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Abstract: Biogas is produced in Bangladesh mostly through fixed-dome anaerobic digesters, which
usually operate without any temperature controller. An experiment was conducted to monitor the
seasonal temperature variation inside a fixed-dome type digester and its effect on biogas composition.
A commercial-scale digester with a working volume of 350 m3 was used for this study. Three k-type
thermocouple sensors were used to monitor the ambient, biogas, and slurry temperatures in real-time.
The results showed that the average ambient temperature in the autumn, late autumn, and winter
was 29.05, 22.90, and 17.64 ◦C, respectively. The average slurry temperature in the autumn (30.38 ◦C)
was higher than in the late autumn (29.36 ◦C) and in the winter (25.76 ◦C). The highest and lowest
slurry temperatures were found to be 31.11 and 24.47 ◦C, respectively, which indicated that the
digester worked within a wide temperature range, establishing both psychrophilic and mesophilic
operational conditions. Higher methane concentrations were observed in the autumn than in the late
autumn and winter. The CO2 and H2S concentrations were higher in the winter than those of in the
autumn and late autumn. The electricity generation in the winter was 47.85% and 45.15% lower than
in the autumn and late autumn, respectively.

Keywords: anaerobic digestion; fixed-dome digester; temperature; seasonal variation; biogas

1. Introduction

Bangladesh is a densely populated country with a population of around 170 million [1].
Per capita electricity consumption in the country is 375 kWh per year [2], which is the
lowest among the South Asian countries, with corresponding consumption in India of
970 kWh, Sri Lanka of 650 kWh, and Pakistan of 590 kWh, respectively [3]. The energy
generation in Bangladesh mostly depends on fossil fuels (where natural gas is the main
source) with a mere share of 1.61% from renewable sources [4]. As of today, the country has
a limited natural gas reserve (i.e., 12 trillion cubic feet till to date) which may run only for
the next 10–12 years [5]. Due to rapid industrialization and continuous population growth,
the countrywide demand for energy is rising swiftly, causing a tremendous pressure
on the present natural gas demand. As a result, there has been an ongoing search for
suitable alternative energy sources for power generation with a potential for greenhouse
gas mitigation. Biogas seems to be a promising alternative in this context, as it is produced
from renewable sources, often from organic waste materials, which has low or no impact
towards greenhouse gas emissions, once utilized for energy production.
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Biogas is produced through anaerobic digestion (AD) by the action of microorganisms
in an anoxic environment. There are several factors which influence the performance of
AD. Digester temperature is one of the vital factors which influences microbial activity and
growth. The AD typically takes place in three distinct temperature regions: psychrophilic
(<30 ◦C), mesophilic (30–40 ◦C), and thermophilic (50–60 ◦C) [6]. The methanogens are
mainly effective in mesophilic and thermophilic regions where AD shows higher produc-
tivity. Previous studies on the effect of temperature on anaerobic digestion found higher
methane yield in the mesophilic temperature range as compared to thermophilic condi-
tion [7,8]. Generally, a temperature range of 35–37 ◦C is suggested optimum for methane
production in mesophilic conditions [9]. However, at a lower temperature range, such
as at 22–28 ◦C, methane production tends to be 23–30% lower than that at 35 ◦C [6,10].
Schmidt et al. [11] found that fluctuations in temperature reduce the biogas productivity
of AD. Barik and Murugan [12] observed that methanogens are very sensitive to speedy
changes in temperature with any drastic change resulting in process failure, which is
thus recommended to be avoided by implementing correct measures. The correlation
between the reaction rate and the biological process with temperature can be shown by
Equation (1) [7]:

rT = r20θ(T−20) (1)

where rT represents the reaction rate constant at temperature T, r20 denotes the reaction rate
constant at 20 ◦C, θ represents the temperature activity constant, and T is the temperature.

Poultry is one of the major livestock sectors in Bangladesh [13]. The poultry population
of the country is around 312 million, which produces around 2.1 MTPY (million tons per
year) of waste (dry matter) with a corresponding production of 12.3 MTPY from cattle,
0.7 MTPY from buffalo, 1.5 MTPY from goats, and 0.2 MTPY from sheep, respectively [14].
There are around 20,000 farms having 1000 or more birds, which have a considerable
potential to generate electricity using the produced waste [15]. Talukder [15] showed
that the poultry litter had an electricity generation potential of 490 GWh out of the total
electricity generation of about 26,604 GWh in the year 2009. In recent development, the
poultry population is increasing at a much higher rate than other livestock due to the
increased consumption of poultry meat. As the poultry industry grows continuously,
it contributes to generate a significant portion of the waste generated from the entire
livestock sector. Thus, a systematic waste management strategy to utilize this waste in an
environmentally friendly way is urgently needed.

In Bangladesh, there are around 91,350 domestic and commercial biogas plants in
operation [16]. Most of the plants are single substrate (cattle or poultry manure)-based and
use a fixed-dome type digester. These plants are operating without any heating system
for temperature control, and their performance among other things depends heavily on
ambient temperature [17]. Bangladesh has a sub-tropical monsoon climate containing four
major seasons: winter, spring, summer, and autumn [18]. It has a wide seasonal variation
in rainfall, with moderately warm temperatures and high humidity [19]. The average
temperature from April to August is about 30 ◦C [20], which is around optimum for biogas
production [21]. However, the temperature starts to fall from September till February
(winter) [20]. In the winter, the mean temperature is around 18 ◦C, which sometimes
drops below 10 ◦C due to cold waves [19]. The low temperatures in the winter season may
influence the performance of AD. Thus far, most of the previous studies [7,8] on the effect
of temperature on AD performance were conducted at a laboratory scale, with studies on
commercial-scale digesters being extremely rare. In addition, little information is available
on how changes in ambient temperature influence the process temperature of a full-scale
anaerobic digester. Kalia et al. [22] evaluated the performance of a fixed-dome digester in
India under seasonal temperature variations. They found that a fall in the mean ambient
temperature from ca. 26 ◦C in the summer to ca. 9 ◦C in the winter months resulted in a drop
in the digester temperature from ca. 22 to 13 ◦C. Ihara et al. [23] observed improvement
in biogas production with an increase in ambient temperature in a field-scale digester in
Japan. Castano et al. [24] evaluated the performance of a small-scale fixed-dome digester
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in a temperate U.S. climate for 363 days. They observed that the digester temperature
below 20 ◦C produced less biogas than expected. Besides these studies, the knowledge of
seasonal temperature effect on commercial-scale digesters in Bangladesh context to date is
insufficient. Moreover, studies devoted to poultry manure as a feedstock are even scarcer,
with very few previous studies [22,24] reporting the performance of digesters treating cattle
manure only. To address this research gap, the aim of the current work was to investigate
the effect of seasonal temperature variations on the digester temperature and biogas quality
by using a fixed-dome biogas digester treating local poultry litter in Bangladesh conditions.

2. Materials and Methods
2.1. Experimental Site and Biogas Plant

The experiment was conducted in a poultry farm situated in Gazipur, Bangladesh
(GPS coordinates 24◦9′41.32′′ N, 90◦25′10.74′′ E) (Figure 1). An overview of the farm is
presented in Table 1. The farm has 60,000 birds, which produce ca. 12,000 kg of poultry
litter per day. The farm is covered by a poultry shed, which is a standard accommodation
environment for birds with proper aeration, shelter, safety, and drainage systems. In order
to treat the poultry litter for biogas production for electricity generation, the farm uses a
fixed-dome type digester of 350 m3, which is made of bricks and constructed underground.
The generated poultry litter within the farm is collected using a belt conveyor. After
collection, the poultry litter is flushed with water at room temperature to enable feeding
into the digester through the inlet. The room temperature and humidity are maintained
by a pad and fan cooling system in the summer and by lighting and closing curtains in
the winter, respectively. Residue of the digestion, called digestate, is brought out from the
digester through the outlet to prevent the increase in biogas exit pressure.

Figure 1. (a) Location of the study site; (b) picture of the farm.

Table 1. An overview of the farm.

Parameter Value

Capacity of the digester (m3) 350
Digester type Fixed dome
Feedstock Poultry droppings
Population (no. of birds) 60,000
Waste produced (kg/d) 12,000
Waste fed into the digester (kg/d) 3000
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2.2. Experiment Period

Considering the seasonal temperature variation of Bangladesh as stated in the intro-
duction, the experiment was conducted in the autumn, late autumn, and winter seasons,
starting from 24 August 2017 till 10 February 2018. Autumn spans from mid-August
to mid-October, late autumn is from mid-October to mid-December, and winter is from
mid-December to mid-February.

2.3. Experimental Set-Up and Procedure

For the experiment, a set-up was prepared in a control room where a computer (15-
BA009DX, HP, USA) and a data logger (CR6, Campbell Scientific Inc., Logan, UT, USA)
were placed (Figure 2). The room was facilitated with continuous electricity supply to
ensure continuous operation of the computer and the data logger. Temperature at different
locations was recorded by the data logger through three different k-type thermocouples
(Temperature 107 probe, Campbell Scientific Inc., Logan, UT, USA). Two thermocouples
were placed inside the digester at the gas outlet for measuring the biogas temperature
and slurry temperature at a depth of 0.91 m and 2.13 m, respectively, and the other sensor
was exposed into the atmosphere for the measurement of ambient temperature (Figure 2).
The data logger saved data every minute of the interval, which eventually allowed to
process data for every hour and every three hours for display. It was assumed that no
temperature gradient exists inside the digester at any depth. Therefore, the single point
measurement of the slurry temperature represents the temperature of all points. This
assumption is supported by Terradas-III et al. [25], who observed no significant change
in slurry temperature with the depth of the digester, namely, 24.80 ◦C at 1 m, 24.50 ◦C at
1.4 m, and 24.40 ◦C at 1.8 m depth, respectively.

Figure 2. Fixed-dome digester with experimental set-up.

2.4. Measurement of Different Parameters

During the experiment, the feedstock and slurry samples were collected for laboratory
analysis. The collected samples were brought to the Green Energy Knowledge Hub
(GEKH) laboratory at Bangladesh Agricultural University (BAU) for physical and chemical
analyses. The total solids (TS) and volatile solids (VS) were determined using the following
standard [26], as described by Nasrin et al. [27]. For drying and combustion of samples
for TS and VS evaluation, a heating oven (UN30, Memmert, Schwabach, Germany) and a
muffle furnace (LE 14/11/ B 150, Nabertherm, Lilienthal, Germany) were used. The pH of
the samples was measured by a calibrated pH/Conductometer (914 pH/Conductometer,
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Metrohm, Herisau, Switzerland). The biogas composition (CH4, CO2, and H2S) was
measured at an interval of around 20 days using a biogas analyzer (Biogas 5000, Geotech
Ltd., Coventry, UK). Biogas volume could not be measured due to the unavailability of a
biogas volume measuring system for the field-scale fixed-dome digester. Instead, the data
on daily electricity production (kWh/day) from biogas was obtained from the farm owner.

2.5. Statistical Analysis

Statistical analysis was performed upon data collection. Significant statistical differ-
ence was determined using IBM SPSS Statistics 20 software. Multiple comparison tests
were conducted using Tukey’s HSD (honestly significant difference) test method.

3. Results and Discussion
3.1. Substrate and Slurry Characteristics

The substrate and slurry characteristics are presented in Table 2. The TS and VS
contents of the substrate were in the range of 6% to 17% and 4% to 11%, respectively. The
dry matter content of the input feedstock was found to vary from time to time due to the
non-uniform mixing of the poultry litter and water, as the plant owner did not have enough
resources for monitoring and controlling the feedstock input at the point of feeding.

Table 2. Substrate and slurry characteristics.

Date
Substrate Slurry

TS (%) VS (%) pH TS (%) VS (%) pH

24-08-17 17.08 10.78 5.95 1.02 0.44 7.09
14-09-17 6.45 4.26 6.27 0.83 0.33 7.63
09-10-17 10.54 6.65 7.65 1.29 0.52 8.04
01-11-17 6.25 4.18 7.46 1.25 0.51 7.95
14-12-17 6.5 4.12 6.39 1.15 0.46 6.96
04-01-18 10.16 6.63 6.54 1.13 0.47 6.83
10-02-18 10.27 6.88 6.82 3.03 1.24 5.96

The pH is known to influence enzymatic activity associated with different AD process-
ing steps. Each enzyme is active within only a specific and narrow pH range and presents
its maximum activity at an optimum pH. The pH value and the stability of the pH in an
anaerobic digester are extremely important to maintain a high rate of methanogenesis,
which develops when pH is kept within a neutral range [28]. The AD is stabilized at a pH
of 6.5 to 8.2 [29]. In this study, the pH value of the digester slurry was higher in the autumn
than in the late autumn and winter (Table 2). Similar results were obtained by the previous
studies [7,8], which observed low pH levels at low slurry temperatures.

As for TS and VS contents of the digestate, the amounts as compared to those of the
input substrate were found to be much less (Table 2) This represents that a significant
portion of the VS in the input substrate was involved in the biochemical conversion and
therefore turned into biogas.

3.2. Seasonal and Diurnal Temperature Variation

The seasonal variation of the ambient temperature and the corresponding slurry
and biogas temperature are shown in Figure 3. From the figure, it is evident that the
average biogas and slurry temperature decreased with the decrease in average ambient
temperature. During the experiment, the maximum ambient temperature was found to be
41.31 ◦C on September 23 and the minimum ambient temperature of 5.08 ◦C on January
8. Correspondingly, the maximum and minimum biogas temperatures were 32.63 and
16.83 ◦C recorded on August 25 and December 4, respectively, while the maximum and
minimum recorded slurry temperatures were 31.11 and 24.47 ◦C on September 19 and
January 16, respectively. The variable slurry temperature throughout the different seasons
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suggests that the digester established both psychrophilic and mesophilic conditions during
its operation.

Figure 3. Variation of ambient, biogas, and slurry temperature over the experimental period.

The average ambient temperature in the autumn, late autumn, and winter was
29.05 ± 3.07 ◦C, 22.90 ± 5.47 ◦C, and 17.64 ± 6 ◦C, respectively. Due to technical diffi-
culty of the data logger, data from October 10 to October 27 could not be registered. The
ambient temperature in the autumn was 6.15 ◦C higher than that in the late autumn and
11.41 ◦C higher than that in the winter. The results of an ANOVA test showed that the
ambient temperature in the autumn was significantly higher than that in the late autumn
and winter (p < 0.05), respectively (Table 3).

Table 3. Changes in the ambient temperature and slurry temperature.

Name of the Season Ambient Temperature (◦C)
(Mean ± SD)

Slurry Temperature (◦C)
(Mean ± SD)

Autumn 29.05 ± 3.07 a 30.38 ± 0.38 a

Late autumn 22.90 ± 5.47 b 29.36 ± 0.96 a

Winter 17.64 ± 6 c 25.76 ± 0.78 b

a–c Within each column, different letters indicate a significantly increased difference (p < 0.05).

The immediate change in the slurry temperature after feeding the digester was moni-
tored and shown in Figure 4. The digester was fed with influent (mixture of poultry litter
and water) once daily between 11.00 AM and 12.00 PM throughout the experiment. As
shown, the slurry temperature remains unaffected by the addition of the influent.

In the autumn, the maximum ambient and biogas temperature fluctuations were
found to be 4.01 ◦C (1:00 PM) and 1.29 ◦C (7:00 PM), respectively (Figure 5). The fluctuation
in slurry temperature was very low during the autumn, which is desirable for a stable
AD operation. The average slurry temperature during the autumn was found to be
30.38 ± 0.38 ◦C. The variation of the ambient temperature between day and night was
around 2.94 ± 1.41 ◦C.

In the late autumn, the recorded maximum ambient and biogas temperature fluctua-
tions were 3.44 ◦C (1:00 PM) and 1.19 ◦C (7:00 PM), respectively (Figure 6). The fluctuation
in slurry temperature was not significant. The average slurry temperature in the late
autumn was 29.36 ± 0.96 ◦C, which was 1.02 ◦C lower than autumn’s slurry temperature.
During the night, the ambient temperature dropped by 7.54 ± 2.14 ◦C, which although is
significant, did not affect the slurry temperature.
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Figure 4. Changes in slurry temperature after feeding in (a) autumn (18 to 21 September 2017),
(b) late autumn (18 to 21 November 2017), and (c) winter (15 to 18 January 2018).
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Figure 5. (a) Daily and (b) diel ambient, biogas, and slurry temperature variations in the autumn season.

Figure 6. (a) Daily and (b) diel ambient, biogas, and slurry temperature variations in the late autumn season.

The maximum ambient temperature fluctuation in the winter was found to be 4.94 ◦C
(11:00 AM). The average ambient temperature at 11:00 AM was 21.63 ◦C. No significant
fluctuation in the slurry temperature was observed in the winter months (Figure 7), but
the average slurry temperature in the winter dropped to 25.76 ± 0.78◦C, which was 5.64
and 4.62 ◦C lower than that in the autumn and late autumn, respectively. The ambient
temperature at night fell by 8.69 ± 2.12 ◦C. This drop in temperature during the night was
higher than the above two seasons.

The results of this study showed that during a specific season, the variation of slurry
temperature was not related to the variation in ambient temperature, which coincides
with the findings of the previous study by Kalia et al. [30]. However, in the long run, the
average slurry temperature decreased gradually from the autumn to winter. There was
no significant difference in slurry temperature between the autumn and late autumn, but
the temperature was significantly lower in the winter (p < 0.05). The slurry temperature
dropped as the average ambient temperature fell gradually from the late autumn to winter.
Similarly, the average biogas temperature also decreased with the drop in average ambient
temperature in these periods of the year. Thus, it can be said that the ambient temperature
is directly proportional to the biogas and slurry temperature; hence, it may influence the
AD performance.
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Figure 7. (a) Daily and (b) diel ambient, biogas, and slurry temperature variations in the winter season.

3.3. Effect on Degradation Efficiency

Total solids reduction (TSR) and volatile solids reduction (VSR) are two important
measures of AD degradation efficiency. In this study, the TSR in the autumn, late autumn,
and winter was found to be 89.64%, 81.15%, and 79.68%, respectively, and the VSR was
93.45%, 88.31%, and 87.44%, respectively (Figure 8). It is evident from the results that the
degradation efficiency decreased from the autumn to winter as the digester temperature
declined from 30.38 to 25.76 ◦C. During AD, microorganisms break down waste materials
into sugars and fatty acids. Fatty acids are then converted into biogas by the action of
methane forming bacteria and archaea. This process causes a reduction of solid particles
in the organic materials. At low temperature, the metabolic activity of microorganisms
decreases, resulting in lower degradation efficiency [31]. Nandi et al. [7] observed low
degradation efficiency at lower temperatures than that of higher temperatures. The study
obtained the volatile solids degradation of 29–33% between 35 and 40 ◦C, and of 12–19%
between 20 and 25 ◦C. A digester temperature higher than 40 ◦C resulted in lower degrada-
tion efficiency. The study concluded that an optimum temperature should be maintained
to achieve a higher degradation of organic matter.

Figure 8. Variation of degradation efficiency.

3.4. Seasonal Variation of Gas Composition

According to a number of researchers [32,33], the variations in CH4 production and
emissions from biogas plants have been correlated to the slurry temperature. In this
study, the slurry temperature in the autumn was higher than that in the winter. The
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seasonal variation of gas composition is shown in Figure 9. It is evident that the methane
concentration decreased with the decrease in average temperature from autumn to winter
(Figure 9a). The average methane concentration was 61.43%, 59.75%, and 56.3% in the
autumn, late autumn, and winter, respectively. Thus, the methane concentration in winter
was 8.35% and 5.77% less than the methane concentration in the autumn and late autumn,
respectively. This observation suggests that the methane production decreases with the
decrease in temperature. Similar results were obtained in the study by Vanegas and
Bartlett [34], who found lower methane concentration at 20 ◦C (45%) than at 35 ◦C (62%).
An increase in temperature leads to increased bacterial activity with higher growth rates,
faster metabolism, and elevated nutrient demand. If the temperature falls below the
optimum range, bacterial metabolism decreases. As a result, methane concentration in
biogas decreases or completely disappears with the proportional increase of CO2 level [7].
However, results of the ANOVA test showed that the difference in methane concentration
in different seasons was not significant (p = 0.10).

Figure 9. Seasonal variation of biogas composition: (a) CH4; (b) CO2; and (c) H2S.

Apart from AD temperature, the CH4 concentration in biogas also depends on the pH,
as it affects the speciation of the carbonate system and the release of CO2 [7]. The biogas
composition shifts more toward CH4 when the pH is high due to increased alkalinity
caused by NH3 release. In this study, the pH in the autumn was higher and stable than that
in the late autumn and winter. Nandi et al. [7] reported a stable and neutral pH at higher
temperatures (30 and 35 ◦C) than at low temperatures (20 and 25 ◦C), which resulted in
higher CH4 concentration. From the autumn to winter, the CH4 concentration decreased
with a corresponding rise in CO2 concentration due to the drop in pH (Figure 9b).
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The H2S is considered as an impurity in the biogas composition. Biogas can be used
to fuel combustion engines. High amounts of H2S in biogas can be corrosive to the engine
and metal parts through the emission of SO2 during combustion, especially when the
engine is not operated continuously. Furthermore, combustible products of H2S-laden
biogas may contain toxic H2S/SO2 gas mixture which is detrimental to human health at
the occupational level [35]. Besides the downstream impact, high concentration of H2S can
affect the AD process itself, resulting in collapse or even failure of it in worst cases [36]. In
the present context, the average H2S concentration in the winter was 4128 ppm, which was
higher than that of in the autumn (3470 ppm) and late autumn (3379.5 ppm), respectively
(Figure 9c). The highest H2S concentration was measured as 4499 ppm on February 10,
which represents the middle of winter. Jung et al. [37] also observed high H2S concentration
at low ambient temperature. It was interesting to see that the H2S concentration obtained
in this experiment was much higher than in the laboratory experiments conducted by
Saha et al. [38], who obtained a H2S concentration of 225 ppm. The difference was perhaps
due to the different mode of operation or operating conditions [39]. The lab-scale study [38]
was conducted using batch bottles in a controlled environment. The batch digester was
filled with substrates and then sealed till the end of the experiment, whereas the present
study was conducted using a fixed-dome digester of continuous mode in an uncontrolled
environment. Haghighatafshar [40] observed a high growth rate of sulfate-reducing bacte-
ria in continuous digestion, which resulted in high concentration of H2S in biogas. A high
concentration of H2S in the field-scale digester was also observed in a previous study [41],
which observed an average H2S concentration of 4310 ppm from an anaerobic digester
treating dairy manure. The H2S in biogas comes from inorganic sulfate that presents in
the feedstock. The H2S is produced through the action of sulfate-reducing bacteria which
compete with methanogens for the intermediate carbon sources [42]. High H2S concen-
tration in the winter season might be due to higher activity of sulfate-reducing bacteria
than methanogens causing a high rate of sulfidogenesis [43]. Thus, it can be concluded that
the low temperature is responsible for higher H2S concentration during the winter season.
The presence of H2S hinders the production of methane [44], making biogas unsuitable
for downstream application. As for example, the recommended concentration of H2S in
biogas is <10 ppm for kitchen stoves, <500 ppm for combustion engines, and <1000 ppm for
boilers, respectively [45], suggesting that the filtering of biogas is necessary before feeding
to an engine or to other biogas-run applications.

3.5. Electricity Production

Figure 10 shows the average daily electricity production from the produced biogas in
different seasons. The results show that electricity production in the winter (182.5 kWh)
was 47.85% and 45.15% lower than in the autumn (350 kWh) and late autumn (332.72 kWh),
respectively. However, electricity production in the late autumn was only 4.94% lower than
in the autumn. With the produced biogas, a generator of 100 kW could run for 3.5, 3.33,
and 1.83 h in the autumn, late autumn, and winter months, respectively. The reason for
less electricity production in the winter can be correlated with the lower digester temper-
ature (25.76 ◦C), which might have influenced the biogas production and consequently
lowered the methane concentration in the biogas by compromising the metabolic activity
of methane formers.
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Figure 10. Daily average electricity generation in different seasons.

3.6. Digester Heating

Based on the present investigation, it seems that the digester should use a heating
unit for temperature control as the digester temperature was found to often deviate to
some extent from the optimum AD temperature. Installing such a unit is also likely
to improve AD performance in terms of maximizing biogas yield with minimum H2S
production. However, digester heating could result in extra costs for biogas plant operation.
A number of previous studies examined the various ways of reducing the cost of digester
heating, employing waste heat, solar heating, or surplus heat using heat pumps or heat
exchangers [46]. For example, Liu et al. [47] evaluated the performance of a groundwater
source heat pump to heat the digester in the winter and found a saving of 44% standard
coal consumption. Gaballah et al. [48] developed a greenhouse-assisted solar heating
system, where the greenhouse was made with polyethylene plastic. The study concluded
that a digester temperature of around 5 ◦C higher than the ambient temperature can be
reached using the proposed system. Dong and Lu [49] proposed a solar heating system,
in which water is heated first by a solar collector, and then directly added to the digester.
The system showed 11.3% improvement in the biogas yield over the unheated digester.
Axaopoulos [50] proposed a solar heating system for an underground digester. The digester
was constructed with flat plate solar collectors with an area of 32 m2. The results showed
that by using the heating system, the digester temperature could be maintained at about
33.5 ◦C. However, a combined heat and power generation (CHP) system would be most
appropriate for a commercial-scale plant as they intend to produce both heat and electricity.
The waste heat from the combustion of biogas can be utilized to heat the digester content
by using heating pipes (internal heating) or to preheat the substrate prior to feeding into
the digester using a heat exchanger (external heating) [51]. Lantz [52] found a drastic
reduction in the cost of biogas production using a CHP system with a compression ignition
engine, where heat exchangers were used to heat the substrate to maintain the optimum
digester temperature.

In line with the above studies, design and installation of a digester heating unit
suitable with regard to both AD performance and cost remains to be a scope of the future
research based on the current work.

4. Conclusions

The operational temperature and performance of a fixed-dome type digester at local
conditions were monitored. The result showed that during a specific season the slurry
temperature remained nearly constant, but in the long run the slurry temperature decreased
from autumn to winter due to the drop in ambient temperature. The biogas composition
varied seasonally as a result of temperature variations from season to season. Higher
methane and lower CO2 concentrations were observed in the autumn than in the late au-
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tumn and winter. The H2S concentration was higher during the winter than in the autumn
and late autumn seasons. The electricity generation from produced biogas was much lower
in the winter than in the autumn and late autumn. Since the drop in temperature from the
autumn to winter resulted in reduced methane concentration and higher H2S production,
it is recommended to use a heating control unit in the winter season to avoid instability
in biogas production. Additionally, before using the biogas to generate electricity via
combustion, the H2S cleaning unit prior to biogas feeding to the system should be added.

As the experiment was conducted for six months, further study could be carried out
considering all year-round temperature variations. In addition, an economic analysis of
the digester with a heating unit can be performed to understand the economic viability of
the system.
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