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Summary

The PICNIC [5] digital signature scheme is a post-quantum scheme introduced as part
of the NIST standardisation process for post-quantum cryptography [15]. We look at how
PICNIC is constructed and its security properties. We begin by introducing several cryp-
tographic concepts that are used in the scheme, among these proofs of knowledge, zero
knowledge, one-way functions and multi-party computation.

PICNIC consists of a one-way function, which is instantiated with the block cipher
LowMC [1], and a non-interactive zero knowledge (NIZK) proof of knowledge, which
is instantiated with ZKB++. ZKB++ is constructed based on the sigma protocol ZKBoo
[10], which is a zero knowledge proof of knowledge. ZKBoo also uses a technique called
MPC-in-the-head to achieve honest verifier zero knowledge (HVZK).

Some optimisations are made to ZKBoo, and the protocol is made non-interactive
using Unruh’s transform [18], resulting in the ZKB++ scheme. The resulting signature
scheme, PICNIC, has EUF-CMA security, which reduces solely to symmetric-key primi-
tives.

Sammendrag

Det digitale signatursystemet, PICNIC [5], er et post-kvantesystem som ble introdusert
som en del av NIST-prosessen for å standardisere post-kvantekryptografi [15]. Vi ser på
hvordan PICNIC er konstruert, og sikkerhetsegenskapene til systemet. Vi begynner med å
introdusere noen kryptografiske konsepter som er brukt i systemet, blant annet kunnskaps-
beviser, kunnskapsløse bevis, enveisfunksjoner og flerpartsberegning.

PICNIC består av en enveisfunksjon, som er instansiert med blokkchifferet LowMC
[1], og et NIZK-kunnskapsbevis, det vil si et ikke-interaktivt kunnskapsbevis som ikke
avslører hemmeligheten (”kunnskapsløst”), som er instansiert med ZKB++. ZKB++ er
konstruert fra sigma-protokollen ZKBoo [10], som er et kunnskapsbevis som ikke avslører
hemmeligheten. ZKBoo bruker også en teknikk som kalles MPC-in-the-head for å oppnå
kunnskapsløshet med en ærlig verifisierings-part (HVZK).

Noen optimaliseringer er gjort for å forbedre ZKBoo, i tillegg til at protokollen er gjort
ikke-interaktiv ved å bruke Unruh’s transform [18]. Dette resulterer i ZKB++-protokollen.
Signatursystemet vi får fra dette, PICNIC, har sikkerhet mot EUF-CMA-angrep og re-
duserer bare til symmetrisk-nøkkel-primitiver.
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Chapter 1
Introduction

When we are sending messages to our correspondents over the internet, there are several
things we would like to have: often we want the content of the message to remain secret
(confidentiality), we want to be confident that the person who sent the message is actually
the person they claim to be (authentication), and we want to be sure that the message has
not been changed by some third party (integrity).

We do not necessarily want all of these properties for all messages that we are sending
and receiving. In this thesis we will focus on the authentication and integrity properties.
In traditional letter correspondence we achieve this by signing our letter before sending it.
If the recipient has seen my signature before, they can be reasonably sure that I was in fact
the person who sent this letter.

In electronic communication, we want a similar notion to the traditional signature. This
is what we call a digital signature. In this thesis, we will introduce in detail a particular
construction that achieves this, a digital signature scheme called PICNIC, and we will show
that it is secure.

For the past several decades, several such digital signature schemes have been designed
and used widely. The schemes are either symmetric-key or public-key schemes, but we
will be focusing on the public-key digital signature schemes. These schemes typically rely
on number-theoretic hardness assumptions. As long as we are all using classical com-
puters, this is not a problem. However, with the emerging threat of quantum computers,
we need to design new schemes that are not vulnerable to quantum attacks. In particu-
lar, Shor’s algorithm [17] shows that two very common classical hardness assumptions,
factorisation and discrete logarithms, are not hard with quantum computers.

This is the background for the study of post-quantum cryptography, that is, protocols
that are quantum resistant. In 2016 NIST (the National Institute of Standards and Technol-
ogy, U.S. Department of Commerce) initiated a process to standardise such post-quantum
public key protocols [6]. Submissions were made in one of two categories: Public key
encryption and key establishment, and digital signatures. The standardisation process has
had several rounds of elimination and in June 2020 the round 3 finalists were announced.

PICNIC is a class of quantum-resistant digital signature schemes that was submitted as
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Chapter 1. Introduction

part of this process. It is not one of the finalists, but is an alternate digital signature scheme
that may be considered for standardisation at a later point after further consideration [15].
We will look at how PICNIC is constructed in detail and what hardness assumptions are
made when proving its security.

1.1 A general approach for designing signature systems
We would like to come up with a design for a signature system that will be secure against
attackers with access to quantum computers. We will begin by looking at some established
designs, see why they do not work and attempt to make changes to achieve our goal. Our
first attempts do not turn out to work, but we end up with the design that PICNIC is based
on.

A very simple example of a signature scheme is based on RSA:

Example 1. (RSA signatures)
Let m be a message we want to sign, and (d, e) be the RSA key pair.
Then we have that the signature, σ is:

σ ← md = f(m),

where f(·) is a secret function, that is the secret key d is not shared.
The verifier checks the signature by checking that:

σe = f−1(σ)
?
= m,

where e is the public key, so f−1(·) is public.

If the RSA signature is verified, then the recipient can be confident that the message
was not changed and that only someone who knows the secret key could have signed the
message. The private key and the public key are mathematically linked in such a way
that only the private key could have signed a message that is verified with the public key.
However, this is based on the RSA cryptosystem, which relies on the hardness of factoring.
Therefore, this is not quantum-resistant.

Another approach to create a signature scheme is to let the signature consist of both
some secret function evaluated in the message and a proof that we evaluated the function
correctly. This proof would need to be non-interactive since we do not want the signature
scheme to require several messages and in addition, we need the zero knowledge property,
that the proof doesn’t leak any information about the secret key.

Example 2. (Evaluate-then-prove signature)
Let G = 〈g〉 be a group with generator g. Let x be the secret key and y = gx be the

public key.
Then the signature of message m will be the :

σ = (s, π)← (mx, NIZK(loggy = logms)),

where NIZK(loggy = logms) is a non-interactive zero knowledge proof for that the state-
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1.1 A general approach for designing signature systems

ment loggy = logs is true.
So the secret function we evaluate is f(m) = mx, and then we prove that we evaluated

the function correctly by showing that the signature and the public key are images of the
same function.

Example 2 describes how the Scnorr signature scheme works (Example 7 in Section
2.2). Similar to the RSA signatures, there is a unique secret key that was used to sign the
message, and if the NIZK proof is sound, then the recipient can authenticate the sender.
However, like with the RSA signatures, this relies on a number theoretic hardness assump-
tion that doesn’t hold against quantum adversaries, the discrete logarithm problem in this
case.

So the problem with Example 2 is that the secret function is no longer secret in
the context of quantum computing. However, we can generalise this idea and consider
any secret function with desirable properties and then a NIZK proof that the function was
evaluated correctly:

Example 3. (General evaluate-then-prove)
Let fk : A → B be some secret function with domain A and range B. We assume

that the function is ”secure”, by which we mean that given (a, b) such that b = fk(a), it is
hard to find the correcy key k. That is, the function remains secret even if we know some
function values.

Let the secret key be sk = k and the public key pk = (a, b). Now the signature will
consist of an evaluation of this function in the message m as well as a NIZK proof that the
function was evaluated correctly:

σ = (s, π)← (fk(m),NIZK(∃k : fk(a) = b and fk(m) = σ)).

This seems like a good strategy for creating a signature scheme. However, in practice
we run into problems here too. This is because we may not in practice be able to say that
there will be only one key k that satisfies this condition. In fact, it may be relatively easy
to find some key that satisfies the condition, but that is not the actual key that was used.
This is because anyone wanting to prove this only needs to find a key that yields a function
that agrees in two points. So we would need to require from our function fk that it is hard
to find such a key, and this may not be a reasonable assumption for functions we may wish
to use.

To avoid this issue of an adversary just needing to find one of many possible keys in
order to forge a signature, we want to make the adversary have to find the specific key that
was used. So now we want the signature to include a NIZK proof of knowledge of the
secret key. Simply adapting the scheme from Example 3, the signature would look like
this:

σ = (s, π)← fk(m),NIZK(”I know k such that b = fk(a)”).

Proving that you have access to the secret key k authenticates the sender, but this is no
longer a signature, since it does not show that the key k is used in the evaluation of m. In
fact, the NIZK proof is not tied to the message in any way, and thus anyone with access
to this message-signature pair can create a new valid pair by choosing a new message,
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Chapter 1. Introduction

evaluating some function in the message and attaching the same NIZK proof. This can be
fixed by including in the NIZK proof that ”I know the key k such that b = fk(a) and it is
the same as the key k’ s.t s = fk′(m)”. This can get very complicated so we would prefer
not to do this.

Instead of doing this, we would rather make the NIZK proof of knowledge depend
on the message m in some way. This would mean that the proof will only verify as cor-
rect when it is verified with the specific message. In practice, we are going to create these
proofs using a sigma protocol that is a zero knowledge proof of knowledge and then apply-
ing a non-interactive transformation to it, the Fiat-Shamir transform or Unruh’s transform.
Both of these allow us to embed the message in the challenge in a way such that the proof
will only be valid if the correct message is used in the verification.

Now that we are embedding the message in the proof, there is no longer any need to
include an evaluation of the secret function in the message, because that does not provide
any useful information or fulfil any security purpose. So the signature will just consist
of a NIZK proof of knowledge of the secret key, that depends on the message. Our new
signature system looks like this:

Example 4. (A general signature scheme)
The KeyGen algorithm chooses a key k for a one-way function fk and a secret key a,

computes b ← fk(a), and outputs the public key pk = (k, b) and the secret key sk =
(a, pk).

The Sign algorithm takes a message m and the secret key sk and outputs a signature:
σ = (s, π),

σ = NIZK(”I know f−1
k (b)”),

where the challenge in the proof is computed with the message.

The Verify algorithm takes a message m, a signature σ and the public key pk and
verifies the NIZK proof of knowledge. It outputs Accept if and only if this verification
succeeds for message m.

Note that since fk(·) is a one-way function, the preimage a (which is the secret key)
cannot be found given the image b and the key k. Since the NIZK proof is a proof of
knowledge, anyone who does not have access to the secret key cannot produce a forgery
that is a valid proof. This is because there exists an extractor that finds the witness (the
secret) from valid proofs, so if an adversary can reliably produce a valid forgery, then they
also have access to the secret. Lastly, since the NIZK proof is zero knowledge, then no
information about the secret key leaks from the (arbitrary number of) proofs.

This signature construction is how the PICNIC signature scheme works. In the follow-
ing chapters we will describe both what one-way function PICNIC uses and how the NIZK
proof of knowledge is constructed.

1.1.1 What do we bring to the PICNIC?

The PICNIC signature scheme is an example of the construction in Example 4.
The one-way function in the construction is in PICNIC considered to be a block cipher

(in particular, the block cipher LowMC [1]). So b is the encryption of a under key k. Note
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1.1 A general approach for designing signature systems

that for a block cipher, it does not make sense to give away the key and the image, and
then assume it is hard to find a preimage. Given the key, it is trivial to find a preimage by
just decrypting. Because of this, we define the one-way function to be the mapping of the
set of block cipher keys k ∈ K to the set of images b ∈ R in the range of the block cipher,
given a (fixed) preimage a:

fa : K → R,

k 7→ b, such that b = Enck(a).

This is a reasonable construction because given a plaintext-ciphertext pair (a, b) such
that b = Enck(a), it should be hard to find the key k, otherwise the block cipher is not
secure (the block cipher is not a secure pseudorandom permutation).

Furthermore, we need a NIZK proof of knowledge for the block cipher key k. The
construction that PICNIC uses for this is based on a zero knowledge sigma protocol called
ZKBoo [10]. Some alterations are made to this protocol in order to increase efficiency. Ad-
ditionally, Unruh’s transform is employed to make the resulting protocol non-interactive.
This non-interactive zero knowledge proof of knowledge protocol is called ZKB++ [5].

The original sigma protocol ZKBoo is a zero knowledge proof of knowledge for a
preimage a of a function φ such that the public value b = φ(a). This is achieved by
using a technique called MPC-in-the-head [12]. This technique uses the link between zero
knowledge and secure multiparty computation: if an MPC protocol is secure that means
that no information apart from the output value is leaked. This is exactly what we want
to achieve when proving knowledge of some input (preimage) to a function: we want to
prove that the output of the function is what we claim, but without revealing the input.

We represent the function that we want to evaluate as an algebraic circuit and then
we decompose this circuit in a specific way: the decomposed circuit will be evaluated by
separate players on their own private input such that the input for all players put together is
the input of our original function and the output of all the players put together is the output
of the original function. Specifically, there are three players and we have the property
that revealing the view of any two players will not reveal any information about the input,
which is our secret key. However, without knowing the input, the person simulating the
three players will not be able to create a correct and consistent view for all three players,
and since the verifier chooses the challenge, that is which players views to open, the prover
is unable to reliably succeed in cheating.

This is still an interactive protocol, and in order to get to the non-interactive protocol
we want, we employ Unruh’s transform [18]. This transformation describes how to create
accepting conversations and compute challenges in such a way that it preserves the security
properties of the original protocol.

The details of the constructions and concepts are included in the following chapters.

1.1.2 Friends of PICNIC

Since the introduction of the PICNIC signature scheme, other signatures schemes with a
similar construction have been presented. Two of these schemes are BBQ and BANQUET.

The high level constructions of all three of these signature schemes are the same, and
they differ mostly by what building blocks they have chosen to instantiate with.
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The BBQ signature scheme [8] uses the same NIZK proof of knowledge as PICNIC
(and BANQUET), and its main difference is the use of the standard block cipher AES
instead of LowMC. Since AES has been studied significantly more than LowMC, the
confidence in the security of AES is higher than for LowMC. However, this increased
confidence in the security of the scheme comes at the cost of larger sigantures. The PICNIC
signatures are already quite large, thus any increase in signature sizes from using AES the
way that BBQ does, is unwanted. However, it is an important contribution to see how the
scheme performs when using standard primitives, and the next scheme builds on this work.

The BANQUET signature scheme [2] also uses the standard block cipher AES instead
of LowMC. However, they introduce a new technique for evaluating the AES circuit such
that the signature size is significantly reduced compared to BBQ, and competitive with the
PICNIC scheme. This comes at the cost of longer run time, where it takes longer to sign
messages than it does using PICNIC. Compared to BBQ, BANQUET represents a signifi-
cant improvement in performance. Since BANQUET uses only standard primitives and is
competitive with PICNIC in terms of signature sizes, this shows that the general signature
construction has potential to produce practical and very secure signature schemes.

We will not be focusing on other schemes than PICNIC going forward, but we note that
the security results for PICNIC hold for any signature scheme with this construction, and
only depend on the security of the building blocks. So the work is relevant not only for the
PICNIC scheme specifically, but for any future signature scheme like this, that may have
even more desirable properties in terms of signature sizes and signing times.

1.2 Structure of thesis
We begin by introducing some relevant theory in Chapter 2. We expect the reader to be
familiar with the basics of cryptography and algebra, but we will include the concepts that
are important to understand the following chapters. This introduction is followed by an
introduction to proofs of knowledge and zero knowledge in Chapter 3. We also include
some security definitions and show how we can make the protocols we are interested in
non-interactive. This will be important as the PICNIC signature construction relies on a
non-interactive zero knowledge (NIZK) proof of knowledge.

We then move on to introduce block ciphers in Chapter 4. We explain how we can
construct a one-way function from a block cipher and discuss some properties of block
ciphers that are of interest to us. We also introduce two specific block ciphers, one of
which is used in the PICNIC construction.

The last significant concept we need to construct our signature scheme is multiparty
computation. This is introduced in Chapter 5 along with a specific technique called
MPC-in-the-head that we will use in our proof of knowledge.

After having seen all the relevant background, we introduce the proof of knowledge
protocol that we will be using in Chapter 6. The protocol used in PICNIC is called ZKB++,
and is based on another protocol called ZKBoo and it is made non-interactive by applying
Unruh’s transform.

Finally, we describe the PICNIC signature scheme in Chapter 7, and prove that it is
secure.

8



Chapter 2
Background

In this chapter we will introduce some theory that we assume the reader is familiar with,
but we include it in order to introduce notation and clarify what definitions we are using
in the remaining chapters and so that this document is more self-contained.

In addition to the material cited, the theory in this and the following chapters comes
from standard textbooks, including [13, 11, 4, 7, 14].

2.1 Basic definitions
We informally introduce some elementary definitions that are useful when discussing cryp-
tography in general.

In a cryptographic protocol we usually talk about parties that execute a protocol. For
example, in a digital signature scheme, we have two parties: a signer and a verifier. How-
ever, when we talk about the security of such a protocol, we do that in terms of adversaries.
An adversary, or attacker, is an entity that is dishonest in some way, either by trying to
learn information they should not have access to or by doing things that they are not sup-
posed to be doing.

In the case of a digital signature scheme, the adversary may try to produce forgeries
of signatures in order to fraudulently convince a verifier, or they may be interacting with
a signer to get signatures, in order to learn some secret information from these signatures.
We sometimes also consider a third person to be an adversary. This is an entity that is not
participating in the execution of the protocol, but who is listening to the conversation in
order to try to learn something.

When we define security, we typically design an experiment, or a game, which the
adversary plays against a challenger. If the adversary wins the game, it has succeeded
in breaking the security that the game specifies for the cryptographic protocol. We will
define the security of a system against an attack in terms of the advantage the adversary in
the security experiment. The advantage tells us how likely it is that this adversary can win
the game in a meaningful way. We have to make this distinction because of the different
nature of different security experiments.

9



Chapter 2. Background

Sometimes, the adversary needs to guess one out of two possible values in order to
win, and it will have some probability of success when doing this. In this case, anyone
who makes a random guess will win the game with probability 1/2. So we are actually
interested in how much better the adversary is at guessing compared to someone making
random guesses. In cases like this we define the advantage of our adversary A to be

Adv(A) = |Pr(A succeeds)− 1

2
|.

Note the use of absolute values. This is because if we have an adversary B that has
success probability significantly less than 1/2, then we can use B to create an adversary A
that has success probability significantly higher than 1/2 by just havingAmake the opposite
choice to B.

In other security experiments, the adversary just needs to win once in order for the
security of the system to be compromised. In this case we define the advantage of the
adversary A to be

Adv(A) = Pr(A succeeds).

We do not require perfect, or information-theoretic, security from cryptographic schemes,
as that is usually very impractical. Instead, we consider computational security, where we
consider a cryptographic scheme to be secure if it leaks only a ”small”, amount of data to
an attacker that has bounded computational power. So we are making two concessions:
The advantage of the adversary does not need to be zero, and we allow ourselves to assume
how powerful our adversary is.

When we discuss the advantage of the adversary, we consider a scheme to be secure
if the advantage is negligible. In other words, it is so small, that we can safely disregard
it. We also talk about negligible functions, which intuitively have the same meaning: The
function values are so small compared to the input values, that we think of it as almost
zero.

In regard to the power and abilities of the adversary: We consider an algorithm to
be efficient if it has limited computational power and it terminates ”fast enough”. This
is justified since any real world machine running an algorithm will in fact have finite
computing power and cannot spend an infinite amount of time. In a similar manner, we
classify a problem as hard if there is no efficient algorithm that reliably solves it.

Sometimes we give an algorithm access to what we call oracles. An oracle is just
another algorithm that has access to some information and that our algorithm can call upon
with input of its own choosing. We distinguish between two different types of oracles.

Random oracles are idealised functionality that replace some actual evaluation done
by each party in a protocol. It can for example replace a cryptographic hash function in
security analysis. These oracles do not actually exist, and we are not claiming that they
do, we are just simplifying our security analysis by assuming some strong randomness
properties.

The other kind of oracle is something that can actually exist and that typically has
access to some secret information. For example, we can give an adversary access to a
signing oracle. This means that the adversary can query the signing oracle with messages
and receive signatures for the messages in return. The oracle has access to the secret key
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2.2 Digital Signatures

used for signing, which the adversary does not have. So the oracle doesn’t do anything
that the original signer cannot do, we are simply using the oracle to determine how the
adversary has access to requesting signatures on messages.

There are many more concepts and ideas that could be included, and the concepts
included here are formally defined in the literature. However, for the purposes of under-
standing the content of the remaining chapters, this formality is not necessary. Thus we
leave it at these vague, intuitive ideas.

2.2 Digital Signatures
A digital signature scheme is a cryptographic scheme that lets you sign messages. This
is comparable to a normal signature with pen on paper. When you physically sign a doc-
ument, you are saying that you endorse the content of the document, and the signatures
uniqueness ties it to your identity. So the digital signature can provide integrity and au-
thenticity in messages. The signature must be verifiable and hard to forge for it to be
trustworthy. When a secure digital signature scheme is used, a valid digital signature will
convince the receiver that the message was signed by the correct person and that the con-
tent of the message has not been altered since it was signed. Digital signature schemes are
formally defined in Definition 1. Figure 2.1 visualises how the algorithms interact.

Figure 2.1: Illustration of a signature scheme.

Definition 1. (Digital signature scheme)
A digital signature scheme is a triple of efficient algorithms (KeyGen, Sign, Verify)

such that:

• The key generation algorithm, KeyGen, outputs the private and public keys:
(pk, sk)← KeyGen().

• The signing algorithm, Sign, takes a message and the private key and outputs a
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signature: σ ← Sign(m, sk).

• The verification algorithm, Verify, takes the public key, a message and a signature,
and outputs Accept or Reject: b← Verify(pk,m, σ), where b ∈ {Accept,Reject}.

• (KeyGen, Sign, Verify) is correct, that is
(pk, sk)← KeyGen() =⇒ Accept← Verify(pk,m, Sign(m, sk)).

Note that we require correctness from our digital signature scheme. So if we have a
tuple (KeyGen,Sign,Verify), but this scheme does not have correctness, it is in fact not a
digital signature scheme. The justification for this requirement is that if the scheme does
not have correctness, then correctly generated signatures can fail to verify, which means
the scheme is unreliable and thus no longer useful.

Example 5. (Schnorr signatures)
The Schnorr signature scheme is based on the discrete logarithm problem. This scheme

is an example of the signature scheme presented in Example 2. The parties agree on a
group G with generator g, in which we assume the discrete logarithm problem is hard.
They also agree on a cryptographic hash function H.

Key generation: (pk, sk)← KeyGen()
Choose a private signing key, x. The public key is y = gx.

Signing: (s, e) ← Sign(m,x). Let m be the message we want to sign. To sign the
message:

1. Choose random k,

2. Compute e← H(r ‖m),

3. Compute s← k − xe.

The sender sends the signature σ = (s, e) to the verifier.

Verifying: b← Verify(pk,m, σ). To verify the signature:

1. Compute rV ← gsye,

2. Compute eV ← H(rV ‖m),

3. If eV = e, output Accept. Otherwise output Reject.

Correctness: We have rV = gsye = gk−xegxe = gk = r, and thus we have eV =
H(rV ‖m) = H(r ‖m) = e. So (KeyGen, Sign, Verify) is correct.

2.2.1 Security of signature schemes

We consider a signature scheme secure if it is hard for someone without access to the
private key to create signatures that verify as correct. The security requirement is called
existential unforgeability under chosen-message attacks (EUF-CMA), and this is the stan-
dard security definition for signature schemes. It captures the ability of any adversary to
forge a signature on a message for which they have not already seen a signature under the
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same key.

We define an experiment for an adversary A forging signatures:

The GEUF-CMA
Π (A) experiment proceeds as follows:

1. (pk, sk)← KeyGen().

2. A gets pk and access to a signing oracle Signsk(·). A makes signing queries.
When A is done, it outputs a message-signature pair:
(m,σ)← A(pk, Signsk(·)).

3. Once A has concluded, the experiment outputs 1 if and only if
Verify(m,σ) = 1 and m was not part of an oracle query made by A.

Define the advantage of an adversary A in the EUF-CMA security experiment
GEUF-CMA

Π (A) as

AdvEUF-CMA(A) = Pr[GEUF-CMA
Π (A) = 1].

Figure 2.2: EUF-CMA experiment: GEUF-CMA
Π (A).

If an adversary A wins this game, then they have successfully forged a signature. So
we define the security of the signature system Π in terms of the probability of an adversary
succeeding in GEUF-CMA

Π .

Definition 2. (EUF-CMA security)
A signature scheme Π = (KeyGen, Sign, Verify) is EUF-CMA secure if for any efficient

adversary A, the advantage of A in the EUF-CMA security experiment GEUF-CMA
Π (A) in

Figure 2.2 is negligible.

Definition 2 is the security definition we will use for signature schemes. However,
there are other definitions that are used in other circumstances. One of them is a stronger
security definition than EUF-CMA. This is called strong existential unforgeability under
chosen message attacks (SEUF-CMA).

The difference between EUF-CMA and SEUF-CMA is that in the stronger version, we
do not require that the message, m, that the adversary, A, succeeds with has not been
included in any oracle queries. Instead, we just require that the pair (m, σ) output by A
is not equal to any pairs of queries made by the adversary and their responses from the
signing oracle.

So SEUF-CMA also captures the ability of an adversary to come up with another valid
signature σ′ on a message m that it has seen some signature σ for such that σ′ 6= σ, in
addition to the ability to forge a signature on any new message m′ 6= m.
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2.3 Commitment Schemes
A commitment scheme is a cryptographic primitive that lets you commit to a chosen
value or statement, m, while still keeping it hidden to others. The commitment, com ←
Commit(m), is hiding if an adversary cannot learn the chosen value m from the commit-
ment, and it is binding if you are committed to the value m that you chose - you cannot
later pretend that you had chosen a different value m′ 6= m. The commitment can be
opened by revealing the value m, and then anyone can verify that the commitment com
actually belongs to m. Note that there are schemes for which the opening is not actually
the value m that was committed to, but some other value. However, for our purposes we
will assume that this is not the case.

One way to visualise this is to think of the commitment as a locked box. You put your
chosen value in the box and give the box to the receiver. The receiver cannot open the
box, because it does not have the key, so the receiver does not know the value you chose
(hiding). Also, since the receiver has the box, you cannot change the value inside the box
later (binding). You can only reveal the value to the receiver by giving them the key (the
opening) at a later time.

Definition 3. (Commitment scheme)
Let m be the value a sender wants to commit to. A commitment scheme is a tuple of

efficient algorithms (Generate, Commit) such that:

• The generating algorithm outputs the public parameters:
params← Generate()

• The commitment algorithm takes a message and the public parameters, chooses a
random r, and outputs a commitment: com← Commit(m, params, r)

The GBinding
Commit(A) experiment proceeds as follows:

1. Public parameters are generated: params← Generate().

2. The adversary is given the public parameters and returns some output:
(com,m, r,m′, r′)← A(params).

3. The experiment outputs 1 if and only if m 6= m′ and
Commit(m, params, r) = com = Commit(m′, params, r′).

Define the advantage of an adversary A in the binding experiment GBinding
Commit(A)

to be
AdvBinding

Commit(A) = Pr[GBinding
Commit(A) = 1].

Figure 2.3: Binding experiment: GBinding
Commit(A).

The sender will send com to the receiver. When the sender wants to open the com-
mitment, they can send (m, r) to the receiver, who can then check that the commitment

14



2.4 Security models

The GHiding
Commit(A) experiment proceeds as follows:

1. Public parameters are generated: params← Generate().

2. The adversary outputs two messages: (m0,m1)← A(params).

3. The challenger uniformly chooses b ∈ {0, 1}, and computes the commitment:
com← Commit(mb, params, r).

4. The adversary gets com and guesses b: b′ ← A(com,m0,m1, params).

5. The experiment outputs 1 if and only if b′ = b.

Define the advantage of an adversary A in the hiding experiment GHiding
Commit(A) to

be

AdvHiding
Commit(A) = |Pr[GHiding

Commit(A) = 1]− 1

2
|.

Figure 2.4: Hiding experiment: GHiding
Commit(A).

is correct by recomputing it: com ?
= Commit(m, params, r). The security of a commit-

ment scheme is defined in terms of the properties hiding and binding. We design security
experiments for these properties as shown in Figure 2.3 and Figure 2.4.

We say that a commitment scheme is secure if the advantage of any adversary in both
the hiding experiment and the binding experiment is negligible. We also include a simple
example of a commitment scheme, which is also the one that is used the protocol ZKBoo
introduced in Chapter 6.

Example 6. (SHA-256 commitment scheme)
The cryptographic hash function SHA-256 (m, r) is a good commitment scheme for

value m with randomness r chosen by the sender.
We consider SHA-256 to be collision resistant, and thus the commitment is binding. Since
SHA-256(·, r) is a sufficiently good PRF, it is also hiding.

2.4 Security models
When proving security in cryptography, we have to make some assumptions. This is for-
malised in the security model we choose to use. In Section 2.1 we introduced the idea that
we consider an adversary to be limited in the amount of time it uses and the amount of
computational power it has. If this is the only assumption we make, then we are working
in the standard model.

If our cryptographic scheme relies on some computational assumption, stating that this
problem cannot be solved by an efficient algorithm, then we can prove the scheme to be
secure in the standard model.
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However, in many cases we need to make other assumptions. In particular, when
schemes are based on cryptographic hash functions, the assumption that the hash function
is pre-image resistant or collision resistant may not be sufficient, and we may be unable to
find a sufficient assumption to prove the scheme secure.

To solve this problem we introduce idealised models. One very common such model
is the random oracle model, which is described in Section 2.4.1. There are also other
idealised models, such as the generic group model, where the adversary is given access to
a randomly chosen encoding of a group and an oracle that executes the group operation.

Another way to create a model where we are able to prove security is to use trust
assumptions. Here we assume that the parties have access to some trusted third party
that perform some tasks honestly. One example of this is the common reference string
model where we assume that all involved parties have access to some reference string that
is sampled from some distribution. Additionally, when using a public key infrastructure
(PKI) model, we assume that we have a trusted certificate authority that issues certificates
honestly.

2.4.1 Random Oracle Model
In the random oracle model (ROM), we assume that the parties have access to (one or
more) random oracles. This random oracle is a way to model a cryptographic hash func-
tion, H, as a truly random function. In the scheme, the parties can only evaluate H by
querying (asking) the random oracle. The oracle can be thought of as a black box and
works by returning a uniformly random value for each (unique) input.

We are not claiming that such a random oracle exists, but use it as a tool to prove the
security of protocols that use cryptographic hash functions. First we prove the scheme to
be secure in the random oracle model and then when we want to implement the scheme,
we instantiate the random oracle with some appropriate cryptographic hash function H. In
practice, security in ROM is a good heuristic for security in the standard model when the
instantiation of the random oracle is a sufficiently strong hash function.

When we want to prove a cryptographic scheme to be post-quantum secure in ROM,
we need to alter our model such that the adversary has quantum-access to the random ora-
cle. This means that the adversary can query the random oracle with quantum states. The
details of the quantum random oracle model (QROM) is presented in [3]. We need to make
the distinction between ROM and QROM because when the random oracle is instantiated
with a hash function, a quantum adversary will be able to evaluate it on quantum states.
This may change the security properties of the scheme, and this is why we must include
this ability in our model.

Note that ROM and QROM are strictly separated: There are protocols which are prov-
ably secure in ROM, but not in QROM (because it is not secure against adversaries that
can evaluate the hash function on quantum states).
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Zero Knowledge Protocols

In many cases, Alice wants to be able to convince Bob that some statement is true. This
can be to prove that she has access to some information, or that she computed some value
in the way it was supposed to be computed. The statement Alice wants to prove has
some information accompanying it that shows that the statement is true. This additional
information is called a witness. There could be more than one witness for a statement,
but in general we will talk about the witness meaning the one witness that exists or one or
more of them in case there are several.

For example, if Alice wants to convince Bob that she has access to the discrete loga-
rithm (to the base g, where g is some generator that is known to both Alice and Bob) of
some value x := ga, then a is the witness for this statement.

A trivial way to prove to Bob that we know the witness, is to simply reveal the witness.
However, if we reveal the witness, it is obviously no longer secret, and in many cases, we
don’t want Bob to learn what the witness is. For example if the witness is some private
key that we want to keep using, we do not want Bob to learn what it is. In fact, we do not
want Bob to learn anything about our key, we only want Bob to learn that the statement
is true. This property is what we call zero knowledge, and is introduced in more detail in
Section 3.3. Before that, in Section 3.2 we will talk about what proofs of knowledge are
and the properties we require from them.

3.1 Sigma protocols
An identification scheme is the basis upon which we define the protocols in the rest of
Chapter 3. The purpose of an identification scheme is for a prover to be able to prove its
identity to the verifier. Typically, the prover will prove that it knows some secret informa-
tion that only the claimed identity has access to.

We only consider identification schemes with a three-move structure (commitment,
challenge, response), such that the scheme has algorithms KeyGen, Commit, and Respond
run by the prover and Verify run by the verifier, and in addition, the verifier will choose a
challenge for the prover to respond to.
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Such an identification scheme with the three-move structure described, are called
sigma protocols. The name comes from the visualisation of the message flow in the pro-
tocol as shown in figure 3.1, which looks like the greek letter sigma, Σ.

Definition 4. (Σ-protocols)
A sigma protocol (Σ-protocol) is a three-move protocol with correctness. The three

messages consist of:

1. the commitment, t,

2. the challenge, c,

3. and the response, r.

Prover and verifier share a public value, y.
Prover produces a commitment

and sends it to the verifier.

Prover computes the response to the
commitment and sends it to the verifier.

Prover

Verifier chooses challenge
and sends it to the prover.

Verifier checks that
the response is valid.

VerifierPublic value, y*

Commitment, t

Chall
en

ge,
c

Response, r

Figure 3.1: Sigma protocol

The prover and verifier share a public value y. Figure 3.1 illustrates this by the first
message: The Prover sends the public value to the Verifier. This does not usually happen
in the protocol, but is included in the figure as it completes the Σ flow visually.

The protocol proceeds as follows: The Prover picks a random value, k, computes
the commitment to this value, t ← f(k) for some (one-way) function f , and sends the
commitment to the Verifier. The Verifier chooses a challenge c and sends it to the Prover.
The Prover computes the response, r, to the challenge c and sends it to the Verifier. The
Verifier checks that the response r is valid given the commitment and the challenge as well
as the public value.

Typically, this is repeated in order to increase confidence in the scheme. A cheating
prover may be able to respond correctly to one or a few challenges by luck, but when the
number of challenges grows and the prover is able to answer all of them consistently, it
becomes increasingly unlikely that the prover is cheating.

The sigma protocols that we are interested in, are proofs of knowledge (Definition 5).
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3.2 Proofs of knowledge

Informally, a proof of knowledge is a protocol executed by a prover and a verifier, allowing
the prover to convince the verifier that they know some secret. For any cryptographic
proof, we want the proof to be complete. This means that if a statement is true, then the
verifier will always be convinced of this by an honest prover.

In order for a protocol to be a proof of knowledge, we require that there exists an
extractor that finds the witness, given access to a (sufficiently) successful prover. This
property tells us that any prover who is able to convince the verifier does have access to
the secret and thus that any prover without access to the witness is unable to convince the
verifier.

We make this a bit more formal: LetX be the set of statements and L be our language,
that is the set of all true statements. Let W be the set of witnesses for the truth of the
statements in our language. Then the relation R ⊆ X ×W is a witness relation for L if
∀x ∈ X(x ∈ L⇔ ∃w ∈ W : (x,w) ∈ R). That is, a statement x ∈ X is in our language
L if and only if there is a witness w ∈W such that x and w are related: (x,w) ∈ R.

LetP (x,w) be our prover with input a statement x and witnessw such that (x,w) ∈ R.
The prover will have a conversation with the verifier, V, and this conversation results in a
proof π. This conversation will typically be a sigma protocol.

After receiving the last message of the sigma protocol, the verifier will check that the
response is correct based on the commitment and challenge as well as the input x, so we
can consider this response (the final message) to be the proof π. We will later talk about
non-interactive protocols, where the proof is the whole content of the message from the
prover to the verifier.

So we have that V (x, π) is the verifier with input the statement x and the proof result-
ing from the sigma protocol, π. The verifier will output either Accept or Reject based on
the result of the verification of the proof π.

Completeness here means that if π ← P (x,w) (Where π is the final message in the
sigma protocol executed by the prover and verifier) for some (x,w) ∈ R, then V (x, π)
outputs Accept. Completeness together with the existence of a witness extractor gives us
that Accept← V (x, π)⇔ x ∈ L, except with some small probability.

A typical example of a problem that we may want to prove statements about is the
discrete logarithm problem, which is the basis of the Diffie-Hellman algorithm. In the
discrete logarithm problem, L = 〈g〉 since g generates the group, but for a random x ∈ 〈g〉
it is difficult to find a witness a such that x = ga.

As we have already mentioned, a proof of knowledge means there exists a witness
extractor. In order to prove that a protocol is a proof of knowledge, we construct such an
extractor. Constructing this extractor shows that any (potentially malicious) prover who is
able to convince the verifier, must have access to the witness.

An extractor is an efficient algorithm that finds the witness given access to a (suffi-
ciently) successful prover. The success probability of the extractor depends on (and is
large as a function of) the success probability of the prover in convincing the verifier:

Let x ← DL where DL is some distribution of our language L and let Pr[P (x) ←→
V (x) ⇒ Accept] = ε (that is, the probability that the prover succeeds in convincing the
verifier is ε). Then an extractor E with input x and P (i.e. with oracle access to the prover,
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P) will output the witness w such that (x,w) ∈ R with probability δ, where δ is large as a
function of ε.

Our extractor E will not always be able to extract the witness from just one accepting
conversation (one valid proof) provided by its oracle (the prover P). In addition to running
the oracle several times on the same or on different input, we also give the extractor the
ability to rewind its oracle: It can simulate the prover with some input x to get the first
message m1 and then feed the prover some challenge c1, to which the prover responds
with the second message m2. At this point the extractor can return the oracle to the state
it had after sending the first message m1, before it received the challenge c1. It can now
feed the oracle some other challenge c2 such that c1 6= c2, and receive some m′2. Since
c1 6= c2, we will have m2 6= m′2. This way of achieving two (or more) different accepting
proofs, but with some of the values equal (in this case the input, x, and any randomness
chosen by the prover as well as m1) is called rewinding.

We define a proof of knowledge formally in Definition 5.

Definition 5. (Proof of Knowledge)
Let x ∈ L be a statement in a language and w ∈ W a witness. A proof of knowledge

is a protocol Π(P,V ) executed by a prover, P , and a verifier, V , such that

• Completeness: if (x,w) ∈ R, then Π(P,V )(x) =⇒ Accept, i.e.
(π ← P (x,w)) =⇒ (Accept← V (x, π)), and

• Existence of a witness extractor: ∃E such that if x← DL and Pr[Π(P,V )(x) =⇒
Accept] = ε, then Pr[w ← E(x, P ) : (x,w) ∈ R] = δ, where δ is large as a
function of ε.

The idea of a witness extractor plays a role similar to the soundness requirement for
general cryptographic proofs. Soundness means that if a statement is false, then no cheat-
ing prover can convince the verifier that it is true (except with some small probability). The
witness extractor gives us this soundness property for proofs of knowledge: if a prover is
able to convince the verifier that they know the secret, then the extractor can find the secret,
meaning that the prover does in fact have access to it (since it can just extract it).

We include the definition of soundness for completeness:

Definition 6. (Soundness)
Let x /∈ L be a false statement a prover P want to prove. Let (Prove,Verify) be a

proof of knowledge protocol. Then (Prove,Verify) is sound if for every prover P and for
every false statement x /∈ L we have:

Pr[Accept← Verify(Prove(x))] ≤ 1− δ,

where δ is non-negligible.

Since 1− δ doesn’t need to be negligible, but is significantly lower than 1, the natural
way to make the probability of a false statement being proved small, if it is not already, is
to repeat the process. For each repetition, the probability of a cheating prover succeeding
gets smaller.

We can distinguish between proofs and arguments: a proof has statistical soundness,
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that is it is sound against a computationally unbounded prover, and an argument only has
computational soundness, which is only sound against an efficient prover. However, we
will not be distinguishing between these two in the coming chapters.

In addition to this general concept of soundness, there is a related concept called spe-
cial soundness, or n-special soundness. Special soundness means that given two distinct
accepting conversations on the same statement, we can extract a witness for the statement.
n-special soundness is a generalisation of this idea, where you need n accepting conversa-
tions to find the witness.

Special soundness is a property that is common in sigma protocols. In general, special
soundness of a protocol Π implies soundness of Π. For sigma protocols ΠΣ in particular,
special soundness also implies that ΠΣ is a proof of knowledge which we will see in
Theorem 1.

Definition 7. ((n-)special soundness)
Let x ∈ L be a statement in our language and let w be a witness for x (so (x,w) ∈ R).

Let ΠProve be a sigma protocol. If ΠProve has special soundness, then given two accepting
conversations (x, t, c, r) and (x, t, c’, r’) where c′ 6= c (and thus r′ 6= r), there exists an
extractor E that finds the witness w for x.

As a generalisation of this, if ΠProve has n-special soundness then given n distinct
accepting conversations for x there exists an extractor E that finds the witness w for x.

Theorem 1.
Let x ∈ X be a statement in our language L, w ∈ W be a witness for the statement

x, and R a relation such that (x,w) ∈ R ⇔ w is a witness for x. Let Π(P,V ) be a sigma
protocol (that has completeness) with special soundness that takes as input some x. Then
Π(P,V ) is a proof of knowledge for w such that (x,w) ∈ R.

Proof. (Theorem 1) Completeness for the proof of knowledge follows from the com-
pleteness of the sigma protocol.

Let P be a prover that can reliably convince the verifier: Pr[P (x) ←→ V (x) ⇒
Accept] = ε ≥ 1/2 for some x ∈ L. Then we have an extractor E that extracts the witness
w such that (x,w) ∈ R, given oracle access to the prover P :

1. E simulates the prover on input x, and gets the first message. The prover P now has
internal state Q.

2. E chooses a random challenge c1, sends it to the prover (second message, m2) and
gets the third message m3.

3. E rewinds the prover to state Q. E chooses another random challenge c2 such that
c1 6= c2, sends it (m′2) to the prover and gets back the third message m′3 where we
have m′3 6= m3 since m2 6= m′2.

4. Since Π(P,V ) has special soundness, E can now extract the witness.

Since the extractor needs two accepting conversations to extract the witness, its success
probability is δ = ε2, the square of the success probability of the prover P. This is because
the prover must succeed twice, for which it has success probability ε2. Thus we have a
witness extractor with success probability δ, which is sufficiently large.
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The existence of an extractor E with sufficiently large success probability that extracts
the witness, shows that Π(P,V ) is a proof of knowledge.

In Example 7 we give a description of a proof of knowledge protocol and show that it
is in fact a proof of knowledge.

Example 7. (Schnorr’s protocol)
A prover P wants to convince the verifier V that it knows the discrete logarithm to

base g of x, i.e. it has access to the witness a such that x = ga. g is some generator of
the group. If the prover does not want to simply reveal a to the verifier, it must give some
proof of knowledge.

The language is L = {x | gw = x} for w ∈ W . Determining that x ∈ L is trivial as
for every x we have x ∈ 〈g〉. However, finding the witness w corresponds to solving the
discrete logarithm problem. The relation in our proof of knowledge is (x,w) ∈ R ⇐⇒
x = gw.

Schnorr’s protocol proceeds as follows:

1. The prover chooses some randomness, r and commits to it: t = gr. The prover
sends the commitment t to the verifier.

2. The verifier chooses a random challenge c and sends it to the prover.

3. The prover computes the response to the challenge s = r + ac, and sends the
response s to the verifier.

4. The verifier checks that gs = txc, and accepts if this holds. Otherwise the verifier
rejects the proof.

The correctness of this protocol is easy to demonstrate: If t = gr and x = ga then
txc = gr(ga)c = grgac = gr+ac = gs, which is what was checked by the verifier. So if
the statement is true, the verifier will accept.

To prove that this is a proof of knowledge we construct an extractor:

1. Simulate the prover to output t = gr.

2. Choose random challenge c1 and input it to the prover. Get s1 = r + ac1 from the
prover.

3. Rewind the prover. Choose a different challenge c2 and input it to the prover. Get
s2 = r + ac2 from the prover.

4. Output (s1 − s2)(c1 − c2)−1 = ((r + ac1)− (r + ac2))(c1 − c2)−1 = (r + ac1 −
r − ac2)(c1 − c2)−1 = a(c1 − c2)(c1 − c2)−1 = a

So the extractor was able to extract the witness a by running the prover two times on
the same statement, by rewinding it.

22



3.3 Zero Knowledge

3.3 Zero Knowledge
We now return to the zero knowledge property we sometimes want from our proofs: that
the verifier doesn’t learn anything about the witness, but only that the statement is true.
We require three properties of zero knowledge proofs:

• Completeness: An honest verifier will be convinced by an honest prover if the state-
ment is true.

• Soundness: No prover can convince a verifier that a false statement is true, except
with some small probability.

• Zero knowledge: The protocol leaks no information apart from the fact that the
statement is true. In particular, no information about the witness is obtained by the
verifier.

In the case that our zero knowledge proof is a proof of knowledge, we require, like
before, that there exists a witness extractor. In that case, the soundness requirement from
above is just replaced with this new requirement as in Section 3.2.

The zero knowledge property is demonstrated by constructing a simulator. The simu-
lator will be given access to the statement that should be proved, but not the witness, and
will simulate an interaction between the verifier and the prover, that is the simulator will
act like the prover in the protocol execution.

If the simulator is able to convince the verifier that the statement is true, the protocol is
zero knowledge; since the simulator actually doesn’t know the secret, the transcript of this
interaction cannot reveal anything about the secret, and thus anything the verifier learns
from the transcript it could have computed itself by just knowing the statement and the
fact that it is true.

In particular, the verifier can only learn something from its view, which is all the values
that are chosen by the verifier (its random coins) and the messages sent and received, that
is, everything that the verifier sees during the protocol execution. So we say that if the
view of the verifier interacting with the simulator is indistinguishable from the view of the
verifier interacting with the prover, then the protocol is zero knowledge. We denote the
view of the verifier and prover viewV and viewP respectively.

In the same way that we distinguish between proofs and arguments based on the abili-
ties of the prover, we also distinguish between different notions of zero knowledge based
on the verifiers abilities and behaviour. In any case, we cannot talk about zero knowledge
with a computationally unbounded verifier, as it would be able to compute the witness
from the common input.

Let Π(P,V ) be a proof of knowledge for language L. Any execution Π(P,V )(x) of the
protocol for some x ∈ L results in a proof transcript as well as the output Accept or
Reject. The transcript consists of the prover and verifiers transcripts interleaved. If any
information about the witness should leak from Π(P,V )(x) the leakage must happen in the
proof transcript, since there is no other information being shared between the parties.

If all the random variables in the proof transcript are uniformly random and indepen-
dent from the input, then the verifier cannot learn anything from these values, and hence
the proof transcript leaks no information. This is what we call perfect zero knowledge.
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Another thing to consider is whether or not the verifier follows the protocol instruc-
tions. If the verifier tries to trick the prover to disclose information by not executing the
protocol properly, we have a dishonest verifier. If a dishonest verifier is able to force
the prover to produce a transcript which is unsimulatable, we no longer have perfect zero
knowledge. We define a protocol to have honest verifier zero knowledge (HVZK) if the
protocol has perfect zero knowledge when the verifier honestly executes the protocol in-
structions.

We also define a protocol Π(P,V ) for L to be computational zero knowledge if for
any x ∈ L, a proof transcript of Π(P,V )(x) can be simulated by an efficient algorithm
with probability distributions that are computationally indistinguishable from the proof
transcript.

Definition 8. (HVZK proofs)
Let x ∈ L be a statement in our language and w ∈W a witness such that (x,w) ∈ R.

An honest verifier zero knowledge (HVZK) proof of x is a two-party protocol Π(P,V ) such
that the following properties are satisfied:

1. Completeness: (x,w) ∈ R⇒ (Π(P,V )(x) =⇒ Accept)

2. Soundness: (x,w) /∈ R ⇒ (Pr[Π(P,V )(x) =⇒ Accept] ≤ ε), where ε is negligi-
bly small.

3. There is a simulator, ∃S, such that for any x ∈ L, the output from S(x) is indistin-
guishable from the verifier V ’s view from an interaction with the prover with input
x, Π(P,V )(x), for any honest verifier V : viewV ← Π(P,V )(x) ' viewV ← S(x)

3.4 Non-interactive proofs

Many applications make the three-move sigma protocols impractical, and thus we want to
achieve the same properties in a non-interactive protocol, that is a one-message protocol.
One obvious advantage of non-interactive protocols is that the protocol does not require
both parties to be online at the same time. The prover can simply generate the proof and
send it, and the verifier can verify it at any time.

The verifier is convinced by the prover in sigma protocols because the prover is able
to respond to a challenge of the verifiers choice. If the protocol is non-interactive, the
verifier no longer controls the challenge, and thus we need some other mechanism to
ensure that the prover cannot cheat. The most common method of achieving this is the Fiat-
Shamir transform, introduced in section 3.4.1. In addition, Unruh’s transform, introduced
in section 3.4.2 also enables this in a different way with stronger security properties.

In addition to making our proofs non-interactive, we still want to achieve zero knowl-
edge. However, it turns out that achieving zero knowledge (and in particular HVZK as we
will want in later chapters) is not as straightforward for non-interactive proofs as it seemed
for interactive proofs.

We attempt to define non-interactive zero knowledge (NIZK) like we did for HVZK
by constructing a simulator that will indistinguishably simulate the prover in the protocol.
However, there is a problem with this, as we are in one of two situations:
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1. If the simulator can generate valid proofs for x ∈ L, then it is possible that it could
also generate valid proofs for x /∈ L. This breaks soundness.

2. If the simulator can generate valid proofs for x ∈ L, but not for x /∈ L, then we can
use the simulator to distinguish elements of our language L. This is computationally
infeasible for many languages.

So we cannot have that the simulator can generate valid proofs for x ∈ L since both of
the above alternatives are not acceptable. In order to have a simulator that can do this, it
needs som more information, that it will not have access to in the standard model. For this
reason, we define NIZK in the random oracle model (ROM). Let Π(P,V ) be the protocol
we want to be NIZK. Let H be the hash function used in Π(P,V ). We model H as a random
oracle and give our simulator control over the access to this random oracle.

In order to show that Π(P,V ) is NIZK, we need to show that our adversary (or poten-
tially malicious verifier) cannot distinguish between the simulation and a real interaction
with at prover. So we have two scenarios, and in each of them the adversary can ask two
different things (proof queries and random oracle queries):

1. Scenario 0 - the real world:

• A (justified) proof query (x,w) ∈ R: The challenger runs the prover part of
the protocol Π(P,V ), and returns π ← P (x,w) .
• A random oracle query, u: The challenger chooses a random oracle, O, and

returns c← O(u).

2. Scenario 1 - the simulated world:

• A proof query (x,w) ∈ R: The challenger forwards the proof query without
the witness and returns the simulated proof, π′ ← S(y).
• A random oracle query u: The challenger forwards the random oracle query

and returns the simulator output, c′ ← S(u).

Note that the proof queries made to the challenger from the adversary must include
a witness, so the simulator will never attempt to prove false statements. So in any given
interaction between the adversary and the challenger, the adversary could be in the real
world scenario or in the simulated scenario, and its ability to distinguish between these
two is the security notion we are interested in for NIZK proofs.

Definition 9. (NIZK proofs of knowledge)
Let A be an adversary against the NIZK property, and let DistA be the event that

the adversary A correctly guesses which scenario it is in. A non-interactive zero knowl-
edge (NIZK) proof of knowledge, in the random oracle model, is a one-message protocol
Π(P,V ) such that we have the following properties:

1. Π(P,V ) is a proof of knowledge: It has completeness and there exists a witness
extractor.

2. Π(P,V ) is zero knowledge: The adversary cannot reliably distinguish between the
real world and the simulation, so we have |Pr[DistA]− 1

2 | ≤ ε where ε is negligibly
small.
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3.4.1 Fiat-Shamir transform

The Fiat-Shamir transform is a construction to convert a sigma protocol into a non-interactive
signature sheme. As before, the prover will produce a commitment, t, but instead of the
verifier choosing the challenge, the Prover computes the challenge itself by applying some
pre-determined function H to the commitment and the message m. The challenge is then
c ← H(t,m). Then the Prover computes the response r to the challenge c. The signature
on the message m is then (c, r). The Verifier verifies the signature by recomputing the
commitment t using the public value y, and the signature (r, s), checking that the chal-
lenge was computed correctly as c = H(t,m) and that the response r is valid for t and
m.

The signature (c, r) depends on the message m since the challenge is a function of
both the commitment and the message. If we model H as a random oracle, it will be just
as difficult for an adversary without access to the secret key ks to find a valid signature on
the message m in this protocol as it would be in the original sigma protocol.

The security of the Fiat-Shamir transform relies on another result, called the Forking lemma
(Lemma 1) [16].

Lemma 1. (Forking lemma)
Let ΠH be the signature system obtained by applying the Fiat-Shamir transform with

hash function H to a sigma protocol Π that has special soundness. Let A be an adversary
against the EUF-CMA security of the signature system ΠH. If A can, with non-negligible
probability, find a valid signature (m, σ1, h, σ2), then, with non-negligible probability, A
(with the same random tape and a different oracle) will output two valid signatures, (m,
σ1, h, σ2) and (m, σ1, h

′, σ′2) such that h 6= h′.

Now we can show that the Fiat-Shamir transform is secure in Theorem 2.

Theorem 2. (Fiat-Shamir transform security)
Let Π be a sigma protocol that has special soundness. Then the signature scheme made

from applying the Fiat-Shamir transform to Π, modelling H as a random oracle, is secure
against chosen message attacks (EUF-CMA) in the random oracle model.

Proof. (Theorem 2) The security of the Fiat-Shamir transform depends on the
Forking lemma. If a malicious prover A is able to forge a valid conversation (t, c, r), the
Forking lemma shows us thatA will be able to forge another valid conversation (t′, c′, r′)
where t′ = t and c′ 6= c, with sufficient probability. From special soundness of the
sigma protocol, A can then extract the witness from the two valid conversations. Thus
we have an extractor that finds a witness given a (successful) malicious prover, and hence
the Fiat-Shamir transform yields a proof of knowledge. Since the proof of knowledge de-
pends on the message, m, this proof of knowledge gives us a EUF-CMA secure signature
scheme.

In the quantum setting, the security of the Fiat-Shamir transform which is based on the
Forking lemma collapses. This is because the rewinding that the Forking lemma relies
on cannot be done in the quantum setting, so the Forking lemma does not hold. Since
this way of proving the security of the Fiat-Shamir transform collapses, we consider other
methods of achieving non-interactivity.
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3.4.2 Unruh’s transform
Unruh’s transform [18] is a non-interactive transform that is an alternative to Fiat-Shamir
transform. We are interested in Unruh’s transform because, unlike the Fiat-Shamir trans-
form, it is secure in QROM and it has online extractability. Unruh’s transform takes as
input a sigma protocol with n-special soundness and outputs a non-interactive proof sys-
tem, and in fact a EUF-CMA secure signature scheme, that is secure against quantum
adversaries in QROM. If the sigma protocol is a zero knowledge protocol (specifically,
it has HVZK), then the resulting protocol is NIZK (see Defintion 9). So Unruh’s trans-
form preserves the HVZK property of the sigma protocol as well as the security of the
proof of knowledge in QROM. We define online extractability (and the stronger notion
simulation-sound online extractability) in Definition 10 (Definition 11 respectively).

Unruh’s transform works by the Prover doing the following:

1. Prover takes input (x,w), and will create m× n proofs (comi, chi,j , respi,j).

2. For each of the proofs, the Prover commits to the responses.

3. The Prover computes the challenge by hashing a number of values.

4. Last, the Prover reveals the response in some of these proofs, based on the challenge
computed in the previous step. There will be exactly one response for each distinct
commitment, such that the Prover never reveals two accepting conversation for the
same commitment.

5. The Prover sends π to the Verifier, which is a list containing the commitments,
challenge and commitment to the responses for all the m × n proofs it created, as
well as the responses for the proofs determined by the challenge.

The Verifier takes as input (x, π). It computes the challenge like the Prover did, checks
that the challenges in all the proofs are pairwise distinct, that all the (opened) conversations
are accepting and that the commitments to the (opened) responses are correctly computed.
If all of the checks succeed, then the Verifier accepts.

There are five subroutines involved in Unruh’s transform. The Prover algorithm uses
two, the Verifier algorithm uses one. In addition they both use two one-way functions:

1. Prove1
Σ(x,w) is used to generate challenges to the commitments in them×n proofs.

2. Prove2
Σ(chi,j) is used to compute responses in the m× n proofs.

3. VerifyΣ(xi, comi, chi,j , respi) is used to verify the m proofs that have responses.

4. H(x, (comi)i, (chi,j)i,j , (hi,j)i,j) is used to generate the challenge, that is which
responses should be included in the final proof.

5. G(respi,j) is used to generate commitments to the m× n responses.

In Figures 3.2 and 3.3, the Prover and Verifier (respectively) algorithms for Unruh’s
transform are showed. Example 8 shows what the protocol does in a toy example with
m = 4, n = 3.
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Prove (x, w):
for i = [1,m] do

comi ← P 1
Σ(x,w)

for j = [1, n] do
chi,j

$←− Nch \ {chi,1, . . . , chi,j−1}
respi,j ← P 2

Σ(chi,j)

end
end
for i = [1,m] do

for j = [1, n] do
hi,j := G(respi,j)

end
end
J1 ‖ J2 ‖ · · · ‖ Jm := H(x, (comi)i, (chi,j)i,j , (hi,j)i,j)
return Π := ((comi)i, (chi,j)i,j , (hi,j)i,j , (respi,Ji)i)

Figure 3.2: Unruh’s transform prover algorithm

Verify (x,Π):
J1 ‖ J2 ‖ · · · ‖ Jm := H(x, (comi)i, (chi,j)i,j , (hi,j)i,j)
for i = [1,m] do

Check that chi,1, . . . , chi,n are pairwise distinct.
end
for i = [1,m] do

Check that VΣ(xi, comi, chi,Ji , respi) = 1
end
for i = [1,m] do

Check that hi,Ji = G(respi)
end
if All checks succeed then

return Accept
else

return Reject
end

Figure 3.3: Unruh’s transform verifier algorithm
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Before we prove the security of Unruh’s transform in Theorem 3, we define formally
what we mean by online extractability (Definition 10), as well as simulation-sound online
extractability (Definition 11) which is the security notion Unruh’s transform satisfies. We
will not include the proof for the simulation-sound online extractability, but include the
definition so that it is clear what is required. The full proof for the simulation-sound
online extractability can be found in the original paper presenting Unruh’s transform [18].

In the classical sense, online extractability means that the witness can be extracted
by looking only at the proofs generated by the (possibly malicious) prover and the oracle
queries it made. In the quantum setting, it is not possible to define the list of oracle queries
because that would mean measuring the oracle input, which disturbs it. Instead of this, we
give the extractor the description of the oracle H that was output by the simulator Sinit,
showed in Figure 3.5.

Definition 10. (Online extractability)
Let x /∈ L be a statement that is not in our language. Let H be the oracle output by the

simulator Sinit. A non-interactive proof system Π(P,V ) is online extractable with respect
to Sinit if and only if there is an extractor E such that for any efficient quantum adversary
A we have:

Pr[Accept← V (x, π) and (x,w) /∈ R, given (x, π)← A(), w ← E(H, x, π)] ≤ ε,

where ε is negligibly small.

Online extractability implies that an adversary cannot produce a proof (that will be
accepted by a verifier) for a statement that it knows no witness for, because an extractor
can extract a witness from the proof. However, an adversary may still be able to take a
valid proof π1 for statement x1 and turn it in to a valid proof π2 for a different statement
x2 (even if it does not know a witness for x2, as long as a witness for x2 is efficiently com-
putable from a witness for x1). This is what we call malleability. The stronger definition
simulation-sound online extractability avoids this problem. This is the requirement that
extraction of a witness from any proof generated by an adversary A should be successful
even if A has access to simulated proofs.

Definition 11. (Simulation-sound online extractability)
Let x /∈ L be a statement that is not in our language. Let {π}SP be the set of all proofs

output by the simulator SP , (x, π) ← A() is the proof output by the adversary A and
w ← E(H, x, π) is the witness extracted by the extractor E from the proof output by A.
A non-interactive proof system, Π(P,V ) is simulation-sound online extractable with respect
to simulators SP and Sinit if and only if there is an efficient extractor E such that for any
efficient quantum adversary A, we have:

Pr[Accept← V (x, π), (x, π) /∈ {π}SP and (x,w) /∈ R] ≤ ε,

where ε is negligibly small.

Theorem 3. (Unruh’s transform)
Let ΠU be the proof system obtained by applying the Unruh’s transform to a sigma

protocol Π that has completeness, special soundness and HVZK. Then ΠU is a secure
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NIZK proof system with simulation-sound online-extractability with respect to the simula-
tors SΠU

,Sinit and extractor EΠU
(Figures 3.4, 3.5, and 3.6 respectively).

Proof sketch. (Theorem 3) We will give a sketch to the proof of the compeleteness and
HVZK of ΠU .

Online extractability: The extractor EΠU
(Figure 3.6) is constructed in order to prove

this property. We omit the proof for online extractability, which is included in detail in
[18].

Completeness: Since Π has completeness, Verify(x, comi, chi,j , respi,j) = 1 for all
i, j. If all the proofs were computed according to the protocol, all the verifiers checks will
succeed. So ΠU is correct.

Zero knowledge: Simulators SΠU
(Figure 3.4) and Sinit (Figure 3.5) is constructed to

show HVZK, and then the proof continues using a sequence of games.
Game 1: The real world. The protocol runs as it should.
Game 2: We modify the prover: it chooses a random challenge J1, . . . , Jm instead

of getting it from the random oracle H, and programs the random oracle to return those
values. Game 2 is indistinguishable from game 1 for an attacker.

Game 3: For each i, now the prover produces the conversation belonging to the chal-
lenge, (comi, chi,j , respi,j) first, and then all the other ones. Changing the order in which
the conversations are produced changes nothing. Since the challenges chi,j are chosen
uniformly at random (but being pairwise distinct), game 3 is indistinguishable from game
2.

Game 4: Now we let the commitments hi,j that will never be opened be picked at
random instead of using G. An attacker who can distinguish between games 3 and 4 can
distinguish between G and a random function, so this can happen only with negligible
probability.

Game 5: Now the prover doesn’t compute the responses for the conversations that will
not be opened. This doesn’t change anything from the verifiers perspective, so game 5 is
indistinguishable from game 4.

Game 6: In this game, the honestly generated proof is replaced by one that is produced
by the simulator SΠU

. Since Π is HVZK, game 6 is indistinguishable from game 5. Note
that the prover no longer uses the witness w to create the proofs.

Game 7: We replace the prover by the simulator SΠU
. This doesn’t change anything as

the simulator does exactly what the prover in game 6 does. So game 7 is indistinguishable
from game 6.

Game 8: We replace the oracles H and G randomly chosen among oracles, to oracles
that are constructed in a specific way by the simulator Sinit. Both the old pair and the
new pair of oracles are indistinguishable from random, so this doesn’t change anything.
So game 8 is indistinguishable from game 7.

Since game 8 is indistinguishable from game 1 (except with some negligible from
some of the game hops), the protocol ΠU is HVZK (in the random oracle model).
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for i = [1,m] do
Choose random Ji from {1, . . . , n}
Get the accepting conversation (comi, chi,Ji , respi,Ji) from the simulator,
SΠ, for the zero knowledge sigma protocol (proof of knowledge), Π.

For each j ∈ {1, . . . , n} except j = Ji, choose a random challenge chi,j that
is not equal to any previously used challenge.

for i = [1,m] do
Commit to the responses from SΠ: hi,Ji ← G(respi,Ji)
For each j ∈ {1, . . . , n} except j = Ji, choose a random value to act as a

”commitment”, hi,j , for the responses that will not be opened.
Program the random oracle H to return the correct challenge:

H(x, (comi)i, (chi,j)i,j , (hi,j)i,j) := J1 ‖ · · · ‖ Jm
return π := ((comi)i, (chi,j)i,j , (hi,j)i,j , (respi,Ji)i)

Figure 3.4: Simulator SΠU .

Parameters: Upper bounds qG, qH on the number of queries to G and H,
respectively. Upper bound on length of input to H. Embedding ιl.
pG

$←− GF (2lresp)[X] with ∂pG
≤ 2qG − 1

pH
$←− GF (2l)[X] with ∂pH

≤ 2qH − 1

Construct circuits G, H:
G(x) := pG(x) for x ∈ {0, 1}lresp

H(x) := pH(ιl(x))1...t log m for x ∈ {0, 1}l
return descriptions of H and G

Figure 3.5: Simulator Sinit for Unruh’s transform online extractability. See [18] for details.

EΠU
(G,H, x, π = ((comi), (chi,j), (hi,j), (respi,j))):

The extractor gets Ji ‖ · · · ‖ Jm ← H(x, (comi)i, (chi,j)i,j , (hi,j)i,j)
for i = [1,m] do

for j = [1, n] do
for each resp′ ∈ G−1(hi,j) do

if Verify(x, comi, chi,j , resp) = 1 then
return EΠ(x, comi, chi,Ji , respi, chi,j , resp

′)

Figure 3.6: Extractor EΠU .

Note that the original proof for the security of Unruh’s transform assumes that the
sigma protocol it is applied to has 2-special soundness. In PICNIC, a sigma protocol that
has 3-special soundness (and not 2-special soundness) is used. In order to be able to use
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Unruh’s transform, it must be proven secure for sigma protocols with 3-special soundness
(or more generally, with n-special soundness). This has been done in [9] and we omit the
details of this proof as it closely resembles the original proof.

Unruh’s transform gives a substantial overhead to the protocols it is applied to, since
the transformation involves makingm×n proofs. Given a security parameter it is possible
to optimise the values of m and n to achieve the security required while minimising the
computational cost. In PICNIC, Unruh’s transform is applied to ZKB++ (see Section 6.3).

In ZKB++, the challenge space is limited to {1, 2, 3}, so we cannot have n > 3.
Therefore it is natural to set n = 3. In this case, we can find the minimum m to achieve
the required security level. In the paper introducing PICNIC [5], this is described in detail.
For 128-bit post-quantum security, we setm = 438. This is double what would be required
in the classical setting, due to algorithms designed for quantum computers that reduce the
time to break the system for an adversary.

Example 8. (Unruh’s transform)
m = 4, n = 3
Prover:
Sample 4 commitments: com1, com2, com3 and com4 For each commitment, create 3

accepting conversations:

• For com1:

– Sample three challenges: ch1,1, ch1,2, ch1,3.

– Compute responses to each of the challenges: resp1,1resp1,2, resp1,3.

• For com2:

– Sample three challenges: ch2,1, ch2,2, ch2,3.

– Compute responses to each of the challenges: resp2,1resp2,2, resp2,3.

• For com3:

– Sample three challenges: ch3,1, ch3,2, ch3,3.

– Compute responses to each of the challenges: resp3,1resp3,2, resp3,3.

• For com4:

– Sample three challenges: ch4,1, ch4,2, ch4,3.

– Compute responses to each of the challenges: resp4,1resp4,2, resp4,3.

For each response, for each commitment, commit to the response:

h1,1, h1,2, h1,3, h2,1, . . . , h4,2, h4,3.

Compute the challenge by hashing:

J1 ‖ J2 ‖ J3 ‖ J4 := H(x, (comi)i, (chi,j)i,j , (hi,j)i,j),

where Ji are integers 1 ≤ Ji ≤ 3.
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The challenge points out one response for each commitment to reveal, that is exactly
one from (resp1,1, resp1,2, resp1,3) which are the responses belonging to the first com-
mitment com1, and similarly for com2, com3 and com4.

In this example, let J1 = 1, J2 = 3, J3 = 2, J4 = 2.

Send to the Verifier: π := contents of table
com1 com2 com3 com4

ch1,1, ch1,2, ch1,3 ch2,1, ch2,2, ch2,3 ch3,1, ch3,2, ch3,3 ch4,1, ch4,2, ch4,3

resp1,1 resp2,3 resp3,2 resp4,2

h1,1, h1,2, h1,3 h2,1, h2,2, h2,3 h3,1, h3,2, h3,3 h4,1, h4,2, h4,3

Verifier:

• Compute the challenge: J1 = 1, J2 = 3, J3 = 2, J4 = 2.

• Check that all challenges (chi,j)i,j are pairwise distinct.

• Check that the conversations cosrresponding to these challenges are accepting:

– (com1, ch1,1, resp1,1),

– (com2, ch2,3, resp2,3),

– (com3, ch3,2, resp3,2), and

– (com4, ch4,2, resp4,2).

• Check that the commitments to the responses corresponding to these challenges are
correct:

– h1,1 = Commit(resp1,1),

– h2,3 = Commit(resp2,3),

– h3,2 = Commit(resp3,2), and

– h4,2 = Commit(resp4,2).

• If all the above checks are successful, output Accept. Otherwise output Reject.
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Chapter 4
One-Way Functions

In this chapter we will introduce one-way functions and block ciphers, and in particular
see how we can construct a one-way function from a block cipher. We will also see two
examples of block ciphers: LowMC which is used as a one-way function in the PICNIC
signature scheme and AES which is the most commonly used block cipher today, and also
is used in some of the other signature schemes with the same construction as PICNIC.

4.1 One-way functions

We start by defining one-way functions. These are functions that are easy to compute on
any input, but hard to invert given the image of some input.

Definition 12.
A function f(·) is one-way if:

1. it can be computed by an efficient algorithm, and

2. any efficient algorithm F that attempts to compute an inverse succeeds only with
negligible probability, i.e. for all F,

Pr[f(F (f(x))) = f(x)] < ε,

where ε is negligibly small and the probability is over the uniform distribution of all
possible function inputs x.

Note that the existence of a true one-way function has not been proved, but there are
functions that we consider to be one-way because we currently do not know of any efficient
algorithm that is able to invert them. Examples of such functions are:

• Multiplication of two primes:f(p, q) = p× q for which p and q are primes. The in-
verse function, factorisation of numbers, is considered hard (in the classical setting,
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this is not one-way in the quantum setting as we can efficiently factor numbers with
quantum computers).

• Modular exponentiation: f(g, a) = ga = b. Inverting this requires finding the
discrete logarithm a = logg(b), which is considered hard (again, in the classical
setting).

• Cryptographically secure hash functions, such as SHA-256.

4.2 Pseudo-random permutations
In order to introduce block ciphers, we need to be familiar with pseudorandom permuta-
tions (PRPs).

The GPRP-sec
(π,π−1)(A) experiment with adversary A proceeds as follows:

1. Sample b $←− {0, 1} and k $←− K. Let C0 = C1 = C2 = ∅.

2. When the adversary A sends a query s ∈ {0, 1}n, then:

(a) If s /∈ C1, sample s′ $←− S \ C2, then add (s, s′) to C0, s to C1 and s′ to
C2.

(b) If s /∈ C2, sample s′′ $←− S \C1, then add (s′′, s) to C0, s′′ to C1 and s to
C2.

(c) The experiment finds u′1, u
′′
1 ∈ S such that (s, u′1) ∈ C0 and

(u′′1 , s) ∈ C0.

(d) The experiment computes u′0 ← π−1(k, s) and u′′0 ← π(k, s).

(e) The experiment sends (u′b, u
′′
b ) to A.

3. Eventually, the adversary A outputs b′ ∈ {0, 1}.

4. The experiment outputs 1 if and only if b′ = b.

Define the advantage of the adversary A in the PRP security experiment
GPRP-sec

(π,π−1)(A) to be

AdvPRP-sec
(π,π−1)(A) = |Pr[GPRP-sec

(π,π−1)(A) = 1]− 1

2
|

Figure 4.1: PRP security experiment: GPRP-sec
(π,π−1)(A)

A permutation is a bijection on our set of values, in our case we will be interested in
all bit strings of a particular length: S = {0, 1}n. A pseudorandom permutation family
is a collection of permutations (π, π−1) where you can choose a specific permutation by

36



4.3 Block ciphers

choosing a key k from the set of all possible keys of a particular length, K = {0, 1}m,
such that π−1(k, π(k, x)) = x for all x ∈ S. We want each of these permutations to be
indistinguishable from a random permutation.

Definition 13. (Pseudorandom permutations)
A pseudorandom permutation (family), is a mapping

π : K × S → S,
(k,m) 7→ π(k,m), such that:

1. for each k ∈ K, π(k, ·) is a bijection on S, and

2. for each k ∈ K, π(k, ·) and π−1(k, ·) are efficiently computable.

The security of a PRP (π, π−1) captures if it is indistinguishable from a random
permutation. The adversary A is playing the experiment by making queries for values
s = {0, 1}n. The experiment replies with either the actual PRP π and its inverse π−1

evaulated in s or with a random permutation evaluated in s. Eventually the adversary has
to guess if it was interacting with the PRP or with a random permutation, and if if guesses
correctly, it wins the game.

Figure 4.1 shows the security experiment for PRPs.

4.3 Block ciphers

A block cipher is a pseudorandom function family (π, π−1). Block ciphers are tradition-
ally used to build symmetric-key encryption schemes, meaning that the same key is used
to encrypt and decrypt data. A key k is chosen uniformly at random from the key space,
K. The domain and the range of the block cipher are the same, and we call it the message
space, S.

The block cipher (family) encrypts and decrypts messages:

π, π−1 : K × S → S
π : (k,m) 7→ π(k,m)

π−1 : (k,m) 7→ π−1(k,m),

such that π−1(k, π(k,m)) = m.
For a block cipher to be secure, the advantage of an adversary A against the PRP

security of (π, π−1) must be negligible.
Block ciphers are usually what we call iterated block ciphers. The block cipher takes

a fixed-sized key, fixed sized input blocks and outputs blocks of the same size as the input
blocks. This is done by repeatedly evaluating an invertible transformation called the round
function. This round function describes the permutation family.

In the PICNIC construction, block ciphers are used only as one-way functions, so we
want to construct a one-way function from a block cipher family, (π, π−1). Clearly π :
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K × S → S is not a one-way function. In fact, we know the inverse function π−1, and
given m and k, we can find m′ such that π(k,m′) = m by computing π−1(k,m) = m′.

However, for a fixed input m ∈ S, consider the function

fm : K → S
k 7→ c := π(k,m).

For block ciphers that we want to use, it is reasonable to assume that it is hard to find
a pre-image for fm. This means that it is hard to find the block cipher key given an input-
output pair, (m, c). If an efficient adversary A can find k, then A can distinguish the PRP
(π(k, ·), π−1(k, ·)) from a random permutation. This means that the block cipher was not
secure. Hence, if we (believe we) have a secure block cipher, fm is a one-way function for
all messages m.

For the PICNIC signature scheme, we are interested in block ciphers that can be de-
scribed using the simplest algebraic circuit possible. Due to this, we move on to introduce
algebraic circuits and later to describe a specific block cipher that has particularly nice
properties in this regard.

4.4 Algebraic circuits
In order to compute a function or execute an algorithm with some input, we can model
the function or algorithm as an algebraic circuit. A circuit is a directed graph that has a
tree-like structure. The root node represents the output and the leaf nodes represent the
input. All the internal nodes represent some algebraic operation. We call these nodes
gates. The graph representing the circuit may not be a tree as one input node may lead to
more than one internal node (the input value is used in more than one algebraic operation
in the evaluation of the circuit).

Figure 4.2 shows a simple example of what such a circuit with four inputs and one
output may look like. We can see in the figure that all the nodes are labelled by either
some input, output or an algebraic operation. The circuit evaluation is from the top to the
bottom and the result is the output at the root node.

Figure 4.2: Simple algebraic circuit

Algebraic circuits have varying complexity depending on its depth and the number
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and types of operations on its internal nodes. This impacts what circuits are suitable for a
specific application.

4.5 LowMC
LowMC [1] is the block cipher used as a one-way function in PICNIC. LowMC is a non-
standard block cipher (as opposed to AES, which is introduced in Section 4.6). It is used
because it has particularly low multiplicative complexity, which is also the reason it is
named the way it is.

LowMC is a SPN type block cipher. The substitution-permutation network (SPN) is
an important type of iterative block cipher, where the round function consists of a substi-
tution stage followed by a permutation stage. The substitution stage is the evaluation of
a substitution box (S-box). Similarly the permutation stage evaluates a permutation box
(P-box).

For each round, you obtain a round key from the key (using some operations, e.g. S-
boxes and P-boxes) and combine the result with the output from the round function using
some group operation (e.g. addition or multiplication in the field).

LowMC is a family of block ciphers designed to minimise the multiplicative complex-
ity of its circuit. The purpose of the cipher is to use it within multiparty computation
(MPC), fully homomorphic encryption (FHE) and zero knowledge proofs (ZK). For these
applications, non-linear operations (such as multiplication) is much more expensive in
terms of computational and communication costs compared to linear operations (such as
addition).

This is because while linear operations occur locally, non-linear operations require
communication between the parties in MPC (and it increases noise significantly in FHE,
but this will not be relevant for our application as we do not use FHE).

The question when designing the cipher was ”what is the minimum number of multi-
plications for building a secure block cipher [1]? In particular, the multiplications will be
in F2. Note that in F2, multiplication is the same as the binary bit operation AND, and
addition is the same as XOR. So what we want is to minimise the number of AND gates.

In the instantiation of LowMC, there are several parameters that can be independently
chosen:

• Block size, n

• Key size, k

• Number of S-boxes in substitution layer, m

• Security parameter, d

In order to reduce the multiplicative complexity (MC), the number of S-boxes that are
applied in parallel can be reduced. The reduction in security caused by this is mitigated
by higher complexity in the linear layer. The LowMC round function is composed of four
subroutines:

LowMCRound(i) = KeyAddition(i) ◦ ConstantAddition(i) ◦ LinearLayer(i) ◦ S-BoxLayer
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Cipher Key size Block size ANDdepth ANDs/bit
LowMC 128 256 12 8.85
AES-128 128 128 40 43

Table 4.1: Comparison of cipher parameters

Each S-box is applied to 3 bits, so with m S-boxes, the first 3m bits of the current
state is affected. If this is less than the whole block size, the remaining bits are unchanged.
Figure 4.3 shows a visual represenation of the LowMC round function.

Figure 4.3: LowMC round function

Decryption is done by inverting each of the steps for encryption and doing them in the
opposite order - like moving backwards in the encryption circuit.

In table 4.1 the parameters of LowMC are compared to AES-128. It is clear that if the
number of AND gates and their depth dominate the computational cost, then LowMC will
be cheaper to use.

LowMC is the block cipher used to instantiate the one-way function required in PICNIC
(see Chapter 7), and this is due to its particular suitability for MPC. In Chapter 6 we will
introduce how this is relevant in the MPC context. In PICNIC, LowMC is used only as
a one-way function, so only the PRP security of LowMC is relevant to the security of
PICNIC.

4.6 AES
One of the most common (family of) block ciphers in use today is the Advanced Encryp-
tion Standard (AES). It is the clear alternative to LowMC for use in PICNIC, but due to the
increased multiplicative complexity of the algebraic circuit for AES compared to LowMC,
the latter was chosen. However, other instantiations of the general approach to designing
signature scheme that we introduced in Section 1.1 have opted for AES to instantiate the
one-way function needee. BBQ [8] and BANQUET [2] are examples of such signature
schemes.
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Like LowMC, AES is also a SPN type cipher. AES has 128-bit block length and there
is the option between three key lengths: 128 bits, 192 bits or 256 bits. The length of the
keys affect the number of rounds the cipher has, as well as the key schedule. Each round,
the state, which is a 4-by-4 array of bytes is modified by the round function. The initial
state is the plaintext block, which is 128 bits (16 bytes).

The AES round function has 4 stages:

1. AddRoundKey : A 128 bit round key is derived and the state is updated by XOR-ing
it with the round key.

2. SubBytes: Each byte of the state is replaced by another byte according to a fixed
lookup table S. This is the S-box of the cipher and it is a bijection over {0, 1}8.

3. ShiftRows: The bytes in each row are shifted to the left such as: row 1 remains the
same, row 2 is shifted one place, row 3 is shifted 2 places, row 4 is shifted 3 places.

4. MixColumns: An invertible transformation is applied to the bytes in each column.

Because the last three stages of the round function do not depend on the key, the final
round replaces stage 4 with stage 1.

The AES cipher is the result of the NIST standardisation process that began in 1997, to
standardise a new block cipher to replace previous ones. Having been part of this process,
the cipher has been subject to intense scrutiny since then without any practical attacks
against it. Due to this, the cryptographic community is fairly confident that it is secure and
a good choice for any scheme that needs a strong pseudorandom permutation, and thus
also confident that the resulting one-way function is secure.
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Chapter 5
Multi-Party Computation

Multi-party computation (MPC) considers how a group of people, or parties, can collabo-
ratively compute some function. Each party Pi has a secret input wi, the players agree on
the function φ that takes as input the input from each player. The group wants to compute
x = φ(w1, . . . , wn) such that the correct value of x is computed (correctness) and x is the
only new information that is released (privacy).

The view of a player is defined to be all the values that the player sees during the
execution of the protocol. This includes their private input and the output of the protocol,
as well as any values communicated by other players during the evaluation of the circuit.

The security of an MPC protocol is typically described in terms of how many players
we can allow to be corrupted before they are able to break privacy. In some protocols,
we require an honest majority, that is we need the number of corrupted players t to be
less than half of the total number of players, n. Sometimes, however, this assumption is
too strong, and in particular it is meaningless in two-party protocols. Thus MPC proto-
cols must also handle the dishonest majority assumption, and sometimes even all-but-one
player is dishonest.

We also distinguish between semihonest and malicious players. A semihonest player
is what we call honest, but curious. They will follow the protocols instructions, but may
try to gain more information from what they see in addition to the output. Malicious
players however, may not follow the instructions correctly, but do something different in
order to compromise the privacy of the inputs or the correctness of the output. Thus we
can distinguish between the security of a protocol in the semihonest model and in the
malicious model.

5.1 Secret sharing

Secret sharing is the idea of splitting a secret into several pieces such that having access to
only one or a limited number of pieces does not give you any information about the secret
itself. We can decide that we want to split the secret into n pieces, and that the secret can
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be reconstructed if and only if more than t of these shares are combined (for t < n). This
is then called a (t, n)-threshold secret sharing scheme.

A special case of this that is often wanted is a (n − 1, n)-threshold scheme. This
scheme requires all shares to be combined in order to reconstruct the secret. A simple
scheme that satisfies this is introduced in Example 9.

Example 9. ((n− 1, n)-threshold secret sharing scheme)
Let G be a finite group.
Share: To share s ∈ G, for each i ∈ {1, 1, . . . , n − 1}, choose a uniformly random

si ∈ G. Then comptue sn = s− (
n−1∑
i=1

si).

Reconstruct: To reconstruct from shares s1, s2, . . . , sn ∈ G, compute s =
n∑
i=1

si

Privacy: Knowing only the first n− 1 shares means you only know uniformly random
values, so clearly this reveals no information about the secret s. If on the other hand you
know all the shares except some si for i < n, you know the share that is actually computed
from the secret s. However, this value is determined by all the uniformly random values
si for i < n, so when there is one of those you do not know, since it is uniformly random
and independent from the other shares si for i < n you still learn no information about
the secret s. Therefore, in order to reconstruct, all the n shares are needed.

5.2 Evaluating circuits

The function we will evaluate must be expressed in terms of an algebraic circuit, as dis-
cussed in Section 4.4. This circuit will consist of addition gates and multiplication gates.
The MPC protocol is a communication protocol for evaluating the circuit, with instruc-
tions for what each player must do at each gate. The input to the function we evaluate is
shared (using secret sharing) between all the parties that will participate in the evaluation.
Each party will evaluate the circuit on their input, which is their share of the input to the
function, and communicate with each other as specified by the protocol. In the end, the
evaluation of the function is output from the protocol.

One important aspect of this evaluation is that the computation of different types of
gates in the circuit will have different computational and communication cost associated to
them. Typically, an addition gate and a multiplication by a constant-gate are very cheap to
compute as they require no communication between the players. However, multiplication
gates require the players to interact. So the cost of evaluating the circuit is influenced by
its multiplicative complexity.

Clearly, if the designer of an MPC protocol can influence the choice of circuit, they can
influence the cost of the protocol. In PICNIC (see Chapter 7) we use a block cipher as a one-
way function and the proof of knowledge uses multiparty computation (specifically, it uses
MPC-in-the-head, see Section 5.3) to evaluate the block cipher. The most obvious choice
for a block cipher would be AES, but as it has quite a high multiplicative complexity, this
increases the computational cost of the proof of knowledge. To reduce the cost of this
computation, the block cipher LowMC (see Section 4.5) is chosen. LowMC was designed
for, among other things, MPC protocols and has very low multiplicative complexity (MC).
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5.3 MPC-in-the-head
A technique called MPC-in-the-head [12] can be used to turn a secure MPC protocol into
a zero-knowledge proof. The technique shows the connection between two fundamental
notions: zero-knowledge proofs and secure multiparty computation. We take advantage of
the security of an MPC protocol to achieve zero knowledge, by having the prover execute
an MPC protocol ”in the head”.

We have statements x ∈ L in our language, and witnessesw ∈W for these statements.
We have a relation R such that (x,w) ∈ R if and only if w is a witness for x. Let the
function φ(·) realise the relation R:

φ(x,w) = 1 ⇐⇒ (x,w) ∈ R.

Let Πφ be an n-party MPC protocol (with correctness) that evaluates the function φ,
with n ≥ 3. Then Πφ takes as input the statement x, and the n input shares wi. The input
shares wi are the shares produced by secret sharing the witness w for x:

w =

n∑
i=1

wi.

So we have that

Πφ(x,w1, . . . , wn) = φ(x,w1 + · · ·+ wn),

and Πφ(x,w1, . . . , wn) = 1 if and only if (x,w1 + · · · + wn) ∈ R (otherwise, the
output is 0).

The MPC protocol, Πφ, may involve an arbitrary number of parties, n, and needs
to be secure against two semi-honest players. The statement x is known to all play-
ers and wi is the private input to player i. The output is received by all players: when
Πφ(x,w1, . . . , wn) = 1 each player i also outputs 1. Additionally, let Commit be a secure
commitment scheme.

The zero-knowledge proof of knowledge protocol ΠR begins with the prover secret-
sharing the witness w (to itself) into n additive shares, w1, . . . , wn. The prover then runs
the n-party MPC protocol Πf ”in the head”, using the shares w1, . . . wn as input for the
n ”players”. The prover stores the view, viewi of each player i containing their private
input, wi, any values they see during the protocol execution and their output (which is 0
or 1). After this is completed, the prover starts their interaction with the verifier.

The prover commits to the view of each player and sends these commitments and
the statement x to the verifier. The verifier picks at random two distinct players i, j and
challenges the prover to open the views of these players. The prover sends the view of
player i and j to the verifier. The verifier accepts if the opened commitments are the one
they asked for, and the views are consistent with each other.

The protocol is formally described in Figure 5.1.
We will show in Theorem 4 that the protocol ΠB we get using this technique is a

secure zero knowledge proof. The security of the protocol is analysed in the commitment-
hybrid model. In this model, all parties have access to an idealised implementation of
commitments. We need to prove that the protocol has correctness, soundness and HVZK.
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Let x be a statement in our language and w a witness for x: (x,w) ∈ R. Let φ be
the function that corresponds to the relation R: φ(x,w) = 1 ⇐⇒ (x,w) ∈ R.

Let Πφ be the MPC protocol that realises φ with n = 3 players:
b← Πφ(x,w1, w2, w3), where b ∈ {0, 1} such that Πφ outputs 1 if and only if
φ(x,w1 + w2 + w3) = 1. If Πφ outputs 1, then so does each player.

Both the prover and the verifier get the statement x as input. The prover also has
access to the witness w.

Commit: The prover does the following:

• Secret-shares the witness: Chooses random w1, w2, w3 such that
w1 + w2 + w3 = w.

• Runs Πφ(x,w1, w2, w3) ”in the head” to get the views of each player that the
prover is emulating, (view1, view2, view3)

• Commits to the view of each player: ci ← Commit(viewi) for i ∈ {1, 2, 3}.

• Sends (x, c1, c2, c3) to the verifier.

Challenge: The verifier chooses a challenge (i, j)← {1, 2, 3}, and sends it to
the prover.
Response: The prover opens the views for players i and j. The prover sends
(viewi, viewj) to the verifier.
Verification: The verifier accepts if and only if

• The prover opened the requested views

• viewi and viewj are consistent with each other. with respect to x, the
commitments ci, cj , and the protocol Πφ

• Both players i and j outputs 1 (which is determined by their view).

Figure 5.1: MPC-in-the-head protocol, ΠR, with 3 players (n = 3)
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Intuitively, correctness follows from Πφ being correct. Soundness follows from that
when there is no witness for the statement, the protocol will not produce the correct output,
and zero knowledge follows from Πφ being secure against two semi-honest players.

Theorem 4. (Security of MPC-in-the-head)
Let R be a relation with corresponding funciton φ. Let Πφ be an MPC protocol with

n ≥ 3 players. Πφ realises the function φ correctly and is secure against two semihonest
players. Let Commit be a secure commitment scheme. Then ΠB from Figure 5.1 is a
secure HVZK proof (in the commitment hybrid model).

Proof. (Theorem 4) Completeness: In an honest execution of the protocol, the views of
the players have been computed correctly and are therefore always consistent with each
other and the protocol. Additionally, the commitments will have been computed correctly
from these views, so the views will be consistent with the commitments. Because Πφ cor-
rectly evaluates the function φ, the output shares will correctly recombine to the statement
x. So ΠB is correct.

Soundness: Let the statement x /∈ L not be in our language, so we have (x,w) /∈
R for all possible w, and thus ∀w φ(x,w) = 0. Since Πφ correctly realises φ,
Πφ(x,w1, . . . wn) = 0 for all choices for w1, . . . , wn. There are two possibilities for
the views that the prover committed to in the commitment stage: Either they all output 0
(since the MPC protocol must output 0) or there are two views that are inconsistent with
each other (since not all views can be consistent and output 1). If they all output 0, then
the verifier rejects, so we are done. In the case that they do not all output 0, then we can
calculate the probability that the verifier selects an inconsistent pair to challenge the prover
on:

Pr[(i, j) inconsistent] ≥ 1(
n
2

)
Note that we open 2 views because the MPC protocol is secure against 2 semi-honest

players.
Zero knowledge: Let SMPC be the simulator for the MPC protocol Πφ. We know that

such a simulator exists because of the security of Πφ against 2 semi-honest players. We
construct a simulator S. Let V ∗ be a malicious verifier. We run the simulator S on input
x:

1. Run V ∗ on input x. Let (i, j) be the pair of indices chosen by V ∗ as a challenge.

2. Simulate the two views viewi, viewj by picking random input shares wi, wj and
running the MPC simulator SMPC({i, j}, x, (wi, wj)).

Let (x,w) ∈ R, that is φ(x,w) = 1. The randomness of V ∗ that the simulation outputs
is identically distributed to the randomness of V ∗ in an actual execution. So we just need
to show that for any choice, the simulation is perfect.

Let (i, j) be the verifiers challenge. In the real execution, the choice of w1, . . . wn are
uniform and independent. So the choice made by the simulator is identically distributed.
The distribution of the simulated views (viewi, viewj) is distributed identically to the
real views for any choice of i and j since the MPC simulator SMPC is a perfect 2-private
simulator for Πφ.

47



Chapter 5. Multi-Party Computation

48



Chapter 6
Zero Knowledge for Algebraic
Circuits

In this chapter we will introduce the sigma protocol, ZKBoo, that is the basis of the sigma
protocol used in PICNIC. ZKBoo is a zero knowledge proof system. In particular, the
protocol is used to prove knowledge of some pre-image of a (one-way) function.

ZKBoo makes use of several concepts that we have already seen and will see in this
chapter:

• Commitment schemes (Section 2.3)

• MPC, in particular MPC-in-the-head (Section 5.3), including secret sharing (Section
5.1).

• Function decomposition (Section 6.1)

The protocol is modified somewhat when it is used in the PICNIC scheme. We will see
these modifications and then the resulting protocol that is called ZKB++ in Section 6.3.

6.1 Function decomposition
The ZKBoo protocol assumes the existence of what we call (2,3)-decompositions of func-
tions. The purpose of this is to split the evaluation of a function on some input into 3 parts.
The three parts are carried out by three different players, such that when we recombine the
results each of the players obtained, we get the same result we would have obtained if we
evaluated the original function on the same input. In addition, we require 2-privacy, which
means that revealing 2 (out of 3) views reveals no information about the input.

Let φ be the function we want to decompose, w is the input and x is the output such
that x = φ(w). Each player i will evaluate their own component of the function, which
we call φi. The evaluation of the function may consist of several stages, in between which
the players interact. The function evaluation can therefore be split into N parts, one for
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each of these N stages. So each player i for i ∈ {1, 2, 3} will evaluate all the functions
∪Nj=1φ

(j)
i . Each of these functions take input from the player itself, player i and the next

one, player i+ 1 (where 3 + 1 = 1):

viewi[j + 1]← φji (viewi[j], ri, viewi+1[j], ri+1).

To simplify notation, we give the name Update to all of the functions∪Nj=1{φ
(j)
1 , φ

(j)
2 , φ

(j)
3 }.

The Update function updates the view of party i:

viewi[j + 1]← Update(viewi[j], . . . ).

The input value for each player as well as any intermediate values are stored in their
respective views, viewi.

The decomposition consists of a tuple of algorithms (Share,Update,Outputi,Rec) for
i ∈ {1, 2, 3}. The 2-3-decomposition is defined in Defintion 14.

Definition 14. ((2,3)-decomposition)
A (2,3)-decomposition for the function φ is a tuple of algorithms

Dφ = {Share,Update,Output1,Output2,Output3,Rec}

such that:

• Share: Splits the input into three input shares,

w1, w2, w3 ← Share(w; r1, r2, r3).

The function is surjective and potentially randomized.

• Update: Each player i evaluates Update to update their view, viewi:

viewi[j + 1]← Update(viewi[j], . . . )

• ∀i ∈ [3] : Outputi. The output algorithm for each player i takes in their view, viewi
and outputs their output share, xi.

• Rec: This algorithm recombines the output shares into the final output:

x← Rec(x1, x2, x3),

such that x = φ(w).

• Correctness: ∀x ∈ L : Pr[φ(x) = Π∗φ(x)] = 1.

• 2-Privacy: ∀e ∈ [3] : ∃S (an efficient simulator) such that ∀x ∈ L,
({ri, viewi}i∈{e,e+1}, ye+2) and Se(φ, y) have the same probability distribution.
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Figure 6.1 shows a visual representation of what the (2,3)-decomposition does.

Figure 6.1: Visual representation of a (2-3)-decomposition [10].

In the signature scheme PICNIC, we have a (2,3)-decomposition of the one-way func-
tion F constructed from the block cipher LowMC. We consider the LowMC plaintext-
ciphertext pair (a, b) as the public key and the LowMC key is the secret key. So we want
to prove knowledge of the pre-image of Fa(k) = b, which is the LowMC key, k.

This idea of a (2,3)-decomposition is a generalisation of the MPC-in-the-head tech-
nique (see Section 5.3). The decomposition replaces the MPC protocol that is used as a
black box in the MPC-in-the-head protocol.

6.2 ZKBoo
The ZKBoo protocol [10] is a sigma protocol that turns the notion of a (2, 3)-decomposition
(Definition 14) of a function, φ, into a zero knowledge protocol. Let the language be
Lφ = {x | ∃w : φ(w) = x}. Let x ∈ Lφ be a statement in our language and let w ∈ W
be a witness for x. The aim is for the prover to convince the verifier that it knows w such
that φ(w) = x, but without revealing any information about the witness w. To do this,
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ZKBoo uses the (2,3)-decomposition construction from Section 6.1, which is based on the
MPC-in-the-head technique [12], from Section 5.3.

Both the prover and the verifier get as input the statement x ∈ Lφ. The prover also
knows a witness w for x, so that x = φ(w), and wants to convince the verifier of this. We
are also given a (2,3)-decomposition, Π∗φ, of the function φ. The prover will use Π∗φ to do
MPC-in-the-head:

• The prover samples some randomness k1, k2, k3, for each of the three ”players” in
the MPC protocol.

• The input (the witness for our statement)w is shared into three input shares,w1, w2, w3,
for each of the three ”players”. This uses the Share function that Π∗φ specifies.

• The prover will evaluate the decomposed function φ according to Π∗φ for each of the
three ”players”. From this, the prover gets the view viewi and the output share xi
for each player i ∈ [3].

• The view viewi contain everything seen by player i, its input share, output share and
any intermediate values and ”messages” sent between the players when executing
the MPC protocol. If we recombine the output shares x1, x2, x3 using the function
Rec(x1, x2, x3) we will get the output x = φ(w).

After obtaining the views for the players and their output shares, the prover commits
to each view viewi using a Commit function (see Section 2.3) that takes in the view,
viewi and randomness of player i, ki. The prover sends the following to the verifier:
a = (x1, x2, x3, c1, c2, c3).

Now the verifier gets to choose a challenge for the prover. The verifier chooses some
index e ∈ [3], challenging the prover to open the commitments ce and ce+1.

The prover responds with the required openings, sending z = (viewe, viewe+1, re, re+1)
to the verifier.

In the end, the verifier makes some checks, to make sure everything was computed as it
should have been. If any of the checks fail, the verifier outputs Reject. If they all succeed,
the verifier outputs Accept. The checks are:

• Check that the output shares recombine to the input value: x ?
= Rec(x1, x2, x3).

• Check that the output shares are consistent with the view:
∀i ∈ {e, e+ 1} : xi

?
= Output(viewi).

• Now we consider φi to be the composition of N distinct functions such that
φi = φNi ◦ φ

N−1
i ◦ · · · ◦ φ1

i . Denote the view of player e at the stage immediately
after evaluating φje to be viewe[j] (thus viewe[N ] = viewe, and viewe[0] = we).

Check that the view at any specific stage, j ∈ [N ], viewe[j] is equal to the output of
that particular function with the openings as input: viewe[j]

?
= φje(viewe, viewe+1, re, re+1).

In Theorem 5 we prove the security of ZKBoo. Figure 6.2 shows the ZKBoo protocol.
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Input:
• The verifier and prover both have input x ∈ Lφ

• The prover knows w such that x = φ(w).

• A (2,3)-decomposition, Π∗φ, is given

Commit: The prover does:

1. Sample random tapes r1, r2, r3

2. Run Π∗φ(x) and obtain the views view1, view2, view3 and the output shares
x1, x2, x3

3. Commit to the views: ∀i ∈ [3] : ci ← Commit(ri, viewi)

4. Send to the verifier: a = (x1, x2, x3, c1, c2, c3)

Prove:

1. Verifier: chooses index e ∈ [3] and sends it to the prover

2. Prover: Answers the verifiers challenge by opening the commitments ce, ce+1:
Sends to the verifier z = (re, viewe, re+1, viewe+1).

Verify: The verifier does:

1. If Rec(x1, x2, x3) 6= y, output Reject

2. If ∃i ∈ {e, e+ 1} such that xi 6= Outputi(viewi), output Reject

3. If ∃j such that viewe[j] 6= φ
(j)
e (viewe, viewe+1, re, re+1), output Reject

4. Output Accept

Figure 6.2: The ZKBoo protocol [10].
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Theorem 5. (ZKBoo)
The sigma protocol ZKBoo in Figure 6.2 has 3-special soundness and is honest verifier

zero knowledge.

Proof. (Theorem 5) ZKBoo has the sigma protocol communication pattern and complete-
ness is given by the correctness of the (2,3)-decomposition of φ, Π∗φ.

3-special soundness: Consider three accepting conversations (a, i, zi), i ∈ [3]:

• (a, 1, z1): z1 = (r1, view1, r2, view2),

• (a, 2, z2): z2 = (r2, view2, r3, view3),

• (a, 3, z3): z3 = (r3, view3, r1, view1).

Note that view1 ∈ z1 = view1 ∈ z3, and the same holds for view2 and view3. This
is guaranteed by the binding property of the commitment.

Now we move backwards through the decomposition: Since the three conversations
are accepting we have ∀i : yi = Output(viewi) and all the entires in viewi are correct.
So since Share is surjective, we can find w′ = Rec(view1[0], view2[0], view3[0]) =
Rec(w1, w2, w3).

Note that with 2 accepting conversations, even though all input shares are included
(so one would think this was enough to extract the witness), one branch of computation is
not checked, so there may be the case that ∃i : w1 6= φ

(j)
i (viewi, viewi+1, ri, ri+1). So

ZKBoo does not satisfy 2-special soundness.

HVZK: We construct a simulator S.

1. Input: x ∈ Lφ and e ∈ [3].

2. Run 2-privacy simulator (which must exist due to the 2-privacy property of Π∗φ).
This returns ({ri, viewi}i∈{e,e+1}, xe+2)

3. S sets viewe+2 = 0|view|, re+2 = 0|r|.

4. S constructs a commitment to the three views.

The simulator S perfectly simulates the proofs. The adversary cannot distinguish be-
tween real proofs and simulated proofs, so the protocol is HVZK.

It now follows from Theorem 1 that ZKBoo is a proof of knowledge, and thus a zero
knowledge proof of knowledge.

6.3 ZKB++
In the construction of PICNIC, several alterations are made to ZKBoo as it is presented in
Section 6.2. The resulting sigma protocol is called ZKB++ [5]. The changes made result
in a reduction of the transcript size by more than half, without increasing the computation
cost. The changes are presented as six different optimisations:
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Optimisation 1 - the Share function: The Share function samples shares pseudoran-
domly:

(w1, w2, w3)← Share(w, r1, r2, r3) := w1 = R1(0), w2 = R2(0), w3 = w − w1 − w2

Where Ri is a pseudorandom generator with seed ri. Note that 2-privacy is preserved.
This enables the verifier to compute the input shares to players 1 and 2 using their random
tape as seed. However, the verifier cannot compute the input share to player 3.

Optimisation 2 - not including input shares: Due to optimisation 1, the prover can
omit the input shares that the verifier can compute from its messages. If the challenge
from the verifier is e = 1, then the input shares can be omitted from the response. If e = 2
or e = 3, then one input share must be sent since w3 cannot be computed by the verifier.
Since the challenge is uniformly random, the expected number of input shares that needs
to be included by the prover is 2/3.

Optimisation 3 - not including commitments: It is not necessary to include the com-
mitments to all three views because for the two opened views, the verifier can (and will
anyway) recompute the commitment. So the commitment must ble explicitly included
in the message only for the view that is not opened. Note that the challenge e is com-
puted from all the commitments (and some other values), so the challenge functions as a
commitment to the commitments. Hence there is no loss of security by doing this.

Optimisation 4 - no additional randomness for commitments: ri (the seed value) is
the first input to the commitment. So the protocol input to the commitment doubles as a
randomization value. Since ri is used both as the seed for the PRG and as randomness for
the commitment, we need to work in the random oracle model - which we already do in
order to make the proofs non-interactive, so there is no security loss here.

Optimisation 5 - not including the output shares: In ZKBoo the output shares are
included in the value a (the commitment phase). And later, two of the output shares
are included when two views are opened. Clearly, it is not needed to send these two
times. However, it is not necessary to send the output shares at all, because the verifier can
recompute them from the rest of the proof. For the two views that are opened, the ouput
share is the value on the output wire, so it is easily computed since the verifier has access
to the random tapes and any communicated bits. For the third output value, this can be
computed from the input, x and the two other input shares xe, xe+1 since this is how it
was computed in the first place.

Optimisation 6 - not including viewe: The verifier recomputes every wire in viewe
in its verification to check that the values they received were correct. However, we can
omit sending these values as the verifier can compute them given just the random tapes
re, re+1 and the values of viewe+1. Then the verifier uses this recomputed view to check
the commitments, which will only verify if everything was computed correctly due to the
binding property of the commitment.
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A detailed analysis of the computational cost of this is included in [5].
In addition to this, the ZKB++ protocol also applies a non-interactive transform. Figure

6.3 shows the prover algorithm of the ZKB++ protocol and figure 6.4 shows the verifier
algorithm. In the figures, the Fiat-Shamir transform is used to make the protocol non-
interactive. In PICNIC, ZKB++ is made non-interactive using Unruh’s transform, which is
secure in QROM. This application of Unruh’s transform is also specialised to reduce the
overhead to only 1.6x compared to 4x for a direct application.

Input: The function φ and statement x ∈ Lφ is public. The prover knows w
such that x = φ(w). Hash functions H, H’, G used by both parties, modelled as
random oracles. t is the number of parallel iterations.

Prover: π ← Prove(x,w)

1. For each si : i ∈ [1, t]: Sample random tapes r(i)
1 , r

(i)
2 , r

(i)
3 . Simulate MPC

protocol, for each player j compute:

(w
(i)
1 , w

(i)
2 , w

(i)
3 )← Share(w, r

(i)
1 , r

(i)
2 , r

(i)
3 )

= (G(r
(i)
1 ,G(r

(i)
2 ), w ⊕ G(r

(i))
1 ⊕ G(r

(i)
2 ),

view
(i)
j ← Update(. . .Update(w

(i)
j , w

(i)
j+1, r

(i)
j , r

(i)
j+1) . . . ),

x
(i)
j ← Output(view

(i)
j ).

Commit [C
(i)
j , D

(i)
j ]← [H′(r

(i)
j , view

(i)
j ), r

(i)
j ‖ view

(i)
j ].

Let a(i) = (x
(i)
1 , x

(i)
2 , x

(i)
3 , C

(i)
1 , C

(i)
2 , C

(i)
3 ).

2. Compute challenge: e← H(a1, . . . at). Get ei ∈ {1, 2, 3} for i ∈ [1, t].

3. For each si : i ∈ [1, t]: let bi = (y
(i)
ei+2, C

(i)
ei+2). Set:

z(i) ←


(view

(i)
2 , r

(i)
1 , r

(i)
2 ) if e(i) = 1,

(view
(i)
3 , r

(i)
2 , r

(i)
3 , w

(i)
3 ) if e(i) = 1,

(view
(i)
1 , r

(i)
3 , r

(i)
1 , w

(i)
3 ) if e(i) = 3.

4. Output π ← [e, (b(1), z(1)), (b(2), z(2)), . . . , (b(t), z(t))].

Figure 6.3: The ZKB++ protocol [5] prover algorithm
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Input:
• The function φ and statement x ∈ Lφ is public.

• Hash functions H, H’, G used by both parties, modelled as random oracles

• t is the number of parallel iterations

Verifier: b← Verify(x, π) where b ∈ {Accept,Reject}

1. For each si : i ∈ [1, t]: Run the MPC protocol to reconstruct the views, input
and output shares that were not given as part of the proof π.

w
(i)

e(i)
←


G(r

(i)
1 if e(i) = 1,

G(r
(i)
2 if e(i) = 1,

w
(i)
3 from z(i) if e(i) = 3.

x
(i)

e(i)+1
←


G(r

(i)
2 ) if e(i) = 1,

w
(i)
3 from z(i) if e(i) = 2,

G(k
(i)
1 ) if e(i) = 3.

Get view(i)

e(i)+1
from z(i). Compute:

view(i)
e ← Update(. . .Update(w(i)

e , w
(i)
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(i)
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(i)
e+1) . . . ),

x
(i)

e(i)
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(i)

e(i)
),

x
(i)
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),

x
(i)
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← x⊕ x(i)

e(i)
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Compute commitments for the views. For j ∈ {e(i), e(i) + 1}:

[C
(i)
j , D

(i)
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(i)
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2 , x
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(i)
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(i)
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(i)
3 ).

Note that y(i)

e(i)+2
and C(i)

e(i)+2
is part of z(i).

2. Compute the challenge: e′ = H(y
(i)
1 , y

(i)
2 , y

(i)
3 , C

(i)
1 , C

(i)
2 , C

(i)
3 ).

If e = e′, output Accept, otherwise output Reject.

Figure 6.4: The ZKB++ protocol [5] verifier algorithm
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Theorem 6. (Security of the ZKB++ NIZK proof of knowledge protocol)
The non-interactive scheme ZKB++ from Figures 6.3 and 6.4 is a HVZK proof of

knowledge with simulation-sound online extractability.

Proof sketch. (Theorem 6) The result follows from the security of ZKBoo (Theorem 5)
and that Unruh’s transform preserves this security (Theorem 3). The optimisations made
to ZKBoo in order to construct ZKB++ do not alter the security properties, so the result
follows. The full proof can be found in the paper introducing the PICNIC signature scheme
[5].
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The PICNIC Signature Scheme

We will now describe the PICNIC signature scheme [5]. The purpose of PICNIC is to
provide a post-quantum secure signature scheme. PICNIC is an instantiation of the general
signature scheme construction showed in Example 4.

Over the past few chapters we have described the building blocks that are used in
PICNIC. We will now put them together and show that this yields a secure signature
scheme.

We will see that the security of PICNIC reduces entirely to the security of the building
blocks that are used. Since these building blocks rely only on the security of symmetric-
key primitives that are considered post-quantum secure, this shows that PICNIC is indeed
post-quantum secure.

7.1 Algorithm overview
The PICNIC signature scheme consists of three algorithms KeyGen, Sign and Verify. Fig-
ure 7.1 shows how the algorithms interact, and Figure 7.2 shows what each algorithm
does.

We will discuss each algorithm separately, including how it works, what primitives and
sub-protocols are chosen and what security we require.

Key generation algorithm, KeyGen(): The key generation algorithm uses a keyed one-
way function F. A random secret key is sampled: ks $←− {0, 1}n. Also, a random value is
sampled: rKeyGen

$←− {0, 1}n. The public key is computed as kp ← FrKeyGen
(ks), that is the

evaluation of the function F with key rKeyGen in the value ks. The algorithm outputs a key
pair: (sk = (rKeyGen, ks, kp), pk = (rKeyGen, kp)).

We require that the function F is a one-way function such that knowing rKeyGen and kp
does not reveal (any information about) the pre-image ks.

In PICNIC, F is instantiated with LowMC [1]. LowMC is introduced in Section 4.5 and
is a block cipher that has particularly low multiplicative complexity, which is beneficial

59



Chapter 7. The PICNIC Signature Scheme

Figure 7.1: The PICNIC signature scheme with its three algorithms: KeyGen, Sign, and Verify.

for the computational cost of the protocol as discussed previously. This is done such that
the preimage of the one-way function F is the LowMC key. Let K be the set of LowMC
keys, and S the set of messages (plaintexts and ciphertexts). Let rKeyGen ∈ S be the key
for F. Then we have:

FrKeyGen
: K → S,
ks 7→ Encks(rKeyGen) = kp,

where Encks(rKeyGen) is the LowMC encryption of rKeyGen under the key ks.

Signing algorithm, Sign (m, sk): The signing algorithm takes a message to be signed,
and the secret key as input. The signature consists of a NIZK proof of knowledge of the
secret key ks that depends on the message m.

The NIZK prover algorithm ProveH consists of three phases: the commit phase, the
challenge phase and the response phase. The commitment phase outputs a value s ←
Com() that is input to the challenge phase. The challenge phase takes this value s and the
message m and produces the challenge as c = H(s,m)← Ch(s,m). The response phase
outputs the proof of knowledge for ks, π ← Resp(c):

π ← ProveH(m, s, sk).
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KeyGen ( ):
ks

$←− {0, 1}n, rKeyGen
$←− {0, 1}n

kp ← Fks(rKeyGen)
return (sk = (rKeyGen, ks, kp), pk = (rKeyGen, kp))

Sign (sk, m):
Compute σ = (s, π)← ProveH((rKeyGen, kp,m), ks)
The challenge used in ProveH is computed according to Unruh’s transform,
c← H(s,m).

return σ

Verify (pk, m, σ):
b← VerifyH((rKeyGen, kp,m), π), b ∈ {Accept,Reject}

return b

Figure 7.2: Generic description of the PICNIC algorithm. This is instantiated with ZKB++,
which is made non-interactive using Unruh’s transform, as (ProveH,VerifyH) and a secure
pseudorandom function. LowMC will act as this secure PRF.

The signing algorithm outputs the commitment value s and the proof π:

σ = (s, π) = Sign(m, sk).

The prover sends the signature σ to the verifier.
In PICNIC, ProveH (and the verification algorithm that belongs to it, VerifyH) is in-

stantiated with the sigma protocol ZKB++, which is made non-interactive using Unruh’s
transform (see Section 3.4.2). ZKB++ is adapted from ZKBoo as described in Section
6.3. Unruh’s transform gives us a NIZK proof system with HVZK that is simulation-sound
online-extractable in QROM when applied to a sigma protocol that is a proof of knowl-
edge with completeness, HVZK, and n-special soundness. For the resulting NIZK protocol
to be secure, we require that the sigma protocol satisfies these conditions. As shown in
Chapter 6, ZKB++ has 3-special soundness and completeness, and is HVZK.

For the signature we require EUF-CMA security. This means that even if the adversary
has seen pairs of messages and signatures (m,σ), they should not be able to produce a
valid signature σ’ on a new message m′ 6= m. We will see the security of PICNIC in
Section 7.2.

In the introduction of ZKB++ in Chapter 6, we do not show the protocol made non-
interactive with Unruh’s transform. The Fiat-Shamir transform is used in the algorithm
descriptions to illustrate non-interactivity. However, as discussed in Chapter 3, we do
not consider the Fiat-Shamir transform to be secure in QROM. Thus, we use Unruh’s
transform instead for PICNIC since we require security against quantum adversaries.

Using Unruh’s transform gives us a large overhead in the proof size, which are roughly
four times as large as when using the Fiat-Shamir transform. However, PICNIC introduces
some optimisations to reduce this overhead so that it becomes only approximately 1.6
times the Fiat-Shamir transform proofs, making the proof size acceptably small.
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Verification algorithm, Verify (σ, m, pk): The verification algorithm takes a signa-
ture, a message and the public key as input. The verifier runs the verification algo-
rithm VerifyH. This is the verification algorithm that is part of the NIZK proof system
ΠH = (ProveH,VerifyH). This proof system is the ZKB++ protocol made non-interactive
with Unruh’s transform as described above. The verification algorithm outputs b such that:

b← VerifyH(m,σ, pk) : b ∈ {Accept,Reject}.
We require that the Verify algorithm outputs b = Accept if and only if for σ = (s, π),

π is a valid proof of knowledge of sk with challenge c ← H(s,m) (that is, the proof is
correct and sound).

7.2 Security of Picnic
We are working in the QROM security model. The security model is introduced in Section
2.4.1.

We will prove that the PICNIC security scheme is EUF-CMA secure. We do this by
reducing the security of the signature scheme to the security of the building blocks that
we have already discussed and proven to be secure. So the security proof holds for all
signature schemes of the same construction, when secure building blocks are chosen.

For PICNIC in particular, we rely on the one-wayness of the function we use based on
LowMC, and the security of the NIZK proof of knowledge protocol ZKB++ that is made
non-interactive using Unruh’s transform, which preserves the security of the interactive
zero knowledge proof of knowledge.

Theorem 7. (EUF-CMA of PICNIC)
Let PICNIC be the signature scheme from Figure 7.2 instantiated with ZKB++ as

(ProveH,VerifyH) and a one-way function, F. Let A be a (q, t)-adversary against the
EUF-CMA security of PICNIC in the QROM model that makes at most q queries to the ex-
periment and the runtime ofA and the experiment is at most t. Then there is an adversary
B against the security of our one-way function F, with runtime approximately t, such that:

AdvEUF-CMA
PICNIC (A) = AdvOW-sec

F (B)

Proof. (Theorem 7) First, we note that PICNIC is correct, which follows from the com-
pleteness of the proof system ZKB++.
We proceed with a sequence of games:

Game 1: This is the original EUF-CMA security experiment. The prover responds to
the adversary A with signatures σ = (s, π). We get

AdvEUF-CMA
PICNIC (A) = Pr[G1 = 1].

Game 2: Now the prover will not use ProveH to create genuine proofs π as part of the
signature σ = (s, π). Instead, the prover will simulate the proofs using the simulator SH

for the (ProveH,VerifyH) proof system and the simulator Sinit to choose the oracles H and
G, as presented in Section 3.4.2.

Since the simulator SH perfectly simulates the zero knowledge proofs, and the sim-
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ulator Sinit chooses random oracles in such a way that the adversary cannot distinguish
between the chosen oracles and the random oracles, the adversary A cannot distinguish
between Game 1 and Game 2. Therefore we have

Pr[G1 = 1] = Pr[G2 = 1].

Note that the prover does not use the secret key sk to create proofs now. This effec-
tively removes the signature queries from the experiment, because the adversary cannot
learn anything from them, since the secret key was not involved in creating the simulated
signatures. In fact, the adversary would be able to do the simulation themselves.

Suppose the adversary A is able to produce a forgery σ for message m. Since the
signature is a proof of knowledge, that means we have an extractor EΠ that will extract a
witness from the proof of knowledge (except with negligible probability). This extractor
is the extractor EΠU

from Section 3.4.2.
The witness that is extracted by EΠ is the preimage of our one-way function F. So

we can build an adversary B against the one-wayness (OW-sec) of our function F. B uses
the adversary A and the extractor EΠ to find a preimage of the one-way function F. The
adversary B finds a preimage of F whenever A successfully forges a signature, by using
the extractor, and spends approximately the same time as A. Since B succeeds whenever
A succeeds, we have

AdvOW-sec
F (B) = Pr[G2 = 1].

The result follows.
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Chapter 8
Conclusions

We have seen how the PICNIC signature scheme is constructed and proved its security
against EUF-CMA attacks. This security result applies to other signature schemes that
uses the same construction, such as the schemes mentioned in Section 1.1.2, BBQ and
BANQUET.

We have seen that the security of the scheme reduces to symmetric-key primitives,
and thus it is secure against quantum adversaries, without any number theoretic hardness
assumptions and also without any hardness assumptions on other public key structures.
Because of this, the construction is interesting, even if it is rather complicated.

The signatures made with PICNIC, or one of its friends, are rather large, but with
further work, it is possible that this can be reduced to make the scheme more practical.

As of June 2021 the NIST standardisation process is still in round 3, evaluating final-
ists. As an alternate digital signature scheme, PICNIC is not a candidate for standardisation
now, but it may be considered in the future after further study.
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