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Abstract— In this paper, we present a novel type of extremum-
seeking controller, which continuously uses past data of the
performance map to estimate the gradient of this performance
map by means of a 1st-order least squares fit. The approach
is intuitive by nature and avoids the need of dither in the
extremum-seeking loop. The avoidance of dither allows for
an asymptotic stability result (opposed to practical stability in
dither-based schemes) and, hence, for exact convergence to the
performance optimal parameter. Additionally, the absence of
dither eliminates one of the time-scales of classical extremum-
seeking schemes, allowing for a possibly faster convergence. A
stability proof is presented for the static-map setting which
relies on a Lyapunov-Razumikhin type of proof for time-delay
systems. Simulations illustrate the effectiveness of the approach
also for the dynamic setting.

I. INTRODUCTION

Extremum-seeking control is an adaptive control approach
that optimizes a certain performance measure in terms of the
steady-state output of a system in real-time, by automated
adaptation of the system parameters [1], [13], [12], [6].
Different classes of extremum-seeking approaches exist in
the literature: the classical approaches which continuously
adapt the system parameters in order to estimate the low-
order derivatives (often only the gradient) of the performance
map [13], [12], [6], [10], and numerical optimization-based
methods [9], [14], [4]. In this paper, we will focus on a
continuous-adaptation-based approach.

Commonly, in these continuous-adaptation-based
extremum-seeking works, an external dither-signal is
injected into the extremum-seeking loop to enable the
estimation of the derivatives of the performance map.
Classical schemes use modulation of the dither signal and
the measured performance signal in order to obtain an
estimate of the derivatives [13], [12], [6], [10]. Although
such an approach for estimating the derivatives works
well under suitable conditions, and has been applied
successfully in many practical applications, there are also
some drawbacks. Firstly, the application of the dither
generally hampers the true convergence to the performance-
optimal setting, characterized by practical stability results in
literature (see e.g. [6], [13]) in contrast to desired asymptotic
stability results. Secondly, the dither signal constitutes one
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of the important time-scales in the extremum-seeking
scheme. Since this time-scale should be separated from the
time-scale of the plant-dynamics and the optimizer, this may
limit the convergence speed of the algorithm.

In this paper, we propose a novel type of extremum-
seeking controller, which continuously uses 1st-order least-
squares fits to estimate the gradient of the performance map.
The proposed method uses no dither signal, but utilizes a
time window of history data of the performance map to
estimate its gradient. The method is intuitive by nature, since
the least-squares fit directly estimates the gradient, which
can be visualized graphically. The approach allows for an
asymptotic stability result, i.e. asymptotic convergence to the
performance-optimal setting. Moreover, since the time-scale
of the dither is eliminated, a possibly faster convergence
speed of the algorithm can be obtained. Note that certain
extremum-seeking schemes that reduce the dither amplitude
in time, may yield asymptotic results as in e.g. [8], but
at the expense of one more additional time-scale. The pro-
posed extremum-seeking scheme utilizes only two tuning
parameters (opposed to three or more in classical extremum-
seeking schemes), which makes the scheme intuitive and
easy to apply. We note that other continuous-adaptation based
approaches have recently been suggested in literature which
utilize observer-based schemes to estimate gradient (and
Hessian) properties of the performance map, see e.g. [11],
[3], [7], opposed to 1st-order least-squares fits using history
data.

The main contributions of the paper can be summa-
rized as follows. Firstly, we propose a novel two-parameter
extremum-seeking scheme which is intuitive by nature, and
easy to apply. Secondly, we present an asymptotic stability
proof for the extremum-seeking scheme in combination
with a static map. Thirdly, simulation results illustrate the
effectiveness of the proposed extremum-seeking scheme, also
for the dynamic setting.

The remainder of the paper is organized as follows. In Sec-
tion II, we present the extremum-seeking approach, followed
by an asymptotic stability proof for static maps in Section III.
Simulation results are presented in Section IV. Conclusions
and recommendations will be presented in Section V.

II. EXTREMUM-SEEKING CONTROL APPROACH
USING LEAST-SQUARES FITS

Consider the extremum-seeking control scheme depicted
in Fig. 1. The scheme consists of a stabilized plant, a
performance function, a gradient estimator and an optimizer
which adapts the parameter θ ∈ R. Additionally, two buffers
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Fig. 1. Dither-free extremum-seeking scheme with least-squares fit of last
T seconds to estimate gradient.

are present containing T seconds of history of the parameter
θt ∈ C and T seconds of history of the performance Jt ∈ C,
where C = C([−T, 0],R) is the Banach space of continuous
functions mapping the interval [−T, 0] into R. Moreover,
θt ∈ C is defined as θt(s) = θ(t + s), for −T ≤ s ≤ 0
and Jt is defined as Jt(s) = J(y(t+ s)).

The stabilized (possibly nonlinear) plant can be described
by the following differential equation:

ẋ = f(x, θ) (1a)
y = h(x), (1b)

with state x ∈ Rn, performance output y ∈ R, and θ ∈ R
the performance parameter to be optimally tuned using the
extremum-seeking scheme. For each fixed parameter θ, the
plant is assumed to have a unique, globally asymptotically
stable equilibrium point x∗(θ) (the assumptions will be made
precise in Section III for the static-map setting).

The performance of the stabilized plant is characterized
by the performance function J(y) : R → R, see Fig. 1. The
goal of the extremum-seeking controller is to minimize the
steady-state performance map

Jsta(θ) := J(y∗(θ)) = J(h(x∗(θ))), (2)

which we assume to possess a unique minimum at θ∗, see
Fig. 2.

The gradient estimator, see Figs. 1 and 2, continuously
computes an estimate ∂̃J

∂θ (θt, Jt) : C × C → R of the true
gradient ∂Jsta

∂θ (θ(t)), using a 1st-order least-squares fit of the
last T seconds of data. The length T of the history interval
used in the fit can be chosen by the designer. Details about
the gradient estimation procedure are given in Section II-A.
The estimated gradient ∂̃J

∂θ (θt, Jt) is used by the optimizer

θ̇ = −c
∂̃J

∂θ
(θt, Jt), (3)

in order to steer the parameter θ to its performance opti-
mizing value θ∗, with adaptation gain c > 0, which can be
chosen by the designer. Note that the closed-loop dynamics
(1),(3) (with J = J(y)) is described by a functional differ-
ential equation (instead of an ordinary differential equation)
due to the fact that the estimated gradient ∂̃J

∂θ (θt, Jt) depends
on the last T seconds of history. Furthermore, note that the
adaptation gain c and T are the only two parameters to be
chosen by the designer of the extremum-seeking scheme,
which simplifies the tuning procedure compared to classical
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Fig. 2. Illustration of fit procedure in extremum-seeking controller.

extremum-seeking schemes, where typically more parame-
ters should be chosen by the designer (such as low/high-pass
filter parameters, and dither frequency and amplitude).

A. 1st-order least-squares gradient estimate

In contrast to classical extremum-seeking schemes, the
gradient estimate in Fig. 1 is obtained without the use of
an external dither signal applied to the parameter θ, see e.g.
[6], [13]. In the extremum-seeking scheme proposed here,
the last T seconds of data is used in order to continuously
estimate the gradient using a 1st-order least-squares fit, see
Fig. 2. The 1st-order least-squares fit aθ+b at time t follows
from the following convex minimization problem

min
a,b

∫ 0

−T

(J(y(t+ τ))− (aθ(t+ τ) + b))2dτ. (4)

Note that the explicit solution for the estimated gradient a
can be computed in closed-form (or, in a digital implemen-
tation, a can also efficiently be computed by solving a set
of normal equations [5, Section 4.6]).

As long as the adaptation gain c is chosen small enough to
guarantee that the time-scale of the optimization is separated
from (slower than) the time-scale of the plant-dynamics,
the performance J(y) will be close to the steady-state
performance Jsta(θ) = J(y∗(θ)), i.e. the red line is close to
the black line in Fig. 2, allowing for an accurate estimate a
of the true gradient ∂Jsta

∂θ (θ(t)). This is a classical time-scale
separation result which is well-known in existing extremum-
seeking literature, see e.g. [12]. Note that due to the absence
of an external dither signal, there is however no need for
time-scale separation between, on the one hand, the time-
scale of the dither and, on the other hand, the optimizer
and plant dynamics. This eliminates one of the time-scales
present in classical dither-based extremum-seeking schemes,
resulting in possibly faster convergence of the extremum-
seeking controller.

The estimated gradient ∂̃J
∂θ (θt, Jt) used in the extremum-

seeking loop is now given by:

∂̃J

∂θ
(θt, Jt) =

{
a if ∆θ(t) > 0

0 if ∆θ(t) = 0,
(5)

with ∆θ(t), see Fig. 2, defined as

∆θ(t) := max
τ∈[−T,0]

θ(t+ τ)︸ ︷︷ ︸
θmax(t)

− min
τ∈[−T,0]

θ(t+ τ)︸ ︷︷ ︸
θmin(t)

. (6)
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Fig. 3. Extremum-seeking scheme for static-map setting.

Note that if ∆θ(t) = 0, θ in fact resides in a single point in
the time interval [t− T, t], which cannot be used to make a
1st-order fit, hence we use ∂̃J

∂θ (θt, Jt) = 0 in (5) if ∆θ(t) = 0.
For this reason, the extremum-seeking scheme needs to be
initiated by a non-constant initial condition θ0 ∈ C. This will
be formalized in Section III, where we present a stability
proof for the static-map setting.

III. STABILITY ANALYSIS FOR THE STATIC MAP
SETTING

In this section, we will present the stability proof for
the extremum-seeking scheme, in the static-map setting, see
Fig. 3. Note that in the static-map setting there is no plant
dynamics, such that in essence we are minimizing a static
map Jsta(θ).

The dynamics of the extremum-seeking scheme for static
maps is now governed by the following functional differential
equation:

θ̇(t) = −c
∂̃J

∂θ
(θt, Jsta,t), (7)

where Jsta,t ∈ C is defined as Jsta,t := Jsta(t + s) for
−T ≤ s ≤ 0, and where ∂̃J

∂θ (θt, Jsta,t) : C → R is now
defined as

∂̃J

∂θ
(θt, Jsta,t) =

{
a if ∆θ(t) > 0,
0 if ∆θ(t) = 0,

(8)

with a given by the following “least-squares fit”:

min
a,b

∫ 0

−T

(Jsta(θ(t+ τ))− (aθ(t+ τ) + b))2dτ. (9)

The following assumptions are made on the static perfor-
mance map Jsta(θ).

Assumption III.1 The performance map Jsta and its first
two derivatives with respect to θ are continuous and bounded
on compact sets in θ. The map Jsta(θ) attains a unique
minimum at θ = θ∗ ∈ R, and the following holds:

• ∂Jsta

∂θ (θ∗) = 0;
• ∂2Jsta

∂θ2 (θ∗) > 0;
• ∂Jsta

∂θ (θ)(θ − θ∗) > 0 for all θ ∈ R\θ∗.

The following lemma provides a bound on the error of the
gradient estimate, which is used later in the stability proof
of Theorem 1.

Lemma III.2 Consider the extremum-seeking scheme for
static maps as in (6)-(9), the assumptions on the static
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Fig. 4. Illustration of fit and error-bound in static-map setting.

map Jsta(θ) as in Assumption III.1, and initial conditions
θ0 ∈ Θ0 ⊂ C, where

Θ0 = {θ0 ∈ C| max
τ∈[−T,0]

|θ(τ)−θ∗| ≤ ρθ,∆θ(0) > 0}, (10)

with ρθ > 0. Then, the error in the gradient estimate

ϵ(θt) =
∂̃J

∂θ
(θt, Jsta,t)−

∂Jsta
∂θ

(θ(t)) (11)

can be upper-bounded as follows:

|ϵ(θt)| ≤ (12)

cT max
τ∈[−T,0]

∣∣∣∣∂2Jsta

∂θ2
(θ(t+ τ))

∣∣∣∣ max
τ∈[−2T,0]

∣∣∣∣∂Jsta

∂θ
(θ(t+ τ))

∣∣∣∣ .
Proof: We only give a sketch of the proof here, a

detailed proof is omitted for reasons of brevity.
Consider the situation sketched in Fig. 4. The true gradi-

ent at time t is given by ∂Jsta

∂θ (θ(t)). The 1st-order least-
squares fit results in an estimate ∂̃J

∂θ (θt, Jsta,t) as shown
for example in Fig. 4. By the mean-value theorem it can
be proven, and intuitively understood, that the estimated
gradient ∂̃J

∂θ (θt, Jsta,t) is in fact equal to the true gradient
∂Jsta

∂θ (θ′) for some θ′ ∈ [θmin(t), θmax(t)], with θmin(t) :=
minτ∈[−T,0] θ(t+τ) and θmax(t) := maxτ∈[−T,0] θ(t+τ). In
other words, the estimated gradient at time t is equal to the
true gradient at a time-instance during the last T seconds.
Using this fact, see Fig. 4, it can be shown that the error
|ϵ(θt)| in the gradient estimate, can be upper-bounded by

|ϵ(θt)| ≤ max
τ∈[−T,0]

∣∣∣∣∂2Jsta
∂θ2

(θ(t+ τ))

∣∣∣∣∆θ(t). (13)

Since θ(t) satisfies the dynamics in (7) and since the es-
timated gradient is equal to the true gradient somewhere
during the last T seconds, it can be shown for ∆θ(t) that

∆θ(t) ≤ cT max
τ∈[−2T,0]

∣∣∣∣∂Jsta∂θ
(θ(t+ τ))

∣∣∣∣ , (14)

such that, combined with (13), a bound on ϵ(θt) as in (12)
results.

The following theorem presents the main stability result
of this paper.

Theorem 1 Consider the extremum-seeking scheme for
static maps as in (6)-(9), with the assumptions on the static
map Jsta(θ) as in Assumption III.1. Then, for any initial
condition θ0 ∈ Θ0 ⊂ C with Θ0 as in (10), and any ρθ > 0,



there exists a product cT of the adaptation gain c and fit
history time lapse T small enough such that

lim
t→∞

θ(t) = θ∗ and sup
t≥0

|θ(t)− θ∗| ≤ ρθ. (15)

Proof: First, decompose the estimated gradient in the
following way,

∂̃J

∂θ
(θt, Jsta,t) =

(
∂Jsta
∂θ

(θ(t)) + ϵ(θt)

)
, (16)

with ∂Jsta

∂θ (θ(t)) the true gradient at θ(t) and ϵ(θt) an error
term denoting the deviation between the true gradient and its
estimate. Using this decomposition, the optimizer dynamics
(7) can be written in the following way:

θ̇(t) = −c

(
∂Jsta
∂θ

(θ(t)) + ϵ(θt)

)
. (17)

Note that θ = θ∗ is an equilibrium point of (6)-(9), since
for constant θ = θ∗, ∆θ = 0. Hence, by (8), the estimated
gradient ∂̃J

∂θ (θt, Jsta,t) = 0, and, by (7), θ̇ = 0. To investigate
the stability of the optimal θ = θ∗, we consider the following
candidate Lyapunov-Razumikhin function:

V (θ(t)) =
1

2
(θ(t)− θ∗)2 =:

1

2
θ̃2(t), (18)

with θ̃ := θ− θ∗, such that we can write the time derivative
V̇ along solutions of the system (17) as

V̇ = −cθ̃(t)

(
∂Jsta
∂θ

(θ(t)) + ϵ(θt)

)
. (19)

From Lemma III.2, it follows that we can bound the error
in the gradient estimate ϵ(θt) as

|ϵ(θt)| ≤ cT max
τ∈[−T,0]

∣∣∣∣∂2Jsta
∂θ2

(θ(t+ τ))

∣∣∣∣
× max

τ∈[−2T,0]

∣∣∣∣∂Jsta∂θ
(θ(t+ τ))

∣∣∣∣
≤ cTH max

τ∈[−2T,0]

∣∣∣∣∂Jsta∂θ
(θ(t+ τ))

∣∣∣∣ , (20)

where we used that on compact sets θ ∈ Θ,

Θ := {θ ∈ R||θ − θ∗| ≤ ρθ}, (21)

we can upper-bound the Hessian ∂2Jsta

∂θ2 by H :=

maxs∈Θ

∣∣∣∂2Jsta

∂θ2 (s)
∣∣∣. Later, we will conclude that for suffi-

ciently small cT , Θ (which is a sub-level set of V (θ) in (18))
is a positive invariant set.

Substituting the bound (20) in (19), we obtain

V̇ ≤ −cθ̃(t)
∂Jsta

∂θ
(θ(t))+c2TH|θ̃(t)| max

τ∈[−2T,0]

∣∣∣∣∂Jsta

∂θ
(θ(t+ τ))

∣∣∣∣ .
(22)

Using Assumption III.1, ∂2Jsta

∂θ2 (θ∗) > 0, and ∂Jsta

∂θ (θ)(θ −
θ∗) > 0 ∀θ ∈ Θ\θ∗ imply that

α1θ̃
2 ≤ ∂Jsta

∂θ
(θ)θ̃ ≤ α2θ̃

2 (23a)

α1

∣∣∣θ̃∣∣∣ ≤ ∣∣∣∣∂Jsta∂θ
(θ)

∣∣∣∣ ≤ α2

∣∣∣θ̃∣∣∣ , (23b)

for some α2 ≥ α1 > 0. Using these bounds in (23) for V̇ in
(22), we obtain:

V̇ ≤−cα1θ̃
2(t) + c2TH|θ̃(t)| max

τ∈[−2T,0]

∣∣∣∣∂Jsta

∂θ
(θ(t+ τ))

∣∣∣∣
≤−cα1

∣∣∣θ̃(t)∣∣∣2 + c2TH
∣∣∣θ̃(t)∣∣∣ max

τ∈[−2T,0]

(
α2

∣∣∣θ̃(t+ τ)
∣∣∣) .(24)

From the Lyapunov-Razumikhin theorem [2], a sufficient
condition for stability is the existence of a continuous
nondecreasing function p(s) > s for s > 0 such that the
following holds: V̇ (t) < 0 if the current value p(V (θ(t)))
is larger than or equal to the one occurring in the last 2T
seconds maxτ∈[−2T,0] V (θ(t + τ)). Let p(s) = d2s, with
d > 1, then we require that V̇ (t) < 0 if p(V (θ(t))) ≥
maxτ∈[−2T,0] V (θ(t+ τ)). Hence, we require that V̇ (t) < 0
if

1

2
d2θ̃2(t) ≥ 1

2
max

τ∈[−2T,0]

(
θ̃2(t+ τ)

)
, (25)

or, equivalently, if

max
τ∈[−2T,0]

(
α2

∣∣∣θ̃(t+ τ)
∣∣∣) ≤ dα2

∣∣∣θ̃(t)∣∣∣ . (26)

Using this in (24) gives:

V̇ ≤ −cα1

∣∣∣θ̃(t)∣∣∣2 + c2THdα2

∣∣∣θ̃(t)∣∣∣2 (27)

= −cα1

∣∣∣θ̃(t)∣∣∣2 (1− cTHd
α2

α1

)
. (28)

Note that V̇ < 0 for all θ̃ ∈ Θ\θ∗ if 1 − cTHdα2

α1
> 0, or,

equivalently, if
cT <

α1

Hdα2
, (29)

such that limt→∞ θ(t) = θ∗ for all θ0 ∈ Θ0. Note that
the set Θ, see (21) (which is a sub-level set of V ) is a
positively invariant set, hence the bound in (20) is valid, and
hence supt≥0 |θ(t)−θ∗| ≤ ρθ. Choosing an ’initial condition’
θ0 ∈ Θ0 as specified in (10), the Lyapunov-Razumikhin
theorem guarantees that the Lyapunov function V can never
become larger than the maximum V that occurred in the past.
Note that we can always choose cT small enough in order
to achieve the condition in (29). Moreover, note that for any
arbitrarily large (though fixed) ρθ, and d > 1 the bounded
values for α1, α2 and H are fixed and we can choose the
adaptation gain c and fit time T small enough in order to
ensure that (29) is satisfied and hence limt→∞ θ(t) = θ∗.

The result in Theorem 1 is a type of asymptotic stability
result, for initial conditions θ0 ∈ Θ0 that are non-constant
(such that an initial fit can be made). In (15), the ‘lim’-
part relates to the attractive part of the asymptotic stability
result and the ‘sup’-part relates to the stability part of the
asymptotic stability result.

Also note that it follows from Theorem 1 that only the
product cT is important, which should be chosen small
enough. Intuitively, a small product of c and T guarantees
that a small neighborhood of θ(t) is used to obtain an
accurate gradient estimate. In the static case, T can be
chosen very small, allowing c to be chosen large (since



only product cT should be small), resulting in arbitrarily
fast convergence. In the general case of a dynamical plant,
as presented in Section II, we conjecture that, in addition, the
adaptation gain c should be chosen small enough to guarantee
that the performance J(y) remains close to the steady-state
performance Jsta(θ), see Fig. 2.

Remark III.3 In the extremum-seeking setting with dynam-
ics, see Figs. 1 and 2, there will be an additional error term
in the gradient estimate, due to the fact that the x-dynamics
is not exactly in steady-state (i.e. J(y) ̸= Jsta(θ)). Therefore,
it is no longer necessarily true that the estimated gradient is
equal to the true gradient for some time instance during the
last T seconds. However, we conjecture that for sufficiently
small adaptation gain c (such that J(y) ≈ Jsta(θ)) and
well-chosen fit-time T , an asymptotic stability result as in
Theorem 1 is still possible, which is substantiated by the
simulation results in Section IV. This is subject of future
research.

IV. SIMULATION RESULTS
In this section, we will present simulation results in order

to illustrate the effectiveness of the proposed extremum-
seeking strategy. We will present results for the static-map
setting as presented in Section III, and results on the dynamic
setting as presented in Section II.

Consider the following simple dynamical plant of the form
(1):

ẋ = −x+m(θ) (30a)
y = x, (30b)

with m(θ) defined as m(θ) := 3 − 1√
1+(θ−2)2

. Let the

performance function J = y, from which it follows that
the steady-state performance map is given by:

Jsta(θ) = J(y∗(θ)) = y∗(θ) = x∗(θ) = m(θ), (31)

where we used that x∗(θ) = m(θ) (satisfying ẋ = 0). The
map Jsta = m(θ) has a unique minimum at θ∗ = 2, see Fig.
5. Combined with the extremum-seeking scheme discussed
in Section II, this describes the dynamic setting. The static-
map setting simplifies to the scheme discussed in Section III,
with Jsta(θ) as defined in (31).

A. The static-map setting

Since the least-squares gradient estimate requires T sec-
onds of data before a fit can be made, we prescribe the
evolution of θ for t < 0 for at least T seconds. Therefore, we
use a prescribed θ̇ = P and do not use the adaptation in (7)
for t0 ≤ t ≤ 0. Note that this guarantees the initial condition
θ0 ∈ Θ0 with Θ0 as in (10). By choosing t0 ≤ −T , there
is enough data available at t = 0 to estimate the gradient,
and we switch on the adaptation according to (7). The used
parameter values are shown in Table I.

The simulation result is shown in Fig. 5. The static perfor-
mance map Jsta satisfies Assumption III.1. Therefore, from
Theorem 1 it follows that there exist parameters c and T , with
cT small enough such that the extremum-seeking controller

TABLE I
EXTREMUM-SEEKING PARAMETERS USED.

Static setting Dynamic setting
c 2 1
T 1 2
P 0.05 0.05
t0 -1 -10

θ(t0) 5 5
x(t0) - 3
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Fig. 5. Simulation result for extremum-seeking with fits, static-map setting.

converges asymptotically to the performance-optimal value
θ∗ = 2. This is illustrated in Fig. 5. There is some overshoot
at θ∗ = 2, which can be reduced by choosing the adaptation
gain c smaller, or by choosing the fit-time T smaller. Note
that choosing c smaller slows down the convergence, and
that choosing T smaller results in a more accurate gradient
estimate, since a ‘more local’ fit is made to estimate the
gradient.

Remark IV.1 Related to the initial condition θ0 ∈ Θ0 in
(10), also at the end of the simulation it is important that
enough data is available to make a 1st-order fit (i.e. ∆θ > 0).
Although theoretically it can be shown that the conditions in
Theorem 1 guarantee that ∆θ > 0 for all t ≥ 0, ∆θ does
become small when θ is converging towards θ∗. Therefore,
it is recommended to only leave the adaptation on if the
numerical conditioning of the least-squares fit is sufficiently
good.

The estimated gradient ∂̃J
∂θ (θt, Jsta,t) and true gradient

∂Jsta

∂θ (θ(t)) are shown in the upper-plot in Fig. 6. From
this figure it is indeed apparent, as sketched in the proof of
Lemma III.2, that the estimated gradient at time t is equal
to the true gradient at some point in time during the last T
seconds. Making the fit time T smaller will result in a better
estimate of the estimated gradient.

B. The dynamic setting

The results for the dynamic setting, see Fig. 1, for plant dy-
namics (30), are shown in Fig. 7. The used parameter values
can be found in Table I. Although no formal stability proof
for the dynamic setting is presented in this paper, we see that
the adaptation gain c and fit time T are chosen in such a way
that θ converges asymptotically to the performance-optimal
value θ∗. We also note that although the example shown
here considers scalar x-dynamics, also plant-dynamics with
x ∈ Rn can be considered, with n ≥ 2.
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Note that since the x-dynamics is not in steady-state, the
performance J(y(t)) ̸= Jsta(θ(t)). For t ≤ 0, the adaptation
according to (3) is turned off (since we prescribe θ̇ = P ),
and the x-dynamics converges closely to its steady-state
value x∗(θ) ≈ 2.7, see Fig. 7. Since c is chosen small
enough, the performance J(y) stays closely to the steady-
state performance Jsta(θ) for t > 0, see Fig. 7.

A simulation result of a classical dither-based extremum-
seeking scheme (see e.g. [6]), is also shown in Fig. 7. From
this figure it is clear that θ converges to a neighborhood
of θ∗, whereas the approach with fits, as presented in this
paper, asymptotically converges to the performance optimal
value θ∗. Since there is no dither signal, the performance
does not oscillate around the steady-state performance, see
Fig. 7. Because this time-scale of the dither is absent, this
allows for a faster adaptation towards the optimum θ∗. Note
that the neighborhood to which the dither-based approach
converges can be made smaller, but at the expense of a
slower convergence rate, which is a well-known tradeoff in
extremum-seeking control, see e.g. [12].

The estimated gradient ∂̃J
∂θ (θt, Jt) and true gradient

∂Jsta

∂θ (θ(t)) are shown in the bottom-plot in Fig. 6. Note
that, opposed to the static setting, it is no longer necessarily
true that the estimated gradient at time t is equal to the true
gradient at some point in time during the last T seconds.
For this reason, the authors believe that a (partially) different
type of proof as the one presented for Theorem 1 should be
considered in the dynamic case.

V. CONCLUSIONS

In this paper, we have proposed a new type of dither-
free extremum-seeking controller which uses 1st-order least-
squares fits to estimate the gradient of the performance
map. History data of the performance map are used to
estimate the gradient. The absence of dither allows for exact
convergence of the performance-parameter to the optimum
value. Moreover, the absence of dither eliminates one of the
time-scales present in classical extremum-seeking schemes,
allowing for a possibly faster convergence of the extremum-
seeking algorithm. For the static-map setting a stability proof
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dynamic setting.

has been presented which relies on a Lyapunov-Razumikhin
type of proof for time-delay systems. Although the detailed
stability proof is quite involved, the extremum-seeking ap-
proach is easy to apply and due to the fact that only two
extremum-seeking parameters are used, also easy to tune.
The presented method is also illustrated to work in case
plant-dynamics is present. A formal stability proof of this
dynamic setting is subject to future research.
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