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Abstract

In the field of petroleum geology, the implementation of machine learning approaches has
been showing considerable potential for supplementing and replacing conventional and
labor-intensive approaches. For example, the idea of using supervised learning algorithms
has been proposed by some authors to predict and classify lithofacies. In general, though,
there are some situations where merging the machine learning approaches with human
inputs is valuable. In this master thesis, we focus on one specific instance of this need for
fusing interpretations from machines with interpretations from humans.

More specifically, we consider that from the processes of classifying lithofacies in a
supervised learning based way, the learning algorithms return a confusion matrix (i.e.,
what has been misclassified with what, and how often) which can be used as the input for
performing hierarchical clustering (i.e., considering two lithofacies that are often mixed
up by the machine as similar). This strategy of doing hierarchical clustering returns a tree-
like diagram called a dendrogram. At the same time, humans can also produce an anal-
ogous dendrogram: geologists may indeed say that two lithofacies are similar by taking
other types of data from rock properties into consideration. This human-based dendrogram
might of course be topologically different from the former machine-based.

This thesis focuses on the problem of how to utilize both of these dendrograms so
to improve the understanding of the geologists, and in this way considering both the nu-
merical methods together with the conventional one as sources for understanding how to
classify the lithology of some wells. To the best of our knowledge, combining multiple
hierarchical clusterings (or dendrograms) is a practical way to address this problem, but it
has been overlooked in petroleum geosciences.

The major aim of this study is thus to investigate how to combine hierarchical clus-
terings for a specific case. Specifically, the Min-trAnsiTive Combination of Hierarchi-
cal clusterings (MATCH) method is used to combine a dendrogram from computational
method with one from a geologist’s perspective. After the final dendrogram is formed, it
is visually compared with the primary dendrograms by placing them in a diagram called
tanglegram. It is well known that this tanglegram shows a propensity to be significantly
tangly, which is known as a tanglegram layout problem. Solving this problem has been
received much attention in the past decade, and several methods have been proposed, but
they seem to be oversimplistic and inefficient in terms of producing the least tangly tan-
glegram. Therefore, in this work we develop a new untangle method that seeks to find an
optimal solution for the tanglegram layout problem. The results show that the MATCH
method works well to produce the combined dendrogram, and the new untangle method
succeeds in finding better layouts of tanglegrams compared to one of the other methods.
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Chapter 1
Introduction

1.1 Background
Machine learning is a part of Artificial Intelligence, which builds a mathematical model
based on sample data in order to perform various tasks such as predictions or decisions
(Mitchell, 1997). The term ”machine learning” was coined by an American pioneer in the
field of computer gaming and artificial intelligence named Arthur Samuel in 1959 when
he wrote a computer program to play checkers. His idea was to develop a program which
could learn to play checkers better than the programmer. It was achieved by having the
program play thousands of games against itself. By 1970, the performance of the pro-
gram had been comparable to the performance of a respectable amateur player (Schaeffer,
2008). Since then, machine learning has been developed and used in a wide variety of
different scientific fields and real-world businesses, such as text or document classifica-
tion, computer vision applications, computational biology applications, and many other
problems (Mohri et al., 2018). A striking feature of machine learning is that it is advanta-
geous for solving problems that are challenging to be managed manually due to the huge
amount of data. Although problems in machine learning can be of various types, they can
be typically divided into three categories:

1. Supervised learning;

2. Unsupervised learning;

3. Reinforcement learning.

In this thesis, only unsupervised learning has been considered. Unsupervised learning
is a type of algorithm that learns underlying structures from unlabeled data. The users have
access to input features only and do not have an associated target variable. It is radically
different from supervised learning in which the users take a set of labeled examples as
training data and have access to the target variable. Since labeled examples may not exist
in unsupervised learning, it is not a trivial task to quantitatively evaluate the performance
of unsupervised algorithms (Mohri et al., 2018). This means that data interpretation is

1



Chapter 1. Introduction

more important than the evaluation of the method. Two main classes in unsupervised
learning are dimensionality reduction and cluster analysis. The former helps to determine
how the data is distributed in the space, and the later use the input features to divide a set
of unlabeled data into natural groupings.

Cluster analysis, or clustering, is utilized in a variety of engineering and scientific
disciplines, including image analysis, bioinformatics, computer graphics, and machine
learning (Chernoff, 1975). In fact, the terminology differs in various scientific fields. For
example, in biology and ecology, the term ”numerical taxonomy” is used as a substitute
for cluster analysis, while some social scientists refer it as ”typology” or ”classification
analysis” (Chernoff, 1975). Although being called in different terms, cluster analysis’
goal is unique, which is to partition, or segment a set of objects into groups (clusters) such
that objects belonging to the same cluster are more similar to each other than to those in
other clusters. Cluster analysis has been employed as an effective tool to reveal structure
and relations in the data. For example, clustering is often used in phylogenetic analy-
sis and comparative genomics to determine ancestral species, design vaccines, and relate
the evolution of species by forming phylogenetic trees based on the similarity in biologi-
cal macromolecules such as DNA, RNA, and protein. For example, since the COVID-19
pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2),
biologists have been using cluster analysis to examine the origin and continuing evolution
of SARS-CoV-2 (Figure 1.1). In reality, evolutionary study of multiple SARS-CoV-2 vari-
ants helps scientists to better understand how transmissible the viruses might be and the
effectiveness of currently authorized vaccines against them. In petroleum geology, cluster
analysis is mainly used in stratigraphic zonation of logging data and lithology classifica-
tion. The next decade is likely to witness a considerable rise in applications of cluster
analysis in all kinds of scientific fields.

2



1.1 Background

Figure 1.1: Evolutionary phylogenetic tree analysis of Coronaviruses (Rehman et al., 2020):
Colours represent different genera of Coronaviruses; black, alpha coronavirus; blue, beta coron-
avirus; red, SARS-CoV-2; green, delta coronavirus; purple, gamma coronavirus. The percentages
are the indicators of amino acid similarities between coronaviruses. The phylogenetic tree shows
that SARS-CoV-2 is a beta-coronavirus and related to the bat SARS-like coronavirus (Rehman et al.,
2020).

Cluster analysis itself is not a specific algorithm, but a general task to be tackled. It can
be accomplished by a number of algorithms which differ fundamentally in their definitions
of clusters and how to efficiently find them. Clustering algorithms may be classified as
listed below:

1. Exclusive clustering;

2. Overlapping clustering;

3. Hierarchical clustering;

4. Probabilistic clustering.

In this master thesis, we will focus on hierarchical clustering algorithm. This algorithm
accounts for combining similar objects to form new clusters based on their distances so
called hierarchical levels. At different hierarchical levels, different clusters are formed by
merging two other clusters, which is demonstrated by using a tree-like diagram known

3
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as a dendrogram. The dendrogram describes the order in which objects are merged from
the bottom-up view or clusters are split from the top-down view. More definitions and
information of this approach are provided in Chapter 2.

1.2 Objective
The first aim for this study is to seek for a proper way to combine two dendrograms,
one from a hierarchical clustering algorithm, and one from a geologist description. The
hierarchical clustering combination (HCC), naturally, is not as easy as combining multiple
classifiers. The main reason is that there are relationships or degrees in similarity among
objects, which is demonstrated by the hierarchical levels in the dendrogram. In addition,
the true number of clusters in hierarchical clustering is rarely known beforehand. These
problems make it impossible to just combine two dendrogram like conjoining two pieces
of a picture. It leads to a demand of extracting information from the dendrogram such
that this information can be used as the representative of the dendrogram as well as the
input for a HCC algorithm. In fact, it is common knowledge that any dendrogram can be
presented by an intermediate matrix presentation called a description matrix, but it is not
always true that a dendrogram could be recovered by an arbitrary matrix. Thus, we need
to identify a proper description matrix that is suitable for the HCC algorithm.

The second aim of the research is to improve the visualization of dendrogram com-
parison. Specifically, the combined dendrogram will be compared to each of the based
dendrograms by putting them face-to-face in the same diagram named a tanglegram. In a
tanglegram, identical objects in two dendrograms are connected by lines. Therefore, a tan-
glegram is potentially tangly, which is partly revealed by the name of this special diagram.
This problem is called the tanglegram layout (TL) problem. The degree of being tangly
significantly depends on the number of objects in dendrograms and how different the hi-
erarchies are. Several untangle methods are proposed and implemented in the R package
dendextend to solve the TL problem (Galili, 2015). Nevertheless, they are prone to not
have the ability to find out the least tangled layout (drawing, embedding) if the number of
objects is large. Hence a new untangle method is introduced in this thesis with an expecta-
tion that it can return a tanglegram layout that is less tangly than the result from a untangle
method in R.

The main objectives of this master’s thesis can be summarized as follows:

1. to examine and find out a type of description matrix that can be used for HCC;

2. to apply a HCC method to merge two dendrograms into one;

3. to develop a new untangle method which can return a tanglegram drawing that is
less tangled than the optimal layout from a untangle method in R language.

1.3 Approach
With regards to the lithology classification problem, one can use the confusion matrix ob-
tained from a machine learning lithology prediction as the input for hierarchical clustering

4



1.4 Outlines

algorithm to create a dendrogram. This dendrogram is considered as a result of the nu-
merical method. A geologist can also manually create a dendrogram (a tree) showing how
a specific rock type is similar to the others in terms of the fundamental rock properties.
These properties might include porosity, permeability, and grain size. In doing so the nu-
merical method and the manual method of geologists (geologist method) are more likely
to bring out different dendrograms, and each method has it own advantages and disadvan-
tages. Particularly, the geologist method obtains a general view of different rock types, but
it seems to be experiential, subjective and difficult to employ with a large data. Compared
to it, the numerical method is more objective and can deal with complex problems. How-
ever, the shortcoming of the computational method is that it is hard to adjust the automated
inner process. It poses a new problem of how to merge dendrograms from the numerical
and geologist methods into one single dendrogram (combined dendrogram) which can be
used as a representative of the two different methods. This problem is known as the hierar-
chical clustering combination (HCC) problem. In this master thesis, the procedure of HCC
and its results will be shown. Furthermore, an approach in which the final dendrogram is
compared to the two starting (base) dendrograms and an improvement in visualization of
this approach will be presented at the end of the thesis.

1.4 Outlines
This master thesis is divided into seven chapters. Chapter 2 includes the theoretical back-
ground of the present work, and it comprises six sections. The second section of this chap-
ter overviews the basic concept of fuzzy set theory to help the reader to get accustomed
to the definitions of crisp set, fuzzy set, fuzzy relation, and fuzzy equivalence relation.
General aggregation operations on fuzzy sets and fuzzy relations are also covered in this
section. In the next three sections, a deep introduction of hierarchical clustering, HCC,
and dendrogram description matrices are presented. The last section in Chapter 2 covers
the concept of tanglegram and tanglegram layout problem with an example provided. This
chapter might be heavy-reading due to the mathematical sophistication, but it is prerequi-
site for comprehending the work in the remainder of the thesis.

The methodology is outlined in Chapter 3. The definition of transitive closure is ex-
amined in this chapter prior to introducing the concepts and algorithms of the MATCH
and square algorithms. These methods are of significance in combining hierarchical clus-
terings. The last section in this chapter represents a new method to solve the TL problem.

Chapter 4 deals with the results obtained from applying the methods introduced in
Chapter 3. The first section in this chapter is devoted to the introduction of the case
study in the thesis. The next section focuses on the application of the MATCH and square
algorithms to combine dendrograms. The results from applying untangle methods are
shown in the final section.

Chapter 5 covers the discussions of the results in Chapter 4. It includes a thorough ob-
servation and comparison between different dendrograms, various optimized tanglegram
layouts, and distinct methods used to generate these results.

Our conclusions are drawn in Chapter 6.
The last chapter, Chapter 7, is devoted to the further work.
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Chapter 2
Literature Review

2.1 Introduction
According to Meyer, Naessens, and Baets there is a one-to-one correspondence between
a dendrogram and a fuzzy equivalence relation (Meyer et al., 2004). Thus, in the first
subchapter, we will give brief account of some definitions about binary fuzzy relations,
fuzzy equivalence relations, and crisp relations. It also covers general fuzzy complements,
fuzzy intersections, and fuzzy unions, which play a central role in the calculation and
implementation of the hierarchical clustering combination method in this thesis.

Hierarchical clustering is an unsupervised learning method whose goal is to group ob-
jects or patterns into groups called clusters such that the objects within each cluster are
broadly similar to each other. The interpattern similarity is based on the proximity ma-
trix which including distances between pairs of objects. To calculate these distances, a
pattern matrix is required, and a distance function, which in most cases is the Euclidean
distance, needs to be well defined between two patterns. Therefore, the second subchapter
will cover definitions of a pattern matrix and a proximity matrix, which are used as input
data for hierarchical clustering algorithms. Plus, the procedure behind hierarchical cluster-
ing algorithms and a number of terms such as linkages, ultrametric, and linkage matrices
used throughout the thesis will be discussed in this subchapter. An example of Iris flower
samples is provided in this chapter to illustrate definitions and generations of all kind of
matrices and dendrograms.

It has been suggested that by combining the results of several hierarchical clustering
algorithms, the resulting data clustering is improved (Dietterich, 2000). We will there-
fore introduce the definition of hierarchical clustering combination in this chapter. As
we work with the dendrogram description matrices instead of figures of dendrograms to
combine hierarchical clusterings, basic types of descriptors and their properties will be
also introduced. Ultrametric is recognized as being one of the most important property
of a dendrogram description matrix, and we need to take it into account to opt for proper
description matrices to work with.

After a tanglegram is constructed from dendrograms, a need for improving the layout
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of the tanglegram arises naturally. Essential definitions and equations related to tanglegram
and tanglegram layout problem will be provided in the last section of this chapter. One
untangle method from R language is also introduced to illustrate one solution for dealing
with the tanglegram layout problem.

2.2 Fuzzy relation and Fuzzy Equivalence

2.2.1 Crisp Set
Let X be a nonempty set of all the possible elements of concern in a particular context.
Each of these elements is called a member, or an element, ofX , andX is called a universe
set (Klir et al., 1997). To show that an object x is a member of X , we write

x ∈ X (2.1)

If x is not an element of X , we write

x /∈ X (2.2)

A crisp (classical) set A of X is defined as a union of several members of the universe X .
Given two crisp sets A and B on X , A is called a subset of B if every member of set A is
also a member of set B (Klir et al., 1997), which is denoted by

A ⊆ B (2.3)

Alternatively, one can say A is contained in B or B includes A. If A is a subset of B
(A ⊆ B), but A is not equal to B (A 6= B), then we say A is a proper subset of B (Klir
et al., 1997), written as

A ⊂ B (2.4)

It means that there is at least one member of B that is not a member of A. Two sets A and
B are equal, denoted by

A = B (2.5)

if
A ⊆ B and B ⊆ A (2.6)

The empty set is denoted by ∅.
The Cartesian product of two sets A and B, denoted A × B, is the set of all possible

ordered pairs where the elements of A are first and the elements of B are second (Klir
et al., 1997). That is,

A×B = {(a, b) | a ∈ A, b ∈ B} (2.7)

For example, let A = {a1, a2, a3} and B = {b1, b2}, the Cartesian product of A and B is

A×B = {(a1, b1), (a1, b2), (a2, b1), (a2, b2), (a3, b1), (a3, b2)} (2.8)

Operations on crisp sets consist of union, intersection, complement, difference, and
multiplication. Let A and B be two subsets of the universe X , Klir et al. (1997) defined
these operations as below:
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2.2 Fuzzy relation and Fuzzy Equivalence

• The union of two sets A and B, denoted by A ∪ B, is a set containing all elements
that belong to set A alone, to set B alone, or to both sets A and B. This is formally
expressed by

A ∪B = {x | x ∈ A or x ∈ B} (2.9)

• The intersection of two sets A and B, denoted by A ∩ B, is a set consisting of all
elements that are both in A and B. Thus,

A ∩B = {x | x ∈ A and x ∈ B} (2.10)

• The complement of a set A, denoted by Ac, is a set of all elements that are in the
universal set X but are not in A

Ac = X −A = {x | x /∈ A and x ∈ X} (2.11)

• The difference of two sets A and B, denoted by A \B, is a set containing elements
that are in A but not in B

A \B = {x | x ∈ A and x /∈ B} (2.12)

• The multiplication of a real number r and a subset A is

rA = {rx | x ∈ A} (2.13)

Note that the classical set operations follow the associative, distribution, and commutative
laws (Klir et al., 1997).

One of the most important concepts in the set theory is the membership. Considering
a universe X , membership in a crisp subset A of X is often viewed as a characteristic
(membership) function that indicates which elements of X are members of set A and
which are not (Klir et al., 1997). Set A is defined by its membership function, µA, as
follows:

µA(x) =

{
1 for x ∈ A
0 for x /∈ A

(2.14)

It is noticed that the membership function in a crisp set A of X outputs only 0 or 1,
exclusively, with 0 according as x does not belong to A and 1 according as x does belong
to A. That is, the membership function µA maps elements of X to elements of the set
{0, 1}. Formally,

µA : X −→ {0, 1} (2.15)

If µA is the membership function of set A, µB is the membership function of set B,
the union of two sets A and B will have the membership function as

µA∪B(x) = max{µA(x), µB(x)} ∀x ∈ X (2.16)

or, in abbreviated form
µA∪B = µA ∨ µB (2.17)

9
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where ”∨” is the max operator. Similarly, the intersection of two sets A and B will have
the membership function as

µA∩B(x) = min{µA(x), µB(x)} ∀x ∈ X (2.18)

or, in abbreviated form
µA∪B = µA ∧ µB (2.19)

where ”∧” is the min operator.

2.2.2 Fuzzy set
The first systematic study on fuzzy set was carried out by L. Zadeh beginning with Zadeh
(1965) and subsequently Zadeh (1971). According to Zadeh’s definition (Zadeh, 1965), if
X is a universe set of objects denoted generically by x, then a fuzzy set A in X is a set of
ordered pairs

A = {(x, µA(x)) : x ∈ X} (2.20)

where,
µA : X −→ [0, 1] (2.21)

is the membership function and the value of µA(x) at x indicating the ”grade of member-
ship” of x inA. Alternatively, a fuzzy setA inX characterized by a membership function,
µA(x), which associates with each point in X a real number on the close interval of [0, 1].
If µA(x) = 0, then x is called not include in the fuzzy set. If µA(x) = 1, then x is
called full include in the fuzzy set. If µA(x) gets any value in between 0 and 1, then x is
called partial include in the fuzzy set. The membership function in fuzzy sets is different
from the one in crisp sets. The former gets the function values ranging from 0 to 1, while
the later outputs either 0 or 1. To differentiate between fuzzy sets and crisp sets, Zadeh
denominated the crisp set as ”ordinary set” or only ”set” (Zadeh, 1965).

Considering two fuzzy sets A and B in X , the following definitions involving these
two fuzzy sets were defined by Zadeh (1965). Firstly, the definition of the empty fuzzy set
is reviewed. A fuzzy set is empty if and only if its membership function is identically zero
on X . Secondly, we shall introduce the definition of the fuzzy set equality. Specifically,
two fuzzy sets A and B are equal, written as A = B, if and only if

µA(x) = µB(x) ∀x ∈ X (2.22)

Furthermore, we will go through the notion of containment between two fuzzy sets. The
fuzzy set A is contained in the fuzzy set B, or B includes A, if and only if

µA(x) ≤ µB(x) ∀x ∈ X (2.23)

The containment between these two fuzzy sets is denoted as A ⊆ B (Zadeh, 1965). Re-
mark that the subset notation here is generally understood to mean the containment prop-
erty of fuzzy sets, not to refer to the concept that an element x in A belongs to the fuzzy
set B as mentioned in Section 2.2.1 (Zadeh, 1965). From the definition of containment, it
can be seen that for two fuzzy sets A and B, A = B if and only if A ⊆ B and B ⊆ A.
An example of the containment between two fuzzy sets A and B in R is presented in
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2.2 Fuzzy relation and Fuzzy Equivalence

Figure 2.1. In this plot, the x axes signifies the values of all members in R, the y axes
implies the values of membership functions. With each x in R we get one value of grade
of membership for each membership function, and the curves represent the value of the
membership function at the respective x ∈ R. As µA(x) ≤ µB(x) for all x ∈ X , we say
A is a contained in B (A ⊆ B).

Figure 2.1: Illustration of a containment in R.

The following definitions for complement, unions, and intersection of fuzzy sets are
introduced by Zadeh (1965). The complement of a fuzzy set A, denoted A’, has a mem-
bership function µA′ is defined by

µA′(x) = 1− µA(x) (2.24)

The union of two fuzzy sets A and B with respective membership function µA and µB is
a fuzzy set C, written as C = A ∪B, whose membership function µC is defined as

µC(x) = max{µA(x), µB(x)} (2.25)

or, in abbreviated form
µC = µA∪B = µA ∨ µB (2.26)

An alternative way of defining the union is that the union C of A and B is the smallest
fuzzy set containing both A and B. It means that if D is any fuzzy set contains both A and
B, it also contains the union of A and B (Zadeh, 1965). Notice that the union operator has
the associative property (Zadeh, 1965), meaning that

A ∪ (B ∪ C) = (A ∪B) ∪ C (2.27)

Similarly, the intersection of fuzzy sets might be defined in a same manner. Specifically,
the intersection of two fuzzy sets A and B with membership function µA and µB , respec-
tively, is a fuzzy set C whose membership function µC is related to those of A and B
by

µC(x) = min{µA(x), µB(x)} (2.28)

or, in abbreviated form
µC = µA∩B = µA ∧ µB (2.29)
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Alternatively, the intersection of two fuzzy setsA andB can be defined as the largest fuzzy
set which is contained in both A and B. Similar to the union, the intersection of A and
B also has the associative property. Furthermore, the operations of union and intersection
obey the distributive laws (Zadeh, 1965). As an example, we have

C ∪ (A ∩B) = (C ∪A) ∩ (C ∪B) (2.30)

and
C ∩ (A ∪B) = (C ∩A) ∪ (C ∩B) (2.31)

The union and intersection of two fuzzy sets in a universe R are demonstrated in Figure 2.2.
We assume that there are two fuzzy sets A and B in R with respective membership func-
tions µA and µB , and these functions are shown in Figure 2.2 as the green and red curves,
respectively. The membership function of the union of A and B is presented by the curve
consisting two curve segments 1 and 2 while the two curve segments 3 and 4 compromises
the membership function of the intersection.

Figure 2.2: Illustration of the union and intersection of fuzzy sets in R.

With regards to the notation of fuzzy sets, whenX is a universe set,X = {x1, x2, ..., xn},
a fuzzy set A on X can be expressed as

A = µA(x1)/x1 + µA(x2)/x2 + ...+ µA(xn)/xn (2.32)

where µA(xi) with i ∈ [1, n] is the grade of membership of xi in A, the plus sign rep-
resents the union, and the slash is not the division slash. For the sake of illustration, an
example of fuzzy relation is given. An architect designing a house cares about the com-
fort of the house. One indicator of comfort of the house is the number of bedrooms in it.
Given X = {1, 2, 3, 4, ..., 10} be the universe set of possible types of houses described by
x which is the number of bedrooms in a house. Then the fuzzy set A ”comfortable house
for a four-person family” may be described as

A = 0.2/1 + 0.3/2 + 0.7/3 + 1/4 + 0.6/5 + 0.1/6 (2.33)

2.2.3 Fuzzy Relation
The concept of a ”relation” is a generalization of ”function” in fuzzy set theory (Zadeh,
1965). In fuzzy sets, we examine the membership function which associates with each

12



2.2 Fuzzy relation and Fuzzy Equivalence

point in the universe set a real number between 0 and 1. However, in fuzzy relations,
we investigate the membership function that associates each ordered pairs of two or more
than two sets with a specific number in the interval [0, 1]. A fuzzy relation between two
sets is called a binary fuzzy relation. Since this study is concerned with only binary fuzzy
relations, hereafter, the adjective ”binary” might be omitted.

Let X and Y be two crisp sets denoted generically by x and y, respectively. Thus,
X = {x} and Y = {y}. A binary fuzzy relation R on X and Y , denoted by R(X,Y ), is a
fuzzy set characterized by a membership function µR that associates with each pair (x, y)
its ”grade of membership”, µR(x, y), in R (Zadeh, 1971). This membership function µR
and the binary fuzzy relation R can be expressed as:

µR : X × Y → [0, 1] (2.34)

R = {((x, y), µR(x, y)) | x ∈ X, y ∈ Y } (2.35)

The degree of membership µR(x, y) lies in the interval [0, 1] and is considered as the
strength of the relation between x and y. It means that when µR(x, y) ≥ µR(x′, y′), x and
y are more strongly related than x′ and y′. If the degree of membership of a fuzzy relation
takes only two values 0 and 1, this fuzzy relation is called a crisp relation. A crisp rela-
tion represents the presence or absence of association, interaction or interconnectedness
between the elements of two or more sets.

There are two common ways to present a binary fuzzy relation R on X and Y . Firstly,
the fuzzy relation R(X,Y ) can be given in the form of fuzzy matrix (membership matrix)
whose elements represent the membership values of this relation (Zadeh, 1971). That is,
if the membership matrix is denoted by R = [rxy], then rxy = µR(x, y). For simplicity,
we will use the same notation R for the relation and the associated membership matrix.
Secondly, a useful representation of a binary relation is a sagittal diagram. In the sagittal
diagram, each element of the sets X and Y is represented as a single node. Nodes corre-
sponding to one set is clearly distinguished from nodes representing the other set. Then
each pair of elements ofX and Y is connected by lines (directed connection) if its grade of
membership in R is non-zero (Kandasamy and Smarandache, 2003). Each connection in
the sagittal diagram is labeled by the actual membership grade of the corresponding pair in
R. To exemplify the definition and the representation of a binary fuzzy relation, consider
the following example. Assuming that there are two sets, X = {x1, x2, x3, x4, x5, x6}
and Y = {y1, y2, y3, y4, y5}, a binary fuzzy relation R on X and Y has a corresponding
membership matrix R and a sagittal diagram shown in Figure 2.3.

(a) Membership matrix (b) Sagittal diagram

Figure 2.3: Two ways to present a binary fuzzy relation R on X and Y .
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As fuzzy relations are the extensional concept of fuzzy sets, we can apply operations
of fuzzy sets to fuzzy relations. Let P and Q be two fuzzy relations from X to Y . The
union of P and Q is defined by Zadeh (1965) as follows:

µP∪Q(x, y) = max{µP (x, y), µQ(x, y)} (2.36)

or, in abbreviated form
µP∪Q = µP ∨ µQ (2.37)

Analogously, the intersection of R and Q is defined by

µP∩Q(x, y) = min{µP (x, y), µQ(x, y)} (2.38)

or, in abbreviated form
µP∩Q = µP ∧ µQ (2.39)

If P is a fuzzy relation from X to Y and Q is a fuzzy relation from Y to Z, the max-min
composition of P and Q, which is denoted by P ◦Q (Zadeh, 1965), is defined by

µP◦Q(x, z) = max{min
y∈Y
{µP (x, y), µQ(y, z)}} (2.40)

Let P = [pik] and Q = [qkj ], then the membership matrix of max-min composition of P
and Q is given by

[rij ] = [pik] ◦ [qkj ] (2.41)

where
rij = max{min

k
{pik, qkj}} (2.42)

Observe that the calculation of P ◦Q is almost similar to an ordinary matrix (dot) product.
In particular, the elements of P and Q that are used in the calculation of R are the same as
in the matrix product. However, the multiplication and the summation in dot products are
replaced by the max operation and the min operation in the max-min composition, respec-
tively. The max-min composition, which is associative and distributive, can be interpreted
as indicating the strength of the existence of relation between the elements ofX and Z. To
illustrate the union and max-min composition operators, an example is given in Table 2.1.
The table summarizes the data on three sets X , Y , and Z and two binary fuzzy relations,
namely P (X,Y ) and Q(Y, Z).

Table 2.1: Example of union and max-min composition operators.

P y1 y2 y3 Q z1 z2 z3 P ∪Q z1 z2 z3
x1 0.3 0.2 1.0 y1 0.3 0.0 0.1 x1 0.3 0.2 1.0
x2 0.8 1.0 1.0 y2 0.1 0.8 1.0 x2 0.8 1.0 1.0
x3 0.0 1.0 0.0 y3 0.6 0.9 0.3 x3 0.6 1.0 0.3

P y1 y2 y3 Q z1 z2 z3 P ◦Q z1 z2 z3
x1 0.1 0.2 0.0 y1 0.9 0.0 0.3 x1 0.2 0.2 0.2
x2 0.3 0.3 0.0 y2 0.2 1.0 0.8 x2 0.3 0.3 0.3
x3 0.8 0.9 1.0 y3 0.8 0.0 0.7 x3 0.8 0.9 0.8
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2.2.4 Fuzzy Equivalence Relation
Given a binary fuzzy relation R on X and Y , in this thesis, we are only interested in a
special case in which X = Y . Accordingly, we have the definition of a binary fuzzy
relation on X , where X = {x1, x2, ..., xn} is a set of n elements. A fuzzy relation R
on X is characterized by a membership function µR which associates each elements of
X to all elements of X itself with a grade of membership. The fuzzy relation R on X
can be illustrated by a (membership) matrix R = {rxixj

} of dimension n × n, where
rxixj = µR(xi, xj) is the membership grade between xi and xj . The membership grade
is in the closed interval [0, 1].

The fuzzy relation R on X is said to be reflexive if

µR(xi, xi) = 1 ∀i ∈ [1, n] (2.43)

In contrast, the fuzzy relation R on X is said to be anti-reflexive if

µR(xi, xi) = 0 ∀i ∈ [1, n] (2.44)

In addition, it is said to be symmetric if

µR(xi, xj) = µR(xj , xi) ∀i, j ∈ [1, n] (2.45)

Finally, it is min-transitive (transitive) if

R2 = R ◦R ⊆ R (2.46)

or, more explicitly,

max{ min
k∈[1,n]

{µR(xi, xk), µR(xk, xj)}} ≤ µR(xi, xj) ∀i, j, k ∈ [1, n] (2.47)

From such properties, a fuzzy relation which is reflexive and symmetric is called a sim-
ilarity relation (Meyer et al., 2004). The matrix representation of a similarity relation is
called a similarity matrix (Meyer et al., 2004). Additionally, a fuzzy relation which is
anti-reflexive and symmetric is called a dissimilarity relation, and its corresponding ma-
trix is called a dissimilarity matrix (de Oliveira and Pedrycz, 2007). If a similarity relation
is min-transitive then it is called a fuzzy equivalence relation (Zadeh, 1971; Klir et al.,
1997).

2.3 Hierarchical Clustering

2.3.1 Pattern Matrix and Proximity Matrix
We start with a set of n objects (samples, patterns) to be clustered, denoted by X = {xi}
with 1 ≤ i ≤ n, and each object is described by a set of m measurements (attributes,
variables, features). Let xij be the jth measurement of the ith object, 1 ≤ j ≤ m.
Each object is now represented by a m−vector whose elements are the measurements
characterizing the object (Jain and Dubes, 1988). For instance, the ith object is defined by
a vector

xi = (xi1xi2...xim)T , i ∈ [1, n] (2.48)
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where T denotes vector transpose. It is customary to display this set of objects by using
a n ×m matrix called a pattern matrix denoted by R = [rij ]. In this pattern matrix, each
row depicts a specific object and each column designates a measurement or feature. For
example, the famous Iris flower data set which was introduced by the British statistician
and biologist Ronald Fisher in 1936 has four features including the length and the width
of the sepals and petals of Iris flowers, in centimeters (Fisher, 1936). The initial data set
was composed of 50 samples from each of three species of Iris, namely Iris setosa, Iris
virginica and Iris versicolor. The pattern matrix of the Iris data set is therefore a 150 × 4
matrix and one of the most popular data sets for machine learning in general and statistical
classification in particular. For reasons of space, we take only 16 samples out of 150
samples in the Iris flower data set to study the procedure behind hierarchical clustering
(Table 2.2).

Table 2.2: 16 samples in Iris data set.

Samples Sepal length Sepal width Petal length Petal width
I. setosa 9 4.4 2.9 1.4 0.2
I. setosa 18 5.1 3.5 1.4 0.3
I. setosa 27 5.0 3.4 1.6 0.4
I. setosa 36 5.0 3.2 1.2 0.2
I. setosa 45 5.1 3.8 1.9 0.4
I. versicolor 54 5.5 2.3 4.0 1.3
I. versicolor 63 6.0 2.2 4.0 1.0
I. versicolor 72 6.1 2.8 4.0 1.3
I. versicolor 81 5.5 2.4 3.8 1.1
I. versicolor 90 5.5 2.5 4.0 1.3
I. versicolor 99 5.1 2.5 3.0 1.1
I. virginica 108 7.3 2.9 6.3 1.8
I. virginica 117 6.5 3.0 5.5 1.8
I. virginica 126 7.2 3.2 6.0 1.8
I. virginica 135 6.1 2.6 5.6 1.4
I. virginica 144 6.8 3.2 5.9 2.3

In Table 2.2, regardless of the first row, the rest of this table is important for preparing
a list of labels and a pattern matrix needed for a hierarchical clustering algorithm. The first
column in this table gives information of names or labels of 16 samples. A list of labels
is then created in such a way that the order of labels in the list is the same as in the first
column in Table 2.2. The four last columns containing the measurements constitute the
pattern matrix R of 16 Iris flower samples:
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R =



4.4 2.9 1.4 0.2
5.1 3.5 1.4 0.3
5.0 3.4 1.6 0.4
5.0 3.2 1.2 0.2
5.1 3.8 1.9 0.4
5.5 2.3 4.0 1.3
6.0 2.2 4.0 1.0
6.1 2.8 4.0 1.3
5.5 2.4 3.8 1.1
5.5 2.5 4.0 1.3
5.1 2.5 3.0 1.1
7.3 2.9 6.3 1.8
6.5 3.0 5.5 1.8
7.2 3.2 6.0 1.8
6.1 2.6 5.6 1.4
6.8 3.2 5.9 2.3


Another way to display a set of n objects withmmeasurements is using am-dimensional

space whose orthogonal coordinate is a set of m coordinates. This space is called a pattern
space where each orthogonal axis corresponds to one measurement, and each object of the
set is pictured as a point. The task of hierarchical clustering can be considered as identi-
fying points in spaces of many dimensions such that these points are close to one another
or meet some spatial requirements (Jain and Dubes, 1988). One should not be misled that
the hierarchical clustering only deals with two- or three-dimensional data.

To identify which objects are similar and which are not, it requires that an index of
proximity, or association be generated between pairs of objects (Jain and Dubes, 1988).
In a problem with n objects, there are 1

2n(n + 1) different pairs of objects regardless of
the order objects are written in the pairs. The measure of proximity for every pairwise
combination of objects can be calculated based on the pattern matrix and stored in a n×n
matrix called a proximity matrix. Let [d(i, j)] denote the n × n proximity matrix where
d(i, j) denotes the proximity index between the ith and jth patterns. We can notice that
the proximity index of a pair of objects is independent of the order in which the objects
are written. As a result, all proximity matrices are symmetric, meaning that each row
or column in the proximity matrix represents an object, which is different from pattern
matrices in which each column defines an attribute.

Depending on how an index of proximity is measured, it is either a similarity index or
a dissimilarity index (Jain and Dubes, 1988). A similarity index between two objects could
be, for example, a correlation coefficient between them. Whereas, a distance between two
patterns in a pattern space is a dissimilarity index. Large distances mean that objects are
not close to each other and then they are different. Roughly, the more two objects resemble
one another, the larger the similarity index, and the smaller the dissimilarity index. One
can determine whether a proximity index is a similarity index or a dissimilarity index by
observing the elements on the main diagonal of the proximity matrix. If they are zero
everywhere on the main diagonal, then the proximity matrix contains dissimilarity indices
as objects have degrees of dissimilarity of zero with themselves. If, in each row, element
on the main diagonal is larger than or equal to the maximum of all other elements in such
row, then the proximity matrix contains similarity indices. These observations are part of
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three properties of the proximity index (Jain and Dubes, 1988). Recall d(i, j) defining
the proximity index between the ith and jth patterns, the proximity index obeys the three
properties as follows:

1. (a) if proximity index is a dissimilarity index: d(i, i) = 0 ∀i
(b) if proximity index is a similarity index: d(i, i) ≥ max

k
d(i, k) ∀i

2. it is symmetric, meaning that d(i, j) = d(j, i) ∀(i, j)

3. it is positive, meaning that d(i, j) ≥ 0 ∀(i, j)

One can get dissimilarity-based proximity indices from the pattern matrix by using a
distance measure metric. The most common metric for proximity indices in engineering
is the Euclidean metric (distance). Suppose that we have a pattern matrix of n objects,
and m measurements in the pattern matrix are on an ordinal scale. The Euclidean metric
between two patterns ith and jth is defined as:

d(i, j) =

( m∑
k=1

(rik − rjk)2
) 1

2

(2.49)

The Euclidean metric measures dissimilarity. That is, d(i, j) ≥ d(i, k)) means that
objects i and k resemble one another more than objects i and j. In addition to fulfilling
three properties of a proximity index, the Euclidean distance satisfies two more criteria:

4. d(i, j) = 0 only if xi = xj

5. it obeys the triangle inequality: d(i, j) ≤ d(i, h) + d(h, j) ∀(i, j, h)

With the use of Euclidean metric, the proximity matrix P containing the distances
between each of the 16 Iris samples will be
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P =



0 0.93 0.83 0.70 1.26 3.09 3.23 3.30 2.83 3.06 2.00 5.91 4.88 5.63 4.70 5.52

0.93 0 0.26 0.39 0.59 3.06 3.12 3.04 2.79 2.99 2.05 5.61 4.61 5.28 4.55 5.22

0.83 0.26 0 0.49 0.51 2.83 2.93 2.85 2.57 2.76 1.81 5.44 4.42 5.12 4.34 5.04

0.70 0.39 0.49 0 0.95 3.18 3.24 3.23 2.91 3.13 2.13 5.83 4.83 5.52 4.73 5.45

1.26 0.59 0.51 0.95 0 2.76 2.85 2.69 2.49 2.66 1.84 5.19 4.19 4.85 4.14 4.78

3.09 3.06 2.83 3.18 2.76 0 0.59 0.78 0.30 0.20 1.11 3.02 2.00 2.82 1.74 2.67

3.23 3.12 2.93 3.24 2.85 0.59 0 0.68 0.58 0.66 1.38 2.85 1.94 2.66 1.70 2.63

3.30 3.04 2.85 3.23 2.69 0.78 0.68 0 0.77 0.67 1.46 2.64 1.64 2.37 1.62 2.29

2.83 2.79 2.57 2.91 2.49 0.30 0.58 0.77 0 0.30 0.90 3.20 2.18 2.98 1.93 2.86

3.06 2.99 2.76 3.13 2.66 0.20 0.66 0.67 0.30 0 1.10 2.99 1.94 2.76 1.71 2.61

2.00 2.05 1.81 2.13 1.84 1.11 1.38 1.46 0.90 1.10 0 4.05 2.99 3.79 2.80 3.64

5.91 5.61 5.44 5.83 5.19 3.02 2.85 2.64 3.20 2.99 4.05 0 1.14 0.44 1.48 0.87

4.88 4.61 4.42 4.83 4.19 2.00 1.94 1.64 2.18 1.94 2.99 1.14 0 0.88 0.70 0.73

5.63 5.28 5.12 5.52 4.85 2.82 2.66 2.37 2.98 2.76 3.79 0.44 0.88 0 1.37 0.65

4.70 4.55 4.34 4.73 4.14 1.74 1.70 1.62 1.93 1.71 2.80 1.48 0.70 1.37 0 1.32

5.52 5.22 5.04 5.45 4.78 2.67 2.63 2.29 2.86 2.61 3.64 0.87 0.73 0.65 1.32 0



Without losing generality and property the entries of a proximity matrix can be mapped
into the [0, 1] interval. This mapping turns a dissimilarity-based proximity matrix into a
dissimilarity relation or dissimilarity matrix whose all diagonal entries are equal to zero.
Whereas, if the proximity matrix containing similarity indices, the mapping turns it into a
similarity relation or similarity matrix having all diagonal entries of 1. As being symmet-
ric, the dissimilarity (similarity) matrix is usually displayed by its upper triangular part.
For example, with the proximity matrix P of 16 Iris flower samples above, we can obtain
a dissimilarity matrix D by mapping elements of P into the [0, 1] interval as follows:
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D =



0 0.16 0.14 0.12 0.21 0.52 0.55 0.56 0.48 0.52 0.34 1.00 0.83 0.95 0.79 0.93

0 0.04 0.07 0.10 0.52 0.53 0.51 0.47 0.51 0.35 0.95 0.78 0.89 0.77 0.88

0 0.08 0.09 0.48 0.50 0.48 0.43 0.47 0.31 0.92 0.75 0.87 0.73 0.85

0 0.16 0.54 0.55 0.55 0.49 0.53 0.36 0.99 0.82 0.93 0.80 0.92

0 0.47 0.48 0.45 0.42 0.45 0.31 0.88 0.71 0.82 0.70 0.81

0 0.10 0.13 0.05 0.03 0.19 0.51 0.34 0.48 0.29 0.45

0 0.11 0.10 0.11 0.23 0.48 0.33 0.45 0.29 0.45

0 0.13 0.11 0.25 0.45 0.28 0.40 0.27 0.39

0 0.05 0.15 0.54 0.37 0.50 0.33 0.48

0 0.19 0.51 0.33 0.47 0.29 0.44

0 0.68 0.51 0.64 0.47 0.62

0 0.19 0.07 0.25 0.15

0 0.15 0.12 0.12

0 0.23 0.11

0 0.22

0


We can convert dissimilarity matrices into similarity matrices and vice versa. If D =

d(i, j) is a dissimilarity matrix of n objects, the similarity matrix S = s(i, j) is derived
from D by

S = [1]n×n −D (2.50)

where [1]n×n is a n × n matrix whose all elements equal to one. This equation can be
rewritten as

s(i, j) = 1− d(i, j) ∀i, j ∈ [1, n] (2.51)

Similarly, a dissimilarity matrix D = d(i, j) can be derived if a similarity matrix S =
s(i, j) is given by

D = [1]n×n − S (2.52)

or
d(i, j) = 1− s(i, j) ∀i, j ∈ [1, n] (2.53)

2.3.2 Linkage methods
In the previous section, we know that a distance metric such as Euclidean metric is used
to measure distances between objects and create the dissimilarity matrix. In the agglom-
erative hierarchical clustering, one may wish to interpret the dissimilarity matrix to have a
comprehension of which objects are the most similar in order to merge them. Such merg-
ing naturally leads to a need of comparing distances between clusters containing more
than one object to know which clusters are the most similar in order to merge them. To
determine the distance among clusters, we use a linkage or linkage method. There are
several commonly used linkage methods such as single linkage, complete linkage, aver-
age linkage, weighted linkage, median linkage, centroid linkage, and Ward linkage. In the
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scope of this study, we will focus on the two most common linkages: single linkage and
complete linkage.

In single linkage, the distance between two clusters U = {ui} and V = {vj} is the
distance of the two closest objects between clusters (Sneath and Sokal, 1973). In symbols

d(U, V ) = min(d(ui, vj)) (2.54)

In other words, single linkage returns the minimum distance between objects belonging
to two different clusters. The opposite linkage method is complete linkage. King (1967)
defined the distance between two clustersU = {ui} and V = {vj} in the complete linkage
is the distance of the two furthest objects between clusters

d(U, V ) = max(d(ui, vj)) (2.55)

It means that the distance between clusters in complete linkage equals the maximum dis-
tance between each pair of elements across clusters. A conceptually similar method to
single linkage is average linkage in which the distance between clusters is calculated as
the average of all pairwise distances of two clusters. Weighted linkage performs the same
calculation but weights distances based on the number of objects in clusters. Whereas,
median linkage calculates distances based on the medians of each cluster. Somewhat sim-
ilarly, centroid linkage calculates distance between centroids (means) of two clusters. The
most conceptually complex is the Ward’s linkage method which is designed to minimize
information loss (Jr., 1963). More specifically, it pretends to merge two clusters into one,
estimates the centroid of the resulting cluster and computes the sum of squared deviations
between the centroid and the observations in the resulting cluster. Then, the difference
between this result and the sum of squared deviations between the observations in each
cluster before merging and the corresponding centroid is the distance between two clus-
ters in the Ward’s linkage method.

The difference between available hierarchical clustering methods rests upon which
linkage method is employed. A hierarchical clustering using the single linkage method
is called the single linkage clustering, and it is called the complete linkage clustering if
the complete linkage is used. Keeping in mind the difference in measuring the distance
between clusters, one can relate to the fact that the dendrogram from the single linkage
clustering might be dissimilar with the one from the complete linkage clustering.

2.3.3 Hierarchical Clustering, Dendrogram, and Linkage Matrix
The input for a hierarchical clustering algorithm can be either a pattern matrix or a prox-
imity matrix. It is worth to recall that the ith row in the pattern matrix or the proximity
matrix represents the ith object which might have a name or label. Hence along with the
pattern matrix or the proximity matrix, a label vector, whose elements are labels of the
objects appearing in these matrices should be also inputted. Throughout this thesis, we
use the label and the index interchangeably to denominate an object.

Hierarchical clustering is a method of cluster analysis, which transforms the pattern
matrix or the proximity matrix into a sequence of nested partitions. We start introducing
the notion of a sequence of nested partitions by recalling the set of n objects to be clustered

X = {xi} = {x1, x2, ..., xn}, 1 ≤ i ≤ n (2.56)
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where xi is the ith object of the set. A collection of subsets of X , C = {C1, C2, ..., Cm},
is a partition of X if and only if the union of all components of C is the set X , and
the intersection of any two different components is an empty set (Jain and Dubes, 1988);
mathematically

m⋃
i=1

Ci = X (2.57)

and
Ci ∩ Cj = ∅ ∀i 6= j (2.58)

A partition is alternatively called a clustering, and the components of the partition are
called clusters. Partition B is nested in partition C if C is formed by merging clus-
ters of B. In other words, if the partition B is nested in the partition C, there always
exists a cluster of C which contains a cluster of B. For example, there is a set of ob-
jects {x1, x2, x3, x4, x5, x6} and two clusterings, C = {(x1, x2, x3), x4, (x5, x6)} and
B = {(x1, x2), x3, x4, (x5, x6)}. Since two clusters of B, (x1, x2) and x3, are merged
into one single cluster, (x1, x2, x3), to form the clustering C, we see that B is nested into
C. A clustering of a given set of n objects, whose each cluster contains only one object,
is called a disjoint clustering. The cluster in the disjoint clustering is called the singleton
cluster. To distinguish between a singleton cluster with a cluster containing more than one
object, we call the later as a non-singleton cluster. A clustering of n objects is called a
conjoint clustering if it has only one cluster which contains all of n objects.

Two algorithms for hierarchical clustering can be found, namely agglomerative (bottom-
up) and divisive (top-down). Initially, the n objects are considered to be clustered. The ag-
glomerative algorithm starts the hierarchical clustering with a disjoint clustering at which
each object is a singleton cluster. The index of a singleton cluster is the index of the ob-
ject that constitutes the cluster. Pairs of these clusters are successively merged based on
the basis of closeness of clusters to create new clusterings until the conjoint clustering is
formed. This process will generate a sequence of nested partitions in which the number
of clusters of the partition decreases from n to 1 as the sequence progresses. Reversely,
the divisive algorithm starts with the conjoint clustering. Then this conjoint clustering is
recursively subdivided into smaller clusters to form new partitions until the disjoint clus-
tering is generated. Regardless of which approach is used, each time a new partition is
formed, the number of clusters changes and the distances between clusters need to be cal-
culated. Following this, it requires to update the proximity matrix after we have merged or
split clusters.

In this thesis, we only use the agglomerative hierarchical clustering. Its algorithm can
be summarized as follows:

1. Create the disjoint clustering of n clusters for the n objects under consideration.

2. Compute the proximity matrix D.

3. Merge the two closest clusters (clusters that have the smallest distance in the prox-
imity matrix), say p and q, into a new cluster, denoted U = {ui} = {p, q}, to form
a new clustering.
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2.3 Hierarchical Clustering

4. Update the proximity matrix by deleting rows and columns corresponding to cluster
p and q and adding a row and column corresponding to the newly formed cluster
U . The distance between the new cluster U and the old cluster, say V = {vj}, is
calculated based on the given linkage method,

• With the single linkage: d(U, V ) = min(d(ui, vj)) = min(d(p, vj), d(q, vj))

• With the complete linkage: d(U, V ) = max(d(ui, vj)) = max(d(p, vj), d(q, vj))

5. Terminate if only single cluster remains. Else, go to step 3.

The objective of hierarchical clustering is to identify the natural clusters among objects
characterized by many attributes. A sequence of nested partitions is the result of a hierar-
chical clustering algorithm. However, this sequence, which is a list of abstract symbols,
is challenging for a human being to easily interpret. In order to clearly visualize the re-
sult of a hierarchical clustering, a dendrogram is constructed representing the sequence of
nested partitions. A tree size of a dendrogram is the number of original observations to be
clustered. In a dendrogram of n objects, we have all n observations on the x-axis and the
distance (or hierarchical level) on the y-axis representing the scale of the proximity matrix.
Each object on the x-axis constitutes a singleton cluster whose index is the index of the
object of the singleton cluster. In the dendrogram, each singleton cluster is represented
by a node called a terminal vertex or a leaf node or simply a leaf. These terminal vertices
are connected by lines (edges) through interior vertices representing non-singleton clusters
that are formed by merging two other clusters (or children clusters). The lines connecting
a non-singleton cluster and its children clusters create a U-shaped link, and the interior
vertex indicating a cluster merge is on top of the U-link. The ith interior vertex represents
the n+ ith cluster (0 ≤ i ≤ n−2), and each interior vertex is placed at a hierarchical level
which is the distance between the children clusters. The n − 2th interior vertex, which is
called the root of the dendrogram, represents the 2n−2th cluster or the conjoint clustering.
A dendrogram with tree size of n has n− 1 interior vertices and 2n− 1 different clusters.
A cluster with an index less than n corresponds to one of the n original observations. Den-
drograms of 16 Iris flower samples are presented in Figure 2.4. Noticeably, agglomerative
hierarchical clustering with different linkages brings out different dendrograms.
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(a) Single linkage
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Figure 2.4: Hierarchical clustering for 16 Iris flower samples.
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Hierarchical clustering is a helpful tool for segmenting observations as it allows users
to identify the number of clusters in a dataset. Cutting a dendrogram at any hierarchical
level returns a clustering and corresponding clusters. However, we need to decide at which
hierarchical level we ought to cut the dendrogram to get a number of clusters that can best
depict different groups. In a dendrogram, vertical lines connecting clusters represents the
distance between them. Longer vertical lines indicate a larger the distance between the
corresponding clusters. Therefore, we generally set a threshold and draw a horizontal line
that cuts the tallest vertical line in the dendrogram. The number of clusters will be the
number of intersections caused by vertical lines and the line drawn using the threshold.
For example, in Figure 2.6b, if we cut the dendrogram at a distance of 0.2, we will have 3
clusters which corresponds to 3 types of Iris flowers.

In Python, the sequence of nested partitions of a dendrogram is summarized in a link-
age matrix which is a (n−1) by 4 matrix, where n is the number of objects to be clustered.
To put it another way, the linkage matrix is the description of a sequence of nested parti-
tions of the corresponding dendrogram. Each row in a linkage matrix tells us how a new
non-singleton cluster is formed in order to create a new partition in the sequence. Specifi-
cally, in each row of the linkage matrix, the first two values are the indices of two children
clusters which are combined to create a new cluster, the third value shows the hierarchical
level at which these two clusters are merged, and the forth value denotes the number of
singleton clusters (or objects) included in the new cluster. Since the dendrogram is the
visualization of the corresponding sequence of nested partitions, and such sequence of
nested partitions is summarized in a linkage matrix, each dendrogram corresponds to a
linkage matrix. Addition to this, in Python, it is a prerequisite to have the linkage matrix
prior to plotting the corresponding dendrogram as well as extracting the cophenetic matrix
which will be dealt with in more detail in the next subsection. Therefore, there is a one-to-
one relation between a linkage matrix and its dendrogram. Throughout the thesis we will
use the linkage matrix to refer to the corresponding dendrogram. The dendrograms of 16
Iris flower samples generated by the single hierarchical clustering algorithm and the com-
plete hierarchical clustering algorithm have the linkage matrices, ZS and ZC , respectively
(Figure 2.5).
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ZS =



5 9 0.03384095 2
1 2 0.04476737 2
8 16 0.05076142 3
3 17 0.06553271 3
11 13 0.07375463 2
4 19 0.08627783 4
6 18 0.09866247 4
15 20 0.1096572 3
7 22 0.11350599 5
0 21 0.11844332 5
12 14 0.11844332 2
23 26 0.12433958 5
10 24 0.15228426 6
27 28 0.27335862 11
25 29 0.30597532 16


(a) Single linkage

ZC =



5 9 0.03384095 2
1 2 0.04476737 2
8 16 0.05076142 3
11 13 0.07375463 2
3 17 0.08289305 3
6 18 0.11095497 4
12 14 0.11844332 2
7 21 0.13215313 5
15 19 0.1465356 3
0 20 0.15691402 4
4 25 0.21335906 5
10 23 0.24694619 6
22 24 0.2498278 5
26 27 0.55786266 11
28 29 1.00074268 16


(b) Complete linkage

Figure 2.5: Linkage matrices of two dendrograms of 16 Iris flower samples.

We should remark that the order of clusters in the two first values in each row of
the linkage matrix determines the order of the corresponding clusters appearing in the
dendrogram from left to right. In fact, within a row of the linkage matrix, if we swap the
two first elements defining the two clusters to be merged, the positions of these two clusters
will be interchanged in the corresponding dendrogram. Accordingly, the altered linkage
matrix defines a new arrangement of objects in the dendrogram with the same hierarchy.
The term ”tanglegram layout” has come to be used to refer to this new arrangement of the
dendrogram. Then the starting dendrogram has an original dendrogram layout with respect
to the original linkage matrix, and many other layouts created by altering the original
linkage matrix. As each altered linkage matrix circumscribes a unique dendrogram layout,
we can now use the linkage matrix to mean the layout of the dendrogram. In this thesis
we will exploit the linkage matrix as a key tool to alter the dendrogram layout while
still preserving the topology. For example, suppose we have a dendrogram identified by
a (n − 1) × 4 linkage matrix Z, and we want to swap two clusters that are joined to
form the n + ith cluster represented by the ith interior vertex, 0 ≤ i ≤ n − 2. It can
be done by interchanging the two first elements in the ith row of the linkage matrix Z,
Z[i] =

[
Z[i, 0], Z[i, 1], Z[i, 2], Z[i, 3]

]
. To interchange positions of Z[i, 0] and Z[i, 1] we

do a simply matrix multiplication
Z[i]J (2.59)

where,

J =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 (2.60)
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Then we have

Z[i]J =
[
Z[i, 0], Z[i, 1], Z[i, 2], Z[i, 3]

] 
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


=
[
Z[i, 1], Z[i, 0], Z[i, 2], Z[i, 3]

] (2.61)

The matrix product,
[
Z[i, 1], Z[i, 0], Z[i, 2], Z[i, 3]

]
, is then assigned to Z[i] in the linkage

matrixZ to define a new dendrogram layout. Compared to the original dendrogram layout,
this new dendrogram layout has two clusters that are merged at the ith interior vertex
swapped. Take the linkage matrix ZS of the dendrogram of 16 Iris flower samples as
an example. If we want to interchange positions of two clusters, I. versicolor 54 (the
5th cluster) and I. versicolor 90 (the 9th cluster), we just need to multiply the first row
of the linkage matrix, ZS [0], with the matrix J above. The new linkage matrix and the
corresponding dendrogram layout of this example are reported in Figure 2.6.

ZS =



9 5 0.03384095 2
1 2 0.04476737 2
8 16 0.05076142 3
3 17 0.06553271 3
11 13 0.07375463 2
4 19 0.08627783 4
6 18 0.09866247 4
15 20 0.1096572 3
7 22 0.11350599 5
0 21 0.11844332 5
12 14 0.11844332 2
23 26 0.12433958 5
10 24 0.15228426 6
27 28 0.27335862 11
25 29 0.30597532 16


(a) New linkage matrix
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(b) New dendrogram layout

Figure 2.6: New layout of a dendrogram of 16 Iris flower samples after the positions of two clusters
merged at the first interior vertex are swapped.

Since interchanging positions of clusters in a dendrogram is crucial for untangle meth-
ods which will be introduced in the next chapters, we will define a swap function Ωi(Z)
that takes the linkage matrix Z as the input and swaps the two first elements in the ith row
of the linkage matrix Z

Ωi(Z) = Z ′ | Z ′[i] = Z[i]J & Z ′[k] = Z[k] ∀k 6= i (2.62)

where,

J =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 (2.63)
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The function Ωi(Z) interchanges positions of the two first elements in the ith row of the
linkage Z, meaning that it swaps two clusters that are merged to create the ith interior
vertex in the dendrogram encoded as the linkage matrix Z. Hereafter, the usage of the
swap function Ωi(Z) is considered as to rotate the ith interior vertex in the dendrogram
layout Z in order to form a new dendrogram embedding.

Each dendrogram layout imposes an order among the objects appearing as the leaves
of the dendrogram. Swapping clusters at an interior vertex of the dendrogram causes a
change in this order of objects. Therefore, we need a vector recording the objects in a
dendrogram from right to left. This vector is called a leaf node vector and can be extracted
from the linkage matrix. Suppose that we are working with a (n − 1) × 4 linkage matrix
Z, the corresponding leaf node vector, denoted by an array V , firstly has two elements

V = [Z[n− 1, 0], Z[n− 1, 1]] (2.64)

If an element in this vector, say V [i], is greater than or equal to n, it will be substituted by
two values, Z[V [i]−n, 0] and Z[V [i]−n, 1]. It is essential to not change the order of these
two values. We keep doing such substitution until all elements of the vector V are smaller
than n, meaning that all elements in V are indices of original observations. Then the leaf
node vector V is eventually formed showing the order of objects in the dendrogram layout
from left to right. The leaf node vector plays an important roll in the calculation of the
entanglement of a tanglegram, which will be revealed in section 2.6.

2.3.4 Cophenetic Matrix and Ultrametric Inequality
Besides the ordinary distances, there exists another type of distance between observations,
which is the cophenetic distance. The cophenetic distance between two observations is
described as the distance between the largest two clusters that contain the two objects
individually. Within the context of a dendrogram, cophenetic distance between two objects
is the hierarchical level at which they first occur in the same cluster (Jain and Dubes, 1988).
Suppose the ith and jth patterns are original observations in clusters p and q, respectively,
and p and q are joined to generate another cluster u. This is, p and q are the largest
two clusters that contain the two objects individually before they are merged into cluster
u which contains both the ith and jth patterns. Hence the cophenetic distance between
the ith and jth observations is simply the distance between clusters p and q, which can be
found in the third column in the linkage matrix. It is worthwhile to note that since different
linkage methods define the distances between clusters differently, the cophenetic distances
of the same pair of objects generated by distinct linkages might be unequal.

A cophenetic matrix of n objects is a n× n matrix whose elements are the cophenetic
distances between each pair of n objects. Let dC(i, j) denote the cophenetic distance
between the ith and jth patterns, then the cophenetic matrix is the matrix of values DC =
[dC(i, j)], which can be constructed from the corresponding linkage matrix Z. With each
pair of objects, say ith and ith objects, we find the kth row in the linkage matrix Z such
that Z[k, 0] and Z[k, 1] are the indices of the largest two clusters that contain the two
objects individually. Then Z[k, 2] is the cophenetic distance between ith and ith objects,
or dC(i, j) = Z[k, 2]. The cophenetic matrix stemming from single linkage hierarchical
clustering of 16 Iris samples is displayed as below:
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DC =



0 0.12 0.12 0.12 0.12 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31

0 0.04 0.07 0.09 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31

0 0.07 0.09 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31

0 0.09 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31

0 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31

0 0.10 0.11 0.05 0.03 0.15 0.27 0.27 0.27 0.27 0.27

0 0.11 0.10 0.10 0.15 0.27 0.27 0.27 0.27 0.27

0 0.11 0.11 0.15 0.27 0.27 0.27 0.27 0.27

0 0.05 0.15 0.27 0.27 0.27 0.27 0.27

0 0.15 0.27 0.27 0.27 0.27 0.27

0 0.27 0.27 0.27 0.27 0.27

0 0.12 0.07 0.12 0.11

0 0.12 0.12 0.12

0 0.12 0.11

0 0.12

0



Since the cophenetic matrix contains the cophenetic distances between objects, it sat-
isfies the properties of a dissimilarity matrix as discussed in Section 2.2.4. In fact, a
cophenetic matrix [dC(i, j)] of n objects defines a fuzzy relation that has the following
properties. First, it is symmetric

dC(i, j) = dC(j, i) ∀i, j ∈ [1, n] (2.65)

Secondly, it is irreflexive
dC(i, i) = 0 ∀i ∈ [1, n] (2.66)

Besides satisfying these two criteria, Jain and Dubes (1988) pointed out that a cophenetic
matrix obeys a ultrametric inequality

max{dC(i, k), dC(k, j)} ≥ dC(i, j) ∀i, j, k ∈ [1, n] (2.67)

A matrix satisfying the ultrametric inequality is called a ultrametric matrix. Then a cophe-
netic matrix is a ultrametric dissimilarity matrix.

Jain and Dubes (1988) mentioned that a cophenetic matrix captures the structure that a
given hierarchical clustering algorithm is imposing on the data. To put it another way, the
cophenetic matrix represents the output of a hierarchical clustering algorithm, or the re-
sulting dendrogram. Each dendrogram has a unique cophenetic matrix recording distances
at which objects are merged to create new partitions in the dendrogram, which a proximity
matrix might not achieve. It can be argued that it is the sequence of nested partitions form-
ing the hierarchy assures the ultrametric property of the cophenetic matrix. By using the
cophenetic matrix as the input for a given hierarchical clustering algorithm instead of the
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dissimilarity based proximity matrix, one can reconstruct a dendrogram that is exactly the
same as the one obtained by using the corresponding proximity matrix. Moreover, if we
use a cophenetic matrix as the input, dendrograms from both single linkage clustering and
complete linkage clustering are exactly the same (Jain and Dubes, 1988). The same result
is obtained by using the average linkage and weighted linkage methods as well. All sug-
gest that the correspondence between a cophenetic matrix and a hierarchical structure is
one-to-one. Alternatively, the correspondence between a ultrametric dissimilarity matrix
and a dendrogram is one-to-one because a cophenetic matrix is a ultrametric dissimilar-
ity matrix. This statement leads to the one-to-one relationship between a min-transitive
similarity matrix (or a fuzzy equivalence relation) and a dendrogram. The justification for
this relation comes from the fact that a dissimilarity matrix D = {d(i, j)} of n objects is
ultrametric if and only if its corresponding similarity matrix S = {s(i, j)} = {1} −D is
min-transitive. Indeed, if S is min-transitive we have

max{min{s(i, k), s(k, j)}} ≤ s(i, j) ∀i, j, k ∈ [1, n] (2.68)

which can be rewritten

min{s(i, k), s(k, j)} ≤ s(i, j) ∀i, j, k ∈ [1, n] (2.69)

From equations 2.51 and 2.69 we get

min{1− d(i, k), 1− d(k, j)} ≤ 1− d(i, j) ∀i, j, k ∈ [1, n] (2.70)

which yields

1−max{d(i, k), d(k, j)} ≤ 1− d(i, j) ∀i, j, k ∈ [1, n] (2.71)

and hence
max{d(i, k), d(k, j)} ≥ d(i, j) ∀i, j, k ∈ [1, n] (2.72)

which implies that the dissimilarity matrix D is ultrametric.

2.4 Hierarchical Clustering Combination (HCC)
In hierarchical clustering, the use of different linkage method to a given dataset usually
produces different dendrograms with unalike qualities. It means that the samples are cat-
egorized into clusters in different ways. The exist of multiple dendrograms really con-
founds the users when they want to choose an appropriate clustering for further usage.
Hence many researchers have tried to combine the output of several hierarchical cluster-
ings to improve the quality and robustness of clustering (Mirzaei and Rahmati, 2010).
This problem is known as the hierarchical clustering combination (HCC) problem.

Since a hierarchical clustering is illustrated as a unique dendrogram, HCC can be con-
sidered as a dendrogram combination problem. Mirzaei and Rahmati (2010) put forward
a definition of HCC:

“Given a set of dendrograms find a new dendrogram which is a proper repre-
sentative of the whole dendrograms set.”
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A proper representative of a set of dendrograms here is a combined dendrogram that
is as close as possible to all dendrograms of the set. It implies that the combined den-
drogram must maintain the structure of the input dendrograms in some extend. However,
combining dendrograms with different hierarchy structures is not as easy as combining
multiple classifiers. The reason for this is that in hierarchical clustering, objects are tied in
a fixed hierarchical relationship which is shown by edges, interior indices and hierarchical
levels in a dendrogram. Additionally, there is usually the existence of mismatch between
clusters in different dendrograms (Mirzaei and Rahmati, 2010). Therefore, in order for
the combination method to be possible it is necessary to work with an intermediate matrix
presentation of dendrograms instead of working directly with dendrograms. In fact, any
dendrogram can be presented by a matrix, but it is not always true that a dendrogram could
be recovered by an arbitrary matrix. Based on that, the definition of hierarchical clustering
combination is rewritten by Mirzaei and Rahmati (2010) as follows:

“Given input dendrograms, each could be represented by its matrix represen-
tation, our goal is to construct a consensus matrix by aggregating the base
dendrograms matrices. The consensus matrix must have an associated den-
drogram, which is the result of the combination algorithm.”

Summarizing, a hierarchical clustering combination method starts with description
matrices of the input hierarchical clusterings, and the method should have an aggregator
to combine these description matrices in order to extract an aggregated matrix (consen-
sus matrix). This final matrix must satisfy some requirements to ensure that it has an
associated dendrogram. In case we use similarity based description matrices of primary
dendrograms, the consensus matrix must be transitive according to the one-to-one corre-
spondence between a fuzzy equivalence relation and a dendrogram. In the same way, if
dissimilarity based description matrices are used, the consensus matrix must be ultrametric
to have an associated dendrogram based on knowledge in section 2.3.4.

2.5 Dendrogram Description Matrices
As reported in Section 2.4, the direct combination of hierarchical clustering is difficult.
The most common approach to dendrogram comparison and combination is to introduce
an intermediate matrix presentation of dendrograms, which is known as a description ma-
trix or descriptor. Each dendrogram having n input objects can be represented by a sym-
metric description matrix of size n×n. This matrix expresses the relative position of each
pair of objects in a dendrogram (Podani and Dickinson, 1984). Let T = {tij} denote
the description matrix of a dendrogram H , then the element tij might be a measure of
(dis)similarity between two objects i and j within this dendrogram.

Description matrices have an attribute of being ultrametric, which is introduced in sec-
tion 2.3.4. Ironically, not every descriptor is ultrametric. It depends on how the descriptor
is constructed. In fact, several descriptors have been defined to present different structural
aspects of a dendrogram. Their definitions are given as follows:
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• Cophenetic Difference (CD): The broad accepted use of the term cophenetic dif-
ference of a given pair of objects in a dendrogram refers to the lowest hierarchical
level at which the objects are joined together. This definition is similar to the defini-
tion of cophenetic distances between objects. Therefore, the cophenetic difference
matrix is the cophenetic matrix introduced in section 2.3.4. Accordingly, the cophe-
netic difference matrix satisfies the requirement for being an ultrametric (Rohlf and
Sokal, 1981). Since only hierarchical levels are taken into account, dendrograms
with the same hierarchy but different scales on the y-axis might have very different
CD matrices (Podani and Dickinson, 1984).

• Path Difference (PD): For each pair of objects, for instance i, j, instead of consid-
ering the hierarchical levels, now we count a number of interior vertices along the
path between i and j in a dendrogram. The matrix contains such numbers is called a
Path (or cladistic or topological) Difference. This descriptor reflects the genealogi-
cal relations between pairs of objects rather than the (dis)similarities between them.
Podani and Dickinson (1984) pointed out that the fundamental problem with PD
matrix is that interior vertices in a dendrogram receive equal weight. This is not rea-
sonable since the root representing the highest hierarchical level should be the most
weighted vertex and the vertices right below the root should have the less weight,
and so on (Podani and Dickinson, 1984). PD is not an ultrametric, therefore, it is
not possible to recover a unique dendrogram from a PD descriptor Rohlf and Sokal
(1981).

• Cluster Membership Divergence (CMD): For each pair of objects i and j, instead
of counting all vertices along the path between objects, now we count the number
of objects in the smallest cluster containing both i and j. This number is called
the CMD of i and j. Unlike PD, each interior vertex is now weighted according to
the number of objects that are merged to create a cluster represented by the interior
vertex. With this descriptor, the hierarchical levels are not preserved.

• Partition Membership Divergence (PMD): This descriptor utilizes the property
that a dendrogram is the illustration of a sequence of nested partitions. PMD of a
given pair of objects, say i, j, is the number of partitions implied by the dendrogram
in which this pair of objects does not belong to the same cluster. In other words,
PMD of a pair of objects indicates the index of the partition at which objects are in
the same cluster for the first time. One can see that PMD preserves the ordering of
hierarchical levels in the dendrogram, and it is ultrametric.

• Sub-tree Membership Divergence (SMD): In a dendrogram of n objects, each
interior vertex represents a cluster whose objects can be considered as a subset of
n objects. Therefore, each interior vertex usually refers to a hierarchical clustering
of a subset of objects. The dendrogram of this hierarchical clustering is called a
sub-tree. A dendrogram of n objects, then, has n− 1 sub-trees corresponding to the
n− 1 interior vertices. SMD for each pair i, j is defined as the number of sub-trees
in which objects i and j are not assigned together in a same cluster. One can notice
that the elements of the main diagonal in SMD are not necessarily equal. As the
result, SMD is not ultrametric (Podani and Dickinson, 1984).
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• Maximum Number of Edge Distance (MNED): In this descriptor, the original
levels of the hierarchy in the dendrogram are discarded, and an abstract level (AL)
for each cluster is created (Mirzaei et al., 2008). The cluster including only one
object has an abstract level of zero. The abstract level of other clusters is computed
as follows. Let Ci and Cj be two clusters, and let AL(Ci) and AL(Cj) denote the
abstract levels associated to Ci and Cj , respectively. Assume that these two clusters
are merged into a new cluster, Cij . The abstract level of the cluster Cij is defined
by:

AL(Cij) = max{AL(Ci), AL(Cj)}+ 1 (2.73)

MNED of a pair of objects, say i and j, is the abstract level of the smallest cluster
that contains both i and j. Generally, MNED is not ultrametric.

For illustration, we have 6 descriptor matrices of a dendrogram in Figure 2.7 shown in
Table 2.3. It is essential to notice that all descriptors are symmetric, so, it is sufficient to
show just the upper triangle matrices.
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Figure 2.7: Example dendrogram.

Table 2.3: Different descriptors of the example dendrogram in Figure 2.7.

Object CD PMD CMD
a 0 1 2 5 5 7 0 1 2 4 4 5 1 2 3 5 5 6
b 0 2 5 5 7 0 2 4 4 5 1 3 5 5 6
c 0 5 5 7 0 4 4 5 1 5 5 6
d 0 4 7 0 3 5 1 2 6
e 0 7 0 5 1 6
f 0 0 1

Object SMD PD MNED
a 1 1 2 3 3 4 0 1 2 4 4 4 0 1 2 3 3 4
b 1 2 3 3 4 0 2 4 4 4 0 2 3 3 4
c 2 3 3 4 0 3 3 3 0 3 3 4
d 2 2 4 0 1 3 0 1 4
e 2 4 0 3 0 4
f 4 0 0
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2.6 Tanglegram and Tanglegram Layout Problem
A tanglegram is a comparative drawing (embedding) of a pair of dendrograms, one facing
the other, with matching objects connected by straight-line segments called inter-tree edges
or tangle edges (Gezlaw et al., 2012). It is usually used for visually comparing two den-
drograms from different hierarchical clustering methods. For instance, two dendrograms
generated by the single linkage hierarchical clustering and the complete linkage hierarchi-
cal clustering of 16 Iris flower samples are placed in a tanglegram which can be seen in
Figure 2.8. It is necessary that two dendrograms in the tanglegram should have the same
set of objects so that two sets of objects between two dendrograms are in one-to-one cor-
respondence. According to the natural structure of the tanglegram, the dendrogram on the
left hand side of the tanglegram is called the left dendrogram. Analogously, the one on the
right hand side of the tanglegram is called the right dendrogram. Since a dendrogram has
various layouts, the tanglegram has also a number of layouts depending on the dendrogram
embeddings. Assume that the layouts of the left dendrogram and the right dendrogram of a
tanglegram are identified by two linkage matrices, Zl and Zr, respectively. Then the corre-
sponding tanglegram layout can be represented by a three dimensional array L = [Zl, Zr].
Hereafter, we shall use this array L to denominate the corresponding tanglegram and its
tanglegram layout.
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Figure 2.8: Original tanglegram layout of 16 Iris flower samples with the entanglement of 0.46.
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In a tanglegram, a crossing occurs when two inter-tree edges intersect, and the num-
ber of crossings is dependent upon the layout of the two dendrograms in the tanglegram.
In general terms, the ”worst” tanglegram layout is defined as a tanglegram layout when
the leaf node vector of one dendrogram in the tanglegram is a complete reverse of the
leaf node vector of the other dendrogram. From a practical standpoint, a tanglegram with
many crossing inter-tree edges can be intricately tangled and hard to analyze (Gezlaw et al.,
2012). It leads to a need for finding a drawing of the tanglegram with zero crossings. This
problem is known as the planar embedding problem (Gezlaw et al., 2012). If that embed-
ding does not exist, we may want to find an embedding with as few crossings as possible.
The problem of finding a graphical layout of two trees that produces the minimum cross-
ings is known as the crossing minimization or the tanglegram layout (TL) problem (Bansal
et al., 2009). Note that the minimum of crossings is not a tree-distance measure since two
dendrograms with very different topologies might have no crossing at all in the tanglegram
(Buchin et al., 2008; Vienne, 2018). Thus, the number of crossings between two dendro-
grams has a tendency to provide an approximation of their level of topological similarity
(or congruence) (Vienne, 2018). In this thesis, we advocate the idea of minimizing the
number of crossings for visualization purposes, and we use the optimized tanglegram to
interpret the similarity and dissimilarity between dendrograms.

Counting the number of crossings is a difficult measurement as one inter-tree edge can
intersect many other inter-tree edges causing the complexity of crossings. It is even more
challenging with big tree sizes. Therefore, an entanglement value was formed to substi-
tute the number of crossings in tanglegrams. Assume that we are working on n objects
and having an arbitrary tanglegram layout, L = [Zl, Zr]. The entanglement measurement
starts by recalling the leaf node vector V of a dendrogram layout Z. Let Vl and Vr are
the leaf node vectors of the left dendrogram and the right dendrogram, respectively. We
can alternatively call the leaf node vector of the left dendrogram, Vl, as the left leaf node
vector. Similarly, Vr is called the right leaf node vector. Noticeably, the indices of objects
in these leaf node vectors are different from the indices of objects in the pattern matrix or
proximity matrix. Let differentiate between these two types of indices by calling the for-
mer as the temporary indices and the later as the original indices of objects. Entanglement
is measured by firstly giving the objects in the left leaf node vector the values of 0 til n−1,
and then matching these numbers with the right leaf node vector. In particular, we define
a matching vector Ml whose elements are the temporary indices of objects in the left leaf
node vector

Ml = [Vl(Vl[i])] (2.74)

In other words, the ith element in the vector Ml is simply the value of i, meaning that

Ml[i] = i (2.75)

or
Ml = [0, 1, 2, ..., n− 1] (2.76)

The temporary indices of objects in the left leaf node vector is matched with objects in the
right leaf node vector Vr by defining a matching vector Mr whose the jth element is the
temporary index of the object Vr[j] in the left leaf node vector

Mr = [Vl(Vr[j])] (2.77)
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An illustration of how to match the temporary indices of objects in the left leaf node vector
with objects in the right leaf node vectors in the original tanglegram layout of 16 Iris flower
samples (Figure 2.8) is given in Figure 2.9.

Vl 0 4 3 1 2 15 11 13 12 14 10 7 6 8 5 9
Ml 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Vr 12 14 15 11 13 4 0 3 1 2 10 7 6 8 5 9
Mr 8 9 5 6 7 1 0 2 3 4 10 11 12 13 14 15

Figure 2.9: Example of the left and right leaf node vectors and the corresponding matching vectors
M from the original tanglegram layout of 16 Iris flower samples (Figure 2.8).

Now, we calculate the Euclidean distance between two vectorsMl andMr, which is called
the displacement between the left and right dendrograms of the arbitrary tanglegram layout
L = [Zl, Zr]

d(Ml,Mr) =

√√√√n−1∑
i=0

(
Ml[i]−Mr[i]

)2

(2.78)

The same displacement between dendrograms constituting the ”worst” tanglegram layout
Lw = [Zwl , Z

w
r ] should be also computed. Let V wl and V wr be the leaf node vectors

from the left and right dendrograms in the ”worst” tanglegram layout, respectively. Then
the matching vector Mw

l containing the temporary indices of objects in the left leaf node
vector V wl is

Mw
l = [0, 1, 2, ..., n− 1] (2.79)

According to the definition of the ”worst” tanglegram layout, one leaf node vector is the
completely reversed vector of the other. Hence matching the temporary indices of ob-
jects in the left leaf node vector with objects in the right leaf node vector in the ”worst”
tanglegram layout gives the matching vector Mw

r as follows

Mw
r = [n− 1, n− 2, n− 3, ..., 0] (2.80)

Then applying Equation 2.78 for the ”worst” tanglegram layout yields the displacement
between dendrograms in the ”worst” tanglegram layout

d(Mw
l ,M

w
r ) =

√
(n− 1)2 + (n− 3)2 + ...+ (1− n)2

=
√

(n− 1)2 + (n− 2− 1)2 + ...+ (n− 2(n− 1)− 1)2

=

√√√√n−1∑
j=0

(
n− 2j − 1

)2
(2.81)

Entanglement value of the arbitrary tanglegram layout L = [Zl, Zr] is obtained by a func-
tion ε(L) which divides the displacement between two dendrograms in this arbitrary tan-
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glegram layout by that number in the ”worst” tanglegram layout

ε(L) =

√∑n−1
i=0

(
Ml[i]−Mr[i]

)2

√∑n−1
j=0

(
n− 2j − 1

)2
(2.82)

where n is the tree size. The entanglement value indicates the quality of the alignment of
the two dendrogram in the tanglegram layout. Notice that entanglement is a measure be-
tween 0 and 1. Entanglement of zero means that the tanglegram layout has no crossing and
entanglement of 1 indicates that the tanglegram layout is the ”worst” tanglegram layout.

Since this thesis is technically based on the programming language Python, we looked
for available solutions to solve the TL problem in this programming language. For many
years, the statistical library SciPy of Python has been considered as an effective tool for
dendrogram modelling. Nevertheless, addressing the TL problem is not covered in this
library. To the best of our knowledge, few researchers have addressed the TL problem,
but no comprehensive framework has been available in Python for improving tanglegram
layout. In the programming language R, Galili introduced a package named dendextend
which provides not only functions for manipulating dendrogram’s structure but also sev-
eral advanced methods for resolving the TL problem (Galili, 2015). Among 6 untangle
methods implemented in the R package dendextend, the ”step2side” method is one of
the most commonly used methods for finding a better layout of a tanglegram. Based on
the fact that a dendrogram is an object which can be rotated on its hinges (interior vertices)
without changing its topology, the method ”step2side” rotates dendrograms to best fit one
another.

The ”step2side” algorithm for untangling the tanglegram L = [Zl, Zr] of n objects can
be described in three main steps:

1. Create new tanglegram layouts by keeping the left dendrogram Zl unchanged and
rotating the right dendrogram Zr. The right dendrogram is rotated by using the swap
function Ωi(Zr), 0 ≤ i ≤ n− 2, to interchange the clusters merged at each interior
vertex starting from the first interior vertex to the root. Each time we have a new
tanglegram layout, if it has a smaller entanglement than the previous tanglegram
layout, ε([Zl,Ωi(Zr)]) < ε([Zl, Zr]), then Zr is replaced by Ωi(Zr).

2. Create new tanglegram layouts by keeping the right dendrogram Zr unchanged and
rotating the left dendrogram Zl. The left dendrogram is rotated by using the swap
function Ωi(Zl), 0 ≤ i ≤ n− 2, to interchange the clusters merged at each interior
vertex starting from the first interior vertex to the root. Each time we have a new
tanglegram layout, if it has a smaller entanglement than the previous tanglegram
layout, ε([Ωi(Zl), Zr]) < ε([Zl, Zr]), then Zl is replaced by Ωi(Zl).

3. Repeat steps 1 and 2 until a local optimal solution is reached.

The algorithm of the ”step2side” method is summarized in a flowchart detailed in
Figure 2.10. Variables used in this flowchart are described in Table 2.4.
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Figure 2.10: Algorithm of ”step2side” method in R.
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Table 2.4: Summary of variables used in ”step2side” algorithm.

Symbol Description Variable type
n Number of objects in a dendrogram integer
Zl The left dendrogram encoded as a linkage matrix ndarray
Zr The right dendrogram encoded as a linkage matrix ndarray
L The tanglegram consitituted by the left and right dendrograms ndarray
E0 The entanglement of L before rotating a dendrogram float

Eold
The entanglement of L before interchanging clusters merged
at an interior vertex of a dendrogram float

H,K Duplicated rows before using the swap function ndarray
i, k Indices integer

An attempt to untangle the original tanglegram of 16 Iris samples is made by employ-
ing the ”step2side” algorithm. It gives a new tanglegram layout with an entanglement of
0.43 (Figure 2.11). This tanglegram layout has a smaller entanglement value than the orig-
inal one, however, it bears a close resemblance to the original tanglegram layout and still
looks tangled with a lot of crossings.
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Figure 2.11: Optimized tanglegram layout having the entanglement of 0.43 after using the
”step2side” method.
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Chapter 3
Methodology

3.1 Introduction
As mention in section 2.3.4, there is one-to-one correspondence between ultrametric dis-
similarity matrices and dendrograms. Some of the dendrogram description matrices can be
converted into dissimilarity matrices which meet the requirement of the ultrametric prop-
erty. These descriptors are considered as the representation of dendrograms and can be
used as the input for reconstructing and combining dendrograms. The correspondence be-
tween a transitive similarity matrix and a dendrogram is also one-to-one. In other words,
a dendrogram could be constructed corresponding to a similarity matrix if it is transi-
tive. Additionally, the definition of HHC in section 2.4 mentions that the consensus ma-
trix formed by aggregating the dendrogram description matrices must have an associated
dendrogram. Therefore, it can be reasoned out that this consensus matrix must be either
ultrametric or min-transitive, depending on whether the consensus matrix is a dissimilarity
matrix or similarity matrix.

We assume that we use description matrices of base dendrograms in the form of simi-
larity matrices as the input for a HCC algorithm. The definition of HCC can be redefined
as the aim to aggregate the descriptors of base dendrograms into a consensus matrix which
must be min-transitive to generate an associated dendrogram. This problem was stud-
ied by Mirzaei and Rahmati. In 2010, they proposed an algorithm called Min-trAnsiTive
Combination of Hierarchical clusterings (MATCH), aiming to construct a min-transitive
consensus matrix from multiple dendrogram description matrices (Mirzaei and Rahmati,
2010). MATCH algorithm starts with similarity matrices of base hierarchical clusterings,
and makes use of min-transitive closure to aggregate these input matrices into a transitive
consensus matrix. In the two first sections below the formula for calculating the min-
transitive closure and the main steps in MATCH algorithm will be described. We also
propose a new algorithm that can provide the same results as the MATCH algorithm, but
it has less time complexity.

Several untangle methods in R language are implemented to solve the TL problem.
In section 2.6 we investigate one of the most widely used untangle methods in R lan-
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guage: the ”step2side” method. In the example case of 16 Iris flower samples, we must
remark that there is no big difference between the optimized tanglegram stemming from
the ”step2side” method and the original tanglegram. The optimized tanglegram layout
still has a large entanglement (0.43). This can be attributed to the big tree size or the
complexity of the crossings. The ”step2side” method might be good enough to solve the
TL problem of other cases with small number of objects, but in this case, it is just able to
reduce the entanglement of the original tanglegram by 0.03. If we assume that there exists
a tanglegram layout with no crossings at all between inter-tree edges for this 16 Iris flower
samples case, then the result from the ”step2side” method is a local minimum in this op-
timization problem. Can we find a tanglegram layout that is superior to the result from
”step2side” method? The work in this master thesis was motivated by this question. In the
last subchapter, we propose a new untangle method called a shuffle and untangle (S&U )
method aiming to find a tanglegram layout that has a smaller entanglement than the op-
timized tanglegram from the ”step2side” method. The rest of this chapter will present
concepts needed for our proposed S&U method.

3.2 Transitive Closure
According to the definition of HCC in Section 2.4, the consensus matrix must have an
associated dendrogram. Whereas, as reported in Section 2.3.4, the transitivity of the con-
sensus matrix implies the existence of a dendrogram. With that in mind, we need to study
an algorithm to turn a relation (or the corresponding membership matrix) to a transitive
one. Available algorithms to perform this task can be divided into 3 categories, (1) the
algorithms which calculate the min-transitive closure, (2) the algorithms which compute
the min-transitive opening, and (3) the algorithms that calculates the min-transitive ap-
proximation of the input matrix (Naessens et al., 2002). In the sequel, we shall merely
introduce the min-transitive closure algorithm as it is used to develop the MATCH and
square algorithms in the next section.

The closure of a crisp relation R with respect to a specific property P is a relation that
has the property P , contains R, and has the least possible members (Klir et al., 1997).
For fuzzy relations, the closure of a fuzzy relation R with respect to a specific property
P is defined as the smallest relation R′ containing R and satisfying the property P (Klir
et al., 1997). Bandler and Kohout (1988) claim that R′ is P -closure of R, if and only if R′

satisfies three properties as follows,

1. R′ has property P

2. R ⊆ R′

3. If R ⊆ S and S has property P , then R′ ⊆ S

If there exists two P -closure of R, say R′ and S, according to the third property, we have
R′ ⊆ S and S ⊆ R′. Consequently, we have R′ = S, meaning that a P -closure, if it
exists, must be unique.

If we substitute the min-transitive for the property P in the definition of closure above,
we obtain the definition of the min-transitive closure of a fuzzy relation which is simply
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called the transitive closure. Specifically, the transitive closure of an arbitrary fuzzy rela-
tion S is defined as the unique min-transitive fuzzy relation S on X that contains S and
is itself contained in any transitive fuzzy relation containing S. In other words, transitive
closure S of a fuzzy relation S is a fuzzy relation that satisfies the min-transitive property,
and its elements are the smallest possible values greater than or equal to elements of S
(Mirzaei and Rahmati, 2010). Let S be a fuzzy relation on X with n is the order of the
corresponding membership matrix, the formula to compute the transitive closure S of S is
constructed by Zadeh (1971) as follows:

S = S ∪ S2 ∪ ... ∪ Sn =

n⋃
k=1

Sk (3.1)

where
Sk = Sk−1 ◦ S ∀k ∈ [2, n] (3.2)

and
S1 = S (3.3)

Equation 3.1 helps us to transform any fuzzy relation into a min-transitive fuzzy relation
by calculating the transitive closure. In particular, we can transform a similarity relation
into an equivalence relation by calculating its transitive closure.

An algorithm for computing a min-transitive closure S of an arbitrary relation S with
the corresponding membership matrix of order n was introduced by Klir et al. (1997)
(Figure 3.1). This algorithm is applicable to both crisp and fuzzy relations. In Figure 3.1,
the min-transitive closure algorithm can terminate prior to computing the relation Sn when
no new relation is produced, meaning that the min-transitive closure of the relation S is
found. Indeed, having the same results in two consecutive iterations means that we have

S ∪ (S ◦ S) = S (3.4)

Since the union is the max-based operator, Equation 3.4 yields

S ◦ S ⊆ S (3.5)

inferring that S is min-transitive.

Input: Fuzzy relation S
Output: Transitive relation S
Step 1: S = S
Step 2: Calculate S = S ∪ (S ◦ S)
Step 3: Terminate if S is unchanged in two consecutive iterations
or the number of iterations approaches n.
Else, go to step 2.

Figure 3.1: General min-transitive closure algorithm.
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Consider the following fuzzy relation

R =


1 0.1 1 0.6

0.1 1 0.2 0.2
1 0.2 1 0.6

0.6 0.2 0.6 1


This fuzzy relationR on X is a similarity relation as it has the properties of reflexivity and
symmetry. Yet, it is not transitive since it does not satisfy Equation 2.47. As an example,
µR(x1, x3) = 1 and µR(x3, x2) = 0.2, but µR(x1, x2) = 0.1 < min(1, 0.2). Indeed, the
max-min composition of R is not a subset of R, or alternatively

R2 = R ◦R =


1 0.2 1 0.6

0.2 1 0.2 0.2
1 0.2 1 0.6

0.6 0.2 0.6 1

 6⊆ R
In this instance, the relation R2 on X is transitive after one max-min composition. Further
compositions give the same result, R4 = R3 = R2.

3.3 MATCH Algorithm
MATCH algorithm, which was proposed by Mirzaei and Rahmati (2010), is an algorith-
mic framework combining multiple hierarchical clusterings into a combined hierarchical
clustering.

Before introducing the main steps of the MATCH algorithm, we first introduce the
input data for this algorithm. Assume that we have a set of m initial dendrograms. As
discussed in section 2.5, the ith dendrogram of the set is represented by a descriptor whose
elements can be normalized in the [0, 1] interval, resulting a dissimilarity based descriptor
matrix Di. This dissimilarity matrix Di can be converted into a similarity matrix Si by
the simple transformation Si = [1] − Di. Therefore, from the set of the hierarchical
clusterings, we have a set of similarity matrices {Si}, 1 ≤ i ≤ m, which is the input for
the MATCH algorithm.

The MATCH algorithm aggregates the m similarity matrices of the base dendrograms
into a transitive consensus matrix by using the general min-transitive closure approach as
highlighted in Figure 3.1. Specifically, MATCH algorithm starts with a matrix S = I ,
where I is an identity matrix, and gradually composes S with all similarity matrices. With
each similarity matrix, the algorithm does the following calculations. Firstly, it computes
a max-min composition of S and the similarity matrix. Secondly, it finds a union of this
max-min composition with S and assigns this resulting union to S. After doing these cal-
culations for the last similarity matrix, the procedure is repeated for all similarity matrices
in the set starting with the first similarity matrix. The whole calculation continues until S
does not change in an epoch, meaning that the final transitive consensus matrix is found.

From the consensus matrix, which is the last S, the associated final hierarchical cluster-
ing is generated. This consensus matrix is a similarity-based transitive matrix S, so it can
be converted into a dissimilarity-based matrix (dissimilarity matrix) D = [1] − S. Since
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3.3 MATCH Algorithm

the consensus matrix S is transitive, the associated dissimilarity matrix D is ultramet-
ric. Once this ultrametric dissimilarity matrix is known, the final hierarchical clustering
is uniquely constructed by performing standard hierarchical clustering algorithms such as
single linkage hierarchical clustering or complete linkage hierarchical clustering, and the
MATCH algorithm subsequently terminates.

The flowchart of MATCH algorithm is illustrated in Figure 3.2. In this figure, the main
step is the iteration helping to find the aggregated matrix. It is built based on steps of the
min-transitive closure algorithm (Figure 3.1). The description of all variables used in the
flowchart is listed in Table 3.1.

Start

Set of similarity matrices {Si}, 1 ≤ i ≤ m

S = I . Sold = S

i = 1

S = S ∪ (S ◦ Si)

i = m? i = i+ 1

S = Sold?

Consensus matrix = S

Sold = S

Final dendrogram

Stop

no

yes

yes

no

Figure 3.2: MATCH algorithm.
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Table 3.1: Summary of variables used in MATCH and square algorithms.

Symbol Description Variable type
m Number of similarity matrices in a set integer
i Index of a similarity matrix in the set integer
Si A similarity matrix ndarray
S Consensus matrix ndarray
Sold Consensus matrix before each iteration ndarray

3.4 Square Algorithm
For a fuzzy reflexive relation R, Klir et al. (1997) suggested calculating its transitive
closure by calculating the sequence of relations

R2 = R ◦R (3.6a)

R4 = R2 ◦R2 (3.6b)...
R2k = R2k−1

◦R2k−1

(3.6c)

until no new relation is produced or 2k ≥ n − 1, meaning that the transitive closure is
generated. This is clearly a less time-consuming approach than the general algorithm in
Figure 3.1 as it skips calculating the relations to the power of odd numbers. As in this
thesis, we only work with the similarity matrices which are reflexive, we can rely on such
calculation of the sequence of relations to calculate the transitive closure of a similarity
matrix. By being inspired by this approach and the MATCH algorithm, we propose an
algorithm called the square algorithm utilizing the calculation of the sequence of relations
as in Equations 3.6a- 3.6c to combine the similarity matrices of base dendrograms into a
transitive consensus matrix.

The input data for the square algorithm are similar to the MATCH algorithm. A set
of m similarity matrices of the base dendrograms are gradually aggregated by using the
max-min composition operator to form a matrix S. In doing so we keep calculating the
sequence of relations

S
2

= S ◦ S (3.7a)

S
4

= S
2 ◦ S2

(3.7b)...
S
2k

= S
2k−1

◦ S2k−1

(3.7c)

until the results in two consecutive calculations are the same or 2k ≥ m − 1, meaning
that we gain the transitive consensus matrix from m similarity matrices. This transitive
consensus matrix has an associated dendrogram which is the combined dendrogram of
m base dendrograms. The square algorithm is summarized in a flowchart in Figure 3.3.
All variables in this flowchart are the same as those used in the flowchart of the MATCH
algorithm (Table 3.1).
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Start

Set of similarity matrices {Si}, 1 ≤ i ≤ m

S = S1. i = 2

S = S ◦ Si

i = m? i = i+ 1

Sold = S.
S = S ◦ S

S = Sold?

Consensus matrix = S

Final dendrogram

Stop

no

yes

yes

no

Figure 3.3: Square algorithm.

3.5 Shuffle and Untangle Method
Shuffle and untangle (S&U ) is a greedy algorithm aiming to solve the TL problem to get
better results than the ”step2side” method.

Prior to introducing the algorithm of our S&U method, some assumptions and defi-
nitions need to be introduced. Suppose we are working with a tanglegram constituted by
two dendrograms of the same set of n objects. As reported in section 2.6, the tanglegram
layout is characterized by the layout of its dendrograms. Firstly, let two linkage matrices
Zl and Zr define the layouts of the left dendrogram and the right dendrogram, respectively.
Then the corresponding tanglegram has a layout L that can be described by a three dimen-
sional array L = [Zl, Zr]. More often than not, to find out a better drawing for a given
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tanglegram, we have to deal with a set of n different tanglegram layouts simultaneously,
denoted L = {Li}, 0 ≤ i ≤ n − 1. In this set, each element Li is a three dimensional
array defining a tanglegram layout. Secondly, we utilize the swap function ωi(Z) in Sec-
tion 2.3.3 to define a function µi([Z,Z ′]) which takes the tanglegram layout, [Z,Z ′], as
the input and returns a set of 4 different tanglegram layouts

µi([Z,Z
′]) = {[Z,Z ′], [ωi(Z), Z ′], [Z, ωi(Z

′)], [ωi(Z), ωi(Z
′)]} (3.8)

In other words, the function µi([Z,Z ′]) shuffles clusters merged at the ith interior vertex
in both dendrograms constituting the tanglegram layout [Z,Z ′] to get new tanglegram
layouts. Therefore, we consider the function µi([Z,Z ′]) as a function that shuffles the
tanglegram at the ith interior vertex. In case we want to shuffle the clusters joined at the
ith interior vertex of the left dendrogram and clusters merged at the jth interior vertex of
the right dendrogram, we use the function

µi,j([Z,Z
′]) = {[Z,Z ′], [ωi(Z), Z ′], [Z, ωj(Z

′)], [ωi(Z), ωj(Z
′)]} (3.9)

Additionally, we need to define another function τi(Z) which returns the index of an inte-
rior vertex whose one of two children clusters is the ith cluster

τi(Z) = t | Z[t, 0] = i or Z[t, 1] = i (3.10)

Finally, we employ the entanglement function in Section 2.6 to define a function ξ(L)
which takes a set of n tanglegram layouts, L = {Li}, 0 ≤ i ≤ n − 1, as the input and
outputs the tanglegram layout with the smallest entanglement amongst all layouts in the
set

ξ(L) = Li | ε(Li) =
n−1
min
j=0

ε(Lj) (3.11)

We construct the algorithm of the S&U method applied for the tanglegram layout
L0 = [Zl, Zr] as follows:

1. Initializing: Create a set L = {L0} consisting of the single object L0 = [Zl, Zr].
Next, we calculate the entanglement of the tanglegram layout L0, ε(L0). Let m
define the number of interior vertices we want to shuffle in the second step. Set
m = 1.

2. Shuffling: We shuffle each tanglegram layout Li in L at the n − m − 1th inte-
rior vertex to get a set of four different tanglegram layouts including the layout Li.
Afterwards, L is the union of all these sets

L =

4m−1−1⋃
i=0

µn−m−1(Li) (3.12)

3. Untangling: With each tanglegram layout Li in L that has not been optimized be-
fore, we perform two optimization algorithms, a coarse optimization and a fine op-
timization:
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3.5 Shuffle and Untangle Method

(a) Coarse optimization: Shuffle the tanglegram layout Li at each interior vertex
from the first to the n − m − 2th interior vertex. After each time we do the
shuffle, we obtain a set of 4 different tanglegram layouts. Following this, the
tanglegram layout having the smallest entanglement among these 4 layouts
will be saved and used for the next shuffle. The layout having the smallest
entanglement after shuffling the n−m− 2th interior vertex is assigned to Li,
and its entanglement, ε(Li), is considered as an optimal entanglement. We
repeat the coarse optimization for Li until the optimal entanglement cannot be
decreased.

(b) Fine optimization: Further optimization is performed on the resulting tangle-
gram layout Li from the coarse optimization. With each singleton cluster, we
find the interior vertices in both dendrograms such that one of two children
clusters of these interior vertices is the singleton cluster. Then, we shuffle the
tanglegram at these interior vertices to get a set of 4 tanglegram layouts. The
tanglegram layout with the smallest corresponding entanglement among these
4 layouts is used for the next rotation. The layout having the smallest entan-
glement after optimizing through all objects is subsequently assigned to Li. Its
entanglement value, ε(Li), is assigned to the optimal entanglement. We repeat
this fine optimization for Li until the newly optimal entanglement is the same
as the previous one.
With the completion of these steps, all tanglegram layouts Li in L are opti-
mized. The tanglegram layout having the smallest entanglement among all
optimized tanglegram layouts in L is considered as the best optimal layout
with the associated best optimal entanglement.

4. Stopping criteria: The algorithm terminates if a tanglegram embedding with a target
entanglement is obtained or if the best optimal entanglement is the same in two
consecutive values of m. If the stopping criteria are not fulfilled, we increase m by
1 and go back to step 2.

A flowchart of this algorithm is shown in Figure 3.4 with the hope that the reader can
conceptualize the way the S&U method works and easily implement it. All variables used
in this flowchart are described in Table 3.2.
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Start

L0 = [Zl, Zr],L = {L0}, n

m = 1. E0 = ε(L0)

l1 = 4m−1 − 1

L =
⋃l1

i=0 µn−m−1(Li)

j = 0. l2 = 4m − 1. l3 = n−m− 2.

k = 0. Eold = ε(Lj)

Lj = ξ(µk(Lj))

k = l3? k = k + 1

ε(Lj) = Eold?

i = 0. Eold = ε(Lj)

p = τi(Lj [0]). q = τi(Lj [1])

Lj = ξ(µp,q(Lj))

i = n− 1?i = i+ 1

ε(Lj) = Eold?

j = l2?j = j + 1

L∗ = ξ(L)

ε(L∗) = E0?
m = m+ 1
E0 = ε(L∗)

Optimal layout L∗

Stop

no

yes

yes

no

yes

no

no

yes

no

yes

no

yes

Figure 3.4: Algorithm of S&U .

50



3.5 Shuffle and Untangle Method

Table 3.2: Summary of variables used in S&U algorithm.

Symbol Description Variable type

L A set of tanglegram layouts, each layout Li is defined by
the left and right dendrograms encoded as linkage matrices

ndarray

L∗ The optimal tanglegram layout after optimization ndarray
Zl The left dendrogram encoded as a linkage matrix ndarray
Zr The right dendrogram encoded as a linkage matrix ndarray

J
A matrix defined in Section 2.3.3 used in the matrix multiplication
to swap two first elements in a row of a linkage matrix

ndarray

n The number of objects in a dendrogram integer
m The number of interior vertices to be shuffled integer

E0
The entanglement of the optimal tanglegram layout
before shuffling

float

Eold
The entanglement of a tanglegram layout before each time
we do the coarse optimization or fine optimization

float

i, j, k, p, q Variables to store indices integer
l1 The number of tanglegram layouts before shuffling interger
l2 The number of tanglegram layouts after shuffling integer

l3
The index of the last interior vertex we swap
in the coarse optimization

integer

Applying the proposed untangle method for the tanglegram of the 16 Iris flower ex-
ample gives us an optimal tanglegram as shown in Figure 3.5. From the graph we can
see that the optimized tanglegram has no crossings at all. Compared to the one from the
”step2side” method (Figure 2.11) with the entanglement of 0.43, the tanglegram opti-
mized by the S&U method obviously has a smaller entanglement (entanglement of zero)
which the ”step2side” method has failed to provide.
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I. setosa 27

I. setosa 9

I. versicolor 99
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I. versicolor 90

I. virginica 117

I. virginica 135
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I. virginica 108

I. virginica 126
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I. versicolor 99

I. versicolor 72

I. versicolor 63

I. versicolor 81

I. versicolor 54

I. versicolor 90

I. virginica 117

I. virginica 135

I. virginica 144

I. virginica 108

I. virginica 126

Figure 3.5: Optimized tanglegram layout from the S&U method.
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A case study approach has been used in this thesis. We attempt to combine two base den-
drograms into a final dendrogram using the MATCH algorithm and the square algorithm.
The final dendrogram will be paired with two original dendrograms to form tanglegrams.
Then the ”step2side” untangle method and S&U method are used to untangle the tangle-
grams. The input data and the results of all these experiments will be displayed in the
following sections.

4.1 Materials
With regards to one of two original dendrograms, we should refer to the work of Chaw-
shin et al. (2021). The authors evaluated the possibility of automated lithologies classifi-
cation using 2D whole core X-ray computerized tomography (CT) images and convolu-
tional neural network. In their study, a convolutional neural network model was trained to
learn 20 lithofacies classes from 2D whole core CT scans. To evaluate the performance
of the trained model, the authors used the model to predict the lithofacies classes, and a
confusion matrix of dimensions 20 × 20 was formed by cross-classifying the predicted
lithofacies and the actual lithofacies obtained from the core descriptions. The confusion
matrix can be found in Figure 4.1. If the accuracy of the prediction is 100%, all elements
in the main diagonal of the confusion matrix will be 1, and the other elements will have
values of zero. In practice, Chawshin remarked that the resulted confusion matrix does not
achieve the matrix form described above. More specifically, some off-diagonal elements
of the confusion matrix have the values greater than zero, meaning that there are some
misclassifications in the automated lithology prediction. These misclassifications can be
attributed to the similar texture and gray-scale values, and the confusion matrix reflects
these similarities in the confusion space (Chawshin et al., 2021).
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Figure 4.1: Confusion matrix (Chawshin et al., 2021).

By considering each row in the confusion matrix as a vector representing an object and
each column as a measurement, one can see that the confusion matrix has the form of a
pattern matrix. The indices of rows in the confusion matrix are now assigned to the indices
of the corresponding objects. For a better visualization of the similarities between studied
lithofacies, Chawshin used the confusion matrix as the input pattern matrix for an agglom-
erative hierarchical clustering algorithm and generated a dendrogram which is referred as
a numerical dendrogram in our study (Figure 4.2a). Let ND stand for the numerical den-
drogram in this thesis. The index of a singleton cluster in the numerical dendrogram is
the index of the object constituting the singleton cluster. From the numerical dendrogram,
one can know which lithofacies is the most similar to the others in terms of the degree
of confusion. According to Chawshin et al. (2021), the misclassified lithofacies classes
share similar greyscale values, grain size, and texture properties. For example, Mudstone
and MassVeryFineSS are grouped to create the first non-singleton cluster in the numer-
ical dendrogram due to the high degree of confusion. In fact, these lithofacies classes
are very finegrained and share very similar gray-scales and textural properties. Therefore,
they have a tendency to be misclassified by the classifier (Chawshin et al., 2021). The
numerical dendrogram has the corresponding linkage matrix, ZND, shown in Figure 4.2c.
Hereafter, we shall use the linkage matrix ZND to refer to the original layout of the nu-
merical dendrogram.

The similarity between lithofacies can also be indicated by the similar transport proper-
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ties (porosity and permeability). Accordingly, apart from the similarities in the grain sizes
and grayscale values, Chawshin utilized the porosity-permeability crossplot (Figure 4.3)
from available core analysis measurements and geological domain knowledge to manually
create another dendrogram of 20 studied lithofacies (objects). This dendrogram, which
we shall call as the geologist dendrogram (GD), is presented in Figure 4.2b. The index
of a singleton cluster in the geological dendrogram is the same as in the numerical one.
We ought to remark that the geologist dendrogram was not generated by any hierarchical
clustering algorithm, and thus neither pattern matrix nor proximity matrix was used. The
geologist dendrogram is made based on the observations of the geologist over the simi-
larities in grain size, grayscale, and transport properties of 20 lithofacies. For example,
Mudstone, MassVeryFineSS, Marl, and MudFineSS are very fine-grained and fall into the
low porosity and permeability group (marked by the red ellipsoid in Figure 4.3), therefore,
they are combined to create the very first interior vertices in the geologist dendrogram.
The distances between clusters are not calculated by a distance metric or linkage methods,
but they are objectively defined by the geologist and converted into quantitative measure-
ments. These distances, or the hierarchical levels at which clusters are formed, are defined
in the [0, 1] interval and displayed in the third column of the geologist dendrogram’s link-
age matrix ZGD (Figure 4.2d). Similar to the numerical dendrogram, the linkage matrix
ZGD will be used to refer to the original layout of the geologist dendrogram.
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(b) Geologist dendrogram (GD)

ZND =



3 17 0.21817424 2
10 12 0.28965497 2
4 13 0.41665333 2
0 16 0.49426713 2
20 22 0.54378304 4
14 21 0.61478994 3
1 23 0.65347788 3
2 8 0.66309879 2
8 18 0.73457471 2
24 28 0.79181227 6
15 26 0.88114509 4
27 29 0.89580039 8
6 7 0.94037227 2
5 32 0.97329338 3
11 30 1.02188551 5
19 25 1.05388962 4
31 35 1.12939143 12
34 36 1.20515315 17
33 37 1.38021951 20


(c) Linkage matrix of ND

ZGD =



3 17 0.05 2
0 20 0.11 3
1 16 0.16 2
10 12 0.21 2
13 21 0.26 4
19 23 0.32 3
2 24 0.37 5
5 6 0.42 2
15 22 0.47 3
8 18 0.53 2
11 25 0.58 4
26 28 0.63 8
4 29 0.68 3
7 32 0.74 4
9 31 0.79 9
14 30 0.84 5
33 34 0.89 13
35 36 0.95 18
27 37 1 20


(d) Linkage matrix of GD

Figure 4.2: Base dendrograms and linkage matrices.
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Figure 4.3: Porosity-permeability cross-plot with ellipsoids which mark groups of similar lithofa-
cies classes (Chawshin et al., 2021).

The major difference that can be observed from two base dendrograms in Figure 4.2 is
the hierarchy. To put it another way, 20 lithofacies are merged differently to create different
clusters in two dendrograms. It can be attributed to the different input data used to create
dendrograms. In addition, the scales of hierarchical levels in two dendrograms are also
different. There are some clusters that contain the same objects in both dendrograms, their
hierarchical levels are, however, not equal.

4.2 Hierarchical Clustering Combination

4.2.1 Input Similarity Matrices
As reported in section 3.3, the MATCH and square algorithms will be used to combine
the numerical dendrogram ZND and the geologist dendrogram ZGD in this thesis. The
input data for these algorithms are the similarity based descriptor matrices of these base
dendrograms. These descriptors need to be mapped into the [0, 1] interval due to two rea-
sons. Firstly, the mapping might turn these descriptors into the dissimilarity matrices from
which we can obtain the similarity matrices. Secondly, without mapping, it is incapable
to directly use the description matrices containing the information of hierarchical levels to
perform the HCC since the scales of hierarchical levels in the two base dendrograms are
different. The attempt to map elements in the descriptors in a range of [0, 1] is considered
as a normalization to minimize the differences in the scales of the hierarchical levels in
different dendrograms. The similarity based descriptor matrices are computed from the
dissimilarity matrices by the simple transformation in Equation 2.50.

It is improbable that any descriptor in section 2.5 can be used for the MATCH and
square algorithms. Mapping the entries of a dissimilarity based description matrix into the
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[0, 1] interval turns this matrix to a similarity matrix if and only if the description matrix
is symmetric and anti-reflexive. Ironically, not all 6 dendrogram description matrices are
anti-reflexive. For instance, the cluster membership divergence and sub-tree membership
divergence are not anti-reflexive on account of the fact that some diagonal elements in the
these matrices are not zero. Furthermore, to maintain the one-to-one relationship between
an input similarity matrix and the corresponding base dendrogram, the similarity matrix
must be transitive. To this end, the corresponding dissimilarity based descriptor needs to
be ultrametric. Among 4 anti-reflexive descriptors, there are only the cophenetic differ-
ence and the partition membership divergence that are ultrametric. Accordingly, either
the cophenetic difference or the partition membership divergence can be use in the HCC.
Between these two descriptors, we will use the cophenetic difference matrices to combine
dendrograms in this research. The main reason is that the feature of the dendrogram that
the corresponding cophenetic difference captures is the hierarchical levels. Therefore, us-
ing the cophenetic difference matrix to reconstruct or represent a base dendrogram helps
to preserve the hierarchical levels of the base dendrogram. Such preserved hierarchical
levels will contribute to generate the consensus matrix from which the final dendrogram
is constructed. Let CoND and CoGD denote the cophenetic difference matrices of the
numerical dendrogram and the geologist dendrogram, respectively. They are calculated
from the corresponding linkage matrices and shown in Figure 4.4a and Figure 4.4b. Note
that for the sake of illustration, the entries of these cophenetic matrices are rounded to two
decimal places. If we are not provided with the linkage matrices together with the base
dendrograms, meaning that the hierarchical levels are not determined with exact numbers,
then the partition membership divergence will be used to construct the similarity matrix.
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

0.00 0.47 0.87 0.87 0.87 1.00 1.00 1.00 0.87 0.87 0.87 0.74 0.87 0.87 0.87 0.64 0.36 0.87 0.87 0.87

0.00 0.87 0.87 0.87 1.00 1.00 1.00 0.87 0.87 0.87 0.74 0.87 0.87 0.87 0.64 0.47 0.87 0.87 0.87

0.00 0.65 0.65 1.00 1.00 1.00 0.65 0.48 0.82 0.87 0.82 0.65 0.82 0.87 0.87 0.65 0.65 0.82

0.00 0.39 1.00 1.00 1.00 0.57 0.65 0.82 0.87 0.82 0.39 0.82 0.87 0.87 0.16 0.57 0.82

0.00 1.00 1.00 1.00 0.57 0.65 0.82 0.87 0.82 0.30 0.82 0.87 0.87 0.39 0.57 0.82

0.00 0.71 0.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 0.68 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 0.65 0.82 0.87 0.82 0.57 0.82 0.87 0.87 0.57 0.53 0.82

0.00 0.82 0.87 0.82 0.65 0.82 0.87 0.87 0.65 0.65 0.82

0.00 0.87 0.21 0.82 0.45 0.87 0.87 0.82 0.82 0.76

0.00 0.87 0.87 0.87 0.74 0.74 0.87 0.87 0.87

0.00 0.82 0.45 0.87 0.87 0.82 0.82 0.76

0.00 0.82 0.87 0.87 0.39 0.57 0.82

0.00 0.87 0.87 0.82 0.82 0.76

0.00 0.64 0.87 0.87 0.87

0.00 0.87 0.87 0.87

0.00 0.57 0.82

0.00 0.82

0.00


(a) Cophenetic difference of the numerical dendrogram after mapping into [0, 1], CoND .



0.00 0.63 0.37 0.11 0.89 1.00 1.00 0.89 0.89 0.79 0.95 0.95 0.95 0.26 0.95 0.63 0.63 0.11 0.89 0.95

0.00 0.63 0.63 0.89 1.00 1.00 0.89 0.89 0.79 0.95 0.95 0.95 0.63 0.95 0.47 0.16 0.63 0.89 0.95

0.00 0.37 0.89 1.00 1.00 0.89 0.89 0.79 0.95 0.95 0.95 0.37 0.95 0.63 0.63 0.37 0.89 0.95

0.00 0.89 1.00 1.00 0.89 0.89 0.79 0.95 0.95 0.95 0.26 0.95 0.63 0.63 0.05 0.89 0.95

0.00 1.00 1.00 0.74 0.68 0.89 0.95 0.95 0.95 0.89 0.95 0.89 0.89 0.89 0.68 0.95

0.00 0.42 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 0.74 0.89 0.95 0.95 0.95 0.89 0.95 0.89 0.89 0.89 0.74 0.95

0.00 0.89 0.95 0.95 0.95 0.89 0.95 0.89 0.89 0.89 0.53 0.95

0.00 0.95 0.95 0.95 0.79 0.95 0.79 0.79 0.79 0.89 0.95

0.00 0.58 0.21 0.95 0.84 0.95 0.95 0.95 0.95 0.32

0.00 0.58 0.95 0.84 0.95 0.95 0.95 0.95 0.58

0.00 0.95 0.84 0.95 0.95 0.95 0.95 0.32

0.00 0.95 0.63 0.63 0.26 0.89 0.95

0.00 0.95 0.95 0.95 0.95 0.84

0.00 0.47 0.63 0.89 0.95

0.00 0.63 0.89 0.95

0.00 0.89 0.95

0.00 0.95

0.00


(b) Cophenetic difference of the geologist dendrogram, CoGD .

Figure 4.4: Cophenetic difference matrices of base dendrograms.
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Let SND and SGD denote the similarity matrices of the two base dendrograms. They
are computed from the corresponding dissimilarity matrices (or the cophenetic difference
descriptors after being mapped in the interval [0, 1]). We have

SND = [1]− CoND (4.1)

and
SGD = [1]− CoGD (4.2)

where [1] is a 20 × 20 matrix whose all elements have the value of 1. Figure 4.5 re-
veals the input similarity matrices, SND and SGD, for both MATCH algorithm and square
algorithm.
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

1.00 0.53 0.13 0.13 0.13 0.00 0.00 0.00 0.13 0.13 0.13 0.26 0.13 0.13 0.13 0.36 0.64 0.13 0.13 0.13

1.00 0.13 0.13 0.13 0.00 0.00 0.00 0.13 0.13 0.13 0.26 0.13 0.13 0.13 0.36 0.53 0.13 0.13 0.13

1.00 0.35 0.35 0.00 0.00 0.00 0.35 0.52 0.18 0.13 0.18 0.35 0.18 0.13 0.13 0.35 0.35 0.18

1.00 0.61 0.00 0.00 0.00 0.43 0.35 0.18 0.13 0.18 0.61 0.18 0.13 0.13 0.84 0.43 0.18

1.00 0.00 0.00 0.00 0.43 0.35 0.18 0.13 0.18 0.70 0.18 0.13 0.13 0.61 0.43 0.18

1.00 0.29 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.35 0.18 0.13 0.18 0.43 0.18 0.13 0.13 0.43 0.47 0.18

1.00 0.18 0.13 0.18 0.35 0.18 0.13 0.13 0.35 0.35 0.18

1.00 0.13 0.79 0.18 0.55 0.13 0.13 0.18 0.18 0.24

1.00 0.13 0.13 0.13 0.26 0.26 0.13 0.13 0.13

1.00 0.18 0.55 0.13 0.13 0.18 0.18 0.24

1.00 0.18 0.13 0.13 0.61 0.43 0.18

1.00 0.13 0.13 0.18 0.18 0.24

1.00 0.36 0.13 0.13 0.13

1.00 0.13 0.13 0.13

1.00 0.43 0.18

1.00 0.18

1.00


(a) Similarity matrix of the numerical dendrogram, SND .



1.00 0.37 0.63 0.89 0.11 0.00 0.00 0.11 0.11 0.21 0.05 0.05 0.05 0.74 0.05 0.37 0.37 0.89 0.11 0.05

1.00 0.37 0.37 0.11 0.00 0.00 0.11 0.11 0.21 0.05 0.05 0.05 0.37 0.05 0.53 0.84 0.37 0.11 0.05

1.00 0.63 0.11 0.00 0.00 0.11 0.11 0.21 0.05 0.05 0.05 0.63 0.05 0.37 0.37 0.63 0.11 0.05

1.00 0.11 0.00 0.00 0.11 0.11 0.21 0.05 0.05 0.05 0.74 0.05 0.37 0.37 0.95 0.11 0.05

1.00 0.00 0.00 0.26 0.32 0.11 0.05 0.05 0.05 0.11 0.05 0.11 0.11 0.11 0.32 0.05

1.00 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.26 0.11 0.05 0.05 0.05 0.11 0.05 0.11 0.11 0.11 0.26 0.05

1.00 0.11 0.05 0.05 0.05 0.11 0.05 0.11 0.11 0.11 0.47 0.05

1.00 0.05 0.05 0.05 0.21 0.05 0.21 0.21 0.21 0.11 0.05

1.00 0.42 0.79 0.05 0.16 0.05 0.05 0.05 0.05 0.68

1.00 0.42 0.05 0.16 0.05 0.05 0.05 0.05 0.42

1.00 0.05 0.16 0.05 0.05 0.05 0.05 0.68

1.00 0.05 0.37 0.37 0.74 0.11 0.05

1.00 0.05 0.05 0.05 0.05 0.16

1.00 0.53 0.37 0.11 0.05

1.00 0.37 0.11 0.05

1.00 0.11 0.05

1.00 0.05

1.00


(b) Similarity matrix of the geologist dendrogram, SGD .

Figure 4.5: Input similarity matrices.
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4.2.2 Consensus Matrix and Final Dendrogram
The MATCH algorithm and the square algorithm aggregate the input similarity matrices
into a transitive consensus matrix by employing the transitive closure approach. Despite
having different calculations of the transitive closure, both MATCH algorithm and square
algorithm return the same consensus matrix SCS (Figure 4.6a). This similarity based
consensus matrix is a transitive similarity matrix. Indeed, SCS is transitive because we
have

SCS ◦ SCS = SCS (4.3)

The similarity based consensus matrix, SCS , is converted to a dissimilarity based consen-
sus matrix DCS (Figure 4.6b) based on Equation 2.52

DCS = [1]− SCS (4.4)

Since the similarity based consensus matrix SCS is transitive, the corresponding dis-
similarity based consensus matrix DCS is ultrametric. The ultrametric property of this
dissimilarity matrix assures the existence of an associated dendrogram. Therefore, the dis-
similarity based consensus matrixDCS is used as the distance matrix to construct the com-
bined dendrogram (CD) by using a given hierarchical clustering algorithm (Figure 4.7).
We should remark that both single hierarchical clustering algorithm and complete hierar-
chical clustering algorithm generate the same dendrogram because the input distance ma-
trix is a ultrametric dissimilarity matrix similar to a cophenetic matrix. The fact remains
that the dissimilarity matrix DCS is the cophenetic matrix of the combined dendrogram.
The linkage matrix of the combined dendrogram, ZCD, is given in Figure 4.8.
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

1.00 0.64 0.63 0.89 0.70 0.26 0.26 0.26 0.43 0.52 0.26 0.26 0.26 0.74 0.26 0.53 0.64 0.89 0.43 0.26

1.00 0.63 0.64 0.64 0.26 0.26 0.26 0.43 0.52 0.26 0.26 0.26 0.64 0.26 0.53 0.84 0.64 0.43 0.26

1.00 0.63 0.63 0.26 0.26 0.26 0.43 0.52 0.26 0.26 0.26 0.63 0.26 0.53 0.63 0.63 0.43 0.26

1.00 0.70 0.26 0.26 0.26 0.43 0.52 0.26 0.26 0.26 0.74 0.26 0.53 0.64 0.95 0.43 0.26

1.00 0.26 0.26 0.26 0.43 0.52 0.26 0.26 0.26 0.70 0.26 0.53 0.64 0.70 0.43 0.26

1.00 0.58 0.32 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26

1.00 0.32 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26

1.00 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26

1.00 0.43 0.26 0.26 0.26 0.43 0.26 0.43 0.43 0.43 0.47 0.26

1.00 0.26 0.26 0.26 0.52 0.26 0.52 0.52 0.52 0.43 0.26

1.00 0.42 0.79 0.26 0.55 0.26 0.26 0.26 0.26 0.68

1.00 0.42 0.26 0.42 0.26 0.26 0.26 0.26 0.42

1.00 0.26 0.55 0.26 0.26 0.26 0.26 0.68

1.00 0.26 0.53 0.64 0.74 0.43 0.26

1.00 0.26 0.26 0.26 0.26 0.55

1.00 0.53 0.53 0.43 0.26

1.00 0.64 0.43 0.26

1.00 0.43 0.26

1.00 0.26

1.00


(a) Similarity based consensus matrix, SCS .



0.00 0.36 0.37 0.11 0.30 0.74 0.74 0.74 0.57 0.48 0.74 0.74 0.74 0.26 0.74 0.47 0.36 0.11 0.57 0.74

0.00 0.37 0.36 0.36 0.74 0.74 0.74 0.57 0.48 0.74 0.74 0.74 0.36 0.74 0.47 0.16 0.36 0.57 0.74

0.00 0.37 0.37 0.74 0.74 0.74 0.57 0.48 0.74 0.74 0.74 0.37 0.74 0.47 0.37 0.37 0.57 0.74

0.00 0.30 0.74 0.74 0.74 0.57 0.48 0.74 0.74 0.74 0.26 0.74 0.47 0.36 0.05 0.57 0.74
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(b) Dissimilarity based consensus matrix, DCS .

Figure 4.6: Consensus matrix.
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Figure 4.7: The combined dendrogram.

ZCD =



3 17 0.05 2
0 20 0.11 3
1 16 0.16 2
10 12 0.21 2
13 21 0.26 4
4 24 0.30 5
19 23 0.32 3
22 25 0.36 7
2 27 0.37 8
5 6 0.42 2
14 26 0.45 4
15 28 0.47 9
9 31 0.48 10
8 18 0.53 2
32 33 0.57 12
11 30 0.58 5
7 29 0.68 3
34 36 0.74 15
35 37 0.7404 20


Figure 4.8: Linkage matrix of the combined dendrogram.
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4.3 Tanglegrams
From the two base dendrograms and the combined dendrogram, we can create 3 different
tanglegrams to draw an analogy between dendrograms. The first tanglegram encompass-
ing the numerical dendrogram ZND and the geologist dendrogram ZGD is denoted by
LNG = [ZND, ZGD]. The second tanglegram constituted by the numerical dendrogram
ZND and the combined dendrogram ZCD is denoted by LNC = [ZND, ZCD]. The last
tanglegram, LGC = [ZGD, ZCD], contains the geologist dendrogram ZGD and the com-
bined dendrogram ZCD.

4.3.1 Original Tanglegram Layouts
To differentiate between tanglegram layouts before and after we employ the untangle
methods, we define the original tanglegram layouts as tanglegram layouts formed by orig-
inal dendrogram layouts. In other words, two dendrograms whose layouts are created by
default and not altered yet constitute an original tanglegram drawing. The tanglegram
LNG has the original layout displayed in Figure 4.9, and the entanglement of this tangle-
gram layout is 0.729. The original tanglegram layouts of LNC and LGC can be seen in
Figures 4.10 and 4.11, respectively.
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Figure 4.9: The original tanglegram layout of LNG with entanglement of 0.729.
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Figure 4.10: The original tanglegram layout of LNC with entanglement of 0.841.
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Figure 4.11: The original tanglegram layout of LGC with entanglement of 0.684.
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4.3.2 Optimized Tanglegram Layouts
As expected, the original tanglegram layouts are considerably tangly and hard to be inter-
preted. Therefore, two untangle methods will be used to untangle these layouts so that we
can easily see the similarities or dissimilarities between dendrograms.

”Step2side” Method

The first untangle method used to diminish the entanglement values of the three tangle-
grams is the ”step2side” method. The optimized tanglegram layout of LNG by using the
”step2side” method is presented in Figure 4.12. Compared to the original tanglegram em-
bedding of LNG, the optimized layout of LNG now has an entanglement decreased from
0.73 to 0.24 by the ”step2side” method. It is apparent from Figure 4.13 and Figure 4.14
that the ”step2side” method returns the optimized tanglegram layouts of LNC and LGC
with entanglement values of 0.24 and 0.055, respectively.
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Figure 4.12: Optimized tanglegram layout of LNG with entanglement of 0.24 after applying the
”step2side” method.
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Figure 4.13: Optimized tanglegram layout of LNC with entanglement of 0.236 after applying the
”step2side” method.
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Figure 4.14: Optimized tanglegram layout of LGC with entanglement of 0.055 after applying the
”step2side” method.
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”S&U” Method

With the aim to get smaller entanglement values than the ”step2side” method, we use the
”S&U” method to optimize the original tanglegram layouts in section 4.3.1. The results
from the ”S&U” method are shown in Figures 4.15-4.17. The new entanglement of the
tanglegram LNG is 0.22, while that of the tanglegram LNC is 0.18. The ”S&U” method
reduces the entanglement of the tanglegram LGC from 0.68 to 0.027.
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Figure 4.15: Optimized tanglegram layout of LNG with entanglement of 0.22 after applying the
”S&U” method.
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Figure 4.16: Optimized tanglegram layout of LNC with entanglement of 0.182 after applying the
”S&U” method.
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Figure 4.17: Optimized tanglegram layout of LGC with entanglement of 0.027 after applying the
”S&U” method.
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Chapter 5
Discussion

The purpose of this chapter is to discuss the applications and results in Chapter 4. One
might want to know how and why the combined dendrogram is similar or dissimilar to
the base dendrograms. The combined dendrogram is constructed by the MATCH and
square algorithms; hence we open up a discussion on the role that these algorithms play in
combining and preserving the hierarchy of the numerical and geologist dendrograms. The
computational efficiency of these algorithms will be also discussed. The final discussion
will centre on the effectiveness of the ”step2side” method and the S&U method in terms
of solving the TL problem.

5.1 Combined Dendrogram versus Base Dendrograms
First and foremost, we need to mention that the numerical and geologist dendrograms
are different. As illustrated in the optimized tanglegram layouts of LNG (Figure 4.15),
most of the singleton clusters in two base dendrograms are merged with different clusters,
causing the high entanglement (0.22 after being optimized by the S&U method) of the
tanglegram containing the base dendrograms. For instance, MudFineSS and WCemBelSS
are joined to create the 22nd cluster in the numerical dendrogram, while these objects
are joined with other clusters before being in the same cluster which is the 26th cluster.
As shortly explained in section 4.1, these differences can be accounted for in part by the
different input data used to create the base dendrograms. There are several clusters that
contain the same singleton clusters in these dendrograms, but they are created at distinct
hierarchical levels and different partitions. In other words, the clusters that are generated at
the same interior vertex in two base dendrograms might contain distinct singleton clusters.
This phenomenon is thought-provoking when it comes to rotating two dendrograms at the
same interior vertex to find a better tanglegram layout, which will be discussed in the next
sections.

It is the differences between the two base dendrograms that leads to the need of com-
bining them together. The combined dendrogram can be used to replace the base hierarchi-
cal clusterings because it inherits features and structures from the base dendrograms. Some
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evidence of the similarity between the combined dendrogram and the other dendrograms
can be found. For example, both the numerical dendrogram (Figure 4.2a) and the geologist
dendrogram (Figure 4.2b) have the cluster constituting by MudStone and MasVeryFineSS
or the cluster consisting of CrossFineSS and RippleFineSS, and these clusters appear in the
combined dendrogram (Figure 4.7) with the same constitution. Interestingly, Figure 4.16
pinpoints that in the combined dendrogram the MassFineSS is more similar to the group
of VeryFineSSHorizontal, CrossFineSS, RippleFineSS, and BioFineSS than the group of
Marl, CarlMarl, ContMud, and WCemFineSS since the former relation is inherited from
the geologist dendrogram. One more example is associated with the object WCemMSS.
If we draw a horizontal line in each dendrogram at a hierarchical level such that the hor-
izontal line just intersects 3 vertical edges (Figure 5.1), the horizontal line will define 3
clusters in each dendrogram, and one of these 3 clusters (the green cluster) in the numeri-
cal dendrogram consists of WCemMSS, GraMSSDispc, and PCemGraMSS, which is the
same in one of 3 clusters in the combined dendrogram (the blue cluster). Whereas, the ge-
ologist dendrogram in Figure 5.1b illustrates that the object WCemMSS does not belong
to the same cluster with GraMSSDispc and PCemGraMSS until the conjoint clustering is
formed.

Gr
aM

SS
Di

sp
c

PC
em

Gr
aM

SS

W
Ce

m
M

SS

M
as

sF
in

eS
S

W
Ce

m
Fi

ne
SS

Ca
rM

ar
l

M
ar

l

Co
nt

M
ud

Sp
icu

lit
eS

S

Ar
gF

in
eS

S

M
ud

St
on

e
M

as
sV

er
y 

 F
in

eS
S

W
Ce

m
Be

lS
S

M
ud

Fi
ne

SS

M
ud

sH
ig

hD
en

s
Ce

m
Ve

ry
Fi

ne
SS

Ve
ry

Fi
ne

SS
 

 H
or

izo
na

ta
l

Bi
oF

in
eS

S

Ri
pp

le
Fi

ne
SS

Cr
os

sF
in

eS
S

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) Numerical dendrogram
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(b) Geologist dendrogram
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(c) Combined dendrogram

Figure 5.1: Dendrograms with horizontal lines.
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5.2 MATCH versus Square Algorithms

When we pair the combined dendrogram with each of the base dendrograms to cre-
ate tanglegrams, the tanglegram of the geologist and combined dendrograms has smaller
entanglement values than the tanglegram of the numerical and combined dendrograms.
More specifically, after being optimized by the S&U method, the tanglegram LGC has
an entanglement of 0.027 while the tanglegram LNC has an entanglement of 0.182. Al-
though the entanglement is not a direct indicator of the similarity between dendrograms,
we can say that the combined dendrogram is more similar to the geologist dendrogram
than the numerical one. Take the sub-tree that contains MassVeryFineSS, MudStone, Marl,
and MudFineSS in the combined dendrogram as an example. The geologist dendrogram
also has this sub-tree with the same hierarchy. The comparison of dendrograms can be
proceeded by calculating the correlation coefficients between the cophenetic matrices (or
cophenetic difference matrices) of the 3 dendrograms. A correlation coefficient close to
1 indicates that the corresponding dendrograms are very similar (Podani and Dickinson,
1984). The correlation coefficients between cophenetic matrices of dendrograms are ac-
tually called the cophenetic correlations (Sokal and Rohlf, 1962). A matrix of cophenetic
correlations among the cophenetic matrices resulting from the 3 dendrograms is given in
Table 5.1, where CoCD denotes the cophenetic matrix of the combined dendrogram. Ta-
ble 5.1 demonstrates that the highest cophenetic correlation (0.83) is from the geologist
dendrogram and the combined dendrogram, whereas the cophenetic correlation between
the numerical and combined dendrograms is 0.61. These results strengthen that the two
base dendrograms are relatively different from each other, and the combined dendrogram
is more similar to the geologist dendrogram than the numerical one.

Table 5.1: Cophenetic correlations between dendrograms.

CoND CoGD CoCD
CoND 1 0.47 0.61
CoGD 0.47 1 0.83
CoCD 0.61 0.83 1

5.2 MATCH versus Square Algorithms
The MATCH algorithm and the square algorithm are used in this thesis to combine two
base dendrograms by aggregating their similarity based description matrices into a transi-
tive consensus matrix. Both algorithms utilize the transitive closure approach to compute
the transitive consensus matrix, but the calculations of the transitive closure are different
in two algorithms.

Generally speaking, the union and max-min composition of any two relations with di-
mensions of n × n have computational complexities of O(n2) and O(n3), respectively.
Therefore, the main calculation in the MATCH algorithm, S ∪ (S ◦ Si), has the computa-
tional complexity of O(n2) +O(n3) = O(n3) (Mirzaei and Rahmati, 2010). Mirzaei and
Rahmati (2010) also underline that the MATCH algorithm converges in at most n×m−1
times of performing this main calculation, where m is the number of base dendrograms.
Thus, the computational complexity of MATCH algorithm is O(mn4) in the worst case.

The square algorithm firstly utilizes the max-min composition to aggregate m input
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matrices into a matrix S, which takes m − 1 compositions. Then it calculates the max-
min composition of S with itself, and keeps calculating the max-min composition of the
resulted matrix with itself until no new matrix is formed. To put it another way, the square
algorithm only raises relations to the power of even numbers and ignores relations to the
power of odd numbers. As the result, in the worst case, it carries out log n matrix compo-
sitions (Garmendia et al., 2009). Therefore, the computational complexity of the square
algorithm is O(mn3 log n) in the worst case.

The square algorithm has the capacity to outperform the MATCH algorithm. As antic-
ipated, when we have two base dendrograms, the square algorithm with a time complexity
of O(2n3 log n) has lower computational complexity than the MATCH algorithm with a
time complexity of O(2n4). We measure the execution time needed to execute each al-
gorithm 10 times in Python, and the results are reported in Figure 5.2. It can be seen in
Figure 5.2 that the execution time of the MATCH algorithm (the red line) is always higher
than that of the square algorithm (the green line). More specifically, the average execu-
tion time of the square algorithm is about 0.195s, while the average time to execute the
MATCH algorithm is approximately 4 times higher than that. Taken together, these re-
sults suggest that the square algorithm is more computationally efficient than the MATCH
algorithm.
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Figure 5.2: Execution time of MATCH and square algorithms.

74



5.3 ”Step2side” Method versus S&U Method

5.3 ”Step2side” Method versus S&U Method
As expected, the tanglegram drawings created by the original dendrogram layouts are sig-
nificantly tangled. In general, the entanglement of 3 original tanglegram layouts fluctuates
between 0.7 and 0.8. The highest entanglement value, 0.84, belongs to the original tan-
glegram layout of LNC . One can see that this entanglement value is close to 1 which is
the entanglement of the ”worst” tanglegram layout whose leaf node vector of one dendro-
gram is a completely reversed vector of the other. In fact, some of the inter-tree edges
in the original tanglegram of LNC connect objects at the top-left corner to objects at the
bottom right corner of the gap between two dendrograms, or vice versa, which generally
happens in the ”worst” tanglegram layout. The high entanglement values of the original
tanglegram layouts make it really hard to compare the similarity or dissimilarity between
dendrograms.

The ”step2side” untangle method and the proposed untangle method prove clearly ben-
eficial to solving the tanglegram layout problem. Both methods help to remarkably reduce
the entanglement of the original tanglegram embeddings. As detailed in Figure 5.3, two
tanglegrams, LNG and LNC , have the optimized entanglements fluctuated between 0.18
and 0.24. These numbers are nearly 3 times smaller than the original entanglements. Espe-
cially, the tanglegram of the geologist and combined dendrograms has the entanglements
after optimization smaller than 0.05, and the number of crossings is just 1 or 3.

LGC

LNC

LNG

2.7 · 10−2

0.18

0.22

5.5 · 10−2

0.24

0.24

0.68

0.84

0.73

S&U
Step2side
Original

Figure 5.3: Entanglement values of three tanglegrams.
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Notwithstanding the fact that the ”step2side” was successful in reducing the number of
crossings (or the entanglement value), there are still some crossings that could be untan-
gled. For instance, in the tanglegram layout of LGC after applying the ”step2side” method
(Figure 4.13), if we rotate both the numerical dendrogram and the combined dendrogram
at the interior vertex whose one of two children clusters is the singleton cluster GraMSS-
Dispc, we can untangle the crossing at the top of this tanglegram. One more example
is related to the optimized tanglegram layout of LGC (Figure 4.14). The crossing at the
bottom of this tanglegram layout can be eliminated if one rotates both trees at the interior
vertex generated by merging the singleton cluster BioFineSS with another cluster. Yet, the
”step2side” fails to untangle such crossings due to the fact that the ”step2side” method
does not rotate two dendrograms simultaneously. Instead, it keeps the left dendrogram
unchanged and rotates the right one and vice versa.

Even if one rotates both trees at the same interior vertex at the same time, which is the
task of the coarse optimization in the S&U method, it might not help to eliminate some
particular crossings. A great deal of attention must be paid when two interior vertices of
the same index in both dendrograms may not contain the same singleton clusters, which
is already highlighted in the previous section. Therefore, in the S&U method, beside
the coarse optimization, we came up with the fine optimization to assist the coarse opti-
mization in solving this problem. In the fine optimization, we find the interior vertex that
consists of a given object as a singleton cluster in both dendrograms of a tanglegram and
rotate the dendrograms at these interior vertices. Occasionally, the indices of these interior
vertices are different. To highlight this, we shall optimize the tanglegram of the geologist
and combined dendrograms, LGC , by using the the S&U algorithm but without the fine
optimization, and show the result in Figure 5.4a. The most striking observation to emerge
from this attempt is that there exists a crossing caused by BioFineSS and MassFineSS in
the tanglegram layout optimized by the S&U algorithm lacked the fine optimization, and
this crossing can be eradicated if one rotates both dendrograms at the interior vertex whose
one child cluster is the singleton cluster BioFineSS (or MassFineSS) (Figure 5.4b). The
coarse optimization can not perform this rotation as the indices of the above interior vertex
are different in both trees. Similarly, the crossing caused by ArgFineSS and WCemBelSS
in the tanglegram presented in Figure 5.4a can be eliminated with the fine optimization.
To do this entails rotating both dendrograms at the interior vertex formed by merging the
singleton cluster ArgFineSS with another cluster. This finding reinforces the usefulness of
the fine optimization in the S&U algorithm.
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Figure 5.4: The performance of the S&U method with and without the fine optimization on the
tanglegram LGC .

Based on these observations, we are of the opinion that the results from the ”step2side”
method can be improved by the S&U method. We try to use a tanglegram layout of LNC
obtained by the ”step2side” method (Figure 5.5a) as the input for the S&U algorithm. The
result of this attempt can be found in Figure 5.5b, which verifies that the tanglegram after
being further optimized by S&U algorithm is a clear improvement on the result of the
”step2side” method. Some crossings, for example, the crossing related to GraMSSDispc,
ContMud, CarMarl, and so on, in the input tanglegram have been removed by the S&U
algorithm.
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Figure 5.5: Input and output of the S&U algorithm to illustrate that the result from the ”step2side”
method can be improved.
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Figure 5.3 highlights that all optimized tanglegram layouts from the S&U method have
smaller entanglements than optimized layouts from the ”step2side” method. However, the
S&U method takes more time to execute than the ”step2side” method. It is probable that
the reason for this is that the ”step2side” method only optimizes the original tanglegram
layout, while the S&U method first generates a set of tanglegram layouts from the original
tanglegram drawing by rotating the dendrograms at one or several interior vertices from
the root, and then optimizes every single tanglegram layout in the set. Broadly speaking,
while optimizing, we tend to rotate the dendrograms from the first interior vertex to the
root. This could conceivably lead to a problem that rotating both dendrograms at the same
interior vertex near the root might not contribute to generating a better drawing. In other
words, when the tanglegram is already optimized by going through several first interior
vertices which mainly constituted by singleton clusters, rotating the same interior vertex
of the last vertices which normally contain a large amount of objects is more likely to make
the tanglegram more tangled. It is getting even worse if the same interior vertex does not
compose of the same singleton clusters. We encountered this problem in the tanglegram
of the 16 Iris flower samples (Figure 2.11). In the tanglegram shown in Figure 2.11, it
is pointless to rotate both trees at the root because it aggravates the current tanglegram
layout by causing more crossings. Nonetheless, if we rotate the right dendrogram at the
root and the left dendrogram at the second last interior vertex, the new formed tanglegram
layout will have a smaller entanglement. This stresses just how important the shuffle step
in the S&U algorithm is. We should also mention that the number of layouts in the set of
tanglegram layouts L increases exponentially with the number of rotated interior vertices,
which can be modelled by a function of y = 4x, where y is the number of tanglegram
layouts in the set, and x is the number of interior vertices to be rotated. If we want to shuffle
the original tanglegram layout from the root to the third last interior vertex, the number
of different tanglegram layouts in the set L will be 64. This is not a huge number, but
optimizing 64 tanglegram layouts may require 64 times as much than optimizing only one
layout. Furthermore, with each tanglegram layout in the set, the S&U method performs the
coarse and fine optimizations which go through all other interior vertices and all objects,
respectively. Whereas, the ”step2side” method just goes through all the interior vertices.
Correspondingly, the S&U method is more complicated than the ”step2side” method.

After employing the two untangle methods, we already know the smallest entangle-
ments of the 3 tanglegrams we can get, which is revealed by Figure 5.3. Therefore, one
can consider these smallest entanglements as the targets for solving the TL problem. The
S&U and ”step2side” algorithms are implemented again in Python, and they terminate
when the targeted entanglements are found or no more improvement can be made. We
measure the execution times that these algorithms need to execute in Python and compare
them in Figure 5.6. This figure highlights that the ”step2side” algorithm has low execu-
tion time (less than 0.1s), but it fails to reach the targets. Whereas the S&U algorithm
finds the targeted entanglements although its execution time is large. The S&U algorithm
terminates after around 3.5s when optimizing the tanglegrams LNG and LNC . For the
tanglegram LGC , it takes about 0.6s to get the entanglement value of 0.027.
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Figure 5.6: Execution time comparison between S&U algorithm and ”step2side” algorithm.

79



Chapter 5. Discussion

80



Chapter 6
Conclusion

In this master thesis, we performed hierarchical clustering combination and addressed the
tanglegram layout problem. From the results and discussions, we arrive at the following
conclusions.

First of all, this thesis has given an account of how one can work with dendrograms
stemming from different perspectives. To manipulate a dendrogram as an object, it is re-
quired to work with its description matrices (descriptors). A dendrogram description ma-
trix is a summarization of the relative position of each pair of objects in a dendrogram, and
each descriptor relies on different criteria to define the relative position between objects.
Among six types of descriptors, we chose the cophenetic different descriptor (cophenetic
matrix) to be the summary representation to the base dendrograms on account of the fact
that it is ultrametric, and its entries are the hierarchical levels of the corresponding den-
drogram. The ultrametric property of a description matrix plays a very important role
in combining and reconstructing dendrograms, as it guarantees the one-to-one correspon-
dence between the description matrix and its dendrogram. After being mapped in the [0, 1]
interval, a ultrametric anti-reflexive descriptor becomes a ultrametric dissimilarity matrix,
which can be transformed into a transitive similarity matrix. A transitive similarity matrix
is a membership matrix of a fuzzy equivalence relation. Therefore, this thesis outlines the
one-to-one correspondence between a fuzzy equivalence relation (or a transitive similarity
relation) and a dendrogram.

The main focus of our thesis was then on checking first, and then improving the per-
formance of the MATCH algorithm, known to be the state-of-the-art in this specific case.
Through the use of the MATCH and square algorithms, we have succeeded in aggregating
the similarity-based description matrices of input hierarchical clusterings into a transitive
consensus matrix from which the combined hierarchical clustering is formed. The calcu-
lation of the transitive closure of a relation is a fundamental basement at which these algo-
rithms are build up. To a certain extend, the final dendrogram inherits structural features
from the two base dendrograms. Then we believe that the combined dendrogram can be
considered as a proper representative of the two original dendrograms, and it will probably
be a useful aid for decision makers in further classifying or narrowing down the number
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of lithofacies classes. In our view, the tanglegrams and their entanglement values after the
optimization are helpful in comparing the closeness of dendrograms. Our study provides
additional support for aggregating dendrogram description matrices besides the MATCH
algorithm. The square algorithm has a computational complexity of O(mn3 log n) while
the MATCH algorithm’s computational complexity is O(mn4), where m is the number of
base dendrograms. These results point towards the idea that the square algorithm advances
the MATCH algorithm by being more computationally efficient. Nevertheless, the square
algorithm is applicable exclusively to reflexive relations.

Our contribution has then been to introduce (and characterize) an alternative to address
the tanglegram layout problem. Our work has led to the conclusion that the characteristics
of tanglegrams regarding the role of the last interior vertices in solving the TL problem and
the distinct children clusters at the same interior vertex between two dendrograms have not
been dealt with in depth in the ”step2side” method. Thus, we understood that there was the
need for improving the ”step2side” method. With this in mind, we tried to tackle the issues
described above by designing, coding and testing the what we call ”S&U method”, and in
this way discovered an innovative solution to the TL problem. The small entanglements
of the tanglegram layouts generated by employing the here developed method confirm
the superiority of our approach over the ”step2side” method in terms of finding a better
layout for a given tanglegram. From a visual perspective, this is due to the fact that we
simultaneously rotate both dendrograms of a tanglegram at each interior vertex and take
into consideration the different clusters merged at the same interior vertex in both trees.
However, the here proposed S&U algorithm is computationally demanding, especially
with big tree sizes. Despite this, our findings do nevertheless suggest that this method
proves to be helpful in untangling crossings that the ”step2side” fails to eliminate. In other
words, this study has gone some way towards enhancing our understanding of the reason
why the ”step2side” method is supposed to provide the local minimum of the entanglement
optimization. In summary, we are confident that though being time consuming, our S&U
method has the ability to produce better results for the geologists than the ”step2side”
method does.
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Chapter 7
Future Work

There are some tasks and experiments that have been left for the future due to the lack of
time. Future work concerns deeper analysis of the S&U algorithm and new proposals to
try different methods to find a transitive relation of a given relation.

Firstly, there is an idea that we would have liked to try during studying the fuzzy re-
lations in Chapter 2. Zadeh (1971) proved that any fuzzy relation R can be expressed
by its α-cuts which are basically crisp relations Rα containing all pairs of elements in
R having grades of membership greater than or equal to α. The set of α-cuts of a rela-
tion forms a nested sequence of crisp relations, which can be illustrated by the partition
tree (Zadeh, 1971). In other words, a partition tree is the diagrammatic representation of
a nested sequence of partitions. Zadeh (1971) noted that a partition tree is closely related
to the concept of the hierarchical clustering. Additionally, a dendrogram can be gener-
ated from the transitive consensus matrix by calculating its α-cuts (Mirzaei and Rahmati,
2010). Therefore, to further our research, we are planning to investigate the link between
a partition tree of a fuzzy equivalence relation and a dendrogram.

Secondly, the calculation of the transitive consensus matrix in the hierarchical cluster-
ing combination task in this thesis relies on the transitive closure approach. In Chapter
3, we mentioned that calculating the transitive closure belongs to 1 of 3 main groups of
algorithms to turn a relation to a transitive relation. For reasons of time, the other algo-
rithms are not considered in this work. In fact, there are some algorithms that can perform
better than the algorithms proposed by Klir et al. (1997), but they are not the focus of this
study. Therefore, it is interesting to consider an algorithm with time complexity O(n2)
introduced by Dunn (1974) or an algorithm formulated by Kundu (2000).

Finally, we are aware that this thesis is just a preliminary attempt to develop a new
solution for the TL problem. Our research suggests that the S&U algorithm so far has
encouraging results, but it has one limitation which is the high complexity. Future work,
which takes the optimization of the S&U algorithm into account, will need to be under-
taken. It requires the comprehension of the worst-case time complexity of the proposed
algorithm and its behaviour with respect to the tree size and number of base dendrograms.
We hope that further studies will make the S&U method more computationally efficient.
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