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Abstract

The aim of this thesis project was to model reactions using classical molecular
dynamics simulations under both equilibrium and non-equilibrium conditions and
to study the effect of the reaction on the transport properties of the system. The
dissociation of hydrogen was chosen as a model system based on its importance
for the hydrogen society, and the availability of interaction potentials to model the
reaction.

According to procedures described by Stillinger and Weber, a three-particle interac-
tion potential was added to the pair potential. With this it was possible to properly
describe the dissociative reaction. Equilibrium studies was performed at different
temperatures and densities. From this, a detailed analysis of the interaction poten-
tial, the pair correlation functions and the contributions from the two- and three
particle interactions on the overall pressure was performed. This made it possible
to determine a temperature and density range where the degree of dissociation was
significant.

The Small System method was extended to calculate partial molar enthalpies from
fluctuations of particles and energies in a subsystem embedded in the simulation
box. It was proven that this method worked well for both reacting and non-
reacting mixtures. This method was applied to the hydrogen dissociation reaction.
From this the reaction enthalpy was determined as a function of temperature,
pressure and composition of the reacting mixture for three different densities. The
reaction enthalpy was found to be approximately constant (460–440 kJ/mol) for
a gas (0.0052 g/cm3), 410–480 kJ/mol for a compressed gas (0.0191 g/cm3) and
500–320 kJ/mol for a liquid (0.0695 g/cm3) for temperatures in the range 4000-
21000 K. With knowledge of the reaction enthalpy, the thermodynamic equilibrium
constant, and thus the deviation from ideality was found.

Non-equilibrium simulations was used to study the coupled transport of heat and
mass both transport of hydrogen through a palladium membrane and for the dis-
sociative reaction in a bulk phase. For the first case, transport coefficients had to
be estimated. For the latter case, the coefficients were determined for the first time
directly from the fluxes in the system using non-equilibrium molecular dynamics
simulations. The transport properties for both systems were then determined from
the coefficients. For transport across a membrane, it was illustrated how a temper-
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ature gradient could be used to enhance and control the flux of hydrogen through
the membrane.
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Chapter 1

Introduction

1.1 Scope

Computer simulations are a useful tool for a realistic study of systems under con-
ditions that are not easy to achieve in a laboratory, such as high temperature,
pressure, concentration and other extreme conditions. Quantum mechanics is one
option, but as these simulations becomes very time consuming for large systems,
or if statistical averages are needed, quantum mechanics is practically not possible.
Classical simulations, such as molecular dynamics- and Monte Carlo simulations
offer an alternative to the quantum mechanical methods, as they are better in han-
dling both the temperature ranges and the appropriate time scale (ns). However,
most molecular dynamics simulations use a classical force field with a harmonic de-
scription of the bonds. Since these potentials do not allow formation and breaking
of bonds, they are not suited to model chemical reactions. Stillinger and Weber
proved in 1985 that by adding three particle interaction to the commonly used
two particle interaction potential, they were able to properly describe a chemical
reaction [1–3]. Around the same time, several other many body potentials sprung
out [4, 5].

A detailed analysis of the equilibrium properties of a chemical reaction, such as
variation of the reaction enthalpy with temperature, pressure and composition,
and of the transport properties under non equilibrium conditions will be performed.
This will serve as a basis for further studies, where a temperature- or concentration
gradient is present e.g., in combination with a surface. The hydrogen dissociation
reaction was chosen as a model reaction due to its importance in many instances, its
simplicity and the availability of interaction potentials for modeling the reaction.
This makes the hydrogen dissociation reaction an ideal model reaction for our
purpose.
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2 Introduction

1.2 The hydrogen dissociation reaction

Hydrogen is the most abundant element in the universe and on earth [6,7]. However,
the majority of hydrogen is chemically bound (as e.g., H2O) and less than 1% is
present as H2 [6]. As the ratio of valence electrons to protons is high, the chemical
energy gain per electron is high [6], and unlike hydrocarbons, hydrogen can not be
destroyed [7].

The hydrogen dissociation reaction is important in many instances, such as for
the hydrogen society; as pure hydrogen is needed for fuel cells in electric vehicles.
Additionally, as it is a simple reaction, it is also well suited as a model system for
chemical reactions. The phase diagram of hydrogen shows that the molecular fluid
(H2) dominates up to approximately 5000 K. Above that, hydrogen spontaneously
dissociates to an atomic fluid. Thus, at “normal” temperatures and pressures hy-
drogen is present as a molecular fluid, while high temperatures, such as those on
the surface of the sun, is needed to get a dissociated system. At standard state con-
ditions (1 bar, 298 K) the reaction enthalpy for the dissociative reaction (H2 
 2H)
is 436 kJ/mol [8]. As will be illustrated in Chapter 6 the reaction enthalpy is of
the same magnitude also for higher temperatures and pressures.

Hydrogen, for use in fuel cells etc., is conventionally produced using the water-gas-
shift reaction [9] and from water electrolysis. In a membrane reactor, the chemical
reaction (to produce hydrogen) and the separation process (from the resulting hy-
drogen and hydrocarbon stream), is performed in one step, as the palladium mem-
brane is solely selective towards hydrogen. This results in both a higher yield and
a lowering of the production cost. An overview of hydrogen production using pal-
ladium membranes was given by Basil [10], and a review of the palladium reactors
can be found in ref. [11]. One drawback with this method of producing hydrogen,
is that palladium is expensive. This makes it more important to understand all
the small steps in the production mechanism, such as the dissociative adsorption
reaction of hydrogen on the palladium surface. This gives motivation to use the
dissociative reaction of hydrogen as a model system for a thorough study of the
reaction and the influence of temperature, pressure and molecular concentration on
the reaction enthalpy, and on the transport properties. The intention is to establish
a model which adds to the description of reactions at both equilibrium and non-
equilibrium conditions, in addition to gain knowledge of the hydrogen dissociation
reaction, which will be of importance for improving membrane technologies.

1.3 Methods for determination of enthalpies

A goal in the chemical process industry is to completely understand and model the
processes in a chemical reactor. Chemical reactions often take place in the presence
of a pressure and/or a temperature gradients. The enthalpy is an important pa-
rameter to understand thermodynamics of chemical reactions, as it determines the
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equilibrium properties of a multicomponent system [12]. This absolute quantity is
difficult to measure precisely [13]. One can only determine the enthalpy difference.
For a binary mixture at constant temperature and pressure the total enthalpy is
given by

∆H =

n∑

i=1

Ni∆Hi (1.1)

where Ni is the number of particles of specie i and ∆Hi is the partial molar enthalpy
of component i which can be defined, from the total enthalpy, by

∆Hi =

(
∂∆H

∂ni

)

nj 6=i

(1.2)

Partial molar enthalpies are usually found (both experimentally and with simula-
tions) by taking a numerical derivation of the total enthalpy with respect to the
number (in mol) of particles of one component [14].

Calorimetry is the most common experimental method available to determine en-
thalpies, and measures the heat change of a chemical reaction, which in turn is
related to the change in internal energy and the reaction enthalpy. The calorime-
try methods, such as constant volume (bomb calorimetry) and constant pressure,
are well described in literature [15–18]. Experimentally, constant pressure is much
easier to maintain in laboratory than e.g., constant volume. If the heat change is
measured at constant pressure, it is directly proportional to the enthalpy.

∆H = −CP∆T (1.3)

The heat capacity of the calorimeter, CP , can be found by applying an electric
current to the system.

Another way to determine the enthalpy change is to measure the change in vapour
pressure as a function of temperature, by e.g., heating up a pure liquid. The
enthalpy of vaporisation can then be found from

d lnP = −∆vapH

R
d

(
1

T

)
(1.4)

The total enthalpy of a mixture can easily be found from simulations. The par-
tial molar enthalpies are however more troublesome, as they can not be expressed
directly as an average of a function of the coordinates and momenta of the par-
ticles in a mixture [19]. For a mixture of non-reactive components, the partial
molar enthalpies can be found by taking the derivative of the total enthalpy with
respect to mol component. However, for reactions and other linear dependent sys-
tems, this is not possible. Additionally, the accuracy is dependent of the numerical
differentiation [19].

Over the years, several methods to find partial molar enthalpies using molecular
simulations have been established in addition to the numerical differentiation, such
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as particle insertion and deletion (the Widoms test particle method, see e.g., Frenkel
and Smit [20]) and identity changes [19,21]. The first, requires several simulations
at different compositions, which is a disadvantage. Additionally, it is not suited
for dense systems, as the acceptance for a particle insertion would be too low. The
second method, by changing the identity of a particle of component i to component
j is superior as only one simulation is needed. The partial enthalpy is found for
both methods by looking at the potential energy change from such operations.
The Small System Method, developed by Schnell and coworkers [22–24], has been
extended to determine partial molar enthalpies [25] as will be illustrated in Chapter
5. From fluctuations of particle numbers and energies in a small system embedded
in a larger reservoir, one can directly calculate the partial molar enthalpies. As
the Small System Method has been proven to work well for a chemically reacting
system, [25], this method will be used to find partial molar enthalpies and reaction
enthalpies for the hydrogen dissociation reaction in Chapter 6. The principles of
the Small System Method, along with some usage areas, are outlined in Section
2.2.

1.4 Problem definition and outline of the thesis

The aim of this thesis project is to model reactions using classical molecular dy-
namics simulations under both equilibrium and non-equilibrium conditions and to
study the effect of the reaction on the transport properties. With this the work
also aspire to improve knowledge about dissociative reactions, and to add to al-
ready existing models. This will be done by first studying a chemical reaction,
the dissociation of hydrogen, under equilibrium conditions where the enthalpy of
the reaction is determined as a function of pressure, temperature and composition.
The hydrogen dissociation reaction will also be studied under non-equilibrium con-
ditions, in the presence of a temperature gradient, where the transport processes
will be described and quantified. With this additional study the aim is to lay the
basis for further studies, e.g., for a reaction on a surface.

A short theoretical background for the thesis is given in Chapter 2. Chapters 3–6
are based on published or submitted papers. One is still in preparation, Chapter
7. All papers are listed in the next Section.

In Chapter 3 (Paper 1) the transport of hydrogen through a palladium membrane
was studied, illustrating the importance of and application for both non-equilibrium
thermodynamics and membrane technologies. The hydrogen dissociation on the
palladium surface plays an important role in the membrane setup, and it is illus-
trated how a temperature gradient over the membrane can be used to enhance and
control the mass flux of hydrogen through the membrane.

In Chapter 4 (Paper 2) a classical molecular dynamics model of the hydrogen
dissociation reaction was developed, based on the previous model of Stillinger and
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Weber for fluorine. With this model the equilibrium basis for the dissociation of
hydrogen was studied in detail, such as the energy landscape (with both two- and
three particle interactions), the pair correlation functions, and the contributions
from the two- and three-particle interactions to the pressure. A first estimate of
the reaction enthalpy was made from the dissociation constant, assuming ideal
conditions.

The Small System Method was extended to find partial molar enthalpies and re-
action enthalpies in Chapter 5 (Paper 3). Both a binary mixture and a dummy
reaction was used as model systems.

In Chapter 6 (Paper 4) the Small System Method was applied to the dissociation
of hydrogen. From this the enthalpy of reaction, Kirkwood-Buff integrals and
thermodynamic correction factors for a gas, compressed gas and a liquid density
was determined as a function of temperature. All for non ideal systems. From this
the thermodynamic equilibrium constant was determined for the lowest density.

In Chapter 7 (Paper 5) the diffusion of heat and mass in a chemically reactive
mixture; the hydrogen dissociation reaction was studied. With the use of the ana-
lytical procedure given by Xu et al. [26] the temperature profile and the component
fluxes was successfully fit to analytical expressions. From this the resistivities of
the system, and the transport properties of the system was determined.

A conclusion of the work is given in Chapter 8, and in Chapter 9 some suggestions
for further work is given.

1.5 List of papers

The publications made during the PhD is listed below and has been included in the
thesis as Chapter 3–6. Papers 1-4 have been published or submitted to international
peer-reviewed journals, while paper 5 is in preparation, and has been included as
a manuscript.

Paper 1. R. Skorpa, M. Voldsund, M. Takla, S. K. Schnell, D. Bedeaux and S.
Kjelstrup. Assessing the coupled heat and mass transport of hydrogen through
a palladium membrane.. J. Membrane Science, (2012) 394–395:131–139.

Paper 2. R. Skorpa, J.-M. Simon, D. Bedeaux, S. Kjelstrup. Equilibrium prop-
erties of the reaction H2 
 2H by classical molecular dynamics simulations..
PCCP, (2014) 16:1227–1237.

Paper 3. S. K. Schnell, R. Skorpa, D. Bedeaux, S. Kjelstrup, T.J.H. Vlugt
and J.-M. Simon. Partial Molar Enthalpies and Reaction Enthalpies From
Equilibrium Molecular Dynamics Simulation. Submitted to J. Chem. Phys
June 2014
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Paper 4. R. Skorpa, J.-M. Simon, D. Bedeaux, S. Kjelstrup. The reaction
enthalpy of hydrogen dissociation calculated with the Small System Method
from simulations of molecular fluctuations. PCCP (2014) 16:19681–19693.

Paper 5. R. Skorpa, T. J. H. Vlugt, D. Bedeaux and S. Kjelstrup. Diffusion of
heat and mass in a chemically reactive mixture. Manuscript in preparation.

1.6 Author contributions

The simulations and programming needed for paper 2, 4 and 5 were done by Ragn-
hild Skorpa (RS), which is the author of this thesis. The work was supervised by
Signe Kjelstrup (SK) (paper 2, 4 and 5), Dick Bedeaux (DB) (paper 2, 4 and 5),
Jean-Marc Simon (JMS) (papers 2 and 4) and Thijs J.H. Vlugt (TJHV) (paper
5). All co-authors have been helping with the problem formulation, discussion of
the results and with valuable comments on the manuscripts. DB and SK has also
helped with writing parts of the manuscripts.

The problem formulation of paper 1 was suggested by SK, and the work done was a
joint contribution between RS, Mari Voldsund (MV), Marit Takla (MT) and Sondre
K. Schnell (SKS), under supervision of DB and SK. MV and SKS performed the
mathematical modeling, and MT and RS took the lead in defining the equations
and estimation of the necessary parameters. RS took the lead in writing the final
paper.

The problem formulation of paper 3 was suggested by JMS. RS verified the theo-
retical predictions using molecular dynamics simulations under the supervision of
JMS. Once RS had verified the theory, SKS took over and expanded the modeling.
The final simulations that appear in the paper was performed by SKS. The writing
of the paper was performed mainly by JMS and SKS, all authors have contributed
to scientific discussion of the results, and commenting on the manuscript.



Chapter 2

Theoretical background

This chapter gives a short theoretical background of the techniques used in this
thesis. A short introduction to molecular dynamics simulations of chemical reac-
tions is given in Section 2.1 followed by a brief introduction to the Small System
Method in Section 2.2, which is used to calculate the reaction enthalpy. Finally, a
short introduction to non-equilibrium thermodynamics for both bulk and surface
is given in Section 2.3.

2.1 Molecular dynamics simulations of reactions

Molecular dynamics simulations is a useful tool to mathematically study complex
phenomena over time, and several textbooks have been written on the topic, see
e.g., references [20, 27, 28]. Simulations give us the possibility to study systems
at very high or low temperatures and pressures. These situations are either not
possible, or extremely difficult to achieve in laboratories. Another advantage is
that it is cheaper than laboratory experiments, as one does not need chemicals or
expensive apparatus, only a computer and access to a supercomputer is needed.
This in turn gives the possibility to run several simulations in parallel, and this can
be used e.g. to screen molecules for catalysts.

The addition of a three-particle interaction to the commonly used pair potential
makes it possible to study the formation and breaking of bonds, and thereby making
it possible to study chemical reactions with classical simulations. The first report of
a reactive system modeled with a three-particle potential was from Stillinger and
Weber in 1987 where they investigated the chemical reactivity in liquid sulphur
[2]. In 1988 [3] they continued the procedure with the reaction F2 
 2F as a
model system. Kohen et al. used three particle interactions in 1998 to model the
interaction of hydrogen with a silicon surface [29]. Xu et al. [26,30–32], investigated

7
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the nature of coupled transfer of heat and mass for a chemical reaction using two-
and three particle interactions. As a model system Xu et al. also used the simple
reaction 2F
 F2, and the system was exposed to temperature gradients up to 1011

K/m. Another example of a three-particle interaction potential is the potential by
Axilrod and Teller to describe dispersion interactions from 1943 [33], which has
been used to study binary fluids [34,35].

Another possibility to model chemical reactions is to use bond order potentials,
first derived by Abel in 1985 [5]. These potentials uses the bond order to describe
different the chemical bonds and can for this reason be used to model chemical
reactions. Double and triple bonds are defined by the length of the bonds and not
orbital overlap, and the bond length of double and triple bonds are for this reason
often predicted to be longer than the experimental values. Over the years this
potential type has been expanded and improved [4, 36–40] to be able to describe
both radicals and conjugated systems, by including also the coordination of the
nearest neighbours. However, until recently these potentials have only been able to
describe hydrocarbons, with the exception being the latest versions of ReaxFF [38]
and REBO [39]. As ReaxFF has been developed to also describe different oxidation
states of metals [41, 42], and reactions catalysed by transition metals [43, 44] it is
well suited to model chemical reactions at the interface of different materials, which
is interesting in a catalytic point of view.

2.1.1 Interaction potentials

The interactions between particles are described by an interaction potential which
gives the interaction energies as a function of the distance between the particles.
For a system consisting of Np-particles, the interaction potential can be divided
into contributions from one-, two-, three-particle interactions etc.

Utot(1, . . . , Np) =
∑

i

u(1)(i) +
∑

i<j

u(2)(i, j) +
∑

i<j<k

u(3)(i, j, k) + . . . (2.1)

The first term gives the single particle potential which contains the contribution
from walls and external forces, and can be ignored when no external force is present.

The pair interaction, the second summation in Eq. (2.1), is only a function of the
scalar distances [45]. Kohen et al. [29] gave the pair interaction (Eq.(2.2)), for the
hydrogen dissociation reaction [29], based on quantum mechanical results [46].

u(2)(r) =

{
α (β2r

−p − 1) exp
[

γ2
r−rc

]
if r < rc

0 if r > rc
(2.2)

Where α = 5.59 · 10−21 kJ, β2 = 0.044067 Åp, γ2 = 3.902767 Å, rc = 2.8 Å and
p = 4 are constants [29]. α is chosen such that the minimum of the potential
gives the binding energy of hydrogen (432.065 kJ mol−1) [29] at the equilibrium
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bond distance between two hydrogen atoms, re = 0.74 Å [47]. When the distance
between two atoms is larger than the cut-off distance, r ≥ rc, the potential is
zero. The reduced units used throughout this thesis (indicated by superscript ∗)
are defined by the particle diameter, σ which is defined by u2(σ) = 0, which gives

σ = p
√
β2 = 0.458Å, and the potential depth, ε based on the binding energy of

hydrogen, so that ε/kB = 51991 K.

As stated earlier, a three particle interaction is also needed to describe a chemical
reaction, and this interaction must possess full translational and rotational sym-
metry [45]. For the hydrogen dissociation the three particle interaction was given
by Kohen et al. [29].

u(3) = hi,j,k(rij , rjk, θi,j,k) + hj,i,k(rji, rik, θj,i,k) + hi,k,j(rik, rkj , θi,k,j) (2.3)

where the middle letter, j, in the subscript i, j, k refers to the atom in the subtended
angel vertex. The h-functions are given by

hj,i,k(rji, rik, θj,i,k) =

{
λa exp

[
γ3

(rji−rc) + γ3
(rik−rc)

]
if rji < rc and rik < rc

0 otherwise
(2.4)

and
a =

[
1 + µ cos(θj,i,k) + ν cos2(θj,i,k)

]
(2.5)

λ = 2.80 · 10−21 kJ, µ = 0.132587, ν = −0.2997 and γ3 = 1.5 Å are constants [29].
The cut-off distance, rc, is the same for both the two- and three-particle interactions
(2.8 Å).

The total potential for a linear configurations of hydrogen atoms, is illustrated in
Figure 2.1, where the minima of the potentials are indicated by U1-U3. Only the

Figure 2.1: Total potential energy surface for a linear configuration of three hydrogen
particles using two- and three particle interactions. Superscript ∗ indicate reduced units.
U1-U3 indicates the minima of the potential. The figure is adapted from ref. [48].

linear configuration of the total potential was considered as Siegbahn and Liu [49]
determined that the linear configuration contained the deepest minima.
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From the study in Chapter 4 it will be shown that the three-particle interaction lead
to a large excluded volume diameter of the molecular fluid. This excluded volume
diameter is in agreement with the Lennard-Jones diameter used by others [48].

2.1.2 Pressure calculations

The three-particle interaction potential will give a contribution to the overall pres-
sure in the system [31,48]. From the virial theorem, the expression for the pressure
in the presence of two- and three-particle interactions is:

P =
kBTNp
V

− 1

3V

Np∑

i=1


1

2

∑

j pair with i

∂u2(rij)

∂rij
rij (2.6)

+
∑

j<k triplet with i

(
∂hi
∂rji

rji +
∂hi
∂rik

rik +
∂hi
∂rjk

rjk

)


where pairs and triplets under the summation indicates that the summation is
performed over all pairs and triplets. The function hi is a function of the angle and
distances of a triplet formation.

hi = hj,i,k(rji, rik, θj,i,k) (2.7)

The first term in Eq. (2.6) gives the ideal contribution to the pressure due to the
total number of particles, Np. The second and the third terms give the contributions
from the two- and three particle potentials, respectively. This makes it possible to
quantify and compare the separate contributions to the pressure. The first study
of the three-particle interaction contribution to the overall pressure for a chemical
reaction was made by Xu et al. [30]. In Chapter 4 it will be shown that the
magnitude of the three particle contribution to the pressure is dependent on the
degree of dissociation [48].

2.2 The Small System Method

In 1963 Hill [50] extended the range of the validity of the thermodynamic functions
and the mathematical interrelations between these functions to nonmacroscopic
systems, such as colloidal particles or one macroscopic molecule. In this situa-
tions U, H and G are no longer extensive variables, and regular thermodynamic
functions and relations are not valid. In 1998 Hill and Chamberlin [51–53] defined
nanothermodynamics to describe systems that are far from the thermodynamic
limit, i.e., systems with only a small number of particles. If the size of the small
system increases towards the size of an infinite system (Nj →∞ or Vj →∞), the
thermodynamical equations for the small system becomes equal to the ordinary
thermodynamical equations.
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The Small System Method is based on Hills formalism and the first reports of this
was made by Schnell and coworkers [22–24] in 2011. This new method is under
constant development, with the latest extension to find partial molar enthalpies and
reaction enthalpies, and the usage areas increases rapidly. This will be described in
detail in Chapter 5, where also a more detailed description of the method is given.

2.2.1 Principles

In the simulation box, periodic boundary conditions, as illustrated in Figure 2.2 for
a two-dimensional system, is obeyed. The original system, in the center with red

Figure 2.2: A two-dimensional illustration of periodic boundary conditions. The center
frame is the frame of reference (red particles) and a copy of this is made in all directions.
When a particle leaves the center frame, another particle enters from one adjacent frame
as indicated by the arrows (full arrow for the particle leaving the frame of reference and
dashed for the one entering). In this manner, the number of particles is conserved.

particles, is surrounded by replicas in such way that if a particle at the left move
across the wall to the next replica to the left (indicated by the arrow), a particle
from the right immediately enters from the same location (dashed arrow) at the
right hand side.

The basic principle of the Small System Method is to create a small system inside
a large reservoir (e.g., the original simulation box). For a spherical subsystem,
the radius varies from σ < L < 0.5Bi, where Bi is the shortest length of the
simulation box for a non-cubic system, and L is the radius of the sphere . In these
subsystems, energy and particle number are allowed to fluctuate, and the original
periodic boundary conditions of the box (as illustrated in Figure 2.2) are thus not
obeyed. An illustration of this is given in Figure 2.3, for a two-dimensional system.
With the reservoir in the N,V, T ensemble, the small systems follow the µ, V, T
ensemble. From the fluctuation of particle number and energy in a binary mixture
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Figure 2.3: Two-dimensional illustration of the boundaries of the Small System Method. A
spherical subsystem with fluctuation of energy and particles is embedded in the reservoir.
Particles that are inside the small system is indicated by red spheres. For molecules,
the center of mass was used to determine whether a molecule is inside or not. The gray
spheres indicates particles that are not counted as part of the small system.

the thermodynamic correction factors, Γij , and the partial enthalpy of component
i, hi can be found.

Γ−1
ij =

1

β

(
∂ ln〈Ni〉
∂µj

)

T,V,µk 6=i

=
〈NiNj〉 − 〈Ni〉〈Nj〉

〈Nj〉
(2.8)

hi =

(
∂H

∂Ni

)

T,V,µj 6=i

= −〈UNi〉 − 〈U〉〈Ni〉+ kBT 〈Ni〉
〈N2

i 〉 − 〈Ni〉2
(2.9)

Where the brackets denote time averages, Ni is the number of particle i inside the
subsystem, β = kBT and U is the total energy.

All fluctuations inside the subsystem are dependent on the size of the subsystem
in consideration. This means that the thermodynamic properties are found as a
function of system size. For the density of an extensive thermodynamic variable,
X, we have [25]

X

V
= Ab +AsL

−1 +AeL
−2 +AcL

−3 (2.10)

where L is the radius of the subsystem and V its volume. Ab, As and Ae give
contributions to X proportional to the volume, surface and the linear diameter,
respectively and Ac is a constant. By extrapolating to 1/L = 0 (infinitely large
system) the volume term, Ab, is independent of the size of the small system, and
can for this reason be linked to the value in the thermodynamic limit. This means
that by changing the size of the small subsystems the thermodynamic limit value
of X can be determined by extrapolation, from one simulation alone. This is an
extremely important advantage of the method. However, one has to keep in mind
that the value in the thermodynamic limit is ensemble dependent, thus these values
might need to be transformed to a different ensemble to obtain the correct results.
This will be illustrated in Chapters 5 and 6, where the Small System Method is
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used to find partial enthalpies at constant T, V, µj and then transferred to partial
molar enthalpies (at T, P,Nj).

As the fluctuations inside the subsystem are size dependent, it is important to de-
termine a region where size effects are negligible. This region, which is independent
of the size of the reservoir, should be used when extrapolating to find the value in
the thermodynamic limit. As will be illustrated in Chapters 5 and 6 this region
is system dependent and has to be determined individually for each system. This
can be verified by running the same simulation with a larger simulation box (with
the same density).

2.2.2 Status of the Small System Method

Even though the Small System Method is fairly new (first reported in 2011), and
continuously under extension, it has already proven to be useful for chemists. Liu
et al. [54, 55] showed how this method could be used to find Fick diffusion coeffi-
cients from Maxwell-Stefan diffusivities with the knowledge of the thermodynamic
correction factors, which are found from particle fluctuations using the Small Sys-
tem Method. In 2013, Schnell et al. [56] showed that the Small System Method
works well for linearly dependent systems, such as the individual species in salt so-
lution, which is an important property of this method compared to other simulation
techniques. The Small System Method was extended by Collell and Galliero [57]
for in- homogeneous Lennard Jones fluids confined in slit pores to determine the
thermodynamic factor of confined fluids. Recently, the method was used by Reif et
al. [58] to calculate the thermodynamic correction factors for salt-water and salt-
salt interactions. Trinh et al. [59] studied the adsorption of carbon dioxide on a
graphite surface and thereby extended the Small System Method to surfaces. The
latest extension, to calculate partial molar enthalpies and reaction enthalpies from
one single simulation, will be demonstrated in Chapter 5 [25]. In Chapter 6, the
method will be used to find reaction enthalpies and as a function of temperature
for the dissociation of hydrogen, a system that is far from ideal conditions.

2.3 Non-equilibrium thermodynamics

Non-equilibrium thermodynamics is a useful tool to systematically describe trans-
port processes, as it provides a theoretical description of transport properties for
irreversible processes which are out of global equilibrium [12, 60]. Over the years
several textbooks have been written on the subject, see e.g., references [12,60,61].
The theory was established by Onsager in 1931 [62, 63] to describe transport pro-
cesses in homogeneous systems. A systematic description of the extension to het-
erogeneous systems, including transport into and through a surface was given by
Kjelstrup and Bedeaux in 2008 [12]. The two chapters that include non-equilibrium
thermodynamics in the thesis both contain a chemical reaction, but in different
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ways. One reaction is present in the bulk phase (Chapter 7), the other at the
surface of a membrane (Chapter 3).

2.3.1 The entropy production of a chemically reacting sys-
tem

The entropy production rate for a chemical reaction, e.g., H2 
2H, with transport
of heat and mass was given by Groot and Mazur [61], and this system will be
discussed in detail in Chapter 7.

σ = Jq∇
(

1

T

)
−
∑

i

Ji∇
µi
T
− r∆rG

T
≥ 0 (2.11)

Here, Jq is the total heat flux, and Ji the molar component flux of either H or H2,
with respect to the wall. ∇(1/T ) gives the temperature gradient in the x-,y- and
z-direction, and ∇µi is the gradient in chemical potential of component i. r is the
reaction rate, and ∆rG is the reaction Gibbs energy. The first two flux-force pairs
are vectors, while the third flux-force pair, from the reaction, is a scalar, and does
for this reason not couple to the other vectorial flux-force pairs. In the absence of a
net mass flux through the system (JH = −2JH2), the rate of the reaction is defined
as the gradient of the component flux

r = − ∂

∂x
JH2

(x) =
∂

∂x

1

2
JH(x) (2.12)

The reaction Gibbs energy for the dissociative reaction is defined as

∆rG ≡ 2µH − µH2 (2.13)

The measurable heat flux, J ′q, is defined as

Jq = J ′q − JH2
∆rH (2.14)

If only transport in the x-direction is considered, the entropy production rate of
the reacting mixture can be rewritten

σ = J ′q
∂

∂x

(
1

T

)
+

1

T
JH2

∂

∂x
(∆rG)T − r

∆rG

T
(2.15)

Form the entropy production the following force-flux relations for transport of heat
and mass [12] can be defined

d

dx

1

T
= rqqJ

′
q + rqµJH2 (2.16)

d

dx

∆rG

T
= rµqJ

′
q + rµµJH2 (2.17)
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where rii and rij are the main- and coupling coefficients, respectively, which de-
scribes resistance to transport (here, heat and mass). The coupling coefficients
gives the possibility describe and quantify coupled transport, and are linked by
the Onsager reciprocal relations, rij = rji [62, 63]. For a chemically reactive sys-
tem, the reaction rate can be regarded as a linear function of the driving forces if
∆rG < RT [60]. In Chapter 7 a complete analytical procedure to describe chemical
reactions [26] is given. According to the definition by Onsager, the coefficients are
only dependent on state variables, such as temperature and density, and not on
the fluxes and forces. This means that a a temperature gradient can be used to
increase- or even to stop the mass flux. This will be discussed in detail in Chapter
3, where transport of hydrogen through a palladium membrane will be studied.

The transport properties of the system, such as the diffusivity, thermal conductivity
and heat of transfer etc., can all be found if the phenomenological coefficients are
known, this will be show in Chapters 3 and 7. However, these are not always
known from experiments and often have to be estimated. This will be illustrated
in Chapter 3, where it will be shown how non-equilibrium thermodynamics makes
it possible to define experiments for finding both transport properties and the
phenomenological coefficients.

With local chemical equilibrium, ∆rG = 0, the entropy production reduces to a
one flux-force expression

σ = J ′q
∂

∂x

(
1

T

)
(2.18)

2.3.2 Transport of a reacting mixture through a membrane

For transport of a mixture through a membrane, the entropy production (for one
side of the membrane) is given as

σm = Jmq
∂

∂x

1

T
+
∑

j

Jmj
∂

∂x

µj
Tm

(2.19)

where superscript m indicates the membrane. The force-flux relations for the mem-
brane can be set up in a similar manner as described in the previous section. In
the membrane, the enthalpy of the components is constant, and for this reason no
coupling effect of the heat- and mass flux is observed in the membrane, [12,64].

At the membrane surface, the situation is more complex. In non-equilibrium ther-
modynamics, Gibbs definition of a dividing surface, “a geometrical plane, going
through points in the interfacial region, similarly situated with respect to to condi-
tions of adjacent matter” [65], is used. With this definition, in terms of the excess
densities, the surface is treated as an autonomous thermodynamic system. One
consequence of this is that the surface has its own temperature, and that all its
properties depend on this temperature alone, and not on the temperature of the
adjacent phases. Consider a surface, s, separating two phases, i and o, as illustrated
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Figure 2.4: The density profile of a surface (shaded area), i and o indicate the adjacent
phases. The excess surface density can be found by integration of the density profile. The
figure has been reprinted and modified with permissions from the authors, ref. [12].

in Figure 2.4 for the excess surface density. With Gibbs definition of the excess
surface densities, normal thermodynamic relations, such as the first and second
laws are valid [65]. The excess entropy production for a non-polarized surface in
the absence of an electric field has five independent flux-force pairs;

σs = J i,oq

(
1

T s
− 1

T i,o

)
+ Jo,iq

(
1

T o,i
− 1

T s

)
(2.20)

+

n∑

j=1

J i,oj

[
−
(
µsj
T s
−
µi,oj
T i,o

)]
+

n∑

j=1

Jo,ij

[
−
(
µo,ij
T o,i

−
µsj
T s

)]
+ rs

(
−∆nG

s

T s

)

for transport perpendicular to the surface. From the above equation, it can be seen
that coupling between −∆nG/T

s and ∆µ/T is now possible, unlike the situation
in the bulk phase and the membrane. This will be examined in Chapter 3, where
it will also be shown that for transport of hydrogen across a palladium membrane,
the entropy production reduces to two independent flux-force pairs.
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palladium membrane

Abstract

We have formulated the coupled transport of heat and hydrogen through a palla-
dium membrane, including the dissociative adsorption of hydrogen at the surface.
This was done using the systematic approach of non-equilibrium thermodynamics.
We show how this approach, which deviates from Sieverts’ law, makes is possible
to calculate the direct impact that a temperature gradient, or a heat flux, has on
the hydrogen flux. Vice versa, we show how the dissociative adsorption reaction
leads to heat sinks and sources at the surface.

Using a set of transport coefficients estimated from experimental values available
in the literature, calculations were performed. An enhancement of the hydrogen
flux through the membrane with 10% and 25%, by transmembrane temperature
differences of 24.8 K and 65.6 K, respectively, was predicted with a feed tempera-
ture of 673 K. Similarly, a transmembrane temperature difference of −176.5 K was
observed to stop the hydrogen flux (Soret equilibrium). The calculations are done
with estimated transport properties for the surfaces. The results show that an
effort should be put into determination of these. Such experiments are discussed.

3.1 Introduction

With increasing energy prices, and a limited supply of oil, it is of importance to
improve the efficiency of the most common industrial processes. In this situation,
membrane reactors are interesting. In a membrane reactor, a chemical reaction
and the separation of resulting products can be performed in one process step.
The products are removed continuously along the reactor. This in situ removal of
the products (or of unwanted by-products from the chemical reaction), as well as
the possibility of a high yield from equilibrium limited reactions, makes this a very
interesting alternative to traditional reactors.

Membrane reactors can be put into two categories: porous and dense. Porous
membranes can be e.g. zeolite-based membranes [66,67], while the palladium mem-
brane is a typical example of a dense membrane. In industrial applications, there
are several situations where one wishes to extract hydrogen from a reaction; the
water-gas-shift reaction [9] is one of the most important. For other examples, see
Basile [10]. The palladium membrane is a thin layer of palladium, often on a porous
support of either steel or alumina. For a recent review of state of the art palladium
membrane reactors, see Yun and Oyama [11]. Palladium is purely selective towards
transport of H2. In order to give a high flux of hydrogen through the membrane,
the palladium-layer should be as thin as possible; typically a few micro meter or
less. In a palladium reactor hydrogen is transported as hydrogen atoms in the
palladium, and as hydrogen molecules in the gas phases on each side of the mem-
brane [11, 68]. The heat of adsorption is significant (−87 kJ mol−1 [69]), including
the splitting of molecular hydrogen and adsorption at the surface. This dissociative
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adsorption is likely to influence the mass flux. There is a need to study this in a
systematic manner for several reasons. It is known that surface effects can hamper
experiments [70]. Also, permeability studies often show deviation from Sieverts’
law [71]. Furthermore, while it is known how the absolute temperature affects a
chemical reaction, little is known on how a temperature gradient affects the reac-
tion rate. With a thin membrane and large heat sinks and sources at the interfaces,
such gradients may be large. The coupling of chemical reactions to fluxes of heat
and mass is possible in principle [60], but has not been described in detail for a
real system before.

In their now seminal paper, Ward and Dao [72], presented a model for hydrogen
permeation through a palladium membrane which accounted for all kinetic steps in
the permeation and reaction process. This model has been modified and improved
to also include mass transfer through the support by others, and has been further
used a basis for incorporating the surface and a reaction in reactor models [73–
77]. Many of the existing models for hydrogen permeation neglects the effect of
the surface, see e.g [78, 79]. None of these works deal with transport of heat in
combination with transport of mass across surfaces, however.

This gives us a motivation to apply non-equilibrium thermodynamics to study the
transport in a palladium membrane. The work of de Groot and Mazur [61] outlines
how to describe homogeneous systems. During the last decade, the field has been
further developed to also include heterogeneous systems, such as systems with
membranes [12]. In the extension, dynamic boundary conditions for the crossing
from one layer to the next were defined. The coupling, or the interaction of fluxes
and forces at the surface, is often overlooked in the literature, while it is now known
that it can be substantial [80]. It is, however, relevant to ask whether linear force-
flux relations apply when a chemical reaction takes place in the system. Chemical
reactions have normally rates which are non-linear functions of their driving force,
meaning that we then need to go to a mesoscopic level of description to capture
this property [60]. In the present case, we shall see that there is no need to invoke
this level of complication for operating conditions that are typical for palladium
transport.

After a short description of the system and the system conditions used in Section
3.2, we proceed in Section 3.3 to derive transport equations, using non-equilibrium
thermodynamics, across a palladium membrane. Details concerning the calcula-
tions and solution procedures are given in Section 3.4. In Section 3.5 we present
and discuss the results obtained from applying the model to different sets of bound-
ary conditions. We study in particular the effect the surface has on the transport
across the membrane. In Section 3.6, we draw conclusions.
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3.2 The system

Consider a palladium membrane separating two gas phases. For simplicity, we as-
sume pure H2 gas on each side. Hydrogen is transported from gas phase to gas
phase, and the transport is considered to be 1-dimensional, in the direction perpen-
dicular to the membrane. The membrane is considered to be a homogeneous system
with thickness δm. The region between the gas phase and the palladium defines the
membrane surface. There are two such planar layers of molecular thickness; one at
each side of the membrane. The surface in equilibrium was described already by
Gibbs as a two-dimensional system using excess thermodynamic properties. The
same terminology is adopted here, following Kjelstrup and Bedeaux [12] for surfaces
outside equilibrium. Figure 3.1 illustrates the system with the different phases and
with fluxes entering and leaving the system. Superscript s is used to denote the
surface, while f and p stands for the feed- and the permeate sides, respectively. We
shall not model the diffusion layers in the gas phase external to the surfaces. These
layers might well be diffusion limiting, but this will not be adressed in the present
paper.

Figure 3.1: A schematic illustration of the system. A palladium membrane of thickness δm

is bounded by two planar surfaces of molecular thickness. The planes have no extension in
the direction of transport on the scale used. The mass flux, JH2 , is constant at stationary
state, while the measurable heat flux, J ′q, depends on the position in the system.

Prior to membrane transport, hydrogen is adsorbed at the surface. The dissociative
adsorption can be written as:

H2(g)
 2H(ads). (3.1)

The Gibbs energy difference, ∆G, for the dissociative adsorption at the feed side
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can then be defined as
∆G = 2µm

H − µf
H2
, (3.2)

where µi
j is the chemical potential of component j in phase i evaluated close to the

surface (here surface at the feed side). As only equations for the feed side of the
membrane is given in detail in this paper, the superscripts indicating the phase (f,
m or p) have been dropt for ∆G throughout the paper. For the permeate side, a
similar expression as given in Eq.(3.2) can be obtained.

We shall study the stationary state, where there is no accumulation of mass any-
where in the system, and

rs =
1

2
JH = JH2

. (3.3)

Here rs is the rate of the dissociative adsorption, JH is the flux of atomic hydrogen
through the membrane, and JH2 is the rate of which H2 enters and leaves the
system per m2.

The total heat flux, Jq, through the system is also constant in the stationary state,
giving

Jq = J ′fq + JH2
H f

H2
= J ′mq + JHH

m
H = J ′pq + JH2

Hp
H2
, (3.4)

which rearranged gives

J ′fq = J ′mq + ∆HJH2
= J ′pq , (3.5)

where H i
j is the enthalpy of component j in phase i, ∆H = 2Hm

H − H f
H2

= 2Hm
H − Hp

H2
is the heat of dissociative adsorption and J ′iq is the measurable

heat flux in phase i. Constant enthalpy in each phase was assumed.

3.3 A thermodynamic description of transport

In Sections 3.3.1 (for the membrane) and 3.3.2 (for the surface) we present the
entropy production for each subsystem. The entropy production determines the
relevant forces and fluxes, and their interactions. For details in the derivation
we refer to the literature [12]. All the presented equations are given for the feed
side of the membrane and for the surface at the feed side only. Equations for the
permeate side are analogous and can be found in a similar manner. The force-
flux relationships defines the necessary and sufficient experiments for determining
transport coefficients. We shall further make a link to the experimental data we
take from the literature.

3.3.1 The membrane

The general expression for entropy production in a homogeneous phase is defined
as the linear combination of fluxes and forces, and is described in several texts
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on non-equilibrium thermodynamics, see e.g. [12, 61]. For transport of heat and
atomic hydrogen in the membrane, we have the following expression, choosing the
representation with the measurable heat flux, J ′mq

σm = J ′mq
∂

∂x

(
1

T

)
+ Jm

H

(
− 1

Tm

∂µH,T

∂x

)
. (3.6)

Here, JH is the flux of atomic hydrogen, while ∂µH,T /∂x is the gradient in chemical
potential for atomic hydrogen at a constant temperature, Tm. The derivation is
shown for the corresponding processes across the surface in 3.B. The expression
means, that dissipative processes at stationary state are connceted to heat transport
and transport of atomic hydrogen.

We express the flux of atomic hydrogen from the surface through the membrane
with the flux of molecular hydrogen outside the membrane, JH2 , using Eq.(3.3). We
see that taking the measurable heat flux constant across the membrane simplifies
the integration. We find that it results in a calculation error of less than 2% for
the entropy balance. For the whole membrane, we obtain the entropy production
per surface area

σmδm = J ′mq ∆m

(
1

T

)
+ JH2

(
− 2

Tm
∆mµH,T

)
, (3.7)

where ∆m means the difference between the right and left hand side in the mem-
brane phase. The force-flux relations for the membrane phase are

∆m

(
1

T

)
= rm

qqJ
′m
q + rm

qµJH2 , (3.8)

− 2

T
(∆mµH,T ) = rm

µqJ
′m
q + rm

µµJH2 , (3.9)

where rii and rij are the main- and cross coefficients, respectively, which describe
resistance to transport. The cross coefficients describe coupling between the differ-
ent fluxes, here the mass- and heat flux, and are linked by the Onsager reciprocal
relations, rij = rji [62,63].

In order to solve Eqs.(3.8) and (3.9), we need values for the main- and cross coef-
ficients. Only three coefficients are independent, given the validity of the Onsager
relations. The first coefficient, rm

qq, can be found from the membrane thermal con-
ductivity, λm, which is defined at zero mass flux

λm = −
[

J ′mq
∆mT/δm

]

JH2
=0

=
1

T 2rm
qq

. (3.10)

The second coefficient, the coupling coefficient, can best be found via the measur-
able heat of transfer in the membrane, q∗mH . This property is defined as the ratio
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between the measurable heat flux and mass flux at zero temperature gradient [12]

q∗mH =

(
J ′mq
JH2

)

∆mT=0

= −r
m
qµ

rm
qq

. (3.11)

From Eq.(3.11) the measurable heat of transfer is also equal to the negative ratio
between the cross coefficient and the resistivity of the heat flux.

The coupling coefficient makes it possible to describe mass transport that takes
place due to a temperature gradient, the Soret effect. The Soret effect is described
by the Soret cefficient, sT , which is defined according to [12] for a system in sta-
tionary state as

sT = −
(
∂cH2

/∂x

cH2∂T/∂x

)

JH2=0

=
q∗mH

cH2

(
∂µH2,T

∂cH2

)−1

, (3.12)

where cH2
is the concentration of molecular hydrogen. This means that a temper-

ature gradient in principle can be used to stop the mass flux. We define such a
condition as the Soret equilibrium. This condition can be used to experimentally
determine the coupling coefficient.

The third independent coefficient is the mass transfer resistance rm
µµ. It is now

common to report the membrane permeability, Πm, of molecular hydrogen using
Sieverts’ law for the isothermal interface

JH2
|∆T=0 = −Πm

((
pp

H2

)0.5 −
(
pf

H2

)0.5

δm

)
. (3.13)

Here pi
H2

is the partial pressure of hydrogen in the bulk gas phase i (feed or per-
meate). We specify in 3.A the conditions for which this equation is valid.

The expression in Eq.(3.13) can be used to find rm
µµ from Πm, by neglecting any

pressure gradient in the diffusion layer next to the surface. At isothermal conditions
and with chemical equilibrium at the surfaces, the force-flux equations, Eqs.(3.8)
and (3.9), reducees to

JH2 |∆T=0 = −2R

δm
ln

(
pp

H2

pf
H2

)0.5(
rm
µµ −

rm
qµr

m
µq

rm
qq

)−1

, (3.14)

where R is the universal gas constant. We have used the definition of the chemical

potential, µH = µ0
H + RT ln aH, where aH = K

(
pH2

/p0
)0.5

(cf. 3.A), p0=1 bar
is the standard state pressure and K is the equilibrium constant for the reaction
given in (3.1).

When these conditions apply, we find rm
µµ from Πm, setting Eqs.(3.13) and (3.14)

equal, knowing rm
qq (λm) and rm

qµ (q∗,m). The result is:

rm
µµ =

(q∗,m)
2

T 2λm
−

R ln

(
ppH2

pfH2

)

Πm
((
pf

H2

)0.5 −
(
pp

H2

)0.5) . (3.15)
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The result can be used under arbitrary conditions, as the transport coefficients
do not depend on the forces or the fluxes, according to the basic postulates of
non-equilibrium thermodynamics.

3.3.2 The surfaces

The excess entropy production of the surface, has in the outset five independent
conjugate flux-force pairs for transport of heat and mass in the presence of a surface
reaction, see Kjelstrup and Bedeaux [12]. We show in 3.B, how the five pairs can
be reduced to two at stationary state conditions. For the surface at the feed side,
we obtain:

σs = J ′fq ∆f,m

(
1

T

)
+ JH2

[
− 1

Tm
∆G(Tm)

]
, (3.16)

where J ′fq is the measurable heat flux. Gibbs energy difference, ∆G, was defined
in Eq.(3.2), and ∆G(Tm) means that it is evaluated at the temperature in the
membrane close to the surface at the feed side.

The resulting force-flux relations for the surface at the feed side are then

∆f,m

(
1

T

)
= rs

qqJ
′f
q + rs

qµJH2
, (3.17)

− 1

Tm
∆G(Tm) = rs

µqJ
′f
q + rs

µµJH2
. (3.18)

The surface excess resistivities have the dimensionality of membrane resistivities
times a length. They can be found in a similar manner as shown for the membrane.

For the right-hand side surface, the excess entropy production can be derived in an
analogous manner as illustrated for the left-hand side surface in 3.A. The resulting
expression is similar. The force-flux relations follow from this in a similar manner
as shown for the other surface.

3.4 Calculation details

3.4.1 Determination of resistivities

The resistivities for the membrane and the surfaces were calculated using the rela-
tions described in Section 3.3 and data from the literature given in Table 3.1. The
resulting resistivities are given in Table 3.2.

Each set of coefficients (in phase i) was tested for consistency with the second law
of thermodynamics using [12]

Di = ri
µµr

i
qq − ri

µqr
i
qµ ≥ 0. (3.19)
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Table 3.1: Coefficient values for a palladium membrane from the literature. Πm is the
membrane permeability for a 7.2 µm membrane, λm the thermal conductivity at 673 K,
∆H is the heat of adsorption, and U is the overall heat transfer coefficient.

Symbol Value Units Ref.

Πm 1.22 ·10−8 mol m−1 s−1 Pa−0.5 [71]
λm 82 W m−1 K−1 [81]

∆H -87 kJ mol−1 [69]
U 2.4 W m−2 K−1 [78]

Table 3.2: Estimated resistivities. rii are the main coefficients while rij are the coupling
coefficients. Superscript s and m denotes surface and membrane, respectively.

Coefficient Value Units
rm
qq 2.7·10−8 m s J−1 K−1

rm
qµ 0 m s mol−1 K−1

rm
µµ 3.79·106 J m s mol−2 K−1

rs
qq 9·10−13 m2 s J−1 K−1

rs
qµ 1.6·10−8 m2 s mol−1 K−1

rs
µµ 4· 10−3 J m2 s mol−2 K−1

Estimating membrane resistivities

The main coefficients, rm
qq and rm

µµ, were calculated from Eqs.(3.10) and (3.15),
respectively. The cross coefficient or the measurable heat of transfer, q∗mH is not
known for hydrogen in palladium. According to Kjelstrup and Bedeaux [12], q∗ is
a fraction of the enthalpy change. As the enthalpy of the component to a good
approximation is constant in the membrane, we expect that q∗mH is very small.
Thus, in lack of any further information, we shall use rm

µq=r
m
qµ = 0, see Eq.(3.11).

Estimating surface resistivities

To the best of our knowledge, no data for the surface transport properties are
available. The direct coefficients for the surface resistivities have been estimated
by multiplying the resistivity in the rate determining phase next to the surface with
the surface thickness, δs (1nm).

rs = δsri, (3.20)

where ri is an arbitrary resistance in the rate determining phase i. Using this we
get a resistance per length unit in the surface area that is twice the resistance in
phase i.

For the resistance to heat transport, rqq, the gas phase next to the surface (feed or
permeate) will be rate determining, as the membrane is a well conducting metal.
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Thus, we used the overall heat transfer coefficient, U , given for a similar system
by Johannessen and Jordal [78], to determine the thermal conductivity in the gas
phase, λg. The resistance in the membrane is neglected.

λg = Uδtot. (3.21)

Here δtot is the total thickness of the system (1 mm) from bulk to bulk phase. δtot

was used as an estimate for the thickness of the gas phase, as the membrane under
investigation is thin (δm = 7.2µm).

δg = δtot − δm − 2δs ' δtot. (3.22)

The resistance to heat transfer in the gas phase, rg
qq, was then calculated analogous

to the relation given in Eq.(3.11). When this was known, it was possible to estimate
rs
qq from rg

qq according to Eq. (3.20).

The rate determining layer for resistance to mass transfer, is the membrane. Hence,
rs
µµ was then estimated from rm

µµ according to Eq. (3.20).

According to Kjelstrup and Bedeaux [12], the heat of transfer, q∗, for the whole
surface, defined analogous as in Eq.(3.11), can also be written as

q∗s = −k∆H, (3.23)

(cf. Eq.(11.24) in [12]). Thus, q∗s can be expressed as a fraction, k, of the enthalpy
change over the interface. Kinetic theory predicts that k = 0.2, see [12]. In lack of
better information, we have used the kinetic theory-value also in this case.

It is known that the surface has a high resistivity, thus we shall increase the value
of the set of coefficients by a factor α = 10 or 100. The set with α = 10 shall be
called the basis set.

A major difference between the transport properties of the surface and the homoge-
neous phases is that the coupling coefficients can be neglected in the homogeneous
phase, but not at the surface, due to surface properties described above. In the
state-of-the art description the coupling coefficients are neglected also at the sur-
face, and we shall examine the effect of this assumption.

3.4.2 Investigated cases

In order to investigate the effect of coupling and thermal driving forces on the
membrane performance, we started with a typical set of operating conditions, de-
termined from reported values by Gade et al. [71] for a 7.2 µm thick membrane.
The pressure at the permeate side was calculated based on values in [71]. The
values are given in Table 3.3.

The following cases were studied:
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Table 3.3: Typical operating conditions. δm is the membrane thickness, pi the pressure
in phase i, T is the temperature in the gas phase and JH2 the hydrogen flux. Values are
based on reported data from Gade et al. [71]. The permeat pressure was calculated.

Symbol Value Units
δm 7.2 µm
pf 2.2 bar
pp 0.72 bar
T 673 K
JH2

340 mmol m−2s−1

1. The basis set of coefficients (α = 10) at typical operating conditions, ∆p 6=
0,∆T = 0. The purpose of this case was to examine conditions for determina-
tion of the permeability Πm. The effect of removing the coupling coefficients
was studied to compare with available experiments.

2. The added effect of a temperature difference on the hydrogen flux at typical
operating conditions, ∆p 6= 0,∆T 6= 0 was studied for the basis case of surface
resistivities (α = 10). The overall temperature difference needed to enhance
the hydrogen flux with 10% and 25% were found. The possibility to reach
Soret equilibrium was investigated, to test if this condition is experimentally
within reach, cf. Eq.(3.12).

3. Case 2 was repeated for α = 10 with k = 0.4 (from Eq.(3.23)) and for α = 100.
This was done to illustrate the role of the surface.

To explicitly see the contribution from coupling on the mass fluxes, the mass fluxes
were expressed as function of all resistivities and all gradients throughout the sys-
tem, and divided into direct terms, JH2

(main), and coupling terms, JH2
(coupling).

JH2
=JH2

(main) + JH2
(coupling). (3.24)

The direct terms are the terms with gradients in chemical potential

JH2(main) =
− 1
Tmf ∆Gf(Tmf) + 1

Tmp ∆Gp(Tmp)− 2
Tmf

(
∆µH,T (Tmf)

)

2D
s

rsqq
+ δmDm

rmqq

, (3.25)

here, Di was defined in Eq.(3.19) and ∆Gi(Tmi) is the Gibbs energy difference over
the surface at the i side of the membrane, evaluated at the temperature, Tmi, in
the membrane close to the surface of phase i. The coupling terms are the terms
with temperature gradients

JH2(coupling) = −
rsµq
rsqq

(
∆m,f

(
1
T

)
+ ∆p,m

(
1
T

))
+

rmµq
rmµµ

∆m

(
1
T

)

2D
s

rsqq
+ δmDm

rmqq

(3.26)

We see that a coupling of the heat- and mass flux can enhance or reduce the total
mass flux, depending on its direction. This shall be tested.
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3.4.3 Solution procedure

We have two transport equations for each layer; one for heat and one for mass.
Eqs.(3.8) and (3.9) describe the transport in the membrane. The transport at the
feed side of the surface is described by Eqs.(3.17) and (3.18), and we have similar
equations for the other surface. Altogether we have six transport equations for the
whole system. As we have stationary state conditions, we also have the relation
given in Eq.(3.5).

With constant resistivities and constant enthalpies in each phase and known con-
ditions at the gas side, the above equations were integrated across each layer, and
solved for JH2

, J ′fq and temperature and hydrogen activity in the membrane close
to the surface at each side. This was done numerically.

3.5 Results and discussion

3.5.1 Operating conditions for permability studies with the
basis set of coefficients

Permeability experiments are normally done with relatively small pressure differ-
ences and for isothermal conditions. Under such conditions one may expect that
Sieverts’ law applies, cf. 3.A. In case 1, we examined the local conditions for
transport, for experiments where T f = T p.

The temperature profile across the membrane was first calculated with the basis set
of resistivity coefficients (α = 10). The result is shown in Figure 3.2 and Table 3.4,
for the operating conditions given in Table 3.1. The profile is antisymmetric around
the plane through the membrane center, as expected from the heat source we have
on the left and the heat sink on the right-hand side. The temperature jumps at
the surfaces are, however, insignificant in magnitude, meaning that the membrane
in practice is isothermal, as assumed in Eq.(3.14). Experiments with ∆T = 0
should thus give resonable values for Πm. The same applies to the jumps in the
chemical potential. The ∆G at the surface was observed to be -8.46 J mol−1 and
-9.13 J mol−1 with and without coupling, respectively. The assumption of chemical
equilibrium at the surface is thus approximately valid for this set of coefficients.
The corresponding hydrogen flux is therefore also not altered by including coupling,
as can be seen from Table 3.4.

In spite of the seemingly small effects from coupling on the temperature profiles,
it is interesting to note that the heat flux vary largely between the membrane
and its surroundings. The measurable heat flux in the membrane is positive and
large, 23 kJ mol−1, while on the feed side it is -6.3 kJ mol−1, meaning that heat is
transported into the feed side. The measurable heat flux on the permeate side is also
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Table 3.4: Hydrogen flux, JH2 , calculated for the basis case with a scaling factor for the
surface resistivities, α = 10. The calculations were performed with and without coupling
at no overall temperature difference, ∆T = 0. The contribution to JH2 from direct terms
is constant, JH2(main) = 339.387 mmol m−2 s−1. J ′iq is the measurable heat flux for phase
i, and ∆G the Gibbs energy difference over the surface at the feed side.

Case ∆T JH2
J ′fq J ′mq ∆G

α = 10 K mmol m−2 s−1 kJ m−2 s−1 kJ m−2 s−1 J mol−1

base 0 339.39 -6.28 23.24 -8.46
no coupling 0 339.32 -0.32 29.21 -9.13

negative (and equal to J ′fq ), here pointing into the membrane. The discontinuity is
due to the enthalpy of dissociative adsorption at the surface. The source propagates
in both directions according to q∗s, see Eq.(3.23). The values of the measurable
heat flux in the homogeneous phases means that in order to maintain isothermal
conditions, the feed side must be continuously cooled to remove this heat, while on
the permeate side we need to supply this amount of heat.
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Figure 3.2: Temperature profile across the membrane for identical feed and permeate
temperatures, calculated with the basis set of coefficients and for operating conditions as
given in Table 3.1.

We conclude that permeability experiments, or experiments to determine rm
µµ, can

be performed when the feed and permeate phases have the same temperature,
while the feed is continuously cooled and the permeate is continuously heated. A
temperature difference between the two sides, have a large impact on the mass flux,
however, as can be seen from the results below.
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3.5.2 Non-isothermal operating conditions with the basis set
of coefficients

Using the basis set of coefficients (α = 10), we calculated temperature differences
required to enhance the mass flux by 10% and 25%, and the temperature difference
required to stop the hydrogen flux (Soret equilibrium, Eq.(3.12)). The results are
given in Table 3.5. From Table 3.5 we see that a positive temperature difference
will enhance the mass flux, while a negative temperature difference is required
to obtain Soret equilibrium. A positive temperature difference implies that the
temperature shall be higher at the permeate side than at the feed side. According
to Le Chatelier’s principle, increasing the temperature at the permeate side shifts
the endothermic desorption reaction towards the product. In the same way, the
exothermic adsorption reaction will be shifted towards products by lowering the
temperature at the feed side. This facilitates the formation of H in the membrane
at the feed side, and the formation of H2 at the permeate side, thereby increasing
JH2 .

Table 3.5: Hydrogen flux, JH2 , and overall temperature difference, ∆T , calculated for
scenarios with mass flux increased by 10% and 25% and Soret equilibrium (zero mass
flux). J ′iq is the measurable heat flux in phase i, and ∆G is Gibbs energy difference over
the surface at the feed side. For the basis case, the surface resistivities are multiplied with
a factor, α = 10. The contribution to JH2 from direct terms is constant, JH2(main) =
339 mmol m−2 s−1.

Case ∆T JH2
J ′fq J ′mq ∆G

α = 10 K mmol m−2 s−1 kJ m−2 s−1 kJ m−2 s−1 J mol−1

+10% 24.8 373 -2909 -2877 308
+25% 65.6 424 -7264 -7227 806
Soret -176.5 0 29021 29021 -2657

It was observed that a temperature difference of -176 K was needed to stop the
hydrogen flux (Soret equilibrium), cf. Table 3.5. From the table we observe that
when JH2

= 0, J ′fq = J ′mq = J ′pq = Jq (cf. Eqs.(3.4) and (3.5)). This situation may
be achieved in the laboratory, and can then be used to find the coupling coefficient,
which is the direct cause of this effect.

A plot of JH2
and JH2

(main) versus temperature difference is given in Figure 5.4.
From the figure we see that the fraction of the flux caused by direct terms (JH2

(main))
is constant in spite of temperature changes in the system. Variation with tempera-
ture is seen for the total flux, and is thus caused by coupling terms (cf. Eq.(3.24)).
Thus, application of a temperature gradient gives a significant contribution to the
overall mass transfer across the membrane.

The reaction Gibbs energy difference was observed to be smaller than RT in all
scenarios (see Table 3.5). This means that the reaction rate can be regarded as a
linear function of the driving force [60], justifying that the linear version of non-
equilibrium thermodynamics is sufficient for a good description. It was observed
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Figure 3.3: JH2 and JH2(main) as function of overall temperature difference.

that ∆G at both the feed and permeate sides were to a good approximation the
same. Thus, only the values for the feed side are reported.

A transmembrane temperature difference may, however, be difficult to maintain
in practice in the present system. This is indicated by the large amounts of heat
supply or removal that are needed to maintain the gradient.

The removal of coupling effects, makes it impossible for our model to see the im-
portance of a temperature gradient. It is remarkable to observe that the heat fluxes
in the various phases using this approach differ by orders of magnitude from fluxes
that would have been obtained by only using the energy balance in combination
with Fick’s and Fourier’s laws. Therefore, a description without coupling can give
a serious error in models where the energy balance is central. Vice versa, if experi-
mental data are interpreted with an insufficient set of equations for determination of
transport properties, the determined properties may be wrong. Effort should thus
be made to determine the resistivities, and especially the coupling coefficients.

3.5.3 Increasing the coupling coefficient

The sensitivity of the model was investigated by increasing the value of k (in
Eq.(3.23)) from 0.2 to 0.4. The results are shown in Table 3.6. From the table
we see that the temperature differences needed to increase the mass flux, and to
obtain Soret equilibrium (Eq.(3.12)) is smaller when k = 0.4 rather than k = 0.2,
cf. Table 3.5. We also observe that the measurable heat flux (both in the membrane
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Table 3.6: Hydrogen flux, JH2 , and overall temperature difference, ∆T , calculated for
scenarios with mass flux increased by 10% and 25% and Soret equilibrium (zero mass
flux). The basis case for the surface resistivities where used, but the coupling coefficient
were doubled. J ′iq is the measurable heat flux in phase i and ∆G the reaction Gibbs energy
difference at the feed side of the surface. The contribution to JH2 from direct terms is
constant, JH2(main) = 339.599 mmol m−2 s−1.

Case ∆T JH2
J ′fq J ′mq ∆G

α = 10, k = 0.4 K mmol m−2 s−1 kJ m−2 s−1 kJ m−2 s−1 J mol−1

base 0 339.60 -12.26 17.28 -6.50
no coupling 0 339.32 -0.32 29.21 -9.13

+10% 12.2 374 -1464 -1432 308
+25% 31.3 425 -3645 -3608 791
Soret -101.5 0 14513 14513 -2873

and in the feed) is smaller along with an observed decrease in ∆G, compared to
Table 3.5. This is expected, as a larger coupling at the surface will enhance the
surface effects.

3.5.4 Increasing the resistivities

We also studied the effect of increasing the resistivities from the basis set with
α = 10 to a set with α = 100. The results are given in Table 3.7.

Table 3.7: Hydrogen flux, JH2 , and overall temperature difference, ∆T , calculated for
scenarios with mass flux increased by 10% and 25% and Soret equilibrium (zero mass
flux). J ′iq is the measureable heat flux in phase i and ∆G the reaction Gibbs energy
difference at the feed side of the surface. The surface resistivities are multiplied with a
factor, α = 100. The contribution to JH2 from direct terms is constant, JH2(main) =
331.290 mmol m−2 s−1.

Case ∆T JH2 J ′fq J ′mq ∆G

α = 100 K mmol m−2 s−1 kJ m−2 s−1 kJ m−2 s−1 J mol−1

+10% 24.6 364 -297 -266 226
+25% 64.9 414 -733 -697 709
Soret -175.2 0 2902 2902 -2658

We observe a small difference for the mass flux between two sets of surface resistivi-
ties (α = 10 and α = 100) by comparing Tables 3.5 and 3.7. Thus, when looking at
the mass flux, the overall picture is not much changed. The observed temperature
jumps (∆T ) become smaller along with a smaller contribution from coupling. The
effect was, however, not proportional to the change in surface resistivities. For J ′iq
the observed effect was proportional to the change in surface resistivities (a de-
crease by a factor ten was observed compared to Table 3.5). A decrease was also
observed for ∆G.
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3.6 Conclusion

We have modelled transport of hydrogen through a palladium membrane using
the framework of non-equilibrium thermodynamics. The model gives a systematic
approach to quantify surface effects, in particular the thermal effects associated
with transport, but also of the dissociative adsorption at the surface.

The calculations were based on estimated resistivities, and given that these are re-
alistic, we have found that the chemical reaction is most likely described by a linear
flux-force regime. We also found that a transmembrane temperature difference can
obstruct the validity of Sieverts’ law.

Our calculations predict that heating at the permeate side will increase the flux of
hydrogen. The overall temperature difference needed for enhancing the mass flux
with 10% and 25%, for the basis case, was found to be 27.3 K and 72.5 K, respec-
tively, with an initial feed temperature of 673 K. Similarly, an overall temperature
difference of −176.5 K will stop the hydrogen flux. Thus, cooling the permeate side
gives a negative temperature gradient and a decrease in the mass flux.

When the scaling factor for the surface resistivities were changed from α = 10
to α = 100, a small decrease was seeen for the overall temperaure differences.
Only increasing the coupling coefficient (α = 10, k = 0.4), however, lead to larger
changes in the observed overall temperature difference.

As the results depend on the estimated resistivities, effort should be put into a
more exact determination of these, to bring this work further. The coupling co-
efficient leading to Soret equilibrium, is unknown for the surfaces as well as for
the membrane transport of hydrogen. The surface main resistivies to mass and
heat transfer are also not known, and needs to be determined for a more exact
description of the system.
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3.A Conditions for application of Sieverts’ law

Sieverts’ law gives the equilibrium concentration for atomic hydrogen, cH, in the
metal [82] as:

cH = K(pp
H2

)0.5 (3.27)

Here, pp
H2

is the partial pressure of molecular hydrogen at the permeate side, and K

is the equilibrium constant for reaction (3.1). As p0
H2

= 1bar, it has been removed
from the equality and the rest of the appendix.

When this relation (Eq. (3.27)) is introduced into Fick’s law (the first equality
below), we find the equation commonly used to describe hydrogen permeability in
membranes:

JH2
|∆T=0 = −Dm

H

(
cpH − cfH
δm

)

= −Dm
HK

((
pp

H2

)0.5 −
(
pf

H2

)0.5

δm

)

= −Πm

((
pp

H2

)0.5 −
(
pf

H2

)0.5

δm

)
. (3.28)

Here JH2
is the flux of molecular hydrogen, Dm

H is the diffusion constant for atomic
hydrogen in palladium, δm is the thickness of the membrane, Πm is the membrane
permeability of atomic hydrogen, pH2

is the partial pressure of hydrogen in the
homogeneous phases (feed or permeate). Some authors also denote this equation
as Sieverts’ law. We shall specify the conditions for which the equation is valid.

At chemical equilibrium, the chemical potential differences for adsorption and re-
action over the surface obey

∆G = 2µm
H − µf

H2
, (3.29)

where ∆G is the Gibbs energy difference for the dissociative adsorption at the
surface.

The chemical potential for molecular hydrogen in the gas phase, µf
H2

, assuming
ideal gas, is

µf
H2

= µ0,f
H2

+RT ln pH2 , (3.30)

where µ0,i
j is the chemical potential at standard state conditions for component j

in phase i. The chemical potential for atomic hydrogen adsorbed at the membrane
surface is defined by

µm
H = µ0,m

H +RT ln aH, (3.31)

where aH is the activity of hydrogen on the surface.
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By introducing Eqs.(3.30) and (3.31) for the chemical potentials into Eq.(3.2), and
with ∆G = 0, we obtain for the feed side

2µ0,m
H − µ0,f

H2
= RT ln

a2
H

pH2

= ∆G0. (3.32)

Here ∆G0 is the standard state Gibbs energy.

We rearrange and obtain the following expression for the activity of atomic hydro-
gen near the membrane surface at equilibrium conditions

aH =

[
exp

(
∆G0

RT

)]0.5

p0.5
H2

= Kp0.5
H2
. (3.33)

The activity of atomic hydrogen at the surface is further defined by

aH = cHγ, (3.34)

where cH is the concentration of atomic hydrogen near the surface and γ is the
activity coefficient. For an ideal surface γ = 1. For Langmuir adsorption, γ =
1/(1− θ) where θ is the surface coverage [83]. With γ equal unity or constant, we
have

cH = K ′p0.5
H2
, (3.35)

where K ′ is the equilibrium constant divided by the activity coefficient. For low
coverage it is the equilibrium constant, and Eq.(3.35) is reduced to Eq.(3.27) (Siev-
erts’ law [82]).

Experimental results give often values for the exponent that deviates from 0.5 [71].
We have seen that Eq.(3.28) can be expected to hold, when there is equilibrium for
adsorption and reaction in the surface, when the conditions are isothermal, when
the hydrogen gas is ideal, and when the surface activity coefficient is unity (the
coverage is small or nearly constant).

3.B The entropy production for a palladium sur-
face with hydrogen

We are interested in the excess entropy production, σs, for hydrogen and heat
transport through a palladium surface, and start with the general expression de-
rived by Kjelstrup and Bedeaux [12]. For a non-polarized surface, in the absence
of an electric current, we have

σs = J i
q

(
1

T s
− 1

T i

)
+ Jo

q

(
1

Tm
− 1

T s

)
+

n∑

j=1

J i
j

[
−
(
µs
j

T s
−
µi
j

T i

)]

+

n∑

j=1

Jo
j

[
−
(
µo
j

T o
−
µs
j

T s

)]
+ rs

(
− 1

T s
∆Gs

)
. (3.36)
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Here Jq is the total heat flux, Jj is the flux of component j, µj is the chemical
potential of component j, T is the temperature, rs is the reaction rate and ∆Gs is
the reaction Gibbs energy for a possible surface reaction. Superscripts i, o and s
refers to the adjacent phase at left and right hand side of the surface and the surface,
respectively. Transport is perpendicular to the surface. The normal components of
the vector fluxes, which are scalar, will couple to the scalar chemical reaction.

Consider first the left hand side surface of our system in Figure 3.1.

σs = J f
q∆f,s

(
1

T

)
+ Jm

q ∆s,m

(
1

T

)
+ J f

H2

[
−
(
µs

H2

T s
− µf

H2

T f

)]

+ Jm
H

[
−
(
µm

H

Tm
− µs

H

T s

)]
+ rs

(
− 1

T s
∆Gs

)
. (3.37)

Here, super- and subscripts f and m respectively designates the feed side and the
membrane.

At stationary state we have the following relation between the reaction rate and
the fluxes of molecular hydrogen and atomic hydrogen

rs = JH2
=

1

2
JH, (3.38)

where rs has dimensions mol m−2 s−1.

At stationary state conditions we also have a constant total heat flux through the
system.

Jq = J ′fq +H f
H2
J f

H2
= J ′mq +Hm

H J
m
H . (3.39)

Here J ′q is the measureable heat flux and Hj is the enthalpy of component j.

The reaction Gibbs energy is defined at the tempertaure of the surface, T s:

∆rG
s = 2µs

H (T s)− µs
H2

(T s) . (3.40)

The surface temperature is normally not known. By introducing Eqs.(3.38), (3.39)
and (3.40) into equation Eq.(3.37) we avoid T s and use instead:

σs = Jq∆f,m

(
1

T

)
− JH2

(
2
µm

H (Tm)

Tm
− µf

H2

(
T f
)

T f

)
. (3.41)

A problem is that the heat flux is not absolute; it depends on a reference state.
We want to express the entropy production in terms of the measurable heat flux
into the surface from the feed side and the flux of molecular hydrogen. By using
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Eq.(3.39), we eliminiate the total heat flux and obtain

σs = J ′fq ∆f,m

(
1

T

)
+ JH2

[
∆f,m

(
1

T

)
H f

H2
−
(

2
µm

H (Tm)

Tm
− µf

H2

(
T f
)

T f

)]

= J ′fq ∆f,g

(
1

T

)
+ JH2

(
− 1

Tm

(
2µm

H (Tm)− µf
H2

(Tm)
))

≡ J ′fq ∆f,g

(
1

T

)
+ JH2

(
− 1

Tm
∆G (Tm)

)
, (3.42)

after using the identity

∆i,o

(µj

T

)
=

1

T o
∆i,oµj,T +H i

j∆i,o

(
1

T

)
. (3.43)

The resulting entropy production in the surface is a sum of two independent terms.
It contains the combined effect of adsorption and reaction. The measurable heat
flux on the feed side, and the temperature of the membrane can be found, and
so can the Gibbs energy change, ∆G, from equilibrium isotherms, see Appendix
3.A. The result applies to stationary states only, but does not assume chemical
equilibrium at the interface.

The expression for the right hand side is completely analogous.
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Abstract

We have developed a classical molecular dynamics model for the hydrogen dissocia-
tion reaction, containing two- and three- particle potentials derived by Kohen,Tullu
and Stillinger. Two fluid densities were investigated for a wide range of tempera-
tures, and 11 fluid densities were considered for one temperature. We report the
temperature range where the degree of reaction is significant, and also where a sta-
ble molecule dominates the population in the energy landscape. The three-particle
potential, which is essential for the reaction model and seldom studied, together
with the two-particle interaction lead to a large effective excluded volume diameter
of the molecules in the molecular fluid. The three-particle interaction was also
found to give a large positive contribution to the pressure of the reacting mixture
at high density and/or low temperatures. From knowledge of the dissociation con-
stant of the reaction and the fluid pressure, we estimated the standard enthalpy
of the dissociation reaction to 430 kJ/mol (ρ = 0.0695 g cm−3) and 380 kJ/mol
(ρ = 0.0191 g cm−3). These values are in good agreement with the experimen-
tal vaule of 436 kJ/mol under ambiant pressure. The model is consistent with
a Lennard-Jones model of the molecular fluid, and may facilitate studies of the
impact of chemical reactions on transport systems.

4.1 Introduction

By computer simulations one can study systems under conditions that are difficult
to achieve in a laboratory. For instance, at very high temperatures, above 3000 K
(at 1 bar), there is a significant dissociation of hydrogen into atoms [8], but this is
difficult to measure. Likewise, it is difficult to measure at 300 GPa where hydrogen
becomes metallic [84]. Simulation techniques are indispensable in such cases. The
aim of this paper is to find a simulation tool that can help address problems that
arise when chemical reactions take place in the presence of gradients in pressure,
temperature and concentration. This is the case in most chemical reactors.

To quantitatively model a chemical reaction requires quantum mechanics. Such
models are computationally expensive, however, and allow no easy interaction with
flow fields. The aim of this paper is therefore to help establish a classical model for
a chemical reaction using equilibrium molecular dynamics. Doing this, we hope to
facilitate future studies of reactions and transport in combination. A first effort in
this direction was made by Xu et al. [30,31] in their study of the reaction F2 
 2F.
The interesting result was that transport properties, like thermal conductivity and
diffusion coefficients of the components in the mixture, were largely affected by the
presence of the chemical reaction. It is therefore of interest to examine to which
degree this effect also applies to other systems.

We have chosen the hydrogen dissociation reaction as example in the present work.
The properties of hydrogen are for instance important for the envisioned hydrogen
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society [85, 86]. A selective separation of hydrogen (H2) from the main product
stream of the water gas shift reaction is then central. Such a separation can occur
via a palladium (Pd) membrane [11, 64, 72]. At the palladium surface, hydrogen
dissociates to atomic hydrogen, and atoms are transported through the metal lat-
tice [11, 68, 72]. At the other side, the reverse reaction takes place; molecular
hydrogen is formed from atoms, and removed from the surface by an inert sweep
gas. Equilibrium and transport data for simulations of these steps are not avail-
able, and are also not easily accessible from experiments. A classical model for the
hydrogen dissociation reaction may then facilitate the modelling of such coupled
transport phenomena.

The purpose of this paper is therefore to establish a model for the chemical reaction
(H2 
 2H) using molecular dynamics simulations at equilibrium. The aim is to
find the range of conditions where the reaction takes place, and where the molecular
hydrogen fluid dominates.

Few equilibrium studies have been performed on the nature of chemical reactions
using classical equilibrium molecular dynamics (EMD). Cummings and Stell [87]
studied chemical reactions (A +B
AB) with the use of statistical mechanical mod-
els. To the best of our knowledge, no thorough study of the equilibrium properties
of the hydrogen dissociation reaction has been done. High temperature hydrogen
dissociation has however been studied. In 1996 Magro et al. studied molecular
dissociation in hot, dense hydrogen, using path-integral Monte Carlo [88]. Delaney
et al. studied the liquid-liquid phase transition between the molecular and atomic
fluid phases in high-pressure hydrogen using quantum Monte Carlo [89] in 2006.
None of these studies contains three particle interactions, however. In 1978 Sieg-
bahn and Liu [49] obtained a 3-dimensional potential energy surface for H3. In
1992 and 1994 Diedrich and Anderson studied the barrier height [47], and the po-
tential energy surface [46], respectively, of the reaction H + H2 ⇔ H2 + H using
quantum Monte Carlo calculations. Stillinger and Weber [3] studied equilibrium
conditions for the dissociation of fluorine using a classical model of the reaction.
They concluded that combinations of two- and three-particle potentials suffice to
represent the main features of chemical binding. Other examples of such three
particle interactions is the Axilrod and Teller potential to describe dispersion in-
teractions [33], and the effect of this potential has been studied for binary fluids
by Sadus [34, 35]. A comparison of several many-body potentials for silicon (Sin-
clusters, n = 2−6) was studied by Balamane in 1992 [90]. In 1998 Kohen et al. [29]
gave analytic expressions for the two- and three-particle potentials of hydrogen in
a study of reactions on silicon surfaces. We shall build on these works in an effort
to obtain a good model for the reaction. Work has been done on the H4 potential
by Boothroyd et al. [91], but given the results of Stillinger and Weber we restrict
ourselves to the two- and three-particle interactions.

We shall examine the interaction energy landscape of the model derived from Kohen
et al. [29], characterizing its states and their occupancy in terms of pair correlation
functions, at various temperatures, for a density just below the triple point and for
a moderately compressed gas density. Focus will be given on the particular effects
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of three-particle interactions, which are seldom studied in molecular simulations.
We shall see that they have interesting effects on the pair-correlation functions,
and therefore on the properties of the reacting mixture. We shall discuss in detail
the effect on the pressure. The pressure calculation from particle interactions in
a mixture where particles constantly are formed or disappear, is by no means
trivial. In this context we shall benefit from the existing methodology [31,92]. The
temperature variation of the reaction shall also be studied.

The paper has been organized as follows. First we present the details of the hy-
drogen potential in Section 4.2 Section 4.3 discusses the details of the molecular
dynamics simulations. In Section 4.4 we give results for the pair correlation func-
tion, the system pressure, the dissociation constant and the reaction enthalpy.
Conclusions are given in Section 4.5.

4.2 Interaction potentials

For the computer simulations, we need an analytical form of the potential which
describes essential interactions between particles in the system, based on an ac-
ceptable approximation to the electronic ground state potential of the collection
of atoms involved [3, 26, 29, 31]. Following Stillinger and Weber [3], we use an
interaction potential, U , which is the sum of two- and three-particle interaction
contributions:

U(r1, ..., rN ) =
∑

i<j

u(2)(rij) +
∑

i<j<k

u(3)(ri, rj , rk) (4.1)

where u(2) and u(3) are the two- and three-particle potentials, respectively and ri are
the positions of the hydrogen atoms. The spherically symmetric pair potential,
rij = |ri − rj |, describes the interaction between two particles, and defines the
bonded and non-bonded pairs. The pair-potential used in the calculations was
given by Kohen et al. [29]:

u(2)(r) =

{
α (βr−p − 1) exp

[
γ2
r−rc

]
if r < rc

0 if r > rc
(4.2)

where α = 5.59 ·10−21 kJ, β = 0.044067 Åp, γ2 = 3.902767 Å, rc = 2.8 Å and p = 4
are constants [29]. α is chosen such that the minimum of the potential gives the
binding energy of hydrogen (432.065 kJ mol−1) [29] at the bond distance between

two hydrogen atoms, re = 0.74 Å [47]. When the distance between two atoms is
larger than the cut-off distance, r ≥ rc, the potential is zero. For convenience in
the calculation procedures, reduced units based on the pair potential have been
used. σ is defined by u(2)(σ) = 0, which implies that σ = p

√
β = 0.458 Å. The

value of ε , based on the bond energy of hydrogen, gives ε/kB = 51991 K. Thus,
the reduced pair potential has a minimum of −1 at r∗ij = 1.6.
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The mass of one hydrogen atom, m0 = 1.67 ·10−27 kg, is used to define the reduced
total mass density ρ∗ = ρσ3/m0. This implies that the reduced total mass density
equals the reduced total molar density in terms of (NH + 2NH2

). Reduced units
are indicated by superscript ∗, and the relation between real and reduced units is
given in Table 6.1.

Table 4.1: Relation between reduced and real units, ε/kB = 51991 K, σ=0.458 Å and
m0 = 1.67 · 10−27 kg.

Reduced vaiable Formula
mass m∗ = m/m0

distance r∗ = r/σ
energy u∗ = u/ε

time t∗ = (t/σ)
√
ε/m0

temperature T ∗ = kBT/ε
density ρ∗ = ρσ3/m0

pressure P ∗ = Pσ3/ε

velocity v∗ =v
√
m0/ε

The major role of the 3-particle potential is to prevent formation of more than one
bond to each hydrogen atom. This is done by making it energetically non-favorable
for a third atom to be close to two chemically bonded atoms. The three-particle
potential given by Kohen et al. [29] is:

u(3) = hi,j,k(rij , rjk, θi,j,k) + hj,i,k(rji, rik, θj,i,k) + hi,k,j(rik, rkj , θi,k,j) (4.3)

The h-functions are given by

hj,i,k(rji, rik, θj,i,k) =

{
λa exp

[
γ3

(rji−rc) + γ3
(rik−rc)

]
if rji < rc and rik < rc

0 otherwise
(4.4)

where
a =

[
1 + µ cos(θj,i,k) + ν cos2(θj,i,k)

]
(4.5)

in real units, and λ = 2.80 · 10−21 kJ, µ = 0.132587, ν = −0.2997 and γ3 = 1.5
Å are constants [29]. The cut-off distance, rc, is the same for both the two- and

three-particle interactions (2.8 Å).

In the triad subscript j, i, k the middle letter i refers to the atom at the subtended
angle vertex. The distances have been written with respect to the center atom.
The interaction energy is plotted for the triad j, i, k in Figure 4.1 for a linear
configuration of three hydrogen atoms. Only linear configurations of the three H
atoms (j, i and k) are plotted, as it was established in the paper by Siegbahn
and Liu that the linear configuration contained the lowest minima [49]. The figure
shows three minima, taking the symmetry in the plot into consideration. The lowest
minimum, U∗1 = −0.999, corresponds to the minimum seen for the pair potential,
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where two atoms (j and i) are chemically bonded, r∗ji = 1.6, while the third atom
(k) is far away, r∗ik = 6. The second minimum, U∗2 = −0.941, shows that two
atoms (j and i) are close, r∗ji = 2.2, while the third atom (k) is located further
away, r∗ik = 3.0. The last minimum, U∗3 = −0.906, found on the symmetry axis,
corresponds to distances r∗ji = r∗ik = 1.9. Such extra minima were not observed for
fluorine [3]. We will comment on the second and the third minima in Section 4.4
(Results and discussion). The total potential was used to determine the distance of

Figure 4.1: Total interaction energy, U∗, for a linear configuration of 3 hydrogen atoms
j, i and k as a function of the distances r∗ji and r∗ik. Three minima is observed, U∗i , when
the symmetry of the plot is taken into consideration. Reduced units are used, cf. Table
6.1.

chemically bonded particles. When the distance between two particles was shorter
than r∗ji ≤ 4.0 they were labeled as part of a molecule, see Figure 4.1. This choice
is in agreement with the procedure used by Stillinger and Weber [3], and is further
confirmed by the results for the pair correlation function in Section 4.4.

4.3 Simulation details

The system consisted of 1000 hydrogen atoms (for all densities) in a non cubic box
with dimensions Lx = 2Ly = 2Lz, in the x, y and z direction, respectively. The
volume of the box was V = LxLyLz = Npm0/ρ, where ρ is the overall mass
density (ρ = Npm0/(V )), Np is the total number of particles (Np = NH + 2NH2

=
1000) and m0 is the mass of one hydrogen atom. Periodic boundary conditions
were applied to the x-, y- and z-directions [93]. Data were sampled every 20 steps
after the system had been equilibrated. A time step length of 0.1 in reduced units
(0.22 fs), see Table 6.1, was used.
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The velocity Verlet algorithm [94] was used to integrate Newton’s equations of
motion. A list of all pairs who were closer to each other than a set distance,
r∗list = 6.5, was made to save computational time, as many particles are further
away from each other than the cut-off distance, r∗c = 6.11. Pair interactions were
then only calculated when r∗ ≤ r∗list. A similar algorithm, called NEIGHBOUR3,
which was developed by Xu et al. [31], was used to compute 3-particle interactions.
In this algorithm a list of triplets is made by combining pairs from the pair list,
which have one particle in common. As long as the displacement of the particles
was less than half of r∗list − r∗c = 0.4, we did not need to update the two lists. This
procedure avoided unnecessary calculation of particle interactions.

The program gave the temperatures in the box within ±0.1 %. During the equi-
libration period the temperature was scaled to the set temperature every step by
velocity scaling. After this, the temperature was adjusted every 100 steps, by scal-
ing the velocities with the scaling factor given in Eq. (4.6), to maintain the wanted
temperature [28].

scale =
√
Tinst/Twanted (4.6)

Here Tinst is the instantaneous temperature and Twanted is the wanted tempera-
ture. This does not give a perfect canonical distribution, but we assume that the
influence of this procedure on the calculated structural- and thermodynamic prop-
erties is negligible. In order to test system size dependence, we repeated some of
the equilibrium simulations for the same density with 4096 particles.

The pair correlation function along with the dissociation constant and reaction
enthalpy was studied at a density just below the triple point density (ρ∗ = 0.004)
and approximately a fourth of this density (ρ∗ = 0.0011), following the procedures
of Stillinger and Weber [3]. For both densities temperatures were chosen in the
range 0.003 ≤ T ∗ ≤ 0.3. Additionally, a run was performed near the triple point
of the molecular fluid (ρ∗ = 0.004 and T ∗ = 0.000268).

For the calculation of the pressure (with the different contributions), densities in
the range 0.00001 ≤ ρ∗ ≤ 0.004 were studied at T ∗ = 0.03. For the densities,
ρ∗ = 0.0011 and 0.004 additional runs in temperature range 0.002 ≤ T ∗ ≤ 0.4 were
performed.

For the high density cases, 0.0003 ≤ ρ∗ ≤ 0.004, three million MD steps were used
for equilibration of the system and the simulations were run a total of five million
steps, including the equilibration. For the lower density cases, 0.00001 ≤ ρ∗ ≤
0.0001, up to seven million MD steps were used for equilibration, and a total of up
to ten million steps were used for the simulation run.

Figure 4.2 shows snapshots from the simulations for the reduced densities ρ∗ = 0.0011
(left) and ρ∗ = 0.004 (right) at T ∗ = 0.003 (T = 156 K). We see that the high
density system is a dense liquid, while the low density system can be compared to
a compressed gas.
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Figure 4.2: Snapshot from simulations illustrating the density, ρ∗ = 0.0011 (left) and
ρ∗ = 0.004 (right), at T ∗ = 0.003 (T = 156 K). A disordered system is clearly seen for
both densities. Conditions are such that the dissociation is negligible.

4.3.1 Calculation details

The temperature T was found from the average kinetic energy per degree of freedom
of all particles:

T =
1

3kBNp

Np∑

i=1

miv
2
i (4.7)

where v2
i = v2

x,i+ v2
y,i+ v2

z,i. From the virial theorem, the expression for the
pressure in the presence of two- and three-particle interactions is:

P =
kBTNp
V

− 1

3V

Np∑

i=1


1

2

∑

j pair with i

∂u2(rij)

∂rij
rij (4.8)

+
∑

j<k triplet with i

(
∂hj,i,k(rji, rik, θj,i,k)

∂rji
rji

+
∂hj,i,k(rji, rik, θj,i,k)

∂rik
rik +

∂hj,i,k(rji, rik, θj,i,k)

∂rjk
rjk

)]

The first term in Eq. (4.8) is the ideal contribution to the pressure, while the
second and the third terms give the contributions from the two- and three particle
potentials, respectively. As the angle θj,i,k, and the distance rik are constant in
hj,i,k when we take the derivative with respect to rji, this derivative is easy to
calculate; and similarly for the other two contributions. The contributions to the
pressure will be calculated separately and compared.

In the calculation of the pressure we used the atomic method [92]. This implies
that we took the kinetic contributions of all atoms to give the ideal contribution to
the pressure, NP kBT/V . To this, we added force moments due to pair- and three-
particle interactions from all atoms. Given that many atoms are part of a bound
pair, one may ask whether the molecular method [92] is more convenient. Both
methods are discussed in detail by Ciccotti and Ryckaert [92]. In the appendix
of their article, they reproduce an unpublished proof given by Berendsen, showing
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that both definitions give the same pressure. As we calculate the forces, positions
and velocities of all atoms in the MD simulation, it is natural to use the atomic
method here.

The molar density, ck, of component k is:

ck =
Nk
NAV

(4.9)

where Nk is the number of particles of component k (H or H2). Furthermore NA
is Avogadro’s number. The mass density of the system can be found from

ρ =
Npm0

V
(4.10)

The thermodynamic equilibrium constant, Kth, can be found from the dissociation
constant, Kx, and the activity coefficients according to

Kth =
x2

H

xH2

γ2
H

γH2

≡ Kx
γ2

H

γH2

(4.11)

The equilibrium constant can then be used to find Gibbs energy of the reaction

∆rG = ∆rG
◦ +RT lnKth (4.12)

The standard reaction enthalpy can then be found from the van’t Hoff equation at
constant pressure [

d lnKth

d(1/T )

]

P

= −∆rH
◦

R
(4.13)

At chemical equilibrium, ∆rG = 0 and hence ∆rG
◦ = −RT lnKth. For an ideal

mixture γ2
H/γH is unity and Kx = Kth. When the ratio of the activity coefficients

at constant pressure is constant, we can find ∆rH
◦ from the van’t Hoff equation

using Kx. We shall seek to find such conditions.

4.4 Results and Discussion

4.4.1 Pair correlation functions

The atom-atom pair correlation function, g(r), for the hydrogen atoms, including
atoms that are part of a molecule, describes the correlation of two atoms as a
function of the distance. A deviation in the pair correlation function from unity
indicates correlations between particles due to intermolecular interactions. Hence,
the pair correlation function gives information about the number of chemically
bonded atoms and the distance between bonded atoms, and their neighboring atoms
[3,31].
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Figure 4.3: Pair correlation function near the triple point of the molecular fluid. T ∗=
0.000268 (T = 14 K), ρ∗=0.004 (ρH = 0.0695 g cm−3).

The pair correlation function near the triple point of the molecular fluid, ρ∗ = 0.004
and T ∗ = 0.000268, is given in Figure 4.3. The figure shows a very high peak around
r∗ij = 1.6 and several minor peaks before a plateau is reached.

The high peak represents chemically bonded pairs and its area reflects the fact that
there are 500 molecules in the system (no dissociation at this low temperature). The
first three peaks in Figure 4.3 can be directly related to Figure 4.1, the potential
energy of linear arrays of 3 hydrogen atoms. We see here that the distance r∗ij = 1.6
corresponds to the arrangement with the lowest energy, U∗1 = −0.999. Two atoms
are bound at this distance while the third atom is found at a distance r∗ik = 6.
This is compatible with the first high peak. This part is similar to the results
of Stillinger and Weber for fluorine [3]. They observed no additional peaks in
their pair correlation functions for fluorine however; in agreement with one single
minimum in their total potential.

The second minimum U∗2 = −0.941 in Figure 4.1 leads to two small peaks in the
pair correlation function in Figure 4.3 at reduced distances r∗ij = 2.2 and 3.0.
The third minimum U∗3 = −0.906 in Figure 4.1 has no clear impact on the pair
correlation function in Figure 4.3. The small peak around r∗ij ≈ 5 cannot be traced
to a minimum in the energy landscape. For a temperature of 14 K, the de Broglie
wavelength for H is 10.15 in reduced units (Λ = h/

√
2πm0kBT , where h is Planck’s

constant, and m0 the mass of one hydrogen atom). For this temperature the
classical calculation is therefore not adequate. The triplet structure is an artefact
of this. In the simulations these linear formations of triplets, when they appear,
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are stable over the whole simulations, as the kinetic energy of the particles is to low
to move to another minimum. We therefore interpret the peaks beyond r∗ij = 4 as
due to intermolecular short-range order of chemically bonded pairs. The reason to
do the classical calculation for this low temperature is to compare the results with
the results for fluorine in the paper by Stillinger and Weber [3]. The similarity of
the results validates our analysis.

It is interesting to observe that the system develops an effective excluded volume
diameter. The pair potential is zero at a distance 1 in reduced units. When three-
particle interactions are included, the molecule obtains an effective excluded volume
diameter of about 6, as seen from Figure 4.3, where the pair correlation function
is approximately zero in the region 2.2 < r∗ij < 6, but rises sharply at 6. This

value in real units is 2.748 Å, a value in good agreement with the value 2.7 Å given
by Labet et al. [84] for the second shortest H-H separation at 1 GPa. Moreover,

it compares well with the value 2.81 Å given by Allen and Tildesley [28] for a
Lennard-Jones potential of molecular hydrogen. This means that our model for
the chemical reaction at a meso-level is consistent with a coarser level fluid model
of the molecular system, making this part of the model realistic.

Figure 4.4 shows the pair correlation function at T ∗ = 0.003, for both ρ∗ = 0.004
(Figure 4.4(a)) and ρ∗ = 0.0011 (Figure 4.4(b)). When we compare the two pair
correlation functions for the two densities in Figure 4.4 we see that they have the
same general trend. A large and narrow peak can be seen at r∗ij = 1.6 in both
cases. This peak is broadest at the lower density (ρ∗ = 0.0011, Figure 4.4(b)). At
the higher density (ρ∗ = 0.004) it is just slightly broader than in Figure 4.3. A
broadening is also observed in the rest of the structure, when we compare Figures
4.4(a) and 4.4(b) to the counterpart in Figure 4.3. In the high density results,
ρ∗ = 0.004 in Figure 4.4(a), the peak at r∗ij = 3 has been incorporated into the small
peak at r∗ij = 2.2 as a shoulder. For the low density, ρ∗ = 0.0011 in Figure 4.4(b),
no distinct extra peak is observed, but a broad shoulder remains. A broadening
of peaks take place, due to increase in the temperature as well as to the reduction
in density. For a temperature of 156 K, the de Broglie wavelength for H is 3.03 in
reduced units. For this temperature the classical calculation is therefore also not
adequate. We refer to the discussion for 14 K above. The pair correlation function
goes smoothly to unity as expected at about r∗ij = 10 for the high density, and
at about 8 for the low density. For neither density, dissociation was observed, cf.
Tables 6.4 and 6.3.

The pair correlation function at T ∗ = 0.03 is given in Figure 4.5, for the high
density, ρ∗ = 0.004 in Figure 4.5(a), and the low density, ρ∗ = 0.0011 in Figure
4.5(b). No dissociation was observed for either density, see Tables 6.4 and 6.3. The
main peak at r∗ij = 1.6, corresponding to the chemically bonded atoms, has further
broadened for both densities compared to Figures 4.4(a) and 4.4(b). The two peaks
due to the second potential minimum have disappeared. This is clearly due to the
increase in the temperature. The area under the pair correlation function from
2.4 ≤ r∗ij ≤ 5 is zero for both densities. From r∗ij around 9 the correlation function
is roughly equal to one for both densities.
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(a) ρ∗ = 0.004 (ρ = 0.0695 g cm−3)
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(b) ρ∗ = 0.0011 (ρ = 0.0191 g cm−3)

Figure 4.4: Pair correlation functions at T ∗= 0.003 (T = 156 K). The high density,
ρ∗ = 0.004 is shown to the left (4.4(a)) and the low density, ρ∗ = 0.0011 to the right
(4.4(b)).
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(a) ρ∗ = 0.004 (ρ = 0.0695 g cm−3)
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(b) ρ∗ = 0.0011 (ρ = 0.0191 g cm−3)

Figure 4.5: Pair correlation functions at T ∗= 0.03 (T = 1560 K). The high density,
ρ∗ = 0.004 is shown to the left (4.5(a)) and the low density, ρ∗ = 0.0011 to the right
(4.5(b)).
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Figure 4.6 shows the pair correlation functions for both the high density, ρ∗ = 0.004
(Figure 4.6(a)), and the low density, ρ∗ = 0.0011 (Figure 4.6(b)), at T ∗ = 0.3.
The correlation function is near unity for r∗ij > 6, as one should expect for this
temperature. But the pair correlation is no longer zero when 2.2 < r∗ij < 5. This is
a sign of the reaction taking place. If we compare the high- and low density figures,
we see that the main difference is the intensity and broadness of the first peak, as
the main peak in Figure 4.6(b) is both broader and has a lower intensity than it’s
high density counterpart. Compatible with this we find that more particles are
bound at the low density. For the high density in Figure 4.6(a), we observe 23 %
dissociation (232.4 atoms), while for the low density, in Figure 4.6(b), a dissociation
of 47 % (468.7 atoms) is observed, cf. Tables 6.4 and 6.3.

In the counting procedure used, we label all particles as either atoms or molecules.
If, during the simulation, the distance between two atoms is less than 4, they are
labelled as molecules. At the end of every 20 time steps, we count the number of
atoms. The rest is then counted as molecules. At higher temperatures, bonds are
continuously formed and broken, and as Stillinger and Weber [2] say, this counting
procedure will give a reasonable, but still approximate value of the number of
molecules. We estimate the accuracy to be within ± 1 %.

In summary, from Figures 4.3 – 4.6, we conclude that the three-particle potential
has a large ordering effect on the molecules, in agreement with earlier observations
[3]. The effective excluded volume diameter of the molecule becomes 6 in reduced
units as a result of the three particle interaction, a value in agreement with the
interparticle distance of the Lennard-Jones potential for molecular hydrogen [28].
The ordering effect was observed to decrease with increasing temperature.

At very low temperature (14 K and 156 K) quantum effects becomes important
and for this reason our classical description leads to triplets which is an artefact of
this. At very high temperatures, above 20 000 K, we see from the phase diagrams
that we might be entering the plasma region of hydrogen [95–97]. At the highest
temperature and density considered here (15 600 K and ρ = 0.0695 g cm−3), we
are however well within the region of the atomic fluid, and thus we expect that our
model is able to predict the properties of hydrogen.

For all conditions, bound particles were be determined for a set distance r∗ij ≤ 4. For
temperatures showing the behaviour illustrated by Figure 4.6 we are dealing with a
chemical reaction, and can find the fraction of molecules by counting the particles
which obey this inequality. The role of the two- and three particle interactions will
be examined further below.

4.4.2 The Contributions to the Pressure in a Reacting Mix-
ture

The overall pressure, Ptot, in the calculation is a sum of the kinetic (or ideal)
pressure, Pideal, and the contributions from the two- and three particle potentials,
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(b) ρ∗ = 0.0011 (ρ = 0.0191 g cm−3)

Figure 4.6: Pair correlation functions at T ∗= 0.3 (T = 15600 K). The high density,
ρ∗ = 0.004 is shown to the left (4.6(a)) and the low density, ρ∗ = 0.0011 to the right
(4.6(b)).
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P2part and P3part, see Eq. (4.8). The relative magnitude of these contributions
to the overall pressure at T ∗ = 0.03 was calculated and is given in Figure 4.7 for
densities in the range 0.00001 ≤ ρ∗ ≤ 0.004. The different contributions, Pi, to the
pressure have been divided by the ideal pressure (Pi/Pideal) to be able to compare
the contributions at different densities relative to each other. As a consequence the
ideal contribution, Pideal (from the first part of Eq. (4.8)) in Figure 4.7 is equal to
1 for all densities. Important in Berendsen’s proof of the equality of the atomic and
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Figure 4.7: The total pressure, Ptot, and the contribution from the ideal part, Pideal, and
two- and three particle interactions, P2part and P3part at T ∗ = 0.03 as a function of the
density of the system, 0.00001 ≤ ρ∗ ≤ 0.004. The densities are plotted using log scale.
All pressures have been normalized with respect to the ideal pressure, giving Pideal = 1
for all densities.

molecular method for pressure calculations (see Ciccotti and Ryckaert [92]), is that
the intramolecular two particle forces give a negative contribution to the pressure.
In good approximation, it replaces the kinetic pressure of two atoms 2kBT/V by
the kinetic pressure of one molecule kBT/V . It follows that the contribution to
the pressure due to pair interaction is negative, and in essence reduces the kinetic
pressure from (NH + 2NH2

)kBT/V to (NH +NH2
)kBT/V . The contribution from

the pair potential to the pressure in Figure 4.7 is negative and approximately half
the size of the ideal contribution, cf. [92]. So it is playing an important role to
lower the overall pressure.

The role of the three-particle interaction is very different. As we have seen from
the pair correlation functions (see Section 4.4.1), no particles aside from the bound
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particles, approach each other closer than almost a diameter of 6 in reduced units.
This means that the effective excluded volume is almost 63 = 216 times larger
than what one would expect on the basis of the pair potential alone. This results
in a large positive contribution to the pressure for a reduced density of the order
of 1/216 ≈ 0.005 and above. For lower densities the contribution from the three
particle interaction to the total pressure becomes less important, as can be seen
in Figure 4.7. In Figure 4.7 we see that for densities less than ρ∗ = 0.0001 the
3-particle interaction does not contribute significantly to the pressure. For the
higher densities, the pressure increases with the density due to an increased contri-
bution from the three-particle interactions. As for the pair potential contribution,
it deviates significantly above ρ∗ = 0.005 where molecules are on average in close
contact. The three-particle interaction can therefore contribute significantly to the
non-ideality of the mixture, even if a reaction does not take place to any significant
degree as is the case in this plot. The contribution from the three-particle inter-
action under these conditions for our systems, reflects that the higher the density
becomes, the higher is the resulting repulsion without bond disruptions.

The influence of the temperature on the pressure at the densities ρ∗ = 0.004 and
ρ∗ = 0.0011 was also investigated. The range of temperatures covers the range
where we can expect a significant degree of reaction, cf. next subsection. The
results for the high density case, ρ∗ = 0.004, where we can expect an impact of the
reaction from T ∗ = 0.07 and upwards, are given in Table 4.2. For T ∗ ≥ 0.03 the
results are plotted in Figure 4.8. All pressures have been normalized with respect
to the ideal pressure (Pi/Pideal), as before. This gives a normalized ideal pressure of
1 for all temperatures, which for this reason is left out of the table. The statistical

Table 4.2: The total pressure, Ptot, and the contributions to the pressure from the two- and
three-particle interactions, P2part and P3part, as a function of temperature for ρ∗ = 0.004.
All data are normalized with respect to the ideal pressure, Pideal, is 1 per definition for all
cases, and is left out of the table. The accuracy was estimated to be 10 % for T ∗ < 0.03
and a few percent for T ∗ ≥ 0.03.

T ∗ 0.000268 0.002 0.003 0.004 0.03 0.05 0.07 0.09
Ptot 1.92 1.77 1.73 1.72 1.55 1.50 1.46 1.43
P2part -5.7 -9.8 -5.6 -4.2 -0.39 -0.40 -0.41 -0.43
P3part 6.6 10.5 6.3 4.9 0.95 0.90 0.88 0.87

T ∗ 0.15 0.17 0.2 0.23 0.25 0.3 0.4
Ptot 1.41 1.41 1.41 1.41 1.40 1.39 1.37
P2part -0.49 -0.51 -0.52 -0.52 -0.51 -0.48 -0.41
P3part 0.91 0.92 0.93 0.92 0.91 0.87 0.78

error of the various pressures are in the order of a few percent, for T ∗ < 0.03 we
estimate the statistical error of the two- and three-particle pressures (but not their
sum) be in the order of 10 %.

In Table 4.2 we see that the normalized total pressure increases about 11% when the
temperature is reduced by an order of magnitude. The sum of the normalized P2part
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and P3part, which equals the normalized total pressure minus 1, similarly increases
when the temperature decreases. For T ∗ between 0.03 and 0.4 the change of the
values of the normalized P2part and P3part is similarly rather small. The absolute
value of these contributions is between zero and one for these temperatures. For
lower temperatures the normalized P2part and P3part both increase by up to an order
of magnitude without a similar increase in their sum. For these low temperatures,
all hydrogen atoms are bound in molecules.

At low temperatures a particular property of this system affects the results. At
these temperatures, there are no atoms in the system, and no reaction is going on.
Most of the atoms, once they are bound to each other in a molecule, remain bound
during the whole simulation. Concurrent with this is that also 3 atoms can arrive
in the second or third minimum, see Figure 4.1. The occurrence of such triplets
was observed in Figures 4.3 and 4.4 as small side peaks (shoulders) at reduced
distances 2.2 and 3. The number of triplets is small, but they can remain stuck to
each other during the whole simulation at low temperatures. The existence of some
permanent triplets can explain the enormous decrease of the 2 particle contribution
and roughly the same increase of the 3 particle contributions, while their sum is
only slightly increased above the higher temperature value. The existence of triplets
is a consequence of the potential we have used. The potential was an analytical
representation of an energy surface generated from quantum mechanics [3], but it
may not represent reality under these extreme conditions. In Figure 4.8, we only
plot the normalized pressures for the high temperature domain, T ∗ between 0.03
and 0.4. The statistical error was estimated to be in the order of a few percent
for T ∗ ≥ 0.03. For lower temperatures the statistical error of the two- and three-
particle pressures (but not their sum) was estimated to be in the order of 10 %.

For the low density case, ρ∗ = 0.0011, the total pressure and the different contri-
butions to the pressure as a function of temperature is given in Table 4.3 below,
and plotted in Figure 4.9 for T ∗ ≥ 0.03. Also here we can expect an impact of
the reaction from T ∗ = 0.07 and up. From Table 4.3 we see that the normalized

Table 4.3: The total pressure, Ptot and the contributions to the pressure from the two- and
three-particle interactions, P2part and P3part, as a function of temperature for ρ∗ = 0.0011.
All data are normalized with respect to the ideal pressure, Pideal. The normalized ideal
pressure, Pideal, is 1 per definition for all cases, and is left out of the table. The accuracy
was estimated to be 10 % for T ∗ < 0.03 and a few percent for T ∗ ≥ 0.03.

T ∗ 0.002 0.003 0.004 0.03 0.05 0.07 0.09
Ptot 0.69 0.69 0.68 0.67 0.66 0.66 0.67
P2part -2.6 -1.9 -2.9 -0.48 -0.48 -0.48 -0.48
P3part 2.3 1.6 2.6 0.15 0.15 0.15 0.15

T ∗ 0.11 0.13 0.15 0.17 0.2 0.25 0.3 0.4
Ptot 0.68 0.70 0.73 0.76 0.80 0.85 0.88 0.92
P2part -0.47 -0.44 -0.44 -0.42 -0.38 -0.32 -0.27 -0.20
P3part 0.16 0.17 0.17 0.18 0.18 0.17 0.15 0.12



4.4. Results and Discussion 57

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

P
i /
P

id
ea

l

T
*

Ptot
Pideal
P2part
P3part

Figure 4.8: The total pressure, Ptot, and the different contributions to the pressure,
Pideal and from the two- and three-particle interactions, P2part and P3part as a function of
temperatures for the high density case, ρ∗ = 0.004. All data have been normalized with
respect to the ideal pressure, giving Pideal = 1.
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total pressure is essentially constant at low temperatures (between T ∗ = 0.002 and
T ∗ = 0.13) and increases by about 20% when the reduced temperature increases to
T ∗ = 0.4. This behavior is different from the result for the higher density, where
the normalized total pressure decreased when the temperature increased. The sum
of the normalized P2part and P3part, which equals the normalized total pressure
minus 1, behaves similarly. The value of the normalized P2part is reduced about
60% from T ∗ = 0.03 to T ∗ = 0.4, while the value of the normalized P3part remains
essentially constant in this temperature domain. For lower temperatures the nor-
malized P2part and P3part both increase by up to an order of magnitude without
a similar increase in their sum. The reason for this is the same as the one given
for the higher density. In Figure 4.9, we only plot the normalized pressures for the
high temperature domain, T ∗ between 0.03 and 0.4.
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Figure 4.9: The total pressure, Ptot, and the different contributions to the pressure,
Pideal and from the two- and three-particle interactions, P2part and P3part as a function of
temperatures for the low density case, ρ∗ = 0.0011. All data have been normalized with
respect to the ideal pressure, giving Pideal = 1.

For the high density, we see that the relative contributions to the normalized pres-
sure are constant, up or down 10%, for T ∗ = 0.03 − 0.4, indicating that γ2

H/γH2

is approximately constant in this range. This indicates that we can use the van’t
Hoff equation, Eq.(4.13), with Kx, to determine the standard enthalpy of the re-
action, and we shall do so below. For the low density, we see the same trend in
the normalized overall pressure for a lower temperature range, 0.03 ≤ T ∗ ≤ 0.13,
indicating that γ2

H/γH2 is constant also there.
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For all temperatures, the effect of the three-particle potential is smaller in the
low density case, compared to the ideal contribution and the contribution from
two-particle interactions.

4.4.3 Dissociation constants and the enthalpy of reaction

The dissociation of hydrogen was studied as a function of temperature for two
different densities, ρ∗ = 0.004 and ρ∗ = 0.0011, by counting the number of atoms
every 20 steps. At the end, an average over the last 2000 steps was taken.

For the liquid like density, ρ∗ = 0.004, the total pressure, the dissociation (number
of H), mole fraction along with the calculated the dissociation constants, Kx, are
given in Table 6.4 below. From Table 6.4, we see that no dissociation is observed

Table 4.4: Dissociation (NH), mole fraction (xi), total pressure (P ∗) and the dissociation
constant (Kx) for the high density, ρ∗ = 0.004.

T ∗ 0.000268 0.002 0.003 0.004 0.03
NH 0.00 0.00 0.00 0.00 0.00
NH2

500.00 500.00 500.00 500.00 500.00
xH2 1.000 1.000 1.000 1.000 1.000
Kx - - - - -
P ∗ 3 · 10−6 1 · 10−5 2 · 10−5 3 · 10−5 2 · 10−4

T ∗ 0.05 0.07 0.09 0.15 0.17
NH 0.00 1.98 5.54 66.90 91.42
NH2

500.00 499.01 497.23 466.55 454.29
xH2 1.000 0.996 0.989 0.875 0.832
Kx - 0.000 0.000 0.018 0.034
P ∗ 3 · 10−4 4 · 10−4 5 · 10−4 8 · 10−4 9 · 10−4

T ∗ 0.2 0.23 0.25 0.3 0.4
NH 137.61 172.42 192.39 232.42 288.50
NH2

431.19 413.79 403.81 383.79 355.75
xH2 0.758 0.706 0.677 0.623 0.552
Kx 0.077 0.123 0.154 0.228 0.363
P ∗ 1.1 · 10−3 1.3 · 10−3 1.4 · 10−3 1.7 · 10−3 2.2 · 10−3

for T ∗ ≤ 0.05 at ρ∗ = 0.004. When we increase the temperature from T ∗ = 0.05
to T ∗ = 0.4, we see a large increase in the dissociation to 29 %. As expected, since
the main contribution to the pressure is the ideal pressure, the overall pressure
increases with temperature.

The results for the dissociation, mole fraction, total pressure and the dissociation
constant is given in Table 6.3 below for the low density, ρ∗ = 0.0011. From Table
6.3 we see that for T ∗ ≤ 0.05 no dissociation is observed, while at T ∗ = 0.09 we
observe almost 2 % dissociation. Increasing the temperature further increases the



60
Equilibrium properties of the reaction H2 
 2H by classical molecular

dynamics simulations

Table 4.5: Dissociation (NH), mole fraction (xi), total pressure (P ∗) and the dissociation
constant (Kx) for the low density, ρ∗ = 0.0011.

T ∗ 0.002 0.003 0.004 0.03 0.05
NH 0.00 0.00 0.00 0.00 0.00
NH2

500.00 500.00 500.00 500.00 500.00
xH2

1.000 1.000 1.000 1.000 1.000
Kx - - - - -
P ∗ 1 · 10−6 2 · 10−6 3 · 10−6 2 · 10−5 4 · 10−5

T ∗ 0.07 0.09 0.11 0.13 0.15
NH 5.92 15.77 53.05 98.20 147.71
NH2 497.04 492.11 473.48 450.90 426.14
xH2 0.988 0.969 0.899 0.821 0.743
Kx 0.000 0.001 0.011 0.039 0.089
P ∗ 5 · 10−5 7 · 10−5 8 · 10−5 1 · 10−4 1 · 10−4

T ∗ 0.17 0.2 0.25 0.3 0.4
NH 212.97 285.00 396.19 468.74 554.88
NH2 393.51 357.50 301.91 265.63 227.56
xH2 0.649 0.556 0.432 0.362 0.295
Kx 0.190 0.354 0.745 1.126 1.689
P ∗ 1 · 10−4 2 · 10−4 2 · 10−4 3 · 10−4 4 · 10−4

dissociation up to 55 % at T ∗ = 0.4. As expected the pressure increases with
temperature. Comparing the dissociation for the high and low density a larger
dissociation was observed for the low density for T ∗ ≥ 0.07. As expected, the
observed overall pressure is higher for the higher density.

Assuming that the ratio γ2
H/γH2 is constant, the logarithm of the dissociation con-

stant, lnKx, as a function of 1/T was used to calculate the standard enthalpy of
reaction, ∆rH

◦, for temperatures where the reaction is significant, 0.09 ≤ T ∗ ≤ 0.4.
The results are plotted in Figure 4.10 for both densities. An approximate linear
trend is observed for both densities. For both densities a deviation can be observed
from the linear trend. This deviation is caused by a pressure effect, as the pressure
is not the same in all the simulations. This effect is however expected to be small
and to not have a big effect on the calculation of the enthalpy. From the linear fit
made to the Figure 4.10, we have estimated the standard enthalpy of reaction to
be ∆rH

◦ = 430 kJ mol−1 and ∆rH
◦ = 380 kJ mol−1 for the high- and low density,

respectively. The standard enthalpy of reaction can be compared to the binding
energy of H2 (436 kJ/mol at 298 K and 1 bar) [8, 29]. At the moment, we are
not able to determine the standard enthalpy of the reaction independently for each
temperature, as we have no knowledge about the ratio of the activity constants.
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Figure 4.10: The natural logarithm of the dissociation constant, lnKx, plotted as a func-
tion of the inverse temperature (T ∗ = 0.09− 0.3)

4.5 Conclusion

We have seen in the preceding sections that a classical MD model is able to capture
the essential properties of a chemical reaction at equilibrium; namely its dissocia-
tion, enthalpy of reaction, and pressure and temperature variations. This was made
possible by adding to the pair potential a three-particle interaction potential. The
system behaviour on the meso-scale, characterized here by pair correlation func-
tions, was found to be compatible with a coarser scale description, where the pair
potential is the sole potential needed. In particular, the effective excluded volume
diameter of the molecule was in agreement with the Lennard-Jones diameter used
by others [28,84] to model fluid hydrogen. For low temperatures (14 K and 156 K)
the de Broglie wavelength was large compared to the binding distance. For these
temperatures the classical calculation is not appropriate. The triplet state found
in the calculation at these temperatures is an artefact of this.

For two densities, ρ∗ = 0.0011 and ρ∗ = 0.004, and a series of temperatures, the
three-particle interaction was found to have a large positive impact on the overall
pressure. Assuming that the activity coefficient ratio was constant, the standard
enthalpy of the reaction was estimated from van’t Hoff equation to be 430 kJ/mol
(ρ∗ = 0.004) and 380 kJ/mol (ρ∗ = 0.0011).

We have thus seen that a reacting mixture can be well modelled in a classical way,
if the temperature is not to low. This opens up the possibility for dealing with
problems related to reaction, diffusion, heat conduction, even thermal diffusion, and
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interface transport, in problems which are central to chemical reactor (combustion)
technology. This is in complete accordance with the view of Stillinger and coworkers
[3,29]. To the best of our knowledge the idea of these authors have not been taken to
the next steps yet. Neither has the impact of a three-particle interaction potential
been discussed in the literature, see however [31]. A simple model for the chemical
reaction as presented here for hydrogen, will allow its introduction in fluid modelling
at large. The model may facilitate simultaneous studies of reaction and diffusion
under various non-equilibrium conditions, and serve as a benchmark for quantum
mechanical calculations of reactions.
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Abstract

We present a new molecular simulation technique for determining partial molar
enthalpies in mixtures of gases and liquids from single simulations, without relying
on particle insertions, deletions, or identity changes. The method can also be
applied to systems with chemical reactions. We demonstrate our method for binary
mixtures of WCA particles by comparing with conventional simulation techniques,
as well as for a simple model that mimics a chemical reaction. The method considers
small subsystems inside a large reservoir (i.e. the simulation box), and uses the
construction of Hill to compute properties in the thermodynamic limit from small-
scale fluctuations. Results obtained with the new method are in excellent agreement
with those from previous methods. Especially for modeling chemical reactions, our
method can be a valuable tool for determining reaction enthalpies directly from a
single MD simulation.

5.1 Introduction

The state-function enthalpy, H, is an important thermodynamic property in a
wide variety of applications, ranging from chemical engineering to biology [98–100].
From knowledge of the enthalpy as a function of composition, one can determine
the partial molar enthalpy of a component in a mixture. This quantity is central to
understand thermodynamics of mixtures and chemical reactions under equilibrium
and non-equilibrium conditions [12, 100]. In most applications, the temperature
T and pressure p are constant, meaning that it is convenient to express the total
differential of the enthalpy H(T, p,Ni) like:

dH =

(
∂H

∂T

)

p,Ni

dT +

(
∂H

∂p

)

T,Ni

d p+

n∑

i=1

(
∂H

∂Ni

)

T,p,Nj 6=i

dNi, (5.1)

where Ni is the number of particles of component i and n the number of differ-
ent species. Only component contributions remain at constant temperature and
pressure, leading to the integrated version

H =
n∑

i=1

NiHi, (5.2)

with Hi =
(
∂H
∂Ni

)
T,p,Nj 6=i

being the partial enthalpy per particle of component i

at constant T , p, Nj 6=i, the partial molar enthalpy is obtained by multiplying Hi

with the Avogadro number. In the following, in particular in the Chapter 5.4, we
will transform partial enthalpies at constant T , V , µj 6=i to constant T , V , Nj 6=i
finally to constant T , p, Nj 6=i, µj being the chemical potential of component j. We
shall use the name ”partial enthalpy” for all these properties and reserve the name
”partial molar enthalpy” of component i for derivatives of H that refer to T, p and
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Nj 6=i constant, whatever it is per particle or per mole of particle.
Partial molar enthalpies are normally obtained using numerical derivation of the
total enthalpy H with respect to one component [14]. For species that take part
in a chemical reaction at equilibrium, such a procedure is not straightforward, as
it is difficult, if not impossible, to keep the number of particles of one component
constant, while varying the other.

Molecular simulations are helpful in building of reliable databases of thermody-
namic data. Several methods have been developed for calculating Hi in sys-
tems without chemical reactions. These methods rely on differentiating the to-
tal enthalpy H with respect to composition, or particle insertions or identity
changes [19,21]. To the best of our knowledge, there are no techniques available to
directly obtain partial molar enthalpies of reacting species, or reaction enthalpies.

Most classical molecular dynamics (MD) simulations do not allow for the formation
and breaking of chemical bonds. Nevertheless, a few force fields mimic chemical
reactions using classical interaction potentials, like ReaxFF [38], REBO [39], and
AIREBO [40]. A classical three-body interaction potential [3, 29, 32, 48] was also
used to model chemical reactions 2F 
 F2 [3, 31] and 2H 
 H2 [48]. As the
reaction enthalpy is needed to calculate how the equilibrium constant changes with
temperature, it would be very useful to compute it from a single simulation.

The aim of this paper is to present a new molecular simulation technique for deter-
mining partial molar enthalpies. The method presented in this paper can also be
applied to systems with chemical reactions. We will demonstrate our method for
binary mixtures of WCA particles [101], as well as for a simple model that mimics
a chemical reaction. The method considers small subsystems in a large reservoir
(i.e. the simulation box), and uses the construction of Hill [50] to compute thermo-
dynamic properties in the thermodynamic limit from small-scale fluctuations. The
method largely expands the work on small systems by Schnell et al. [22–24,56,102].

The subsystem refers to an open volume (or area element) with a linear size of
the order of 1 to 10 molecular diameters, inside a much larger simulation box (a
reservoir). We will derive how energy and particle fluctuations inside the subsystem
can be used to obtain thermodynamic properties in the grand-canonical ensemble.
This ensemble differs from the ensemble specified above (constant T, p,Nj) in which
partial molar enthalpies are defined. The total differential of the enthalpy in the
grand-canonical ensemble equals

dH =

(
∂H

∂T

)

V,µi

dT +

(
∂H

∂V

)

T,µi

dV +

n∑

i=1

(
∂H

∂µi

)

T,V,µj 6=i

dµi. (5.3)

The partial derivatives with respect to chemical potentials of component i, µi, are
obtained for conditions T and V constant. To find the partial molar enthalpies
defined in Eq. (5.1), we need to relate them to the partial derivatives in Eq. (5.3).
We will show how Legendre transformations can be used to convert the partial
derivatives in Eq. (5.3) to partial molar enthalpies.
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This paper is organized as follows: we start by briefly recapitulating the theory
of thermodynamics of small systems as derived by Hill [50], cf. Section 5.2. In
Section 5.3, we discuss the relation of small-scale properties to fluctuating variables.
In Section 5.4, we derive expressions for the partial enthalpies of the components
in the thermodynamic limit as a function of the temperature T , the volume V , and
chemical potentials µj . We explain how one can obtain the partial molar enthalpies
as function of temperature T , pressure p, and composition of other components,
Nj . We proceed by simulating and analyzing binary mixtures of Weeks-Chandler-
Anderson (WCA) particles. We use this mixture to document and evaluate the
method. We also make a first simulation of a reacting mixture, an isomerisation
reaction A 
 B. Simulation details are described in Section 5.5 and results are
presented and discussed in Section 5.6. Our findings are summarized in Section 5.7.

5.2 Small system properties for controlled vari-
ables T, V and µj

Hill [50] considered N replicas of a small system, constructing thereby an ensemble
(the total system), which is large enough to follow the laws of classical thermody-
namics. The Gibbs equation for this new ensemble equals [50]:

dUGC
t = T dSGC

t − pGCN dV +

n∑

i=1

µi dNGC
i,t +XGC dN , (5.4)

and the replica energy is defined by

XGC(T, V, µj) =

(
∂UGC

t

∂N

)

St,V,Ni

≡ −p̂(T, V, µj)V. (5.5)

The subscript t refers to the total system (the whole ensemble of replicas), the sym-
bol U is used for internal energy, and S for entropy. The superscript GC means
grand-canonical and indicates that the variable should be calculated as a function
of the controlled variables T , V , µj , and N . We need to indicate this explicitly be-
cause, for instance, the pressure is different if one controls other variables in a small
system. We call XGC the replica energy. The replica energy can be interpreted as
the reversible work needed to add one replica of the small system at constant SGC

t ,
V and NGC

i,t . The addition of one replica of the small system at constant SGC
t ,

V and NGC
i,t , implies that SGC

t and NGC
i,t have to be redistributed over one more

replica, while the total volume NV increases. This is the reason to alternatively
call this derivative −p̂V , see Ref. [50] for a detailed discussion.

By integrating Eq. (5.4) at constant T , V , µj and XGC , using linear homogeneity
in the number of replicas, we obtain:

UGC
t (T, V, µj ,N ) = TSGC

t (T, V, µj ,N ) +

n∑

i=1

µiN
GC
i,t (T, V, µj ,N )− p̂(T, V, µj)VN .

(5.6)
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Average values of grand-canonical variables in a small system are thus related to
the variables of the total system by:

UGC
t (T, V, µj ,N ) ≡ NUGC

(T, V, µj),

SGC
t (T, V, µj ,N ) ≡ NSGC(T, V, µj), (5.7)

NGC
i,t (T, V, µj ,N ) ≡ NNGC

i (T, V, µj).

We have used a bar to denote an average value of a single replica property. As
explained by Hill, the entropy SGC is the same for all replicas and therefore the
bar is omitted [50]. By introducing the average variables of the small system into
Eq. (5.6), we obtain:

U
GC

= TSGC +

n∑

i=1

µiN
GC

i − p̂V. (5.8)

This equation pinpoints that U
GC

is not a linear homogeneous function of SGC, V

and N
GC

i , due to the term p̂ which depends on the system size. Eq. (5.8) reduces
to its well-known classical form if p̂ = pGC. The quantity p̂, called p-hat by Hill
was essentially defined in Eq. (5.5) but has no special name in thermodynamics so
far. The system can be considered small when p̂ significantly differs from pGC [50].
By substituting Eq. (5.7) into Eq. (5.4) and using Eq. (5.8), we obtain the Gibbs
relation for the small system

dU
GC

= T dSGC − pGCdV +

n∑

i=1

µi dN
GC

i . (5.9)

The corresponding Gibbs-Duhem-type equation is

d (p̂V ) = SGC dT + pGC dV +

n∑

i=1

N
GC

i dµi. (5.10)

We can then obtain expressions for SGC, pGC and N
GC

i :

SGC =

(
∂p̂V

∂T

)

V,µj

,

pGC =

(
∂p̂V

∂V

)

T,µj

= p̂+ V

(
∂p̂

∂V

)

T,µj

, (5.11)

N
GC

i =

(
∂p̂V

∂µi

)

T,V,µj 6=i

.

These equations are special for small systems considered here, as they require par-
tial derivatives of p̂. It follows from Eq. (5.11) that pGC and p̂ differ when p̂ depends
on V .
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The elements of the so-called matrix of thermodynamic factors [55, 103, 104] are
here defined by

1

ΓGC
ik

≡ kBT

N
GC

i

(
∂N

GC

i

∂µk

)

T,V,µj 6=k

= kBT

(
∂ lnN

GC

i

∂µk

)

T,V,µj 6=k

, (5.12)

where kB is the Boltzmann constant. These quantities are defined for a small
grand-canonical system. To avoid Legendre transformations for small systems, the
transformation of the elements ΓGC

ik to other control variables (e.g. at constant
pressure) will only be performed in the thermodynamic limit. Using the Maxwell
relations following from Eq. (5.9) we obtain the symmetry relation

ΓGC
ik N

GC

k = ΓGC
ki N

GC

i . (5.13)

The enthalpy Ĥ of a small system can now be defined for controlled variables
T, V, µj by:

Ĥ ≡ UGC
+ p̂V. (5.14)

It is important to note that Ĥ and H
GC

differ, as the latter is defined by H
GC ≡

U
GC

+ pGCV . It turns out that the use of Ĥ is more practical, see below.

5.3 Relations to fluctuating variables and system
size dependence

As shown in the previous section, in a small grand-canonical system the number of
particles and the internal energy fluctuate. For any grand-canonical system, from
fluctuation theory it directly follows that [22]

(
∂U

∂Ni

)

V,T,µj 6=i

=
UNi − U Ni

N2
i −Ni

2 . (5.15)

The thermodynamic factors defined in Eq. (5.12) follow in a similar way

1

Γij
=
NiNj −Ni Nj

Ni
. (5.16)

For convenience, we have dropped the superscript GC. From the partial derivative
of the p̂V term,

(
∂p̂V

∂µi

)

T,V,µj 6=i

= Ni =

(
∂p̂V

∂Ni

)

T,V,µj 6=i

(
∂Ni
∂µi

)

T,V,µj 6=i

, (5.17)

we obtain an expression in terms of averages of fluctuating particle variables:
(
∂p̂V

∂Ni

)

T,V,µj 6=i

=

(
∂µi

∂ lnNi

)

T,V,µj 6=i

= kBTΓii = kBT
Ni

N2
i −Ni

2 . (5.18)
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From Ĥ ≡ U + p̂V , we find

(
∂Ĥ

∂N i

)

T,V,µj 6=i

=
UNi − U Ni +Ni kBT

N2
i −Ni

2 . (5.19)

This partial enthalpy is obtained for conditions constant V , T , and µj 6=i. In MD
simulations, it can be computed using the “small system method” developed by
Schnell and co-workers by calculating energy and particle number fluctuations in
randomly positioned subsystems inside the simulation box [22,23].

At this stage it is important to note that fluctuations inside small subsystems
strongly depend on the size of the subsystem. There is a general theorem [105,106]
due to Hadwiger that implies that every extensive thermodynamic variable (e.g.
X) in a system where the interaction potentials have a finite range has the following
form

X = AbV +AsL
2 +AeL+Ac. (5.20)

where V ≡ L3 equals the system size (assuming 3D systems). This means that
X has contributions proportional to the volume (Ab), the surface area (As), the
linear diameter (Ae), and a constant (Ac). There are no other contributions. The
term proportional to the linear diameter is due to the edges for polyhedra and to
the Tolman length for curved surfaces (or a combination of the two). The term
proportional to a constant is due to the corners for polyhedra and to the rigidities
for curved surfaces (or a combination of the two). In terms of the density of X one
has

X

V
= Ab +AsL

−1 +AeL
−2 +AcL

−3. (5.21)

It should be noted that there is some dispute about the validity of Hadwiger’s
theorem, see the paper by Blokhuis [107]. This dispute does not affect the validity
of Eq. (5.21).

In MD simulations, interaction potentials have a finite range so that the theorem
applies. Our previous MD simulations of small systems [22–24,56,102] confirm this
behavior. In practice, extrapolation to 1/L → 0 can easily be performed as the
scaling in 1/L is usually leading. This enables us to obtain the thermodynamic
limit value of property X/V = Ab [22–24, 102]. More specifically, for the enthalpy
we can write

lim
1/L→0

(∂Ĥ/∂Ni)T,V,µj 6=i = (∂H/∂Ni)T,V,µj 6=i . (5.22)

As it was found that the required system size is surprisingly small, this approach
was of great practical use in applications e.g. calculating Fick diffusion coefficients
from Maxwell-Stefan diffusivities [54,55].

The transformation between the partial enthalpy as a function of T , V , µj 6=i and
the corresponding partial molar enthalpy of Eq. (5.1) as a function of T , p, Nj 6=i
must be performed in the thermodynamic limit and is discussed in the next Section.
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5.4 Transformation between ensembles T, V, µj and
T, p,Nj

We are interested in (∂H/∂Ni)T,P,Nj 6=i rather than (∂H/∂Ni)T,V,µj 6=i for a two-
component system in the thermodynamic limit. This transformation can be ob-
tained as follows (see also Refs. [54,108,109]). The total differential ofH(V, T,N1, N2)
equals

dH =

(
∂H

∂T

)

V,N1,N2

dT+

(
∂H

∂V

)

T,N1,N2

dV+

(
∂H

∂N1

)

T,V,N2

dN1+

(
∂H

∂N2

)

T,V,N1

dN2,

(5.23)
and from this we have

(
∂H

∂N1

)

T,V,µ2

=

(
∂H

∂N1

)

T,V,N2

+

(
∂H

∂N2

)

T,V,N1

(
∂N2

∂N1

)

T,V,µ2

, (5.24)

(
∂H

∂N2

)

T,V,µ1

=

(
∂H

∂N1

)

T,V,N2

(
∂N1

∂N2

)

T,V,µ1

+

(
∂H

∂N2

)

T,V,N1

. (5.25)

Using the identity A.20 in Appendix A of Ben-Naim’s book [109] leads to

(
∂N2

∂N1

)

T,V,µ2

= −
(
∂µ2

∂N2

)−1

T,V,N1

(
∂µ2

∂N1

)

T,V,N2

= −
(
∂µ2

∂c2

)−1

T,V,c1

(
∂µ2

∂c1

)

T,V,c2

,

(5.26)
(
∂N1

∂N2

)

T,V,µ1

= −
(
∂µ1

∂N1

)−1

T,V,N2

(
∂µ1

∂N2

)

T,V,N1

= −
(
∂µ1

∂c1

)−1

T,V,c2

(
∂µ1

∂c2

)

T,V,c1

,

(5.27)

where ci ≡ Ni/V . Following Kirkwood and Buff [108] or more transparently Ben-
Naim [109] (Eqs. (4.23) and (4.24)), we have

Bik =
kBT

V

(
∂Ni
∂µk

)

T,V,µj 6=k

= kBT

(
∂ci
∂µk

)

T,V,µj 6=k

= cickGik + ciδik =
NiNk −Ni Nk

V
= Bki, (5.28)

where Gik are the so-called Kirkwood-Buff integrals [56, 102, 108]. The averages,
indicated by a bar, are in the grand-canonical ensemble. Furthermore, we have

Aik = βV

(
∂µi
∂Nk

)

T,V,Nj 6=k

= β

(
∂µi
∂ck

)

T,V,cj 6=k

= Aki. (5.29)

The B and the A matrices are each other’s inverse:
∑

j

BijAjk = δik. (5.30)
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We can now introduce Eq. (5.29) into Eqs. (5.26), (5.27) and obtain
(
∂N2

∂N1

)

T,V,µ2

= −A12

A22
and

(
∂N1

∂N2

)

T,V,µ1

= −A12

A11
. (5.31)

Using Eq. (5.31), we can write Eqs. (5.24), (5.25) in the form
(
∂H

∂N1

)

T,V,µ2

=

(
∂H

∂N1

)

T,V,N2

−
(
∂H

∂N2

)

T,V,N1

A12

A22
, (5.32)

(
∂H

∂N2

)

T,V,µ1

= −
(
∂H

∂N1

)

T,V,N2

A12

A11
+

(
∂H

∂N2

)

T,V,N1

. (5.33)

By inverting this equation, we obtain using Eq. (6.12):

(
∂H

∂N1

)

T,V,N2

= B22

[
A22

(
∂H

∂N1

)

T,V,µ2

+A12

(
∂H

∂N2

)

T,V,µ1

]
, (5.34)

(
∂H

∂N2

)

T,V,N1

= B11

[
A11

(
∂H

∂N2

)

T,V,µ1

+A12

(
∂H

∂N1

)

T,V,µ2

]
. (5.35)

The above equations provide explicit expressions for (∂H/∂N1)T,V,N2
and (∂H/∂N2)T,V,N1

.

In the following, we use the partial molar volume (Eq. (4.30) of Ben-Naim [109])
that can be calculated from fluctuations in the grand-canonical ensemble or from
the Kirkwood-Buff coefficients (see Eq. (17) of Ref. [108])

Vi =

(
∂V

∂Ni

)

T,P,Nj 6=i

=

(
∂µi
∂P

)

T,Nj

. (5.36)

Using Eq. (5.23), we can write
(
∂H

∂Ni

)

T,P,Nj 6=i

=

(
∂H

∂Ni

)

T,V,Nj 6=i

+

(
∂H

∂V

)

T,Nj

Vi. (5.37)

We use the extensive property of the total enthalpy from Eq. (5.23):

H = N1

(
∂H

∂N1

)

T,V,N2

+N2

(
∂H

∂N2

)

T,V,N1

+ V

(
∂H

∂V

)

T,N1,N2

. (5.38)

It follows that:
(
∂H

∂V

)

T,N1,N2

=
H

V
− N1

V

(
∂H

∂N1

)

T,V,N2

− N2

V

(
∂H

∂N2

)

T,V,N1

. (5.39)

By introducing Eq. (5.37) we finally obtain the required transformation

V

(
∂H

∂N1

)

T,P,N2

= V1H +N2

[
V2

(
∂H

∂N1

)

T,V,N2

− V1

(
∂H

∂N2

)

T,V,N1

]
, (5.40)

V

(
∂H

∂N2

)

T,P,N1

= V2H +N1

[
V1

(
∂H

∂N2

)

T,V,N1

− V2

(
∂H

∂N1

)

T,V,N2

]
. (5.41)
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One can easily verify that Eqs. (5.40) and (5.41) agree with

H = N1

(
∂H

∂N1

)

T,p,N2

+N2

(
∂H

∂N2

)

T,p,N1

= N1H1 +N2H2. (5.42)

The partial molar enthalpy can be calculated from Eqs. (5.19), (5.40), and (5.41)
when we know sets of corresponding values of H,V, V1, V2, N1, N2.

5.5 Simulations

Series of MD simulations were performed to validate the small system method for
the calculation of partial enthalpies and partial molar enthalpies. The method was
also applied to a model system for a chemical reaction and the reaction enthalpy was
computed. For binary systems of interacting particles we compared the following
methods to compute partial molar enthalpies ((a),(b),(c)):

(a) The small system method as outlined above, using Eqs. (5.34) and (5.35),
followed by Eqs. (5.40) and (5.41) to transform between different ensembles.
In the remainder of the paper this method is denoted by the abbreviation SSM.

(b) The particle insertion method of Frenkel and co-workers [19, 21], the so-called
difference method, in the isobaric-isothermal ensemble (denoted by DM).

(c) Numerical differentiation of the enthalpy as function of composition for con-
stant pressure and temperature systems (denoted by ND).

Partial enthalpies in the canonical (i) and grand-canonical (ii) ensembles were de-
termined to verify the validity of SSM and transformation of enthalpy from the
grand-canonical ensemble to the canonical ensemble. This was done using two
different methods:

(i) A direct evaluation of (∂H/∂Ni)T,V,Nj 6=i by simulating systems in the canon-
ical ensemble with different particle numbers Ni at constant volume.

(ii) A direct evaluation of the rhs. of Eq. (5.19) by simulating systems in the
grand-canonical ensemble.

The partial molar volume, see Eq. 5.36, needed for the transformation between
ensembles has been calculated using the SSM method but can alternatively be
computed using methods (b) or (c).

5.5.1 Binary mixture simulations

Simulations were performed for a binary mixture of particles interacting with the
WCA interaction potential. The WCA interaction potential is a shifted Lennard-
Jones (LJ) potential with the attractive tail cut-off [20,28,101]. For all simulations,
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we have used reduced units in with the mass m of particle is used as unit of mass,
the LJ size parameter σ (essentially the particle diameter) is used as unit of length,
and the LJ energy parameter ε is used as unit of energy [20]. In the remainder of the
text and in the figures and tables, reduced units will be used. For convenience, the
σ parameter was set to 1 for both component 1 and 2. The interaction distance of
the WCA-particles thus equals 21/6. The energy parameters were set to ε11 = 1.0,
ε22 = 5.0, and ε12 = ε21 = 0.1 for 1–1, 2–2, and 1–2 interactions, respectively.

The total number of particles in the simulation box was 480 in the isothermal-
isobaric ensemble (method (b), DM); 40,000 particles in the NVT ensemble (method
(a), SSM). The composition was varied from pure component 1 to pure component
2. The temperature of the system was fixed at 2.0 for all simulations in this work.
Simulations in the isothermal-isobaric ensemble were performed at a pressure of
6.5 in reduced units. For the NVT simulations, the size of the simulation box were
adjusted to have the same pressure (6.5 in reduced units) and density as in the
isothermal-isobaric ensemble. The isothermal-isobaric simulations were run with
five independent simulations for each composition. Each simulation consisted of
10 million cycles, where one cycle involves an attempt to modify the system 480
times (equal to the number of particles in the system). The first 100,000 cycles
in each simulation were used to equilibrate the systems, and not for the analysis.
The simulations in the NVT ensemble were run for 1 million time steps, whereof
the first 100,000 time steps were taken for equilibration.

The small system procedure (a) was performed by embedding small systems in a
simulation box of 40,000 particles in the NVT ensemble. Fluctuations in energy
and density inside the small system were then sampled [22]. The small systems are
spherical with a diameter ranging from the size of a particle R = 1 to half the size
of the simulation box. Increments in the sphere diameter were made to be linear
in the reciprocal sphere diameter 1/R. In addition, Kirkwood-Buff integrals, Gik,
see Eq. (5.28), were calculated for different spherical volumes of radius R using the
finite-size-method presented by Krüger et al. [102]:

GRik =
∫ 2R

0
[gik(r)− 1]w(r, x)dr, (5.43)

w(r, x) = 4πr2
(
1− 3x/2 + x3/2

)
, (5.44)

where gik are the pair correlation functions (PCFs) and x = r/2R. It is important
that the finite-size effects of the Kirkwood-Buff integrals are accounted for, see
Ref. [102].

The small system method provides the thermodynamic limit of the partial en-
thalpies (∂H/∂N1)T,V,µ2

and (∂H/∂N2)T,V,µ1
. As explained in the previous Sec-

tion, conversion to partial molar enthalpies can be performed using Eqs. (5.34) and
(5.35) then Eqs. (5.40) and (5.41).

Monte Carlo simulations with methods (b, DM) and (c, ND) were performed in
the isobaric-isothermal ensemble [20]. The pressure was kept constant at 6.5 in
reduced units. In method (b) the difference in partial molar enthalpies between
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the components was calculated from [19,21]

∆H = H1 −H2,

=
〈
[
∆U1+2− + U + pV

]
exp

[
−β∆U1+2−]〉

〈exp [−β∆U1+2−]〉N1,N2

− 〈U + pV 〉,

= −〈
[
∆U2+1− + U + PV

]
exp

[
−β∆U2+1−]〉

〈exp [−β∆U2+1−]〉N1,N2

+ 〈U + pV 〉,

(5.45)

in which the brackets 〈· · · 〉 denote averages in the isothermal-isobaric ensemble
and ∆U i+j− is the change in internal energy when a random particle of type j is
transformed into a particle of type i.

The partial molar enthalpies follow directly from the total enthalpy of the system:

H1 =
H

N
+ (1− x1)∆H, (5.46)

H2 =
H

N
− x1∆H, (5.47)

In method (c, ND), partial molar enthalpies were determined by numerical differ-
entiation of the total enthalpy according to [14]

(
∂H

∂N1

)

T,P,N2

=
H

N
+ (1− x1)

(
∂
(
H
N

)

∂x1

)

T,P

(5.48)

(
∂H

∂N2

)

T,P,N1

=
H

N
− x1

(
∂
(
H
N

)

∂x1

)

T,P

, (5.49)

where the molar enthalpy, H/N , of the system can be fitted with a polynomial in
terms of powers of x1.

To evaluate the small system method further (method (a)), the partial enthalpies
at constant volumes, (∂H/∂N1)T,V,N2

and (∂H/∂N2)T,V,N1
were also calculated

using method (i). To test the system size effect on the results using the method (i),
a total of 200 and 500 particles were simulated at the same thermodynamic states
as for the other simulations. By adding two to five particles of type 1 or type 2
(to create altogether 8 new compositions), the enthalpy was found as a function of
particle numbers added while keeping the volume and temperature constant. The
values of (∂H/∂Ni)T,V,Nj 6=i were estimated by taking the limit of ∆Ni → 0.

Simulations in the grand-canonical ensemble were used to verify the extrapola-
tion of the partial enthalpies extrapolated to the thermodynamic limit using the
small system method. The fluctuations in energy and density (see Eq. (5.19)) were
sampled directly. The density and composition were set close to the density and
composition from the canonical simulations, by changing the chemical potential of
the two components. The box used had sides of length 15 in reduced units, and for
each composition the system were simulated for 1.5 million cycles.
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5.5.2 Reaction enthalpies

As our new method (a) to compute partial molar enthalpies only requires local
density and energy fluctuations inside small subsystems, the method is not hindered
by the presence of chemical reactions between the components in the mixture. To
test this, we considered the following reaction in the binary system A, B:

A
 B (5.50)

The enthalpy of reaction then follows from the difference in partial molar enthalpies

∆rH = HB −HA. (5.51)

Different approaches to the molecular-level modeling of chemical reaction equilib-
rium exist [110]. The equilibrium reaction of Eq. (5.50) can be modeled in an
MD simulation by considering a reactive force field that gives rise to a system of
monomers and dimers of WCA particles. The two atoms of the dimer interact with
a double-well spring that has two well-defined minima, corresponding to state A
and B. The reaction can be thought of as a transition between the two minima in
a double-well potential. Here, we used the following double-well spring potential
between the two atoms of a dimer [111]:

u(r) = h

[
1− (r − w − rWCA)2

w2

]2

+
hmin,2

2w
(r − rWCA) (5.52)

where u(r) is the interaction energy between the two atoms of the dimer which are
at distance r, h is the height of the potential energy barrier when hmin,2 is zero,
rWCA is the cut-off distance of the WCA potential (21/6 in reduced units), and the
constant w was set to 0.25 in reduced units. hmin,2 is the energy minimum for the
second well. The maximum of u(r) was used to distinguish between states A and B.
In Fig. 5.1, the double-well spring potential is illustrated. All simulations with this
interaction potential were performed in a box with 2800 and 1850 pairs, in boxes
of size 20.0 and 17.42 in reduced units. The temperature were kept to 2 in reduced
units for all simulations. The small systems method was applied to the largest box,
while the smaller box was used as a reference to improve the calculation of the KB
integrals, see Krüger et al. for more details [102].

5.6 Results and Discussion

5.6.1 Results for binary WCA systems

We discuss first the intermediate results from the small system method (method
(a)), see Figs. 5.2–5.4, before the main results are presented in Fig. 5.5. All com-
puted data were obtained with statistical uncertainties lower than 5%.
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The first step in the small system method provides values for (∂H/∂Ni)T,V,µj . The
thermodynamic limit is obtained from linear extrapolation of the quantity calcu-
lated from Eq. (5.19) in small systems, see Fig. 5.2. As 1/Γij , scales linearly with
1/L [22], we calculated (∂Ni/∂H)T,V,µj , and inverted its value in the thermody-
namic limit. The results are plotted as a function of the composition in Fig. 5.3,
and compared to the simulation results directly obtained in the grand-canonical
ensemble. Clearly, the SSM (method (a)) yield results that are identical to grand-
canonical simulations.

Fig. 5.4 shows the values of (∂H/∂Ni)T,V,Nj for i = 1, 2, calculated from Eqs. (5.34)
and (5.35), where the values of (∂H/∂Ni)T,V,µj were taken from Fig. 5.3, and Aij
and Bij were calculated from the Kirkwood-Buff integrals. In addition, the values of
(∂H/∂Ni)T,V,Nj were calculated directly from simulations in the canonical ensemble
following method (i). The systems with 200 and 500 particles resulted in nearly
identical results indicating that no significant size effect was found varying the
system size in method (i).

The partial molar enthalpies, (∂H/∂Ni)T,p,Nj = Hi, as a function of composition
are shown in Fig. 5.5. The results of the different methods described in the Sim-
ulation section are plotted, namely results from (a) the small system method, (b)
the difference method (DM), and (c) the numerical differentiation (ND) method.
Methods (a) and (c) provide, within the accuracy of a few percent, the same val-
ues. The difference method (b) deviate strongly from the two other methods. This
is expected, as the difference method often suffers from poor sampling. This is a
well-known disadvantage of this method [19] and strongly depends on differences
in size and interaction strength of the components. For the simulated binary sys-
tems the methods (a) and (c) were both very efficient numerically, the method (c),
because smaller systems can potentially be used, could be more advantageous, how-
ever increasing the number of components the method (a) becomes more efficient
compared to method (c).

As a general comment to this part it is important to underline that Hi is the full
partial molar enthalpy of the simulated components, it contains both ideal and
excess or residual terms which values depend on the chosen molecular model. In
order to compare with other molecular models, the variation of the different ground
state energies of the different models should be taken into account, the comparison
with experimental results is more tricky and is out of the scope of this manuscript.
In practice (both for simulations and experiments), we compare the difference of the
Hi values between the studied system and an ”equivalent” known reference state.
Because Hi is a mixture property, it is common in thermodynamics to give excess
partial molar enthalpies, i.e. to use the pure components under the same pressure
and temperature as the reference state. From a molecular simulation point of view
it implies to compute pure components separately. Despite this restriction, the
knowledge of Hi is particularly useful to quantify directly the heat effects during
chemical or physical transformation as we will see in the following for chemical
reactions.



5.6. Results and Discussion 77

5.6.2 Results for the reaction enthalpy

Just as for the SSM, method (b) requires one single simulation to compute partial
molar enthalpies. This is a clear advantage over method (c), which needs three or
more simulations in order to determine the enthalpy as a function of composition. A
drawback of method (b), mentioned already, is however the fact that the method
is unsuitable for particles which vary largely in size. Already for a system with
WCA particles, this becomes evident. The small system method (a) can be used
to obtain partial molar enthalpies in a single simulation too. In the following, we
will apply the SSM to a reactive force field model for the reaction A
 B.

By keeping the parameters h and w in Eq. (5.52) constant, and by varying the
parameter hmin,2, the effect of a difference in energy between the wells of the
dumbbells was obtained. Based on Van’t Hoff equation and using the property
that the number of A or B molecules are proportional to their potential energy, the
mole fraction of A and B can be written, in first approximation, as a function of
the potential energy hmin,2:

xA =
1

1 + J exp
(
−hmin,2kBT

) , (5.53)

xB =
1

1 +
[
J exp

(
−hmin,2kBT

)]−1 , (5.54)

where J is a constant which can be fitted to equilibrium results at a single temper-
ature.

In Table 5.1, we present simulation results for the equilibrium mole fraction of
components A, the threshold value (the maximum of the function u(r)), and the
reaction enthalpy (∆rh). The results of xA calculated with Eq. (5.54) are in ex-
cellent agreement with the values of the simulation under equilibrium chemical
conditions.

In Fig. 5.6, the computed reaction enthalpy, using our new method (a), is plotted as
a function of the energy difference between the two wells in the dumbbell-potential,
hmin,2. It is worth to note that ∆rS = ∆rH/T because the system obeys chemical
equilibrium. As expected for this simple system, the reaction enthalpy is linearly
proportional to the energy difference between components A and B, hmin,2, ∆rH =
0.703 + 0.912hmin,2, the slope constant, 0.912, being close to one. As can be seen
from Table 5.1, the composition of the system changes significantly with the value
of hmin,2 following Eq. (5.54).
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5.7 Conclusions

We have presented a computational method for calculation of partial molar en-
thalpies and reaction enthalpies for systems of interacting particles. The method
requires simulations in the canonical ensemble or alternatively in the microcanon-
ical or grand-canonical ensemble, and the sampling of energy and particle fluctu-
ations inside small sub-systems. Using Kirkwood-Buff integrals, partial enthalpies
in the grand-canonical ensemble can be converted into partial enthalpies in the
canonical ensemble, as well as partial molar enthalpies in isobaric-isothermal en-
semble.

The results of our method lead to the same results as obtained by differentiation
of the enthalpy with respect to the composition. It can in addition be used to
determine partial molar enthalpies directly from a single canonical simulation.

The small system method has the significant advantage above the other methods
in its ability to handle the electroneutrality condition for ionic systems [56]. We
have shown that the method can also be conveniently used to calculate reaction
enthalpies in the context of a reactive force field model from a single MD simulation.
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System hmin,2 xA Threshold ∆rh xA Eq. (5.54)
1 0.0 0.518 1.372 0.695 0.518
2 0.75 0.611 1.388 1.378 0.610
3 1.0 0.640 1.393 1.589 0.639
4 1.5 0.697 1.404 2.102 0.695
5 2.0 0.749 1.415 2.546 0.745
6 2.5 0.795 1.427 3.103 0.790

Table 5.1: Values of the computed mole fraction of species A, the maximum of u(r) (the
threshold to distinguish between A and B), and the computed molar reaction enthalpy
for the model reaction A 
 B as a function of hmin,2. In this table the last column
was calculated from Eq. (5.54) and calculating the constant J from the first system. The
temperature is 2.0 in reduced units.
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Figure 5.1: Double-well spring potential (Eq. (5.52)) used for the model reaction A
 B.
The distance between the potential wells is 2w, and hmin,2 is the height of the second
well. The height of the barrier between the two wells changes with hmin,2.
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∂Ĥ

) T
,V
,µ

j Component 1
Component 2
Intersect
Fitted line

Figure 5.2:
(
∂Ni/∂Ĥ

)
T,V,µj

as a function of the small system size 1/L for x1 = 0.2.

In agreement with Eq. (5.21), the trend is linear until it deviates for small 1/L when
the small system size is close to the simulation box size. The thermodynamic limit was
obtained from a linear extrapolation (black lines and red points) between the two dashed
lines.
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Figure 5.3: Partial enthalpies in the grand-canonical ensemble. Data was sampled for
small systems embedded in a larger simulation box, maintained in the canonical ensem-
ble. These values were extrapolated to the thermodynamic limit (see also Fig. 5.2). For
comparison, partial enthalpies were computed directly in grand-canonical simulations.
The chemical potential was adjusted to approximate the density and composition used in
the canonical ensemble. Clearly both approaches yield identical results.
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Figure 5.4: Partial enthalpies in the NV T ensemble. A series of NV T simulations with
different particle numbers were carried out (method (i)). The red line is obtained by
converting the molar enthalpies from Fig. 5.3, using the Kirkwood-Buff coefficients needed
to calculate A and B.
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Figure 5.5: The partial molar enthalpies of component 1 and component 2, calculated
using numerical differentiation (ND), the difference method (DM), and the small system
method (a), SSM. The results from the difference method is however not in agreement
with the two other methods. This is caused by the poor sampling when changing the
identity of particles.
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Figure 5.6: Partial molar reaction enthalpies as a function of the difference in energy
between the two minima. The slope of the fitted curve is 0.912.
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Abstract

We show how we can find the enthalpy of a chemical reaction under non-ideal con-
ditions using the Small System Method to sample molecular dynamics simulation
data on fluctuating variables. This method, created with Hill’s thermodynamic
analysis, is used to find properties in the thermodynamic limit, such as thermo-
dynamic correction factors, partial enthalpies, volumes, heat capacities and com-
pressibility. The values in the thermodynamic limit at (T, V, µj), are then easily
transformed to other ensembles, (T, V,Nj) and (T, P,Nj), where the last ensemble
gives the partial molar properties which are of interest to chemists. The dissociation
of hydrogen from molecule to atoms was used as a convenient model system. Molec-
ular dynamics simulations were preformed with three densities; ρ = 0.0052 g cm−3

(gas), ρ = 0.0191 g cm−3 (compressed gas) and ρ = 0.0695 g cm−3 (liquid), and
temperatures in the range; T = 3640 − 20800 K. The enthalpy of the reaction
was observed to follow a quadratic trend as a function of temperature for all
densities. The enthalpy of reaction was observed to only have a small pressure
dependence. With a reference point close to an ideal stateÂ (T = 3640 K and
ρ = 0.0052 g cm−3), we where able to calculate the thermodynamic equilibrium
constant, and thus the distance from ideal conditions for the lowest density. We
found the thermodynamic equilibrium constant to increase with increasing temper-
ature, and with a negligible pressure dependence. Taking the enthalpy variation
into account in the calculation of the thermodynamic equilibrium constant, we
found the ratio of activity coefficients to be in the order of 0.7–1.0 for the lowest
density, indicating repulsive forces between H and H2. The study shows that the
compressed gas- and liquid density at higher temperatures are far from ideal con-
ditions. It is important to have a method that can give access to partial molar
properties, independent of the ideality of the reacting mixture. Our results shows
how this can be achieved with the use of the Small System Method.

6.1 Introduction

It is cumbersome to obtain reliable values for enthalpies, in the laboratory as well as
by computations [13]. Thanks to progress with a new molecular simulation method,
the so-called Small System Method for prediction of thermodynamic data [22–24],
one can now find precise values for partial molar enthalpies is a single simulation,
from systematic studies of fluctuations in a small volume element [25]. The Small
System Method uses ideas first described by Hill [50], and the small system is
embedded in a reservoir to examine the fluctuations in a small part under controlled
conditions.

Molecular dynamics simulation have over the years been important for studies
of partial molar properties, such as enthalpy and volume as they determine the
equilibrium properties of a multicomponent system. Kirkwood and Buff established
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already in 1951, a first fluctuation-based method for calculation of partial molar
properties from pair correlation functions [108]. Sindzingre et al. calculated the
partial molar enthalpy and -volume in terms of time averages [19, 112]. Shing and
Chung [113] calculated the partial molar volume and internal energy for an infinitely
dilute system in 1988, and found them to be strongly dependent on the isothermal
compressibility. Debendetti used a fluctuation-based method to determine partial
molar volumes, energies and enthalpies [114–116]. Most of these methods do not
give the connection between the thermodynamic limit values for several ensembles,
however, and the Small System Method may therefore offer an advantage.

Liu et al. have successfully used the method to find matrices of thermodynamic
factors, needed to relate Fick’s diffusion coefficients to Maxwell-Stefan diffusivities
[54, 55]. The method was also used to find Kirkwood-Buff integrals, which are
central for determination of thermodynamic properties in general (see e.g. Ben
Naim, [109]). Kirkwood-Buff integrals for closed systems are unable to deal with
linearly dependent variables [25], while this restriction is lifted in the Small System
Method, where the sampling takes place in a small, but open system. This is a
great advantage of the Small System Method [56], and it is therefore thought to
be particularly well suited for chemical reactions, as demonstrated by us for a toy
reaction studied in [25]. This has given us the motivation to apply the method to
a more realistic reaction.

The aim of this work is to determine the reaction enthalpy and related thermo-
dynamic properties for a more realistic reaction, namely the hydrogen dissociation
reaction. In earlier work [48] we established that the system of atoms and molecules
could be well modeled if the temperature was not too low (above 156 K). Using
the dissociation constant based on mole fractions, Kx, and the van’t Hoff equation,
we found an enthalpy of reaction equal to 430 kJ/mol in a dense fluid of the react-
ing mixture. We shall now find the reaction enthalpy from a direct calculation of
partial molar enthalpies and compare with that value.

The present work can be seen as an extension of the work by Xu and coworkers
on chemical reactions [26, 31], but also of the Small System Method by Schnell et
al. [22–24]. We shall present results for the compressibility, partial molar volumes,
thermodynamic correction factors, and partial molar enthalpies of components of
the hydrogen dissociation reaction. From this we find the reaction enthalpy and the
true thermodynamic equilibrium constant. A classical description of the hydrogen
dissociation reaction has been established [48], producing a convenient basis for
the work. The hydrogen dissociation reaction is interesting e.g. in the physics of
plasma modeling [88, 117, 118]. In the chemical world it is relevant for separation
of hydrogen gas from a gas mixture (e.g. from the water gas shift reaction) using
a palladium membrane [11, 64, 72]. At the surface of this membrane, molecular
hydrogen dissociates and atomic hydrogen diffuses through the membrane and is
recombined to molecular hydrogen at the opposite surface [11,68,72].

The paper is structured as follows. In Section 6.2 we give a short recapitulation
of the Small System Method. A description of the interaction potential and the
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simulation- and calculation procedures follow. Section 6.3 gives results, and finally
we give conclusions in Section 6.4.

6.2 Methods

6.2.1 The Small System Method

The Small System Method is used here to give access to partial enthalpies in the
thermodynamic limit for a binary system, but the method can also be generalized.
The enthalpies were first calculated for small systems at constant (T, V, µj). After
going to the thermodynamic limit, the Small System Method, by Schnell et al. [25]
gives the procedure to transform the variables to other ensembles. The expressions
for these transformations between sets of partial enthalpies for two components i
and j from (T, V, µj) to (T, V,Nj) is given in Eqs. (6.1) and (6.2)

(
∂H

∂Ni

)

T,V,Nj 6=i

=Bjj

[
Ajj

(
∂H

∂Ni

)

T,V,µj 6=i

+Aij

(
∂H

∂Nj

)

T,V,µi6=j

]
(6.1)

(
∂H

∂Nj

)

T,V,Ni6=j

=Bii

[
Aii

(
∂H

∂Nj

)

T,V,µi6=j

+Aij

(
∂H

∂Ni

)

T,V,µj 6=i

]
(6.2)

and then to (T, P,Nj)

(
∂H

∂Ni

)

T,P,Nj 6=i

=
ViH

V
+
Nj
V

[
Vj

(
∂H

∂Ni

)

T,V,Nj 6=i

− Vi
(
∂H

∂Nj

)

T,V,Ni6=j

]
(6.3)

with the last expression as the present target. In Eqs. (6.1) and (6.2) a summa-
tion is performed over all double appearing indices.The expressions requires the
thermodynamic limit value of:

• Partial enthalpies at constant T, V, µ

• Thermodynamic correction factors, Γij at T, V, µ (see Eq.(6.4))

• Partial molar volumes, Vi at constant T, V, µ

• Matrices Aij and Bij as defined by Kirkwood and Buff [108]

The input quantities are defined and briefly explained in the following subsections
for a binary mixture. For further details, see [25].

Partial enthalpies

The partial enthalpy of component i, hi, at constant T, V, µj is determined from
following formula for fluctuations of the total energy and density in the small system
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[25]

hi(L) =

(
∂H

∂Ni

)

T,V,µj 6=i

= −〈UNi〉 − 〈U〉〈Ni〉+ kBT 〈Ni〉
〈N2

i 〉 − 〈Ni〉2
(6.4)

Brackets denote time averages. The Small System Method gives the enthalpy as
a (predominantly) linear function of the inverse of the radius of the small sys-
tem used in the sampling of fluctuation [22–24], L. The derivative of H (in the
thermodynamic limit) is found by extrapolation.

hi(L) = hi,∞ +
A′i
L

+ ... (6.5)

Here, hi,∞ is the derivative of H at constant (T, V, µj) in the thermodynamic limit
(needed in Eqs.(6.1) – (6.3)). For a spherical sampling volume, the scaling law only
has the linear term, as the non linear terms can be neglected [22].

Thermodynamic correction factor

The thermodynamic correction factor, Γij , is defined as

Γ−1
ij =

1

β

(
∂ln 〈Ni〉
∂µj

)

T,V,µk 6=i

=
1

β〈Ni〉

(
∂〈Ni〉
∂µj

)

T,V,µk 6=i

(6.6)

where β = 1/kBT , kB is Boltzmann’s constant, µ is the chemical potential and
subscript i or j denote H or H2. At constant (T, V, µj) we determine Γij from the
fluctuation theory formula derived by Reed and Ehrlich [119].

Γ−1
ij (L) =

〈NiNj〉 − 〈Ni〉〈Nj〉
〈Nj〉

(6.7)

The Small System Method gives the inverse of the thermodynamic correction fac-
tor as a (predominantly) linear function of the inverse of L [22–24] for constant
(T, V, µj):

Γ−1
ij (L) = Γ−1

ij,∞ +
Aij
L

+ .... (6.8)

We use this to obtain Γ−1
ij,∞ in the thermodynamic limit as a function of T, V, µj .

In the following sections the values in the thermodynamic limit is used.

Kirkwood-Buff integrals and the matrices Aij , Bij

The integral over the pair correlation function gij of the particle fluctuations, is
called the Kirkwood-Buff integral after the groundbreaking work of Kirkwood and
Buff [108]

Gij =

∫
[gij(r)− 1]dV = V

〈NiNj〉 − 〈Ni〉〈Nj〉
〈Ni〉〈Nj〉

− δij
ci

=
1

ci
Γ−1
ij −

δij
ci

(6.9)



90
The reaction enthalpy of hydrogen dissociation calculated with the

Small System Method from simulation of molecular fluctuations

where Gij is the Kirkwood-Buff integral at constant T, V, µj , δ is the Kroenecker
delta, and ci is the concentration of i (ci = Ni/V ). The last equality in Eq.(6.9)
was obtained by introducing Eq.(6.7) in the middle equality of Eq (6.9). Note that
Gij and (1/ci)Γ

−1
ij are symmetric. Several properties can be expressed by these

integrals, such as partial molar volume and isothermal compressibility. Both the
thermodynamic limit value of Gij and Γ−1

ij,∞ are as a function of (T, V, µj).

Following Kirkwood and Buff [108] or more transparently Ben Naim [109] (Eqs.
4.23 and 4.24), we have for the symmetric Bij matrix, at constant (T, V, µj)

Bij = Bji =
kBT

V

(
∂Nj
∂µi

)

T,V,µk 6=i

= kBT

(
∂cj
∂µi

)

T,V,µk 6=i

(6.10)

= cicjGij + ciδij =
1

V
(〈NiNj〉 − 〈Ni〉 〈Nj〉)

where Gij always are Kirkwood-Buff integrals which refer to the grand canonical
ensemble. Furthermore we define the matrix Aij , at constant T, V,Nj , by

Aij = Aji = βV

(
∂µj
∂Ni

)

T,V,Nk 6=i

= β

(
∂µj
∂ci

)

T,V,ck 6=i

(6.11)

The Aij and Bij matrices are each other’s inverse, so:
∑

j

BijAjk = δik (6.12)

These properties can be used to characterize a binary reacting mixture, as we shall
see.

Properties from the Kirkwood-Buff integrals

Kirkwood and Buff gave the derivative of the chemical potential of one component
with respect to its mole fraction in a binary mixture, at constant T and P

1

kBT

(
∂µi
∂xi

)

T,P

=
1

xi
+

cj (2Gij −Gii −Gjj)
1 + xicj (Gii +Gjj − 2Gij)

(6.13)

where xi is the mole fraction of i (xi = Ni/(NH +NH2
); here NH2

is the number of
molecules so that xH +xH2

= 1). The relation between the thermodynamic correc-
tion factor and the activity coefficient, γi, was also given in terms of Kirkwood-Buff
integrals [23] (

∂ln γi
∂lnxi

)

T,P

= − xicj(Gii +Gjj − 2Gij)

1 + cjxi(Gii +Gjj − 2Gij
(6.14)

The partial molar volume (Eq.(6.15)) and the isothermal compressibility (Eq.(6.16))
for a binary mixture are

Vi =
1 + (Gjj −Gij)cj

ci + cj + cicj(Gii +Gjj − 2Gij)
(6.15)
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and

κkBT =
1 +Giici +Gjjcj +

(
GiiGjj −G2

ij

)
cicj

ci + cj + (Gii +Gjj − 2Gij) cicj
(6.16)

Thermodynamic properties of the chemical reaction

The enthalpy of a system is H = U +PV , where U is the internal energy, P is the
pressure, and V is the volume. The enthalpy at constant T and P can be written
as

H =

n∑

i=1

HiNi (6.17)

where Hi is the partial molar enthalpy of component H or H2. Thus, the partial
molar enthalpy is the derivative of H with respect to the number of either H or
H2, Ni:

Hi =

(
∂H

∂Ni

)

T,P,Nj

(6.18)

The enthalpy of a reaction is given by the partial molar enthalpies of the compo-
nents

∆rH = 2HH −HH2
(6.19)

The equilibrium constant can be calculated from the van’t Hoff equation, at con-
stant pressure, if the enthalpy of reaction is known at standard conditions.

[
d(lnKth)

d(1/T )

]

P

= −∆rH



R
(6.20)

Superscript 
 denotes the standard state (1 bar). In the presence of a varying
pressure, there is an additional term in this equation:

d lnKth = −∆rH



R
d

(
1

T

)
− ∆rV




RT
dP (6.21)

where the last term gives the pressure dependence, and ∆rV

 is the reaction

volume.

With ideal gas and pure component as standard state at 1 bar pressure, the chemical
potential is

µi = µ

i +RT ln fi/P


 = µ
 +RT ln(xiPγi)/P

 (6.22)

The fugacity of the gas component, fi, is equal to the partial pressure of the gas,
which is xiP , times the activity coefficient γi. By introducing this into the condition
∆G = 0 for the reaction in question we obtain the equilibrium constant in terms
of the dissociation constant, Kx, total pressure, and the activity coefficient ratio:

Kth =
x2

H

xH2

P

P

γ2

H

γH2

= Kx
P

P

γ2

H

γH2

= KP
γ2

H

γH2

(6.23)
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where KP = KxP/P

 is the pressure based dissociation constant. The partial

molar heat capacities of the components and the reaction and the isothermal com-
pressibility of the mixture are found from standard expressions:

CP =

(
∂H

∂T

)

P

(6.24)

κT = − 1

V

[
∂V

∂P

]

T

(6.25)

The ideal value of the heat capacity of the reaction is 3R/2, when vibrational modes
are not excited. For an ideal gas, κT = 1/P .

The temperature T is calculated from the average kinetic energy per degree of
freedom of all particles:

T =
1

3kBNp

Np∑

i=1

miv
2
i (6.26)

where v2
i = v2

x,i+ v2
y,i+ v2

z,i and Np = NH + 2NH2 is the total number of atoms.

From the virial theorem, the expression for the pressure in the presence of two- and
three-particle interactions is:

P =
kBTNp
V

− 1

3V

Np∑

i=1


1

2

∑

j pair with i

∂u2(rij)

∂rij
rij (6.27)

+
∑

j<k triplet with i

(
∂hj,i,k(rji, rik, θj,i,k)

∂rji
rji

+
∂hj,i,k(rji, rik, θj,i,k)

∂rik
rik +

∂hj,i,k(rji, rik, θj,i,k)

∂rjk
rjk

)]

The first term in Eq. (6.27) gives the ideal contribution to the pressure, while
the second term gives the contribution from the two- and three particle potentials,
respectively. For a discussion regarding the pressure calculations, see [48].

6.2.2 Interaction Potentials

The chemical reaction was modeled accurately with molecular dynamics simulations
using anaytical potentials derived from quantum mechanical results, in the same
manner as [3,26,29,31]. Stillinger and Weber [3] showed that it was sufficient to use
an interaction potential, U , which is the sum of two- and three-particle interaction
contributions, to describe the essentials of a chemical reaction:

U(r1, ..., rN ) =
∑

i<j

u(2)(rij) +
∑

i<j<k

u(3)(ri, rj , rk) (6.28)
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here u(2) and u(3) are the two- and three-particle potentials, given in Eqs. (6.29)
and (6.30), respectively. Based on the quantum mechanical results of Diedrich
and Anderson [46, 47], Kohen et al derived expressions for two- and three-particle
potentials [29] for hydrogen.

u(2)(r) =

{
α (β2r

−p − 1) exp
[

γ2
r−rc

]
if r < rc

0 if r > rc
(6.29)

here α = 5.59 · 10−21 kJ, β2 = 0.044067 Åp, γ2 = 3.902767 Å, rc = 2.8 Å and p = 4
are constants [29]. α is chosen such that the minimum of the potential gives the
binding energy of hydrogen (432.065 kJ mol−1) [29] at the bond distance between

two hydrogen atoms, re = 0.74 Å [47]. When the distance between two atoms is
larger than the cut-off distance, r ≥ rc, the potential is zero. Reduced units, based
on the pair potential, are used throughout the paper. σ is defined at u2(σ) = 0,

giving σ = p
√
β2 = 0.458Å, and ε is based on the binding energy of hydrogen, so

that −ε is the minimum of the pair potential, giving ε/kB = 51991 K.

The three particle-potential is given as a sum over the contribution from each par-
ticle, and it’s role is to prevent formation of more than one bond to each hydrogen
atom.

u(3) = hi,j,k(rij , rjk, θi,j,k) + hj,i,k(rji, rik, θj,i,k) + hi,k,j(rik, rkj , θi,k,j) (6.30)

Where the h-functions are given by

hj,i,k(rji, rik, θj,i,k) =

{
λa exp

[
γ3

(rji−rc) + γ3
(rik−rc)

]
if rji < rc and rik < rc

0 otherwise
(6.31)

and
a =

[
1 + µ cos(θj,i,k) + ν cos2(θj,i,k)

]
(6.32)

λ = 2.80 · 10−21 kJ, µ = 0.132587, ν = −0.2997 and γ3 = 1.5 Å are constants [29].
The cut-off distance, rc, is the same for both the two- and three-particle interactions
(2.8 Å). The interaction potential we use has a finite range (has no long range
dispersion attraction). A potential tail plays no role for the chemical reaction.

In the triad subscript j, i, k the middle letter i refers to the atom at the subtended
angle vertex. A full description and analysis of the interaction potential was given
earlier [48]. The total potential was used to determine the distance of chemically
bonded particles. When the distance between two particles was shorter than r∗ji ≤
4.0, they were labeled as part of a molecule, in agreement with the procedure used
by Stillinger and Weber [3].

6.2.3 Calculation details

The simulation procedure was given earlier [48], and for this reason only the main
details are given here. The simulation box contained 1000 particles (Np = NH +
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2NH2 = 1000), with dimensions V = LxLyLz, where Ly = Lz = Lx/2. The mass of
one hydrogen atom, m0 = 1.67 ·10−27 kg, was used to define the reduced total mass
density ρ∗ = ρσ3/m0. This implies that the reduced total mass density equals the
reduced total molar density in terms of (Np = NH +2NH2

). Reduced units are used
throughout the paper, and are indicated by superscript ∗. The relations between
real and reduced units is given in Table 6.1, ε/kB = 51991 K and σ = 0.458 Å [48].

Table 6.1: Relations between reduced and real units, ε/kB = 51991 K, σ=0.458 Å and
m0 = 1.67 · 10−27 kg.

Reduced variables Formula
Mass m∗ = m/m0

Distance r∗ = r/σ
Energy u∗ = u/ε

Time t∗ = (t/σ)
√
ε/m0

Temperature T ∗ = kBT/ε
Density ρ∗ = ρσ3/m0

Pressure P ∗ = Pσ3/ε

Velocity v∗ =v
√
m0/ε

Dissociation of H2

The degree of dissociation, mole fraction and pressure for the two higher densities
was studied by us in a previous paper [48]. These results are repeated here for ease
of reading, and supplemented with similar results for the low density ρ∗ = 0.0003,
see Tables 6.2–6.4.

For the lowest gas-like density, ρ∗ = 0.0003 in Table 6.2, we have almost 1 % dis-
sociation at the lowest temperature (T ∗ = 0.07), while for the highest temperature
(T ∗ = 0.4) we have almost 80 % dissociation.

Table 6.2: Number of H atoms (NH), mole fraction (xi), total pressure (P ∗) and the
dissociation constant (Kx) for the density, ρ∗ = 0.0003.

T ∗ 0.07 0.15 0.2 0.25 0.3 0.4
NH 8 254.17 477.81 574.69 710.95 760.95
NH2

496 372.92 261.09 212.65 144.52 119.52
xH2 0.984 0.595 0.353 0.270 0.169 0.136
Kx - 0.276 1.183 1.973 4.088 5.502
105P ∗ 1.138 3.045 4.672 6.347 7.983 11.148

By increasing the density to that of a denser gas, to ρ∗ = 0.0011 in Table 6.3, the
dissociation degree decreases as expected. It is less than 1 % at T ∗ = 0.07, and
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about 55 % at T ∗ = 0.4.

Table 6.3: Number of H atoms (NH), mole fraction (xi), total pressure (P ∗) and the
dissociation constant (Kx) for the density, ρ∗ = 0.0011.

T ∗ 0.07 0.15 0.2 0.25 0.3 0.4
NH 5.92 147.71 285.00 396.19 468.74 554.88
NH2

497.04 426.14 357.50 301.91 265.63 227.56
xH2 0.988 0.743 0.556 0.432 0.362 0.295
Kx - 0.089 0.354 0.745 1.126 1.689
105P ∗ 5.082 12.119 17.554 23.287 29.054 40.492

At the highest (liquid-like) density, ρ∗ = 0.004 in Table 6.4, a further decrease is
seen in the degree of dissociation. For the lowest temperature, T ∗ = 0.07, we now
have 0.2 % dissociation, while there is an increase to 29 % for T ∗ = 0.4.

Table 6.4: Number of H atoms (NH), mole fraction (xi), total pressure (P ∗) and the
dissociation constant (Kx) for the density, ρ∗ = 0.004.

T ∗ 0.07 0.15 0.2 0.25 0.3 0.4
NH 1.98 66.90 137.61 192.39 232.42 288.50
NH2

499.01 466.55 431.19 403.81 383.79 355.75
xH2 0.996 0.875 0.758 0.677 0.623 0.552
Kx - 0.018 0.077 0.154 0.228 0.363
104P ∗ 4.094 8.478 11.292 14.051 16.729 21.892

Simulations were carried out for the series of composition and temperature listed
in these tables, and thermodynamic data were computed according to this and the
equations given in Section 2.1.

Simulation details

The Small System Method was applied according to procedures described by Schnell
et al. [22–25], using the formulas given in Section 2.1. The sampling volume was a
sphere with radius, L, varying from L = σ to L = 0.5Ly, where Ly is the length of
the simulation box in the y-direction. The sampling was done at random positions
in the simulation box. The number of particles and the energy were then computed
for each sphere (50 spheres per sampling) and the time average gave the fluctua-
tion of particle numbers and energy. The fluctuations were sampled every 100 time
step, and time averages were calculated every 10 000 time step, after equilibration
of the system. Data was plotted as a function of 1/L. In order to test reservoir size
dependence, we repeated some of the equilibrium simulations for the same density
with 4096 particles, no significant size dependence was observed.
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To check that the method performed in the expected way, we plotted the thermo-
dynamic correction factors, obtained from particle fluctuations, versus the inverse
sphere size (1/L). The plots are given in Figure 6.1 for T ∗ = 0.07, for all densities
(ρ∗ = 0.0003, ρ∗ = 0.0011 and ρ∗ = 0.004).

For the lowest density ρ∗ = 0.0003 in Figure 6.1(a), we see that Γ−1
HH as well as Γ−1

HH2

vary linearly with 1/L. The linear regression was in all cases done for points in the
region 0.125 ≤ 1/L∗ ≤ 0.16, a range where such a dependence was observed. The
range corresponded to spheres that included from 12 to 16 particles. It was chosen
after observing that the inverse thermodynamic correction factor for systems with
4096 and 1000 particles coincide in this range.

The values reported are as expected. When the radius of the small system ap-
proaches zero, the value of Γ−1

ii approaches 1, as a volume with one particle is
ideal. The value of Γ−1

HH = 1 obeys this already for a wide range of values, while
Γ−1

H2H2
increases from approximately 0.9 for the biggest sphere to 1 for 1/L = 0.4

The correlation between H and H2 is approximately zero, as the system mainly
contains H2, explaining Γ−1

HH2 = 0.

The results for the higher densities followed the same trend. By increasing the
density to ρ∗ = 0.0011, see Figure 6.1(b), we find again that Γ−1

HH and Γ−1
H2H2

are constant, while the Γ−1
H2H2

increases with decreasing size of the sphere, and at
1/L = 0.5 we see that it is approximately 1. For the highest density, ρ∗ = 0.004
in Figure 6.1(c), we again see that Γ−1

HH is approximately 1 and independent of the
sizes of the spheres, while Γ−1

H2H2
increases towards 1 for small spheres as expected.

For all three densities, there is only a variation in the value of Γ−1
H2H2

. For all
densities the factor increases with decreasing size of the sphere, and we also see
that by increasing the density (and the number of H2) we decrease the value in the
thermodynamic limit. The limiting value of 1 for infinitely small spheres is reached
for all densities, the approach being faster for the lowest density. Γ−1

HH and Γ−1
HH2

are constant at 1 and 0, respectively, for all densities.

All these results on Γ−1
ij (L) taken together confirm that the method works in a

manner expected for the thermodynamic correction factor for the range of the
variables chosen. This range is well above the limit where quantum mechanical
effects take over [48], and away from boundaries where singularities can be expected
[25]. We are therefore confident about the results.

No further results will be shown for Γij(L), as the smallness of the system is
not a topic per se. We present results which all have been extrapolated to the
thermodynamic limit.
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Figure 6.1: The inverse thermodynamic correction factor, Γ−1
ij , for densities ρ∗ =

0.0003, ρ∗ = 0.0011 and ρ∗ = 0.004 at T ∗ = 0.07. At this temperature it was observed
that the degree of dissociation was independent of density, within the numerical accuracy.
Linear regression was done in the region 0.125 ≤ 1/L∗ ≤ 0.16
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6.3 Results

The main outcome of the calculations are the sets of enthalpies at constant (T, V, µj),
(T, V,Nj) and (T, P,Nj), and the results derived from them. We present first the
enthalpies obtained for the thermodynamic limit in the ensemble (T, V, µj), the
original data from the sampling of fluctuations in the small system, and the cor-
responding sets for other ensembles, obtained by Lagrange transformations, see
Eqs.(6.1) and (6.2).

The matrices Aij and Bij are not directly reported, instead we give Γ−1
ij which is

equivalent to Bij , and which gives Aij . The temperature interval T ∗ = 0.07− 0.4
was used. We proceed to present results for the partial enthalpies in the different
ensembles, the thermodynamic correction factors, the partial molar volumes, and
the isothermal compressibility, to elucidate system properties, before we determine
the enthalpy of reaction and the equilibrium constant as a function of temperature.

6.3.1 Partial molar enthalpy

The partial enthalpy at constant (T, V, µj), h, was found using the fluctuation
method described in Section 6.2.3 for T ∗ = 0.7 − 0.4. The results for h for H
and H2 (for the small system) are shown as a function of the inverse radius of the
small system in Figure 6.2 for T ∗ = 0.2. At this temperature, the mole fraction of
H2 varies from xH2

= 0.353 (ρ∗ = 0.0003) to xH2
= 0.758 (ρ∗ = 0.004) between

the lowest and highest densities. The linear regression was preformed in the range
0.15 ≤ 1/L∗ ≤ 0.3. The range was chosen after comparing results for systems
with with 1000 and 4096 particles. No size effect was found in this range. At the
other temperatures, the plots looked like Figures 6.2(a) and 6.2(b), and are for this
reason not shown.

The extrapolated partial enthalpies in the thermodynamic limit are given in Table
6.5 for all temperatures, T ∗ = 0.07−0.4, and all densities; ρ∗ = 0.0003, ρ∗ = 0.0011
and ρ∗ = 0.004. All results showed a linear dependence and the linear regression
was done for 0.15 ≤ 1/L∗ ≥ 0.3 in all cases.

From Table 6.5 we see that the partial enthalpy increases with increasing temper-
ature, for H as well as H2, for all densities. Using the method by Schnell et al. [25]
we transformed the partial enthalpies at (∂H∗/∂Ni)T,V,µj 6=i to (∂H∗/∂Ni)T,V,Nj 6=i
and finally to the partial molar enthalpies, (∂H∗/∂Ni)T,P,Nj 6=i . Where the partial
molar enthalpies gives us access to the reaction enthalpy of the system as a function
of the temperature, independent of the ideality of the mixture.

A plot of the data in Table 6.5 partial enthalpies in the different ensembles;
(T, V, µj), (T, V,Nj) and (T, P,Nj) is given in Figure 6.3. The results for the differ-
ent conditions may be interesting for a set of application purposes. Additional data
are added in the plot for the highest densities, ρ∗ = 0.0011 and ρ∗ = 0.004. The
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Figure 6.2: Partial enthalpies determined from fluctuation at (T, V, µj), hi, as a function
of the size of the sphere (1/L∗) at T ∗ = 0.2. The linear regression was done in the region
0.15 ≤ 1/L∗ ≤ 0.3.
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Table 6.5: Partial enthalpies, hi,∞ ((∂H∗/∂Ni)T,V,µj 6=i), in the thermodynamic limit. All
values are given in reduced units.

ρ∗ = 0.0003 ρ∗ = 0.0011 ρ∗ = 0.004
T ∗ hH,∞ hH2,∞ hH,∞ hH2,∞ hH,∞ hH2,∞
0.07 0.34 -0.46 0.44 -0.42 0.59 -0.27
0.15 0.60 0.18 0.59 0.21 0.59 0.46
0.2 0.79 0.57 0.73 0.58 0.59 0.86
0.25 0.98 0.95 0.89 0.93 0.61 1.15
0.3 1.19 1.31 1.07 1.27 0.66 1.47
0.4 1.59 2.04 1.44 1.92 0.78 2.08

difference is small for low gas-like densities, as expected, and becomes substantial
at liquid-like densities. At the lowest density, ρ∗ = 0.0003 in Figure 6.3(a), we see
for the lowest temperatures, T ∗ ≤ 0.15, that the values for (T, V, µj) and (T, V,Nj)
are the same, for both H (open symbols) and H2 (closed symbols). The mixtures
at these conditions are then ideal.

At a higher temperature, the values for H2 become more different, while they are
approximately constant for H. This is in agreement with the results observed for
the inverse thermodynamic correction factor, cf. Table 6.6. Increasing the density
to ρ∗ = 0.0011 in Figure 6.3(b) we see a deviation for H2 (closed symbols) at
high temperatures, T ∗ ≥ 0.15; while for H (open symbols) we see deviations with
increasing temperature. For the highest density, ρ∗ = 0.04, we see that partial
enthalpies of H2 is constant for low temperature, but becomes significantly different
at high temperature. For H a deviation is seen over the whole temperature range,
but increases with increasing temperature.

The results for the ensemble (T, P,Nj) in these figures were used to construct the
enthalpy of reaction. Before we show the outcome of that, we consider the other
thermodynamic results.

6.3.2 Thermodynamic correction factor

The inverse thermodynamic correction factor in the thermodynamic limit, Γ−1
ij,∞,

for all temperatures (T ∗ = 0.07− 0.4) and densities (ρ∗ = 0.0003, ρ∗ = 0.0011 and
ρ∗ = 0.004) are given in Table 6.6. The values at infinity was found from linear
extrapolation of the curve between 0.125 ≤ 1/L ≤ 0.16, according to plots shown
in Section 6.2.3

The inverse thermodynamic correction factors are also plotted in Figure 6.4 as a
function of temperature for all densities. Red open symbols corresponds to Γ−1

HH,∞,

blue filled symbols to Γ−1
H2H2,∞ and black cross shaped symbols to Γ−1

HH2,∞. The

figure shows that Γ−1
HH,∞ (red open symbols) is approximately constant independent
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Figure 6.3: Partial enthalpies for all densities at the different ensembles; T, V, µj (�),
T, V,Nj (◦) and T, P,Nj (4). Open symbols corresponds to values for H while closed
symbols represent H2.
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Table 6.6: The inverse thermodynamic correction factors, Γ−1
ij,∞, at constant µ, V, T in the

thermodynamic limit.

ρ∗ = 0.0003 ρ∗ = 0.0011

T ∗ Γ−1
HH,∞ Γ−1

HH2,∞ Γ−1
H2H2,∞ Γ−1

HH,∞ Γ−1
HH2,∞ Γ−1

H2H2,∞
0.07 1.00 -0.00 0.87 1.01 -0.00 0.60
0.15 1.00 -0.04 0.91 0.98 -0.08 0.67
0.2 0.98 -0.08 0.94 0.97 -0.16 0.73
0.25 0.96 -0.09 0.97 0.93 -0.20 0.78
0.3 0.96 -0.12 0.97 0.91 -0.24 0.82
0.4 0.94 -0.11 0.99 0.88 -0.28 0.87

ρ∗ = 0.004

T ∗ Γ−1
HH,∞ Γ−1

HH2,∞ Γ−1
H2H2,∞

0.07 1.01 -0.00 0.13
0.15 1.02 -0.07 0.21
0.2 0.97 -0.17 0.23
0.25 0.97 -0.22 0.34
0.3 0.95 -0.26 0.38
0.4 0.91 -0.33 0.44

of temperature and density. For all densities; ρ∗ = 0.0003 (4), ρ∗ = 0.0011 (◦)
and ρ∗ = 0.004 (�), we see that Γ−1

HH,∞ ∈ [0.9 : 1]. A small decrease is found
from 1 at T ∗ = 0.07 with increasing temperature, but the value stays within the
given interval. An increasing temperature leads to an increasing amount of H in
the system, see Tables 6.2–6.4.

The value of Γ−1
H2H2,∞ (filled blue symbols) is seen to increase with temperature,

as the amount of H2 decreases. For the lowest density, ρ∗ = 0.0003 (N), we see
that it increases from approximately 0.9 to 1 for the investigated temperature
interval. Increasing the density to ρ∗ = 0.0011 (•), a steeper increase is seen
with temperature, and this is further enhanced by increasing the density to ρ∗ =
0.004 (�). If we compare Γ−1

HH2,∞ for the different densities we see the smallest
temperature dependence for the lowest density, ρ∗ = 0.0003 (∗). For the two
higher densities, ρ∗ = 0.0011 (×) and ρ∗ = 0.004 (+), we see a bigger decrease
with increasing temperature.

The value of the thermodynamic correction factor for one component interacting
with itself is 1 if the system is ideal (pure component; ideal gas). The value is zero
for interactions between different components in this state. We conclude that the
gas-like fluid at the lowest temperature and density, T ∗ = 0.07, ρ∗ = 0.0003, is
close to an ideal mixture. This is not surprising since, only 0.8% of the hydrogen
is dissociated at the temperature (8 H atoms out of a 1000 particles). This is
supported by a very small contribution from the three-particle interaction on the
pressure.

The conclusion is supported by the expression for the chemical potential given by
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Figure 6.4: The inverse thermodynamic correction factor at the thermodynamic limit,
Γ−1
ij,∞ for all three densities under consideration (ρ∗ = 0.0003, ρ∗ = 0.0011 and ρ∗ =

0.004). The values are also given in Table 6.6. Red open symbols represent Γ−1
HH,∞, blue

closed symbols Γ−1
H2H2,∞ and black cross symbols Γ−1

HH2,∞.

Kirkwood and Buff [108]

µ1/kBT = log x1 + f2x
2
2 + ...+ µ◦/kBT (6.33)

where

f2 =
G◦11 +G◦22 − 2G◦12

2v◦1
(6.34)

Here the superscript ◦ indicates that the cluster integrals are evaluated in the
infinitely dilute solvent (pure H2). Here component 1 represent the solvent (H2)
and 2 the solute (H). We used the values at T ∗ = 0.07 for G◦ii and G◦ij . At this
temperature we do not have a pure component (0.8 % dissociation), but we assume
that the effect of this is negligible, and that the system still behaves approximately
like a pure component system. f2 in the above equation can then be directly linked
to the activity coefficient for H, γH, via

f2x
2
2 = ln γ2 (6.35)
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From this we obtained γ2 = γH = 0.99, indicating that we are indeed very close to
ideal solution conditions.

6.3.3 Compressibility and reaction volume

The isothermal compressibility of the reacting mixture, κT , was calculated using
Eq. (6.16). The results for all densities (ρ∗ = 0.0003; ρ∗ = 0.0011 and ρ∗ =
0.004) are given in Figure 6.5. Studying Figure 6.5 we see that κT varies with
density, and as expected, the lowest density, ρ∗ = 0.0003, is easier to compress
than the liquid, ρ∗ = 0.004. The smaller the value of κT , the bigger the pressure
needed to compress the mixture. This is also reflected in Figure 6.5, where we
see that the compressibility of the high density mixture, ρ∗ = 0.004, is constant,
and approximately zero throughout the temperature interval. For the two lower
densities, ρ∗ = 0.0011 and ρ∗ = 0.0003, we see a decrease in the compressibility
with increasing temperature.
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Figure 6.5: The compressibility of the solution, κT , as a function of temperature for
all densities; ρ∗ = 0.0003; (�), ρ∗ = 0.0011; (◦) and ρ∗ = 0.004; (4). The ideal
compressibility (1/P ) is given with lines for all densities.

The gas-like fluid with the lowest density, ρ∗ = 0.0003, is the easiest mixture
to compress. It is also possible to compress the moderate density, ρ∗ = 0.0011,
corresponding to a compressed gas mixture, though significantly less than the lowest
density. For a moderate density, the molecules are sufficiently close enough to be
affected by intermolecular forces, and is thus still compressible [113].
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The ideal compressibility (1/P ) is shown for comparison in Figure 6.5. It is fair to
say that the low density mixture at low temperature has results that are relatively
speaking, closest to ideal condition. Relatively speaking, the other fluids are further
away from the ideal result.

The partial molar volumes of H and H2 were calculated from Eq. (6.15) and used to
compute ∆rV for all densities, see Figure 6.6. As the difference between the partial
molar volumes of H and H2 increases with decreasing density and temperature,
more curvature is seen for ∆rV for the lowest density compared to the higher
densities.

6.3.4 The reaction enthalpy and the thermodynamic equi-
librium constant

In our previous work [48] we found a constant reaction enthalpy of 430 and 380 kJ
mol−1, assuming ideal conditions for the whole range of temperatures for ρ∗ = 0.004
and ρ∗ = 0.0011, respectively, from a plot of lnKx vs 1/T . We are now in a position
to evaluate this calculation for the lowest density, ρ∗ = 0.0003.
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The standard state. Pressure variations of the reaction enthalpy.

In order to determine the thermodynamic equilibrium constant from the van’t Hoff
equation, Eq. (6.23), we need information on the standard state, in the present
case defined by an ideal gas at 1 bar.

We have seen above, that the lowest density mixture of reactant and product are
close to be an ideal solution, because the thermodynamic correction factors for the
main components were close to unity at this condition, Γ−1

HH,∞ = 1.00, Γ−1
H2H2,∞ =

0.87, and Γ−1
HH2,∞ ≈ 0. In addition, the compressibility was observed to follow and

approximately equal to 1/P .

With more simulation results, it is possible to find the ideal limit. The limit will be
difficult to approach in this case, as the density must be much lower than the one
used here to reach a overall pressure of 1 bar in the system. We will for this reason
use the lowest density results at the lowest temperature, (T ∗ = 0.07, ρ∗ = 0.0003),
and use Eq.(6.21) to correct for the distance to 1 bar. At this temperature and
density, the overall pressure of the system is approximately 850 bar. This gives a
contribution of 7 units to Kth which must be added to the normal van’t Hoff term
(see Eq. (6.21)) for these conditions. For the whole range of pressures and densities
used, the correction term varies from 3 - 24 units. We shall find that this gives a
correction within the accuracy in the determination used otherwise.

The situation is illustrated in Figure 6.7. Studying this figure, we see that the
reaction enthalpy, ∆rH, varies little with pressure compared to temperature. At
T ∗ = 0.07 we therefore conclude that ∆rH(T ∗ = 0.07) = ∆rH


 is a good approx-
imation.

Constant enthalpy

The enthalpy of reaction does not vary much for the lowest density, so a first
estimate of Kth as a temperature function can be obtained using the approximation,
∆rH(T ∗ = 0.07) = ∆rH


 = 460 kJ mol−1.

With a constant enthalpy of reaction, the integrated van’t Hoff equation gives

ln

(
Kth,2

Kth,1

)
= −∆rH




R

(
1

T2
− 1

T1

)
(6.36)

Evaluating the equation from T1 = 0.07 (reference point) to T2 = 0.15, 0.2, 0.25, 0.3
or 0.4, we can find Kth(T2). From the known value of the equilibrium constant,
Kth,1, we find the ratio of the activity coefficients from Eq. (6.23). This ratio is
given in Table 6.7 for the lowest density only.

Here, KP (T ∗ = 0.07) = Kth(T ∗ = 0.07) per definition as T ∗ = 0.07 was used as
reference point. From Table 6.7 we see that Kth has the same order of magnitude as
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Figure 6.7: Reaction enthalpy, ∆rH as a function of the reduced temperature (T ∗) and
pressure (P ∗) and the fraction of H2 in the system (xH2), for all densities.

Table 6.7: Kth and KP and γ2
H/γH2 as a function of the temperature, assuming that

∆rH

 = 460 kJ/mol is constant, at ρ∗ = 0.0003.

T ∗ Kth KP γ2
H/γH2

0.15 722 628 1.2
0.2 4256 4116 1.0
0.25 12335 9344 1.3
0.3 25075 24356 1.0
0.4 60867 45778 1.3
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KP and that the fraction of the activity coefficients varies from 1.0–1.3, indicating
that we have attractive forces acting between H and H2 (assuming γH = 0.99
(Eq. (6.35)) is constant over the temperature interval and γH2

< 1). This is so
according to standard mixture theory when we compare with an ideal mixture
of pure components. As one would expect H and H2 to repel each other, this is
unexpected.

Enthalpy varies with temperature

The temperature dependence on the enthalpy was next included in the van’t Hoff
equation.

The variation in ∆rH as obtained from as a function of temperature, is given in
Figure 6.8 in reduced units for all densities. The line in the bottom of the plot
corresponds to the value found for the enthalpy by assuming the ideal condition
used before (plot of lnKx vs 1/T ) [48].

The reaction enthalpy (in J mol−1) was now fitted to a quadratic function of the
temperature, giving

∆rH(ρ∗ = 0.0003) = 0.0003T 2 − 8.9T + 4.9 · 105 (6.37)

∆rH(ρ∗ = 0.0011) = 0.0006T 2 − 19.5T + 5.5 · 105 (6.38)

∆rH(ρ∗ = 0.004) = 0.0007T 2 − 31.3T + 6.5 · 105 (6.39)

We rewrite the van’t Hoff equation, using the identity d(1/T ) = −(1/T 2)dT , and
∆rH = aT 2 + bT + c and obtain after integration

ln

(
Kth,2

Kth,1

)
=

1

R

[
aT + b lnT − c

T

]∣∣∣∣
2

1

(6.40)

The thermodynamic equilibrium constant and the ratio of the activity coefficients,
calculated from this equation and Eq.6.23 are shown Table 6.8 for the lowest density.
When we include the temperature dependence in ∆rH we see from Table 6.8 that

Table 6.8: Kth and γ2
H/γH2 as a function of the temperature at ρ∗ = 0.0003 assuming the

enthalpy of the reaction is described by a polynomial fit.

T ∗ Kth KP γ2
H/γH2

0.15 604 628 1.0
0.2 3208 4126 0.8
0.25 8606 9344 0.9
0.3 16564 24356 0.7
0.4 37932 45778 0.8

we get Kth in the same order of magnitude as KP and Kth from Table 6.7 (where
we used a constant ∆rH). The ratio of the activity coefficients are not constant
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Figure 6.8: Reaction enthalpies, ∆rH
∗, as a function of temperatures. The points (�)

represent results the simulation, ∆rH = 2HH−HH2 , the polynomial line represent the fit
of the reaction enthalpy as a function of the temperature, while the line represent the ideal
results, as found in previous paper [48] by plotting lnKx as a function of temperature
(1/T ).
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and follow the same temperature dependence as we observe for ∆rH. The values
indicates that we have repulsive forces (as expected) when γH ≈ 1 (Eq. (6.35)), at
variance with the data in Table 6.7.

From the approximation ∆rV (T ∗ = 0.07) = ∆rV

 in the last term in Eq.(6.21)

we calculate a correction due to pressure variation in Kth of 3–24, for the lowest to
the highest temperature. Comparing these values to the calculated values of Kth

in Tables 6.7 and 6.8 we see that they are negligible.

The results in Table 6.8 are therefore in agreement with results from the compress-
ibility, and molar volume of the low density mixture, which all show essentially
ideal behavior. We therefore conclude that the last method, where the temper-
ature dependence on the enthalpy is included gives the most accurate results for
Kth, as the repulsive forces between H and H2 is captured.

The partial molar heat capacities of H and H2, CP,i and the chemical reaction, are
now readily available from Eq. (6.24). The partial molar enthalpies were linear
functions of the temperature for all densities (not shown). This gave constant
values for CP,i of H and H2. The reaction heat capacity is shown in Figure 6.9.
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Figure 6.9: Partial molar heat capacity of H and H2, CP,i, and the reaction enthalpy,
∆rCP , as a function of the density of the system. The ideal heat capacities, 3/2R and
5/2R have been included.

The value of CP,H2 (4) increases linearly with the density.No such trend was seen
for CP,H (◦), where the partial molar heat capacity seems to go towards a constant
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value. This is reasonable, as the atom has only kinetic degrees of freedom and a
theoretical ideal heat capacity of 5

2R. For the molecule, there are at least two more
(rotational) degrees of freedom, and the possibility for activation of a vibrational
degree of freedom.

6.3.5 The method

We have seen above that the Small System Method can be used to give accurate
data for chemical reactions. Using the hydrogen dissociation reaction as exam-
ple, we have calculated all relevant thermodynamic data for the reaction from one
simulation at different temperatures and densities. The computations may seem
cumbersome, by having to change between ensembles, but the transformation pro-
cedure is well established [25,109]. The bonus is that information can be obtained
about non-ideal behavior in mixtures and chemical reactions. This information is
otherwise not easily accessible. This is promising for the future, as new force fields
become available for calculation of chemical reactions using classical potentials,
such as ReaxFF [38], REBO [39] and AIREBO [40].

The results elucidate that the normal assumption, to take the reaction enthalpy
constant in the integration of van’t Hofff’s equation, can be much improved, see
Figure 6.8. We see that the biggest error is observed for the low density, where the
ideal value, assuming Kth = Kx, is far below the calculated value of the reaction
enthalpy using the Small System Method. The calculated reaction enthalpy is
for all densities in the same order of magnitude (350–460 kJ mol−1) for ρ∗ =
0.0003−−ρ∗ = 0.004 as the enthalpy of reaction at standard state conditions (436
kJ mol−1) and the previous results obtained by us [48] 430 and 380 kJ mol−1 for
ρ∗ = 0.004 and ρ∗ = 0.0011, respectively.

6.4 Conclusions

We have applied a new calculation method, the Small System Method, to sample
data on particle and energy fluctuations, and find partial molar enthalpies and
reaction enthalpies for the dissociation of hydrogen molecules to atoms. Data for
the thermodynamic correction factor, compressibility, heat capacity and partial
molar volumes were also obtained, all from the same set of simulations. The ther-
modynamic equilibrium constant was determined as a function of pressure and
temperature for the lowest density studied, ρ∗ = 0.0003. It was observed that the
variation of the enthalpy with temperature was important to find the correct value
of Kth.

We have earlier seen that the hydrogen dissociation reaction was far from ideal, as
judged by contributions to i.e. the total pressure from the two-and three particle
interaction potential, in spite of showing an apparently ideal behavior in terms of
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pressure. In the present paper we see that even though we find the compressibility
and the molar volume of the low density to give ideal behavior, non-ideality is
observed in the heat capacity and the ratio of activity coefficients. From this we
conclude that the method can provide information on the non-ideality of a system,
which is information that is presently difficult to obtain, in a computationally
effective way.
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Chapter 8

Conclusions

The aim of this thesis project has been to model chemical reactions under both
equilibrium and non-equilibrium conditions using classical molecular dynamics sim-
ulations. From this the aim was to improve and extend the existing methodology
for describing chemical reactions, and gain knowledge about the nature of disso-
ciative reactions. The dissociation of hydrogen H2 
 2H was used as a model
system. This reaction is inevitable in producing hydrogen for fuel cells etc. us-
ing a palladium membrane reactor. Knowledge about the process is thus of great
importance. This was illustrated by showing how a temperature gradient over a
membrane could be used to enhance and control the flux of hydrogen through the
membrane.

A temperature range where a significant degree of dissociation was present was
determined using equilibrium molecular dynamics simulations. The Small System
Method was extended to find partial molar enthalpies for both a non-reactive and
a reactive system. From this the reaction enthalpy of the hydrogen dissociation
reaction as a function of temperature, pressure and composition of the reacting
mixture was found. Three different densities was studied, a gas (0.0052 g/cm3), a
compressed gas (0.0191 g/cm3) and a liquid (0.0695 g/cm3). Knowing the reaction
enthalpy, it was possible to determine how far the system was from ideal conditions,
and to find the thermodynamic equilibrium constant for a low density gas.

Knowing the equilibrium properties of the reaction, a temperature gradient was
applied to the system. Based on analytical expressions for the mass flux and
inverse temperature profiles the phenomenological coefficients and the transport
properties of the system was determined, even though the reaction was observed
to be far from chemical equilibrium, close to the thermostatted regions.

Thus, a model which can facilitate further studies of the impact of chemical reac-
tions on transport systems has been made. The Small System Method makes it
possible to determine e.g., reaction enthalpies for a linear dependent system, from
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one simulation alone. The use of non-equilibrium thermodynamics makes it pos-
sible to describe and quantify the coupled heat and mass transport, which can in
turn be used to e.g., enhance the hydrogen flux through a palladium membrane.



Chapter 9

Suggestions for further work

In this study classical molecular dynamics simulations have been used to study
the dissociative hydrogen reaction under both equilibrium and non-equilibrium
conditions. The newly developed extension to the Small System Method also made
it possible to determine the reaction enthalpy as a function of temperature, pressure
and composition. Based on the obtained results, some possibilities for further
studies has been included below.

As the Small System Method has been incorporated into the familiar LAMMPS
program, it is now easily accessible, for a variety of reactive and non-reactive force-
fields. This means that partial molar enthalpies and reaction enthalpies can be
calculated for a variety of systems. The method also gives access to the thermody-
namic correction factor from which the chemical potential and activity coefficient
can be found for a binary mixture. The thermodynamic correction factor can
also be used to find Fick diffusion coefficients. These quantities are of interest for
chemists and the chemical industry.

An interesting and natural extension of this thesis project would be to include
a surface, e.g., palladium and study the reaction on a surface. The dissociative
reaction of hydrogen on a palladium surface is important in a membrane reactor
as discussed in this thesis. The Small System Method has already been extended
to surfaces [59] and adding a temperature gradient would suite as a driving force
for the chemical reaction. Non-equilibrium thermodynamics would also be a useful
tool to study the temperature at the palladium surface.

In the last study, where non-equilibrium molecular dynamics was used to find
transport coefficients, the thermal conductivity and heat of transfer in the presence
of a chemical reaction was observed to be higher than expected. However, these
quantities for a reactive system are scarcely reported in literature, and more studies
could thus be beneficial to verify the observed results.
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