cx43, given the important role of gap

junctions in epilepsy and seizure generation [122–124].
Microglia have also been shown to play an impor-

tant role for regulating neural excitability and inflam-

matory response in epilepsy [127,137]. Two recent

zebrafish studies demonstrated how microglia can

directly control the excitability of neurons in vivo

[138], and how calcium is important for recruiting

microglia to the site of brain injury [139]. All this evi-

dence suggests that investigating microglial function

and dynamics in trauma-induced or other seizure mod-

els in zebrafish can be a promising approach to better

elucidate the role of microglia in seizure control. Sev-

eral tools for interfering with microglial function are

readily available in zebrafish [131]. It is now time to

look further into the cellular and functional alterations

of microglia during genetic or pharmacological seizure

models of zebrafish. It will be interesting to investigate

how perturbing microglial function can interfere with

seizure generation and spread.

Conclusions

The number of research laboratories using zebrafish for

investigating molecular, cellular, and functional pro-

cesses underlying epileptic seizures is increasing rapidly.

An obvious advantage of zebrafish is its amenability for

high-throughput genetic and chemical screens to iden-

tify genetic pathways and molecules that can be used

for epilepsy therapies. Yet, this small and transparent

vertebrate offers so much more than that. As we dis-

cussed in this viewpoint, over the course of the last

20 years, research in zebrafish is experiencing a huge

boost. The development of imaging technologies has
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given unprecedented detail about the brain, vasculature,

behavior, organ development, and even gene expression

in living animals. We also now better understand the

aspects of zebrafish brain development and function

that relate to the human brain and its diseases, and

what are the differences. In fact, knowing such differ-

ences can also lead to direct benefit for other important

research fields, as it is for the case of the amazing

capacity of zebrafish brain regeneration after injury.

We argue that the plethora of recent studies using zeb-

rafish makes a very good case for the immense potential

of this small vertebrate model for epilepsy research. It

is also important to highlight that the conservation of

neural and developmental mechanisms leading to

epileptic seizures both in zebrafish and in rodent models

support the idea that such mechanisms are more likely

to be common across all vertebrates, including humans.
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Additional supporting information may be found

online in the Supporting Information section at the end

of the article.
Movie S1. Simultaneous recording of brain activity

and locomotor behavior during seizures. Fluorescence

calcium imaging of 7 days old elavl3:GCaMP6s zebra-

fish larvae expressing GCaMP6s pan-neuronally (top).

Zebrafish larvae was treated with PTZ to induce sei-

zures. Average brain activity (middle, green) and loco-

motor tail beat angle (bottom, black) were recorded

simultaneously by using a sensitive video camera

(100 Hz).
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