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Problem description

Making hedging decisions is a classical problem faced by power producers. Power producers may
hedge their cash flows to reduce price risk by selling power futures. A critical decision is then how
much power should be exposed to the spot price and how much should be hedged using futures
contracts.

Due to lack of liquidity in power futures markets, the power producer should not enter a significant
position in futures contracts all at once as it will drain the market liquidity. Consequently, the
power producers must decide how much and when to trade different power futures. In this regard,
the trade-off between price impact and price risk is particularly relevant when trading in an illiquid
market.

This problem is deconstructed into two sub-problems: the hedging problem and the order execu-
tion problem. The hedging problem considers how much of their production a producer should
hedge and how the hedging volume should be allocated across futures contracts in the medium
term. On the other hand, the order execution problem considers how trading volumes should be
executed in the market, exploring how the power producer should trade power futures within
daily trading periods. By drawing inspiration from the contemporary literature, a mathematical
model which integrates the hedging problem and order execution problem is proposed in this
thesis.
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Abstract

Due to the changing liquidity of power derivatives contracts during their lifecycle, efficient order
execution strategies are highly relevant for power producers. The relevant aspect for a power
producer aiming to hedge part of their production by trading power derivatives corresponds to
how order execution decisions can be made to balance the trade-off between the preference for
risk aversion and maximising revenues.

The existing literature emphasises the order execution problem in a vacuum without considering
decision making outside of the trading period. Additionally, the existing literature predominantly
considers order placement for blue-chip stocks to the author’s best knowledge. This thesis fills a
gap in the literature by evaluating order execution strategies in an illiquid market context.

The purpose of the thesis is to construct an order execution model that meets the requirements of a
power producer. An integrated order execution model, referred to as the Integrated Postponement
model, is proposed. The Integrated Postponement model introduces postponement optionality
and dynamic trading volume allocation based on market liquidity, of which both aspects are novel
contributions to the field. The Integrated Postponement model is composed of a multistage
stochastic hedging model with a multistage stochastic order execution model.

The trading performance of the Integrated Postponement model has been evaluated using a
backtesting framework that incorporates the limit order book microstructure. The Integrated
Postponement model was seen to increase trading revenues by 89 bps compared to the best-
performing benchmark. One can conclude from the results that the postponement optionality
leads to a better trading performance by being more selective. Additionally, the introduction of
dynamic trading volume allocation was seen to increase trading revenues by 39 bps.
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Sammendrag

På grunn av den endrende likviditet til kraftderivater gjennom kontraktens livsyklus, er effektive
strategier for ordreutførelse høyst relevante for strømprodusenter. Det relevante aspektet for en
strømprodusent som ønsker å redusere risiko for deler av produksjonen sin ved å handle kraft-
derivater, handler om hvordan transaksjoner kan utføres slik at man balanserer preferansen for
risikoaversjon og maksimering av inntekter.

Den eksisterende litteraturen innenfor fagfeltet fokuserer på ordreutførelse i et vakuum, uten å
betrakte avgjørelser utenfor handelsperioden. Samtidig er den eksisterende litteraturen, til for-
fatternes viten, fokusert på handel av aksjer med høy markedsverdi. Denne avhandlingen fyller
en mangel i litteraturen ved å evaluere strategier for ordreutførelse i et illikvid marked.

Formålet med denne avhandlingen er å lage en modell for ordreutførelse, som imøtekommer
kravene til en strømprodusent. En integrert orderutførelsesmodell, som heretter vil omtales som
the Integrated Postponement model, foreslås derfor. The Integrated Postponement model
introduserer utsettelsesopsjonalitet, og dynamiske handelsvolumer basert på markedslikviditet,
hvor begge disse aspektene er nye bidrag innenfor feltet. The Integrated Postponement model
er presentert som en flerstegs stokastisk programmeringsmodel med rullende tidshorisont.

Ytelsen til the Integrated Postponement model har blitt tested ved hjelp av en backtest-metodologi
som tar i bruk mikrostrukturen til en ordrebok. The Integrated Postponement model økte in-
ntektene fra handel av strømderivater med 89 bps sammenlignet med den beste referansestrategien.
En kan konkludere fra resultatene at utsettelsesopsjonaliteten øker ytelse ved å kunne være mer
selektiv med tanke på handelsavgjørelser. Samtidig ble det vist at dynamiske handelsvolumer økte
inntektene med 39 bps.
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Chapter 1

Introduction

Power producers often have to acquire or liquidate significant positions of financial instruments.
Selling or buying these prominent positions, on the other hand, is easier said than done. Large
orders remove liquidity from the market, leading to price impacts due to clearing the best bid or
ask orders. Price impact is already an issue in liquid markets but is magnified in illiquid markets
due to a lack of trading activity. Power producers, therefore, seek order execution strategies that
limit the influence on the security price.

Order placement strategies are created to limit adverse price movement by deciding upon order
size, order type and trading frequency. These decisions are part of the order placement problem or
the portfolio execution problem and has been researched extensively. Bertsimas and Lo (1998) and
Almgren and Chriss (1999) are some of the first to implement mathematical models to optimise
the acquisition or liquidation of significant positions. A commonality for most papers researching
the order execution problem is the balancing between price impact and price risk. Traders are
inclined to reduce their price impact, yet they must consider price risk. Securities that experience
severe volatility incentivises early execution. Since illiquid securities are more volatile than liquid
securities, they yield a higher risk of large price fluctuation during the day.

Electricity producers face two major decisions with regards to optimising their operations: pro-
duction planning and financial hedging. The production plan is a long term production schedule,
where producers seek to maximise their expected revenue. The second major decision is con-
structing a hedging plan, where the producer decides how to sell the power. Producers can either
sell power on the spot market or the derivatives market. Risk-averse power producers may hedge
their production portfolio against price shocks by trading power futures. For instance, Norway
experienced negative power prices for the first time in 2020 (E24, 2020). The negative power
prices was due to mild weather combined with much rainfall.

With over 90% of all power coming from hydropower production, rainfall greatly affects the price
due to overflowing reservoirs in the hydro production facilities (SSB, 2020). Power producers are
aware of these systematic risk factors and use meteorological forecasts to reduce these risks. How-
ever, the Corona lockdown also caused lower demand for power, pushing the prices downwards.
In contrast to the weather, the lockdown situation is an event that was not possible to predict.
However, Hedging your position would reduce the impact of the corona lockdown situation on
revenue streams since you would already have secured cash flows before the sharp price de-
cline. Power producers can trade derivatives on markets such as NASDAQ Nordic or the European
Energy Exchange (EEX) to hedge their production portfolio. Some power producers use mathem-
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Chapter 1. Introduction

atical models to determine hedging policies. The hedging policies describe spot and derivatives
allocation of production volumes. One such model is presented by Dimoski et al. (2019), where
a dynamic hedging model determines the hedging plan based on expected future cash flows.
Their model considers stochastic reservoir inflow, market risk and currency risk. However, to the
authors’ best knowledge, research on liquidity risk in the European power market is limited.

On the 10th of September, 2018, NASDAQ Clearing’s default fund experienced a catastrophic loss
of £100m, more than two-thirds of the fund, due to a member of NASDAQ failing to meet their
margin call. This trading member was Einar Aas, the notorious Norwegian power trader known
for his risky trades. Einar Aas noted that "[His] exposure to the market was too big relative to the
liquidity in the market." Senior analyst John Brottemsmo at Kinect Energy pointed out that the
market prices would eventually stabilise, however, the trading volumes would likely experience a
long-term hit due to Aas’ huge market position (Paulson & Starn, 2018). Considering this event,
there is an increasing interest in research within this field. Low liquidity in the power derivatives
market leads to unfavourable conditions for power producers as they struggle to trade power de-
rivatives. Placing large orders in such markets will lead to adverse price movement. Adverse price
movement is most likely not an issue for small and midsize producers, but large scale producers
must consider this. Therefore, the incentive to use trading algorithms to optimise order execution
is substantial as trading decisions can result in significant financial impact.

This thesis will propose an integrated hedging model, combining a dynamic hedging plan and
dynamic order placement. The hedging problem is solved sequentially. First, a hedging model
decides on a daily trading plan. This solution is then used as input in the order execution model.
The integrated hedging model is implemented in a case study for a European power producer. The
model has been backtested and compared to 6 benchmarks using a microstructural limit order
book simulation.

We have three main contributions to the field of study. The first and most noteworthy contribution
is the inclusion of postponement optionality in the order execution model, a novelty within the
field. The contemporary literature is restricted to the liquidation of a portfolio within the pre-
defined trading period. We expand on the contemporary models to allow for the postponement of
liquidation to subsequent trading periods. The proposed order execution model referred to as the
Postponement model, does perform better than other trading benchmarks tested in this thesis,
signifying that power producers will potentially benefit by using the Postponement model.

Our second contribution is the introduction of dynamic trading volume allocation to the order
execution problem. By using the QUASAR Dynamic Hedging model, we are able to construct a
hedging plan that considers market liquidity. Instead of treating the daily trading volumes as
exogenous, daily trading volumes are then included as a variable to decide upon in the order
execution model.

Lastly, we propose a backtesting methodology that employs the limit order book microstructure for
illiquid markets. Using order flow data from the EEX futures market, we have created a backtesting
framework where the limit order book is updated chronologically according to the real-time order
arrival for the exchange. Additionally, we have included the option of placing your own orders on
the trading exchange. The idea of this approach is to get more realistic price impact estimates.

This thesis is structured in the following way: Chapter 2 presents background information relevant
to the problem while 3 covers relevant literature to enlighten the reader about the context of this
thesis. Following, the Integrated Postponement model is presented in chapter 4. Chapter 5
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describes the data sets, while chapter 6 highlights the methodologies that have been used in this
thesis. Next, chapter 7 presents the results from the backtest, which is followed by a discussion.
Lastly, the findings are summarised in chapter 8, along with mentions of potential further work.
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Chapter 2

Background

The purpose of this chapter is to provide context for the central topics of this thesis. In section
2.1, the European power market is briefly explained, followed by a more detailed exploration
of power futures. Then, the central topics for the limit order book, such as microstructure and
liquidity measurements, are introduced in section 2.2.

2.1 The European Power Market

As this thesis studies power producers’ decision making regarding hedging, it is appropriate to
introduce the power market and products used for hedging. In this section, important character-
istics of the European power market are presented in brief. In section 2.1.1, the role of the most
important physical power markets is explained. After that, the characteristics of volatile electri-
city prices are outlined in section 2.1.2, in addition to an introduction to the practice of hedging.
Section 2.1.3 concludes with an exploration of power derivatives and their use cases for hedging.

2.1.1 Short-term physical power markets

Three important short-term physical power markets are the day-ahead market, the intraday mar-
ket and the balancing market. Market participants can buy or sell power for the next 24 hours
through a blind auction in the day-ahead market. The participants place buy or sell orders with
a specified volume of electricity to deliver at different price levels. In the day-ahead auction, bid-
ding occurs for all the hours of the consecutive day. Thus, a market participant can transact in 24
different power instruments. In addition to conventional limit orders, it is possible to place block
orders. A block order involves specifying a volume and price for a set of consecutive hours within
the same day. Regular block orders are all-or-nothing orders, which means that either they all
have to be entirely accepted or all fully rejected. Block orders can be linked together so that the
acceptance of one block order is conditional on the acceptance of another block order. The market-
clearing price is found at the aggregated demand and supply curves intersection and applies as
the price for all transactions. Power can be continuously bought and sold on the same day as
delivery occurs in the intraday market. Thus, the intraday market enables participants to balance
their position closer to the physical delivery. The balancing market is the final stage for electricity
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trading and ensures the closing of any real-time deviations between supply and demand.

2.1.2 Electricity prices

Among all energy prices, electricity prices are particularly volatile in most spot markets. In an
empirical study, Haar (2010) found the average annualised volatility of the EEX spot price from
2002 to 2008 to be 520%. The high volatility is due to the non-storability of electricity, the large
fluctuations in the demand level with the hour of the day and the day of the year; the inelasti-
city of the electricity demand, and the required balance between production and consumption
(Pineda & Conejo, 2013). Hydropower producers experience considerable uncertainty in respect
to both electricity price and water inflow. As these are the two most important components of
their revenues, hydropower producers have a solid incentive to actively managing their exposure
to these risk factors. Power producers limit their risk exposure through hedging.

Hedging is a risk management practice employed to reduce the risk of an investment or cash
flows through entering an offsetting position. Hedging is widely practised by companies that have
incentives to avoid financial losses or operate in volatile markets. A hedged position can secure
profits or cash flows through an increase of the value in the offsetting position when the original
position decreases in value and vice versa.

Considering that the total supply of power is inversely related to the spot price, the inflow risk
has a natural hedging effect in markets dominated by hydropower (Fleten, 2000). Regardless, the
regional power markets in Scandinavia are integrated with the European power market. Thus,
low water supplies in Norwegian reservoirs is balanced by the aggregated supply of the European
market. The revenue risk has caused power producers to implement hedging strategies into their
financial operation. The field of risk management for power producers has seen an increasing
interest from both practitioners and academia over the last two decades (Fleten et al., 2010).

Hedging is normally achieved through investing in derivatives contracts, whose value is dependent
on its underlying asset (McDonald, 2013). Examples include power derivatives, whose underlying
is the electricity spot price. Power producers can thus reduce the cash flow uncertainty by investing
in power derivatives, offsetting the spot price volatility.

2.1.3 Electricity derivatives

The electricity derivatives market provides power producers with an attractive opportunity of
hedging their exposure to the various risk factors. Forward contracts with physical delivery are
one such derivative and is an agreement to deliver electricity during a future delivery period at
a pre-determined price. Selling electricity by forward contracts shield the producer from future
price uncertainty, eliminating the risk associated with spot price volatility. A drawback of a forward
contract is the obligated delivery. Under the circumstance of production failure or shutdowns, the
producer must obtain the missing energy on the day-ahead market. If the spot price is much
higher than the contract price in such an event, the company may incur large financial losses.
This risk is termed availability risk (Pineda & Conejo, 2013). Power exchanges typically also offer
Electricity Price Area Differential (EPAD) contracts, which can hedge the area price difference.
The reference is the difference between the system spot price and the price in a specific bidding
area. In addition, power options are offered on the exchange. These alternatives are commonly
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used (Sanda et al., 2013), but the contracts are significantly less liquid than the power futures.

A futures contract is a financial derivative and a legal agreement between two parties of buying
or selling the underlying asset at a specified time in the future. Futures contracts specify the
quantity of the asset delivered at expiration, in addition to the price, and are commonly traded
on electronic exchanges. Futures contracts can be settled either by physical delivery or by cash
settlement, according to the contract details. Cash settlement entails that the buyer does not
receive the actual asset but rather the difference between the asset spot price at delivery and the
current futures price.

The underlying asset for physically settled power futures is the delivery of electricity over a spe-
cified period. In contrast to traditional futures contracts, power futures are not settled at one
specific point in time. Instead, the delivery occurs throughout the entire settlement period. The
continuous delivery differentiates power futures from most other commodity futures. Power fu-
tures are typically offered through daily, weekly, monthly, quarterly, and yearly contracts, indicat-
ing the length of the settlement period. Futures can be listed as base load or peak load contracts.
Baseload contracts cover delivery for all hours of the settlement period, while peak load con-
tracts deliver during peak hours (typically between 8 a.m. and 8 p.m.) on a given day. Thus, a
monthly power future contract of size 720 MWh, with baseload delivery, implies delivery of 1 MW
throughout the whole month.

Most power futures are cash-settled. Financially settled power futures are the most liquid con-
tracts in the European power markets. They are also the most commonly used hedging derivatives
among power producers. The underlying of the financially settled power futures is commonly the
day-ahead price for the market area.

Haar (2010) studies the price of EXX power futures. Empirical data indicates that power futures
prices are less volatile than the spot price. The average annual volatility was 22%, which is notably
less than for the spot price. The study also implies that the volatility of power futures is dependent
on the duration of delivery and time to maturity. Futures contracts are priced based on the average
expectational spot prices over the delivery period. A price shock for a given day or week will have
a lesser effect on the futures price than the spot price. A more extended delivery period will
therefore lead to lower volatility. The fact that volatility tends increase when the time to maturity
approaches is known as the "Time to Maturity" hypothesis, or the Samuelson hypothesis (Duong
& Kalev, 2008).

2.2 The limit order book

Due to sufficient market liquidity, traders usually do not have to concern themselves with adverse
price movement for liquid securities such as blue-chip stocks. However, for an illiquid market,
large orders can severely affect the market price. The mechanism by which adverse price move-
ment occurs is the clearing of one or more order levels in the limit order book (LOB). While liquid
securities also employ the LOB to structure orders, adverse price movement can be seen as more
influential for trading of less liquid securities. In particular, there tend to be larger gaps in the
price levels, and order depth is usually lower (Lee et al., 1993). As power futures markets can be
categorised as illiquid, it is essential to consider the market microstructure when trading power.
Therefore, we introduce central aspects of LOBs in the following section.
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2.2.1 Limit order book dynamics

The LOB is a list of all orders with their corresponding prices for a financial instrument. LOBs are
divided into a bid, and an ask side, representing the orders placed to buy and sell the security,
respectively. The LOB is structured into order levels, where each level is described by its aggreg-
ated quantity and price. The LOB is sorted by prices such that the best order is shown first. Thus,
the buy orders in the LOB are sorted in descending order, and sell orders are sorted in ascending
order.

When limit orders are placed on the exchange, they are added to the LOB. If the price of a new
limit order is equal to, or better, than the best price on the opposing side of the LOB, the matching
mechanism of the exchange will match the order against the current LOB and execute it at the best
available price. If there is more than one order at any particular order level, priority is determined
by the first-in, first-out (FIFO) method in the case of order execution. A market order will match
instantly with the best order(s) of the opposing side of the LOB and does not need a specified price.
Thus, market orders do not enter the LOB. Market orders remove liquidity, as the total quantity left
in the LOB is reduced by matching against orders from the LOB. Limit orders, however, increase
liquidity as they provide liquidity by increasing the total volume in the LOB. For illustration, one
instance of a LOB is seen in figure 2.1.
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Figure 2.1: An instance of a limit order book. The rectangles represent the aggregated volume of
limit orders at different prices in the LOB.

2.2.2 Liquidity measurements of the LOB

Liquidity is defined as the ease of acquiring or liquidating a significant position with minimal price
impact (W. Liu, 2006). Several indicators in the microstructure of the LOB reflect the liquidity of
a market, such as depth, bid-ask spread, and resiliency.
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The volume of the first level in the LOB is called market depth. The depth of the LOB is often called
the price impact trigger, as clearing this depth would lead to a new best price. Liquid markets tend
to have higher depth than illiquid markets (Frestad, 2012). The bid-ask spread (BAS) is defined
as the price difference between the best ask and the best bid in the LOB. Liquid markets tend to
have tighter bid-ask spreads (Frestad, 2012). Usually, there is a supply and demand imbalance
after a trade of significant size has been executed. This imbalance leads to a temporary price shift
away from the equilibrium price level. Kyle (1985) defines the rate at which the price returns
to equilibrium as the resiliency rate. If the resiliency rate is high, the trader can place orders
frequently and still prevent large temporary price impacts due to the frequent arrival of other
orders. Liquid markets tend to have a sufficient number of orders in the LOB and higher resiliency
rates.

Other liquidity measures in the LOB include aggregated traded volume, order book imbalance,
price volatility, and the LOB shape. It is more difficult to liquidate or acquire a large position when
there is a low aggregated trading volume. Amihud and Mendelson (1986) find that the bid-ask
spread tends to be negatively correlated with the aggregated trading volume. Order book imbal-
ance measures the difference in volume in the buy and sell-side of the LOB, as seen in equation
(2.1). A clear deviation from zero signals that there is market imbalance. Market imbalance can
be used as a predictor of future price movement (Lehalle & Mounjid, 2018).

Imbalance(t) =
Vbid(t)− Vask(t)
Vbid(t) + Vask(t)

(2.1)

Price volatility is not observable in the LOB. Rather it is a measurement of the fluctuation of either
the mid-price, best bid or best ask. Illiquid markets tend to be more volatile than liquid markets
(Cheriyan & Daniel, 2019). The higher volatility is due to the lack of volume at the best bid and
ask, resulting in drastic price changes when a market participant places large market orders.

The last liquidity indicator that will be mentioned is the LOB shape. The LOB shape, also referred
to as the slope of the LOB, is portrayed by transforming a LOB instance into a plot where the price
is expressed as a function of the cumulative volume in the LOB. Examples of two LOB shapes are
presented in figure 2.2. The shape indicates the change in the best bid price or the best ask price
that will occur if a market order is placed. If the slope of the LOB is relatively flat, as seen in panel
(a), the price will experience a minor change, whereas if the slope is steep, as seen in panel (b),
the price change will be more significant. Consequentially, the market is less liquid if the shape of
the LOB is steep.
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Figure 2.2: Two different instances of LOB shapes. Panel (a) shows a relatively flat LOB shape,
while panel (b) shows a steeper LOB shape. LOBs are less liquid if their shape is steep rather than

flat.
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Chapter 3

Literature review

The purpose of this chapter is to explore trading models that have previously been used to solve
the order execution problem and to place our contributions in the context of the related literature.
Section 3.1 will introduce the order execution problem and details modelling assumptions found
in the literature. Then in section 3.2, we present the motivation for hedging and discuss the
theoretical frameworks for hedging.

3.1 The order execution problem

A market participant with a large market share needs to be aware of their impact on the market
price when they liquidate or acquire many shares. This problem is known as the order execution
problem and has been researched extensively for stock markets. The order execution problem is
often formulated as an optimisation problem where the objective is to find the optimal trading
frequency. The work of Almgren and Chriss (1999) was one of the first significant contributions
to the field of study. Almgren and Chriss (1999) propose a dynamic programming model where
the trader must liquidate (acquire) a position of X shares by the end of period T . Dividing the
time period T into N intervals, each of length τ = T/N , Almgren and Chriss (1999) define a
set of discrete events at times t i = iτ, where the trader may reduce (add to) their position by
selling (buying) x t shares of the relevant stock. The objective is then to find the optimal trading
trajectory, {x0, x1, x2, ..., xT−2, xT−1, xT}. Two fundamental elements are needed to formulate an
order execution model. First, a process of how the price evolves during the period, referred to as
the price dynamics, needs to be specified. Second, the objective of the liquidation (acquisition)
process must be defined.

In section 3.1.1 we present previous literature about price dynamics formulations, while section
3.1.2 presents different ways the objective of the liquidation process has been defined. Last, the
novel aspect of postponement optionality with reference to previous literature is proposed in
section 3.1.3.
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3.1.1 Price dynamics

The contemporary literature models price dynamics in many ways, yet they all tend to be com-
posed of exogenous and endogenous price factors.

Exogenous price factors: Exogenous factors of the price dynamics include drift and volatility. Pa-
pers such as Bertsimas and Lo (1998), Almgren and Chriss (1999) and Bertrand (2021) assume
the exogenous price factor follows a discrete arithmetic random walk process. This assumption al-
lows for an optimal discrete trading trajectory. On the other hand, Almgren et al. (2005), Almgren
(2012), Shen (2014), and Shen (2017) assume that the exogenous price factor follows a linear
Brownian motion. It is common to assume that the drift is zero due to a short time-interval of the
trading period. The problem formulation in these papers is slightly different from those assuming
a discrete arithmetic random walk since Brownian motions are time-continuous. Those papers as-
suming a Brownian motion aim to find the optimal continuous trading frequency function rather
than the optimal discrete trading trajectory.

Bertsimas and Lo (1998) also include price driving features as part of their exogenous price pro-
cess. Price driving features are exogenous variables that are correlated with the price of the asset.
The logic behind this inclusion is that price driving features send signals about the market’s view
of the price in the future. Bertsimas and Lo (1998) use S&P500 returns as a price driver.

A majority of the contemporary literature studies order placement for blue-chip stocks. To obtain
closed-form solutions, it is necessary to assume that the volatility and liquidity are constant or
deterministic. This is assumed to be the case for blue-chip stocks, but not for less liquid stocks.
However, Almgren (2012) does obtain a closed-form solution for a model where the volatility
varies, with the assumption that the product of volatility and the permanent price impact is con-
stant. With this in mind, implementing a model with varying volatility or liquidity would benefit
the field.

Endogenous price factors: The endogenous factor of the price dynamics is the price impact of
endogenous orders1. Price impact is often divided into subcategories. Almgren et al. (2005) make
the distinction between temporary and permanent price impact, illustrated in figure 3.1. These
subcategories are often modelled separately.

Permanent price impact: The price impact element that affects the market price over an extended
period of time is referred to as the permanent price impact. The permanent price impact is related
to the informational signal that a trader sends when placing orders. Bertsimas and Lo (1998) and
Almgren and Chriss (1999) model the permanent price impact as a linear function of the traded
volume. Almgren et al. (2005) explore the possibility that the permanent price impact function is a
power law of the trading rate x t/τ. By analysing the trading activity of US stocks over 19 months
starting from December 2001, they infer that the hypothesis of linear permanent price impact
cannot be rejected. However, the validity of their approach is limited as they do not consider
changing market liquidity throughout the day. According to Shen (2017), price impact is always
relative to the liquidity of the security. During periods of low market liquidity, large market orders
will impact the price to a greater extent than when the market liquidity is high. To include the
market liquidity, Shen (2017) models the permanent price impact instead as a linear function of
the participation of volume (PoV), which is the ratio between the order size and the total market
volume in the LOB at time t. One flaw with this approach is that Shen (2017) assumes that the

1Endogenous orders: Self-placed orders.
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market volume is deterministic and known.

Permanent Impact

Temporary Impact

Order Executed
Price

Time

Figure 3.1: Illustration of the permanent and the temporary price impact of a trade (Mete Soner,
2015). Note that the market does not fully recover, which is due to the permanent impact of the
executed order.

Temporary price impact: The endogenous price impact element that affects the price due to
changes in the market liquidity after a large market order is referred to as the temporary price
impact. Shen (2014) and Akersveen and Graabak (2018) distinguish between transient and in-
stantaneous price impacts. The transient price impact reflects that a large market order has re-
moved a large fraction of the market liquidity. The transient price impact creates a temporary
supply and demand imbalance in the market but recovers over time due to resiliency. Given that
there is sufficient time between trades, the transient price impact may be neglected, while the
effect of instantaneous price impact must still be considered.

Instantaneous price impact results from the LOB depth being smaller than the order volume.
Thus the average clearing price is worse than the best bid (ask) before placing a sell (buy) order.
Instantaneous price impact is the only price impact factor that directly affects the price of a trade,
as opposed to permanent and transient price impacts, which relate to the market price after a
trade. The instantaneous price impact is illustrated in figure 3.2.

q

best bid best ask

Price

Trade
q

best bid new best ask

Price

Figure 3.2: Illustration of the instantaneous price impact of a trade. The dashed area is the volume
which the incoming order removes from the LOB (Mete Soner, 2015). Note that the average exe-
cution price will be the volume-weighted average price of the volumes cleared from the LOB.

Bertrand (2021) models temporary price impact strictly as instantaneous price impact. The in-
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stantaneous price impact is approximated by using the slopes of the LOB. Figure 3.3 illustrates
how the slopes are modelled using the shape of the LOB. This method for modelling the LOB
slope yields a continuous function for the price impact rather than the discrete structure of the
price levels in the LOB. Bertrand (2021) assumes that the slopes are deterministic. As opposed to
Bertrand (2021), Shen (2014) models the instantaneous price impact as a linear function, with
PoV as the explanatory variable, again taking market liquidity into account.
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Figure 3.3: Illustration of approximated slopes of the bid and ask side of the LOB.

3.1.2 Defining the model objective

The objectives of the order execution models are what distinguishes their solutions from each
other. A trader needs to make the trade-off between two factors, namely price impact and price
risk. A risk-averse trader prefers to liquidate their position as quickly as possible to reduce the
price risk, yet this could lead to significant price impact. A simplistic model would ignore price
risk and maximise the total expected revenue. A heuristic in line with this model is the time-
weighted average price (TWAP) trading strategy, which allocates volume evenly throughout the
trading period.

Other models, such as the one formulated by Shen (2014), instead consider an objective function
that combines revenue and price risk. The risk preferences of the trader are introduced by adding
the variance of the revenues multiplied with a Lagrange multiplier, λ, in the objective function.
The trading trajectory is then dependent on the trader risk preference, as seen in figure 3.4. By
increasing the value of λ, the tolerance of price risk is reduced. Therefore, the trading trajectory
will be more convex, resulting in front-loading. Almgren and Chriss (1999) explain that the con-
vexity of the trading trajectory curve will not only be dependent on the risk tolerance but also the
size of the price impact. Almgren and Chriss (1999) argue that if the price impact is small, the
risk term will be dominant in the objective function, resulting in a more convex trading trajectory.
However, if the price impact is large, the trajectory will be close to linear, as the price impact will
carry a higher relative weight in the objective function.
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Figure 3.4: Trading trajectories based on a trader’s risk preference. The convex trading trajectory
belongs to a risk-averse trader, corresponding to a high λ value. The linear trajectory belongs to a
risk-neutral trader, corresponding to a λ value of 0. The concave trajectory belongs to a risk-seeking
trader. Risk-averse traders will front-load, liquidating their position quicker than risk-neutral in-
vestors to minimise their exposure to price risk.

Other risk measures are also applicable to ensure models take risk preference into account. For
instance, Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are risk measures that only
consider tail risks. VaR estimates the expected loss, given a predetermined confidence interval,
α. For instance, a VaRα value of −5.0% means that there is a probability of α that the trader will
not experience a loss larger than −5.0%, where 0 ≤ α ≤ 1. CVaR builds upon VaR and quantifies
the expected loss, given that the loss exceeds the VaR. VaR and CVaR are expressed in equation
(3.1) and (3.2), where F(x) is the cumulative distribution of variable x . For instance, x can be
returns or revenues. Feng et al. (2012) use CVaR rather than variance as the risk determinant
in their order execution model, arguing that using variance penalises both negative and positive
deviation. In contrast, CVaR only penalises the negative tail risk.

VaRα = in f {x |F(x)≤ α} (3.1)

CVaRα = E[x |x ≤ VaRα] (3.2)

In contrast to Almgren and Chriss (1999) and Feng et al. (2012), Hora (2006) models the price
risk as a delay cost term. The delay cost is a quadratic term of the daily volume left to trade at
time t, It , multiplied with a scaling parameter ρ. This approach encourages front-loading, yet
Shen (2017) criticises this approach since the delay cost remains constant throughout the day.
To improve upon Hora (2006), Shen (2017) models the scaling parameter as a monotonically
increasing term. Despite Shen’s criticism, one could argue that the proposed approach by Hora
(2006) captures the preference for early trading, as the penalty cost for the same volume will be
included twice if the trader does not place any volume for subsequent trades.

Ruszczyński and Shapiro (2006) suggest conditional risk mappings for modelling of risk prefer-
ences in multistage stochastic optimisation models. Due to the dynamic structure and the sequen-
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tial composition of such models, there is an argument of using conditional risk measures that
represent future risk based on information available at the current stage t (Ruszczyński & Sha-
piro, 2006). The nested conditional value-at-risk (nested CVaR) is one such risk measure, applied
by Löhndorf and Wozabal (2021) for a gas storage valuation model. Following the notation of
Löhndorf and Wozabal for the nested CVaR, a set of random variables are defined as X1,. . . , XT .
Then, stage t random variables are defined as

Vt,α,λ(X t) = λCVaRt,α(X t) + (1−λ)E(X t |X t−1) (3.3)

The nested CVaR can then be defined as

CVaRN EST
1,α,λ (X1, X2, X3, . . .) = X1 +V1,α,λ(X2 +V2,α,λ(X3 + · · · )) (3.4)

The nested CVaR is thus a convex combination of expected value and CVaR with a recursive
combination of other convex combinations of expected value and CVaR (Löhndorf & Wozabal,
2021).

3.1.3 Expanding the model objective

The order execution models discussed so far share the commonality of requiring order execution
within the specified time domain. Additionally, they have also been restricted to studying the price
impact of market orders. By introducing the option of placing limit orders, the trader experiences
the risk of no (or partial) execution. A majority of the research conducted on limit order placement
addresses how to model execution risk. Cont and Kukanov (2017) derive a closed-form solution
for the dynamic decision between placing market or limit orders. The risk of non-execution of
limit orders is modelled as a penalty, increasing linearly with the outstanding volume. Agliardi
and Gençay (2017) build on the work of Cont and Kukanov (2017) but allow for choosing the
limit order price freely. In their model, order placement frequency is treated in a similar fashion to
Almgren and Chriss (1999), where N trades are scheduled with equidistant time between trades.
If the volume requirement is not met by the end of the trading period, a terminal market order is
sent with the outstanding volume. In their model, the cost of the terminal market order increases
quadratically with order size. The aggressiveness of the limit order price relates to the trade-off
between the cost of non-execution and revenues. Unlike the model of Cont and Kukanov (2017),
the cost of non-execution is captured in the transaction cost of the terminal market order. As will
be explained next, a similar approach for quantifying the cost of execution risk will be used to
model the cost term for the postponement optionality.

The cost of non-execution builds on the assumption that the required volume needs to be executed
for the specified period. However, not all traders operate with such rigid constraints. By this token,
one can distinguish between traders who need to trade and those who may choose to trade.
Traders who choose to trade are said to be tolerant of execution risk. These traders are faced with
the decision of trading at current prices or postponing order execution. By the same reasoning
underlying an execution risk cost term, we introduce a cost term in the objective function that
quantifies the value of postponing order execution. To the authors’ best knowledge, there is a gap
in the order execution literature concerning quantifying the value of waiting with order execution.
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Therefore, this thesis will contribute to the literature by providing a method to quantify the value
of postponing order execution for an electricity producer classified as a "choose-to" trader.

3.2 The hedging problem

Hedging has traditionally been perceived as a means for risk-averse producers to reduce the di-
versifiable risk of their profits through offsetting in financial instruments (Anderson & Danth-
ine, 1980). Under the assumption of efficient markets, Modigliani and Miller (1958) argue that
hedging cannot increase firm value, although it can be successful in reducing risk exposure.
However, both empirical evidence and theoretical arguments exist for occurrences of a hedging
premium in the literature on hedging. Lin and Chang (2009) find that U.S. airlines hedging their
jet fuel costs, on average, are valued higher than similar airlines with no hedging policy. Similarly,
Allayannis and Weston (2001) examine the relation between firm value and the use of foreign
exchange derivatives. Using 720 large U.S. nonfinancial firms between 1990 and 1995, they find
a hedging premium of 4.9% on firm value.

3.2.1 Predictive and selective hedging

Stulz (1996) finds that most companies allow their views on price and market movement to influ-
ence their hedge ratios. Incorporating this type of speculation in the hedging practice is referred
to as selective hedging. Supporting the concept of selective hedging, Adam and Fernando (2006)
differentiate between selective and predictive hedging practices. In contrast to selective hedging,
predictive hedging is the method of hedging predicted cash flows from a company’s operations,
independently of market view. Adam and Fernando (2006) study hedging in the gold mining sec-
tor and find significant evidence of selective hedging in their sample. Selective hedging was found
to yield, at best, small increased firm value and large cash flow variance.

Sanda et al. (2013) study the hedging policies of 12 Norwegian hydropower companies and finds
that selective hedging is widely practised in the sample companies. Furthermore, it was found that
the firms obtained substantial profits from their hedging activities. Stulz (1996) argues that while
selective hedging, mainly practised by large corporations, contrasts with theoretically prescribed
risk management methods, it can increase corporate value if the hedging firm has a comparative
informational advantage. This informational advantage, acquired through its ordinary business
activities, allows the firm to predict price movements more accurately than other market parti-
cipants.

Table 3.1: Hedging practice of 12 different power producers, studied by Sanda et al. (2013). Static
hedging policies are the most common hedging practices among the Norwegian power producers.

Practice Number of companies
No written policy 2

Static hedging policies 8
Cash Flow at Risk requirement 2

Total 12
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3.2.2 Hedging procedures

Dupuis et al. (2016) separate hedging procedures into two categories: static and dynamic. With
a static hedging procedure, hedging assets are bought at once and not rebalanced in the fol-
lowing periods. For dynamic hedging, the hedging portfolio is rebalanced over time as new in-
formation becomes accessible. Dynamic hedging procedures can be further separated into two
sub-categories: local and global hedging (Dupuis et al., 2016). Local hedging procedures aim to
minimise the portfolio risk until the next rebalancing, while global hedging minimises the risk
associated with all future cash flows.

Näsäkkälä and Keppo (2005) consider an electricity producer with static hedging strategies that
maximise the risk-adjusted expected value of its cash flows. Fleten et al. (2010) propose an op-
timisation model to find static hedge strategies for a hydropower producer. Dynamic hedging
strategies are studied by Dupuis et al. (2016), Fleten et al. (2002), Zanotti et al. (2010), S. D. Liu
et al. (2010), Kettunen et al. (2007) and Pineda and Conejo (2013). Pineda and Conejo (2013)
propose a multi-stage stochastic model to dynamically obtain the most suitable portfolio of op-
tions and forward contracts subject to uncertain power production. Fleten et al. (2002) coordinate
the power production of a hydropower producer with the global dynamic hedging of forward and
option contracts by use of a stochastic programming model. The study finds that the dynamic
hedging approach yields higher expected returns than static hedging.
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Formulating the Integrated Postponement
model

In this chapter we present the Integrated Postponement model. This is done by decomposing
the model into two sub-models: A dynamic hedging model and an order execution model, which
will be referred to as the Postponement model. The hedging problem is solved by the QUASAR
Dynamic Hedging model, a stochastic dynamic programming model developed by Quantego. As
the authors of this papers have not contributed to this model, we simply summarise how the
model is solved and its features concerning risk-preferences and liquidity. For the order execution
model, we decompose the Postponement model such that each aspect of the model design is
explained.

The rest of this chapter is structured in the following way; in section 4.1, the QUASAR Dynamic
Hedging model is introduced. In particular, the impact of the LOB slopes on the optimal hedging
policy is outlined. Section 4.2 presents the Postponement model in detail. The underlying as-
sumptions are outlined, and the objective function and constraints are presented in a stepwise
manner. The integration of the QUASAR Dynamic Hedging model and the Postponement model
is explained in section 4.3. Finally, alternative trading strategies that will serve as benchmarks are
presented in section 4.4.

4.1 The QUASAR Dynamic Hedging model

This paper uses a hedging model developed by Quantego, which from this point on will be referred
to as the QUASAR Dynamic Hedging model. This model is an alteration of the model proposed
by Dimoski et al. (2019). Dimoski et al. (2019) presents a global dynamic hedging model for a
Norwegian hydropower producer participating in the Nordic electricity market. The authors use
a sequential approach, first running a dynamic production planning model to obtain optimal pro-
duction policies. By applying these production decisions as endogenous variables in a dynamic
hedging model, they obtain trading decisions for derivatives contracts. The hedging model uses
power futures contracts and currency futures contracts to hedge price and exchange risk, respect-
ively. Risk-preferences are modelled by the nested conditional value-at-risk (nested CVaR).

In contrast to Dimoski et al. (2019), this thesis will not apply a production planning model, in-
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stead, the QUASAR Dynamic Hedging model obtains exogenous production volumes as input and
solves for the optimal daily hedging targets. Currency risk will also not be considered. As opposed
to Dimoski et al. (2019), the QUASAR Dynamic Hedging model model considers the liquidity of
the LOB. The liquidity aspect is manifested in the QUASAR Dynamic Hedging model as a price
impact penalty with the use of the LOB slope. In this thesis, the producer trades financial futures
contracts with monthly and quarterly delivery periods. Power futures contracts were deemed most
suitable because they are the most liquid derivatives in the European power market (EXX, 2021b).
Liquidity is crucial as this thesis takes the perspective of a power producer with a large market
share. Furthermore, futures contracts are the most common hedging derivatives used by Norwe-
gian power producers (Sanda et al., 2013). The model has daily granularity and allows for both
selling and buying of futures contracts. It is, however, restricted to only taking short positions in
power futures. As the producer has long positions in their physical production and aims to reduce
their risk exposure to the spot price, short positions are sufficient to meet this objective.

4.1.1 Solution method

Given the large number of variables and stages in the hedging model, an efficient solution al-
gorithm is required for the model to be computationally tractable. The main issue with such a high-
dimensional problem is that the decision space can become too large to find the optimal decisions
for all stages within a reasonable amount of time. Therefore, we require a method that resolves
this issue by obtaining decision policies that are approximately optimal. The ADDP algorithm
(Löhndorf et al., 2013) serves this purpose and is used to solve the QUASAR Dynamic Hedging
model efficiently. ADDP integrates stochastic dual dynamic programming (SDDP) (Pereira & Pinto,
1991) with methods from approximate dynamic programming (ADP). SDDP involves formulating
the problem as a dynamic program and then applying Bender’s decomposition to recursively con-
struct the value function at each stage around a set of sample decisions (Pereira & Pinto, 1991).
SDDP can handle problems with a large number of stages as long as the optimisation problem
at each stage is convex and the stochastic process is stage-wise independent. ADP algorithms
simulate the state transition process of a Markov Decision Problem (MDP) and use the sampled
information to approximate the high-dimensional value function by a function of much lower
complexity (Powell, 2011). As with SDDP, ADDP iteratively solves the decision problem using for-
ward simulation to obtain possible optimal solutions and backwards recursion to construct the
approximate future cost function (Löhndorf et al., 2013; Pereira & Pinto, 1991). In contrast to
SDDP, however, ADDP assumes that random variables follow a Markov process.

ADDP requires discretising the evolution of the state variables into a scenario lattice. Future scen-
arios of spot and futures prices are generated using movements in a forward curve. A forward
curve estimates the future spot price for delivery at specific points in time, based on all contracts
available in the market. As the time of delivery approaches, the forward price for delivery on that
specific day will tend towards the spot. As done by Dimoski et al. (2019), the model uses the HJM
framework (Heath et al., 1992) to generate future scenarios of the underlying spot price.

4.1.2 LOB slope and risk measure

The slope of the LOB is a measure of the average price elasticity across all price levels with the
corresponding volumes. A price impact penalty term that incorporates the slope of the LOB reg-
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ulates the trading volume of contracts with respect to their slopes. Consequently, the hedging
model regulates the trading volumes of contracts with a steep slope. Such contracts are traded
in smaller volumes in periods where the LOB slope is steep, compared to periods where the LOB
slope is lower. In the case of power futures contracts, the LOB slope is generally higher far from
delivery when the contracts are less liquid. Therefore, the inclusion of a price impact term will
have a backloading effect, meaning that futures contracts will be traded with higher volumes
closer to their delivery. Using the LOB slope creates a trade-off between entering a significant
hedging position early, potentially with a hefty price impact penalty, versus waiting, thus bearing
a higher risk associated with the unhedged position.

4.1.3 Hedging model objective

For the QUASAR Dynamic Hedging model, the objective function is defined as a linear combina-
tion of the stage d cash flows and a dynamic risk measure term, reflecting the risk-averse pref-
erences of a power producer. Stage d cash flows are composed of cash flows from power futures
trading and spot sale from physical power production. The hedging model is solved at every stage
d, corresponding to each trading day, to maximise the corresponding objective function. The op-
timisation yields the stage d optimal decision policy πd , from which the first-stage decisions, π0

d ,
are obtained. π0

d represents the daily trading target of every tradable futures contract on the
current stage d, and is used in the Postponement model.

4.1.4 Modelling the constraints of the QUASAR Dynamic Hedging model

The QUASAR Dynamic Hedging model includes variables and balance constraints for tracking
financial short positions in power futures and committed cash flows, which reflects the actual
payoff structure of a producer.

Let ud,Mi
, ud,Q j

and ud,Yk
[MWh] denote the aggregate short position at stage d in futures contracts

with delivery in month i, quarter j and year k, respectively. In addition, let wd,Mi
, wd,Q j

, wd,Yk

[MWh] denote new short positions in a futures contract entered into at stage d, for month i,
quarter j and year k, respectively. We let DMi , DQ j and DYk denote the sets of trading days d for
futures contracts with delivery in month i, quarter j and year k, respectively.

While there are more types of constraints included in the hedging model, this thesis will only
present the position balance constraints, as formulated in equation (4.1). These constraints have
an important implication for the modelling of the postponement option in the Postponement
model. For a more complete formulation of the constraints in the hedging model, the reader is
referred to Dimoski et al. (2019).

ud,Mi
= ud−1,Mi

+wd,Mi
, d ∈ DMi

ud,Q j
= ud−1,Q j

+wd,Q j
, d ∈ DQ j

ud,Yk
= ud−1,Yk

+wd,Yk
, d ∈ DYk

(4.1)

The total position in a futures contract after trading day d is equal to the position in the contract
before the trading day, plus the amount traded during day d. From the constraints in equation 4.1,
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a shadow price ηd can be obtained for every tradable contract d. This shadow price represents the
change in the objective function by relaxing the constraint by one small increment. Thus, these
shadow prices represent a quantifiable value of waiting to enter a hedged position in a futures
contract.

4.2 The Postponement model

The order execution problem is restricted to trade execution. Trading target volumes are obtained
as the first stage decisions of the hedging policy π0

d for trading day d, as described in section
4.1. A MDP model is proposed with inspiration from previous literature where the price impact is
considered. Additionally, postponement optionality is introduced. Note that we present the model
without including a contract index. This is done to present the model with a reasonable level of
complexity. The structure of the model is similar to the model in Almgren and Chriss (1999), where
the policy to be determined is the trading trajectoryX ∈ {x0, x1, x2,..., xT−2, xT−1, xT}. Elements in
X are the volumes to be traded at stage t. Order placement is treated as a discrete process, and the
trader is restricted to placing orders at these points during the daily trading period. Expressing
the order execution problem as a dynamic model necessitates a set of governing assumptions,
in addition to defining a price dynamics model. These aspects are considered in the following
sections.

4.2.1 Trading assumptions

Several assumptions are made in order to formulate the problem as a multistage stochastic pro-
gramming model. The assumptions are stated and justified below.

Assumption 1 - Neglecting transaction costs: Trading exchanges charge transaction fees for
trading activity. This could either be a flat fee, or a variable fee per MWh traded. As of June of
2021, the transaction costs on EEX are limited to a variable fee of =C0.0075/MWh (EXX, 2021a).
Since all strategies trade equal volumes for all contracts, the trading costs will not be considered.

Assumption 2 - Only market order placement: Limit order placement could improve trad-
ing performance, yet runs the risk of non-execution. Combining limit and market orders in the
Postponement model would involve creating execution scenarios, a non-execution penalty term,
as well as the price impact. Due to the high computational complexity of creating execution scen-
arios, this thesis is limited to market order placement.

Assumption 3 - Constant volatility: Prior to constructing the Postponement model, a price
volatility study was conducted for the EEX data. This study is presented in Appendix A. Volatility
has been tested as a function of time to maturity and an AR(1) process. The results indicate that
neither of these models are fit as predictors. Therefore, the volatility is set to be constant, as in
Almgren and Chriss (1999). Haar (2010) finds the annualised volatility of futures contracts to be
22%. The findings of Haar (2010) correspond well to the volatilities of the futures contracts in
the data set, seen in Appendix B. Therefore it is assumed that volatility is constant with a value
of 22% annualised.

Assumption 4 - Best bid as price: Since the Postponement model only places market sell orders,
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we use the best bid price to model the price dynamics.

Assumption 5 - Continuous trading volumes: Mixed integer problems are more computationally
expensive compared to continuous problems. It is therefore assumed that the trading volumes are
continuous. This reduces the run time of the backtest substantially. One flaw with this assumption
is that the minimal tick size1 for orders on the EEX exchange is 1 MW.

Assumption 6 - Only instantaneous price impact: It is assumed that the time interval between
order placement is sufficient for the transient price impact to have vanished before the subsequent
trade. Thus, transient price impact is not considered. Ignoring permanent price impact is justified
by the modelling restrictions. The herd effect is mostly caused by traders acting on emotions
rather than their market view (Bikhchandani & Sharma, 2001). This behaviour is what causes
permanent price impact but will not be present in the historical data for endogenous orders.

4.2.2 Price dynamics

The trading trajectory will be dependent on the price dynamics process of the security. A price pro-
cess is necessary to describe the state of the price variable at future stages for the Postponement
model to make trading decisions. For the Postponement model, the features included in the price
model can be categorised as exogenous or endogenous.

Exogenous price features: The exogenous feature of the price is modelled as an arithmetic ran-
dom walk. In preparation for constructing the Postponement model, a study on price drivers was
conducted to check whether microstructural features are correlated to the price and if they could
be used for predicting future prices. The feature study is presented in Appendix C. Had features
turned out to be good price predictors, they would have been included in the price model. Since
this was not the case, the arithmetic random walk in equation (4.2) was used as the exogenous
price process.

pt+1 = pt + εt for t = 0,1, . . . , T − 1. (4.2)

εt ∼ N(0,σ2) (4.3)

Endogenous price features: The endogenous price feature is the price impact caused by endo-
genous order placement. In this paper, price impact is limited to temporary price impact. As in
Bertrand (2021), only instantaneous price impact is accounted for. The impact is modelled by us-
ing the slope of the LOB, similarly to in Bertrand (2021). The LOB slope is assumed to be constant
throughout the day. The marginal price with respect to x t is given by equation (4.4).

p̃t(x) = pt −ω · x t (4.4)

Here, the LOB slope is given by ω. As shown by Bertrand (2021), the total revenue from trading
x t units at stage t is:

1Tick size: the minimum incremental amount at which one can trade a security.
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Rt(x t) = pt · x t −
ω

2
· x t

2 (4.5)

where equation (4.5) is equation (4.4) integrated with respect to x t from 0 to xt.

4.2.3 Trader risk preference

The Postponement model is a multistage stochastic programming model, thus a dynamic risk
measure reflecting the sequential decision making will be used. The risk preferences of the produ-
cer is expressed by the nested CVaR, similarly to Shapiro et al. (2013) and Löhndorf and Wozabal
(2021). For a sequence of revenues R0(x0), R1(x1), ... , RT (xT ), corresponding to each stage t of
the multistage problem, we can define the stage t random variables

Vt,α,λ[Rt(x t)] = λCVaRt,α(Rt(x t)) + (1−λ)E[Rt(x t)|Rt−1(x t−1)] (4.6)

Then, the nested CVaR of all future revenue streams, Rt(x t), is expressed by equation (4.7).

CVaRN EST
0,α,λ

�

R0(x0), ..., RT (xT )
�

= R0(x0) +V0,α,λ

�

R1(x1) + · · ·+VT,α,λ[RT (xT )]
�

(4.7)

The weighting λ and the significance level α of the nested CVaR terms in the objective function,
are calibrated to suit the risk preferences of the Norwegian power producer, who tends to be
risk-averse (Dimoski et al., 2019).

4.2.4 Postponement optionality

In contrast to the existing literature, we propose a model that allows for the postponement of
trading volume to the subsequent trading period. This optionality reflects the "choose-to-trade"
characteristic of a power producer. We introduce the state variable, Yt , which denotes the volume
left to trade for the given day, at trading stage t. Consequently, the Postponement model follows
the transition function in equation (4.8).

Yt+1 = Yt − x t (4.8)

Yt will then be the volume that has not been traded through the day, which will correspond to the
amount of volume that we decide to postpone to the next trading period.

Further on, let ηd denote the shadow price of the position balance constraint (4.1) in the QUASAR
Dynamic Hedging model. The shadow price expresses the additional value of increasing the bal-
ance by one unit. We use the shadow price to express the postponement optionality value. The
cost term of the postponement optionality, C(Yt),is defined in equation (4.9). Here, ζ is a scaling
factor. Going forward, ζ ·ηd will be referred to as the price-equivalent shadow price, pSP .

C(Yt) = ζ ·ηd · YT (4.9)
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4.2.5 Postponement model formulation

The Postponement model is presented below. Combining the risk preferences of the producer,
expressed by the nested CVaR, with the postponement optionality, the objective function is ex-
pressed as equation (4.10). The recursive formulation of the objective function ensures that the
optimal decisions x t are non-anticipative, meaning that decisions are made only based on inform-
ation available until the current stage t. Constraint (4.11) represents the transition function for
the postponement volume, and constraint (4.12) the exogenous price process. The Postponement
model is formulated as a multistage stochastic programming model. The model is implemented
over a descending horizon to solve the optimisation problem at every trading point throughout
the trading period. To the authors’ knowledge, this is a novel approach in the order execution
problem field.

Max Z = CVaRN EST
0,α,λ

�

R0(x0), R1(x1), ..., RT (xT )
�

+ ζ ·ηd · YT (4.10)

s.t

Yt+1 = Yt − x t for t = 0, 1, . . . , T − 1. (4.11)

pt+1 = pt + εt for t = 0,1, . . . , T − 1. (4.12)

εt ∼ N(0,σ2) (4.13)

Y0 = π
0
d (4.14)

0≤ x t ≤ π
0
d for t = 0, 1, . . . , T. (4.15)

0≤ Yt ≤ π
0
d for t = 0, 1, . . . , T. (4.16)

4.3 Combining the hedging and order placement models

The QUASAR Dynamic Hedging model and the Postponement model have been presented in the
two prior sections. In this section, we describe how the models are implemented together. This
includes a description of the informational flow of data used as input factors in the models.

The QUASAR Dynamic Hedging model is initially solved for the remaining trading period. The set
of first-stage hedging decisions for tradeable futures contracts, π0

d , are retrieved from the QUASAR
Dynamic Hedging model, in addition to the set of associated shadow prices ηcd for all traded
contracts c. This information is transferred to the Postponement model before the daily trading
period starts, as seen in figure 4.1. The trading decisions and shadow prices are used as parameters
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in the Postponement model. At each trading stage t, corresponding to a new hour in the daily
trading period, the Postponement model solves the optimisation problem, and obtains the set
of first-stage trading decisions, x tc, for the daily order execution. At the end of the daily trading
period, the aggregated trading volumes are transferred back to the QUASAR Dynamic Hedging
model. New trading targets are then obtained as the first-stage decisions from the optimal decision
policy π0

d+1, by solving the QUASAR Dynamic Hedging model for the next stage d + 1.

The Integrated Postponement model will dynamically adjust the daily trading targets in re-
sponse to the outcome of trade execution for the previous day. If the Postponement model deems
complete or partial postponement to be the optimal decision on trading day d, the shadow prices
for trading on trading day d + 1 should readjust to reflect the current state of the balance con-
straint (4.1). This dynamic approach to order placement is motivated by the natural tendency of
market conditions to change. The fact that a decision policy is currently considered ideal does not
automatically entail that it is ideal at a future stage. For instance, the price may change dramat-
ically through the day, which the QUASAR Dynamic Hedging model does not take into account.
By including postponement optionality, trading decisions are reactive to the market conditions.

08:00 10:00 12:00 14:00 16:00

Pre-market

Pre-market

08:00 10:00 12:00 14:00 16:00

Trading
day

1
Trading

day
2

Production planning Dynamic hedging model Order placement model

Figure 4.1: Integrated hedging and order execution process. The dynamic hedging plan is rebal-
anced every morning, pre-market, to decide the daily trading targets. Based on the trading results
from the Postponement model, the dynamic hedging plan is rebalanced again the next morning.

4.4 Trading benchmarks

The Integrated Postponement model should be compared to other trading algorithms to verify
whether it creates value for the trader in light of their risk preferences. The benchmark strategies
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have been selected such that the impact of each novel element in the Integrated Postponement
model ought to be clear. The alternative algorithms are either well known heuristical trading
strategies or existing models from the contemporary literature. The purpose of comparing per-
formance is to see which elements of the Integrated Postponement model offer the most value
to the trader.

We divide the alternative trading strategies into two subgroups. One subgroup of trading strategies
is those which do not use the QUASAR Dynamic Hedging model. The process for determining
the size of the daily volumes for these strategies is described in Appendix D. These strategies are
referred to as static. The other subgroup consists of the strategies that utilise the QUASAR Dynamic
Hedging model. We refer to these as dynamic hedging model (DHM) strategies. By comparing
the subgroups, we can infer whether the QUASAR Dynamic Hedging model creates value for the
trader. The strategies are listed below and summarised in table 4.1.

IOBE strategy: A single block order. The most basic trading strategy. The daily target volume, π0
d ,

is placed as a single order in the opening hour. The daily volume target is statically determined.

IOBE DHM strategy: Similar to IOBE, but uses the QUASAR Dynamic Hedging model to determ-
ine the hedging targets.

TWAP strategy: A common trading strategy where the daily trading target is divided into orders
of equal size, with hourly order placement. x t = π

0
d/|T |. The daily volume target is statically

determined.

TWAP DHM strategy: Similar to TWAP, but uses the QUASAR Dynamic Hedging model to de-
termine the hedging targets.

Bertrand strategy: Identical to the Postponement model, but without the postponement option.
Risk tolerance is modelled with a CVaR term in the objective function. This will be referred to as
the Bertrand strategy as it is the strategy formulated in Bertrand (2021). The daily volume target
is statically determined.

Bertrand DHM strategy: Similar to the Bertrand strategy, but uses the QUASAR Dynamic Hedging
model to determine the hedging targets.

Table 4.1: A summary of the characteristics of the trading strategies. Note that strategies with order
volume marked as NA place volumes dynamically, thus the volume is not determined before the
current trading stage.

Strategy Order volume Dynamic hedging Risk term Postponement option

IOBE π0
d 7 7 7

IOBE DHM π0
d 3 7 7

TWAP π0
d
|T | 7 7 7

TWAP DHM π0
d
|T | 3 7 7

Bertrand NA 7 3 7

Bertrand DHM NA 3 3 7

Postponement model NA 3 3 3
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Data

To test the performance of the Integrated Postponement model we conduct a backtest. This
chapter details the data sources that have been collected for this purpose. First, section 5.1
provides detail on the production plan and LOB data. Then, in section 5.2 we validate these
data sources by commenting on data cleaning, data configuration and data quality.

5.1 Data sources

To use the QUASAR Dynamic Hedging model, a power production plan is required to determine
an appropriate hedging plan. Furthermore, LOB data is needed to conduct the backtest, which
is used to evaluate the trading performance of the Integrated Postponement model. Next, we
describe the characteristics of these data.

5.1.1 The production plan

The production plan has been collected from one of Quantego’s clients. Noise is added to distort
sensitive information. The production profile is presented in figure 5.1. There is clear seasonality
in the data. Notably, the production is lower during the winter even though this period has the
highest electricity demand. This is a consequence of lower inflow. In addition to seasonal variation,
the production deviates significantly in the short term as well.
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Figure 5.1: The reference production plan used by the QUASAR Dynamic Hedging model. The
volumes are aggregated for each month and presented as fractions of the total power production
over the period to distort any sensitive information. The volumes are notably lower during the
winter due to low inflow to the reservoirs.

5.1.2 The LOB data

The LOB data has been collected from EEX, specifically for the German power futures market.
The data set includes all monthly, quarterly and yearly baseload contracts for the period 2014
through 2017. The EEX data is structured as a set of LOB instances, presented in table 5.1. Every
new data point is a snapshot of the LOB after an order has been placed, executed or removed.

Table 5.1: The data structure of the data points collected from the EEX exchange. Each data point
consists of a contract name, timestamp and the best five bid and ask order levels.

Contract name

Timestamp

Best bid prices pb
1 , pb

2 , pb
3 , pb

4 , pb
5

Best bid volumes qb
1 , qb

2 , qb
3 , qb

4 , qb
5

Best ask prices pa
1, pa

2, pa
3, pa

4, pa
5

Best ask volumes qa
1, qa

2, qa
3, qa

4, qa
5

Data from 2015 is used to conduct a price driver study in an out-of-sample regressional analysis,
with reference to section 4.2.2. The price driver study explained further in Appendix C. Data
from 2014 is used for testing and validation of the price driver study. The data from June 2016 to
June 2017 is used to conduct the trading backtest. Descriptive statistics for the data are presented
in table 5.2. Noticeably, there are more orders for quarterly contracts than monthly contracts.
Contracts with delivery during the winter also experience higher trading activity than contracts
with delivery during the summer.
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Table 5.2: Descriptive statistics for monthly and quarterly futures contracts tradeable between June
2016 and June 2017.

JUL-2016 AUG-2016 SEP-2016 OCT-2016 NOV-2016
Number of orders 53 662 64 243 73 506 65 413 104 115

Mid Price(=C)
median 26.450 27.125 29.190 29.575 32.325

1st quantile 25.980 26.575 28.775 28.725 30.905
3rd quantile 27.015 27.865 29.685 30.100 33.550

Daily Volatility(%)
Median 1.55 1.53 1.10 1.24 1.88

1st quantile 0.85 1.07 0.79 0.68 0.65
3rd quantile 2.55 2.15 1.58 1.95 1.95

Trading Price(=C)
Median 26.525 27.281 29.392 29.601 35.472

1st quantile 26.033 26.733 28.901 28.957 32.331
3rd quantile 27.201 28.051 29.873 30.491 37.777

Spread(%)
Mean 0.23 0.35 0.33 0.40 0.61

1st quantile 0.18 0.18 0.17 0.17 0.17
3rd quantile 0.39 0.54 0.52 0.83 1.13
Bid depth

Median 3.9 3.8 3.7 5.0 4.5
1st quantile 2.5 2.5 2.5 2.5 2.5
2nd quantile 5.0 5.0 6.5 8.9 8.6
Ask depth

Median 2.5 2.5 2.5 2.5 4.0
1st quantile 2.5 2.5 2.5 2.5 2.5
2nd quantile 5.0 5.0 5.0 5.0 7.5

DEC-2016 JAN-2017 FEB-2017 MAR-2017 APR-2017

Number of orders 138 808 92 749 155 517 166 373 107 105
Mid Price(=C)

median 30.065 38.690 38.125 34.500 31.210
1st quantile 29.460 33.940 36.135 32.490 29.950
3rd quantile 38.465 41.715 41.275 36.605 32.725

Daily Volatility(%)
Median 1.21 1.84 2.21 1.67 1.22

1st quantile 0.28 0.48 0.88 0.91 0.62
3rd quantile 2.15 3.42 3.41 2.86 2.38

Trading Price(=C)
Median 39.081 38.952 40.484 36.255 31.403

1st quantile 36.051 36.403 37.777 34.075 29.605
3rd quantile 43.211 41.956 42.691 37.721 32.805

Spread(%)
Mean 0.23 0.39 0.44 0.43 0.70

1st quantile 0.50 0.17 0.19 0.17 0.18
3rd quantile 1.01 0.85 1.00 1.01 1.76
Bid depth

Median 4.1 5.0 2.5 4.2 5.0
1st quantile 2.5 2.5 5.0 2.33 2.5
2nd quantile 8.7 11.2 10.4 8.1 9.8
Ask depth

Median 2.5 2.5 5.0 3.3 5.0
1st quantile 2.5 2.5 2.5 2.5 2.5
2nd quantile 5.0 12.5 12.5 5.0 7.5

MAY-2017 Q3-2016 Q4-2016 Q1-2017
Number of orders 103 084 345 756 398 860 401 658

Mid Price(=C)
median 30.150 27.450 30.235 30.830

1st quantile 28.950 27.005 29.150 29.470
3rd quantile 31.170 28.055 30.820 36.075

Daily Volatility(%)
Median 1.22 1.58 1.05 1.54

1st quantile 0.59 0.79 0.76 1.05
3rd quantile 2.01 2.69 1.64 2.74

Trading Price(=C)
Median 31.15 27.56 30.40 34.96

1st quantile 29.491 27.154 29.444 30.801
3rd quantile 31.821 28,211 31.000 38.601

Spread(%)
Mean 0.56 0.18 0.17 0.32

1st quantile 0.14 0.17 0.13 0.16
3rd quantile 0.36 0.85 0.32 0.56
Bid depth

Median 3.5 2.5 2.5 2.5
1st quantile 2.1 1.5 1.5 2.2
2nd quantile 7.5 4.0 4.5 4.35
Ask depth

Median 3.9 2.5 2.5 2.5
1st quantile 2.5 1.5 1.5 2.0
2nd quantile 8.0 3.5 2.5 3.0

The price development for selected contracts is presented in figure 5.2. As seen, the price levels
appear positively correlated. Contracts such as FEB-17 and Q1-17 share the characteristic of hav-
ing delivery of power in February as part of, or as fully, the contract’s underlying asset, justifying
the contracts showing price correlation. Prices for the futures contracts in the data set demon-
strate price appreciation as maturity approaches. The appreciation should be seen in the context
of the price development before the trading period. Reduced fuel prices and high wind power pro-
duction in the first quarter of 2016 put downward pressure on the spot price (AleaSoft, 2017).
Subsequently, the spot price experienced mean reversion to the upside during the period of the
backtest, which was also reflected in the power futures prices.
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Figure 5.2: The normalised time series of price for three futures contracts as a function of time
and time to maturity. There is positive correlation between the prices of each contract. Prices for

the futures contracts in the data set demonstrate appreciation as maturity approaches.

5.2 Data validation

In this section, we comment on the central aspects of data validation. Specifically, how the data
has been configured to conduct the backtest, the data cleaning process, and the data quality.

5.2.1 Data configuration

The data structure of the EEX LOB instances is not compatible with the microstructural backtesting
framework used in this thesis, which requires single limit orders. To address this issue, the EEX
LOB instances have been decomposed into a set of individual orders. For a detailed description of
the transformational limit order process, the reader is referred to Appendix E.

5.2.2 Data cleaning

The raw LOB data has been put through a cleaning process before the LOB is deconstructed into
individual orders. In particular, a large portion of the data points registered on the exchange
before 07:30, and after 15:30 were found to be incomplete or empty. The incompleteness would
correspond to a missing value for the characteristics that describe an order level, such as price or
volume. It is speculated that these inaccuracies are related to the starting and stopping of order
recording on the exchange. Therefore, data points with timestamps before 07:30 and after 15:30
were removed.

The order generation process described in Appendix E requires that the data points follow the LOB
convention, where order levels are sorted by price level in ascending order for the ask side and
descending order for the bid side. For some of the data points in the EEX data set, this convention
is not upheld. These data points are then removed from the dataset. The reason for the occurrence
of these faulty data points is unknown. However, discarding them is appropriate, seeing that these
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data points do not correspond to a legitimate state of the LOB.

5.2.3 Data quality

A few comments are made concerning the quality of the LOB data. First, the production plan is
only given for a period of one year. In reality, power producers make hedging decisions with a
longer planning horizon than one year. Another unfortunate consequence of the short horizon for
the production plan is that yearly futures contracts are not traded, based on the hedging decisions
of the QUASAR Dynamic Hedging model. A yearly contract implies the delivery of power for an
entire year. However, since there are no full years of production decisions in the production plan,
only six months for 2016 and six months for 2017, the QUASAR Dynamic Hedging model does
not include yearly contracts in its hedging decisions. Yearly contracts are seen to be the most
liquid contract type and would allow for a more favourable allocation of hedging volumes across
contracts by evaluating contract liquidity.

Second, the raw EEX data only contains information about the five best bid and ask order levels.
The remaining order levels on both sides of the LOB are not provided in the data. While the five
best order levels may provide sufficient volume in the LOB for an incoming order to not completely
clear the whole LOB, the fact that the other order levels are missing means that the actual state
of the LOB is not reflected in the data. One could also argue that the absence of order levels for
backtesting in an illiquid market is a bigger issue than for a liquid market.

Third, LOB data for the period of 2018 through 2020 appears to be incomplete. While a more
recent period for the backtest than 2016 and 2017 would have been preferable, the incomplete
LOB data means that conducting the backtest for 2016-2017 is the most appropriate choice.

Fourth, for the 2016 and 2017 period, electricity prices experienced price appreciation, demon-
strating a structural trend in the price data. Ideally, the LOB data would have reflected multiple
market trends, such that the inferences from the backtest are applicable regardless of the market
context.
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Methodology

This chapter outlines the process of calibrating model parameters and introduces the backtest-
ing methodology. First, section 6.1 describes the methods for calibration of the auxiliary model
parameters. Then section 6.2 introduces the notion of backtesting and its use cases. Assumptions
and rules governing the backtest are also described. Section 6.3 details the modelling of the LOB
microstructure. Section 6.4 concludes the chapter with a description of how strategy performance
is evaluated.

6.1 Calibrating auxiliary model parameters

The solution of the Postponement model is dependent on the values of the parameters that are
used. This section introduces the methodology for calibrating two such parameters, namely the
LOB slope and the scaling parameter for the postponement option.

6.1.1 Modelling the LOB bid slope

The LOB bid slope is modelled by the same method as Bertrand (2021). Each order level in the
LOB is described by the pair of price and cumulative volume, Voli and price pi. Each data point
is then denoted as (Voli, pi). The cumulative volume at level i is then the aggregated volume of
all limit orders, q, with a price higher than pi, plus half of the volume at price pi.

Voli =
qi

2
+
∑

jε(p j>pi)

q j (6.1)

The pairs of price and cumulative volume are then used to conduct linear regression, described
by equation (6.2). β̂1 is then the bid slope. The bid slope is re-calibrated before every trading
stage. Every contract has its own bid slope. Approximating the shape of the LOB as linear, as
opposed to the discrete nature of a LOB, is necessary due to high computational complexity. Using
non-continuous parameters will result in a discrete solution space. To solve such problems, the
solver needs to test all possible solutions or use algorithms such as branch and bound, increasing
computational complexity.
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pbid
i = β̂0 + β̂1 · Voli (6.2)

6.1.2 Calibrating the shadow price parameter ζ

The postponement optionality term in the Postponement model contains of a scaling parameter
ζ. This parameter is calibrated to improve the Postponement model trading performance.

In order to calibrate the postponement parameter ζ, an out-of-sample test for 2015 is conducted
where several values of ζ are tested. By testing different values of ζ, we notice that monthly and
quarterly contracts behave differently. Therefore we decide to separate between ζ for monthly
and quarterly contacts. We define ζ as a function of delivery duration (DD) and a calibration
variable γ, as expressed in equation (6.3).

ζ=
−1

DD · γ
(6.3)

By using a value of γ of 1.37 for monthly contracts, and 1.57 for quarterly contracts, revenues are
maximised over the short period of the out-of-sample test.

6.2 Backtesting

Backtesting is a well-established methodology in finance, with several applications. These include
determining the accuracy of VaR models and simulating the performance of trading strategies
using historical data. Questions have been raised regarding the validity of backtesting results.
Harvey and Liu (2015) argue that using historical data limits the generalisation of the results
and inferences. Despite this potential drawback, backtesting is prevalent among brokers and in-
vestors. Matras (2011) makes the point that backtesting is useful for evaluating trading strategy
performance. In this thesis, backtesting is used to compare the performance of the Postponement
model with benchmark strategies. This section will describe the backtesting framework that has
been used in this thesis, which includes assumptions, incrementation, order placement and model
implementation.

6.2.1 Backtest assumptions

To conduct a case study with a realistic application, a set of underlying assumptions should be
in place to reflect the limitations of the model and methodology. Inferences made out ought to
be seen in the light of these assumptions. The most significant assumptions are outlined and
discussed below.

Assumption 1 - Order placement with complete information: Orders carry information about
a trader’s market view. Consequently, one trader’s order can affect the trading behaviour of other
traders. In a traditional market setting, traders place orders with full knowledge of the state of
the LOB. A distinction is made between exogenous and endogenous orders. In the context of
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a backtest, exogenous orders are those orders retrieved from the data set, while endogenous
orders are those placed in the LOB by the backtest user. Endogenous orders are placed with full
knowledge regarding the state of the LOB. The same characteristic does not hold for historical
exogenous orders. For backtesting, exogenous orders are assumed to be placed in the LOB with
knowledge of the LOB state, including all endogenous orders.

Assumption 2 - Event-driven simulation: The LOB clock is incremented discretely by the se-
quence of exogenous orders instead of continuous clock incrementation. This sequential starting
and stopping allows a trader to interpret the LOB microstructure and calculate market statistics
between simulation increments. As a result, the trader receives an advantage from acting be-
fore other market participants that does not reflect reality. With hourly trading, there is sufficient
time to make inferences about the state of the market, such that the advantage is assumed to be
insignificant for trading performance.

6.2.2 Trading frequency

The backtest is conducted on EEX data, where orders arrive between 07:30 to 15:30 on trading
days. Trading will therefore occur during these hours in the backtest. For all strategies except
the IOBE strategies, orders are placed once every hour, i.e., between 7:30-8 and 8-9 until 15:30.
There will therefore be a maximum of 9 order placements each day for every contract.

6.2.3 Backtesting sequence

The QUASAR Dynamic Hedging model requires the accumulated short position of every tradeable
contract to solve the optimisation problem for the following trading period. Therefore, it is neces-
sary to simulate order placement for all contracts collectively on each trading day. As the QUASAR
Dynamic Hedging model rebalances the hedging plan daily, the accumulated short positions in
the power futures contracts are updated after each trading day. After the backtest has iterated
through all orders for the trading day, the accumulated short positions are updated and used as
input in the QUASAR Dynamic Hedging model to rebalance the hedging plan for the subsequent
trading day. This process is described in algorithm 3 in Appendix E.

6.2.4 Execution price

If a market order clears the LOB depth, the order is filled by multiple order levels in the LOB. The
execution price must then be calculated. The execution price is calculated as the volume-weighted
average price of the limit order prices that the market order clears.

6.2.5 Endogenous order placement

Endogenous orders are generated and added to the LOB. Due to the incremental sequence of
the simulation, endogenous orders are placed between exogenous orders entering the LOB. The
frequency and size of these orders will depend on the order execution strategy. The IOBE strategies
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place one order with the total daily trading target π0
d after the first exogenous order of the day

arrives in the LOB. The TWAP strategies place orders of equal volumes after the first exogenous
order arrival every hour. Suppose there is no exogenous order arrival during a trading hour. In
that case, the trading volume for the next hour is adjusted such that the outstanding volume
that was scheduled for the prior trading hours is included in the current trade. I.e., if there has
been one hour without trading, the order volume for the subsequent order is doubled. If there
have been two hours without exogenous order arrival, the order volume is tripled and so on. For
the dynamic programming strategies, orders are placed with the same frequency as the TWAP
strategy, but instead, the order volumes are determined by solving their respective optimisation
problems.

6.2.6 Implementing the Integrated Postponement model

The Postponement model is solved by using the stochastic optimisation software QUASAR. Since
the solver requires relatively complete recourse, artificial boundaries and variables are included in
the model to provide solving stability. The Postponement model which includes artificial bound-
aries and variables is presented in Appendix F.

As of model implementation, the backtest algorithm recognises when there is a new hour. The
Postponement model is then initialised. It uses the best bid at that time as the input value for
price pt , as well as the previous stage value for volume left to trade, It−1. The Postponement
model then returns the first-stage trading decision x t as well as the value left to trade at the next
stage, It . The first-stage trading decisions are then submitted to the LOB as endogenous orders.

6.3 Modelling the LOB microstructure

In conventional backtests, the execution price of an endogenous order is set to the market price at
the point in time where the order was placed, regardless of the order volume. One weakness with
this method is that the LOB microstructure is not considered. As a result, conventional backtests
do not consider temporary or permanent price impact. The novelty of the backtest conducted
in this thesis relates to the implementation of a LOB microstructure model. In a conventional
backtest, the market state is described solely by the best bid and ask prices. Instead, this thesis
employs the collection of all limit orders in the LOB to describe the market state. The following
section describes the modelling of the LOB microstructure used as the market’s state variable.

Cont et al. (2010) was the first to model the multiple price levels of the LOB as a multiclass
queueing system. Zheng (2016) models the LOB using a pseudo-continuous1 price grid for fluid,
dynamic limit order arrival. In contrast to Zheng (2016)’s LOB microstructure model, we discretise
the price grid to reflect all price levels in the LOB. Additionally, limit order arrival is treated as a
discrete arrival process.

Price levels: For the ask side of the LOB we consider prices pa
i (t) indexed by i ∈ I , at time t,

where prices are in ascending order such that pa
1(t) < pa

2(t) < . . . < pa
N (t). Index i corresponds

to the ith price level of the multilevel ask order queue, where I is denoted as the set all ask order

1The continuity is restricted due to minimal tick size on the exchange.
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levels. Let Pa(t) denote the set of all ask order prices at time t, such that

pa
i (t) ∈ Pa(t) for all i ∈ I .

Prices pb
j (t) indexed by j ∈ J , for the bid side follows the same argument but where pb

1(t) >
pb

2(t) > . . . > pb
M(t). Index j corresponds to the jth price level of the multilevel bid order queue,

where J is denoted as the set all bid order levels. Like for the ask order queue, let P b(t) denote
the set of all bid order prices at time t, such that

pb
j (t) ∈ P b(t) for all j ∈ J .

Because bid and ask orders are matched and removed from the LOB if pb
1(t) > pa

1(t), it follows
that pb

1(t)< pa
1(t) for every state of the LOB.

Order queues: For index i ∈ I at time t, there is a quantity of MW available for purchase, denoted
by qa

i (t) at price pa
i (t). By the same token, for index j ∈ J , there is a quantity of MW available for

sale, denoted by qb
i (t) at price pb

i (t). qa
1(t) is defined as the ask order depth. Similarly, qb

1(t) is
defined as the bid order depth. The state of the LOB at time t, is described by the multilevel bid
and ask order queues, Qa(t) and Qb(t), formulated in equation (6.4) and (6.5) respectively.

Qa(t)
∆
= {(qa

1(t), pa
1(t)), . . . , (qa

N a(t), pa
N a(t))} (6.4)

Qb(t)
∆
= {(qb

1(t), pb
1(t)), . . . , (qb

N b(t), pb
N b(t))} (6.5)

Here, N a and N b denotes the number of order levels in the multilevel bid and ask order queues,
respectively.

Limit order arrival: Upon arrival, limit orders are placed in the LOB. If the order price already
exists in the price grid, the order volume is added to the existing order queue. Otherwise, a new
order queue is created for the order price. Let Rl and Sl be the sets of all limit ask and bid orders,
respectively. Now let La

k be the kth limit ask order, and Lb
o be the oth limit bid order where La

k ∈ Rl

and Lb
o ∈ Sl. Limit orders are defined by their quantity, price and time of placement. Thus we have

La
k
∆
= {q̂a

k , p̂a
k , t̂k} for all La

k ∈ Rl. (6.6)

Lb
o
∆
= {q̂b

o , p̂b
o , t̂o} for all Lb

o ∈ Sl. (6.7)

Considering the arrival of order La
k to the multilevel ask order queue, at the time of its placement,

Qa( t̂k), if p̂a
k ∈ Pa( t̂k), q̂a

k is added to the volume of the existing order queue with the corresponding
price level p̂a

k . Otherwise, a new order queue qa
i (t) is created, where the index i is given by the

location of p̂a
k in the price grid:

pa
i−1( t̂k)< p̂a

k < pa
i ( t̂k)

The index of all order queues in Qa(t) beyond i, will then be incremented by one.

Figure 6.1 illustrates a snapshot of a LOB before and after the arrival of an ask limit order. Because
the price of the new limit order, p̂a

k , is better than the previous best ask price, pa
1, the new limit
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order is now the best ask order. The indices describing the position of existing price levels in the
LOB are now shifted to reflect the new order entry. The old pa

1 is now pa
2, and so on.
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Figure 6.1: A new best ask order arrives in the LOB. The bid-ask spread and the ask depth are
reduced.

Market order arrival: Market orders do not enter the LOB upon arrival. Instead, they fill existing
limit orders. Let Rm and Sm denote the sets of all market ask and bid orders, respectively. Now
let M a

v be the vth market ask order, and M b
u be the uth market bid order, where M a

v ∈ Rm and
M b

u ∈ Sm. Market orders are denoted only by their quantity and time of placement. Thus, we have

M a
v
∆
= {q̃a

v , t̃v} for all M a
v ∈ Rm. (6.8)

M b
u
∆
= {q̃b

u , t̃u} for all M b
u ∈ Sm. (6.9)

Consider the arrival of M a
v at its time of placement t̃v. Let N j denote the set of volumes for the j

first bid order queues, {qb
1 , . . . , qb

j }. Now let N j−1 be the set of volumes for the j−1 first bid order
queues, {qb

1 , . . . , qb
j−1}. If j is given as the integer for which the following inequality holds:

∑

j∈N j

qb
j (t)≥ q̃a

v ≥
∑

j∈N j−1

qb
j (t)

then all limit bid orders in the first j−1 order queues are fully filled and removed from the LOB.
If the following equality holds,

∑

j∈N j

qb
i (t)− q̃a

j = 0

then the jth bid order queue is fully filled as well. Otherwise the volume for the jth bid order
queue is adjusted to

∑

j∈N j

qb
j (t)− q̃a

v .

Limit order cancellation: Limit orders can be cancelled and removed. Upon cancellation, the
existing order is removed from the order queue corresponding to its price level. If the price or
quantity of an observable limit order is modified, the change is treated as a cancellation and then
re-entry of the modified order.
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6.4 Quantifying strategy performance

To the best of the authors’ knowledge, there is no established framework for liquidation strategy
comparison as most contemporary literature solve the problem analytically. Sharpe ratio is com-
monly used to evaluate trading strategy performance in conventional backtest. However, given
that the Sharpe ratio is computed from returns, it is not an appropriate metric for a liquida-
tion strategy. Instead, this section introduces other metrics that may be used to compare trading
strategies. Trading strategy performance is evaluated using these four metrics; average revenue
per MWh, standard deviation of revenue per MWh, relative performance and price impact.

6.4.1 Revenue per MWh

Revenue per MWh is a suitable measurement of the trading performance of an order execution
strategy for a power producer, as it reflects the total cash flows from the power derivatives trading.
Since power futures contracts have different delivery durations, the revenues accrued from a
contract is proportional to its duration.

Let trades be denoted as ic ∈ Ic where ic is a single trade for contract c and Ic is the set of all
trades for contract c ∈ C . Let pic

be the execution price of trade ic for contract c, wic
the trading

volume of trade ic, and dc is the delivery duration of contract c.

Let Ω denote a set of contracts. Revenue per MWh, p̄Ω, is then calculated using equation (6.10).
Notice that the product of the trading volume, wic

and contract delivery duration, dc is used as the
weights for trade ic. Applying the weighting method is done because not all trades are of equal
volume. Additionally, their accrued revenues are different due to varying delivery duration.

p̄Ω =

∑

c∈Ω

∑

ic∈Ic

dc ·wic
· pic

∑

c∈Ω
W1c

(6.10)

where

W1c =
∑

ic∈Ic

dc ·wic
(6.11)

6.4.2 Standard deviation of revenues per MWh

The standard deviation of revenues per MWh measures the variation in execution prices of trades
ic. A risk-averse trader seeks to decrease the standard deviation of revenue per MWh to reduce cash
flow uncertainty. The standard deviation for contract c, sc, is calculated using reliability weighted
sample variance, with volumes wic

as weights. The standard deviation for a single contract is
calculated by using equation (6.12). Here, p̄c is the revenue per MWh for contract c calculated
using equation (6.10).
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s2
c =

∑

ic∈Ic

dc ·wic
(pic
− p̄c)

2

W1c −
W2c
W1c

(6.12)

where

W2c =
∑

ic∈Ic

w2
ic

(6.13)

The standard deviations are then converted from hourly to daily for the strategies with hourly
order placement. Standard deviations are presented as percentages of the respective average rev-
enues per MWh.

The standard deviation for a set of contracts,Ω, is also calculated using reliability weighted sample
variance, with the total number of MWh traded for contract c, W1c, as its weights. Contract stand-
ard deviation, sc relative to the average revenue per MWh for contract c, p̄c, is used in the calcu-
lation of standard deviation for Ω. The standard deviation for a set of contracts is formulated in
equation (6.14). This approach is used to calculate the standard deviations of the following sets
of contracts: monthly contracts, quarterly contracts and all traded contracts.

s2
Ω =

∑

c∈Ω
W1c · (

sc
p̄c
)2

Z1 −
Z2
Z1

(6.14)

where

Z1 =
∑

c∈Ω

W1c (6.15)

and

Z2 =
∑

c∈Ω

W 2
1c (6.16)

6.4.3 Relative performance

Another metric is introduced, which will be referred to as the relative performance (RP). Relat-
ive performance measures how a strategy performs relative to the IOBE strategy by comparing
revenue per MWh. Equation (6.17) illustrates how relative performance is calculated.

RPSt rateg y =
RevSt rateg y − RevIOBE

RevIOBE

(6.17)
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6.4.4 Price impact

An important aspect of this thesis is the influence of price impact on trading performance. Price
impact is calculated as the relative difference between the execution price of trade ic, pic

and the

best bid prior to order placement, pb
1c(t), for contract c. The product of the trading volume wic

and
the delivery duration, dic

for all trades ic are used as weights. These weights are used to consider
delivery duration. The average price impact for a set of contracts Ω is calculated using equation
(4.4). As for the standard deviation of revenue per MWh, the average price impact for the sets of
monthly, quarterly and all contracts are presented and discussed in the next chapter.

PIΩ =

∑

c∈Ω

∑

ic∈Ic

dc · (1−
pic

pb
1cm
) ·wci

∑

c∈Ω
dc ·w

total
c

(6.18)

where

wtotal
c =
∑

icεIc

wic
(6.19)
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Results

The Integrated Postponement model from section 4.2 and the alternative trading strategies
from section 4.4 have been backtested using the microstructural LOB framework introduced in
section 6.3. This chapter gives emphasis to the Postponement model and its decision policies.
The motivation behind this area of focus is the novel postponement optionality and the model’s
sensitivity to changing market liquidity on an hourly basis. Additionally, IOBE and TWAP are
static strategies with no reactivity to changing market liquidity on an hourly basis and will serve
as trading performance benchmarks.

An Intel Xeon 2.1 GHz processor with 256 GB RAM was used to run the backtest. The runtimes
of the backtest for each strategy are presented in table 7.1.

Table 7.1: Runtimes for the trading strategies.

Strategy Runtime [minutes]

IOBE 148
IOBE DHM 489

TWAP 163
TWAP DHM 501

Bertrand 836
Bertrand DHM 1259

Postponement model 1401

Runtime is seen to increase with model complexity. Using the QUASAR Dynamic Hedging model
increases runtime by 367 minutes on average. Bertrand DHM and the Postponement model nat-
urally have the longest runtimes, as these incorporate two rolling horizon stochastic optimization
problems on each trading day.

This chapter is divided into four sections. First, we present the trading performance of the strategies
in section 7.1. In section 7.2 we present the decision policies specific to the Postponement model,
namely trading trajectories, and postponement decisions, in the context of changing market li-
quidity. Next, we interpret and discuss trading performance results in section 7.3. Section 7.4
concludes the chapter with interpretation and discussion of the Postponement model decision
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policies.

7.1 Trading strategy performance

Trading strategy performance is presented next with reference to revenue per MWh and price
impact.

7.1.1 Revenue per MWh

Revenue per MWh (=C/MWh), standard deviations and relative performances (RP) have been
computed using the methods described in section 6.4. The results are presented in table 7.2.
Results have been aggregated across contracts of the specific delivery duration, i.e. monthly and
quarterly contracts. For a comprehensive review of the results on a per contract basis, the reader
is referred to Appendix G.

Table 7.2: Revenue per MWh, standard deviation and relative performances for the trading
strategies. The Postponement model has the highest revenue per MWh, followed by the Bertrand
DHM strategy. Bertrand DHM has the lowest standard deviation of revenue per MWh.

Strategy Monthly Quarterly Total

=C/MWh St.dev =C/MWh St.dev =C/MWh St.dev RP (bps)
IOBE 31.560 1.37% 31.320 1,38% 31.404 1,38% -

IOBE DHM 31.986 1.30% 31.187 1.12% 31.516 1.13% 35.7
TWAP 31.664 1.50% 31.714 0.62% 31.697 1.02% 93.3

TWAP DHM 32.101 1.44% 31.654 1.31% 31.838 1,25% 138.2
Bertrand 31.775 0.48% 31.731 0.48% 31.739 0.48% 106.7

Bertrand DHM 32.220 0.57% 31.612 0.48% 31.854 0.49% 143.3
Postponement model 32.350 0.37% 31.994 0.82% 32.134 0.68% 232.5

Revenue per MWh is seen to increase by allocating trading volume across trades on a daily basis.
Strategies employing the QUASAR Dynamic Hedging model outperform their equivalent strategy
without the QUASAR Dynamic Hedging model by 39 bps on average. The Bertrand strategies ex-
perience the lowest daily standard deviation of 0.48-0.49%, followed by the Integrated Postponement
model with 0.68%.

7.1.2 Daily price impact

The volume-weighted price impact for each strategy has been calculated using the methods de-
scribed in section 6.4. The price impact results are presented in table 7.3.
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Table 7.3: Average relative price impact, measured in basis points. The single-order strategies ex-
perience considerably higher price impact than the strategies placing multiple orders through the
day. The strategies placing multiple daily orders experience similar price impacts, where the Ber-
trand model experiences slightly lower price impact than the TWAP strategy.

Strategy Price impact (bps)

IOBE 87.7
IOBE DHM 101.1

TWAP 5.05
TWAP DHM 7.46

Bertrand 4.37
Bertrand DHM 7.44

Postponement model 7.09

Price impact is reduced significantly by moving from daily to hourly trading. Among the strategies
that place orders every hour, the strategies without the QUASAR Dynamic Hedging model exper-
ience the lowest price impact. For the strategies using the QUASAR Dynamic Hedging model, the
Integrated Postponement model has the lowest price impact.

7.2 Postponement model decision policies

In this section, the trading decisions obtained for the Integrated Postponement model are
presented, specifically the trading trajectory and postponement decisions. These are highlighted
due to their sensitivity to changing market liquidity.

7.2.1 Trading trajectory throughout the day

Figure 7.1 presents the trading trajectories throughout the day for the Integrated Postponement
model. Each curve represents one particular realization of a daily trajectory. The colour of each
curve is given by its time to maturity. Green curves correspond to trajectories close to maturity,
and blue curves correspond to trajectories far from maturity.
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(a) AUG-2016 (b) FEB-2017

(c) Q1-2017 (d) Q4-2016

Figure 7.1: Trading trajectories for selected contracts. The top panels show monthly contracts,
while the bottom panels show quarterly contracts. The contracts in the right hand side panels are
more liquid than the contracts in the left hand side panels. The liquid contracts experience a greater
degree of convexity as maturity approaches than the less liquid contracts.

As seen from figure 7.1, the trading trajectories exhibit a greater degree of convexity as maturity
approaches. This distinction is more clear for monthly rather than quarterly contracts. Addition-
ally, one can see that order placement occasionally starts at later trading stages on days further
from maturity. Since order arrival occurs discretely, the limited order arrival on illiquid trading
days prevents the Integrated Postponement model from placing orders until the first exogen-
ous order arrives.

7.2.2 Postponement decisions

Figure 7.2 shows the fraction of daily postponed volume in conjunction with the ratio of best
bid price, pb

1 , to price-equivalent shadow price (pb
1/pSP), towards contract maturity. Here the

postponement fraction is plotted in red, with its vertical axis on the left side of the figure. The
ratio of the best bid price to price-equivalent shadow price is shown as the black plot, with its
values denoted on the right-hand vertical axis.
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(a) Monthly contracts (b) Quarterly contracts

Figure 7.2: Postponement decisions of the Postponement model as a function of time to
maturity. The red plot illustrates the fraction of daily volume postponed, while the black plot

illustrates the ratio between the best bid and the price-equivalent shadow price. The fraction of
postponed volume decreases towards maturity. This trend is seen in light of the increasing pb

1/pSP
value towards maturity.

The ratio pb
1/pSP is seen to increase as contract maturity approaches, decreasing the propensity for

the Integrated model to postpone. As seen in the figure, the frequency of days where postpone-
ment occurs decreases towards maturity. Additionally, the fraction of postponed trading volume
decreases as contracts approach maturity.

7.3 Discussion of trading strategy performance

To assess the performance of the different trading strategies, some key metrics are calculated and
compared across strategies. In section 7.3.1, the obtained revenue per MWh and the experienced
price impact are discussed. The effect of different model features on the standard deviation of
revenues are interpreted and discussed in section 7.3.2. Section 7.3.3 discusses the differences
in performance between strategies with and without the QUASAR Dynamic Hedging model to
assess its value.

7.3.1 Revenue per MWh and price impact

Significant value can be accrued by moving from daily to hourly trading. By placing market orders
with lower volumes, price impact is reduced by as much as 96 bps as seen in table 7.3. These results
are consistent with the findings of Predoiu et al. (2011), highlighting the relationship between
order size and price impact.

In contrast, the Bertrand model experiences less price impact than the TWAP strategy. Based on
Almgren and Chriss (1999), we would expect the opposite as the model accepts additional price
impact to reduce price risk. However, since the difference is slight, with a difference of 0.68 basis
points between the strategies that do not use dynamic hedging and 0.02 basis points between
the strategies that use dynamic hedging, the difference in price impact may not be statistically
significant.
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Additionally, the lower revenue per MWh could also result from the trading trajectories and price
movements during the daily trading period. If the price level is consistently higher during the
hours the Bertrand model allocates larger volumes than TWAP, it can obtain a higher average
revenue per MWh. Upon inspection of the price development on trading days, prices tend to
depreciate through the trading period, which explains the Bertrand model outperformance. Con-
sidering that the Bertrand model possibly outperforms TWAP due to an exogenous factor that is
not part of the model formulation, one should not conclude that the Bertrand model is a better
order execution model for the risk-neutral trader.

When the Bertrand model is extended to allow for postponement, i.e. the Integrated Postponement
model, average revenue per MWh is increased by 80 bps. By introducing the price-equivalent
shadow price as a threshold for when prices are considered favourable, the Integrated Postponement
model can be more selective in its trading decisions. Given that the postponement optionality
comes at no expense, one would expect better performance than a model that has not been giv-
ing this costless optionality. Considering that the price-equivalent shadow price is an objective
metric of the value to wait, the trading strategy could be said to provide a favourable trade-off
between risk and reward.

7.3.2 Revenue per MWh standard deviation

Moving from daily to hourly trading not only increases revenue per MWh, but also reduces the
standard deviation of the revenues per MWh. By introducing trader risk aversion in the Bertrand
model, the variance is reduced by nearly half, compared to the risk-neutral TWAP strategy. When
the trading trajectory is convex, which corresponds to risk-averse preferences, a larger fraction of
the total trading volume will have been executed earlier in the day than will be the case for a risk-
neutral trading trajectory. Since a more significant proportion of the trading volume has already
been executed during a short period, a smaller proportion of the trading volume is exposed to
future price volatility. Thus, the total standard deviation is decreased.

The Integrated Postponement model has a higher standard deviation than the equivalent model
without the postponement option, i.e. the Bertrand model. By introducing daily postponement op-
tionality, the trading trajectory reflects a risk preference somewhere between the risk neutrality
of TWAP DHM and the risk aversion of the Bertrand DHM strategy, which gives it a standard
deviation value between those strategies.

7.3.3 Value of QUASAR Dynamic Hedging model

The QUASAR Dynamic Hedging model improves revenue per MWh by 39 bps when compar-
ing strategies with and without the QUASAR Dynamic Hedging model. Interestingly, strategies
with the QUASAR Dynamic Hedging model tend to outperform for monthly contracts but per-
form worse for quarterly contracts. One possible explanation for this tendency could be that the
QUASAR Dynamic Hedging model is able to evaluate the trade-off between trading monthly and
quarterly contracts. By sacrificing the performance of one contract type, the model can outperform
in the aggregate.
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Figure 7.3: The hedging plan for the NOV-2016 contract for the Integrated Postponement
model, and the static volume strategies. Note that the trading volumes for static volume strategies
are evenly distributed across the contract lifecycle. The DHM strategies have lower trading volumes
far from maturity, indicating a back-loaded trading volume allocation. Since the price of the
NOV-2016 contract appreciates towards maturity, the QUASAR Dynamic Hedging model achieves
higher revenues than the static model.

A different explanation for the outperformance relates to the trading volume allocation seen in the
context of the price data trend. The QUASAR Dynamic Hedging model allocates trading volumes
based on market liquidity, preferring to allocate larger volumes in periods of high liquidity. In
the case of electricity futures which are more liquid close to maturity, this tendency leads to
backloading throughout the contract lifecycle, seen in figure 7.3. Figure 7.4 illustrates the price
development of monthly contracts where the QUASAR Dynamic Hedging model outperforms, and
falls short, respectively. A common factor for the contracts showing outperformance is the trend
of substantial price appreciation as maturity approaches. Contracts where the model falls short
experience less price appreciation. For these contracts, the increased price impact experienced due
to higher volume allocation results in lower revenue per MWh even for the contracts that slightly
appreciate. Thus, it appears that the outperformance can be partly attributed to the favourable
allocation of trading volume, seen in the light of price trends.

7.4 Discussion of Postponement model decision policies

The Integrated Postponement model makes trading decisions based on the market conditions
at the time of order placement. By taking the liquidity of the LOB into account, better-informed
decisions on the allocation of trading volumes can be reached. This dynamic allocation of volume
is reflected in the trading trajectories. Furthermore, the postponement optionality offers unique
flexibility of postponing trading when the market conditions are deemed unfavourable. In this sec-
tion, the Integrated Postponement model decision policies will be discussed in light of chan-
ging market conditions (liquidity and time to maturity).
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(a) DHM winner contracts (b) DHM loser contracts

Figure 7.4: Price time series of contracts where DHM performs better (a) and worse (b) than a
static hedging approach. The prices of the contracts that show outperformance increase

substantially more than for the contracts that show underperformance. The price trend could
partly explain why backloading gives higher average revenues.

7.4.1 Daily trading trajectories

The Integrated Postponement model attempts to make a trade-off between the preference for
large order volumes in the short term and the price impact associated with these trades. The trad-
ing trajectory is then a result of the market conditions that influence the steepness of this trade-off,
namely the slope of the LOB and the market volatility. As the regression analysis did not uncover
a statistically significant volatility process, the volatility used in the Integrated Postponement
model was assumed to be constant at 22% annualized. Thus, it will be the slope of the LOB that
influences the convexity of the trading trajectory.

As discussed in section 7.2.1, the convexity of the trading trajectories increases as contract ma-
turity approaches. By inspection of the development of the LOB slopes, available in figure 7.5,
one can see that the absolute value of the slope decreases towards maturity. This evolution of
the slope is a consequence of increased contract liquidity towards its maturity. The price impact
term carries less weight in the objective function when the slope decreases. In that case, the risk
term dominates the objective function and leads to convex trading trajectories close to matur-
ity. The LOB slope is larger far from maturity, so the price impact term dominates the decision
policy, which gives a more linear trading trajectory. These results are consistent with the findings
of Almgren and Chriss (1999).

(a) Q1-2017 (b) AUG-2016

Figure 7.5: The absolute value of the slope of the LOB towards time to maturity. The slopes
decrease as maturity approaches, indicating that the contracts become more liquid.
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The quarterly contracts have close to linear trading trajectories, despite the market liquidity effect
towards maturity. The lower degree of convexity can be explained by the higher trading volumes
allocated to quarterly contracts. Since the price impact is modelled to increase quadratically with
respect to order volume, the price impact term carries a higher weight in the decision policy
relative to the risk term. Therefore, the trading volume is spread more evenly to reduce price
impact.

7.4.2 Postponement decisions

Postponement decisions are made by comparing the best bid price, pb
1 , to the price-equivalent

shadow price, where the ratio of bid price to price-equivalent shadow price, pb
1/pSP , can be

used to interpret the postponement decisions of the Integrated Postponement model. The
postponement option is speculated to improve revenue per MWh by two distinct mechanisms.
First, when the price-equivalent shadow price is higher than the market price, the Integrated
Postponement model will outright postpone the remaining volume. This type of outright post-
ponement can be seen as the model being selective, only accepting prices above the threshold rep-
resented by the price-equivalent shadow price. This mechanism ought to prevent order execution
at drastically unfavourable prices. By this token, trading only occurs in periods with favourable
prices.

The second mechanism by which the postponement option improves revenue per MWh is limiting
price impact. If pb

1/pSP is above unity, the Integrated Postponement model will favour order
placement, but not without considering order volume. The price impact is modelled such that the
marginal revenue decreases linearly with respect to order volume. As more volume is added to
an order, at one point, the marginal revenue will fall below the price-equivalent shadow price. At
this point the Integrated Postponement model will decide to postpone the remaining trading
volume. This second mechanism can be seen as working to limit the price impact of a trade.

Since an electricity producer can choose to be a flexible trader far from maturity, but can not
afford this flexibility close to delivery, one should aim to implement a trading model where post-
ponement diminishes towards a contracts delivery date, which is the case for the Integrated
Postponement model. A decreasing postponement fraction should reflect the transition from a
“choose-to” to a “need-to” trader. If the price-equivalent shadow price decreases relative to the
best bid price, preference is given to trading rather than a postponement. In the data set used for
the backtest, the time series of prices have generally shown price appreciation towards maturity.
Additionally, shadow prices are seen to decrease towards maturity. Both of these trends lead to
less postponement as maturity approaches.
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Conclusion

This thesis has explored the order execution problem in the context of an illiquid financial market,
specifically the electricity futures market. The goal of the order execution problem is to develop a
set of trading decision policies to maximise trading performance, measured by trading revenues,
the standard deviation of trading revenues and price impact. The objective of the exploration has
been to develop an order execution model that introduces the option of trading postponement,
integrated with a dynamic hedging model with daily granularity.

From this thesis, there are three main contributions to the study of order execution. First, we have
introduced postponement optionality to the order execution literature, a novelty in the field. The
optionality is proposed as a result of the distinction made between two types of traders. We make
the distinction between traders who need to trade and traders who choose to trade. Additionally,
we have proposed a novel and intuitive method for determining the value of waiting with order
execution, built on treating the shadow price of the QUASAR Dynamic Hedging model as the
opportunity cost of trading.

The second contribution is the integration of a multistage stochastic hedging model with a multistage
stochastic order execution model. Trading volumes have conventionally been treated as fixed,
and therefore not as a variable to decide upon. We expand the decision space to include trading
volume allocation, decided daily. Daily trading targets are decided by using the QUASAR Dynamic
Hedging model, which considers prior trading and market liquidity in its decision making.

The third contribution of this thesis has been the construction and application of a backtesting
framework that incorporates the microstructure of limit order books. Backtesting frameworks
that incorporate discrete order arrival have previously been employed to study order execution of
blue-chip stocks. However, to the authors’ best knowledge, the methodology has not previously
been used to explore the aspect of price impact in an illiquid market context. We argue that
a microstructural backtesting framework that considers discrete order arrival is appropriate for
evaluating trading performance in an illiquid market. Additionally, it is worth mentioning that
using microstructural order books to simulate the actual trading of futures contracts in the market
as part of hedging is a novelty in the research field of hedging models.

The results from the backtest are summarised next. The Integrated Postponement model im-
proves average revenue per MWh by 234 bps, compared to placing a single daily block order, i.e.
the IOBE strategy. By introducing the postponement option, revenue per MWh was improved by 88
bps, compared to the equivalent model without the postponement option. Including risk-aversion
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in the model objective function reduces the variance of trading revenues. Its inclusion does not
appear to reduce trading revenues or increase price impact. This result is inconsistent with the
findings of Almgren and Chriss (1999), commenting on the trade-off between price impact and
risk-aversion.

Next, we comment on a few possible flaws and discuss the application of our findings. The backtest
has been conducted for the period of June 2016 through June 2017. While the computational
demands of the backtest put a restriction on the length of the simulation period, it would have
been preferable to conduct the backtest on a larger sample of market data had there not been
restrictions on the available memory on the server. Ideally, a larger sample should have been used
to see strategy performance across different parts of the market cycle. A larger sample would also
allow for the trading of yearly contracts.

Furthermore, the price volatility for all futures contracts was assumed to be constant and equal
across all the contracts in this thesis. This assumption may not be appropriate for several reasons.
First, the various futures contracts are different both in respect to liquidity and their delivery
period. The quarterly contracts have a longer delivery period than the monthly contracts, and
the liquidity of futures contracts varies based on the time of delivery during the year. Thus, all
contracts are fundamentally different. Second, assuming the volatility to be constant in respect
to time may also be flawed. The trading volumes on a contract tend to increase towards maturity.
The increased liquidity towards maturity, in addition to a maturity effect on volatility, yield strong
arguments for incorporating a time-dependent price volatility process.

The application of our findings deserves a few comments. The Integrated Postponement model
is best suited for the liquidation of power portfolios for a power producer. The QUASAR Dynamic
Hedging model is able to make a better allocation of power production to the spot and futures
market while also considering the relative liquidity of futures contracts in its policy. The QUASAR
Dynamic Hedging model also retrieves the shadow prices that determine the value of waiting
with order execution, which reflects the "choose-to" trader characteristic of a power producer. The
Integrated Postponement model is also suited for the liquidation of other commodities. How-
ever, if the commodity does not share the characteristic of power where contracts can share the
underlying asset, the QUASAR Dynamic Hedging model will not make trading decisions based on
the relative liquidity of contracts. The Postponement model carries application beyond the com-
modities market and could be used for liquidation of stocks. However, its use relies on quantify-
ing a value for the postponement optionality. The outperformance of the postponement strategy
should be seen in the context of the trader’s market share. A smaller market participant will to
a lesser extent, experience price impact and therefore not draw as much value from using the
Integrated Postponement model.

Two areas of future research are proposed here. First, we propose the inclusion of limit order
placement in the order execution model. By allowing the placement of limit orders, the model will
reflect the decision space of a trader to a greater extent. Additionally, it could improve trading per-
formance if the trade-off between risk and reward is modelled appropriately. Second, one should
explore other methods for assigning a value of postponing order placement. The price-equivalent
shadow price has been evaluated as the value of waiting, and it has an intuitive interpretation
as the opportunity cost of trading. However, due to the novelty of the postponement idea, one
should not rule out that other methods for assessing the postponement reference price yield better
model performance. One such extension could be to explore different methods of calibration for
the scaling parameter ζ.
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Appendix A

Daily volatility predictor study

Concerning the "Time to Maturity" hypothesis, we construct a volatility predictor, where volatility
is a function of time to maturity (TTM). Additionally, we test whether an AR(1) model is applicable
to model the volatility. These models are presented in equation (A.1) and (A.2) respectively.

σt = θ0 + θ1 · tT T M + ε
t tm
t where εt tm

t ∼ N(0,σ2
σt
) (A.1)

σAR
t = θ

AR
0 + θ

AR
1 ·σ

AR
(t−1) + ε

AR
t where εAR

t ∼ N(0,σ2
σAR

t
) and 0≤ θAR ≤ 1 (A.2)

To estimate the model parameter values, we use linear regression on EEX order data from 2015.
Monthly and quarterly contracts are regressed separately. The results from the regressional ana-
lysis are presented in table A.1. We notice that TTM is statistically significant as a predictor for
volatility since it has a P-value less than 0.05 for both monthly and quarterly contracts. The res-
ults also indicate that delivery duration affects the volatility, as the absolute value of the TTM
coefficient is smaller for quarterly contracts than for monthly contracts.

An out-sample test is conducted to verify model validity, using EEX order data from 2014. These
results are presented in table A.2. The AR(1) model performs better for quarterly contracts than
for monthly contracts, which is expected due to the contracts’ longer delivery duration, resulting
in more stable volatility. For monthly contracts, the TTM model performs better than the AR(1)
model. This is expected as the delivery duration is shorter for monthly contracts. It is worth noting
that the adjusted R-squared values are low. Three of the four R-squared values are negative,
indicating that neither of these models are strong predictors. Both models perform similarly in
terms of residual standard errors, as seen in A.2. From these results, it can be concluded that
neither of the models are good predictors to model future volatility.

56



Chapter A. Daily volatility predictor study

Table A.1: In-sample regressional results for volatility parameter estimation.

Results from TTM model

Contract type Intersect Coef. P-value Adjusted R2 Residual standard error

Quarterly 0.1452 -0.0002 0.000*** 0.0124 0.2371
Monthly 0.1876 -0.0009 0.000*** 0.0394 0.0534

Results from AR(1) model

Contract type Intersect Coef. P-value Adjusted R2 Residual standard error

Quarterly 0.0762 0.2646 0.000*** 0.0692 0.2302
Monthly 0.0694 0.3855 0.000*** 0.1480 0.2043

*** Significant at P<0.01
** Significant at P<0.05
* Significant at P<0.1

Table A.2: Out-of-sample regressional results for volatility parameter estimation.

Out-of-sample results from the TTM model

Contract type Adjusted R2 Residual standard error

Quarterly -0.1459 0.11100
Monthly 0.0505 0.14560

Out-of-sample results from AR(1) model

Contract type Adjusted R2 Residual standard error

Quarterly -0.0697 0.11095
Monthly -0.4330 0.10709
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Appendix B

Out-of-sample price volatility

The average daily volatilities for the contracts from the out-of-sample period have been computed
and then annualised. The volatilites are seen in table B.1. The average annualised volatility across
these contracts is 22.38%, which supports the empirical findings of Haar (2010). The volatilities
are averages across all trading days for each contract. While an average value gives an indication of
the volatility level, it can not be used to uncover any underlying trends, such as how the volatility
develops towards contract maturity.

Table B.1: Price volatility for monthly and quarterly futures contracts tradeable between June 2015
and June 2016.

JUL-2015 AUG-2015 SEP-2015 OCT-2015 NOV-2015
Daily volatility(%)

Median 1.46 1.47 1.24 1.21 1.50
Annual volatility(%)

Median 23.08 23.24 19.61 19.13 23.72

DEC-2015 JAN-2016 FEB-2016 MAR-2016 APR-2016

Daily volatility(%)
Median 1.34 1.64 1.55 1.52 1.37

Annual volatility(%)
Median 21.19 25.93 24.51 24.03 21.66

MAY-2016 Q3-2015 Q4-2015 Q1-2016
Daily volatility(%)

Median 1.29 1.46 1.20 1.57
Annual volatility(%)

Median 20.40 23.08 18.97 24.82
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Appendix C

Price driver study

Part of this thesis has been the attempt to make a price prediction model. By examining the
correlation between prices and other variables, we study whether microstructural features can
be used to predict future price movements. The features that have been tested are presented in
section C.1. If any features had turned out to be statistically significant, with a high adjusted R-
squared, they would have been included in the exogenous price dynamic process. Section C.2 will
explain the methodology for measuring price correlation of the features, and section C.3 presents
the results of the study.

C.1 Tested features

We study whether the following microstructural features are correlated with the price movement
of EEX power futures:

The bid-ask spread: As mentioned in section 2.2.2, the bid-ask spread is used as a measure of
liquidity. One could argue that when the market is more liquid, one can obtain better prices. Thus
the bid-ask spread is considered a potential price driver.

Volatility: Market volatility could indicate market liquidity, which may provide a favourable price
environment for a liquidity taker.

Order book imbalance: Order book imbalance reflects overselling or overbuying in the market.
An imbalanced LOB may reflect new information, leading to a surplus of traders wishing to buy
or sell the asset. Order book imbalance is tested for the best bid and ask and the three best bids
and ask levels in the LOB.

Best bid and ask depth: A deep bid depth could indicate overbuying, which could be exploitable
for sellers. We test the depth of the best, three best and five best bids and asks.

Time of day: As mentioned in section 2.2.2, hourly traded volume is an indicator of liquidity. It
is assumed that the hourly traded volumes will be similar for all days. This assumption appears
reasonable as larger trading volumes tend to be transacted right after opening or just before
closing. This is speculated to be due to newly available information between trading days. Traders
may choose to close their position every day before closing to eliminate the overnight risk. This
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behaviour could also explain the higher trading activity in the morning and just before closing.

Micro price: The midprice, the best bid and ask average, is often referred to as the market price.
However, it does not consider LOB volumes. Therefore, one could propose to test a metric that
takes both prices and volumes in the LOB into account. The micro price is a volume-weighted
average price of the best bid and ask, as seen in equation (C.1). The micro price relative to the
market price could indicate the future price movement.

PMicro =
Pa · Vb

Va + Vb

+
Pb · Va

Va + Vb

(C.1)

Volume of most recent trade: If the trading volume of the most recent trade is substantially
large, one would expect market recovery going forward under the assumption of market resiliency.
Recovery would imply that the price will change during the next hour.

C.2 Methodology for indicating price correlation

The price correlation of the features in C.1 are determined by conducting linear regression. The
EEX data from 2014 through 2015 has been used to conduct the regressional analysis. Variables
such as best bid, spread, volatility, order depth and order book imbalance are collected for every
trading hour for all contracts. The time of day feature is classified as a set of dummy variables.
There is a binary variable for every trading hour throughout the trading day.

The data is split into two sets of equal duration, one for fitting and one for evaluating the model
performance as a price predictor. We follow a wrapper method for feature selection, specifically
using forward step-wise selection. The features with adjusted R-squared values higher than 0.6
are then analysed further. The logarithmic difference between the best bid price of two consecut-
ive hours is classified as the dependent variable while the features are classified as independent
variables, as shown in equation (C.2). The regressions with mid-price and micro price as inde-
pendent variables are conducted with the next hour’s best bid price as the dependent variable,
unlike the other features where the logarithmic change in bid price is classified as the dependent
variable. This adjustment is made since the mid-price and micro prices’ effect on the new best bid
price should be seen relative to the old best bid price, unlike the other features where the correl-
ation is independent of the price level. Quarterly and monthly contracts are regressed separately.
This is done since they have different delivery duration, thus are expected to behave differently.

ln(pbid
t+1)− ln(pbid

t ) = α
feature
0 +αfeature

1 · x feature
t (C.2)

C.3 Results from linear regression

The results from the price driver study are presented in tables C.1 and C.2, one for monthly con-
tracts and the other for quarterly contracts. We notice that many features show signs of being
statistically significant but with low adjusted R-squared values. The feature with the highest ad-
justed R-squared is the mid-price. An adjusted R-squared value of 0.8920 does seem promising.
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However, by comparing the adjusted R-squared value to an adjusted R-squared value of 0.98-0.99,
which was achieved with a random walk process as the dependent variable, the mid-price could
not be said to improve the exogenous price process quality. For the other features, the bid-ask
spread has the highest adjusted R-squared value. The adjusted R-squared value of the bid-ask
spread for the set of monthly contracts is higher than for the set of quarterly contracts, which
could be explained by the lower trading activity of monthly contracts. Therefore, these contracts
are less liquid, resulting in the bid-ask spread predicting the price movements more accurately
than for the quarterly contracts.

Based on the low R-squared values, the price driver study was stopped at the first step, as there
seems to be a limited correlation between each feature and the price. A random walk process was
therefore used as the exogenous price process for the Postponement model.

The low adjusted R-squared values could be explained by the EEX market being one of the most
liquid power markets. A liquid market is closer to an efficient market, where the random walk and
GBM price processes are more appropriate. One avenue of future work could then be to conduct
a similar study on a less liquid market, like the NASDAQ Nordic market. On the other hand,
microstructural features are primarily used in high-frequency trading and not on an hour-to-hour
trading frequency. Using microstructural abnormalities to exploit the market state primarily works
over short time intervals. Therefore, one could think that there is limited value in microstructural
feature analysis for someone trading hour-to-hour.

Table C.1: Results from parameter estimation for the price driver study for monthly contracts. A total of 11081
observations of each feature were collected. All features have low R-squared values except mid price, due to
its high correlation to the best bid.

Feature Intercept Coef. P-value Adjusted R2 Residual error

Bid-ask spread -0.0048 0.7851 0.0000*** 0.2176 0.0640
Volatility 0.0004 -0.0026 0.55987 -0.0001 0.0720
Ask depth 0.0009 -0.0001 0.49500 0.0000 0.0727
Bid depth 0.0027 -0.0005 0.00319*** 0.0007 0.0728
Volume of three best bids 0.0025 -0.0001 0.07270* 0.0002 0.0738
Volume of three best asks 0.0014 -0.0001 0.39563 0.0000 0.0736
Volume of five best asks 0.0017 0.000 0.35391 0.0000 0.0743
Volume of five best bids 0.0024 -0.0001 0.12752 0.0001 0.0745
LOB imbalance 0.0004 -0.0052 0.00471*** 0.0007 0.0732
LOB imbalance for best 3 levels 0.0006 -0.0054 0.02532** 0.0004 0.0734
Time of day - - 0.43144 0.000 0.0720
Micro price 34.8363 0.0674 0.00000*** 0.0460 2.4133
Mid price 2.4096 0.9237 0.00000*** 0.8920 0.9791
Volume of most recent trade 0.0124 -0.0004 0.00445*** 0.0007 0.0739

- since there are a total of 9 binary variables, we do not present the coefficients due to lack of space.
*** Significant at p<0.01
** Significant at p<0.05
* Significant at p<0.1
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Table C.2: Results from parameter estimation for the price driving study for quarterly contracts. A total of 5530
observations of each feature were collected.

Feature Intercept Coef. P-value Adjusted R2 Residual error

Bid-ask spread -0.0012 0.4114 0.0000*** 0.0601 0.0077
Volatility 0.0004 -0.0077 0.00000*** 0.0241 0.0078
Ask depth 0.000 -0.0000 0.88588 -0.0002 0.0079
Bid depth -0.0005 0.0001 0.00074*** 0.0019 0.0079
Volume of three best bids -0.0006 0.0000 0.00729*** 0.0011 0.0079
Volume of hree best asks -0.0001 0.0000 0.83880 -0.0002 0.0079
Volume offive best asks -0.0002 0.000 0.56374 -0.0001 0.0079
Volume of five best bids -0.0006 0.000 0.01872*** 0.0008 0.0079
LOB imbalance -0.0001 0.0005 0.02808** 0.0007 0.0079
LOB imbalance for best 3 levels -0.0001 0.0006 0.10992 0.0003 0.0079
Time of day - - 0.92266 -0.0009 0.0079
Micro price 30.5544 0.1100 0.00000*** 0.0566 2.9153
Mid price 0.2162 0.9925 0.000*** 0.9887 0.2621
Volume of most recent trade -0.0003 0.0000 0.87742 -0.0002 0.0079

- since there are a total of 9 binary variables, we do not present the coefficients due to lack of space.
*** Significant at p<0.01
** Significant at p<0.05
* Significant at p<0.1
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Appendix D

Miscellaneous processes for the QUASAR
Dynamic Hedging Model

This thesis does not detail the implementation of the Quasar Dynamic Hedging model. However,
a few aspects of model implementation are worth mentioning. The Quasar hedging model is used
to create a hedging plan that dictates trading decisions. The QUASAR Dynamic Hedging model re-
quires a production plan to make hedging decisions. The production plan ought to reflect a power
producer with a large market share to fully experience a lack of market liquidity. Consequentially,
we have scaled a normalised production plan to fit a large power producer. The process of scaling
the production volumes is explained in section D.1. Additionally, the QUASAR Dynamic Hedging
model requires a scenario lattice of price forward curves to solve the optimisation problem by
using ADDP. The process of creating these lattices will be described in section D.2. Lastly, three of
the benchmark models do not use the QUASAR Dynamic Hedging model. Therefore we present
the static hedging plan for these strategies in section D.3.

D.1 Scaling the production plan

The hedging decisions will be dependent on the production volumes. Higher production volumes
will lead to higher trading volumes of futures contracts. It is necessary to scale the production
plan to balance the effects of price impact and price risk. If the production volumes are too low,
the power producer will not experience any price impact, and the trade-off between price risk
and price impact is irrelevant. If the production volumes are too high, the power producer will
drain too much of the market liquidity, resulting in severe adverse price movements. Therefore,
it is essential to find a suitable scaling factor to thoroughly analyse the trade-off between price
impact and price risk. The scaling factor is determined by running an out-of-sample simulation
where different trading volumes were tested to balance price risk and price impact.
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D.2 Generating scenario lattices for the QUASAR Dynamic Hedging
model

Trading decisions are obtained by solving the QUASAR Dynamic Hedging model with daily gran-
ularity. As described in section 4.1.1, the ADDP algorithm relies on using forward simulations to
approximate the high-dimensional objective function. The continuous stochastic price process has
to be discretised to cohere with the solution algorithm. Scenario lattices have been generated for
this purpose. The hedging problem is solved for the time interval of a specific start date, TS D, and
end date, TE D. Given that TS D is incremented forwards while TE D stays constant, a new scenario
lattice is required for each daily optimisation. The number of stages in each lattice equals the
number of days in the time interval, TE D − TS D. Constructing the lattice such that nodes recom-
bine gives it a constant number of nodes for every stage. In our case, the number of nodes per
stage is 10.

The state variable for node i in stage t, Nt i corresponds to the realisation of a price forward curve,
described by the set of forward prices from stage t to stage TE D, {F i

t ,TE D
, F i

t+1,TE D
, . . . , F i

TE D−1,TE D
}.

For every node in stage t, we construct a probability distribution for state transitions to the nodes
in the subsequent stage t + 1. Löhndorf and Wozabal (2021) have developed the technique of
backwards estimation to estimate these probabilities. Backwards estimation ensures that the ex-
pected conditional successor state on the lattice does not deviate from the expected conditional
successor state of the continuous process. If the expected conditional successor states did not
coincide, arbitrage opportunities would be exploitable.

D.3 Hedging volumes for static volume strategies

Three of the benchmark strategies do not use the QUASAR Dynamic Hedging model. Consequen-
tially, hedging volumes are decided in another way. Ideally, all the trading strategies should trade
equal volumes of all contracts. To ensure this occurs, we construct the hedging plan of the static
strategies on the hedging plan retrieved from the dynamic volume-equivalent strategies.

The benchmark strategies that use the QUASAR Dynamic Hedging model are backtested first.
The traded volumes of each contract are then aggregated to find the total volume traded of each
contract. The aggregated contract volumes are spread evenly across all trading days, as seen in
figure D.1. This is referred to as the static hedging plan. It could have been referred to as a TWAP
hedging strategy as volumes are distributed like a TWAP trading strategy. For instance, the TWAP
DHM strategy is backtested first before the static TWAP strategy. The trading volumes are then
aggregated and distributed evenly across all trading days. Evenly distributing the trading volumes
across the trading days is a natural heuristic for trading volume allocation. Thus it is used as a
benchmark hedging strategy to analyse the effect of the QUASAR Dynamic Hedging model.
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Figure D.1: The static and the dynamic hedging plan for the NOV-2016 futures contract. Note that
the trading volumes for static volume strategies are evenly distributed across the contract lifecycle.
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Appendix E

Algorithms

Preparing for the backtest consists of conducting several processes, starting with the reverse en-
gineering of the order data to programming the trading algorithms. This has been implemented
using the programming languages Jupyter Scala and QUASAR has been used to solve the optim-
isation problems. Pseudo code for the most essential scripts are provided in this appendix.

E.1 Reverse engineering of order data

The EEX LOB dataset has been reconstructed to comply with the LOB simulation algorithm em-
ployed by Dyrkolbotn et al. (2020). Algorithm 1 was used for this purpose. The following section
describes this algorithm and its underlying assumptions.

The EEX LOB data details the state of the LOB at an instance, without providing context on how the
LOB state was reached. By state, it is meant the combination of prices and volumes for all orders
in the LOB at one instance. The LOB state has been reached by the placement of a particular set of
orders with respective prices, volumes and timestamps. By observing consecutive LOB instances,
one can deduce the characteristics of the order changes that led to the new LOB instance. If the
price or volume of the order at a LOB level is different from the price and volume of the order at
the same LOB level at the next LOB instance, at least one order change has occurred. By observing
the all LOB levels on the bid and ask sides of the LOB, we can deduce the characteristics of the
order that was placed, changed or cancelled.

Types of order changes in the LOB

• Change in order price
• Change in order volume
• Cancellation of order
• New order placed in LOB
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Assumptions for reverse engineering of order data

• If there is no order matching, it is assumed that maximum one order change for each side
of the LOB.

• In the case of an order match, multiple order changes to one side of the LOB can be caused
by only one order arrival on the opposite side of the LOB.

• The EEX LOB dataset is incomplete, since it only contains the order data for the first five
levels of the LOB. One resulting issue from this is that if an order moves from order level
5 (L5) to order level (L6), it dissappears from the LOB. Therefore it is assumed that if an
order is no longer observable in the dataset, the order is deleted, and gets resubmitted if it
moves back from L6 to L5.

• For some situations, it is not possible to know with certainty whether an L1 order was
matched against an opposing market order of equal volume, or if the order was cancelled.
In this case, it is assumed that a market order of the same volume was placed, resulting in
a match, as this is the more likely outcome.
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Data: EEX LOB instances
Result: set of all single orders
Initialization;
while untreated LOB instances exist do

Check that LOB instance does not contain errors
if Changes to one or both L1 order exist then

if Change is a result of an order match then
Determine volume and price of submitted order
Create new order that caused the match

else
Delete old L1 order
Create new L1 order

end
else

while not observed order change of ask orders in LOB do
if new order at current level is better than old order then

Create new order at current order level
Determine the type of order change
if New order at current level has been changed from existing order then

Find order that was changed and delete it
end

else
Delete old order at current level
Determine the type of order change
if New order at current level has been changed from existing order then

Find order that was changed and delete it
end

end
end
while not observed order change of bid orders in LOB do

if new order at current level is better than old order then
Create new order at current order level
Determine the type of order change
if New order at current level has been changed from existing order then

Find order that was changed and delete it
end

else
Delete old order at current level
Determine the type of order change
if New order at current level has been changed from existing order then

Find order that was changed and delete it
end

end
end

end
Increment to the next LOB instance

end
Algorithm 1: Reverse engineering of order data
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E.2 Limit order book matching algorithm

An essential part of this thesis is the use of limit order books. Consequentially, an order matching
algorithm is needed. Algorithm 2 describes the LOB matching process employed in the backtest.
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Data: set of buy orders and sell orders, sorted by price in LOB queues
Result: set of all transactions for LOB data
initialization;
while unprocessed orders exist do

if current order is a market order then
Initialise tradedVolume to 0
while tradedVolume is less than market order volume and clearable orders exist do

if remainingTradingVolume >= OppositeSideL1Order.volume then
tradedVolume+=OppositeSideL1Order.volume
delete OppositeSideL1Order

else
tradedVolume+=(MarketOrderVolume-RemainingTradingVolume)
reduce order volume for OppositeSideFirstOrder

end
end
if tradedVolume is less than market order volume then

send remaining order volume back to LOB as a limit order
end
create transaction
Continue to next order

else if current order is a limit order then
if orders with price eligible of match exist then

while tradedVolume is less than market order volume and clearable orders exist
do

if remainingTradingVolume >= OppositeSideFirstOrder.volume then
tradedVolume+=OppositeSideFirstOrder.volume
delete OppositeSideFirstOrder

else
tradedVolume+=(MarketOrderVolume-RemainingTradingVolume)
reduce order volume for OppositeSideFirstOrder

end
end
if tradedVolume is less than market order volume then

send remaining order volume back to order book as a limit order
end
create transaction
continue to next order

else
Continue to next order

end
else

Current order is a cancel order, find corresponding limit order and delete it
Continue to next order

end
end

Algorithm 2: LOB matching algorithm.
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E.3 Backtest Algorithms

The different strategies are backtested using the LOB from E.2. In this section, algorithm 3 ex-
plains how the backtest is structured, while algorithm 4 explains the trading sequence for the
Integrated Postponement model.

Data: LOB data, scenario lattices, production data, liquidity data, first stage hedging
decisions

Result: set of all transactions for LOB data
Initialization;
while in the trading period do

Run QUASAR Dynamic Hedging model
Store first stage hedging decisions π0

d
for every contract to trade do

Initialize LOB to current trading date
while still on current trading date do

Place orders according to order strategy
Increment to next order in LOB

end
Store total traded volume on trading date for contract

end
Store total traded volumes to be used by QUASAR Dynamic Hedging model for the
next day

Increment trading date
end

Algorithm 3: LOB trading simulation sequence.

Data: LOB Data, shadow prices (ηd) from the QUASAR Dynamic Hedging model, first
stage hedging decisions

(π0
d) Result: Trading policy for order placement problem

Initialization;
while still on current trading day do

if New trading hour then
Retrieve shadow price from the QUASAR Dynamic Hedging model
Retrieve best bid and slope from the LOB
Retrieve volume left to trade for the day
Find number of hours left of trading day
Run the Postponement model with required inputs
Place order and update volume left to trade based on the first stage solution

end
Increment to next order in the LOB

end
Algorithm 4: The sequence of order placement for the Postponement model. This is the input
for "Place orders according to strategy" in algorithm 3 for the proposed model.
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Complete Postponement model formulation

The complete formulation of the Postponement model is presented below. An artificial state vari-
able Y ar t

t is included to ensure relatively complete recourse. The implication of relatively complete
recourse is that the model is solvable in all single-stage sub-problems. Y ar t

t has been added to the
objective function with negative big M coefficient to introduce a large penalty to non-feasible
solutions at each sub-stage.

Max Z = CVaRN EST
0,α,λ [R0(x0), R1(x1), ...,RT (xT )] +

∑

tεT

M · Y Ar t
t + ζ ·ηd · YT (F.1)

s.t

Yt+1 = Yt + Y Ar t
t − x t for t = 0, 1, . . . , T − 1. (F.2)

pt+1 = pt + εt for t = 0,1, . . . , T − 1. (F.3)

εt ∼ N(0,σ2) (F.4)

Y0 = π
0
d (F.5)

0≤ x t ≤ π
0
d for t = 0, 1, . . . , T. (F.6)

0≤ Yt ≤ π
0
d for t = 0, 1, . . . , T. (F.7)

Y ar t
t ≥ 0 for t = 0, 1, . . . , T. (F.8)
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Trading strategy performance for all
contracts

An overview of the trading strategy performance for the sets of monthly, quarterly and all traded
contracts are presented in chapter 7. The trading strategy performance for all individual contracts
is presented in tables G.1 and G.2.

Table G.1: Revenue per MWh and standard deviation for all quarterly contracts

Quarterly contracts

Strategy Q3-2016 Q4-2016 Q1-2017

=C/MWh St.dev =C/MWh St.dev =C/MWh St.dev
IOBE 27.226 0.22 % 29.831 1.08% 32.139 1.49%

IOBE DHM 27.230 0.01% 29.811 0.39% 31.989 1.31%
TWAP 27.494 1.41% 30.018 1.05% 32.602 0.01%

TWAP DHM 27.405 0.33% 29.991 0.96% 32.568 1.21%
Bertrand 27.492 1.35% 30.011 0.72% 32.639 0.04 %

Bertrand DHM 27.402 0.27% 29.971 0.72% 32.515 1.04%
Postponement model 27.408 0.30% 29.960 1.48% 33.168 0.95%
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Table G.2: Revenue per MWh and standard deviation for all monthly contracts

Monthly contracts

Strategy JUL-2016 AUG-2016 SEP-2016 OCT-2016

=C/MWh St.dev =C/MWh St.dev =C/MWh St.dev =C/MWh St.dev
IOBE 26.346 0.33% 26.959 0.66% 29.080 0.31% 29.281 0.99%

IOBE DHM 26.285 0.26% 27.040 0.61% 29.090 0.34% 29.231 1.09%
TWAP 26.403 0.63% 27.084 0.56% 29.182 0.14% 29.387 1.5%

TWAP DHM 26.342 0.57% 27.147 0.60% 29.210 0.16% 29.366 1.64%
Bertrand 26.405 0.37% 27.076 0.24% 29.183 0.09% 29.391 0.55%

Bertrand DHM 26.345 0.38% 27.140 0.63% 29.206 0.12 % 29.376 0.97%
Postponement model 26.350 0.36% 27.140 0.64% 29.207 0.11% 29.376 0.01%

Monthly contracts

Strategy NOV-2016 DEC-2016 JAN-2017 FEB-2017

=C/MWh St.dev =C/MWh St.dev =C/MWh St.dev =C/MWh St.dev
IOBE 32.392 3.19% 32.746 1.57% 35.734 1.59% 36.891 0.99%

IOBE DHM 32.458 2.95% 33.077 1.41% 35.888 1.48% 36.901 0.92%
TWAP 32.605 3.24% 32.908 1.59% 35.790 1.85% 36.916 1.78%

TWAP DHM 32.699 2.98% 33.245 1.44% 35.989 1.71% 37.036 1.66%
Bertrand 32.723 1.26% 33.087 0.15% 36.603 0.16% 37.406 0.26%

Bertrand DHM 32.820 0.87% 33.471 0.53% 36.751 0.39% 37.308 0.83%
Postponement model 32.838 0.01% 33.473 0.41% 36.962 0.39% 37.528 0.76%

Monthly contracts

Strategy MAR-2017 APR-2017 MAY-2017

=C/MWh St.dev =C/MWh St.dev =C/MWh St.dev

IOBE 33.153 0.68% 31.025 0.54% 29.273 0.42%
IOBE DHM 33.039 0.57% 30.869 0.39% 29.086 0.53%

TWAP 33.216 0.28% 31.081 0.49% 29.363 0.48%
TWAP DHM 33.112 0.25% 30.936 0.36% 29.150 0.63%

Bertrand 33.559 0.07% 31.091 0.34% 29.374 0.23%
Bertrand DHM 33.450 0.08% 30.978 0.01% 29.158 0.47%

Postponement model 33.676 0.06% 31.049 0.23% 29.535 0.44%
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