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Abstract

Modern machine learning utilizes highly overparameterized models that are
able to perfectly fit the training data while still performing well on the test
set. New research pins this ability to the first order gradient methods used to
optimize the networks. Both theoretical and empirical research demonstrate
that the optimization methods have implicit bias effectively regularizing the
learned models. In a recent article, Boffi and Slotine explores how the implicit
regularization phenomenon in machine learning can be transferred to adaptive
control with stability guarantees. The current thesis examines the similari-
ties between machine learning and adaptive control. Dynamic prediction of a
Hamiltonian system is used to demonstrate how gradient based adaption laws
impose regularization on the learned model.
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Sammendrag

Moderne maskinlæring bruker svært overparameteriserte modeller som kan
tilpasses treningsettet feilfritt og fortsatt prestere godt på testsettet. Ny forskn-
ing knytter denne evnen til gradientmetodene brukt for å optimalisere nettverkene.
Både teoretisk og empirisk forskning viser at optimeringsmetodene regularis-
erer den lærte modellen implisitt. I en nylig artikkel utforsker Boffi og Slotine
hvordan implisitt regularisering i maskinlæring kan overføres til adaptiv reg-
ulering med stabilitetsgaranti. Denne oppgaven undersøker likheter mellom
maskinlæring og adaptiv regulering. Dynamisk prediksjon av et Hamiltonsk
system brukes for å illustrere hvordan gradientmetoder implisitt regulariserer
de lærte parametrene.
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Chapter 1

Introduction

The field of adaptive control emerged in the 1950s to design autopilots for the
high-performance fighter jets of the cold war era. High-performance aircraft
operate at varying speeds and altitudes which require adaption in the con-
troller. Since the 1950s, adaptive control has grown into a mature field with a
rich set of techniques [1].

Machine learning has the last decade seen rapid development with the increas-
ing availability of large datasets and the increased computational power of mod-
ern hardware. Significant research has been put into understanding the inner
workings of neural networks to understand why they perform so well. Modern
machine learning methods use highly overparameterized networks which inter-
polate the training data while still generalizing well on test sets. This ability
has been found to partly stem from the optimization techniques used to op-
timize the networks. In two recent papers Gunesekar[2] and Azizan [3] proves
that the optimization methods used in training impose implicit regularization
on the learned parameters. In the present thesis parallels are drawn between
neural networks and regression based adaptive control and it is demonstrated
how methods may be transferred between the two subject areas.

Firstly, the thesis provides an introduction to relevant theory in optimization
and regression necessary to understand simple neural networks. Next, we shall
then cover some adaption methods in adaptive control similar to the optimiza-
tion methods used to train neural networks. Lastly we introduce a Hamiltonian
system inspired by an experiment by Boffi and Slotine [4] which will be used to
empirically demonstrate the implicit regularization imposed by the adaption
laws.
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2 J. G. Nilssen: Master Thesis

1.1 A Brief Note on Notation

Lowercase Latin letters are used for vectors, uppercase Latin letters for matri-
ces and Greek lowercase letters for scalars. Calligraphic uppercase Latin letters
are usually reserved for sets. Some notable exceptions are t used for scalar time,
n,m, k, i used as scalars for counting and indexing. R(·) for range of a matrix
and N (·) for null space of a matrix.



Chapter 2

Background

2.1 Normed Spaces

A norm is a function ‖ · ‖ : Rn → R+ satisfying the following properties

1. Nonnegativity:
‖x‖ ≥ 0, ∀x ∈ Rn (2.1)

2. Definitness:
‖x‖ = 0 =⇒ x = 0 (2.2)

3. Homogenity:
‖αx‖ = |α|‖x‖, ∀α ∈ R, x ∈ Rn (2.3)

4. The triangle inequality:

‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ Rn (2.4)

The `p-norms are a set of norms used in the study of finite-dimensional vector
spaces like Rn. The norm is defined as

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

, p ≥ 1 (2.5)

Some notable `p-norms are the `1-norm which is the sum of absolute values

‖x‖1 =
n∑
i=1

|xi| (2.6)

The `2 norm called the Euclidean norm which is a generalization of the Pythagorean
theorem

‖x‖2 =

√√√√ n∑
i=1

x2
i (2.7)

3



4 J. G. Nilssen: Master Thesis

And the `∞-norm also called the max norm

‖x‖∞ = max(x1, x2, . . . , xn) (2.8)

Hölder’s inequality is an important inequality in the study of spaces where the
`p-norms are defined and is defined as

n∑
i=1

|xiyi| ≤ ‖x‖p‖y‖q,
1

p
+

1

q
= 1 (2.9)



Chapter 3

Convex Optimization

This chapter serves as a brief introduction to convex optimization. Optimiza-
tion methods are used to train neural networks and are therefore an important
factor to the performance of the network. First we will introduce some prop-
erties of convex functions which we will later use to derive some optimization
techniques used in machine learning.

3.1 Convexity and Its Properties

3.1.1 Convex Functions

A set C is convex if

θx+ (1− θ)y ∈ C, ∀x, y ∈ C, 0 ≤ θ ≤ 1 (3.1)

A function f is convex if its domain is a convex set and the following inequality
is satisfied

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), 0 ≤ θ ≤ 1 (3.2)

The function is strictly convex if strict inequality holds.

A function being convex is equivalent with the epigraph of the function epi f
being a convex set. The epigraph is the area above a function f : X → Y
defined as

epi f = {(x, y) ∈ X × Y | y ≥ f(x)} (3.3)

5



6 J. G. Nilssen: Master Thesis

Figure 3.1: The definition of convexity. The chord between two points x1, x2
on function f lies above the function.

3.1.2 First Order Conditions

Another important inequality is the tangent inequality which can be proved
for differentiable convex functions [5]. Starting with the definition of convexity

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), 0 ≤ θ ≤ 1 (3.4)

f(x) ≥ f(y) +
f(y + θ(x− y))− f(y)

θ
(3.5)

The limit lim θ → 0 gives us, by the definition of the derivative

f(x) ≥ f(y) + f ′(y)(x− y) (3.6)

Now we must prove it for the general case f : Rn 7→ R Let x, y ∈ Rn. Define g
as f restricted to the line passing between the two points x, y

g(θ) = f(θx+ (1− θ)y), 0 ≤ θ ≤ 1 (3.7)
g′(θ) = 〈∇f(θx+ (1− θ)y), (x− y)〉 (3.8)

Because f is convex g is also convex which by 3.6 gives us

g(1) ≥ g(0) + g′(0)(1− 0) (3.9)
=⇒ f(x) ≥ f(y) + 〈∇f(y), (x− y)〉 (3.10)

This is an important inequality proving that the tangent of a convex function
is a global underestimator of the function. The gradient defines a supporting
hyperplane to the epigraph. If the tangent has a slope of zero at a point, and it
is a global underestimator, then the tangent point must be a global minimum.
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Figure 3.2: The tangent inequality for convex functions.

This inequality can be used to find a necessary condition for a global minimizer
x∗. If x∗ is a global minimizer we have

f(x) ≥ f(x∗), ∀x 6= x∗ (3.11)

From 3.10 it follows
∇f(x∗) = 0 (3.12)

A differentiable function f is α strongly convex with α > 0 if

〈∇f(x)−∇f(y), x− y〉 ≥ α‖x− y‖2 (3.13)

for any norm ‖ · ‖.

3.1.3 Second Order Conditions

Consider a twice differentiable function f : X → [−∞,∞] with the Hessian
∇2f defined on the entire domain of f . The function f is convex if its domain
is convex and the Hessian is positive semi definite

∇2f(x) ≥ 0, ∀x ∈ X (3.14)

The Hessian can also be used to show α-strong convexity

∇2f(x) ≥ αI, ∀x (3.15)
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3.1.4 Convexity of Norms

All norms are convex, which is easily verifiable. We begin by applying the
triangle inequality to the left side

‖θx+ (1− θ)y‖ ≤ ‖θx‖+ ‖(1− θ)y‖ (3.16)

Then by the homogenity condition

‖θx+ (1− θ)y‖ ≤ θ‖x‖+ (1− θ)‖y‖ (3.17)

Here the absolute value can be removed because 0 ≤ θ ≤ 1. It is then seen
from the definition of a convex function that all norms are convex.

3.1.5 Convex Conjugate Functions

Convex conjugate functions are an important part of the mirror descent method
which we will introduce later.

The concept of duality builds on the idea of paired spaces [6]. A pairing of two
real linear spaces X and Y is a real-valued bilinear form 〈x, y〉 which behaves
like a inner product except that x ∈ X and y ∈ Y. For each y this gives us the
function on X

〈·, y〉 : x→ 〈x, y〉 (3.18)

Then for each x
〈x, ·〉 : y → 〈x, y〉 (3.19)

For real, finite dimensional spaces, the pairing is equivalent to the dot product.
This is the case for all problems of concern in this report.

=⇒ 〈x, y〉 = xT y (3.20)

A closed half-space is defined as {x | 〈x, y〉 ≤ β} where β ∈ R, y 6= 0. The
subset C ⊆ X which is a closed convex set is then defined as the intersection
of a collection of such closed half-spaces on X .

Now consider the function f : X → R. We define the conjugate function
f∗ : Y → R which is defined as the smallest set C that approximates the
epigraph of f with closed half-spaces. The conjugate of the function f is then
defined as

f∗(y) = sup
x∈X
{〈x, y〉 − f(x)} (3.21)

If f is convex and continuously differentiable we can solve for the supremum
by setting the gradient with respect to x equal to zero

0 = ∇x (〈x, y〉 − f(x)) (3.22)
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which results in

∇f(x) = y (3.23)

We also have that
f(x) = sup

y∈Y
{〈x, y〉 − f∗(y)} (3.24)

which means the supremum is achieved when

∇f∗(y) = x (3.25)

If f and f∗ are strictly convex their gradients are unique at each point. The
two gradients then form a one-to-one correspondence between the primal space
X and the gradient space Y. In the strictly convex case we have that

∇f∗(∇f(x)) = x (3.26)
∇f(∇f∗(y)) = y (3.27)

From the definition of the conjugate function we obtain Fenchel’s inequality

f∗(y) = sup
x∈X
{〈x, y〉 − f(x)} (3.28)

≥ 〈y, x〉 − f(x) (3.29)
=⇒ f(x) + f∗(y) ≥ 〈x, y〉, ∀x, y (3.30)

3.2 Optimization Methods

In this section we introduce some numerical methods for unconstrained op-
timization called descent methods. Descent methods describe a sequence xk
indexed by the subscript k = 1, 2, ...

xk+1 = xk + γk∆xk (3.31)

where ∆xk is the step direction and γk > 0 the step size. Because we want to
descent to the minimum of the function we impose the condition

f(xk) < f(xk+1) (3.32)

For convex functions we have that

(∇f(xk))
T (xk+1 − xk)︸ ︷︷ ︸

=∆xk

≥ 0 =⇒ f(xk+1) ≥ f(xk) (3.33)

Therefore the step direction ∆xk must satisfy

(∇f(xk))
T∆xk < 0 (3.34)
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3.2.1 Gradient Descent

The simplest way to satisfy the above inequality is by setting the step direction
equal to the negative gradient ∆x = −∇f(x) this leads to the gradient descent
method.

xk+1 = xk − γk∇f(xk) (3.35)

Gradient descent is simple yet effective. The method exhibits approximately
linear convergence for convex functions, but is sensitive to the condition number
of the Hessian ∇2f(x).

Algorithm 1: Gradient Descent
initialize x0;
repeat

xk+1 ← xk − γk∇f(xk);
until ‖xk+1 − xk‖2 ≤ tolerance;
return xk;

3.2.2 Bregman Divergence

The Bregman divergence [7] measures the approximation error of the first order
Taylor approximation of ψ(·) around x2 at x1.

dψ(x1‖x2) = ψ(x1)− ψ(x2)− 〈∇ψ(x2), x1 − x2〉 (3.36)

Because the tangent of a convex function is a global underestimator the Breg-
man divergence is positive semidefinite if ψ is convex, but it is not guaranteed
to be symmetric and does not satisfy the triangle inequality. The choice of
potential ψ makes the Bregman divergence a more general way to measure
distance than the Euclidean norm which is often used in optimization.

3.2.3 Mirror Descent

The mirror descent algorithm was first presented by Nemirovsky and Yudin
[8]. Mirror descent uses the gradient of a strictly convex and continuously
differentiable potential function ∇ψ to transform the problem from the primal
space X to the gradient space Y which we will call the mirrored domain.
Because ψ is strictly convex and continuously differentiable the gradient is
unique at each point in X and the conjugate gradient at every point in Y.

Let X be a real Banach space with norm ‖·‖. And let Y = X ∗ be a real Banach
space with norm ‖ · ‖∗. It is assumed that X is reflexive such that (X ∗)∗ = X .

In the problems of concern to this thesis we always have that X = Y = Rn.
We still keep the distinction in this section to make it clear when we operate
in the primal and mirrored domain.
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Figure 3.3: The Bregman divergence between x1 and x2 on the convex func-
tion ψ

Consider the potential ψ : X → R, with the following properties

ψ(x) ≥ 0 (3.37)
ψ(0) = 0 (3.38)
ψ is strictly convex (3.39)

∇ψ(x) is uniformly continuous and bounded ∀x ∈ X (3.40)

Consider the problem minimizing the objective function f : X → R. We define
a descent method in the mirrored domain Y with the step direction ∆y equal
to the negative gradient of the objective function f(x) = f(∇ψ∗(y))

∆y = −∇f(∇ψ∗(y)) (3.41)

which defines the mirror descent method

yk+1 = yk − γk∇f(∇ψ∗(yk)) (3.42)

The mapping ∇ψ∗ carries Y into X , and ∇f maps X back to Y. The method
can also be defined with respect to x

∇ψ(xk+1) = ∇ψ(xk)− γk∇f(xk) (3.43)
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Figure 3.4: Mirror descent. Notice how the optimization steps are taken in
the mirrored domain.

Algorithm 2: Mirror Descent
initialize x0;
y0 ← ∇ψ(x0);
repeat

yk+1 ← yk − γk∇f(∇ψ∗(yk));
until ‖xk+1 − xk‖2 ≤ tolerance;
xk ← ∇ψ∗(yk);
return xk

The ability to choose mirror function ψ gives us a wealth of alternatives for
optimizing functions and the choice of mirror can significantly impact the con-
vergence properties of the method. By choosing the potential ψ = 1

2‖ · ‖
2
2 we

get the gradient ∇ψ(x) = x. This shows that gradient descent is a special case
of mirror descent.

It should be noted that the optimization movement takes place in the mirrored
domain. The motion on X is the projection of the main movement on Y. This
fact is overlooked in gradient descent because the potential results in the unit
transformation ∇ψ(x) = x resulting in X being identified with Y giving the
illusion of the optimization steps taking place in the primal domain.

Another definition of mirror descent from [9] which uses a projection with the
Bregman divergence is

xk+1 = arg min
x

{
∇f(xk)

T (x− xk) +
1

γk
dψ(x‖xk)

}
(3.44)
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The minimizing xk+1 can be found by solving

0 = ∇xk+1

(
∇f(xk)

T (xk+1 − xk) +
1

γk
dψ(xk+1‖xk)

)
(3.45)

= ∇f(xk) +
1

γk
(∇ψ(xk+1)−∇ψ(xk)) (3.46)

∇ψ(xk+1) = ∇ψ(xk)− γk∇f(xk) (3.47)

which leads to the mirror descent method

yk+1 = yk − γk∇f(∇ψ∗(xk)) (3.48)

3.2.4 `p Norms as Mirrors

Looking at the requirements to the potential function ψ used in mirror descent,
we immediately see that all `p-norms satisfy them apart from the `1-norm. The
`1-norm is convex but not strictly convex. It is also not differentiable at the
origin.

Setting the potential equal to a squared `p-norm has some desirable properties.
In order to use the potential we have to derive the gradient and the conjugate
gradient of the norms. First we derive the conjugate

ψ =
1

2
‖ · ‖2p (3.49)

ψ∗(y) = sup
x
{〈y, x〉 − ψ(x)} (3.50)

= sup
x

{
yTx− 1

2
‖x‖2p

}
(3.51)

Hölders inequality gives

yTx ≤
n∑
i=1

|yixi| ≤ ‖y‖p‖x‖q,
1

p
+

1

q
= 1 (3.52)

sup
x

{
yTx− 1

2
‖x‖2p

}
≤ ‖y‖q‖x‖p −

1

2
‖x‖2p (3.53)

Taking the derivative of the right hand side and setting it equal to zero then
solving for ‖x‖p to find the maximizing argument.

∂

∂‖x‖p
‖y‖q‖x‖p −

1

2
‖x‖2p = ‖y‖q − ‖x‖p = 0 (3.54)

(3.55)

which gives

‖y‖q = ‖x‖p (3.56)
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Inserting back we find the maximum

ψ∗(y) = sup
x

{
yTx− 1

2
‖x‖2p

}
≤ ‖y‖q‖x‖p −

1

2
‖x‖2p (3.57)

≤ 1

2
‖y‖2q (3.58)

To show the other inequality, let x be any vector with yTx = ‖x‖p‖y‖q, scaled
so that ‖x‖p = ‖y‖q. Then we have, for this x,

yTx− 1

2
‖x‖2p = ‖y‖q‖x‖p −

1

2
‖x‖2p (3.59)

=
1

2
‖y‖2q (3.60)

which shows that ψ∗(y) ≥ 1
2‖y‖

2
q and therefore

ψ∗ =
1

2
‖ · ‖2q (3.61)

The gradient of the `p-norm is

∂

∂xj
‖x‖ =

∂

∂xj

(
n∑
i=0

|xi|p
) 1

p

(3.62)

The chain rule gives
∂

∂x
|x| = x

|x|
(3.63)

∂

∂xj

(
n∑
i=0

|xi|p
) 1

p

=
1

p

(
n∑
i=0

|xi|p
) 1

p
−1

p|xj |p−1 xj
|xj |

(3.64)

=

( n∑
i=0

|xi|p
) 1

p
−1
1−p

|xj |p−2xj (3.65)

= ‖x‖1−pp |xj |p−2xj (3.66)

= xj
|xj |p−2

‖x‖p−1
p

(3.67)

In vector form this becomes

∇‖x‖p = x ◦ |x|
p−2

‖x‖p−1
p

(3.68)

where ◦ is element-wise multiplication.

Using the chain rule we can easily find the gradient of the squared p-norm

∇1

2
‖x‖2p = ‖x‖p∇‖x‖p (3.69)

= x ◦
(
|x|
‖x‖p

)p−2

(3.70)
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3.2.5 Stochastic Gradient Methods

For larger optimization problems, computing the gradient for all data points
simultaneously becomes computationally intractable. This is generally the case
for problems in machine learning. In these cases, a stochastic version of gradient
methods is used. The stochastic modification pulls a random sample from the
data set and computes the gradient for the single data point and performs an
optimization step. For real world datasets there will be considerable noise in
individual data points which weakens the convergence properties for stochastic
gradient methods.





Chapter 4

Regression

Now that we have covered optimization we move to the second technique neu-
ral networks are built on, regression. Regression analysis is concerned with
identifying the underlying pattern of data. In this chapter we will introduce
some simple regression problems and demonstrate how they can be solved by
the optimization methods introduced in the previous chapter. The concept of
regularization will be presented and a basic nonlinear neural network is used
to show the effect of explicit and implicit regularization.

4.1 Linear Regression

A regression problem is an unconstrained optimization problem where the ob-
jective is to find a function f̂(x) that fits data points (xi, yi), i = 1, ..., n from
an unknown function yi = f(xi) [10]. The simplest form of regression is linear
regression where we assume the data points are the output of a linear function
y = Xa where X is the augmented data matrix consisting of stacked input
vectors with an 1 added to the end for bias. The problem is then reduced to
finding the parameter vectors â that transforms X to y, which is equivalent to
minimizing the error Xâ− y through some norm ‖ · ‖.

min
â
‖Xâ− y‖ (4.1)

X =


xT1

∣∣ 1
xT2

∣∣ 1

...

∣∣∣∣∣ ...

xTm
∣∣ 1

 ∈ Rm×(n+1) (4.2)

xi ∈ Rn, â ∈ Rn+1, y ∈ Rm (4.3)

17
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A problem on this form is convex and always has at least one optimal solution.
If y ∈ R(X) there exists a solution with zero error [5].

The most common approach to regression is the method of least squares which
is defined as

min
â
‖Xâ− y‖22 (4.4)

This can be solved analytically for the optimal â∗ assuming XTX is full rank.
We define the objective function L, called the loss function in regression as

L(â) = ‖Xâ− y‖22 = aTXTXa− 2yTXy + yT y (4.5)

We set the gradient with respect to â of the loss function to zero and solve

∇L(â) = 0 (4.6)

2XTXâ∗ − 2XT y = 0 (4.7)

â∗ = (XTX)−1XT y (4.8)

Because the problem is convex and unconstrained this can be efficiently solved
with gradient algorithms

âk+1 = âk − γ∇f(â) (4.9)

4.2 Regularization

For regression problems that result in underdetermined equations there will
exist multiple sets of optimal parameters. We call these regression problems
overparameterized. An extra objective can then be added to the minimization
problem to penalize certain choices of parameters in order to "shrink" the
problem and obtain a single optimal solution [5] [10]. This method is called
regularization.

In Tikhinov regularization a squared `2-norm penalization of the parameters,
weighted by λ > 0 is added to the objective function. The objective then
becomes

min
â
‖Xâ− y‖22 + λ‖â‖22 (4.10)

which can be analytically solved the same way as the classic least squares
problem

∇f(â) = 2XTXa− 2XT y + 2λâ = 0 (4.11)

=⇒ (XTX + λI)â = XT y (4.12)

â∗ = (XTX + λI)−1XT y (4.13)

By adding λ > 0 to the diagonal of the squared data matrix XTX it is guar-
anteed to be invertible and the problem always has an analytical solution.
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Because we penalize the objective with the size of the squared parameters the
solution will favour parameter vectors that are small in the Euclidean norm,
even over perfect solutions if λ is sufficiently large. In other words regularization
trades lower variance for higher bias.

The least absolute shrinkage and selection operator (LASSO) technique adds
a `1-norm penalization to the loss function weighted by the hyperparameter
λ > 0

min
â
‖Xâ− y‖22 + λ‖â‖1 (4.14)

The `1-norm penalization of the parameters will lead to the sparsest solution
being favored. That is the solution with the most parameters of value 0.

In an estimation setting regularization can be thought of as the mathematical
equivalent of Occam’s Razor which states that the simplest solution is most
likely correct. The regularization term can also be thought of as representing
the cost of parameters. In a robotics setting few parameters might be equivalent
to few actuators and small parameters equal to less power used in actuators.

Because the `1-norm is not strictly convex a linear combination of the two
penalty terms can be used in order to make the loss function strictly convex.
This technique is called elastic net regularization.

min
a
‖XT â− y‖22 + λ1‖â‖1 + λ2‖â‖2 (4.15)

4.3 Nonlinear Regression

Now consider the regression problem where f(xi) = yi is a nonlinear function.
The linear basis used in linear regression is no longer sufficient. We replace the
linear basis by a vector of nonlinear basis functions with x as input.

Y (x)T â ≈ f(x) (4.16)

The problem of minimizing the approximation error can then be formulated as

min
â
‖Y (x)T â− y‖ (4.17)

The basis functions can either be engineered from domain knowledge or more
generic functions can be used. Examples of popular nonlinear basis functions
are the logistic function 1

1+e−x , tanh(x) and the rectified linear function which
will be introduced soon.
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Figure 4.1: The Rectified Linear Unit (ReLU)

4.3.1 Approximating Functions With a Nonlinear Basis

By using a nonlinear basis of arbitrary size we should be able to fit any con-
tinuous function with arbitrary precision. We will now show how a nonlinear
regressor with a ReLU basis can be optimized to fit a function using gradient
descent. This regression technique is also called a feed forward neural network,
or more specifically a single layer perceptron. The network is an adaption of the
neural network introduced in [10] where ReLU is used as activation function
instead of the logistic function.

ReLU(x) = max(x, 0) (4.18)

ReLU is nonlinear, well behaved, and is easy to differentiate. The derivative
is undefined at the origin, but this can simply be set equal to 1 or 0. In order
to obtain sparse solutions we define the derivative at x = 0 to 0.

∂

∂x
ReLU(x) = I(x) =

{
1, x > 0

0, x ≤ 0
(4.19)

where I is called the indicator function.

We use two parameter vectors â and b̂ called gain and bias, respectively. Giving
us the regressor

f̂(x) = Y (x1 + b̂)T â = ŷ (4.20)
(4.21)

Y (x1 + b̂) =


ReLU(x+ b̂1)

ReLU(x+ b̂2)
...

ReLU(x+ b̂d)

 (4.22)

x, y ∈ R, â, b̂ ∈ Rd (4.23)
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Figure 4.2: Computational graph of a single-layer perceptron with ReLU
activation functions.

where 1 is a column vector of 1s of appropriate dimension.

In order to fit the regressor to the datapoint tuples (xi, yi), we use gradient
descent with respect to the parameters on a squared estimation error loss
function. Defining the optimization problem

L =
1

2
(ŷ − y)2 (4.24)

min
â,b̂∈Rd

L = min
â,b̂∈Rd

n∑
i=1

1

2
(Y (xi1 + b̂)T â− yi)2 (4.25)

Taking the partial derivative of the loss function with respect to the parameter
vectors gives us the step directions for gradient descent

∇âL =
n∑
i=1

−(yi − Y (xi1 + b̂)T â)Y (xi1 + b̂) (4.26)

∇b̂L =

n∑
i=1

−(yi − Y (xi1 + b̂)T â)∇bY (xi1 + b̂)T â (4.27)

∇b̂Y (xi1 + b̂) =


I(x+ b̂1) 0 . . . 0

0 I(x+ b̂2)
...

...
. . . 0

0 . . . 0 I(x+ b̂d)

 (4.28)
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While the squared loss function is convex with respect to ŷi, it is generally not
convex with respect to the parameters for nonlinear regressors. Yet experience
shows that gradient based optimization methods are still effective at optimiz-
ing the parameters for overparameterized networks. This is something we will
discuss in the next section.

4.4 The Loss Landscape of Overparameterized Re-
gressors

Visualizing the high dimensional loss function of an overparameterized nonlin-
ear regressor it would be fair to assume the function is rather ill-conditioned
and has many local minima making gradient algorithms converge to suboptimal
parameters if they even converge at all.

Recent research on the other hand paints a brighter picture. Hardt [11] demon-
strates that overparameterized neural networks are able to fit random noise
with zero loss using gradient algorithms. This shows that gradient algorithms
are effective at optimizing regressors even for the hardest problems as long as
the regressor is sufficiently overparameterized.

For linear networks theoretical proof [2] exists showing that for sufficiently
overparametrized networks all minima are in fact global minima. There will
exist multiple parameter vectors interpolating the dataset, resulting in zero
loss. If we stack all the parameters into the vector a given the loss function L
we can define this set as

A = {a | L(a) = 0} (4.29)

For regressors with a basis consisting of one function, like the ReLU regressor in
the previous section, this is especially true. Because permuting the parameter
tuples (ai, bi) would result in an identical network.

Cooper [12] argues that the set A even forms a continuous smooth manifold in
parameter space. For an regressor with d� n the manifold is either empty or
a submanifold of dimension d− n.

4.5 Implicit Regularization in Overparametrized Re-
gressors

Even in the case where there exists an infinite amount of parameters yield-
ing zero loss, gradient algorithms will converge to a single solution. Which
solutions will they converge to and why? Is there any way to alter the op-
timization algorithm in order to make the algorithm choose parameters with
certain properties?

The first question is investigated by Gunesekar [2]. He demonstrates that min-
imizing the loss with gradient descent does not take us to just any global
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minimum, but the global minimum minimizing some regularizer defined im-
plicitly by the optimization algorithm. We call this phenomenon implicit reg-
ularization. Using gradient descent on a linear regressor provably makes the
parameters converge to the minimum `2-norm solution

â∗GD = arg min
a∈A

‖a‖2 (4.30)

This is an important result because it shows that the choice of optimization
algorithm is just as important as the choice of basis and parameterization in
a regressor.

As we already know gradient descent is equivalent to mirror descent with
ψ = 1

2‖ · ‖
2
2. Azizan [3] extends Gunesekars result and shows that by using

mirror descent to optimize an overparameterized regressor the method implic-
itly regularizes the choice of parameters by the potential function ψ. Azizan
also demonstrates through experiments that mirror descent imposes approxi-
mate regularization on nonlinear regressors. If the initial conditions of mirror
descent are close enough to the manifold of global minima the algorithm will
converge to the solution approximately closest to the initial condition measured
by the Bregman divergence

â∗MD = arg min
a∈A

dψ(a‖a0) (4.31)

For highly overparameterized regressors "all" initial conditions are close to the
manifold A. This means that the choice of potential and initial conditions can
be used as design parameters.

By setting the initial conditions to zero, which by definition makes the potential
zero ψ(0) = 0 we get:

â∗MD = arg min
a∈A

ψ(a) (4.32)

which gives us the interpolating parameters minimizing the potential.

4.6 Some Results in Regularized Regression

In this section we illustrate how different optimization techniques affect the
nonlinear regression problem introduced in Section 4.3.1 through some exper-
iments.

For the experiment we will approximate the nonlinear function f(x) = x +
sin(x) over the domain x ∈ [0, 10] with the nonlinear regressor introduced in
Section 4.3.1. We use a basis consisting of ReLU functions with individual
gain and bias parameters. We draw two independent sets of 10 samples of the
function from a uniform distribution over the domain. One set for optimizing
the regressor, and one for testing the fit of the function approximation. These
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sets are called training set and test set respectively. The discrepancy between
training and test loss is called generalization error and tells us how well the
regressor is able to approximate the underlying pattern of the data.

All experiments use the same training and test set, and the same initial condi-
tions. The initial bias parameters β are drawn from a uniform distribution over
the domain of x. The initial conditions for the gain α are drawn from a uniform
distribution over the domain α0 ∈ [−0.1, 0.1]. A small initial gain makes the
model more "linear" and thus well-behaved at the start of the optimization
period resulting in a less jagged end result.

The regressor has dimension d = 200 making it 20 times overparameterized as
10 ReLU functions is sufficient for perfect interpolation of the training data.
Each ReLU function has independent gain and bias resulting in a total of 400
parameters.

The optimization is run for 1.2 · 105 steps with a step length of 2 · 10−4 for
both parameter vectors.

The nonlinear regressor is implemented in Python using the matrix library
numpy and the plotting library matplotlib.

4.6.1 Gradient Descent

For the first experiment optimize the regressor with standard gradient descent.

4.6.2 Regularized Gradient Descent

For the next two experiments we regularize the regressor with the `1 and `2-
norms. The weighting of the regularization term can be found in Table 4.1.

λα λβ

`1 0.005 0.020
`2 0.03 0.1

Table 4.1: Regularization weight parameters.

4.6.3 Mirror Descent for Sparse Estimation

In the last function fitting experiment we inspect the effect of using mirror
descent with ψ = 1

2‖ · ‖
2
1.01 as mirror. From the last section we expect this to

perform similar to the explicitly `1-norm regularized regressor.

4.6.4 Results

The experiment illustrates how different optimization algorithms converge to
different global minima. Comparing the parameter histograms of the different
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Figure 4.3: Results of optimizing the function fitting regressor with gradient
descent.

methods it is clear that they have converged to different minima. When com-
paring the test error of the different networks in Figure 4.7 it is apparent that
the different minima score the same when tested on unseen data. This indicates
that the different minima are in fact all global minima.

Inspecting the different parameter histograms the implicit regularization of
gradient descent and `1 mirror descent becomes apparent. The α parameter dis-
tribution for gradient descent seem to be approximately normally distributed
while the mirror descent histogram shows a sparse solution where one third of
the Relu functions are deactivated by setting the gain to zero.
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Figure 4.4: Results of optimizing the function fitting regressor with gradient
descent regularized by a `1-norm penality.
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Figure 4.5: Results of optimizing the function fitting regressor with gradient
descent regularized by a `2-norm penality.
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Figure 4.6: Results of optimizing the function fitting regressor with mirror
descent with an approximated squared `1 norm mirror.

Figure 4.7: Fitting error of the different optimization algorithms for the
nonlinear regression problem plotted on a logarithmic scale.



Chapter 5

Adaptive Control

The objective of adaptive control is stable simultaneous learning and control
of a dynamical system. In this chapter we will introduce some methods for
learning parametric models that are similar to the regression problems in the
previous chapter. Adaption laws similar to the optimization methods already
covered will be presented. Lastly we show that the implicit regularization in
regression extends to adaptive nonlinear control.

The key feature of an adaptive control algorithm is the adaption law. Adap-
tion is an online learning problem concerned with learning the dynamics of a
system. In practice this is done with a parametric model where the parameters
are learned by stochastic gradient inspired methods. There are considerable
similarities between adaptive control and machine learning. One important
difference is that while machine learning is mainly concerned with the end re-
sult after optimizing the network, adaptive control needs to guarantee that the
learned parameters result in a stable system at all times.

5.1 Linear Parametric Models

An assumption usually made in adaptive control is that the unknown nonlinear
dynamics depends linearly on a set of unknown parameters a

ẋ = f(x, a, t) = Y (x)a (5.1)

Y : Rn → Rn×d, â ∈ Rd (5.2)

By modeling the system as a linear combination of basis functions of the state
Y (x) and an estimated parameter vector â we can approximate the dynamics
of the system

˙̂x = f̂(x, â, t) = Y (x)â (5.3)
(5.4)

29
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The equation is linear in the parameters â which is crucial for how we design
the adaption law. The estimated dynamics are on the same form as the nonlin-
ear regressor already introduced illustrating the similarities between machine
learning and adaptive control.

5.2 Sliding Control

Before we introduce the gradient adaption laws we need to define the sliding
variable s [13]

s =

(
d

dt
+ λ

)n−1

x̃ (5.5)

where n is the order of the system, λ a strictly positive constant, and x̃ = x− x̂
the prediction error.

For a second order system consisting of position and velocity this would give
us

s =

(
d

dt
+ λ

)
x̃ (5.6)

= ˙̃x+ λx̃ (5.7)

which is a weighted sum of position and velocity error. Now the problem of
perfect estimation x̂ = x is equivalent to remaining on the surface defined by
s = 0. s defines a linear differential equation with equilibrium point x̂∗ = 0.
s therefore represents the performance of the estimator. The parameterization
replaces a nth-order tracking problem by a 1st-order stabilization problem.

The tracking problem can now be solved by choosing an adaption law such
that

1

2

d

dt
s2 ≤ −γ|s| (5.8)

Causing the system to converge to and slide along the surface s = 0.

5.3 Gradient Methods for Linear Parametric Models

In order to control the system we need to estimate parameters that minimizes
the prediction error. The prediction error variable for linear parametric models
is defined as

˙̃x = ˙̂x− ẋ (5.9)
= Y (x)â− Y (x)a (5.10)
= Y (x)ã (5.11)
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A simple and stable technique for minimizing the prediction error is using a
gradient descent like algorithm [13]

˙̂a = −γY (x)T s (5.12)

where γ > 0 is the scalar adaption gain. This adaption law is referred to as
the Slotine-Li adaption law.

If the parameter estimation is on-line this is the continuous time equivalent of
the stochastic gradient descent algorithm introduced earlier.

5.4 Mirror Descent Based Adaption Law

As demonstrated in the chapter on optimization the gradient descent method
is a special case of mirror descent. We now present a mirror descent based
adaption law introduced by Boffi and Slotine [4] from which the Slotine-Li
adaption law is a special case. The law can be derived by replacing the adaption
error term 1

2 ã
TP−1ã, P ≥ 0 in the Lyapunov like function by the Bregman

divergence for a strictly convex potential ψ

V =
1

2
sT s+

1

2
dψ(a‖â) (5.13)

The derivative of the Bregman divergence is

d

dt
dψ(a‖â) = ãT∇2ψ(â) ˙̂a (5.14)

which can be used to prove the stability of the adaption law

˙̂a = −γ
(
∇2ψ(â)

)−1
Y (x)T s (5.15)

The inverted Hessian is cumbersome to compute and we will therefore perform
the adaption in the mirrored domain by using the identity ∇2ψ(â) ˙̂a = d

dt∇ψ(â)

d

dt
∇ψ(â) = −γY (x)T s (5.16)

where γ > 0 is the adaption gain. The parameters can then be recovered by
using the conjugate gradient of the potential ∇ψ∗(∇ψ(â)) = â.

This is the continuous time equivalent of stochastic mirror descent. Using this
adaption law gives us the ability to introduce implicit regularization into the
adaption law by choice of the potential ψ and initial condition â0 while still
guaranteeing stability, something that cannot easily be done with explicit reg-
ularization.

As we recall mirror descent converges to the solution closest to the initial con-
ditions measured in Bregman divergence for linear regressors. Azizan showed
that this can be approximately achieved for nonlinear regressors as well.
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5.5 Persistent Excitation

Tho goal of the adaptive controller is to minimize the error and this does not
necessarily require the correct parameter estimate. In order for the estimated
parameter to converge to the true parameters the system must satisfy a con-
dition called persistent excitation [13].

To obtain the correct parameters we need to solve

‖Y ã‖22 = 0 (5.17)

ãTY TY ã = 0 (5.18)

Y TY is positive semidefinite but not positive definite as Y will never be full
rank at any time instant. But if the trajectory is complicated enough the time
average of Y will have full rank. Then the estimated parameters will converge
to the true parameters â→ a if the following condition is met

1

τ

∫ t+τ

t
Y TY ≥ αI (5.19)

∀t ≥ to, ∃t0 ≥ 0, ∃τ > 0, ∃α > 0 (5.20)

which means Y will be positive definite on average over the time interval [t, t+
τ ]. If the signal is persistently exciting, the parameter error will converge to 0
exponentially.

5.6 Implicit Regularization in Adaptive Control

The parameters need only fit the unknown dynamics along the system trajec-
tory in order to achieve zero error. This means that for trajectories that are
not persistently exciting there exists possible infinite choices of parameters that
give zero error, even for underparameterized systems. For overparameterized
regressors the set of parameters resulting in zero error is not unique regardless
of the trajectory.

Again we define the set of parametersA that perfectly interpolate the dynamics
along the trajectory at all time time instants t

A = {â | Y (x)â = f(x), ∀t} (5.21)

Consider the regressor matrix Y (xd(t)) along the desired trajectory xd(t) with
null space N (Y (xd(t)) and the true parameter vector a. Then for all vectors
δa(t) ∈ N (Y (xd(t)) we have (a + δa(t)) ∈ A. For the case were there exist
an infinite amount of interpolating parameters. Which parameters will the
adaption law converge to?
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Building on the work of Azizan [3], Boffi and Slotine [4] developed a continuous
time proof for implicit regularization in linearly parameterized systems with
the mirror descent based adaption law.

Let θ be a constant vector of parameters. The time derivative of the Bregman
divergence is

d

dt
dψ(θ‖â) = −

(
d

dt
∇ψ(â)

)T
(θ − â) (5.22)

inserting the mirror descent adaption law we get

d

dt
dψ(θ‖â) = sTY (x)(θ − â) (5.23)

integrating both sides gives us

dψ(θ‖â0) = dψ(θ‖â) +

∫ t

0
sTY (x(τ))(â(τ)− θ)dτ (5.24)

If θ ∈ A then Y (x)θ = f(x). The integral is then independent of θ. Assuming
that â converges to some optimal parameter â∗ ∈ A we take the limit t→∞

dψ(θ‖â0) = dψ(θ‖â∗) +

∫ t

0
sTY (x(τ))â(τ)− f(x(τ))dτ (5.25)

The only dependence on θ on the right hand side is in the Bregman divergence
term. Because this equation holds for any constant θ the minimizing argument
of the two Bregman divergences must be identical. The minimizing argument
for the right hand side is simply θ = â∗. We can then conclude that

â∗ = arg min
θ∈A

dψ(θ‖â∗) (5.26)

= arg min
θ∈A

dψ(θ‖â0) (5.27)

This tells us that the adaption law converges to the optimal â∗ closest to
the initial condition â0 measured in Bregman divergence. Like in the case with
mirror descent we can set the initial conditions to zero â0 = 0 then by definition
the initial potential is zero ψ(0) = 0 which result in

â∗ = arg min
θ∈A

ψ(θ) (5.28)

which is equal to regularization by the potential ψ.





Chapter 6

Hamiltonian Systems

This chapter introduces the theory of Hamiltonian systems from a dynamical
system perspective. The classic nonlinear three-body system is presented and
different regressors for learning its parameters are found. Dynamic prediction
of the three-body problem will later be used to empirically demonstrate the
implicit regularization in the adaption laws from the previous chapter.

6.1 Introduction

Consider a mechanical system with n degrees of freedom. Newton’s second law
can be used to derive the equations of motion as a system of second-order differ-
ential equations in Rn which can be transformed to a first-order system in R2n.
If the forces originate from a potential function, like Newtonian gravitational
forces, or a spring, the system can be described by a single scalar function of
the system state called the Hamiltonian [14]. The equations of motion for a
Hamiltonian system is described as 2n first-order differential equations in the
canonical states q, p. Here q represents the position of the mass and p repre-
sents the momentum p = mq̇. The Hamiltonian is the sum of potential and
kinetic energy in the system.

The time evolution of the states are defined by Hamilton’s equations of motion

d

dt
q =

∂H
∂p

(6.1)

d

dt
p = −∂H

∂q
(6.2)

The structure of the time evolution is called symplectic. The system can be
represented by the symplectic coordinates r. The Hamiltonian dynamics are

35
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then written as

d

dt
r = J∇rH(r) (6.3)

r =

[
q
p

]
∈ R2n (6.4)

J =

[
0 In
−In 0

]
(6.5)

We call p and q conjugate variables. This structure is an important property
of Hamiltonian systems and will be used throughout this thesis.

For autonomous Hamiltonian systems another interesting property arises when
we inspect the time evolution of the Hamiltonian function

Ḣ(r) =
∂H
∂t

+ (∇rH)T ṙ (6.6)

ṙ = J∇rH (6.7)

Ḣ(r) = (∇rH)TJ(∇rH) (6.8)

= [∇qH,∇pH] J

[
∇qH
∇pH

]
(6.9)

= (∇qH)T∇pH− (∇pH)T∇qH (6.10)
= 0 (6.11)

The system energy does not vary with time, in other words the energy of
autonomous Hamiltonian systems are conserved. This means the Hamiltonian
is constant and only depends on initial conditions.

6.1.1 Linear Parameterization of Hamiltonian Dynamics

Suppose that the Hamiltonian of a system can be written as a linear parame-
terization

H = YH(r)Ta (6.12)

for the column vector YH. Then the dynamics are given by

ṙ = J∇rH(r) (6.13)

= J∇rYH(r)Ta (6.14)

Let the regressor matrix be defined by

Y (r) = J∇rYH(r)T (6.15)

This gives the dynamics
ṙ = Y (r)a (6.16)
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6.1.2 Dynamic Prediction of Hamiltonian Systems

Inspired by one of the experiments by Boffi and Slotine in [4] we will use
dynamic prediction of a Hamiltonian system as the setting for our experiments.

If the Hamiltonian of a system is unknown it can be approximated by a linear
combination of nonlinear basis functions. Consider the approximation

Ĥ(r, â) = YH(r)T â (6.17)

By using the symplectic structure and the linear parameterization we can now
estimate the dynamics of the symplectic coordinates with the prediction law

˙̂r = Y (r)â− ηr̃ (6.18)

where η > 0 is the feedback gain. Assuming the true system is of the form

ṙ = Y (r)a (6.19)

We define the error dynamics

˙̃r = Y (r)ã− ηr̃ (6.20)

Now gradient based adaption laws can be used to estimate the parameter vector
a.

˙̂a = −γY (r)T r̃ (6.21)

6.2 The Harmonic Oscillator

A simple Hamiltonian system is the harmonic oscillator. An example of an har-
monic oscillator is a frictionless spring-mass system where q is the displacement
from the springs equilibrium position, m the mass at the end of the spring and
k the spring constant. The Hamiltonian of the system is defined as

H(q, p) =
1

2m
p2 +

k

2
q2 (6.22)

This gives the linear dynamics

q̇ =
∂H
∂p

=
1

m
p (6.23)

ṗ = −∂H
∂q

= −kq (6.24)

=⇒ ṙ =

[
0 1

m
−k 0

]
r (6.25)



38 J. G. Nilssen: Master Thesis

k
m

q

Figure 6.1: A simple harmonic oscillator with a spring and a mass without
damping or external forces.

The simple dynamics can be solved analytically with respect to the displace-
ment q, which gives

q(t) = q0 cos

(√
k

m
t

)
(6.26)

The Hamiltonian of the harmonic oscillator is a linear combination of terms
depending on displacement q and momentum p this makes the Hamiltonian
separable. We will later refer to the function U(q) as the Hamiltonian potential
and T (p) the Hamiltonian momentum.

H = T (p) + U(q) (6.27)

U(q) =
k

2
q2 (6.28)

T (p) =
1

2m
p2 (6.29)

6.3 The Three-body Problem

A well known Hamiltonian system with nonlinear dynamics is the three-body
system. The system consists of three point masses interacting trough Newto-
nian gravitational forces. The system is a classic mechanics problem studied for
centuries and has, unlike the harmonic oscillator, no general solution making
numerical simulations necessary to study the time evolution [14].

The system is described by the Hamiltonian

H = − gm1m2

‖q1 − q2‖2
− gm2m3

‖q2 − q3‖2
− gm3m1

‖q3 − q1‖2
+

p2
1

2m1
+

p2
2

2m2
+

p2
3

2m3
(6.30)

where mi is the mass of particle i and g the gravitational constant. We note
that the Hamiltonian is separable and linear in the mass and gravitational
parameters.
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Figure 6.2: Three particles in 2D space affected by Newtonian gravitational
forces.

By solving the Hamilton equations for the canonical coordinates we get

q̇ =
∂H
∂p

=


1
m1
p1

1
m2
p2

1
m3
p3

 (6.31)

ṗ = −∂H
∂

=


− q1−q2
‖q1−q2‖32

− q1−q3
‖q1−q3‖32

− q2−q1
‖q2−q1‖32

− q2−q3
‖q2−q3‖32

− q3−q1
‖q3−q1‖32

− q3−q2
‖q3−q2‖32

 (6.32)

Simulations show that the system is unstable for most initial conditions. Still
there exists a plethora of periodic colissionless orbits in the plane where the
system is well behaved [15] [16] [17]. These periodic solutions are particularly
useful to investigate the stability and precision of numerical methods because
errors compounding over time will make the simulation unstable and make the
simulated system diverge quickly from the true solution. We will therefore use
the three body system to test the different adaption laws.

6.3.1 A Model Based Regressor for the Three-Body Problem

Given the system Hamiltonian a model based regressor can be derived to esti-
mate the system parameters. We formulate the Hamiltonian as a linear com-
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bination of basis functions and parameters

YH(r) =



p2
1

p2
2

p2
3

− 1
‖q1−q2‖2
− 1
‖q2−q3‖2
− 1
‖q1−q3‖2


, a =



1
2m1

1
2m2

1
2m3

gm1m2

gm2m3

gm3m1


(6.33)

Y (r) =



2p1 0 0 0 0 0
0 2p2 0 0 0 0
0 0 2p3 0 0 0

0 0 0 − q1−q2
‖q1−q2‖32

0 − q1−q3
‖q1−q3‖32

0 0 0 q1−q2
‖q1−q2‖32

− q2−q3
‖q2−q3‖32

0

0 0 0 0 q2−q3
‖q2−q3‖32

q1−q3
‖q1−q3‖32


(6.34)

6.3.2 An Overparameterized Regressor for the Three-Body
Problem

In a recent article Boffi and Slotine [4] describes a basis for estimating the three-
body system consisting of physically motivated functions often appearing in
physical systems.

The regression vector YH now consists of quadratic and quartic functions of
the state of each particle in addition to the gravitational potential between
the particles in powers of 1, 2, and 3. The regression basis then consists of 21
functions representing kinetic energy, spring potential, gravitational potential
and higher order terms.

This basis has more expressive power than needed to describe the three-body
system along periodic solutions, which only explore a small subset of the state
space. The overparameterization should be enough to examine the implicit
regularization in mirror descent based adaption laws.
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YH(r) =



q2
1

q2
2

q2
3

q4
1

q4
2

q4
3

p2
1

p2
2

p2
3

p4
1

p4
2

p4
3

− 1
‖q1−q2‖2

− 1
‖q1−q3‖2

− 1
‖q2−q3‖2

− 1
‖q1−q2‖22
− 1
‖q1−q2‖22
− 1
‖q1−q3‖22
− 1
‖q2−q3‖32
− 1
‖q1−q3‖32
− 1
‖q2−q3‖32



, a =



0

0

0

0

0

0
1

2m1
1

2m2
1

2m3

0

0

0

gm1m2

gm2m3

gm3m1

0

0

0

0

0

0



(6.35)
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Y
(r

)
=

       0
0

0
0

0
0

2
p

1
0

0
4p

3 1
0

0
0

0
0

0
0

0
0

2
p

2
0

0
4p

3 2
0

0
0

0
0

0
0

0
0

2
p

3
0

0
4p

3 3

−
2q

1
0

0
−

4q
3 1

0
0

0
0

0
0

0
0

0
−

2
q 2

0
0

−
4q

3 2
0

0
0

0
0

0
0

0
0

−
2q

3
0

0
−

4
q3 3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

−
q 1
−
q 2

‖q
1
−
q 2
‖3 2

0
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q 1
−
q 3

‖q
1
−
q 3
‖3 2
−
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−
q 2

‖q
1
−
q 2
‖4 2

0
−

2
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−
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‖q
1
−
q 3
‖4 2
−

3
q 1
−
q 2

‖q
1
−
q 2
‖5 2

0
−

3
q 1
−
q 3

‖q
1
−
q 3
‖5 2

q 1
−
q 2

‖q
1
−
q 2
‖3 2

−
q 2
−
q 3

‖q
2
−
q 3
‖3 2

0
2

q 1
−
q 2

‖q
1
−
q 2
‖4 2

−
2

q 2
−
q 3

‖q
2
−
q 3
‖4 2

0
3

q 1
−
q 2

‖q
1
−
q 2
‖5 2

−
3

q 2
−
q 3

‖q
2
−
q 3
‖5 2

0

0
q 2
−
q 3

‖q
2
−
q 3
‖3 2

q 1
−
q 3

‖q
1
−
q 3
‖3 2

0
2

q 2
−
q 3

‖q
2
−
q 4
‖4 2

2
q 1
−
q 3

‖q
1
−
q 3
‖4 2

0
3

q 2
−
q 3

‖q
2
−
q 3
‖5 2

3
q 1
−
q 3

‖q
1
−
q 3
‖5 2

          
(6
.3
6)



Chapter 7

Experiments

Now that the theoretical material has been covered we can move on to the
experiments. Inspired by Boffi and Slotine [4] we will numerically simulate
how different adaption laws and parameterizations perform on the three-body
system in a dynamic prediction setting. The purpose of the simulations is to
empirically verify the implicit regularization in parameters learned by gradient
methods for nonlinear dynamical systems.

7.1 Periodic Trajectories

For the simulations in this chapter we will use the adaptive dynamic prediction
method introduced in the previous chapter. Before we can simulate our system
we need to find initial conditions that result in a periodic trajectory that can
be simulated in reasonable time on a desktop computer.

Boffi and Slotine uses a periodic trajectory for their experiment as well, but
does not reveal the initial conditions of the system for the simulations. Mul-
tiple initial conditions from the orbits discovered by Šuvakov and Šinović [16]
have been tested. Unfortunately the trajectories tested all exhibit the sling-
shot phenomenon where particles pass close to each other resulting in extreme
gravitational forces making the trajectories to stiff for the simulator to solve
in reasonable time.

A well behaved trajectory is the celebrated figure-8 trajectory discovered by
Chenciner and Montgomery [15]. The particles keep sufficient distance to pre-
vent the trajectory from becoming too stiff for the integrator. We will therefore
use this trajectory in the simulations.
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Figure 7.1: The figure-8 trajectory used in the simulations.

7.2 Model Based Dynamic Prediction

The first experiment is an implementation of the model based regressor intro-
duced in the previous chapter. The experiment serves as a performance baseline
for the dynamic prediction law under ideal conditions and an exact regression
basis for the three-body system in the plane.

The experiment uses the dynamic predictor introduced in the previous chapter
together with the Slotine-Li adaption law. The simulation is implemented in
Python with the matrix library numpy using the solve_ivp integrator from the
scipy library, which uses a RK45 algorithm with dynamic step size. For the
plots the library matplotlib is used. Python as well as the libraries are free to
use and open source.

Similarly to Boffi and Slotine we use the adaption gain γ = 3.5 and the feedback
gain η = 5.

The initial conditions and true parameters of the system are set to produce
the figure-8 trajectory from [15]:

g = mi = 1 (7.1)

q1(0) = [−0.97000436, 0.24308753]T (7.2)

q2(0) = [0, 0]T (7.3)
q3(0) = −q1(0) (7.4)

p1(0) = [0.4662036850, 0.4323657300]T (7.5)

p2(0) = [−0.93240737,−0.86473146]T (7.6)
p3(0) = p1(0) (7.7)

The predictor starts with the correct initial conditions r̂0 = r0. The parameter
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Plant

Prediction

Adaption

Figure 7.2: Block diagram for the dynamic predictor with the Slotine-Li
adaption law

estimates are initialized at zero â0 = 0. The true parameters for the modeled
basis in this setting is

a =
[

1
2

1
2

1
2 1 1 1

]T (7.8)

7.3 Implicit Regularized in Dynamic Prediction with
an Overparameterized Function Basis

For the next two experiments the same simulator and system trajectory as
in the model based experiment is used. The adaption law is changed from
the Slotine-Li law to the mirror descent based adaption law and we use the
overparameterized regression basis.

Like in the overparameterized regressor example in Chapter 4.3.1, we want
to highlight how mirror descent based algorithms regularize the estimated pa-
rameters. We also want to analyze stability and tracking error of the dynamic
predictor as this is important in a controls setting.

The adaption gain and feedback gain is kept the same as in the first experiment.
The initial conditions of the adaption law â = 0.51 are chosen to be "close"
to the exact solution because this results in more prominent regularization, as
explained by Azizan [3]. For the overparameterized basis the true parameters
for this experiment are

a =
[
0 0 0 0 0 0 1

2
1
2

1
2 0 0 0 1 1 1 0 0 0 0 0 0

]T
(7.9)
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Before the simulations start the initial adaption parameters are transformed
into the mirrored domain. The parameters are transformed back for the state
prediction at each time step and at the end of the simulation. All the states
are stacked in a simulator state vector x and integrated.

x =


r

r̂

∇ψ(â)

 , ẋ =


J∇H(r)

Y (r)â− ηr̃

−γY (r)T r̃

 (7.10)

Because the periodic solution only explores a small subset of the state space we
do not expect the signals to be sufficiently rich for the parameters to converge
to their correct values. The main interest of the experiment is the parameter
distribution produced by the adaption laws, tracking error, and the estimated
Hamiltonian.

The second experiment consist of two parts, each with different potential. First
we use the squared `2-norm which results in the Slotine-Li adaption law. Then
we use the squared `1 norm which favours sparsity in the parameters. Because
the `1 norm is not strictly convex the approximation `1.05 is used instead.

Prediction

Plant

Adaption

Figure 7.3: Block diagram for the dynamic predictor with the mirror descent
based adaption law



Chapter 8

Results

In this chapter the results of the experiments on the Hamiltonian three-body
system is presented.

8.1 Model Based Dynamic Prediction

The first simulation confirms that the figure-8 trajectory can be followed by a
dynamic predictor with minimal error. We observe that the parameters con-
verge to the true parameters in approximately 15 time units in (Figure 8.2a).
As expected the correct parameters result in zero tracking error (Figure 8.1c).

(a) (b) (c)

Figure 8.1: State trajectories and tracking error for the model based dynamic
predictor. The true state in solid line and predicted state in dashed line.

8.2 Overparameterized Dynamic Prediction

8.2.1 Gradient Descent Adaption Law

The Slotine-Li adaption law converges to a set of parameters in approximately
20 time units (Figure 8.3a). In line with the theoretical results the parameters
are small in the Euiclidean norm. The method finds the true parameters for the
squared momentum terms at 0.5 but avoids the true potential parameters at 1.
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(a) (b)

Figure 8.2: Parameter estimate trajectory with parameter estimation error
for the model based dynamic predictor.

This is most likely because they are considered "expensive" parameters in the
Euclidean norm compared to some other combination of smaller parameters
that interpolate along the trajectory.

To better visualize the parameters learned by the method the estimated Hamil-
tonian resulting from the parameters is plotted in Figure 8.5. The plots are
functions of the position and velocity of particle 1 at time t = tend, while par-
ticle 2 and 3 are constant at their state at tend. From the plot we see that the
regressor is able to learn the Hamiltonian momentum perfectly apart from a
constant bias. This is because the dynamic predictor uses the time derivative
of the Hamiltonian and therefore a constant term in the Hamiltonian will not
contribute to estimation error.

The Hamiltonian potential from the gravitational forces is fairly well approxi-
mated. The function is a good approximation along the state trajectory which
is reflected in the tracking error. As the particle deviates from the figure-8
trajectory the error grows quickly as is illustrated in Figure 8.7b. As explained
in the previous section the trajectory does not produce a sufficiently rich sig-
nal for the regressor to correctly learn the potential function. The function is
wrong in the "unexplored" areas close to the other particles and as we move
further away from them. This is not a problem because the particle does not
reach that area. "Adaptive control is done on a need to know basis" — Slotine
[18].

8.2.2 Mirror Descent based Adaption Law

From the results of the experiment on the ReLU regressor we expect sparsity
from the `1.05 mirror descent algorithm. The parameters converge more slowly
than the Slotine-Li adaption law at about 100 time units (Figure 8.3c). We
observe from the histogram that the parameters produced are indeed sparse
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(a) (b)

(c) (d)

Figure 8.3: Parameter estimate trajectory and parameter distribution at
time tend for Slotine-Li (a,b) and `1.05 (c,d).
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(a) (b)

(c) (d)

Figure 8.4: Position trajectory and tracking error on a logarithmic scale for
the Slotine-Li (a,b) and the `1 (c,d) adaption laws.
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Figure 8.5: The two separable Hamiltonians learned by mirror descent based
adaption law with a squared `2-norm mirror compared to the true Hamilto-
nians. The plots are truncated at the z-axis limits.



52 J. G. Nilssen: Master Thesis

(Figure 8.3d) with 15 parameters set very close to zero. The adaption law
almost converges to the true parameters even though it uses the exact same
signals as the Slotine-Li adaption law. This demonstrates that the method can
be effective for system identification. The tracking ability of the predictor is
also better than the standard Slotine-Li version for this simulation.

The estimated Hamiltonian potential produced by the parameters looks similar
to one produced by the Slotine-Li method, but does not curve down as steeply
as the particle moves away from the trajectory (Figure 8.6). In the plot of the
potential we see a steep spike in one of the gravity wells. This again is because
this part of the state space is unexplored. The errors in the potentials stem
from higher order terms that are not zeroed out completely, with high order
basis functions the error will grow quickly as we diverge from the trajectory
even for very small parameters.

The Hamiltonian momentum is almost perfectly estimated by the Slotine-Li
law apart from a bias, which again does not effect the predictor.

In Figure 8.7a the Hamiltonian potential estimation error has been plotted
adjusted for bias. For both adaption laws the estimated potential has a very
small error close to the trajectory, but diverges rapidly as the particle moves
away.
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Figure 8.6: The two separable Hamiltonians learned by mirror descent based
adaption law with a squared `1.05-norm mirror compared to the true Hamil-
tonians. The plots are truncated at the z-axis limits.

(a) (b)

Figure 8.7: The Hamiltonian potential estimate error of the two adaption
laws. The potentials have been adjusted for bias. the color map is normalized
such that white corresponds to zero error.





Chapter 9

Discussion

The simulations presented in the previous chapter mostly confirm the analyt-
ical results on implicit regularization in overparameterized systems. However
the regressor used in the simulations is not overparameterized enough for us
to study the distribution like in [3] where the normal distribution of the pa-
rameters in the gradient descent case is very apparent. Still, the experimental
results are consistent with the theoretical results as the Slotine-Li adaption law
favours parameters small in the Euclidean norm and the `1 methods favours
sparsity.

Interestingly, the model based regressor converges to the true parameter which
suggests that the trajectory is persistently exciting for the modeled basis. The
`1 adaption law with the overparameterized basis comes very close to the true
parameters which points towards the trajectory being persistently exciting for
the overparameterized basis as well. On the other hand, the Slotine-Li adaption
law converges to a set of parameters different from the true parameters while
still yielding a small tracking error. In both cases the size of the tracking
error is small enough to stem from numerical errors in the integration. Thus,
the small tracking errors of the methods makes it reasonable to believe that
both parameter vectors are optimal along the trajectory suggesting that the
local minima indeed are global minima. It is important to note that the three-
body system is hard to simulate numerically and that some errors might be
numerical. To further improve the simulations a symplectic integrator tailored
to the three-body system may be utilized.

Another interesting modification is a larger regression basis. This would result
in a larger optimal set of parameters leaving the adaption laws more room for
regularization. It would also be interesting to investigate the use of generic
basis functions like the ReLU basis used in the regression example.

Inspired by machine learning one could also divide the simulations into two
phases. First a training trajectory to learn the parameters, and then a test-
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ing trajectory with identical parameters to test the generalization of different
adaption laws.



Chapter 10

Conclusion

In the present thesis we have covered the similarities between neural networks
in machine learning and regression based adaption laws. More specifically the
cause of implicit bias in gradient based optimization methods and how they af-
fect regression problems have been examined. Furthermore, it has been demon-
strated that the results extend to parameter estimation in adaptive nonlinear
dynamical prediction both theoretically and empirically. It follows that by
choice of potential function in a mirror descent based adaption law we can
control the bias of the estimator to favour interpolating parameters with de-
sirable properties. Concretely we have shown that the Slotine-Li law favours
parameters small in the Euclidean norm while a mirror descent based adaption
law with an approximate squared `1 potential favours sparse parameters.
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