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Preface

This thesis is written for the degree of Master of Science in Engineering Cybernetics, and is a
continuation of the specialization project [1] from the fall of 2020. The thesis and the related
work is part of SINTEF’s project ROMO. The projects full working title being "RObotics for
Moving Objects within manufacturing and healthcare – enabling the future internet of things".
The scope of the project is development of methods and algorithms that allow robots to interact
with and handle moving objects in real time [2].

Being a continuation of my specialization project, there is some overlap in terms of relevant
background information, software, and hardware. Thus, the following sections are adapted
from [1]:

• Sections 2.1 - 2.4

• The subsection Impedance Control in 2.5

• Sections 3.1 - 3.4

• The subsection Setup of the extended FCI in 4.4
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Abstract

The area of compliant robotic manipulation is one of increasing importance in the field
of robotic control. For the performance of complex real world interaction tasks, requir-
ing human-like skills of adaptability, it is fundamentally important. Robotic ultrasound
examination on humans is an example of such a task, demanding highly adaptable force
control. In this thesis, we introduce learning techniques in a selection of low-level force
controllers, setting out to achieve force tracking behaviour in robotic interaction tasks.

Most recent research in the field of robotic interaction control is aimed at achieving
high flexibility and robustness. Prominent approaches often fall into the category of Vari-
able Impedance Control (VIC), achieving flexibility by adjusting its dynamical properties
during the execution of a task. Especially, there is an increasing focus on learning-based
VIC, utilizing Machine Learning techniques to construct adaptive strategies. However, to
achieve good performance, these methods usually require a lot of interactions during learn-
ing, entailing high wear and tear of the robot. Thus, the aim of this thesis is to develop
compliant learning-based controllers that perform well in challenging scenarios, utilizing
efficient sampling methods. For this purpose, the field of model-based Reinforcement
Learning is of particular interest. By utilizing models of the system, model-based algo-
rithms can predict states and actions, thereby improve policies through model simulation.
Consequently, making it more sampling efficient, requiring fewer physical interactions.

In our approach, three different force controllers are implemented and assessed in the
state of the art, sampling efficient PILCO framework, using Gaussian Processes (GP’s)
to incorporate model uncertainty into long-term planning. The controllers represent
three fundamental approaches in robotic interaction control: Admittance Control, Hy-
brid Force/Motion Control and Force-based VIC. The approach is evaluated in the use
case of performing robotic interaction with object surfaces, where the manipulator exe-
cutes a motion trajectory while maintaining a desired contact force. Based on results from
simulation and experimental studies, the controllers are analysed for their advantages and
limitations in the learning-framework. Furthermore, the pros and cons of GP-modelling
are investigated, leading to a discussion on future directions.
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1 Introduction

In the field of robotics, mechanical interaction with objects is arguably one of the fundamentally
important functions. Numerous robot applications depend on it; for example, mechanical
interaction is vital for manipulation, the principal task of assembly systems [15]. Moreover, new
robot applications may be enabled by improved control of mechanical interactions. Proficient
interaction control can for example be used in healthcare to aid people with reduced mobility,
and to assist in patient assessments. Automatic ultrasound examination, where a manipulator
autonomously is controlling a probe, is an example of the latter. In such cases, there are placed
high demands on the flexibility of the robotic control. Furthermore, while finding and following
organs and other bodily structures, it must, despite unexpected changes in its surroundings,
provide safe force-constrained interactions.

In applications like this one, the "feel" of the robot becomes an important factor. The "feel",
defined by the mechanical interaction dynamics, is therefore something we want to control and
modulate [15]. This is the central idea of Impedance Control [16], a prominent approach in
interaction control. When an impedance-controlled end-effector is exposed to contact forces,
its dynamic response is designed to mimic one of a suitable mass-spring-damper system. In
traditional impedance controllers, this dynamical response is fixed, meaning that the response
is given by constant mass-, damping-, and stiffness parameters. However, for increased flexi-
bility, these parameters can be altered during the execution of a task. Motivated by the great
application-potential of highly flexible interaction controllers, a lot of research is aimed at the
development of adaptive strategies.

Methods striving for this flexibility often fall into the broad category of Variable Impedance
Control (VIC). Already in 1992, H.P. Huang and S.S. Chen presented both a position-based-
and a force-based VIC [17]. These implementations, like many that have come in hindsight, are
dependent on explicit adaptation laws, making parameter-adjustments based on state-errors.
The derivation of such adaptation laws is far from trivial, requiring advanced knowledge of
both the robot, the task, and the process of designing and parameterizing such controllers [18].

The tiresome process of designing explicit adaptation laws has motivated the employment of
Machine Learning techniques. For example, in the approach of Imitation of Human Impedance,
the controller is to replicate human bio-mechanical impedance strategies, developed over years
of experience. The more universal approach of Reinforcement Learning (RL) is a promising
way to learn impedance strategies without human intervention. In RL, the general idea is
that a virtual agent learns optimal actions through trial and error. By specifying some desired
behaviour, which the agent will receive rewards for attaining, the agent is guided towards an
optimal policy.

RL algorithms can be classified into two categories, being either model-free or model-based.
Aimed at increasing sampling-efficiency, the model-based algorithms are utilizing models of the
transition dynamics to predict the effect of actions. However, as they often are computation-
ally intensive, they do not usually extend to high-dimensional state- or action-spaces. This

1



limitation of model-based RL is one of the reasons why model-free methods are used more
frequently in practice [19]. C-PI2 [20], an extension of PI2 [21], is a state of the art model-free
method, granting high learning speeds for VIC. Despite being sampling efficient in the context
of model-free methods, it still requires more than 100 rollouts to achieve good performance [19].

When performing interaction control, doing a lot of trials in training brings with it adverse
consequences, such as high wear and tear of the robot [11]. This motivates the use of model-
based RL, having a higher potential of sample efficiency. Today, PILCO [12] is considered
the state of the art approach for achieving high sample efficiency [11]. The great efficiency
is achieved by optimizing the policy based on internal simulation, enabled by the underlying
model. To reduce model-bias, one of the key problems of model-based RL, it is using Gaussian
Processes (GPs) to learn stochastic transition dynamics. As PILCO is quite computationally
extensive and does not scale to high dimensional state- or action-spaces, it is beneficial to
combine it with conventional interaction control. This way the learning can be reserved to
optimize a few decisive parameters, such as the impedance characteristics. This drastically
improves sampling efficiency and safety while learning. Li et al. did this in their development
of a data-efficient RL method [19] using policy search and probabilistic GP models of the
system, similar to PILCO.

Contribution

The high-level aim for this thesis is development of compliant learning-based controllers that are
able to perform well in challenging scenarios. More specifically, linked to the above-mentioned
use case of robotic ultrasound examinations, where the manipulator is to perform a motion
trajectory while maintaining a desired contact force. In the attempt to achieve this goal, a
selection of force controllers are implemented and assessed in the sampling efficient PILCO
framework. The thesis constitutes four contributions to the field of robotic interaction control:

• Literature review

• Implementing and testing three fundamental approaches within force control:

1. Admittance Control

2. Hybrid Force/Motion Control

3. Force-based Variable Impedance Control

• Providing compatibility between the robot environment and modern machine learning
libraries

• Analysis of the respective controllers’ performance in the learning-based framework

2



Outline

The thesis is divided into a total of seven sections, this being the first one, serving as an intro-
duction to the task at hand. Next section is providing a more in-depth coverage of the field of
robotic interaction control and the fundamental principles it is based upon. Then the hardware
and software essential to the presented work will be reviewed. Accordingly the implementa-
tions are presented, covering force controllers and the interface connecting the PILCO-algorithm
with the robot-environment. Finally, the results are presented and discussed, leading up to a
conclusion in the final section.

3



2 Background

In this section, the reader is presented with the theoretical foundation which the thesis is built
upon. First, the methods used to represent orientation are reviewed. Then the focus is directed
at the field of Robotic Interaction Control. This is followed by some important concepts in
force control, along with the review of four different force controllers. The last subsections
are dedicated to the field of learning-based interaction control, with emphasis on model-based
Reinforcement Learning and the PILCO-algorithm.

2.1 Orientation in 3D Space

In this report, three different representations of orientation and rotation are treated.
Rotation matrices, Euler angles and quaternions respectively.

Rotation matrices

A rotation matrix, describing a three dimensional rotation, transforming the frame from ori-
entation a to orientation b is denoted Rb

a ∈ R3×3. Being an orthogonal matrix per definition,
the reverse rotation Ra

b can be found as Rb−1

a = RbT

a . The rotation matrix operates as a
transformation matrix, e.g., with the ability to represent positions and velocities with respect
to different frames, Σ. In particular, in this thesis it is used to transform forces, positions,
velocities, accelerations and rotations to the appropriate frame, whether it may be in the base
frame or the end-effector frame.

Euler angles

Euler angles,
(
α β γ

)T ∈ R3×1, are offering a more minimal form of representation, describ-
ing three simple rotations relative to the axes of its own moving coordinate frame Σ. When
operating with Euler angles, the order of the rotations matter, and there are several conven-
tions. Among the 12 possible orders of rotations Z-Y-X, Z-Y-Z and Z-X-Z are most commonly
used [22].

Quaternions

A drawback of the Euler angle-based representation is occurrence of singularities in the vector
notation. The quaternion representation is extremely useful as it avoids this problem. A
quaternion has the form

ε = η + ε1i+ ε2j + ε3k . (1)

η, ε1, ε2 and ε3 being scalars, and i, j and k being operators satisfying the following combinatory
rules

ii = jj = kk = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j. (2)

4



The conjugate of the quaternion is defined as

ε̃ = η − ε1i− ε2j − ε3k , (3)

and is useful for defining the unit quaternion, satisfying ε̃ε = η2 + ε21 + ε22 + ε23 = 1. Often η and(
ε1 ε2 ε3

)T
is referred to as the scalar- and vector part of the quaternion respectively.

2.2 Robot Manipulator Dynamics

Jacobian

The jacobian, J(q) ∈ R6×n, is a mapping between joint space and task space based on the
forward kinematics of the manipulator. Accordingly, it is used to calculate the cartesian (task
space/operational space) velocity as a function of joint velocities

ve = J(q)q̇, (4)

and reversely the actuator torque τ as a function of the task space wrench hc from the controller

τ = JT (q)hc. (5)

Task space formulation of the dynamic model

For the task at hand, it is most convenient to consider the task space formulation of the
dynamical system. For a rigid 6-DOF robot manipulator in contact with the environment, the
model can be described by

Λ(q)v̇e + Γ(q, q̇)ve + η(q) = hc − he, (6)

where hc is the controller’s force output, he is the external wrench, Λ(q) ∈ R6×6 is the cartesian
inertia matrix, Γ(q, q̇) ∈ R6×6 is the wrench caused by centrifugal and Coriolis effects, and
η(q) ∈ R6×1 is the wrench of the gravitational effects. The cartesian inertia matrix, Λ(q), is
calculated as

Λ(q) = (JH(q)−1JT )−1, (7)

where H(q) ∈ Rn×n is the symmetric and positive-definite joint space inertia matrix. This
inertia matrix is representing the mass distribution of the manipulator and is highly state-
dependent. By additionally knowing the joint space formulation of the centrifugal and Coriolis
effects, C(q, q̇), the corresponding wrench, Γ(q, q̇), is

Γ(q, q̇) = J−TC(q, q̇)J−1 −Λ(q)J̇J−1. (8)

The last component on the left side of (6), the wrench of the gravitational effects, is found as
η(q) = J−Tg(q), where g(q) is the joint space quantity.
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2.3 Robotic Interaction Control

Robotic interaction control is the concept of controlling the interaction between a manipulator
and its environment. Combined with methods of motion control, manipulators can be made
capable of following desired trajectories while ensuring a compliant behavior with respect to
external forces, providing safe and stable control. Furthermore, interaction control make it pos-
sible to perform advanced manipulation tasks, requiring adaptability that is enabled through
force feedback. The methods to achieve interaction control is divided into two broad approaches,
passive- and active interaction control (Fig. 1). In the passive approach, the compliant behav-
ior is inbuilt into the agent’s hardware. For example, by structural compliance of the joints,
links, position servo or end-effector. A big drawback with this method is its lack of flexibility
as the compliant structure must be adapted to fit each special use case. Moreover, it can only
handle small deviations from its pre-programmed trajectory [9]. Active interaction control is a
more sophisticated approach where the control system is responsible for securing compliance.
Although usually being slower and more expensive than the passive one, it is capable of over-
coming the previously mentioned drawbacks of passive interaction control [9]. In this thesis we
specifically focus on active interaction control.

robotic interaction
control

passive interaction
control

active interaction
control

position
control

hybrid
control

impedance
control

admittance
control

direct force
control

indirect force
control

Figure 1: Interaction control classification as proposed in [9]

Active interaction control can be divided into two subcategories, indirect- and direct force
control. The latter is recognized by the use of force feedback in closed-loop. Opposed to the
indirect method, it is by design achieving force regulation, controlling the contact force and
moment to a desired value. The control method Hybrid Force/Motion Control falls under this
category. Without any explicit closed force feedback loop, the indirect methods are instead
achieving force control through motion control [9] e.g., by changing the reference position to
comply with the interaction force. Impedance Control and Admittance Control, both covered
in this section, are examples of approaches within indirect force control.
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2.4 General Concepts of Force Control

Stiffness control

Starting off with the basics, the position and orientation of the end-effector (pose) can be
described by the vector xe =

(
pTe φTe

)T ∈ R6×1, where pe is the position and φe is a set of
Euler angles describing the orientation. Similarly, xd is defined as the desired pose. Assuming
a constant xd, the end-effector’s deviation from the desired pose is denoted ∆xde = xd − xe,
and the velocity error is ∆ẋde = −ẋe = −A−1(φe)ve, with

A(φe) =

(
I 0

0 T (φe)

)
, (9)

I ∈ R3×3 being the identity matrix, 0 ∈ R3×3 being the null matrix and T ∈ R3×3 being
the mapping function of ωe = T (φe)φ̇e, where ωe is the angular velocity of the end-effector.
If we now introduce the following proportional-derivative motion control law with gravity-
compensation

hc = A−T (φe)KP∆xde −KDve + η(q), (10)

where KP ∈ R6×6 and KD ∈ R6×6 are symmetric positive-definite matrices, we find the follow-
ing asymptotically stable equilibrium

he = A−T (φe)KP∆xde. (11)

According to (11), the end-effector will behave as a 6-DOF spring in respect of the external
wrench he. Furthermore, (11) shows that the matrix KP is playing the role of an active
stiffness, controlling the compliance of the manipulator. The choice of KP is then important
for ensuring a suitable elastic behaviour. For example, you can design this stiffness matrix so
that you have high positional accuracy in the xy-plane, and allowing more compliance in the
z-direction, reducing interaction-forces along this axis. Establishing a second-order dynamical
relationship between the deviation of the end-effector pose and the external wrench is what is
defined as stiffness control [9].

Mechanical springs

The compliant behavior of two elastically coupled rigid bodies, A and B, with coinciding refer-
ence frames Σa and Σb, can near the equilibrium be described by the linear mapping

hbb = Kδxbab =

(
Kt Kc

KT
c Ko

)
δxbab, (12)
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where hbb is the elastic wrench applied to body B, expressed in Σb, while being exposed to
an infinitesimal twist displacement δxbab, also expressed in Σb [9]. K ∈ R6×6 in (12) is the
symmetric positive-semidefinite stiffness matrix, describing the behavior of an ideal 6-DOF
spring. It consists of the translational stiffness, Kt ∈ R3×3, the rotational stiffness, Ko ∈ R3×3,
and the coupling stiffness, Kc ∈ R3×3. In the case of a symmetric coupling stiffness matrix,
there is a maximum decoupling between rotation and translation. Accordingly, there is a
center of stiffness at the point where the bodies’ reference frames coincide. Similarly a center
of compliance can be defined if the compliance matrix, C = K−1, has symmetric off-diagonal
blocks. If the center of stiffness and the center of compliance coincide, there is no coupling
between translation and rotation. Meaning that a relative translation of the bodies results in
a pure force along an axis, through the center off stiffness. And also meaning that a relative
rotation would lead to a pure torque about an axis through the center of stiffness.

Geometrically consistent active stiffness

To realize a geometrically consistent 6-DOF active stiffness, it is required to find an appropriate
control law with the correct proportional control action. In the case of having a finite displace-
ment of the end-effector frame Σe in respect to the desired frame Σd, the resulting control action
can be interpreted as the elastic wrench applied on the end-effector. As to guarantee asymptotic
stability in terms of Lyapunov, there is need for a fitting potential elastic energy function. The
expression for mechanical stiffness in (12) is simplified by assuming that the coupling stiffness
matrix,Kc, is zero. The simplification means that the potential elastic energy can be expressed
as the sum of translational- and rotational potential energy. The translational potential energy
is defined as

Vt =
1

2
∆pTdeK

′
Pt∆pde, (13)

with

K ′Pt =
1

2
RdKPtR

T
d +

1

2
ReKPtR

T
e , (14)

whereKPt ∈ R3×3 is a symmetric positive-definite matrix. By usingK ′Pt instead ofKPt in (13),
the potential energy is guaranteed to be port symmetric, also in the case of finite displacements
[9]. The following power V̇t becomes

V̇t = ∆ṗe
T

def
e
∆t + ∆ωe

T

dem
e
∆t, (15)

where ∆ṗede is the time derivative of the positional deviation, and ∆ωede is the error in angular
velocity, both with respect to the end-effector frame. The vectors f e∆t andme

∆t are the the elastic
force and moment respectively, applied to the end-effector at a finite position displacement
∆pede. Expressed in the base frame they are computed as

f∆t = K ′Pt∆pde, m∆t = K ′′Pt∆pde, (16)
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with

K ′′Pt =
1

2
S(∆pde)RdKPtR

T
d , (17)

where S(∆pde) ∈ R3×3 is the skew matrix of the positional displacement vector ∆pde ∈ R3×1

S(v) =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 . (18)

In sum, the elastic wrench caused by a pure translational displacement is denoted

h∆t =
(
fT∆t mT

∆t

)T
. (19)

The rotational potential energy in turn can be defined as

Vo = 2εeTdeKPoε
e
de, (20)

where εede ∈ R3×1 is the vector part of the unit quaternion extracted from the rotation Re
d,

taking the end-effector to the desired orientation. Similar to KPt in (17), KPo is a symmetric
positive-definite matrix ∈ R3×3. Since εede = −εede , the function Vo is port symmetric. V̇o yields

V̇o = ∆ωeTdem
e
∆o, (21)

with

m∆o = K ′Poεde, (22)

where

K ′Po = 2ET (ηde, εde)ReKPoR
T
e , (23)

and E(ηde, εde) = ηdeI −S(εde). Accordingly a finite orientation displacement εde produces an
elastic wrench

h∆o =
(
0T mT

∆o

)T
, (24)

equivalent to a pure moment. The total elastic wrench can then be expressed as

h∆ = h∆t + h∆o, (25)
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in line with (19) and (24), as a function of both a finite position- and orientation displacement.
Discarding the high order infinitesimal terms, (25) yields the mapping

hee = KP δx
e
de =

(
KPt 0

0 KPo

)
δxede. (26)

This shows that KP represents an ideal spring with respect to the frame of the end-effector,
the origin being the center of stiffness. Also in the case of large displacements, the geometrical
and physical meaning of KPt and KPo remains the same. Meaning e.g., that the upper left
element in KPt ∈ R3×3 will always decide the stiffness in x-direction with respect to Σe.

2.5 Indirect Force Controllers

Impedance Control

In order to achieve a desired dynamic behavior, stiffness control is not sufficient. The problem
extends to achieving a desired second-order system with 6-DOF, characterized by a certain
mass, damping and stiffness. Achieving such a system, known as mechanical impedance, can
be tedious as the dynamics depends on the nonlinear and coupled ones of the manipulator
[9]. By doing the acceleration-resolved approach associated with motion control, one aim to
decouple and linearize the nonlinear robot dynamics at the acceleration level. Furthermore, in
the presence of a force and torque sensor (FT sensor) measuring he, a more complete form of
impedance control can be implemented by enabling inertia shaping, meaning that you are able
to determine the apparent inertia of the closed system. By casting the control law

hc = Λ(q)α+ Γ(q, q̇)q̇ + η(q) + he, (27)

into the dynamic model in (6), it reduces to v̇e = α, α being the control input with the meaning
of an acceleration with respect to the base frame. Identifying v̇e = R̄T

e v̇
e
e + ˙̄RT

e v
e
e with

R̄e =

(
Re 0

0 Re

)
, (28)

choosing

α = R̄T
eα

e + ˙̄RT
e v

e
e, (29)

leads to v̇ee = αe, with the control input αe having the meaning of an acceleration relative to
the end-effector frame. Now, setting

αe = v̇ed +K−1
M (KD∆vede + he∆ − hee), (30)
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the closed loop expression is found to be

KM∆v̇ede +KD∆vede + he∆ = hee, (31)

KM ∈ R3×3 and KD ∈ R3×3 being symmetric positive-definite matrices, ∆v̇ede and ∆vede being
the error in acceleration and velocity, and he∆ being the elastic wrench defined in (25), all
relative to Σe. KM , having the meaning of the apparent inertia matrix, is like KP and KD

an adjustable parameter. With no external wrench working on the manipulator, this control
scheme guarantees that that the end-effector frame Σe asymptotically follows the desired frame
Σd. In the presence of external forces, the compliant behavior of the end-effector is described
by (31), limiting the contact wrench at the expense of a finite displacement in position and
orientation.

Impedance
control

Inverse
dynamics

Manipulator
and

environment

Direct
kinematics

Figure 2: High level block diagram of the suggested impedance controller

Admittance Control

Whereas an Impedance Controller receives motion as input and imposes an effort as output,
the opposite is the case for the Admittance Controller [23]. Principally, force-readings are used
to calculate appropriate responses from a position controller. As there is no need for robotic
torque control, the control method is applicable to traditional industrial robots using position
control.

For the Admittance Controller, the relationship between a one-dimensional interaction force
Fint and the corresponding motion-displacement (ẍ, ẋ, x) is described by the following second
order system

Mẍ(t) +Bẋ(t) +Kx(t) = Fint(t), (32)

where M , B and K ∈ R is the system’s inertia, damping and stiffness, respectively. As
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computers works at discrete time, a transformation to discrete domain via the Laplace domain
is presented. With null initial conditions, the resulting Laplace transform is given by

X(s)(Ms2 +Bs+K) = Fint(s). (33)

As admittance deals with force as input and motion as output, the transfer function is denoted

X

F
(s) =

1

Ms2 +Bs+K
. (34)

Using Tustin’s approximation (35), with Ts being the controller’s time step, the equation can
be transformed from Laplace- to Z-domain.

s ≈ 2

Ts

z − 1

z + 1
(35)

The method results in the following equation

x(k) =[T 2
s f(k) + 2T 2

s f(k − 1) + T 2
s (k − 2)− (2KT 2

s − 8M)x(k − 1)

− (4M − 2BTs +KT 2
s )x(k − 2)] ∗ 1/(4M + 2BTs +KT 2

s ),
(36)

where f(k), f(k − 1) and f(k − 2) are the most recent interaction forces, x(k) ∈ R is the
adjustment to the reference position Xd ∈ R3×1 , and x(k − 1) and x(k − 2) are the previous
adjustments. The full deduction is presented in the appendix of [23]. The adjustment of the
reference position, x(k), or ∆Xd if you will, is added to the appropriate index of Xd ∈ R3×1

and results in a compliant position Xc in z. The full admittance controller is illustrated in Fig.
3.

Manipulator &
environment

Admittance
control

-

+

+

+

Desired pose

Desired force Position Control

Figure 3: Block diagram of the Admittance Controller
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2.6 Direct Force Controllers

Hybrid Force/Motion Control

Unlike Impedance- and Admittance Control, the Hybrid Force/Motion Controller (HFMC or
Hybrid Control) is performing direct force control (Fig. 1). The aim of this control method
is to achieve both motion and force control by dividing the task into two separate, decoupled
subproblems [9]. By specifying which subspaces should be controlled by a motion- and force
controller respectively, the Hybrid Control intend to simultaneously solve the two separate
control tasks. The matrices Sv and Sf are used to specify these subspaces. In the case of doing
force control along the z-axis, and motion control in the remaining five dimensions, Sv and Sf
are defined as

Sf =



0

0

1

0

0

0


,Sv =



1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


. (37)

When dealing with a compliant environment, the end-effector displacement caused by environ-
mental deformation in the presence of a wrench hs, can be modeled as

δx = Chs, (38)

where C = K−1 ∈ R6×6 is an ideal 6-DOF spring of compliance [9]. This displacement can be
decomposed as

δx = δxv + δxf , (39)

where δxv and δxf are the twist displacements in each of the respective controllers’ subspaces.
Similarly, the end-effector velocity can be decomposed as

ve = Svv +C ′Sf λ̇, (40)

where λ is the force multiplier, and C ′ = (I − Pv)C, with Pv being a projection matrix that
filters out all the end-effector twists that are not in the range space of Sv [9]. I − Pv thus
has the opposite effect of filtering out the twists that are in the range space of Sv. Pv itself is
defined as Pv = SvS

†
v, where S†v is a suitable weighted pseudoinverse of Sv,

S†v = (STvWSv)
−1STvW . (41)
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Setting W equal to the inertia matrix M ∈ R6×6 corresponds to defining a norm in the space
of twists based on the kinetic energy [9]. Assuming the contact geometry Sv and compliance
C ′ to be constant, (40) leads to the following decomposition of acceleration

v̇e = Svv̇ +C ′Sf λ̈. (42)

The inverse-dynamics control law in (27):

hc = Λ(q)α+ Γ(q, q̇)q̇ + η(q) + he,

used in the impedance controller, can be adopted, again leading to the closed loop expression
v̇e = α, where α is a properly designed control input [9]. The choice

α = Svαv +C ′Sffλ (43)

allows decoupling of the respective controllers, αv relating to motion control and fλ to force
control. By choosing

αv = r̈d(t) +KDr[ṙd(t)− v(t)] +KPr[rd − r(t)], (44)

asymptotic tracking of a desired velocity vd and acceleration v̇d is guaranteed, with exponential
convergence [9]. The choice

fλ = λ̈d(t) +KDλ[λ̇d − λ̇(t)] +KPλ[λd(t)− λ(t)] (45)

with positive-definite matrices KDλ and KPλ ensures asymptotic tracking of a desired force
trajectory (λ̈d(t), λ̇d(t),λd(t)), also with exponential convergence [9].
The quantity λ̇ in (45) can be computed from the force measurements of the end-effector he as

λ̇ = S†f ḣe. (46)

where S†f is the pseudoinverse of Sf , computed as in (41) with W = C. Due to the noisy
nature of the force-readings however, the estimate

λ̇ = S†fK
′J(q)q̇ (47)

is often preferred, where K ′ = PfK and Pf = SfS
†
f . The full hybrid controller is illustrated

in Fig. 4.
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Figure 4: Block diagram of the Hybrid Force/Motion Controller

Force-based Variable Impedance Controller

Opposed to regular impedance control, Force-based Variable Impedance Control (VIC) is de-
signed to achieve force regulation by adjusting the system impedance. Such a controller is
presented in [17], introducing adaptation laws for both the inertiaM , damping B and stiffness
K. The proposed control method is based on adjusting the system impedance

MË1 +BĖ1 +KE1 = −Fext, (48)

where E1 = X −Xd is the error in position. Supposing uncertainties in M , B and K, the
controller is designed as

M̂Ë1 + B̂Ė1 + K̂E1 = −F ∗ (49)

with

F ∗ = Fd +Kv(Ḟd − Ḟext), (50)

M̂ , B̂ and K̂ being the actual, dynamic impedance of the system, F ∗ being the auxiliary force
input and Kv ∈ Rn×n being a gain matrix. Equation (50) assumes the interacting force to be
continuously differentiable. As a general rule it is at least piecewise continuous [17]. The goal
of the controller is to ensure that F ∗ approaches Fd by the means of adjusting the inertia M̂ ,
damping B̂ and stiffness K̂. To do so, it is dependent on suitable adaptation laws. By defining
Fext − Fd = Ef where Fext and Fd are defined as in (48), (49) and (50), we obtain

(M̂ −M)Ë1 + (B̂ −B)Ė1 + (K̂ −K)E1 = KvĖf +Ef (51)
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Additionally defining

M̃ = M̂ −M , B̃ = B̂ −B, K̃ = K̂ −K, (52)

allow us to rewrite (51) as

Ėf = −K−1
v Ef +K−1

v (M̃Ë1 + B̃Ė1 + K̃E1). (53)

By setting

M̃Ë1 + B̃Ė1 + K̃E1 = ξλ (54)

where ξ = ξ(E1, Ė1, Ë1) is a n × 3n matrix and λ = λ(M̃ , B̃, K̃) is a 3n × 1 vector, (53) is
reduced to

Ėf = −K−1
v Ef +K−1

v ξλ. (55)

Now, investigating stability, the Lyapunov function V can be chosen as

V = ET
f PEf + λTΓλ, (56)

where P and Γ are symmetric positive definite matrices [17]. The choice generates the following
derivative

V̇ = −ET
f (K−Tv P + PK−1

v )Ef + 2(λ̇TΓλ+ET
f PK

−1
v ξλ). (57)

By setting P , Γ and λ so that they satisfy both

K−Tv P + PK−1
v = Q0 (58)

and

λ̇TΓλ+ET
f PK

−1
v ξλ = 0, (59)

where Q0 is a positive definite matrix, then V̇ = −ET
f Q0Ef < 0. This proves the closed loop

system to be stable. The criterion in (59) produces the following adaptation law for M̂ , B̂ and
K̂

λ̇ = −(ET
f PK

−1
v ξΓ

−1)T = −Γ−1ξTK−1
v PEf . (60)
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Since V > 0 and V̇ < 0, (60) will ensure that the force error Ef will approach zero, meaning
that F ∗ −→ Fd. However, as the contact force at steady-state is decided by the position error
E1 as well as the stiffness K̂, the desired position Xd play an important part. If the desired
contact force Fd is large and the position error E1 is small, the adaptive law will adjust M̂ , B̂
and K̂ until F ∗ −→ Fd, potentially reaching values capable of causing instability issues. Hence,
upper bounds should be set for M̂ , B̂ and K̂, avoiding instability at the expense of force
tracking ability [17]. A high level block diagram of the Force-based VIC is shown in Fig. 5.

Initial impedance

Impedance control
Manipulator

&
environment

Adaptation
law+

Desired pose and force

+

+-

Figure 5: Block diagram of the Force-based Variable Impedance Controller. The adaptation
law is specified in (60)

2.7 Learning-based Interaction Control

In 2020, Abu-Dakka and Saveriano presented a review of existing learning-based approaches
in VIC [10]. Furthermore, the authors proposed a new taxonomy for mechanical impedance,
based on variability, learning, and control. The learning-based methods for variable impedance
were divided into two categories; Variable Impedance Learning (VIL) and Variable Impedance
Learning Control (VILC). The extended taxonomy of the learning-based methods is illustrated
in Fig. 6. Special to the VIL-approaches are that they formulate the problem of finding variable
impedance gains as a supervised learning problem [10]. By using human demonstrations as
training data, the algorithms try to reproduce the exhibited impedance behaviour. To do so,
these methods normally depend on existing controllers. VILC-approaches on the other hand,
seek to directly learn a variable impedance control law [10].

The approaches classified as VIL are usually presented by the authors as Imitation Learning (IL)
methods or Learning from Demonstration (LfD) methods. In the attempt to pass on human bio-
mechanical impedance skills, task-relevant information is extracted from several demonstrations
[10]. One approach in LfD is Kinesthetic Teaching, where the user demonstrates the desired
behaviour by physically moving the robot around [24]. Such frameworks have been presented
in [25], [26] and [27], all estimating full stiffness matrices using Gaussian Mixture Regression
(GMR). Other frameworks, as the one presented in [28], additionally utilizes visual information
in the learning process. In this case, the extracted information was used to learn the correct
stiffness profile for a cooperative assembly task.
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Figure 6: A taxonomy of existing approaches for learning-based variable impedance presented
in [10]

Still following the taxonomy in Fig. 6, the focus is shifted to the approaches classified as VILC.
Whereas the underlying control strategy and the learning algorithm are separated in VIL, there
is no clear boundary between them in VILC. A key difference is that for VILC, the process
of data collection is dependent on the underlying control [10]. As Fig. 6 shows, there are
methods of Imitation Learning that classifies as VILC as well. This is the case for methods
with tightly integrated learning and control. An example of this is Yang et al.’s approach for
transferring human limb impedance to robots. Their method was to combine haptic feedback
with processing of electromyography (EMG) signals collected from human muscles. A limitation
of such methods is that they usually require complex setups and tedious calibration.

In the subcategory of Iterative Learning, the idea is to adjust the impedance based on experience
from past executions. In [29], Bristow et al. presented a framework by the name of Iterative
Learning Control (ILC), which a lot of methods have relied on since [10]. Kramberger et
al.’s approach [30] of achieving trajectory and force tracking in changing environments is one
of them. They used an Iterative Learning approach based on monitoring the overall system
passivity analysis in terms of reference power tracking. As a means of generating a compact
task representation, able to handle sensor-based goal adaptations, they encoded the desired
motions into Dynamic Movement Primitives (DMPs) [30].

The idea of repeated learning is key in the widely studied topic of Reinforcement Learning
(RL) as well. As an introduction to RL was given in Section 1, this subsection is reserved
to present specific novel approaches. Now, starting with model-free methods, Buchli et al.’s
Policy Improvement with Path Integrals (PI2) [21] is an important one. It realized variable
impedance control by learning adjustment strategies for both motion trajectory and impedance
gains using DMPs. Using diagonal stiffness matrices and a DMP for each dimension, the
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proposed algorithm optimized the behaviour in each direction independently. In [20], Winter
et al. proposed an extension to this algorithm by the name Coordination Policy Improvement
with Path Integral (C-PI2). The algorithm learn variable impedance behaviours considering
synergies among DOFs. This way it achieves a better exploitation of the robot’s dynamic
capabilities. Furthermore, its learning speed outperforms the one of PI2 for tasks where the
coupling of DOF is not negligible [20]. Granting convergence after just above 100 rollouts in
several interaction control assessments [19] [20], it is reported as the most efficient model-free
RL method.

In terms of novel model-based RL methods, there are two recurring characteristics; they are
highly sample-efficient, and their models captures uncertainties. These traits are key for reduc-
ing model-bias, and wear and tear of the robot. The procedure used to achieve these properties
however, varies. Several approaches are using GPs to learn the transition dynamics. Deisen-
roth and Rasmussen’s PILCO algorithm [12] is one of them. Spaandonk made an extension
of this algorithm, for learning VIC in his master thesis [31]. Li et al. also used GP’s when
they learned a probabilistic representation of the interaction dynamics in the context of VIC
[19] [32]. In all these cases, the GP models were combined with the efficient Gradient-Based
Policy Search method. Whereas the method of using GPs is extremely sample-efficient, it does
not scale with big datasets [10]. This limitation of GP-based RL has motivated the use of
(Artificial) Neural Networks (NNs) for learning dynamics models. This is essential components
for model-based RL algorithms such as PETS [33] and Deep PILCO [34]. To capture uncertain-
ties, some approaches resort to Bayesian Neural Networks (BNNs), and NN-techniques such
as dropout, preventing overfitting. In [35], Roveda et al. applied NNs to learn models of the
state transitions in the use case of VIC. While being better than the GPs in terms of dataset
scalability, the GP-based methods comes out on top regarding sampling-efficiency.

Model-based Reinforcement Learning

Compared to other forms of machine learning, RL differs by having an agent interacting with
its environment as its learning procedure [11]. In each state x the agent applies an action u that
results in some state-change. These actions are outputs of the policy function π(·) which, in
the deterministic case, maps a state to a specific action, π(x) 7→ u. To be able to evaluate the
performance of the current policy, rewards/costs are collected based on the ability to reach or
maintain favourable states. The goal of the RL algorithms is to maximize the expected return
by finding the right policy π(·). The expected return can be denoted

Jπ(·) =
T∑
t=0

Ext [c (xt)] , (61)

where T is the time horizon, and Ext [c (xt)] is the expected cost c of being in state x at time t.

As it has been mentioned in previous sections, RL algorithms come in two distinct forms, being
either model-free (direct RL) or model-based (indirect RL). While the model-free methods
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solely rely on experience, the model-based ones are utilizing models of the transition dynamics
to predict the effect of actions. This way, model-based RL algorithms can forecast rewards and
derive optimal actions [11]. The optimality of the actions are however limited by the accuracy
of the model, which is going through an optimization process of its own. The pipeline of the
model-based RL algorithms is illustrated in Fig. 7.

Policy Execution

Model Update

Policy Simulation

Policy Learning

Rewards Updated
Model

Training
Signal

Optimal
Policy

Figure 7: Model-based RL pipeline as presented in [11]

In robotics, the internal simulation of the model significantly reduces the required amount of
interactions between the robot and the environment. In general, there is a faster convergence
to an optimal solution. The biggest drawback is that the models’ accuracy sets an upper limit
on performance. If the model is inadequate, so is the policy.

Transition models are distinguished in two main classes: deterministic and stochastic. The
predictions of the deterministic models do not depend on random variables, hence they are
always predicting the same transition given a state and action: f(s, a) 7→ s′. Stochastic models
on the other hand, give predictions defined by a probability distribution over the future states.
An overview of popular transition models is given in Fig. 8.
The method of using Gaussian Processes (GP’s) is highlighted as it is considered the state of
the art approach for sample efficiency [11], and is the one used in our approach. Compared
to other stochastic methods, it stands out by building a distribution over functions instead of
random variables. Consequently, it is not making any assumptions about the function f . This
trait makes GP a powerful learning method. More specifically, a GP is defined by its mean
and a kernel (covariance function). This mean is usually assumed to be zero. The parameters
making up the kernel can be set through a number of different methods, e.g., greedy search
and marginal likelihood based methods, the latter being more widely used. In the context
of transition models, the objective of the GP is to deduce the function f that generates the
observations s′. Assuming Gaussian noise, s′ = f(s, a) + N (0, σ2

nI). Using the shorthand
notation x = (s, a), the mean µ and covariance Σ of f are defined as

µ(x) = E[f(x)], (62)
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Figure 8: Overview of transition models as presented in [11]

Σ (x,x?) = E [(f(x)− µ(x)) (f (x?)− µ (x?))] , (63)

where x∗ denotes the testing samples. The most practiced kernel is the squared exponential,
specified by its variance σ2 and length-scale λ as in (64). The length-scale decides how far the
algorithm extrapolates away from the training data.

Σ (x,x?) = σ2 exp

(
−‖x− x?‖2

2

2λ2

)
(64)

The main approaches within model-based RL are illustrated in Fig. 9.

Model-Based RL

Return Functions
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Transition Models

Value Functions

Gradient-based
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DDP
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Figure 9: Model-based RL overview as presented in [11]
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In terms of policy learning, this thesis is focused on the Gradient-based Policy Search method.
In traditional Value Function methods, an optimal value function V π(s) is estimated in order
to obtain the optimal actions in each state. This is not the case for policy search methods.
Instead of constructing an optimal policy based on the optimal value function, the optimal
policy is learned directly. Compared to value function methods, this trait allows state of the
art policy search methods to converge faster in high-DOF robotic systems [11]. In terms of
policy representations, there are a wide range of approaches. In this thesis, both a linear policy
and a Radial Basis Function (RBF) policy is assessed. The linear policy model can be denoted

π (x∗) = umax sin (π̃ (x∗)) , π̃ (x∗) = Ψx∗ + ν, x∗ ∈ RD, (65)

where Ψ is a matrix of weights, ν is a bias vector and D is the state dimension [3]. The RBF
policy is represented as

π (x∗) = umax sin (π̃ (x∗)) , π̃ (x∗) = β>π kπ (Xπ,x∗) , x∗ ∈ RD, (66)

where kπ is the squared exponential kernel k in (72) plus a noise kernel, and βπ is a weight
vector explained in detail in [3]. Common to the policies used in policy search methods are
that they are parametrized by a set of parameters. By modifying these parameters, the optimal
policy is calculated directly. In the subcategory of Gradient-based Policy Search methods, the
policy is optimized by employing a gradient ascent approach on the expected rewards. The
Probabilistic Inference for Learning Control (PILCO) framework falls into this category, and is
considered the state of the art approach for solving RL problems with only a small amount of
data available [11].

2.8 PILCO

In 2011, Deisenroth and Rasmussen introduced PILCO [12], a practical, data-efficient model-
based Policy Search method. As a key attribute, it reduces model bias, one of the main
problems of model-based reinforcement learning. This is achieved by learning a probabilistic
dynamics model and explicitly incorporating model uncertainty into long-term planning. This
way PILCO can cope with a small amount of data, facilitating learning from scratch in only
a few trials [12]. For its policy evaluation it is using Approximate inference, and for policy
improvement it is computing policy gradients analytically. When publishing, they reported
unprecedented learning efficiency on challenging and high-dimensional control tasks. However,
PILCO’s time complexity scales with O (N2Q2D2), where N is the number of trials, and Q

and D are the input- and output dimensionality respectively [34]. Consequently, PILCO will
become much slower in high-dimensional state tasks and/or tasks that require many trials.

PILCO considers a dynamic system on the form

xt = f(xt−1,ut−1), (67)
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with unknown transition dynamics f , and continuous-valued states x ∈ RD and control-outputs
u ∈ RF , where D and F are the dimensions of the state space and the controls respectively.
The intention is to find a policy π that minimizes the expected return

Jπ(θ) =
T∑
t=0

Ext [c (xt)] , x0 ∼ N (µ0,Σ0) , (68)

over the next T time steps, where c(xt) is the cost associated with the state x at time t. It
is assumed that the policy π is a function parameterized by Θ and that the cost function c

encodes information about the given target state xtarget.

Dynamics model learning

The learning of the dynamics model is a key component of the PILCO policy-search framework.
The probabilistic model is implemented as a GP, where the tuples (xt−1,ut−1) ∈ RD+F are
used as training inputs and the state transition ∆t = xt − xt−1 + ε ∈ RD as targets, with
ε ∼ N (0,Σε) ,Σε = diag ([σε1 , . . . , σεD ]). The one-step prediction of the GP is thus described
by the following equations

p(xt|xt−1,ut−1) = N (xt|µt,Σt), (69)

µt = xt−1 + Ef [∆t], (70)

Σt = varf [∆t]. (71)

In the GP-model, both a prior mean function and a prior covariance function must be speci-
fied. The authors of [12] are considering the prior mean function m ≡ 0 and use the squared
exponential (SE) covariance function k, with automatic relevance determination, defined as

k(x̃, x̃′) = α2exp(−1

2
(x̃− x̃′)TΛ−1(x̃− x̃′)). (72)

Here x̃ :=
(
xT uT

)T
and α2 is the variance of the latent function f . Finally, Λ := diag([l21, ..., l

2
D]),

where li are the characteristic length-scales. These length-scales along with the other hyper-
parameters (signal variances α2 and noise variances Σε) are learned by evidence maximization,
using n training inputs X̃ = [x̃1, ..., x̃n] and targets y = [∆1, ...,∆n] [12].

The posterior predictive distribution p(∆∗|x̃∗) of some test input x̃∗ is described by the follow-
ing mean and variance

mf (x̃) = Ef [∆∗] = KT
∗ (K + σ2

εI)−1y = KT
∗ β, (73)
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σ2
f (∆∗) = varf [∆∗] = k∗∗ − kT∗ (K + σ2

εI)−1k∗. (74)

Here k∗ := k
(
X̃, x̃∗

)
, k∗∗ := k (x̃∗, x̃∗) β := (K + σ2

εI)
−1

y, and K is the Gram matrix with
entries Kij = k (x̃i, x̃j). When dealing with multivariate targets, a dedicated GP is assigned
to each target dimension. These GP’s are independent given deterministic test inputs, but
covaries if the inputs are uncertain.

Policy evaluation

To be able to minimize and evaluate the cost Jπ in (68) you are dependent on long-term
predictions of the state progression. The subsequent state distributions p(x1), ..., p(xT ), are
obtained by cascading one-step predictions as in Eqs. (69)-(71). Accounting for the variability,
the uncertain test inputs are mapped through the GP dynamics model. For simplicity, these
test inputs are considered to be Gaussian distributed.

As the next state is dependent on the action of the control, to predict xt from p(xt−1), a joint
distribution p(xt−1,ut−1) is required. Again, as the control ut−1 = π(xt−1,Θ) is a function
of the state, its distribution p(ut−1) must be found in advance. This is done by integrating
out the state and computing the mean µu and covariance Σu. Thereafter, the cross-covariance
cov[xt−1,ut−1] is determined. Finally, the joint distribution p(x̃t−1) = p(xt−1,ut−1) is approx-
imated by a Gaussian with the right mean and covariance. As the control distribution p(ut−1)

is found from the policy function π(xt−1,Θ), the computations depend on the parametrization
of the policy π [12].

The distribution of the state changes are given by

p(∆t) =

∫
p(f(x̃t−1)|x̃t−1)p(x̃t−1)dx̃t−1, (75)

where the random variable x̃t−1 is integrated out. Here p(f(x̃t−1)|x̃t−1), noting the transition
probability, is acquired from the posterior GP distribution. p(x̃t−1) is assumed to be a joint
Gaussian distribution, p (x̃t−1) = N

(
x̃t−1 | µ̃t−1, Σ̃t−1

)
. As it is analytically intractable to

compute the exact predictive distribution in (75), p(∆t) is approximated by a Gaussian using
exact moment matching [12], illustrated in Fig. 10.

Given a known mean µ∆ and covariance Σ∆ of the predictive distribution p(∆t), the Gaussian
approximation of the desired distribution p(xt) is identified as N (xt|µt,Σt) with

µt = µt−1 + µ∆, (76)

Σt = Σt−1 + Σ∆ + cov [xt−1,∆t] + cov [∆t,xt−1] , (77)
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Figure 10: GP prediction at an uncertain input [12]. The lower right plot is illustrating the
input distribution p(xt−1,ut−1), assumed to be Gaussian. Propagating the uncertain input
through the GP model (upper right), the shaded distribution p(∆t) is obtained (upper left).
p(∆t) is approximated by a Gaussian with the exact mean and variance (blue outline)

cov [xt−1,∆t] = cov [xt−1,ut−1] Σ−1
u cov [ut−1,∆t] . (78)

The computation of the cross-variances in (78) is decided by the policy parameterization, but
can often be determined analytically. For the computation of cov [xt−1,∆t], the reader is re-
ferred to [3]. The computation of µ∆ and Σ∆ is detailed in [3] and [12]. Having computed
these respective components, making up the Gaussian approximation N (xt|µt,Σt) of p(xt),
the expected return Jπ in (68) can be found through

Ext [c (xt)] =

∫
c (xt)N (xt | µt,Σt) dxt, (79)

where the cost function c is chosen so that (79) can be solved analytically. The authors use

c(x) = 1− exp
(
−‖x− xtarget ‖2 /σ2

c

)
∈ [0, 1] , (80)

where xtarget is the target state and σ2
c decides the width of c.

Analytic gradients for policy improvement

As both µt and Σt are dependent on the mean and covariance of the control signal (and Θ), the
gradients of the expected rewards Jπ with respect to the policy parameters can be computed
analytically. The derivative dJπ/dΘ is found by repeated chain-rule computations. Defining
E := Ext [c (xt)] and swapping the order of summing and differentiating leads to the equation

dEt
dθ

=
dEt

dp (xt)

dp (xt)

dθ
:=

∂Et
∂µt

dµt
dθ

+
∂Et
∂Σt

dΣt

dθ
, (81)
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where dEt/ dp (xt) is a short hand notation for for taking the derivative of Et with respect to
both the mean µt and covariance Σt of xt. Applying the chain-rule to (81) results in

dp (xt)

dθ
=

∂p (xt)

∂p (xt−1)

dp (xt−1)

dθ
+
∂p (xt)

∂θ
, (82)

∂p (xt)

∂p (xt−1)
=

{
∂µt

∂p (xt−1)
,

∂Σt

∂p (xt−1)

}
. (83)

Furthermore, we have that

dµt
dθ

=
∂µt
∂µt−1

dµt−1

dθ
+

∂µt
∂Σt−1

dΣt−1

dθ
+
∂µt
∂θ

, (84)

finally leading to

∂µt
∂θ

=
∂µ∆

∂p (ut−1)

∂p (ut−1)

∂θ
=
∂µ∆

∂µu

∂µu
∂θ

+
∂µ∆

∂Σu

∂Σu

∂θ
. (85)

This method of analytic gradient computation of Jπ is a lot more efficient than the alternative
of estimating policy gradients via sampling [12]. For a more detailed explanation the reader is
referred to [3].
Algorithm 1: PILCO
init: Sample control parameters Θ ∼ N (0, I).
Apply random control signals and record data;
repeat

Learn probabilistic (GP) dynamics model, using all data.;
Model-based policy search;
repeat

Approximate inference for policy evaluation ;
Gradient-based policy improvement;
Update parameters Θ;

until convergence; return Θ∗;
Set π∗ ← π(Θ∗) ;
Apply π∗ to system (single trial/episode) and record data;

until task learned ;
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3 Robot-Hardware and Software

This section aims to describe the hardware and software enabling the implementations and
assessments treated in Section 4 and 5. First, the basic characteristics of the robot are pre-
sented. This is followed by reviews of the interfaces allowing intuitive and straightforward
implementation of control. Finally, the software most essential to the introduction of learning
is presented.

3.1 Franka Emika Panda Robot

The Panda robot, manufactured by Franka Emika, is a collaborative lightweight robot designed
to act like an agile human arm. It has 7-DOF, a payload of 3 kg, a weight of 18 kg and a radius
(reach) of 855 mm [36]. Through its joint torque sensors and forward kinematics, it can calculate
an estimate of the external wrench at the end-effector. In addition to the robot arm itself, the
setup also consists of an external activation device, a shop floor controller and a shared network
switch, connecting everything to a workstation running the respective control-scripts (Fig. 11).

Figure 11: Setup for controlling the Panda robot using web interface [13]

3.2 Robot Operating System

Robot Operating System (ROS) is a flexible framework for writing robot software. Specifically,
it is a collection of tools, libraries, and conventions that aim to simplify the task of creating
complex and robust robot behaviour across a wide variety of robotic platforms [37]. In sum,
these components provide services such as hardware abstraction, low-level device control, im-
plementation of commonly-used functionality, message-passing between processes, and package
management [38]. Today, there exists several versioned sets of ROS packages, known as ROS
Distributions. In this setup, ROS Melodic Morenia is the one being used, released in May 2018.
This Distribution is primarily targeting Ubuntu 18.04 (Bionic Beaver).

3.3 Franka Control Interface

Franka Control Interface (FCI) allows a fast and direct low-level bidirectional connection to
the arm and hand [14]. The schematic overview of this interaction is depicted in Fig. 12.
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Furthermore, the figure shows the components that make up the FCI, namely the C++ library
libfranka and the ROS integration franka_ros. Out of the two, libfranka is the one providing
low-level control of the Franka robots. It is handling the network communication with the
control unit (Fig. 12) and provides interfaces to easily execute commands, read robot states
and access the model library [39]. franka_ros on the other hand, is a metapackage for all
Franka Emika ROS packages, providing the robots with ROS support [40]. In addition to
its ROS contribution, it ensures support for the motion planning framework MoveIt!. Also
franka_description, a collection of URDF models and 3D meshes of the Franka robots, is a
part of this component, having a utility that extends beyond ROS [41].

Figure 12: Schematic overview of the FCI’s workflow [14]

3.4 Extensions to FCI

With the goal of making it easier and more intuitive to make controllers for the Panda robot, sev-
eral independent developers have created their own, extended interfaces. Saif Sidhik, behind the
Github account "justagist" is providing such an interface. His repositories franka_ros_interface,
panda_robot and panda_simulator [42] are built upon the FCI, and make up a unified interface
for controlling the Franka Emika Panda robot in Python (Fig. 13).

franka_ros_interface

Out of the three repositories, franka_ros_interface is the one working closest to the FCI. In
short, it is a ROS package extending the franka_ros to expose more information about the
robot, and providing low-level control of the robot using ROS and Python API. [43]. To do
so, it is dependent on the package franka_panda_description, operating as an extension of
franka_ros ’ package franka_description. This package is providing dynamics parameters for
the robot arm and support for simulation in Gazebo.
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franka_ros_interface
exposing more information about the robot, and providing 

low-level control using ROS and Python API 

franka_ros
ROS integration + support for MoveIt!

franka_panda_description
dynamics parameters for the
robot arm+ Gazebo support

franka_description
description of robots

libfranka
low-level control (C++)

Franka Control Interface

panda_robot
Python interface package providing a unified interface for 
controlling and handling the Franka Emika Panda robot

Real robot

panda_simulator
Gazebo simulator for

the panda robot

Figure 13: Illustration of dependencies and extensions among the most essential libraries

panda_simulator

panda_simulator is a Gazebo-based simulator for the robot, using franka_ros_interface to
provide exposed controllers and real-time robot state feedback, similar to that of the real robot
when using FCI’s franka_ros package [44]. Furthermore, it has support for MoveIt! planning.

Figure 14: Screenshot of the running Gazebo simulator
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panda_robot

panda_robot is a Python interface package built over the franka_ros_interface package. It
is combining its different classes to provide a unified interface for controlling and handling
the Franka Emika Panda robot [45]. Moreover, it provides a direct sim-to-real code transfer,
making it possible to run the same script both in the simulator and on the real robot.

3.5 PILCO Implementation

Regarding implementations of the PILCO algorithm, the Github repository https://github.
com/nrontsis/PILCO [46] proved to be a convenient choice. The package aims to provide a
clean implementation by heavy use of modern learning libraries in Python 3. Specifically it uses
Tensorflow v2 to avoid the need for hardcoded gradients and scale to GPU architectures. For
Gaussian Process Regression it uses GPflow v2. The repository provides the user with reward
functions, controllers (policy models), and functionality for model- and policy optimization.

3.6 OpenAI Gym

OpenAI Gym [47] is a toolkit for developing and comparing RL algorithms. In terms of de-
velopment, it provides a generic interface that facilitates the introduction of RL in any given
environment. The interface is accessed by structuring your environment as a Gym environment,
essentially as a high level Python class with a few required functions. The functions init, step
and reset are requisites, responsible for initialisation, interaction with the environment, and
resetting, respectively.
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4 Implementation

In this section, the implementation of control and learning environment is explained, followed
by details on how to run the complete setup. In the first subsection, the implementations
of the three different force controllers are described. Then the process of making the robot
environment PILCO-compatible is explained. Next, the details on introducing learning-based
variability in the force controllers are reviewed. Finally, the process of setting up the environ-
ment and testing the controllers both in simulation and the real robot is described.

4.1 Implementation of Force Controllers

Using the extended FCI described in Section 3.4, the states of the robot are fetched in the python
interface. In terms of reaching the desired state, these state-measurements are used directly
to compute an appropriate response from the respective controllers. States, like the position
x and force F , are fetched in every control step along with state-dependent properties such as
the jacobian J(q), the coriolis compensation term Γ(q, q̇)q̇, and the joint inertia matrix Λ(q).
However, tests have shown that this fetching of states through the extended FCI is inefficient.
To obtain the required state information can take as much as 20 ms, acting as a limiting factor
for the control frequencies. The slow data-fetching is caused by the additional abstraction layer
that the extended FCI is introducing. Even though the robot is communicating at 1 kHz, the
functions of the python interface is only fetching a few states for every fetch-function. Thus,
several cycles of communication are spent on data-fetching at every control step.

Admittance Control implementation

The implementation of the admittance controller is quite straightforward with respect to the
information given in Section 2.5. With regard to the use case, the translation in the z dimension
is chosen to be compliant, meaning that all parameters in (36) relates to the z dimension. M ,
B and K are therefore tunable scalars, specifying the force tracking ability and compliance in
z through (36). The compliant position Xc, consisting of the desired position Xd with some
adjustment in z, is then fed to the position controller. The position controller is provided in
the panda_robot package described in Section 3.4.

Hybrid Control implementation

Also the Hybrid Controller is implemented as described in the background section. By choosing
Sf and Sv as in (37), the Hybrid Control is specified to perform force control in z and compliant
motion control in the remaining five dimensions. With the exception of the desired force and
motion, the environmental compliance matrix C = K−1, the gains of the motion controller
(KDr,KPr ∈ R5×5), and the gains of the force controller (KDλ, KPλ ∈ R), all parameters of
the control laws are purely state-dependent. Leaving KDr,KPr, KDλ, KPλ and C for tuning.
All matrices are chosen to be diagonal, with values derived from testing in simulation and in
experiments.
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Force-based VIC implementation

The implementation of the Force-based VIC requires a more thorough review than the previous
controllers. The final controller is a combination of the impedance control law in (27) from
Section 2.5 and a modified version of the adaptive impedance law (60) from Section 2.6. H.P.
Huang and S.S. Chen, presenting the adaptive impedance law in [17], also proposed a control
law for the impedance controller itself, but this implementation did not satisfy the requirement
of geometrically consistent active stiffness. Consequently, it performed sub-optimally in the
simulated tests, motivating the use of the implementation reported in Section 2.5. The Force-
based VIC is thus implemented as in Fig. 15 with the impedance controller itself implemented
as in Fig. 16.

Initial impedance

Impedance control
Manipulator

&
environment

Adaptation
law+

Desired pose and force

+

+-

Figure 15: High level block diagram of the adjusted Force-based VIC. The adaptation law is
specified in (60)

When only doing force control in z, the adaptive laws in (60) only applies to the z-dimensional
properties of M̂ , B̂ and K̂ ∈ R6×6. However, since an adaptive inertia-matrix M̂ easily can
lead to instability, the inertia is chosen to be static. This results in a system with adaptive
damping and stiffness in z. Now choosing Kv and P equal to I ∈ R6×6 in the adaptive law
(60), the law is reduced to

λ̇( ˙̃B, ˙̃K) =
(
0... ... γ−1

B ĖzEfz 0... γ−1
K EzEfz 0...

)T ∈ R18×1, (86)

where Ez is the error in z-position, Efz is the error in z-force, and γ−1
B and γ−1

K are the rate of
adaptability for the damping and stiffness in z respectively. The damping and stiffness matrices
are thus denoted

B̂ = B + B̃, K̂ = K + K̃ (87)

where B and K are the initial damping and stiffness, and B̃ and K̃ are the results of the
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Real and desired
states

 

Figure 16: The implementation details of the impedance control block in Fig. 15. The controller
is receiving the inertia M , damping B̂ and stiffness K̂ from the adaptation law in (60)

adaptive law. B̃ and K̃ are initialised at 0 and tuned by

˙̃B =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 γ−1
B ĖzEfz 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, (88)

˙̃K =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 γ−1
K EzEfz 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, (89)

as detailed in (86). Thus, the impedance controller is fed with a constant inertia matrix M
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and damping- and stiffness matrices on the form

B̂, K̂ =



fixed(x) 0 0 0 0 0

0 fixed(y) 0 0 0 0

0 0 adaptive(z) 0 0 0

0 0 0 fixed(xori) 0 0

0 0 0 0 fixed(yori) 0

0 0 0 0 0 fixed(zori)


. (90)

M ,B andK are chosen to be diagonal with values tuned to provide stable results in tests. Also
γ−1
B and γ−1

K are found from testing and are designed to have B̂ and K̂ adjust at an appropriate
rate. Furthermore, upper and lower bounds are set for B̂ and K̂, preventing instability.

4.2 Making the Robot Environment PILCO Compatible

The PILCO algorithm, as other RL methods, needs their agent to have a certain access to the
states of the environment it is interacting with. In this case, the environment consists of the
respective force controller, the robot itself, and the object it is interacting with. The agent is
to change certain stiffness- and damping related parameters in the force controllers, with the
end goal of improving performance. To achieve this, the agent requires knowledge of the states,
and an ability to influence the environment, both in real time. OpenAI’s toolkit Gym provides
a convenient platform for such an interface. By setting up the robot environment as a Gym
environment, which essentially is a python class with all the necessary functions, it is providing
the agent with the required information.

As the PILCO-implementation from Section 3.5 is highly dependent on different machine learn-
ing libraries in Python 3, there was a need to provide compatibility with the Python 2 dependent
robot environment. This problem was solved using the Python package execnet. execnet allows
one to initiate a subprocess gateway, execute code in it and send bidirectional messages. By
initiating Python 2 subprocess gateways in Python 3 scripts, all code related to running the
robot-environment could be executed separately, continuously conveying information relevant
to the PILCO-algorithm. This way the PILCO-algorithm is enabled to receive data from the
robot-process, now represented as a Gym environment, and respond with appropriate actions.

4.3 Combining PILCO and Force Control

To be able to calculate appropriate actions, PILCO must first learn a model of the transition
dynamics. As the motivation for introducing learning is to achieve better force tracking, the
entity that we really want to predict is the contact force. For this purpose, the state space was
chosen as

x =
(
F pz vz

)
, (91)
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where F is the contact force, pz is the z-position and vz is the z-velocity. Due to the controllers’
different approaches to force-control, their action-spaces are not chosen equal. However, in all
three cases, one action is related to damping in z, and one to stiffness in z. Denoting the action
space as u ∈ R2, the training inputs of the model are identified as (xt−1,ut−1) ∈ R5. Now
using the state transitions ∆t = xt − xt−1 + ε ∈ R3 as targets, the dynamics model can be
learned according to the method depicted in Section 2.8.

Regarding policy models, the PILCO-implementation offers both linear and RBF, both de-
scribed in Section 2.7. The RBF policy models are much more flexible, enabling more complex
control strategies. However, it is computationally expensive. In fact, tests proved that the
RBF action-calculation of the PILCO-implementation is too slow to be used in the experi-
mental setup. Having the ability to slow down time in the simulator, it is however possible
to test it in there. The linear policy limits the maximal frequency of the controller as well,
but to a lesser extent. Especially as we were able to optimize the function responsible for its
action computation in [46], cutting the computation time to a tenth. Subsampling is also an
important aspect when applying RL to a system. By for example only sampling every fifth
state-vector, the amount of data collected from each run can be severely reduced. If the under-
lying controller is running on 100 Hz, this would lead to a PILCO-frequency of 20 Hz. Thus,
implying that the policy will have a 20 Hz action-frequency, and that the learned model will
have a resolution of 50 ms. It was found from testing that 20 Hz is an appropriate frequency
for the PILCO-framework. The testing is documented in Section 5.

In order for the PILCO-algorithm to evaluate and improve the policy, a reward function is
required, specifying the desired behaviour of the system. To this purpose, the exponential
reward function provided in the PILCO-package is used. The desired behaviour is specified
through a constant target- and a weight-vector linked to the state x. By setting t =

(
Fd 0 0

)
and W =

(
5 0 0

)
, the agent can at each time step receive a reward of up to 5 for tracking

the desired force Fd.

Admittance Control in the PILCO framework

As it was covered in Section 4.1, the compliance of the Admittance Controller is defined by the
three scalars M , B and K, representing the inertia, damping and stiffness in the z-plane of the
manipulator. Due to unfortunate consequences of having a dynamic inertia, M was chosen to
be constant. B and K on the other hand, are decided to be part of the agent’s action space.
The PILCO-algorithm sees this action space as two continuous intervals, spanning from −1 to
1. However, when the action signals arrive in the robot environment, they are scaled to some
appropriate intervals. For the admittance controller, this meant scaling the damping B so that
it could vary in the range from 150 and 400, and K between 200 and 500.

35



Hybrid Control in the PILCO framework

In Section 4.1, KDr,KPr, KDλ, KPλ and C were identified as tunable parameters, responsible
for the behaviour of the Hybrid Control. As the main focus of the thesis is directed at force
tracking, KDr and KPr, responsible for the motion tracking, is left constant. As we in tests
will have a constant desired contact force Fd (λd), it can be seen from Fig. 4 that it would be
redundant to include C in the adaptive strategy along with KDλ and KPλ. Thus, only KDλ

and KPλ are decided to constitute the action space of the PILCO-agent.

Force-based VIC in the PILCO framework

The Force-based VIC differ from the other two controllers in terms of already, before introducing
learning, having variable damping and stiffness parameters in z (90). As it is detailed in (88)
and (89), their adaptive laws are given by ˙̃Bz = γ−1

B ĖzEfz and ˙̃Kz = γ−1
K EzEfz respectively.

The tunable rates of adaptability, γ−1
B and γ−1

K , clearly have a great influence on the dynamic
behavior of the system. Thus, for the Force-based VIC, PILCO is used to learn adaptive
strategies for γ−1

B and γ−1
K . As for the action spaces of the other controllers, their boundaries

are found through trial and error.

4.4 Setting Up the Environment

In order to run the implemented controllers, available at https://github.com/martihmy/
Compliant_control, either in the simulator or in the experimental setup, the necessary software
environment needs to be set up. This is achieved by following the procedure described in this
section.

Setup of the extended FCI

The extended FCI can be set up in an Ubuntu 18.04 system in the following steps:

1. Install ROS Melodic Morenia

2. Build libfranka and franka_ros

3. Set up the real-time kernel

4. Build panda_simulator and panda_robot

As the extended interface from Section 3.4 has support for ROS Melodic Morenia, this is the
ROS distribution we are using. Accordingly, the workstation is running Ubuntu 18.04.5 LTS
(Bionic Beaver) which the ROS distribution is targeting. Both the building of libfranka and
franka_ros, and the setting up of the real-time kernel, needed to control the robot, are described
in detail in [48]. The process of building panda_simulator and panda_robot is done according to
the respective README files on Github. franka_ros_interface and franka_panda_description
are both installed when performing the fourth step.
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Setup of the PILCO compatibility

All compatibility related to PILCO can be achieved through the following steps:

1. Install the PILCO implementation

2. Install OpenAI Gym

3. Install execnet

The PILCO implementation in https://github.com/nrontsis/PILCO should preferable be
installed in a fresh Conda environment with Python ≥ 3.7. The installation itself is performed
by running the following two commands in the terminal:

git clone https://github.com/nrontsis/PILCO && cd PILCO
python setup.py develop

Step 2 and 3 are performed by similarly running

pip install gym

in the python 2 environment, and

pip install execnet

in the Conda environment.

Setup of the implemented controllers

In order to run the implemented controllers, the package https://github.com/martihmy/
Compliant_control, is to replace panda_simulator. Additionally, the four python scripts in the
folderModifications, is to replace the files with the same names in the PILCO-, franka_ros_interface-
and panda_robot packages respectively.
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5 Results

In this section, the results from simulation and experimental studies are presented, for scenarios
with and without learning. This section is divided into three subsections. In the first part, the
respective force controllers are evaluated, both in simulation and experiment. The second part
is evaluating the force controllers in the learning framework, also in simulation and experiment.
The last subsection is assessing the introduction of supplemental transition models, following
the same structure.

Regarding tuning of the controllers’ static parameters, equivalent efforts have been made in all
three controllers. The focus being on their respective performances in the learning framework,
they have not been perfectly tuned. Where there has been a trade-off between motion- and
force control, the aim has been to achieve an overall balanced performance. Nevertheless, as the
results will show, the strengths and weaknesses of the controllers still materialize. The results
presented are representative outcomes, aimed at demonstrating the average performance of the
respective implementations.

5.1 Evaluation of Force Controllers

Before introducing learning, the three force controllers are to be assessed with static control
laws. As method of evaluation, the controllers are to ensure motion- and force tracking for the
robots’ end-effector when interacting with a flat surface. All three controllers are first tested
in simulation, then in the experimental setup.

5.1.1 Simulation

The simulations are performed in the Gazebo-based simulator described in Section 3.4 and
are expected to give a fair indication of the real system’s behaviour. However, a significant
advantage of the simulation is the ability to slow down real-time, enabling control frequencies of
100 Hz. Fist, the respective controllers’ performance in a homogeneous environment is tested.
The environment is a flat surface with a stiffness coefficient of kp = 5.000, and a damping
coefficient of kd = 3. The setup is illustrated in Fig. 17. With the automatic ultrasound
use case in mind, the objective is for the respective controllers to establish a vertical contact
force of 3 N with the surface, before performing a 5 cm movement forward, maintaining a
desired contact force of 3 N. The orientation shall remain neutral (as in Fig. 17) throughout
the duration of the task.

To increase the legitimacy of the simulated tests, noise is added to the force estimates before
arriving at the controllers. The noise is drawn from a Gaussian distribution with a 0 mean
and a standard deviation of 1.5 % of the absolute value of the original force estimate. The
magnitude of the noise was found through comparison with the real system. To be on the safe
side, the noise is chosen just larger than that of the real system. A comparison of the Hybrid
Controller’s performance with and without added sensor noise is shown in Fig. 18. Throughout
this chapter, noise is added to the force estimates of all simulated tests unless otherwise stated.
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Figure 17: The setup used when testing the force controllers without learning. The object
(green box) has a stiffness coefficient kp = 5.000, and a damping coefficient kd = 3
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Figure 18: Force tracking performance of the Hybrid Control with and without adding noise.
The noise is represented as random samples from a Gaussian distribution with µ = 0 and
σ = 0.015|F |. The simulated noise slightly increases the force tracking error
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Admittance Control

The performance of the Admittance Controller in the above-mentioned test scenario is shown
in Fig. 19. Furthermore, the figure illustrates how the compliant position is adjusted in the
attempt of tracking the desired force of 3 N. When tuned to avoid overshooting at impact, there
is a static deviation to the desired force at rest. Moreover, the contact force oscillates when
performing the motion trajectory. Regarding motion tracking however, Fig. 19 shows minimal
deviation.
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Figure 19: Result from running the Admittance Controller in the homogeneous environment.
The recorded data shows that it performs well at motion tracking, but poor at force tracking,
especially when in motion. The poor tracking is reflected by the mean square error (MSE) of
1.05
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Hybrid Control

The performance of the Hybrid Controller in the same environment is shown in Fig. 20.
Most notable, it does not suffer from the same oscillations in contact force as the Admittance
Controller when moving along the surface. In general, it is doing better at tracking the desired
force. However, there still is a noticeable deviation throughout most of the task execution.
Moreover, the contact force is generally noisy. In terms of motion tracking, the performance is
decent.
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Figure 20: Result from running the Hybrid Control in the homogeneous environment. The
recorded data indicate decent performance in terms of both force- and motion tracking. Fur-
thermore, the upper right plot illustrates the subtotals of the force controller’s output
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Force-based VIC

By repeating the test for the Force-based VIC, the result in Fig. 21 was generated. The figure
illustrates the force- and motion tracking along with a plot of the varying damping and stiffness
in z. This plot shows how the stiffness is increasing gradually to approach the desired contact
force of 3 N. This adaptive trait ensures that it achieves a better force tracking than the two
other controllers. Although the magnitude of force is noisy, it manages to keep a contact force
in the region of 3 N, both when still and moving in x. However, Fig. 21 suggests poor motion
tracking ability. There is a static deviation both in x-position, and in end-effector orientation.
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Figure 21: Result of the Force-based VIC in the homogeneous environment. The plots show
that it is performing well at force tracking, but poor at motion tracking
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5.1.2 Experiments

The experiments are performed using the hardware and software described in Sections 3.1-3.4.
The Panda robot itself, and the rest of the experimental setup with the Franka Emika Panda
robotic manipulator is shown in Fig. 22. The object subject to interaction is a stiff plastic
surface, lubricated to reduce friction. To imitate environmental compliance, the gripper of
the manipulator is equipped with a soft foam rubber ball. Similar to the simulated test, the
objective of the manipulator is to track a desired vertical contact force of 3 N while performing a
motion trajectory. Tests proved that the friction of the experimental interaction is significantly
higher than in simulation. When the end-effector first attempts to move along the surface, the
static friction gradually increases until it eventually starts to slide, inducing dynamical friction
that is lower in magnitude. The complex influence of friction causes irregular end-effector
motion, consequently making force tracking very challenging.

(a) test environment (b) close-up of the test environment

Figure 22: The experimental setup used to test the force controllers. The end-effector is
equipped with a foam rubber ball to stimulate environmental compliance. The object subject
to interaction is a plastic cutting board, lubricated to reduce friction

When executing the controllers in the experimental setup, the extended FCI proved not to be
very real time friendly. Due to slow fetching of states, the controllers cannot maintain control
frequencies higher than 30 Hz. This is a significant reduction from the 100 Hz allowed in
simulation, on account of the ability to slow down time. The reduction in control frequency
proved to be critical for the Admittance Controller, breaking the safety limitations of the
experimental setup. Thus, it has only been assessed in simulation. Although not optimal, the
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Hybrid Control and the Force-based VIC, both torque controlled, perform better on low control
frequencies. Being considered the two most promising candidates, the Admittance Controller’s
absence in the experimental assessment is not considered decisive. An illustration of the setup’s
capability to barely maintain a control frequency of 30 Hz is shown in Fig. 23.
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Figure 23: Restricted control frequency in the experimental setup. The controller, in this
case the Force-based VIC, is barely maintaining a control frequency of 30 Hz. Moreover, the
time-step variance itself can inhibit performance

Hybrid Control

The Hybrid Controller’s performance in the above-mentioned test is depicted in Fig. 24. Dur-
ing force tracking, there is initially a substantial overshoot in contact force. The immediate
overshoot is followed by a steady state deviation, growing larger when starting its motion tra-
jectory. Regarding motion tracking, the manipulator is unable to smoothly follow the desired
trajectory in x-direction. Both the illustration in Fig. 24 and visual impressions suggest that
the lagging motion tracking is caused by friction. The friction affects the orientation as well,
causing a slight tilt of the end-effector. Additionally, it is fair to assume that the friction and
tilt is causing the decrease in force tracking ability, observable halfway out the task-execution.
Compared to in simulation, the measured force is a lot less noisy.
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Figure 24: Result of the Hybrid Control in the experimental setup. Most notable, friction
appears to restrict the manipulator’s ability to track the desired force and motion. Nevertheless,
prior the influence of friction, there is an initial force overshoot, followed by a large steady state
force tracking error

Force-based VIC

The performance of the Force-based VIC is illustrated in Fig. 25. As in the case of the simulated
test, the figure shows how the damping and stiffness are adapted to achieve force regulation.
This ability gives the Force-based VIC a superior ability to track the desired force compared to
Hybrid Control. However, the friction of the experimental setup leads to poorer force tracking
while moving. In terms of motion tracking, it performs poorly, specifically in x direction along
the desired trajectory.
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Figure 25: Result of the Force-based VIC in the experimental setup. The controller’s force
tracking ability is good when standing still but weakens when the end-effector is affected by
friction. Furthermore, the motion tracking is poor

5.2 Evaluation of Force Controllers in the Learning Framework

Before initiating the evaluation of the learning-based force controllers, some implementation
details shall be reviewed. Especially, the effect of different subsampling intervals and policy
models, is to be investigated. Starting with subsampling, a good sampling frequency is one that
gives a sufficient model-resolution and action frequency, while still being able to observe the
effect of actions between each sample. To find an appropriate sample frequency, tests were car-
ried out, comparing the model variances and accumulated rewards. A compact representation
of the findings is presented in Fig. 26.
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Figure 26: Model- and policy optimization using different model-resolutions. The left plot is
showing the evolution of variance in the GP models of contact force, using different sampling
frequencies. The right plot is showing the rewards that the resulting linear policy achieves.
Using a sampling- and action frequency of 20 Hz appears to be the better choice, granting more
precise and stable models and policies

The data was collected from training in simulation, using the Hybrid Control with a 100
Hz control frequency. By testing different subsampling intervals, the sampling- and action
frequency was assessed at 10-, 20-, and 30 Hz. Comparing the 10- and 20 Hz implementation,
the 20 Hz variant can obtain a much lower variance in the force model, resulting in a policy
that grants higher rewards. The result in Fig. 26 suggests that 30 Hz is too frequent. The
variance of the force model increases halfway into the optimization process, and the rewards
are not as high as for the 20 Hz variant. On the basis of these findings, PILCO is consistently
set to run on 20 Hz. For the experimental setup, not able to exceed a 20 Hz control frequency
in the learning framework, this corresponds to sample all recorded data. In simulation however,
with control frequencies of 100 Hz, only every fifth state vector is sampled.

Regarding the choice of policy model, the performance of the RBF- and linear policy were both
assessed for the Hybrid Control in simulation. The outcome of this test is shown in Fig. 27.
Although the force profiles of both policy models are noisy, the RBF policy model performs
better, obtaining a slightly lower mean square error (MSE). Consequently, the RBF policy
model is preferred. However, as it was mentioned in Section 4.1, it is not applicable to the
experimental setup, due to slow action computations. Thus, only the linear policy model is
used on the real robot.
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Figure 27: The force tracking performance of the Hybrid Control using both a RBF- and a
linear policy model. The result suggest that the RBF policy model enables better force tracking,
obtaining a slightly lower MSE

Emphasizing learning efficiency, no controller has exceeded a total of 20 rollouts of training in
the results presented. As each rollout has a duration of 5 seconds, the total runtime of the
robot is no more than 100 seconds.

5.2.1 Simulation

Now, testing the controllers in the learning framework, they are assessed in the same simulated
test scenario as in Section 5.1.1, performing a motion and force trajectory in the environment
depicted in Fig. 17.

48



Learning-based Admittance Control

The result of the Admittance Controller with learning in the homogeneous environment is
shown in Fig. 28. The figure compares the force tracking ability of the controller with- and
without learning. Furthermore, it shows how the damping and stiffness parameters are changing
throughout the execution of the task, according to the learned policy. As it might be expected,
despite introducing learning, the force tracking is still poor. Moreover, while in motion, the
contact force fluctuates. By inspecting the calculated MSE in Fig. 28, the learning suggest an
insignificant improvement in force tracking performance.
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Figure 28: Result of the learning-based Admittance Controller in the homogeneous environment
of Fig. 17. The learned impedance strategy, illustrated in the lower plots, does not significantly
improve the force tracking performance
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Learning-based Hybrid Control

Repeating the test for the learning-based Hybrid Control resulted in the plots in Fig. 29. The
depicted impedance strategy improves force tracking, reducing the MSE from 0.23 to 0.11.
Although the measured force is noisier with learning, the values are now centered around the
desired value of 3 N.
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Figure 29: Result of the learning-based Hybrid Control in the homogeneous environment of
Fig. 17. The contact force comparison, upper left plot, suggests that the learned impedance
strategy improves the force tracking ability, cutting the MSE in half
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Force-based VIC with learning

The outcome of introducing learning in the Force-based VIC is presented in Fig. 30. Most
notable, the learned strategy maximizes the rate of stiffness-adaptability in the first phase of
the task-execution. This results in a faster convergence to the desired contact force of 3 N. For
the rest of the trial, from approximately 1.5 seconds, learning does not improve force tracking.
On the contrary, the MSE in this interval is marginally increased from 0.035 to 0.038. However,
due to faster convergence, the total MSE is reduced from 0.23 to 0.16.
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Figure 30: Result of introducing learning in the Force-based VIC, and testing it in the homo-
geneous environment of Fig. 17. Faster convergence to the desired contact force reduces the
MSE from 0.23 to 0.16
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5.2.2 Experiments

Next, the learning-based controllers will be assessed in the same experimental setup as their
learning-free counterparts in Section 5.1.2, performing a motion- and force trajectory on the
surface shown in Fig. 22.

Learning-based Hybrid Control

The performance of the learning-based Hybrid Control in the experimental setup is shown in
Fig. 31. Like its static counterpart, it experiences an initial force overshoot. Then, in the
stationary phase, it is showing an improved ability to track the desired force, reducing the
stationary deviation. However, when starting the motion trajectory, encountering friction and
end-effector tilt, the force tracking ability is reduced. The learning-based controller ends up
with the same MSE as the one with static stiffness and damping parameters.
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Figure 31: Result of the Hybrid Control with learning in the experimental setup. Despite
starting off with a better force tracking ability than its static-impedance counterpart, it has
the same total MSE, appearing more affected by friction and tilt
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Force-based VIC with learning

The learning Force-based VIC’s performance in the same test is depicted in Fig. 32. The
initial force tracking is worse than that of the learning-free variant, evidently increasing the
deviation from the desired force. As a result, it has a higher total MSE than the learning-
free VIC. However, disregarding the first second, the learning-based controller achieves a MSE
of only 0.0046, substantially lower than the 0.059 MSE of the learning-free controller in the
same interval. The learning-based force tracking leads to faster convergence, and appears more
robust against friction.
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Figure 32: Result of the Force-based VIC with learning in the experimental setup. Due to bad
initial tracking, it ends up with a higher MSE than its learning-free counterpart. However,
disregarding the initial second, the learning-based controller achieves a MSE of only 0.0046,
substantially lower than the 0.059 MSE of the learning-free implementation
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5.3 Introducing Supplemental Transition Models

To be able to perform force tracking on non-homogeneous surfaces, encountering different en-
vironmental impedance-characteristics, it is not sufficient to learn only one transition model.
In this section, supplemental models are introduced. In theory, by dedicating a model to each
distinct part of the environment, the force tracking ability will improve. This hypothesis is
evaluated both in a simulated test scenario and in an experiment using the Hybrid Control.

5.3.1 Simulation

In the simulated setup, the end-effector is to interact with a more complex surface than before.
The object, illustrated in Fig. 33, consists of parts with different stiffness and damping. The
green part of the surface still has a stiffness coefficient of kp = 5.000, and damping coefficient
kd = 3, while the new red region has stiffness and damping coefficients of 10.000 and 1 re-
spectively. As before, the object of the controller is to first establish a vertical contact force
of 3 N, before moving 5 cm forward, maintaining both a contact force of 3 N and a neutral
orientation. The forward movement in x will now have the controller experiencing an abrupt
change in environmental stiffness and damping, constructing a challenging task.

Figure 33: The setup used to test the introduction of supplemental transition models in sim-
ulation. The green part of the object has a stiffness coefficient kp = 5.000, and a damping
coefficient kd = 3. The red area has stiffness and damping coefficients of 10.000 and 1 respec-
tively

In such a non-homogeneous environment, it is unfeasible to fit the transition dynamics into
one single model. This is illustrated in Fig. 34. The variance in the force model increases
substantially, and is thus unable to make reasonable predictions, resulting in a fluctuating
policy.
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Figure 34: The outcome when GPs’ are assigned to non-homogeneous transition dynamics.
The left plot shows how the variance of the force model increases significantly. The right plot
does not indicate any policy-convergence

Now, dedicating models to distinct parts of the environment, the controller is to alternate
between separate policies. In this specific case, the switch is initiated on the basis of the
end-effector’s x-coordinate, knowing the location of the dividing line shown in Fig. 33.

To see the effect additional models and policies have on performance, three distinct modelling-
strategies are tested in the dual environment: 1) learning and using one policy, 2) learning and
using two policies, 3) learning and using three policies. The outcome is presented in Fig. 35.
For comparative reasons, also the performance of static-impedance is included.

Starting with the static controller, it is behaving similar in the soft part of the environment
as it did in Section 5.1.1, showing a decent force tracking ability. However, when entering the
part of the environment with higher stiffness, there is a force overshoot of 1.5 N.

The learning-based variant using only one policy is not able to improve force tracking. On the
contrary, the MSE is doubled. There are substantial force overshoots when making contact
with both parts of the environment, and the contact force is generally noisy.

The controller using a dedicated model and policy for each part of the environment on the
other hand, improves force tracking, although only marginally. At steady state it achieves
better force tracking than the previous candidates. Nevertheless, the measured forces are still
noisy, and there is still a significant overshoot when encountering the stiffer surface.
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For the last variant, an additional third model and policy is assigned to the border between the
soft and stiff area. The result in Fig. 35 shows that the force tracking is significantly improved
in part 1 and 3, where the respective models and policies are designated to homogeneous parts
of the environment. However, in the transition between the soft and stiff environment, the
force tracking is very poor. When the manipulator makes full contact with the stiffer surface,
there is a 180 % overshoot in contact force, contributing to a substantial MSE of 2.2. In fact,
inspection of the applied impedance strategy tells that the stiffness is increased in this middle
part.
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Figure 35: Results of the Hybrid Control in the dual environment depicted in Fig. 33, utilizing
0 to 3 policies. Only the two-policy variant is able to improve force tracking performance, and it
does so only marginally. In sum, the results show that the GP models are unable to accurately
describe the dynamics of the transition between the two distinct environmental impedances
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5.3.2 Experiments

As one model only can represent a single transition dynamic, it is expected to do poorly if the
dynamics changes during the execution of a task. It is a reasonable assumption that friction
and end-effector tilt had such an impact on the learning-based experiments in Section 5.2.2.
Especially the Hybrid Control looks affected by this in Fig. 31. As the transition dynamics
changes when the manipulator starts performing its motion trajectory, it is presumed that
separate models will generate better force-predictions, consequently leading to a better force
tracking ability. The theory was put to the test, resulting in the plots in Fig. 36. Starting with
the initial contact force, there is almost a 2 N force overshoot. Compared to the previous results
however, this is a noticeable improvement. In the first stationary phase, before moving along
the surface, it is performing exactly as the one-model variant, having a stationary deviation
of approximately 0.3 N. However, when starting the movement in x, where friction and tilt
changes the transition dynamics, they respond differently. The implementation utilizing a dual
policy is much less affected by the external influence, enabling a better force tracking ability.
By dedicating a model to each distinct transition dynamic, the MSE is reduced from 1.5 to
0.60.
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Figure 36: Result of introducing an additional model, dedicated to represent the transition
dynamics in the presence of increasing friction and tilt. The extension improves force tracking,
reducing the MSE from 1.5 to 0.60
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6 Discussion

In this section, the results and findings are up for discussion. First, the low-level force con-
trollers are reviewed, both with respect to the task at hand and the learning-based framework.
Then, the software facilitating the implemented framework is discussed. Subsequently, experi-
ences from using PILCO for learning compliant control are reviewed. Following, the findings
are viewed in the context of robotic ultrasound examination, evaluating the learning-based
controllers application potential. Finally, future directions are up for discussion.

6.1 Overall Force Controller Performance

Admittance Control

The overall results of the Admittance Controller suggest that it achieves good motion tracking
at the expense of force tracking. This is a fair assumption as the controller only offer compliance
in the vertical z-plane. With no compliance related to its orientation, it slips in the direction
of movement when performing the motion trajectory, causing oscillations in the contact force.
This issue remains a problem when introducing learning. The force oscillations cause great
variance in the models’ predictions, and thus leads to bad policies. The results suggests that
the PILCO-algorithm has been assigned to an unfeasible task. In summary, due to the limited
degrees of compliance, this particular admittance controller does not appear to be a good
solution for contact trajectories.

Hybrid Control

Both the results from simulation and experiment, shown in Fig. 20 and Fig. 24, suggest that the
Hybrid Control is better suited for the task at hand. Nevertheless, its performance is far from
perfect. In terms of force tracking, especially the experimental result shows a lacking ability
to avoid static deviation. Furthermore, there is a significant initial force overshoot, but this is
not currently of particular interest, being more related to tuning. More interesting, the static
deviation in force tracking is increasing when the end-effector starts moving along the surface.
The fluctuation in contact force in Fig. 24, observable from the sixth to eight second, appears
to correlate with the lagging motion trajectory and the sudden end-effector tilt. Overall, the
results suggests that friction, experienced when performing the motion trajectory, complicate
the tracking of both force and motion.

In the simulated, low friction environment, the introduction of learning improves the force
tracking ability of the Hybrid Control. As Fig. 29 shows, the MSE is reduced from 0.23 to 0.11.
Nevertheless, the learned impedance strategy brought with it a slight increase in initial force
overshoot, and the measured force is somewhat noisier. Inspecting the varying stiffness, there
is a noticeable decrease in the initial impact-phase, looking like an attempt to reduce impact
forces. However, with a perfect model and policy, the drop would probably be even bigger and
occur slightly earlier, avoiding an overshoot altogether. The consistent spikes in experienced
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contact force may very well be a consequence of sensor noise, leading to the consistent small
adjustments of damping and stiffness observable in Fig. 29.

In the experimental setup, the introduction of learning did not have the same impact. Although
the force profiles in Fig. 31 look different, they have the same considerable MSE of 1.5. In
the first phase of the task-execution, the learning-based controller is performing better than
its learning-free counterpart. However, when friction and tilt start affecting the system, the
force tracking ability drops significantly. This happens as the learned model is inaccurate for
this phase of the task-execution, suggesting that the transition dynamics of the system changes
when friction and tilt are occurring. This is a problem, as one model is unable to describe
two distinct transition dynamics. In Section 5.3.2 however, it was demonstrated that the
performance could be improved by introducing an additional model, designated to represent
the transition dynamics in the presence of friction and tilt. The extension improved force
tracking, reducing the MSE from 1.5 to 0.60.

Force-based VIC

The simulated and experimental results of the Force-based VIC, depicted in Fig. 21 and 25,
showcases the strength of variable impedance. Unlike the Hybrid Control, there is no static
deviation to the desired contact force. Both above figures clearly show how the stiffness is
increased to do so. Furthermore, the adaptive ability allows it to start off with a high compliance
in z, avoiding any initial force overshoot. As it was the case for the Hybrid Control, the measured
contact forces in simulation are quite noisy. Since the contact force in the experiment is much
smoother, the noise is likely related to the force sensor of the simulator. Nevertheless, when
performing the motion trajectory, the experimental results show fluctuation in force as well.
Like in the case of the Hybrid Control, this appears to be caused by friction between the end-
effector and the surface of interaction. Additionally, this disturbance inhibits motion tracking,
observable in Fig. 25 as slightly lagging x-motion and end-effector tilt. Regarding motion
tracking, unlike the Hybrid Control, the Force-based VIC is experiencing static deviations
throughout the task. When tuning the controllers, it appeared more challenging to achieve
good motion tracking of the Force-based VIC.

When introducing learning in the Force-based VIC, the most notable difference in the simu-
lated test is how fast it converges to the desired contact force. The plotted rate of stiffness-
adaptability in Fig. 30 is showing that the fast convergence is a result of a clear strategy. The
high initial adaptive rate is decisive in reducing the MSE from 0.23 to 0.16. In fact, disregarding
the initial phase, the MSE is increased when introducing learning. In regards to the noisy force
profiles in Fig. 30, they appear to be a result of noisy measurements from the simulated force
sensor. As the noise propagates in the dynamics model, the ability to improve performance is
inhibited.

Interestingly, when testing the Force-based VIC with learning in experiment, the total MSE is
increased. However, closer inspection proved that the rise was solely caused by the initial drop
in contact-force, shown in Fig. 32. As the end-effector is starting in contact with the surface,
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the drop in contact-force is likely caused by the high initial z-compliance, causing it to lose
the initial contact. Nevertheless, disregarding the initial second, the introduction of learning is
improving the force tracking significantly, reducing the MSE from 0.059 to 0.0046. Compared
to the implementation with a fixed impedance law, the contact force converges faster to the
desired value of 3 N, causing a minor overshoot doing so. After converging to the reference
contact-force, the learning-based controller achieves better force tracking. Most interestingly,
the learning-based controller is able to compensate for the effect of friction. Fig. 32 shows how
the rate of stiffness-adaptability (γ−1

K ) is lowered for that purpose. By lowering the adaptive rate
in the interval where friction is applied, from approximately 5.5- to 6 seconds, the force tracing
is significantly improved, reducing the MSE from 0.11 to 0.0032. This property makes it more
robust to environmental changes. Furthermore, the underlying adaptive law makes the learning
Force-based VIC less prone to modelling errors than the Hybrid Control. In fact, the underlying
adaptive mechanism will provide regulation regardless of the learned strategy. However, the
strategy will determine the extent of the regulation, being responsible for optimizing the force
tracking ability.

Method of evaluation

Due to the way all reward- and policy related functions are implemented in [46], the framework
does not support varying target states. Thus, the desired contact force was set to be constant for
the learning-based controllers. For comparative reasons however, the learning-free controllers
where subject to a static desired contact force of 3 N as well. Consequently, there is initially a
substantial error in force tracking. In a more elegant solution, the desired force would start off
at 0 N before gradually rising to 3 N. From experience with the static controllers, such tests
significantly reduce the risk of force overshoots. Especially the Hybrid Control would benefit
from a smoother increase of desired contact force. Furthermore, the forced initial tracking error
of 3 N is causing the MSE values to be less conclusive. For example, the Force-based VIC with
learning ended up with a MSE of 0.79, despite having a MSE of only 0.0046 for 90 % of the test.
Thus, it can be argued that the performance after achieving a stable contact is more conclusive
in terms of evaluating the benefit of learning. Nevertheless, the initial force error poses as an
interesting challenge for the learning-based controllers, putting their adaptive abilities to the
test.

In terms of the respective force controller’s performance, both in terms of motion- and force
tracking, one should not underestimate the impact of parameter-tuning. Even for the learning-
based controllers, the general performance is very dependent on the parameters that are fixed.
However, it is believed that the results are representative for its purpose, showcasing charac-
teristic properties, pros and cons.

Regarding the results from simulation, they are considered valuable for evaluating the perfor-
mance of the controllers. Nevertheless, it must be specified that the environmental stiffness,
damping and friction are not constituting a true representation of any real system. For example,
the surface friction of the object in simulation is significantly lower than the one experienced
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in the experimental setup. However, the simulated tests are thus giving an advantageous in-
dication of what behaviour to expect in a low-friction environment. After all, the high static-
and dynamic friction proved to be a complicating factor in the experimental setup. In fact,
if the experiments were to be repeated, an attempt would be made to reduce the friction of
the interaction, providing a smoother motion trajectory. Regarding the dual environment used
in simulation (Fig. 33), it is believed to give a good indication of what behaviour to expect
when interacting with a more challenging surface. Consequently it has provided some valuable
insight, showcasing the limitations of the PILCO-algorithm.

6.2 Software

Extended FCI framework

The extended FCI framework, consisting of FCI and the extensions described in Section 3.4,
has been crucial for the implementation of the controllers. By offering predefined functions to
fetch states and send commands, the Python interface is making this process easier and more
intuitive. Furthermore, the level of abstraction with respect to robot communication is making
it easier for those not familiar with ROS. Additionally, the Gazebo-based simulator is a very
helpful tool when developing code for the Panda robot. Particularly, the direct sim-to-real
transfer of code is very convenient as it allows straightforward testing in simulation prior to
robot-deployment.

However, despite its indisputable convenience, the extended FCI has its limitations. The lengthy
state-retrieval is a significant one, limiting the maximum control frequency to modest 30 Hz in
the experimental setup. This proved to be critical for the Admittance Controller as the inner
loop position controller was unfit to provide stable behaviour running such a low control fre-
quency. The Hybrid Control and the Force-based VIC handled the low control frequency better.
Nevertheless, their performance is restrained. As Fig. 23 shows, there is a significant variance
in the controllers’ time-steps when running 30 Hz, which can have unfortunate consequences
on performance. The varying size of the time-steps is critical when introducing learning. As
the model of the transition dynamics expect deterministic time-steps, these variations are caus-
ing the model to perceive inconsistent system-dynamics. Thus, the model variance increases,
consequently leading to a less accurate system-representation. In future work, speeding up the
state-retrievals should be prioritized. As the issue appears to be a consequence of overloading
the python wrapper, it should preferable be circumvented. The speed can potentially be in-
creased by implementing the python controllers as rospy nodes, communicating with the robot
through roscpp, a C++ implementation of ROS providing functionality without delay and with
minimal stochasticity.

PILCO algorithm

The PILCO-algorithm package provided by the Github repository https://github.com/nrontsis/
PILCO [46] is utilized in the implementation of learning-based force controllers. After having
made the robot-environment compatible with the PILCO package by setting it up as a Gym
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environment, reachable through Python 2 gateways, the process of extracting sampled data
and using it for learning was fairly intuitive. The respective functions, responsible for each step
in Alg. 1, are easy to use. Especially the provided examples are very helpful. Furthermore, an
extensive note is included, providing tips for hyperparameter setting and troubleshooting.

When learning impedance strategies, some of the provided functions proved to be prone to nu-
merical errors. This was especially the case for the function responsible for computing actions.
Several attempts were made to fix the issue, but no adequate solution has been found. Another
reoccurring problem was the large memory requirement in the computer during policy opti-
mization. For example, doing policy optimization with a dataset of 700 state-samples requires
2.0 GB of memory. To circumvent this limitation, the data from the oldest rollout is removed
from the dataset when the memory usage reaches the upper limit.

Long computation time is another important drawback of the PILCO-algorithm package. For
real time systems such as the Panda robot, the implementation is not optimal. For example, it
would be beneficial to use the RBF policy in the experimental setup as well, but this was simply
not possible due to slow action-calculations. The action-computation of the linear policy model
is a limiting factor in terms of control frequency as well. In fact, if the function responsible for
action-calculation had not been adjusted to be more computationally efficient, it would not be
applicable to the experimental setup either. Even after significantly reducing the computation
time from 80- to 8 ms, the control frequency had to be lowered from 30- to 20 Hz when
introducing learning. The additional, on average, 8 ms made the time-step way too stochastic
when running on 30 Hz.

6.3 PILCO for Learning Compliant Control

Randomized trials

When applying the PILCO algorithm to learn force control, several adjustments proved to be
necessary. For example, it was identified early on that the initial trials, where the controller is
applying random control inputs, should only be partially random. When randomly changing
the inputs at every iteration, the system can become unstable. Moreover, it is unfeasible to
construct a representative model of the transition dynamics. Even when remaining stable, it is
impossible to separate the effects of each control input. The solution was to only change one
control input at the time, and letting it remain unchanged for some iterations. This way, the
models of the transition dynamics were improved, significantly increasing learning efficiency.

It is important for the initial data-collecting rollouts to represent a variety of force profiles, to
provide a rich dataset for learning a locally accurate model. If the randomized policy is causing
an overshoot in impact force at every trial, there is a great chance that the dynamics model
will be highly uncertain about other more desirable states. This often resulted in poor policies,
causing big impact forces. Thus, to ensure that different behaviours are represented in the
initial trials, each trial is assigned to randomly sample from a specific part of the action-space.
The first trial of the Hybrid Control is for example sampling random stiffness values in the
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interval 10-25, even though the full action-space ranges all the way up to 90.

Optimization

Given a representative selection of randomized trials, and appropriate hyperparameters, the
learning proved to be very sample efficient. This was for example illustrated in Fig. 26, when
using the 20 Hz sampling frequency. In this test, a standard procedure of doing 4 randomized
trials and 16 on-policy trials was used. As each trial is for a duration of 5 seconds, the total
interaction time never exceeded 100 seconds. An extended illustration of the Hybrid Controller’s
learning efficiency with a 20 Hz sampling frequency, including the variance of the position- and
velocity model, is shown in Fig. 37. Already after the first model- and policy optimization,
the learned impedance strategy is capable of collecting a top-tier reward. Furthermore, the GP
variances have saturated. An interesting effect is however shown from the seventh optimization
of the velocity model. When the size of the dataset has reached its upper limit, the variance
in the velocity model decreases for five straight optimizations. This is an effect of sequentially
removing the data from the first five trials and replacing them with new ones. Out of these
five trials, four of them were performing random actions. This suggests that the model is
more precise when only being fed with data collected from similar impedance strategies. The
reduction in model variance result in more stable rewards.
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Figure 37: Illustration showing the convergence in the model- and policy optimization of the
Hybrid Control using the 20 Hz sampling frequency. The left plot is showing the evolution
of variance in the GP models. The right plot is showing the rewards that the resulting linear
policy is able to achieve.
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In Fig. 38, the evolution in the model variance of the Force-based VIC is compared with one
of the Hybrid Control. As their control-inputs have fundamentally different meanings, it is not
given that their transition dynamics are equally identifiable. The figure shows that the model
variance of the Force-based VIC also converges rapidly. However, the force-model variance
of the Force-based VIC is consistently higher than that of the Hybrid Control, consequently
making it harder to predict the outcome of actions. Due to the underlying regulating effect
of the Force-based VIC however, it is much more robust against modelling errors. Even in its
randomized trials, force tracking is achieved at some point during the task.
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Figure 38: Illustration comparing the convergence in the model variance of the Hybrid Con-
trol and the Force-based VIC. The model variance of both force controllers converge rapidly.
However, the data suggest that the model of the Force-based VIC is less accurate

In terms of facilitating learning efficiency, except for the representativeness of the initial trials,
and the sampling frequency, the reward hyperparameters were the most decisive factors. When
setting a high force tracking weight in the exponential reward function, the reward is decaying
fast, making exploration harder. A low value weight makes the reward gradient uninformative,
or very small in magnitude, slowing down learning. A force tracking weight of 5 proved to accel-
erate learning. However, it did not offer much exploration, hence the need for a representative
set of initial trials.

Limitation of GP modelling

With the current state space, x =
(
F pz vz

)
, a set of GPs is only able to learn the transition

dynamics of one specific object-impedance. Thus, in a dual environment, the two distinct
transition dynamics will by tried fitted into one dynamics model, resulting in poor policies.
This is illustrated in Fig. 34 and 35. Furthermore, any unforeseen external impact during
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model optimization, will be tried explained through the model. Consequently, PILCO is not
robust to sudden, non-consistent disturbances. Concerning robustness, Cheng and Zhao et. al.
proposed the approach L1 Adaptive Control in [49], aimed at making non-robust RL policies-,
among them PILCO-policies, more robust.

To make PILCO applicable to an environment with changing transition dynamics, more than
one model is required to represent it, subsequently leading to multiple impedance strategies.
Furthermore, the change in transition dynamics needs to be predicable, allowing well timed
policy shifts. This is done successfully in Section 5.3.2 when friction and tilt start affecting the
Hybrid Control in the experimental setup. In this case, the shift of policy is triggered when
the motion trajectory is initiated. The dual policy improves the force tracking ability in both
phases, being a logical consequence of not trying to fit distinct transition dynamics into one
common model. However, the force tracking of the dual policy is not flawless. In the second
phase of the task-execution, shown in red in Fig. 36, there is still a gradual increase in the
force tracking error. The timing of it suggest that it is caused by the increasing magnitudes
of friction and tilt. Hence, there is a gradual change in transition dynamics, meaning that it
is unfeasible to achieve a perfect representation using GPs. Nevertheless, the introduction of
supplemental GPs improves performance.

The introduction of supplemental GPs for the dual environment in Fig. 33 however, was not as
successful. Starting with the one-policy variant, it is not able to improve force tracking. This
is expected given the difficulty of modelling non-homogeneous transition dynamics, illustrated
in Fig. 34. The two-policy variant however, is able to marginally improve force tracking.
Nevertheless, the contact force is quite bumpy. Furthermore, the tracking when entering the
stiffer part of the environment is worse than that of the static controller. For the three-
policy variant, the transition dynamics are represented by three sets of GP models. Two of
them are representing homogeneous areas of the environment while the latter is representing
the border between them. Now, with dedicated models, the force tracking in phase 1 and 3
is significantly improved. However, in phase two, representing the transition between the two
distinct environmental impedances, there is a massive overshoot in contact force. The overshoot
results in a substantial MSE of 2.2, higher than any other policy composition. The fact that
the stiffness of the controller is increased in this critical phase, suggests that the learned model
is highly inaccurate.

In sum, the GP models are only giving accurate representations when dealing with homo-
geneous environments, where the transition dynamics remain constant. When dealing with a
complex environment, this is usually not the case, e.g., due to increasing friction, tilt or varying
environmental impedance. The result in Fig. 36 shows that the introduction of a supplemental
model can improve the total performance. However, as the results of both Fig. 36 and 35 sug-
gests, the task can not necessarily be separated into phases of perfectly homogeneous transition
dynamics. If this is the case, and the change in transition dynamics is substantial, as it is in
the dual environment of Fig. 33, PILCO is not able to learn optimal policies.
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6.4 Application Potential for Robotic Ultrasound Examinations

Starting with the low-level force controllers, both the Hybrid Control and the Force-based VIC
have potential in the learning-based framework. In both controllers, learning has the ability to
improve their performance. Nevertheless, the improvement is more significant for the Hybrid
Control as it does not have the same underlying regulating mechanisms. The most interesting
attribute of the Force-based VIC with learning is its apparent ability to mitigate the effect
of disturbances by reducing the rate of stiffness-adaptability. However, as the Force-based
VIC is adaptive by default, the changing learning rates has a less of an impact than the raw
impedance strategy in the Hybrid Control. As its actions are less influential, and there is some
force-regulation regardless, the force tracking is more robust, both against modelling errors and
general disturbances.

However, the underlying adaptive law limits the potential flexibility of the controller. Regardless
the control-input, changes in damping and stiffness parameters are only triggered by force
tracking errors. The policy is only able to decide how much the damping and stiffness changes.
Whether it is an increase or decrease is decided by the sign of the force tracking error. Another
drawback of the Force-based VIC is the apparent difficulty of achieving good motion tracking.
When tuned, even substantial position- and orientation gains resulted in static deviations. The
poor motion tracking ability is illustrated in Fig. 21, where stationary deviations occur despite
marginal environmental friction.

To improve force tracking with PILCO, it has been shown that the transition dynamics must
be accurately represented by the GP models. Thus, when dealing with environments where
the transition dynamics changes during the task-execution, separate models are required. Ac-
cordingly, the moment where the dynamics changes must be identifiable. When the change is
gradual, there is no perfect way to split it, eventually leading to a suboptimal policy. If this
is the case, and the change in transition dynamics is substantial, PILCO is not able to learn
optimal policies.

With respect to the robotic ultrasound examination use case, GPs are posing a significant lim-
itation on modelling of the system dynamics. For example, as every transition in the learning
process is to conform with a model, also state-changes caused by sudden disturbances are incor-
porated into the model, leading to inaccurate, fluctuating models of the interaction dynamics.
In the ultrasound use case, disturbances such as respiratory movement in a patient will confuse
the model as it gradually changes the transition dynamics. Furthermore, the probe cannot
move along paths where the stiffness of the body changes significantly.

6.5 Future Directions

As the performance of the implemented force controllers are restrained by software-limitations,
it would be interesting to repeat the tests under more optimal conditions. In a software envi-
ronment allowing higher control frequencies, it is likely that the learning-based controllers will
perform considerably better. Specifically, results and reason suggest that the ability to run the
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controllers at a higher frequency, having more consistent time-step, and using the RBF policy
model, will improve performance in experiments.

Nevertheless, the results indicates that GP-modelling is not optimal for this use case. When
performing complex interaction tasks in challenging, dynamic circumstances, flexibility is key.
It must provide safe and adaptable behaviour, even in the occurrence of unforeseen external
influences. This is not GP-modelling’s strong suit. Once the transition dynamics unexpectedly
changes, the model breaks down. Consequently, for the task at hand, a more flexible learning-
framework is needed. This might be achieved by replacing the GPs with BNNs or Neural
Networks, e.g., using PETS [33] or Deep PILCO [34], or adopting Roveda et. al’s VIC approach
[35]. In these approaches, some sampling efficiency would be sacrificed for the benefit of more
robust force tracking behaviour in complex environments as they are better suited for modelling
discrete dynamics. Being less computationally extensive, and scaling better with bigger action-
spaces, more control parameters can be included in the learned strategy. Thus, increasing the
controllers’ flexibility and making performance less dependent on manual tuning.
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7 Conclusion

Constituting the thesis’ main contribution, three different force controllers have been imple-
mented and assessed in the state of the art sampling efficient PILCO framework. Furthermore,
literature relevant to the task have been reviewed, and a framework has been implemented,
providing compatibility between the Franka Emika Panda robot and modern machine learning
libraries.

The three fundamental approaches in robotic interaction control, respectively Admittance Con-
trol, Hybrid Control and a Force-based VIC, were implemented and evaluated. It was shown
that the learning-based framework has the ability to improve performance in both the Hybrid
Control and the Force-based VIC. Furthermore, the learning proved to be extremely sample
efficient, improving their force tracking ability in just a few trails. For the Hybrid Control, the
framework was used to learn direct strategies for its vertical damping- and stiffness parameters.
In the Force-based VIC, strategies were learned for the adaptive-rates of the already existing
adaptation laws. As the Hybrid Control do not have the same underlying force-regulating
mechanisms, its improvement by learning was more significant. Besides, by controlling the
impedance characteristics directly, it has a higher maximum achievable flexibility. However,
the underlying force-regulation of the Force-based VIC makes the force tracking more robust,
both against modelling errors and general disturbances. The Admittance Controller however,
did not achieve force tracking behaviour. Only providing compliance vertically, the end-effector
was not able to maintain contact with the surface when performing motion trajectories. More-
over, it caused oscillations in the contact force, entailing difficult learning conditions.

The results showed that the transition dynamics must be accurately represented by the GP
models for PILCO to improve force tracking. Consequently, if the transition dynamics changes
during the interaction task, an accurate model must be learned for each phase. Furthermore,
the phases must be separable and recognizable. Thus, irregular external influences will be
incorporated into the model, leading to inaccurate, fluctuating models of the interaction dy-
namics. Consequently, GP modelling does not offer the robustness and flexibility required to
model complex interaction dynamics. Hence, in future work, it would be interesting to replace
the GPs with Neural Networks or BNNs, sacrificing sampling efficiency for achieving robust
force tracking behaviour in complex environments.
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