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Summary

This project investigates the possibility of implementing constraint-based robot
programming to welding robots in the Norwegian industry. It is also preparatory
work for a master’s thesis.

Current welding methods and sensors are presented along with an overview of
common welding robots and robot programming methods. A literature review on
state of the art frameworks for constraint-based robot programming is also con-
ducted, with a detailed presentation of expressiongraph-based Task Specification
(eTaSL)/expressiongraph-based Task Controller (eTC), Stack of Tasks (SoT) and
instantaneous Task Specification using Constraints (iTaSC). In addition to the
literature review, interviews were conducted to map the current state for welding
robots in the Norwegian industry.

Based on the gathered information, the challenges and advantages of constraint-
based robot programming for welding robots in the Norwegian industry are dis-
cussed. Briefly summarised, constraint-based robot programming could lead to
more flexible robots, higher degree of automation and easier robot programming
of complex welding tasks.

In addition to this discussion, a robot cell in the Department of Mechanical and
Industrial Engineering (MTP) at the Norwegian University of Science and Tech-
nology (NTNU) is presented. This cell can be used for further work on applying
constraint-based robot programming to welding robot. Some preparatory work
was done in this project, a simplified model of the robot was made along with
code for a simple visualiser of the robot.





Sammendrag

Denne prosjektoppgaven undersøker mulighetene for å implementere begrensnings-
basert robotprogrammering for sveiseroboter i den norske industrien. Oppgaven
er også forberedende arbeid for en masteroppgave.

Dagens sveisemetoder og sensorer blir først presentert, sammen med et utvalg
av typiske sveiseroboter. Deretter presenteres et litteratursøk av den nyeste
forskningen innen rammeverk for begrensningsbasert robotprogrammering. Tre
rammeverk blir presentert i detalj: "Expressiongraph-based Task Specification"
(eTaSL)/"expressiongraph-based Task Controller" (eTC), "Stack of Tasks" (SoT)
og "instantaneous Task Specification using Constraints" (iTaSC). I tillegg til litter-
atursøket har det blitt gjennomført intervjuer for å kartlegge hvordan robootsveis-
ing brukes i den norske industrien i dag.

Med utgangspunkt i informasjonen fra intervjuene og litteratursøket blir forde-
lene og utfordringene med begrensningsbasert robotprogrammering i den norske
industrien diskutert. Kort oppsummert kan begresningsbasert robotprogrammer-
ing lede til mer fleksible roboter, høyere grad av automatisering og lettere robot-
programmering for komplekse sveiseoperasjoner.

I tillegg til denne diskusjonen presenteres en robotcelle fra Institutt for mask-
inteknikk og produksjon (MTP) ved Norges teknisk-naturvitenskapelige univer-
sitet (NTNU). Denne cellen kan brukes for videre arbeid med begrensningsbasert
robotprogrammering av sveiseroboter. Noe forberedende arbeid er gjort. En
forenklet modell av roboten er laget sammen med en kode for enkel visualisering
av roboten.
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Chapter 1.

Introduction

Constraint-based robot programming is a way of programming robots where con-
straints are defined and translated into an end-effector trajectory by a solver.
Constraints can originate from the robot hardware, the task it is set to do or the
surrounding environment. This way of programming can allow for more intuitive
robot programming as well as faster and easier programming of complex tasks.

1.1. Problem Statement
Constraint-based robot programming is mainly used in research environments and
is yet to be implemented in the industry. There is little research on the field of
implementing constraint-based robot programming for welding robots, and the
benefits of such an implementation are currently unclear.

With a focus on the Norwegian industry, this report aims to explore the possi-
bilities of introducing constraint-based robot programming in robotic welding. A
literature review on state of the art constraint-based robot programming frame-
works and welding technologies will be conducted. In addition to this the current
situation for robotic welding in the Norwegian industry will mapped through in-
terviews. This work results in a discussion regarding advantages and challenges
in constraint-based programming for welding robots in the Norwegian industry.

Additionally this report aims to be preparatory work for a master’s thesis to be
written on the subject. As preparations a robot cell set up for further work will
be presented along with other preparatory work.
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1.2. Methodology
To give an overview on welding methods, sensors and previous work on constraint-
based robot programming, a literature review was conducted. This was considered
the most available and efficient way of gathering information on the topic. Source
criticism was utilised to not include false or outdated information, which is always
a risk when doing a literature research.

As for investigating robotic welding in the Norwegian industry, interviews were
regarded as the best solution. Different companies working with robotic welding
in Norway was contacted, and the interview templates seen in Appendix A was
presented. After having the interview subject read through the questions, the
interviews were completed by phone. Interviews was chosen as the amount of
literature on robotic welding in the industry is mostly outdated. While interviews
yields hands on information, it is important to be critical to conclusions based
off interviews. They can be misleading if the subjects fails to represent the whole
target group. In this report the subjects were limited to Norwegian industries due
to time considerations. Note that the interviews where conducted in cooperation
with Thea Holmedal, so the interview results will occur in another report as well.

1.3. Structure of the Report
The structure of the report is inspired by the IMRaD structure for scientific writ-
ing where a text is divided in Introduction, Material and Method, Results and
Discussion. For this report the method is merged with the introduction. Figure
1.1 shows the structure of the report.

Figure 1.1.: A visual representation of the report structure inspired by IMRaD
(Introduction, Method and Material, Results and Discussion).
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Robot Kinematics

This chapter will summarise some important aspects of robot kinematics for open
chain manipulators. This is a robot where one end is not fastened, like the robotic
arms commonly seen in the industry. The theory is meant to give a better under-
standing of the work that will be presented later in the report. All sections in this
chapter are based off the work done in [18] unless stated otherwise. All equations
presented are also taken from [18].

2.1. Degrees of Freedom
Degrees of freedom (DOF) defines the range of motion for an object. For this
report, 3-dimensional space will be considered. A rigid body in space has a config-
uration, which is a description of the body position and orientation. The number
of parameters needed to fully describe the body is equal to its number of DOF.
To illustrate this concept, consider the cube shown in Figure 2.1. As the cube is
not constrained in any way, it can be moved in the x, y and z-directions. It can
also be rotated by an angle γ, β and α around the x, y and z-axis respectively.
For rigid bodies it holds that:

DOF = (sum of freedoms of the bodies)-(number of independent constraints)

From this it can be concluded that a rigid body in space with no constraints has
six DOF. The next step is to define the DOF for a robot based on the type and
number of joints it has.

In robotics there are different types of joints with different DOF. The most com-
mon in industrial robots is the revolute joint, which yields one DOF as it rotates
about one axis. The DOF for a robot is calculated by Grübler’s formula:
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Figure 2.1.: Degrees of freedom (DOF) shown for a cube in 3D.

DOF = m(N − 1− J) +
J∑
i=1

fi (2.1)

Where m is the number of DOF for a rigid body, N is the number of robot links
including the ground it is mounted on, J is the number of joints and fi is the DOF
for joint i. Note that for a robot with only revolute joints, the DOF is equal to
the number of joints. From (2.1) it is seen that a robot can exceed the six DOF
needed for free movement in 3D, this will cause redundancy which is the topic of
the next section.

2.2. Redundancy
Redundancy has been defined differently by several authors in literature. Several
definitions were presented in [7], and a common definition was suggested. Parts
of this definition will be summarised in this section. Two definitions are needed
before defining redundancy. The workspace of a robot is defined as the space a
robot can reach with its end-effector, and the task space is defined as the space
where a robot task can be expressed naturally.

The redundancy definition in [7] considers industrial robots with joints that yield
one DOF. Let the number of joints in a robot be denoted n and the dimension
of the robot’s work- and taskspace denoted w and t respectively. With these
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parameters, three cases are worth noting:

• n = w: This is the normal case where most industrial robots operate today.

• n > w: This is a case of kinematic redundancy, where the number of robot
joints exceeds the requirement for the robot to operate in the workspace.
Kinematic redundancy will make the robot more flexible as it can move
more joints without changing the end-effector pose.

• n > t: This case is similar to the previous one, but defined as task redun-
dancy. In this case a robot has more DOF than is required for its given
task.

In the two latter cases redundancy can be utilised to move the robot while still
maintaining the same end-effector pose. This can be used to avoid external ob-
stacles, avoid singularities (Section 2.9), minimise energy consumption, etc.

2.3. Rotation Matrices
Before presenting rotation matrices, the concept of frames must be defined. A
frame is simply a coordinate system that can be placed freely in space. Usually
a space-frame is set and used as reference when working with robotics. A body-
frame is defined as a frame that is always coincident with a frame attached to a
body. For practical reasons frames in this report are always right-handed. With
these concepts in place, rotation matrices can be explained.

Rotation matrices are used to represent the orientation of a frame, change the
reference frame for a vector or frame and rotate a vector or frame. In 3D these
matrices are represented by the special orthogonal group SO(3). These 3× 3 real
matrices R satisfy the following conditions:

RTR = I

det(R) = 1

where I is the 3 × 3 identity matrix. To illustrate the use of rotation matrices
Figure 2.2 from [18] will be used, where three different frames are shown along
with a point p. The first use of rotation matrices is representing orientation.
Orientation is always represented with regards to a reference frame, so imagine a
frame {s} coincident with frame {a}. The notation Rij represents the orientation
of frame {j} with respect to frame {i}. This yields the following orientations for
the three frames:
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Figure 2.2.: Three coordinate frames with a point p used to demonstrate the
use of rotation matrices. Figure from [18].

Rsa =

1 0 0
0 1 0
0 0 1

 , Rsb =

0 −1 0
1 0 0
0 0 1

 , Rsc =

0 −1 0
0 0 −1
1 0 0


The point p is represented as a vector in each frame, note that pi denotes the
point p with reference frame {i}. This yields the following representations:

pa =

1
1
0

 , pb =

 1
−1
0

 , pc =

 0
−1
−1


The second use of a rotation matrix is to change the reference frame of another
frame or vector. Consider the matrix Rsa. How can the orientation of frame {a}
be represented with respect to frame {b}? This can be done with the following
matrix multiplication:

Rba = RbsRsa (2.2)

Note that Rbs = RT
sb = R−1

sb . The reference frame for vectors can be changed in
a similar manner:

pb = Rbapa (2.3)

The last use of rotation matrices is the rotation of a frame or vector. A pure
rotation around the unit x̂, ŷ and ẑ-axis can be represented by (2.4), (2.5) and
(2.6) respectively, where θ is the rotation angle about the axis:
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Rot(x̂, θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (2.4)

Rot(ŷ, θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (2.5)

Rot(ẑ, θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (2.6)

When rotating a frame with a rotation matrix, it is done by either post- or pre-
multiplying the rotation matrix R with the orientation of the frame. Premulti-
plication, RRij , correlates to rotating Rij with respect to frame {i}. Postmul-
tiplication, RijR, correlates to rotating Rij with respect to frame {j}. A vector
must always be rotated with respect to its reference frame and is therefore always
premultiplied with the rotation matrix.

2.3.1. Exponential Representation of Rotation

Imagine that instead of representing rotations as pure rotations about each coor-
dinate axis, the rotation can be represented by a rotation θ about one arbitrary
unit axis ω̂. The resulting rotation matrix can be found by Rodrigues’ formula:

Rot(ω̂, θ) = e[ω̂]θ = I + sin(θ)[ω̂] + (1− cos(θ))[ω̂]2 (2.7)

where [ω̂] is the skew-symmetric representation of ω̂ = [ω1, ω2, ω3]T defined as:

[ω̂] =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 (2.8)

2.3.2. Matrix Logarithm of a Rotation Matrix

In (2.7) a rotation matrix R was found from an arbitrary unit rotation axis ω̂ and
a rotation angle θ. The matrix logarithm is the opposite operation where the axis
and angle is found from the matrix. The two essential equations used to calculate
the matrix logarithm form a rotation matrix R are:
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tr(R) = 1 + 2 cos(θ) (2.9)

[ω̂] =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 = 1
2 sin(θ)(R−RT ) (2.10)

From (2.9) it is possible to find the rotation angle θ, which in turn can be inserted
in (2.10) to find the unit rotation axis ω̂. Two special cases are worth noting.
When R = I, θ = 0 which in turn makes ω̂ undefined. When tr(R) = −1, θ = π
and ω̂ can be set to any of the following solutions:

ω̂ = 1√
2(1 + r33)

 r13
r23

1 + r33

 (2.11)

ω̂ = 1√
2(1 + r22)

 r12
1 + r22
r32

 (2.12)

ω̂ = 1√
2(1 + r11)

1 + r11
r21
r31

 (2.13)

where rij are the elements of the rotation matrix R.

2.4. Transformation Matrices
To describe translation as well as rotation in 3D, the homogeneous transformation
matrices are used. These matrices form the special Euclidean group SE(3), and
are 4 × 4 real matrices. They include a rotational matrix R ∈ SO(3) as well as
a column vector p ∈ R3 representing translation along the three axes of a frame.
Homogeneous transformation matrices T take the form:

T =
[
R p
0 1

]
(2.14)

The use of transformation matrices are analogous to that of rotation matrices,
but also include position and translation of frames. Transformation matrices
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Figure 2.3.: Three frames with a point v used to describe homogeneous trans-
formation matrices. Figure from [18].

can be used to represent the position and orientation, i.e. configuration, of a
frame, change the reference frame of a vector or frame or change configuration
for a vector or frame. To illustrate the different uses of transformation matrices,
consider Figure 2.3 taken from [18]. Imagine once again a reference frame {s}
that is coincident with frame {a}.

By using transformation matrices as representations of frame configuration, the
following matrices are obtained:

T sa =
[
Rsa pa

0 1

]
=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



T sb =
[
Rsb pb
0 1

]
=


0 0 1 0
0 −1 0 −2
1 0 0 0
0 0 0 1



T sc =
[
Rsc pc
0 1

]
=


−1 0 0 −1
0 0 1 1
0 1 0 0
0 0 0 1


The notation is equal to the one for rotation matrices so T ij is the configuration
of frame {i} with respect to {j}. The point v is represented by a homogeneous
vector ∈ R4. In this case the three first elements of the vector are analogous to
the case seen for p in Section 2.3, and the last element is equal to one. The rule
for changing the reference frame of a transformation matrix is also equal to the
one for rotation matrices. Changing the reference frame of T sa from {s} to {b}
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can be done in the following manner:

T ba = T bsT sa (2.15)

Note that T bs = T−1
sb , where the inverse of a transformation matrix is found as:

T−1 =
[
RT −Rp
0 1

]
(2.16)

The rules for changing the configuration of a vector or frame are similar to the
rules for rotation matrices. The difference between the two being the translation.
When pre-multiplying with a transformation matrix the frame is first rotated
with respect to the space-frame according to the rotation matrix R, before it
is translated with respect to the space-frame according to the vector p. When
post-multiplying by a transformation matrix the frame is first translated with
respect to the body frame, before it is rotated with respect to the body frame.
As vectors are only related to one frame they can only be premultiplied to change
configuration.

2.5. Twists and Screws
Twists are representations of both the linear and angular velocity of a moving
frame. It is a six-dimensional vector consisting of both velocities and can be
represented in regards to the fixed frame {s} or the moving body frame {b}.
These are the body twist and spacial twist respectively, and are written on the
following form:

Vs =
[
ωs
υs

]
, Vb =

[
ωb
υb

]
∈ R6

where ωs and ωb represents the angular velocity of the frame with respect to the
fixed frame and the body frame respectively. υb represents the linear velocity of
the body frame, but υs does not simply represent the velocity of a frame with
respect to {s}.

To explain the physical interpretation of υs it is useful to look at Figure 2.4 taken
from [18]. The body containing both the body frame {b} and the fixed frame {s}
is moving with a body twist Vb. Now imagine a point that is attached to the body
and coincident with the origin of {s}. This point will have the linear velocity υs,
which is a combination of the rotational and linear velocity of the body.
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Figure 2.4.: A visual representation of the linear velocity of a twist represented
in the fixed space frame {s}. Figure from [18].

A twist can be represented by a normalised screw axis S multiplied by an angular
velocity θ̇. The motion of a frame along screw axis will then replicate the threads
of a screw with a a translation along the axis happening simultaneously with a
rotation about the axis. The angular velocity around this axis is represented by
θ̇. The process of finding a screw axis S and an angular velocity θ̇ from a twist
V =

[
ωT υT

]T
will now be presented.

If ω 6= 0 then the screw axis S is equal to the twist normalised by ||ω||. The
rotational velocity θ̇ is then equal to ||ω||. If ω = 0 there is no angular velocity
and the twist is just a linear translation. The screw axis S is then represented by
the twist normalised by ||υ||. The velocity θ̇ is then equal to ||υ||. For both cases
the twist V = S θ̇.

A more formal definition of the screw axis can be written as:

S =
[
ω
υ

]
∈ R6 (2.17)

If ω = 0 then ||υ|| = 1 and the twist will be a pure translation along the axis
defined by υ. When ||ω|| = 1 the velocity υ = −ω × q + hω where q is a point
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on the screw axis and h is the pitch of the screw defined as ωTυ
θ̇

.

It can be useful to express the screw axis S in matrix form. This expression will
also hold for a twist V as S is a normalised twist.

[S] =
[
[ω] υ
0 0

]
(2.18)

2.5.1. Adjoint representation

It is useful to be able to change the reference frame of a twist. This can be done
with the adjoint representation of a transformation matrix T which is defined as:

[AdT ] =
[
R 0

[p]R R

]
∈ R6×6 (2.19)

where R and p are the rotation matrix and translation vector associated with
T respectively. The reference frame can be changed from the body frame to the
fixed frame by the following equation:

Vs = [AdT sb ]Vb = AdT sb(Vb) (2.20)

Note the alternative notation of the adjoint representation multiplied by a twist,
this will be used in later sections. Equation 2.20 is also applicable to screw axes.

2.6. Exponential Representation and Matrix
Logarithm of Transformation Matrices

Just as rotation matrices can be represented by a rotation θ around an arbitrary
unit rotation axis ω̂, homogeneous transformation matrices can be represented
by a screw axis S and a distance θ along the screw axis. To transform this
representation into a homogeneous transformation matrix in SE(3), the matrix
exponential is utilised. It is defined as:

e[S]θ =
[
e[ω̂]θ (Iθ + (1− cos θ)[ω̂] + (θ − sin θ)[v]2)υ

0 1

]
(2.21)

Analogous to rotation matrices, it is also possible to find a screw axis S and a dis-
tance θ from a transformation matrix T by using the matrix logarithm operation.
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Given a transformation matrix on the form shown in (2.14). The rotational axis
ω̂ and rotation angle θ can be found from the matrix logarithm of R as described
in Section 2.3.2. The linear velocity υ is found from the following equation:

υ = (1
θ
I − 1

2[ω̂] + (1
θ
− 1

2 cot(θ2))[ω̂]2)p

For the matrix logarithm of T there is one special case to consider. If R = I
there is no rotation and the motion is purely transnational. If that is the case set
ω̂ = 0, υ = p

||p|| and θ = ||p||.

2.7. Forward Kinematics
Forward kinematics in robotics is the calculation of the end-effector configuration
based on the joint angles of the robot. There are different ways of calculating
forward kinematics, a widespread method uses Denavit-Hartenberg parameters.
In this method each link of the robot is given a frame, and the forward kinematics
of the robot can be calculated based on the relation between each frame. The
method that will be explained in this section is the product of exponential (PoE)
formula, as this method correlates well with the previously explained theory and
is the method used in [18].

PoE is based off the exponential representation of homogeneous transformation
matrices and their product. Consider the open chain manipulator with n rota-
tional joints shown in Figure 2.5 taken from [18]. Define the fixed space frame {s}
and an end-effector frame {b}. Also define a homogeneous transformation matrix
M = T sb(0) representing the end-effector configuration with all n joints angles
equal to zero. This is the zero-position or home-position.

PoE can now be divided into two different approaches depending on which frame
is used as reference for defining the exponential representations. This section will
focus on the space-frame formulation where {s} is used as reference. After this
explanation a brief summary of the calculations using the end-effector frame {b}
as reference will be given.

Each of the n rotational joints on the robot can be defined by a screw axis Si
where i = 1, 2, ..., n. To calculate the axes see (2.17). The upper part of Si is a
vector representing the rotational axis of joint i. As the motion around the joints
are purely rotational, the pitch h is zero. This simplifies the velocity calculation
and we can write the screw axes for each joint of the robot as:
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Figure 2.5.: An n-link open chain manipulator used to explain the product of
exponentials (PoE) formula. Figure from [18].

Si =
[

ωi
−ωi × qi

]
i = 1, 2, ..., n (2.22)

where qi is a point on the rotational axis of joint i. After finding a screw axis for
each joint, they can be represented in exponential form by using (2.21). The value
θi is the joint angle of joint i. With the zero-position and an expression for each
joint angle it is now possible to calculate the end-effector configuration T sb(θ) by
pre-multiplying the chain of exponential representations with the zero-position:

T sb(θ) = e[S1]θ1e[S2]θ2 ...e[Sn]θnM (2.23)

Where θ is a vector containing all joint angles θ1, θ2...θn.

Calculating the forward kinematics using the end-effector frame {b} is similar to
using the space-frame {s}. There are two differences in the approach, the first
one being how to calculate the screw axes. These are now calculated with respect
to the end-effector frame instead of the base frame and denoted Bi. The second
difference is that the zero-position is post-multiplied by the chain of exponential
representations instead of pre-multiplied. This yields the following equation for
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finding the end-effector pose T :

T sb(θ) = Me[B1]θ1e[B2]θ2 ...e[Bn]θn (2.24)

2.8. The Jacobian
For an open chain manipulator, the Jacobian represents the relationship between
the velocity of the end-effector and the joint velocity such that:

ẋ = J(θ)θ̇ (2.25)

where ẋ ∈ Rm is the end-effector velocity, θ ∈ Rn is a list of current joint angles,
θ̇ is a list of joint velocities and J(θ) ∈ Rm×n is the Jacobian matrix.

The two types of Jacobians that are relevant for this section are the space Jacobian
and the body Jacobian. The space Jacobian Js correlates the spacial twist of the
end-effector to the joint velocities and is defined for a robot manipulator with n
joints as:

Vs = Js(θ)θ̇ (2.26)

where the ith column of Js(θ) is:

Jsi(θ) = Ad
e[S1]θ1e[S2]θ2 ...e[Si−1]θi−1 (Si) i = 2, 3, ..., n (2.27)

and the first column Js1 = S1. Similarly the body Jacobian of a n-joint manipu-
lator is defined as:

Vb = J b(θ)θ̇ (2.28)

where the ith column of J b(θ) is:

Jsi(θ) = Ad
e−[Bn]θne−[Bn−1]θn−1 ...e−[Bi+1]θi+1 (Bi) i = n− 1, n− 2, ..., 1 (2.29)

and the last column J bn = Bn.
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2.8.1. The Pseudoinverse of the Jacobian

It can be useful to find the inverse of the Jacobian matrix. For a six-joint open
chain manipulator the Jacobian will be a 6×6 matrix and the inverse can be found
normally, but this is not always the case. In the case where there are more than
six joints, the Jacobian is called fat as it has more columns than rows. Accordingly
it is called "tall" when there are less than six joints as the Jacobian then will have
more rows than columns.

In both cases the Jacobian will then no longer be square and the regular inverse
can no longer be calculated. It is then possible to use the Moore-Penrose inverse
commonly called the pseudoinverse. For a matrixA of full rank, the pseudoinverse
A† can be calculated by the following formulas:

A† = AT (AAT )−1 if A is fat (2.30)

A† = (ATA)−1AT if A is tall (2.31)

2.9. Singularities
Singularities for open chain manipulators occur when it loses the ability to move
its end-effector in one or more directions. Mathematically singularities occur when
the Jacobin fails to be full rank. This happens in configurations where joint axes
become linearly dependent. An example of a singularity can be seen in Figure
2.6 taken from [18]. In this case the wrist centre of the six-axis robot is placed
directly above the shoulder joint making the four joint axes intersect in a common
point, thus causing linear dependency.

2.10. Inverse Kinematics
The inverse kinematics problem can be regarded as the opposite of forward kine-
matics. Given an end-effector pose T (θ) the task is to find a set of joint angles
θ = [θ1, θ2, ..., θn] that will yield said pose.

Inverse kinematics can be calculated analytically and numerically. When solving
the inverse kinematic problem analytically the geometry of the robot together
with trigonometry is used to yield a solution. An exact analytical solution to
the inverse kinematics problem can often be complicated and yield cumbersome
calculations due to robot geometries not being ideal for analytical calculations.
Simplifying the robot geometries for calculations will make the process simpler,
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Figure 2.6.: A singular configuration for a six-axis open chain manipulator.
Figure from [18].

but the solution will not be exact. In this case the joint angles can be found
numerically using the analytical solution as an initial guess.

There are several numerical methods than can be used to solve the inverse kine-
matics problem. In [18], Newton’s method is used as a basis for deriving the
equations shown in this section.

To show how Newton’s method is used to solve the inverse kinematics problem,
consider a robot manipulator with an end-effector frame {b} and a fixed frame
{s}. The desired end-effector configuration T sd is given along with an initial
guess for the values of θ denoted θ0. By applying the matrix logarithm the
difference between the desired pose T sd and the pose after i iterations T sb(θi) can
be represented by a twist Vb as:

[Vb] = log(T−1
sb (θi)T sd) (2.32)

A small deviation between the desired pose and the current pose of the end-effector
will yield a small twist. In other words, the magnitude of the elements in Vb can
be used to measure the error in the estimation. Since numerical methods do not
necessarily reach an exact solution, it is useful to set acceptable errors for the
magnitude of the angular and linear velocity denoted εω and ευ respectively.

While ||ωb|| > εω or ||υb|| > ευ, i is iterated and the angles θ will get closer and
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Figure 2.7.: An algorithm for solving the inverse kinematics problem using New-
ton’s method.

closer to the desired position, as described by the following formula:

θi+1 = θi + J†b(θi)Vb (2.33)

An algorithm for solving the inverse kinematics using (2.32) and (2.33) can be set
up as seen in Figure 2.7.

Recall (2.28), and note that J†b(θi)Vb is the joint velocities needed to reach the
twist Vb. Each increment in (2.33) takes the previous joint angles and adds the
joint angle travelled in the time between each increment. This can be utilised for
joint position robot control, by slowly changing the desired joint angles along a
planned trajectory without letting the actual joint angles catch up. The previously
desired angles can then be used as the initial guess for the numerical algorithm.

2.11. Inverse Velocity Kinematics
Inverse velocity kinematics deals with the problem of finding the necessary joint
velocities θ̇ to create a desired twist Vd represented in an arbitrary frame. As
previously mentioned the relation between an end-effector twist and the joint
velocities are given by the Jacobian as shown in (2.26) and (2.28). Introducing
the pseudoinverse yields the following:

θ̇ = J†(θ)Vd (2.34)

The pseudoinverse used in (2.34) will prioritise all joint movement equally. To
change this prioritisation the Jacobian can be altered with respect to different
weighting functions. In [18] the Jacobian is altered so that the kinematic energy
in the robot is minimised. Inverse velocity kinematics can be used in velocity
control of robots.



Chapter 3.

Robotic welding

This chapter will focus on the hardware and software solutions used in robotic
welding. Different welding methods will first be presented, before moving on to
welding sensors. A brief overview of a selection of available welding robots will
be given, before presenting different ways of programming welding robots.

3.1. Welding methods
Different welding methods are used in robotic welding depending on the welding
task. This section will present a selection of welding methods used in robotic
welding. The content of this section is based off the work done in [12] unless
stated otherwise.

3.1.1. Arc Welding

Arc welding is the process of joining two metal pieces by utilising the heat from
an arc generated between a welding gun and the workpiece. The welding gun
consists of an electrode that is used to transfer current to the arc. Electrodes can
be consumable or non-consumable. Consumable electrodes provide filler metal to
the weld by melting itself, while non-consumable electrodes only transfers current
and filler metal must supplied from an external source.

As filler metal and the metal in the work piece is melted during the welding
process, it is highly susceptible to reactions with gasses in the air. To prevent
this reaction from happening, a shielding gas can be deployed. This can either be
inert gases like argon or helium, or active gasses like CO2, depending on whether
the gas is to react with the metal or not. Another alternative to protect the
molten metal is the use of flux. This is a protective material added to the process
that melts into slag which will cover the molten metal underneath to prevent
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Figure 3.1.: A gas metal arc welding (GMAW) process. Figure from [12].

oxidisation. When the weld is cooled, the slag will harden and must be removed
in post-processing of the workpiece.

A power source is required to generate the arc. Both DC and AC power is used.
While AC is cheaper and generally easier to use, it is limited to welding ferrous
metals. DC power sources are more expensive but can be used on all metals. This
concludes the basic concept of arc welding, and different arc welding methods will
now be presented.

MIG/MAG
Metal inert gas (MIG) welding and metal active gas (MAG) welding are both gas
metal arc welding (GMAW) processes. MIG/MAG use a consumable electrode in
the form of a wire that is continuously fed through the welding gun. This makes
it an effective welding method for automation as it does not require change of
electrode before the spool of wire has run out. An illustration showing a GMAW
process has been taken from [12] and can be seen in Figure 3.1.

The shielding gas is provided through a tube in the welding gun, ad the difference
between MIG and MAG lies in the composition of the gas. MIG uses inert gases
that does not affect the welding process, while MAG uses active gases that do
affect it. Because of the shielding gas, no flux is needed and GMAW therefore
generates no slag.

CMT
Cold metal transfer (CMT) is a version of MIG welding, and is a relatively new
welding method developed in 2004 by Fronius [30]. It differs from MIG welding
by how the current is controlled in coordination with the motion of the electrode
wire. To explain the process Figure 3.2 has been taken from [30]. The process
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Figure 3.2.: The current and voltage during one cycle of a cold metal transfer
process. Figure from [30].

description is also based on the work done in [30].

CMT welding can be regarded as a cycle process where a cycle is defined from
one current peak to the next. In Figure 3.2 one cycle lasts approximately 20ms.
At the start of each cycle the current spikes to ignite the arc before it is lowered
again while the tip of the metal wire melts and forms a droplet. As the droplet
makes contact with the molten metal in the welding pool, the welding circuit is
shorted and the voltage goes to zero. This will signal the welding gun to retract
the wire fast, which removes the molten droplet from the wire and adds it to the
welding pool. After adding the droplet to the pool the cycle is completed and the
arc is reignited at the start of the next cycle.

In comparison to traditional MIG welding, CMT transfers less heat to the work
piece resulting in less deformations. CMT welding also benefits from less splatter
due to the low currents compared to traditional MIG welding.

TIG
Tungsten inert gas (TIG) welding is another arc welding method similar to GMAW.
The difference being that TIG uses a non consumable tungsten electrode, so filler
material is not necessarily added. If filler metal is added it is done by an external
metal rod that is melted by the heat of the arc. A TIG process can be seen in
Figure 3.3 taken from [12].

Inert shielding gas is used in TIG welding. Just like with GMAW this eliminates
the need for flux which again prevents the formation of slag, so little to no post-
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Figure 3.3.: Tungsten inert gas (TIG) welding. Figure from [12].

processing is required. TIG is generally slower and more costly than GMAW, and
also harder to automate due to the external filler metal. On the other side TIG
yields a higher quality weld, is better for welding thin plates where no filler metal
is required and does not produce any spatter as the filler metal is not transferred
over the arc.

3.1.2. Resistance Welding

Resistance welding is a group of welding processes that use a mixture of heat
and pressure. Two pieces of metal are placed on top of each other and pressed
together by two electrodes before a current is applied which will flow through the
work pieces. The electrical resistance that occurs between the two workpieces will
generate enough heat to melt or soften the metal, and the welding occurs. This
method uses high currents (5000-20 000A), but voltages are kept relatively low
(below 10V). Resistance occurs several places in the process:

• In the electrodes

• In the workpieces

• Between the work pieces and the electrodes

• Between the work pieces

As the goal of the process is to weld together the workpieces, it is preferred that
most of the resistance occurs between the two workpieces. This is done by reduc-
ing resistance elsewhere. Highly conductive metals are used in the electrodes, e.g.
copper, to reduce resistance. To reduce the resistance between the electrodes and
the workpieces, clean surfaces and good surface contact is important.
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Figure 3.4.: The resistance spot welding (RSW) process. A force F is applied
(2-4), before a current is applied (3). Figure from [12].

RSW
Resistance spot welding (RSW) is the most common type of resistance welding,
and is widely used for tasks where metal sheets of 3mm or thinner are to be
welded. The welding apparatus differ depending on how the welding method is
implemented. For robotic automation, a handheld device is used. These are called
portable spot-welding guns. They consist of two opposing electrodes that can
be pinched together to clamp the workpieces and create the required pressure.
Current is then applied through the electrodes, and the welding occurs. The
welding process can be seen in Figure 3.4 taken from [12].

RSW has the advantage of being an effective welding process yielding high pro-
duction rates without the need for filler metal. It is also a reliable and repeatable
process that is easily automated in comparison to e.g. arc welding. The downside
to RSW is expensive equipment and the fact that it can only weld overlapping
workpieces.

3.1.3. Laser Welding

As the name suggests, laser welding or laser-beam welding (LSB) is a welding
method where a laser is used to generate heat. Shielding gasses may be used to
protect the weld when welding reactive metals, and usually no filler metal is used.
Due to the concentrated heat generated by a laser, LSB generates narrow and
deep weld seams. This makes the process ideal for welding smaller parts.
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Figure 3.5.: The friction stir welding (FSW) process. The tool is first inserted
into the workpiece (1) before it is fed in between the pieces to be welded (2).
Figure from [12].

3.1.4. Friction Stir Welding

Friction stir welding (FSW) is a welding method in the category of solid-state
welding, which are methods that rely on pressure and heat to soften but not melt
the metal. No filler metals are required in solid-state welding. The FSW process
can be seen in Figure 3.5 which is taken from [12].

The FSW tool consists of a a shoulder and a probe. The probe is inserted in
between two pieces of metal that are to be welded, while the shoulder presses
on top of the pieces. The tool is then rotated and fed along the welding groove.
The friction between the shoulder and the surface of the workpieces generates
enough heat to soften the metal. Heat is also generated from the rotation of the
probe. Along the probe there are threads like the ones found in screws. The
threads stir the softened metal and "mixes" the two workpieces together resulting
in a welding seam. FSW creates welding seams with good mechanical properties,
little distortion in the workpiece and does not depend on shielding gases or flux
like arc welding does. The downside to FSW is the need for heavy clamping of
the workpieces to keep them in place during the process, and the exit hole that
is produced when the probe is extracted from the workpiece.
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3.2. Welding Sensors
During the welding process the generated heat will cause the metal in the work-
piece to thermally expand. In a mass production each individual work-piece also
may not have the exact same orientation when clamped down to be welded. Be-
cause of these variables it is beneficial to introduce sensors to robotic welding
operations. The main task for sensors in robotic welding is seam tracking. This is
the task of keeping track of the welding groove to make corrections to the robot
trajectory if the groove deviates from the originally programmed end-effector tra-
jectory. This section will explain two different sensor technologies in robotic weld-
ing: through-arc sensing and optical sensing.

3.2.1. Through-Arc Sensing

Through-arc sensing is a seam tracking method used in arch welding where the
welding parameters are utilised to keep track of the welding groove. While welding
it is possible to measure the current and voltage. From [23] the arc characteristic
model is is obtained:

U = β1I + β2 + β3/I + β4l (3.1)

Where U is the arc voltage, I is the arc current, l is the distance from the welding
gun to the work piece and the constants β1 − β4 are determined based on char-
acteristics of the welding equipment. It is common for welding power supplies
to keep a constant voltage, which leaves (3.1) with only the welding current I
and the distance l as variables. By measuring the arc current it is then possi-
ble to estimate the distance l. These two variables are approximately negative
proportionate.

While calculating the length l different algorithms can be implemented to follow
a welding trajectory. A common way of implementing through-arc sensing with
robots is to utilise an oscillatory motion of the welding gun while following the
planned trajectory. This will detect any discrepancies in the weld groove and
allow the robot to correct its movement. An example of this method being used
can be seen in Figure 3.6 from [23] where the parts that are to be welded are not
perfectly aligned. The robot is able to detect the errors and correct its path using
oscillatory movements in combination with (3.1).

The algorithms for seam tracking using though-arc sensing are dependent on a
robust robot controller. If the end-effector deviates too much from the welding
trajectory, the sensor might not be able to recover from the error. Also keep in
mind that the sensor only works while the welding process is active, so after losing
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Figure 3.6.: Example of a robotic welding process using through-arc sensing to
correct the welding path. Figure from [23].

track of the trajectory it can be hard to recover.

In practice through-arc sensing is often combined with some kind of search algo-
rithm or other sensing method to find the start and orientation of the welding
groove. From [4] it is seen that a way of doing this is by touch sensing. This is a
method there the tip of the welding gun can be used to detect the orientation of a
part by applying a small voltage to the electrode and make contact with the part.
When contact is obtained the circuit is shorted and the point in 3D can be saved
to the robot program. By measuring enough points the orientation of a part can
be achieved and the welding trajectory can be recalculated.

3.2.2. Optical Sensing

For optical seam tracking, cameras and image processing are used to calculate
and correct the robot trajectory before or during the welding process. When
using optical sensors, the camera is usually mounted on the end-effector of the
robot. Before the camera can be put to use, a calibration is necessary to obtain
the cameras extrinsic and intrinsic parameters. A hand-eye calibration is also
necessary to find the relation between the camera frame and the end-effector
frame of the robot. Calibration can be done by analysing a series of pictures of
chequerboards with known dimensions.

In [28] two optical sensors are described in most detail, these are vision sensors
and laser assisted vision sensors. This section will do a brief summary of the
description of vision senors, before a more thorough description of laser assisted
vision sensors will be given.

Vision sensors use computer vision to detect the weld groove. After camera cal-
ibration, the camera is able to capture images of the groove. These images are
then processed in several steps where noise is removed and the features of the
welding groove are extracted. As the relation between the camera frame and the
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Figure 3.7.: The concept behind laser vision sensors. A projected laser image is
used by the camera to find the features of the welding joint. Figure from [32].

robot end-effector frame is known from calibration, it is possible to adjust the
welding trajectory based on the processed image. The orientation of a workpiece
can also be detected in the same manner.

The problem with vision sensors are the complexity of the algorithms for extract-
ing 3D groove-parameters from the acquired 2D images [28]. This can be solved
by adding a laser to the setup, this is the case for laser vision sensors.

To explain laser vision sensors consider Figure 3.7 from [32] where the basic setup
for the sensor is shown. A laser diode emits a known shape onto the welding
groove, labelled "joint" in the figure. This is usually in the form of a single or
multiple lines, but can also be other shapes. According to [23] the use of a circle
instead of lines can be useful for detecting corners in one image. The rest of this
description will be based on the single line configuration seen in Figure 3.7.

The projected laser line is captured by the camera, labelled "imager" in the figure.
The image is then processed to remove noise and extract the features of the
laser. Since the angle α is known it is possible to calculate the dimensions of the
welding groove by triangulation. The use of triangulation replaces the complex
algorithms used in regular vision sensors which makes laser vision sensors faster.
This is important when seam tracking while welding.

The laser vision sensor is a reliable sensor which can extract different useful weld
groove features that can be taken into consideration when planning the end-
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Figure 3.8.: The TH6x optical seam tracking sensor mounted on a welding gun.
Image from [6]

effector trajectory, wire feed and welding speed. The problem with the sensor
is the required space it occupies on the end-effector as can be seen in Figure 3.8
from [6] which can limit the mobility of the robot. The optical sensors are more
expensive than using though-arc sensing. Optical sensors are therefore usually
avoided unless they are necessary for the task [23].

3.3. Welding Robots
This section will present a selection of welding robots from some of the biggest
robot manufacturers. This will give insight to the hardware that is available for the
industry today. The technical details of the selected welding robots can be seen in
Table 3.1, these are gathered from [11][37][1][14]. Pictures of the different robots
can be seen in Figure 3.9. It is seen that welding robots are made in different
sizes depending on their intended use. Different operations require different load
capacities as the weight of welding gear can differ. Common for all the welding
robots mentioned in this report are the number of axis, which is six. The reason
for this can be seen by applying Grübler’s formula (2.1) to the robots. As they
only have rotational joints the number of DOF is equal to the number of joints.

In Section 2.1 it is explained that a rigid body in 3D has six DOF. By having
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Producer Model Nr. of axis Loading capacity[kg] Reach[mm]
FANUC ARC Mate 100iD 6 12 1441
Yaskawa MOTOMAN AR900 6 7 927
ABB IRB 1300 6 7-11 900-1400
KUKA KR QUANTEC prime 6 90-240 2496-3701

Table 3.1.: Technical details for a selection of welding robots. Data
from [11][37][1][14].

six-axis robots the end-effector is able to move freely in 3D, of course limited by
the features of the robot. Enabling end-effector movement with six DOF makes
industrial robots versatile and able to complete a variety of different tasks. Some
industrial robots are made with more than six axis, like the YASKAWA SIA Series
which have seven. This will cause redundancy as discussed in Section 2.2.

Figure 3.9.: The robots listed in Table 3.1, note that the relative scale of the
images are not correct. From the left: ARC Mate 100iD, MOTOMAN AR900,
KR 240 R2500 prime, IRB 1300. Images from [11][37][1][14]

.

3.4. Robot Programming
Programming methods for industrial robots can be categorised as either online
robot programming or offline robot programming. While many different ways of
robot programming are suggested in literature [5], these are often experimental
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Figure 3.10.: The different robot programming methods presented in this report.

and not necessarily ready for the industry. This section will present some of
the commonly used methods for programming welding robots and explain the
advantages and drawbacks with each method.

3.4.1. Online Robot Programming

When doing online robot programming the physical robot is incorporated in the
programming process. While this gives the programmer a physical understanding
of the program being made, it also requires the robot to be taken out of pro-
duction. This is not always an option if the robot is part of e.g. a large serial
production. Online programming is generally easier than offline programming and
usually requires little programming skills. Two main methods are used in online
programming: teach pendant programming and lead-through [22].

Teach Pendant Programming
The teach pendant is a handheld device that is usually attached to the robot
controller with a cable. A teach pendant form KUKA can be seen in Figure 3.11.
It allows the user to directly communicate with the robot and control it freely.
For safety reasons the robot joint velocities are limited when operated manually
by the teach pendant.

Teach pendant programming is done by driving the robot manually to points
of interest and save the joint coordinates. The finished program is made by
combining movements between the saved points in sequence.
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Figure 3.11.: Teach pendant from KUKA.

Lead-Through
This is a manual way of programming a robot where the operator "teach" the robot
how it is supposed to move. This is done by manually grabbing and dragging the
end-effector of the robot through the desired task and record the movement.

This is an intuitive way of programming robots and is often used for welding or
spray paint tasks. The drawback using lead-through programming is that it is
inaccurate compared to other programming methods, and it might require the
robot to be equipped with force sensors.

3.4.2. Offline Robot Programming

Offline robot programming is a type of programming were the physical robot is
not necessarily included in the programming process. The robot program is made
separately and can be tested in a simulator before uploading it to the robot.
This may require separate simulation software which can be expensive, but the
advantage of offline programming is that the robot can operate as normally while
the program is being developed. According to [22], offline programming can be
divided int two different categories.
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Text-Based Programming
This is a traditional method of robot programming where the robot program is
written with text, before uploading it to the robot. Text-based programming
can be divided into three different categories based on the type of language used:
controller-specific languages, generic procedural languages and behaviour-based
languages [5]. For the industrial robots discussed in this report, the two former
methods are the most relevant and will be discussed further.

It is common for robot manufacturers do develop their own programming lan-
guage suited for their robot models. By using this language for programming
there will be access to built in functions made by the manufacturer, and the pro-
gramming task can be simplified. The drawback of this method is the lack of
a universal programming standard for all robot manufacturers to follow. This
makes each controller-specific language different, and having robots from multiple
manufacturers will require knowledge with different programming languages.

Using a generic procedural language yields opportunities for making more univer-
sal robot programs that can be implemented with different robot brands. It is
the preferred robot programming method for researchers as it requires flexibility
to meet the needs of the research being conducted [5]. Before implementing the
program on a robot it has to be translated into the controller-specific language.
General procedural languages will often require more programming knowledge
than the controller-specific languages.

The general drawback of text based robot programming is that it requires the
most debugging [22].

Graphical Offline Programming
Graphical offline programming can be regarded as a combination of teach-pendant
programming and offline programming. A CAD-model of the robot is used to
simulate motions. Robot movements can be simulated and recorded to generate
a program for the physical robot. This offline programming method have the
advantage of giving the user a visual feedback on the program that is created,
making it a possibly more intuitive offline programming method than text-based
programming.



Chapter 4.

Constraint-Based Robot
Programming

This chapter will first present constraint-based programming in general, and give
a brief introduction to how this can be used in robotics. This will be followed
by a thorough summary of three different frameworks for constraint-based robot
programming, before a brief summary of other frameworks will be given. Lastly
the work done with constraint-based robot programming in robotic welding will
be presented.

4.1. Constraint-Based Programming
Constraint-based programming is a programming method where a problem is
defined by a set of constraints, and the solution to the problem is a set of variables
that is to be found. The constraints limit the possible values of the variables, called
the variable domains. By feeding the variables and constraints into a constraint
solver, variable values that satisfy the given constraints can be found. An example
of a simple constraint-based problem can be found in [26] and is given as:

x, y, z ∈ {0, 1} (4.1)

x2 + y2 = z2 (4.2)

In this case, the variables are x, y, z. They each have their own domain Dx, Dy, Dz

respectively, which are all given in (4.1) as {0, 1}. For this problem there is a
single constraint which can be seen in (4.2). This is a simple example with only
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Figure 4.1.: Constraint propagation used to solve a problem where tokens are
to be placed on each row, adapted from [26].

three solutions, but constraint-based problems usually have more. To reduce the
number of solutions, constraint propagation is an important concept [27].

Constraint propagation is the process of reducing the domain of variables by
using the constraints present in the problem. A simple example of constraint
propagation can be seen in [26] and will be presented here. In this example n
tokens are to be placed on separate rows in a n× n grid. None of the tokens are
allowed to be in the same column or on the same diagonal. By placing a token on
the first row at random, it is possible to identify invalid placements on the other
rows. This will decrease the number of valid tiles for the rest of the tokens. In
this example, constraint propagation alone is enough to yield a unique solution
to the problem. This can be seen in Figure 4.1 where the problem is solved for a
5× 5 grid.

If constraint propagation does not solve the problem by itself, one of two different
algorithms are mainly used [27]. These are backtracking search and local search,
and will now be explained.

To explain backtracking search, the example with the n × n grid is considered
again. Placing the first token randomly, different solutions can be attempted by
placing the second token. If a valid placement for the second token is found, the
algorithm moves on to the third and so on. Each time a non valid solution is
found, the algorithm backtracks to the last valid placed token and tries a new
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Figure 4.2.: A visualisation of the backtracking algorithm. The path to a valid
solution is shown by the red line, adapted from [26].

solution. This will result in a tree like structure like the one seen in figure 4.2
where one branch of the "tree" is explored. A red line marks the path a valid
solution. The advantage of using a backtracking search is that it will always find
the optimal solution, but it could require a lot of computation. To reduce the
complexity of the computation, constraint propagation can be utilised.

Local search is another method of finding a solution. This method is not neces-
sarily guaranteed to find the optimal solution, but is less computation heavy than
backtracking search. This method starts with all variables chosen at random. In
turn the algorithm changes one variable at the time. If changing a variable yields
a solution that is closer to fulfilling the constraints the change is kept, if not it is
reverted. This process is repeated until a satisfying solution is found. Applying
this algorithm the example used previously, this would be equal to first placing
all tokens at random on the grid. By moving one token at the time, a solution
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will be found.

4.2. Constraint-Based Robot Programming, a
Selection of Frameworks

When applying constraint-based programming to robotics, constraints are set
either from robot characteristics, the environment or the task to be executed.
These constraints are then sent into a constraint solver, and a robot trajectory
can be calculated. This section will present three different frameworks that has
been developed for constraint-based robot programming, and some of the theory
behind them.

4.2.1. iTaSC

Instantaneous Task Specification using Constraints (iTaSC) is a framework for
robot control developed at K.U Leuven [21]. This section is a summary of [8] where
the concepts behind iTaSC is explained. The main focus lies with specifying the
task that is to be completed by the robot, but a control scheme is also suggested.
The framework is further expanded in [9] which will be summarised at the end of
this section.

The goal of iTaSC is to enable robot programming of more complex tasks. While
programming of simple robot tasks in well known environments are straightfor-
ward and already used in the industry, there is little programming support for
more complex tasks. This requires the robot programmer to be proficient in mul-
tiple disciplines like e.g. spatial kinematics, estimation and sensor systems. iTaSC
aims to make programming easier by providing a framework for defining the task
at hand. Based on this task specification a robot trajectory can be found. The
form of task specification used in iTaSC is called constraint-based task program-
ming, which is presented in [29]. The iTaSC framework also aims to represent
geometric uncertainties, from the model or robot environment, in a systematic
way.

Control Scheme and Equations
The general control scheme for iTaSC can be seen in Figure 4.3. The figure
shows the plant P representing the robot itself, the controller C and an update
and estimation block M+E where estimated states are calculated and sent to the
controller.

Several variables are seen in the control scheme. u is the input to the system and is
either desired joint velocities, acceleration or torques depending on how the robot
is controlled. χu is geometric disturbance in the system, e.g. deviation in the
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Figure 4.3.: The control scheme used in iTaSC showing the plant P, the controller
C and the update and estimation block M + E. Figure from [8].

position of a work piece. y is the output of the system and can be joint velocities,
joint positions, forces, torques, distances etc. z represents the measurements from
the robot that are sent to the estimator. yd represents the desired values of y
and therefore also represents the constraints on the system. In addition to the
variables seen in figure 4.3, two more variables are defined. Joint positions are
represented by the variable q. There are also feature coordinates represented by
χf , which are used to describe the task that is to be completed.

Equations (4.3) - (4.8) as well as their explanations are taken from [8]. These are
the equations used in the controller. For this explanation it is assumed that the
robot is controlled using joint velocities q̇. The robot joint positions q and joint
velocities q̇ are related to the input u by the robot system equation:

d

dt

(
q
q̇

)
= s(q, q̇,u) (4.3)

The output y is calculated by the function f in this manner:

f(q,χf ) = y (4.4)

The measurements are calculated similarly by the function h:

h(q,χf ) = z (4.5)
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In [8] there is a distinction between natural and artificial constraint. The natural
constraints are imposed on the system by robot limitations or obstacles in the
robot environment, and can be expressed as:

g(q,χf ) = 0 (4.6)

Artificial constraints on the other hand are imposed on the robot by the user by
setting desired output values as such:

y = yd (4.7)

The relation between q and χf will be affected by the uncertainty coordinates
χu. The equation describing this relation is:

l(q,χf ,χu) = 0 (4.8)

Frames and Coordinates
iTaSC relies heavily on defining different frames and the relation between them.
There are two different kind of frames. The object frames are attached to rigid
objects either on the robot itself or in the robot environment. A feature frame
is attached to a feature on the object such as an edge, a surface or an abstract
feature such as the axis of a hollow cylinder. Two object frames (o1 and o2) and
two feature frames (f1 and f2) represent one constraint. This constraint will
specify the relative movement of two objects, or the forces acting between them.
There are four rules in total for choosing object and feature frames, these are
stated in [8] as:

• o1 and o2 are rigidly attached to the corresponding object.

• f1 and f2 are linked to, but not necessarily rigidly attached to o1 and o2,
respectively.

• The origin and orientation of the frames are chosen as much as possible such
that the submotions correspond to motions along or about the axes of one
of the two frames involved in the submotion.

• Every system output and every measurement is modelled using a feature
relationship. However, a single feature might be used to model multiple
system outputs and/or measurements.

The movement between the four frames that define a constraint defines a kinematic
chain from one object frame to the other. The movements are gathered in the
matrix χf in the following manner:
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Figure 4.4.: The kinematic chain constraining one object from to the other.
Figure from [8].

χf =
(
χTfI χTfII χTfIII

)T
(4.9)

where [8] describes the components as:

• χTfI represents the relative motion of f1 with respect to o1.

• χTfII represents the relative motion of f2 with respect to f1

• χTfIII represents the relative motion of o2 with respect to f2

The kinematic chain consisting of the three different motions will constrain one
object frame with respect to another so that they can be uniquely determined from
each other. Each motion consists of either translation along or rotation about one
coordinate axis. Together the three movements will impose six constraints on the
object frames. This is sufficient as a rigid body in space has six DOF as seen
in Section 2.1. Figure 4.4 from [8] shows how the frames are connected by the
different motions.

Wile Figure 4.4 assumes no uncertainties in the system, this is an approximation
and is not completely accurate. The concept of geometric uncertainty is repre-
sented in a similar manner to the feature coordinates, namely by the uncertainty
coordinates. These are movements between the frame position in the model, and
the frame position after applying uncertainty. The uncertainty coordinates are
gathered in the matrix χu and are written as:

χu =
(
χTuI χTuII χTuIII χTuIIII

)T
(4.10)

Analogous to the feature coordinates, the uncertainty coordinates represents the
following from [8]:

• χu1 represents the pose uncertainty of o1.

• χuII represents the pose uncertainty of f1 with respect to o1.
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Figure 4.5.: The kinematic chain between the two object frames with uncertainty
coordinates. Figure from [8].

• χuIII represents the pose uncertainty of f2 with respect to o2.

• χuIV represents the pose uncertainty of o2.

While also taking the uncertainty coordinates into account, the kinematic chain
in Figure 4.4 is extended and the kinematic chain in Figure 4.5 is obtained.

After defining the frames by the four defined rules, a task is constrained by χf and
χu . The coordinates along with the constraints are input to the control scheme,
and the trajectory is calculated.

Extended Version
iTaSC was extended in [9]. In it’s original form, the framework only dealt with
equality constraints. These are constraints where the goal of a variable is to be
equal to a specific value. In the extended form derived i [9], iTaSC could also
handle inequality constraints. These are constraints where the goal for a variable
is to be lower or higher than a limit.

Instantaneous task specification which is optimising a variable at the end of the
movement, was previously the only option available in iTaSC. In [9] suggestions
were made to implement non-instantaneous task specification where a variable
could be optimised over time, though it was concluded that this would need
further research.

4.2.2. eTaSL/eTC

The framework summarised in this section is described in [2]. The article presents
the expression-graph Task Specification Language (eTaSL), which is a language
made for expressing robot tasks. In addition to eTaSL [2] presents the expressiongraph-
based Task Controller (eTC), which is a robot controller made to control a robot
based on the task described in eTaSL or other task descriptions. This section
will first describe the architecture of eTC before explaining important concepts
of eTaSL.
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Figure 4.6.: The layers used in the eTC architecture, highlighted boxes are the
implemented solutions. Figure from [2].

Robot Controller, eTC
The architecture of the robot controller focuses on the 5C’s found in [24], and
separates computation, coordination, configuration, composition and communi-
cation. Figure 4.6 from [2] shows that the controller has been separated into
three layers, each with their own separate task.

The first layer is the specification layer where the context is built. This is a com-
plete description of the task. Robot geometry can be loaded into the specification
layer through a unified robot description format (URDF) file. This file will define
the robot links, their geometric relations and robot constraints like joint angles
and velocities. The task can be specified with a C++ task specification API,
other task specification methods like iTaSC or more commonly with eTaSL. After
specifying a task, the context is sent as input to the second layer.

The second layer is the solver layer, where a context is converted to a numerical
optimisation problem. Referring to Figure 4.6 it can be seen that the current
implementation uses a solver to control the joint velocities of the robot. eTC can
also be used for acceleration control or torque control, but for this presentation
velocity control is assumed. The optimisation problem has a goal of minimising
the variable x in the following formula:
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xTHx (4.11)

with respect to the upper and lower limits U and L such that:

LA ≤ Ax ≤ UA (4.12)

L ≤ x ≤ U (4.13)

Where A is the task Jacobian and LA and BA are task limits. The variable x is
written as:

x =

 q̇χ̇f
ε

 (4.14)

Where q̇ is the joint velocities, χ̇f is the feature variable velocities and ε is a slack
variable to enable lower priority constraints to act on the system. The matrix H
seen in (4.11) is written as:

H =

µW r 0 0
0 µW f 0
0 0 µI +W s

 (4.15)

Where W r and W f are weights for the robot joint space and feature space re-
spectively. W s is a collection of the weight variable in each constraint, which
will be presented later, while µ is a numerical value that can be used to tune the
system. W r andW f will mostly affect the system when task redundancy occurs.
In this case they will affect how the robot moves in the null-space of the task, i.e.
how the rest of the robot is moved while holding the end-effector in the desired
configuration.

After the optimisation problem is defined it is sent into the third and last layer
where it is solved by a numerical solver, in this case the qpOASES solver. For
each time cycle the joint positions are taken in as an input to the solver layer
where the optimisation problem is generated before being sent to the numerical
solver. The computed joint velocities are then sent to the robot. This process is
repeated each time cycle.

Specification Language, eTaSL
eTaSL is a Lua based language using abstractions to communicate with the un-
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Figure 4.7.: Example of a variable in eTaSL. Figure from [2].

Figure 4.8.: Example of a constraint in eTaSL. Figure from [2].

derlying C++ API generating the context in the specification layer. The context
consists of different elements that will now be explained, starting with variables.

An example of a variable can be seen in Figure 4.7 taken from [2]. Variables are
set by the user and is required to be connected to a context and have a name.
They also need a weight which will affect the way they are handled by eTC.
The vartype argument decides what variable type the variable is. Robot joint
variables determines the joint angles in the robot, the time variable keeps track
of time and a feature variable can be used more freely to express movements.

Another type of variable is the expression variable. This is a variable containing
an expression graph, which is a function often representing geometric relations
between rigid bodies. Expression variables are used as an argument when defining
constraints and monitors, this will be presented next.

An example of a constraint can be seen in Figure 4.8 taken from [2]. Like variables
it has to be connected to a context, have a name and a weight. In addition to this it
uses an expression variable to define a function. The goal of the expression variable
is to reach the value of target, in this case 0.0. How the expression variable will
reach the target is determined by the value of K, which is used in the controller.
Lastly the constraint has a priority. This allows the user to define a hierarchy
were constraints with high priority are more important than the ones with a lower
priority. For multiple constraints with equal priority, their importance is measured
by the weight argument.

Monitors can detect when a certain condition is met and notify the system of
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Figure 4.9.: Example of a monitor in eTaSL. Figure from [2].

this event. An example of a monitor can be seen in Figure 4.9 taken from [2].
It is seen that the monitor observes an expression variable defined by expr. As
this expression exceeds some limit lower or upper, an action is triggered and the
argument is sent as an output. The name of the action and the argument are set
in actionname and argument respectively.

4.2.3. Stack of Tasks

The Stack of Tasks (SoT) is a framework for efficiently implementing the Gener-
alised Inverted Kinematics (GIK), first introduced in [20]. It was made to control
redundant robots, ans is widely used in control of humanoid robots. The SoT
framework is presented in [19]. It is a framework for organising multiple tasks
that are to be completed at the same time by defining the relation between them.
This sections is a summary of the work done in [19] where SoT is presented.

Task Definition and Handling
To explain the SoT framework several equations are needed. All equations and
their corresponding variable explanation in this section is taken from [19].

A task in SoT is defined by the following formula:

ei = si − s∗i (4.16)

where ei is the task, si is the current value of a feature, which will be explained
later, and s∗i is the desired value of the same feature. The task Jacobian J i is
found in the following formula:

ėi = ∂ei
∂q

= Jiq̇ (4.17)

where q is a vector containing the joint positions of the robot. A desired motion
in task space is denoted ė∗i . By rewriting (4.17), it is possible to find the joint
velocities q̇ required to execute this desired motion:
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q̇i = Ji
+ėi
∗ (4.18)

where Ji+ is the pseudo-inverse of the task Jacobian as explained in Section 2.8.1.
The desired motion ėi∗ is constrained by the following differential equation.

ė∗i = −λei (4.19)

where lambda is a feature gain determining the magnitude of ėi∗. Inserting (4.19)
into (4.18) will yield the following control law:

q̇i = −λJi+ei (4.20)

Now a formula to calculate the task Jacobian Ji is required. For this definition a
relation between the velocity of a point on the robot v, and the value of a feature
is needed. This can be written as:

ṡi = Lsiv (4.21)

where Lsi is called the interaction matrix which is used in visual servoing. It is
now possible to define the task Jacobian Ji as:

Ji = LsiMJq (4.22)

where Jq is the joint Jacobian, and M is a matrix representing the velocity v
from the joint Jacobian.

As with the other constraint-based solutions presented previously in this paper,
SoT uses task prioritisation to deal with redundancy in the robot system. To ex-
plain redundancy handling in SoT, imagine n tasks defined as (ė1, J̇1), (ė2, J̇2), ..., (ėn,Jn).
The prioritisation is defined such that task one is the most prioritised, and task
n is the least prioritised. A task should never disturb a task with higher prior-
ity than itself. For computing joint velocities, a recursive computation presented
in [31] has been used. In [19] the recursive computation is written as:

q̇0 = 0 (4.23)

q̇i = q̇i−1 + (JiPA
i−1)+(ėi − Jiq̇i−1), i = 1...n (4.24)

The null-space projector of the augmented Jacobian JAi = (J1, ...,Jn) is denoted
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PA
i , and can be calculated as:

PA
i = PA

i−1 − (JiPA
i−1)+JiP

A
i−1 (4.25)

This recursive method use the joint velocities defined by the previous higher pri-
ority tasks, and adds joint velocities from the current task within their null-space.
By computing joint velocities of a task within the null-space of all higher priority
task it is guaranteed that a task will never disrupt another task with higher pri-
ority. After computing the joint velocities for all n tasks, the joint velocity vector
q̇n can be sent to the controller.

Software
The implementation of SoT is based around computational nodes called entities.
They are able to consume an input and give an output based on what it is set
to do. The nodes are connected to each other through the inputs an outputs.
All the entities and connections can be visualised through a graph like the one
shown in Figure 4.10. This figure is taken from [19] and shows the entities and
their connections for controlling a humanoid robot. Entities can also be connected
with more complex relations like prioritisation.

To manage the SoT framework a scripting interface has been developed. This is
an abstraction that allows the user to control the framework using a selection of
basic commands. Examples of basic commands are the new command to create
new entities and the plug command to connect entities together. More script
functionalities can be loaded using plugins. As mentioned, the SoT framework
consists of entities that communicate with each other. Features, tasks and SoT
entities will now be explained.

A feature entity is is designed to give the task entity an input of how close it is
to be completed. The input to a feature is data from the robot system like e.g.
sensor data. It outputs the vectors si and si∗ along with the task Jacobian J i.
The output from the feature entity is then sent to a corresponding task entity.

The task entities represent the tasks as defined in (4.16). They take input form
the features and computes joint velocities using the control law defined in (4.20).
After joint velocities are calculated for each task, the SoT entity handles task
prioritisation.

The SoT entity is given a stack of different tasks each with their own prioritisa-
tion and joint velocities. The final joint velocities are then calculated using the
recursive calculations shown in (4.24).
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Fig. 1. Graph of entities at a given time of the control.

new FeatureGeneric featureComDes
set featureComDes.errorIN [3](0,-0,0.64)

To relate this desired reference to the current state of the
robot for computing the control:

set featureCom.sdes featureComDes

To specify a more complex desired CoM, it is possible to
plug another feature inside the desired one:

plug PGselec.scomref featureComDes.errorIN

The current implementation provide several features such
as generic ones, 6D position (i.e. position and orientation),
relative 6D position and visual points.

5) Tasks:A task uses the features provided by the graph
to compute a control law:

new Task taskCom
taskCom.add featureCom

To aggregate several elementary tasksei, it is possible to add
several features to a task. Indeed to have a taske1,2 which

Figure 4.10.: A visualisation of the SoT framework. Figure from [19].
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Figure 4.11.: The GUI made for easy task-constraint definitions in [34]. Figure
from [34].

4.3. Additional Frameworks
There are several other frameworks for constraint-based robot programming than
the three already presented in Section 4.2. This section will briefly mention some
of the other existing frameworks.

In [33] and [34] a framework for a more intuitive approach to constraint-based
robot programming is presented, with a goal of making it more available for "non-
expert users". The approach is based on defining the constraints of task in a
CAD-model of the workpieces. In addition to the task constraints the user can
define constraints on the robot itself, and constraints imposed on the robot by the
surrounding environment. All constraints are then run through a solver where a
satisfactory robot movement is found. This framework also supports prioritisation
of constraints. Figure 4.11 from [34] shows the GUI developed for easy definition
of constraints on the task. The framework was further developed in [35] where a
constraint solver with better runtimes was presented.

In [13] a constraint-based framework for controlling human-like robots is pre-
sented. Human motion is defined as a series of sub-tasks that are executed with
different priority, this is the basis for the framework. While a task of high priority
is executed, lower priority tasks are allowed to be performed as long as they do
not interrupt the higher priority task. This is similar to most prioritisation seen
in constraint-based robot programming.

Another framework, "task Space Inverse Dynamics", can be found in [10]. This
is a framework for multiple prioritised tasks, using force/torque control. It was
created to fill the gap for a framework yielding optimal solutions to secondary
tasks that would still be computationally effective. The solution was to separate
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the robot kinematics and robot dynamics, which yielded a more effective algorithm
for computation. Like the other frameworks it allows completion of high priority
tasks with lower priority tasks running in the background.

A different goal using constraint-based programming is shown in [15] where the
goal is to program industrial robots for use in cooperation with humans. The
hierarchical programming framework where tasks can be programmed with dif-
ferent priorities enables the safety of the human to always be of highest priority.
This way the robot is able to execute tasks while at all times executing collision
avoidance with the human. This was done by the use of 3D-vision. Three different
industrial settings were a person collaborates with a robot were presented.

Lastly [25] presents a methodology for restricting the movements of objects in
relation to each other using geometrical constraints. Additionally a geometric
constraint-solver is presented, where the rotational and transnational components
are separated and solved individually. This methodology and solver can be used
to describe robot tasks.

4.4. Robotic Welding using Constraint-Based Robot
Programming

The application of constraint-based robot programming in robotic welding is not
widespread, but some research has been done in the field. This section will present
this work.

In [36] a methodology for combining CAD and constraint-based programming
to generate robot trajectories is presented. Seam tracking in robotic welding is
brought up as an example for one type of task that can be defined using this
methodology. Point and seam welding is also used as an example for applications
of the framework in [33]. In addition, seam welding is used as an example for the
improved geometric solver in [35].

An algorithm is presented in [3] where constraints are used to coordinate a seven-
axis robot along with a two axis work bench to perform a welding operation on a
work piece. This is done in a similar manner to recent work in the field where the
task is divided into multiple sub-tasks. The difference occurs in the application
of constraints. While more recent work uses multiple prioritised constraints, [3]
applies three global constraints with equal priority that all subtasks needs to
follow. The goal of the constraints in this case was to avoid singular joint positions
and to keep the weld seam horizontal.

The application of constraint-based robot programming in robotic welding will be
discussed further in Chapter 6.





Chapter 5.

Results

Results are divided in two sections. The first section will present the preparatory
work that has been done to enable work on constraint-based robot programming
with robotic welding. The second section will present the results obtained from
the interviews conduced in collaboration with Thea Holmedal.

5.1. Preparations for Further Work
The robot cell available for further work on this subject includes a YASKAWA
Motoman GP25-12 equipped with a Fronius TPS 400i welding system. This is
a MIG/MAG type welding gun, with support for different welding methods like
CMT. A two DOF work table for the workpiece is also present in the cell. The
cell with all components can be seen in Figure 5.1.

A simplified model of the GP25-12 has been made to easily identify screw axes
and relevant joint lengths. It is based on the technical drawing taken from [38]
which can be found in Appendix B. The simplified model with a fixed frame {s}
and a body-frame {b} can be seen in Figure 5.2.

When using the Python library from [18], it is useful to know the zero-position of
the robot and the screw axis in both body and space frame. Using the drawing
as reference and applying the theory from Section 2.7 the following matrices can
be found:

M =


1 0 0 0
0 1 0 1.332
0 0 0 1.465
0 0 0 1

 (5.1)
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Figure 5.1.: The robot cell available at MTP, consisting of a YASKAWA Mo-
toman GP25-12 equipped with a Fronius TPS 400i welding system. A two DOF
working table is also available.
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Figure 5.2.: Simplified model of the YASKAWA Motoman GP25-12, units are
given in meters.

S =



0 1 1 0 1 0
0 0 0 1 0 1
1 0 0 0 0 0
0 0 0 −1.465 0 −1.465
0 0.505 1.265 0 1.465 0
0 −0.150 −0.150 0 −1.232 0


(5.2)

B =



0 1 1 0 1 0
0 0 0 1 0 1
1 0 0 0 0 0

−1.332 0 0 0 0 0
0 −0.960 −0.200 0 0 0
0 1.182 1.182 0 0.100 0


(5.3)

WhereM is the zero position, S is a matrix where each column represents a screw
axis in space frame and B is a matrix where each column represents a screw axis
in body frame. The tool-tip frame is of interest as this is the tip of the welding
gun. A constant homogeneous transformation matrix T bt is used to represent the
displacement of the the tool frame {t} with respect to the body frame {b}. Form
the teach pendant the following information was found:
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Figure 5.3.: Output form the robot visualiser showing the robot in zero-position.

T bt =


1 0 0 0
0 cos(54◦) − sin(54◦) 0.450
0 sin(54◦) cos(54◦) −0.084
0 0 0 1

 (5.4)

Using these matrices and the Python library from [18] a robot visualiser was made
based on the PoE formulation. The purpose for this visualiser is to be able to
check joint configurations without the need for the physical robot. Figure 5.3
shows the output from the visualiser when then the robot is set to zero-position.

5.2. Robotic Welding in the Norwegian Industry
This section will present the answers obtained from the interviews with Norwe-
gian companies working with robotic welding. Three different subjects where
interviewed, with an average relevant working experience of approximately four
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years. The interview templates can be seen in Appendix A. This section will
present each question of the interview along with the answers.

How do you program welding robots?
For simple welding operations, online programming using the teach pendant was
the most common solution. The programming language provided by the manufac-
turer is used to generate welding paths based on saved points in the program. For
one-of-a-kind tasks or tasks for lower production volumes, teach pendant program-
ming also seems to be the preferred solution as it lets the user quickly program
the robot.

For more complex tasks or bigger robot cells, offline programming using a CAD-
model of the robot cell seems to be more popular. The advantage of being able to
simulate the programs in the CAD-model, as well as not having to take robots out
of production to program them is the reason offline programming is used. As with
online programming, programs provided by the robot manufacturers are used in
offline programming as well.

Some of the interview subjects works with delivering robot systems to customers in
Norway. It then became clear that robot programming is something the customers
themselves want to learn. This enables the customer to reprogram the robots to
execute different tasks when production changes.

Do you use any sensors along with the robots?
All subjects use sensors with their welding robots, but not necessarily the same
ones. In the industry the most common sensor proved to be through-arc sensing for
seam tracking. One of the subjects also use touch sensing to locate the orientation
of the workpiece to be welded.

Cameras are also in use. One subject use 3D-cameras with a projected laser grid
to map the part so the welding process can be adjusted before it starts. In this
case the camera is not used to track the groove during the welding process, as this
will require a much more expensive camera. This is due to the extensive filtering
that has to be done to execute seam tracking through the light from the welding
arc. Despite the cost, another subject use 3D-cameras with laser projections for
seam tracking and geometry detection.

Which welding methods does your robot use?
From the answers obtained it is clear that MIG/MAG is the most used welding
method, as this is the cheapest and most robust. MIG/MAG is also a versatile
welding method due to the advancements done in power supplies. With advanced
power supplies it is possible to use e.g. CMT. More advanced welding methods will
in turn enable the MIG/MAG welding guns to weld more metals like aluminium
and titanium, as well as welding thin metal plates that requires low heat transfer.
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TIG is also used in the Norwegian industry when the task requires this kind of
welding quality. This is typical for offshore products. TIG is a more cumbersome
welding method to use in robotic welding as it requires coordination of the filler
metal and the electrode. This will for example limit the motions of the robot by
one DOF as the filler metal always has to point in the direction of the weld.

The subjects also gave examples of other welding methods that are common in
the robot industry, but not necessarily in Norway. These methods are FSW, RSW
and laser welding which are all typically used in the automotive industry. As this
type of industry is not widespread in Norway, they are less popular.

What is the biggest challenge you face when programming welding
robots?
There is no clear trend in the answers to this question. One subject mentioned
hardware problems with the robot e.g. I/O problems and malfunctioning sen-
sors. Complex welding tasks where also brought up, as they might require more
programming skills to implement than the robot programmer has.

For another subject the biggest problem is the different orientation of parts in a
production line. It is then a challenge to adapt the welding path to be correct each
time. Through-arc sensing was brought up as a possible solution to this problem
although it was not implemented at the time.

The last subject brought up user-friendliness. It is a challenge to make the pro-
gramming interface user friendly enough. The goal is to make robot programming
as intuitive and easy for the operator as possible. Welding parameters are also
challenging to set, and a welding engineer is often used to give guidance to the
settings on the welding apparatus.

To what extent are you able to automate the welding process as a
whole?
It is usually possible to reach a high degree of automation. One customer men-
tioned that if it is not possible to fully automate the process, it is not any point to
automate it in the first place. On the other hand another subject usually based the
automation process on 80% automation, 20% manual work. In processes where
the weld would leave a lot of spatter or slag, it is usually done manually from the
start as the slag has to be ground off manually anyways.

In most cases design of the production line determines the possible degree of
automation. Parts can be oriented in optimal ways, and welding seams can be
placed strategically on the product.
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Discussion

This chapter will combine theory with the results to discuss the potential benefits
and challenges related to the implementation of constraint-based robot program-
ming for welding robots in the Norwegian industry.

Robot types
As seen in Section 3.3, many industrial robots have six-axis. This is satisfactory
for movement with six DOF, which yields versatility and enables execution of most
tasks. The use of robots with more than six-axis requires a way of handling redun-
dancy, as it will always be present. With constraint-based robot programming it
is possible to set lower priority constraints on the robot to handle redundancy in
a meaningful way. This can be to avoid singularities, minimise energy consump-
tion or minimise joint movements. The redundancy can also be used for collision
avoidance, which in turn can let the robot operate in tighter spaces than a more
standard six-axis robot. Being able to operate in tight spaces might also make
robotic welding available in operations previously too complex or in a too tight
place for automation with six-axis robots.

Simplifying the use of more than six-axis robots will also be beneficial for welding
operations like TIG-welding, where a filler metal has to be added separately. As
mentioned in the interviews, TIG welding reduces the DOF of a robot by one,
since the filler metal always has to be supplied in front of the arc. By using a
robot with more than six axes, more flexible robot movement can still be achieved
in spite of the reduced DOF. This could be relevant for the Norwegian industry
due to TIG requirements in the offshore sector.

Easier control of redundant robots could also lead to the use of highly redun-
dant robots in robotic welding. These are snake like robots with many joints.
These kind of robots are highly flexible, and would be able to accomplish welding
operations deemed too complex for the traditional six-axis robot.
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Welding methods
All welding methods presented in Section 3.1 should be compatible with constraint-
based robot programming as long as the welding task can be expressed by task
constraints. As MIG is the most popular welding method in Norway, this should
be the first welding method to be implemented with constraint-based robot pro-
gramming.

Assuming constraint-based robot programming will lead to a higher degree of
automation due to more flexible robots being used, it will be of interest to utilise
welding method where no post processing is required. For the Norwegian industry,
this would mainly be MIG/MAG and TIG welding.

TIG welding has no splatter and uses no flux. If automating TIG is made easier by
constraint-based robot programming, it could end up as a more popular welding
method than it is today. Specialised MIG processes like CMT would also be of
interest due limited splatter and versatile welding opportunities regarding types
of metal an thickness of the workpieces.

Welding sensors
In the industry, cost is an important factor. It would therefore be beneficial for
welding robots work with only through-arc and touch sensing, as these are the
cheapest and most available. The accuracy of the sensors would then have to
be considered. A sensor for a constraint-based robot program would need to be
able to measure all defined constraints. Through-arc and touch sensing might
be satisfactory for assessing task-constraints while welding, but will be not work
when the arc is inactive. For the robot to be able to evaluate constraints without
an active arc, the use of 3D-cameras would be required.

Another issue with through-arc sensing is the more advanced arc welding processes
where changing the current and voltage is part of the process. Through-arc sensing
assumes a constant voltage so that the current can be used to measure distance.
For a process like CMT the current and voltage is changed intentionally as a
part of the welding process. This will interrupt the through-arc sensing process
rendering it useless.

For other welding methods like SRW, FSW or laser welding, 3D-cameras would
also be a viable sensor choice. Through arc-sensing is not an option for these
methods as they are not arc welding operations.

The main drawback of using 3D-cameras are the cost. A basic camera for detecting
the orientation of parts is cheaper than the ones used for seam tracking, but both
are more expensive options than through arc sensing. In a case where CMT is
deployed for less post-production, the user would have to compare the cost of
using a 3D-camera to the cost of post production when using through-arc sensing
and traditional MIG/MAG.
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Framework
As seen in Chapter 4 there are several frameworks for constraint-based program-
ming, and many of them are viable options for a robotic welding implementation.
Seeing that robotic welding is commonly executed by industrial robots, the frame-
works made for humanoid robots, like SoT, might not be ideal for smaller robot
cells. For large robot cells with several robots resulting in a high DOF, these kind
of frameworks would be more viable options.

The degree of development for a framework would also an important factor when
implementing constraint-based robot programming to welding robots. Based on
this criteria, the work done in [33], [34] and [35] could be a viable alternative, but
eTaSL/eTC would probably provide an even more developed framework due to its
developed script for interfacing with the framework. It has already been used for
assembly tasks [16] [17], and could probably be used efficiently in robotic welding
as well.

The problem using eTaSL/eTC is the non-intuitive programming interface, which
will require programming skills to be able to operate. In an industrial setting,
users with varying programming knowledge should be able to program the robots.
By implementing a GUI similar to the one seen in [34], eTC/eTaSL could be made
more available for non-programmers which would yield more flexibility in who is
able to reprogram the welding robots.

Area of Use
Constraint-based robot programming will simplify the process of programming
complex tasks, and might reduce the required programming time than what is
currently required. For simple tasks it is seen from the results that teach-pendant
programming is the most popular. If constraint-based robot programming is to
be used in this kind of simple tasks, it would have to be implemented in the
teach-pendant. To compete with the current teach-pendant programming method
it would have to be fast and user friendly, which might be possible with a well
developed constraint-based programming framework. The operator should be able
to define the constraints on the pendant, which are sent to the solver to calculate
the robot trajectory. Standard low priority tasks like singularity avoidance and
minimal joint movements could also be saved to the pendant for easy access.

The main use for constraint-based robot programming would still be that of pro-
gramming complex tasks. This is usually done offline and would not require the
same level of fast and intuitive programming seen in teach-pendant programming,
although it should make the process easier and less time consuming than it is to-
day.

Norwegian industry does not have the same level of manufacturing mass pro-
duction as is usually associated with e.g. the automobile industry. Smaller batch
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sizes often means more specialised and complex products. This can be challenging
for robot programmers as the robots will have to be reprogrammed often. With
constraint-based robot programming, this process could be made more efficient
even for more complex welding operations. This would lead to less down time due
to robot setup, which in turn could enable robotic welding in productions where
it was previously not possible due to time consumption. Easier programming of
complex tasks would have the same effect, meaning a wider array of products can
be welded by robots.



Chapter 7.

Conclusion

A literature review on state of the art frameworks for constraint-based robot
programming and welding technologies has been conducted, along with interviews
of relevant subjects in the Norwegian industry. Based on this work discussions
have been made on the potential of introducing constraint-based programming.
The discussion made the following conclusions:

• Easier control of redundant industrial robots using constraint-based robot
programming could lead to the use of more flexible robots which will enable
execution of welding tasks previously too complex for robotic welding.

• All welding methods could be compatible with constraint-based robot pro-
gramming. In the Norwegian industry the focus should be on MIG welding.
TIG welding could also be more popular due to more flexible robots which
will simplify TIG welding automation.

• 3D cameras would be required for evaluating the constraints when running
a robot with constraint-based robot programming, as through-arc sensing
only works with an active arc and not on welding methods with changing
current like CMT. This is a welding method that could be desirable to use.

• Constraint-based robot programming can make programming complex tasks
faster and easier, enabling more tasks to be automated.

• A well developed framework for constraint-based robot programming could
be implemented in the teach-pendant for online programming, but the main
area of use would be offline programming of complex tasks. It is concluded
that eTC/eTaSL is a viable framework due to it being well developed.

In addition to the discussion, a simple model and visualiser was made for the weld-
ing robot available at the Department of Mechanical and Industrial Engineering
(MTP) at the Norwegian University of Science and Technology (NTNU).
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7.1. Further work
Further work can be done in the process of mapping the current situation for
robotic welding and the need for constraint-based robot programming. This report
has interviewed three subjects in Norway. More subjects in Norway as well as other
countries, where the market is different, should be included in this research.

A proof of concept has to be developed where a framework for constraint-based
robot programming is applied to a welding robot. Simple welding tests should
be done to test the accuracy of the implementation compared to more traditional
robot programming methods.

Given a working proof of concept, a framework for easy task specification must
be implemented to make programming easy and intuitive. Work should also be
done to see what kind of sensors and welding methods that would be optimal for
constraint-based robot programming.
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Appendix A.

Interview Templates

A.1. Norwegian Interview Template

Robotsveising – Prosjektoppgave høst 2020  
 

Dette er en anonym spørreundersøkelse for å kartlegge ulike aspekter angående sveiseroboter i 

industrien i dag. Resultatene vil brukes i faget TPK4650 – Robotteknikk og automatisering, 

fordypningsprosjekt. Resultatene vil ikke kunne spores tilbake ti deg som svarer på spørsmålene. Måten 

vi ønsker å gjennomføre undersøkelsen på er å sende ut dette skjema først så du får tid til å tenke 

gjennom spørsmålene. Deretter ønsker vi et lite intervju der vi noterer ned svarene dine. 

     

1. Hvor mange års erfaring har du med sveiseroboter? 

2. Hvordan programmerer du sveiseroboter? 

3. Bruker du sensorer sammen med robotene?  

a. Hvis ja, hvilke? 

4. Hvilke sveisemetoder bruker robotene deres?  

a. Hvorfor bruker dere den/de dere gjør? 

5. Hva er den største utfordringen du møter når du programmerer roboter? 

6. I hvor stor grad klarer man å automatisere hele sveiseprosessen? Må man ofte gå over for hånd 

etterpå? 

 

 

Figure A.1.: Interview template in Norwegian.
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A.2. English Interview Template

Robotic Welding – Specialization project fall 2020  
 

This is an anonymous survey to map different aspects regarding welding robots in today’s industry. The 

results will be used in the subject TPK4650 – Robotics and Automation, Specialization Project. The results 

cannot be traced back to the one who answers the questions. This document contains the questions in 

the survey. We want you to go through the questions as a preparation. Then we wish to conduct an 

interview where we ask the questions and take notes of your answer.  

     

1. How many years of experience do you have with welding robots? 

2. How do you program welding robots? 

3. Do you use any sensors along with the robots? 

a. If yes, which ones? 

4. Which welding methods does your robots use? 

a. Why do you use this specific method? 

5. What is the biggest challenge you face when programming welding robots? 

6. To what extent are you able to automate the welding process as a whole? Is there often a need 

for manual welding where the robot cannot reach? 

 

Figure A.2.: Interview template in English.
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★ Conforms to ISO 9283     ★★ Varies in accordance with applications and motion patterns     Note: SI units are used for specifi cations.

Specifications GP25-12

Axes
Maximum 
motion range
[º]

Maximum 
speed
[º/sec.]

Allowable 
moment
[Nm]

Allowable 
moment of inertia 
[kg · m2]

Controlled axes 6

Max. payload (on U-axis) [kg] 12 (9)

S ±180 210 – – Repeatability [mm] ±0.03★

L +155/–105 210 – – Max. working range R [mm] 2010

U +160/–86 220 – – Temperature [ºC] 0 to +45

R ±200 435 22 0.65 Humidity [%] 20 – 80

B ±150 435 22 0.65 Weight [kg] 260

T ±455 700 9.8 0.17 Power supply, average [KVA] 2.0★★

All dimensions in mm

View A

View B

View C

�

W = 6 kg

200     300     400     500
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W = 
12 kg

P-point

100 R-, T-axis
centre of rotation 

B-axis
centre of rotation 
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83

Allowable wrist load                                                                                           

Prevent interaction of the robot with:

•	Corrosive gases, liquids or explosive gases
•	Exposure to water, oil or dust
•	Excessive electrical noise (plasma)

Robot
installation angle
 [deg.]

S-axis 
operating range
[deg.]

  0 ≤ U ≤ 30
±180 degrees or less 
(no limit)

30 < U ≤ 35 ±60 degrees or less

35 < U ±30 degrees or less

Mounting options: Floor, ceiling, wall, tilt*

Protection class: Main axes (S, L, U) IP54 
(option 65), wrist IP67

*	 tilt with condition of angle – see table below

MOTOMAN GP25-12

Figure B.1.: Technical specifications for YASKAWA Motoman GP25-12. Figure
from [38].
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