
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Vebjørn Bergsholm Bjørhovde

Performance Testing Real-Time
Robot Communication for a
Constraint-Based Robotic Welding
System

Master’s thesis in Robotics and Automation
Supervisor: Lars Tingelstad

June 2021

M
as

te
r’s

 th
es

is

Vebjørn Bergsholm Bjørhovde

Performance Testing Real-Time
Robot Communication for a
Constraint-Based Robotic Welding
System

Master’s thesis in Robotics and Automation
Supervisor: Lars Tingelstad
June 2021

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Performance Testing Real-Time
Robot Communication for a

Constraint-Based Robotic Welding
System

Vebjørn Bergsholm Bjørhovde

2021-06-09

Preface

This is a master’s thesis written by Vebjørn Bergsholm Bjørhovde under the
supervision of Lars Tingelstad during the spring of 2021. The thesis is written
for the Department of Mechanical and Industrial Engineering at the Norwegian
University of Science and Technology (NTNU), Trondheim.

Acknowledgements

First and foremost I would like to thank my supervisor Lars Tingelstad for support
and guidance while working on this thesis. Our weekly meetings have given me
motivation and direction while working on a large subject with many unknown
challenges.

I would also like to thank Mathias Hauan Arbo who unofficially has acted as a
co-supervisor on this thesis. He has been helpful in answering any questions I had
on control theory and latency in robotics.

Setting up the robot cell for welding would also be a lot more difficult without the
help of Nikolai Marhaug, Morten Høgseth Danielsen and Børge Holen. I would
like to thank them all for the technical support regarding welding in general as
well as using robotics in welding.

My thanks also to Adam Leon Kleppe for support on all lab-related questions I
could think of while working on this thesis.

Last but not least my thanks goes to Andrej Cibicik for useful insight to the use
of laser scanners. I also appreciated our discussions at Manulab giving me useful
input to my project as well as insight to the life of a researcher at NTNU.

Vebjørn B. Bjørhovde

Summary

In this thesis, a real-time performance test of the moto library is conducted. It
is a Python library made for controlling Motoman robots from YASKAWA both
using trajectory points and real-time control. Performance testing in this thesis
is concerned with real-time velocity control, and focuses on response time and
latency. Response time is defined as the time it takes for a robot to react after a
command is sent. Latency is defined as the time it takes for a robot to reach a
commanded velocity after the command is sent. These properties are found trough
experiments conducted on a robot manipulator and a positioning table. Both the
step response and the systems ability to follow a reference signal is tested.

Two modified version of the moto library is also tested. One system has an imple-
mented PID controller while the other one is run with the High Accuracy Path
Control Function enabled in the robot controller. These three versions of the sys-
tem are referred to as system modes. All three systems modes are tested, followed
by a comparison and discussion concerning real-time performance.

The thesis also presents a variety of theory starting with general robot kinematics
and an introduction to control theory. Various software concepts are then pre-
sented, along with existing software frameworks for robot control. This theory is
then used along with the moto library to suggest a complete system for constraint-
based robotic welding. The challenges and considerations of such a system is then
discussed along with its advantages and disadvantages.

Sammendrag

I denne masteroppgaven gjennomføres det en sanntid-ytelsestest for moto bib-
lioteket. Dette er et Python bibliotek lagd for å styre Motoman roboter fra
YASKAWA ved bruk av både banepunk og sanntidsstyring. Ytelsestestingen i
denne oppgaven omfatter sanntids hastighetsstyring, og vil fokusere på responstid
og forsinkelse i systemet. Responstid er definert som tiden det tar fra en kom-
mando blir sendt til roboten før den reagerer. Forsinkelse er definert som tiden
det tar for en robot å nå en ønsket hastighet etter at hastighetskommandoen er
sendt. Både responstid og forsinkelse blir undersøkt gjennom eksperimenter på
en robot manipulator og et posisjoneringsbord. Både steg responsen og systemets
evne til å følge et referansesignal i endring blir testet.

To modifiserte versjoner av moto biblioteket blir også testet. Et av systemene
har en implementert PID regulator, mens det andre systemet har aktivert "High
Accuracy Path Control Function" i robotkontrolleren. De tre versjonene av sys-
temet blir referert til som system versjoner. Alle tre system versjonene blir testet,
etterfulgt av en sammenlikning og diskusjon av deres sanntidsytelse.

Masteroppgaven vil også presentere et utvalg av teori. Først vil generell robotkine-
matikk gjennomgåes sammen med en introduksjon til reguleringsteknikk. Ulike
konsepter innen datateknologi vil dermed presenteres, før ulike eksisterende ram-
meverk for robotstyring vil forklares. Teorien sammen med moto biblioteket vil
så brukes for å presentere et forslag for et komplett begrensningsbasert system for
robotisert sveising. Utfordringer og hensyn som må taes i et slikt system vil så
diskuteres sammen med fordeler og ulemper med et slikt system.

Contents

Preface i

Acknowledgements iii

Summary v

Sammendrag vii

1. Introduction 1
1.1. Problem Statement . 1
1.2. Related Work . 1
1.3. Methodology . 4
1.4. Structure of the Thesis . 4

2. Robot Kinematics 7
2.1. Degrees of Freedom . 7
2.2. Redundancy . 8
2.3. Rotation Matrices . 9

2.3.1. Exponential Representation of Rotation 11
2.3.2. Matrix Logarithm of a Rotation Matrix 11

2.4. Transformation Matrices . 12
2.5. Twists and Screws . 14

2.5.1. Adjoint Representation . 16
2.6. Exponential Representation and Matrix Logarithm of Transforma-

tion Matrices . 16
2.7. Forward Kinematics . 17
2.8. The Jacobian . 19

2.8.1. The Pseudoinverse of the Jacobian 20
2.9. Singularities . 20
2.10. Inverse Kinematics . 20
2.11. Inverse Velocity Kinematics . 22
2.12. URDF . 23

x Contents

3. Control Theory 25
3.1. Terminology . 25
3.2. Feedback and Feedforward . 27
3.3. Stability . 28
3.4. PID controller . 31
3.5. Ziegler-Nichols Method . 32

4. Software Theory 35
4.1. Internet Protocol Suite . 35

4.1.1. Telnet . 37
4.1.2. TCP . 38
4.1.3. UDP . 40
4.1.4. IP . 41

4.2. Real-Time Systems . 42
4.3. Kernels . 42

4.3.1. Linux Kernel . 44

5. Existing Software 47
5.1. ROS 2 . 47

5.1.1. Graphs . 47
5.1.2. Nodes . 48
5.1.3. Topics and Messages . 48
5.1.4. Services . 49
5.1.5. Actions . 50

5.2. ROS-Industrial . 51
5.3. ROS2 control . 52

5.3.1. Hardware Components . 53
5.3.2. Resource Manager . 55
5.3.3. Controller Manager . 55
5.3.4. Controllers . 55

5.4. Moto . 56
5.4.1. Architecture . 58
5.4.2. Simple Message . 61
5.4.3. Real-Time Mode . 61

5.5. eTaSL/eTC . 62
5.5.1. eTC . 62
5.5.2. eTaSL . 64

6. MotoTester 67
6.1. moto_tester.py . 67
6.2. rt_setup.py . 68
6.3. moto_tester_rt.py . 68

Contents xi

6.4. rt_server.py . 68
6.5. data_plotter.py . 71
6.6. utilities.py . 71

7. Hardware 73
7.1. Robot Manipulator . 73
7.2. Positioning Table . 76
7.3. Robot Controller . 77

7.3.1. Teach Pendant . 77
7.4. Welding Apparatus . 79
7.5. Laser Scanner . 80
7.6. Computer Specifications . 80

8. Experiment Setup 81
8.1. Robot Cell Setup for Welding . 81
8.2. Welding with Teach Pendant . 82
8.3. Moto Testing . 82

8.3.1. Frequency Verification . 83
8.3.2. Step Response . 83
8.3.3. Following a Reference Signal 84

9. Results 85
9.1. Welding with Teach Pendant . 85
9.2. Moto Testing, Manipulator . 86

9.2.1. Frequency . 86
9.2.2. Step Response . 86
9.2.3. Following a Reference Signal 87

9.3. Moto Testing, Positioning Table . 87
9.3.1. Frequency . 88
9.3.2. Step Response . 88
9.3.3. Following a Reference Signal 88

9.4. A System for Constraint-Based Robotic Welding 89

10.Discussion 91
10.1. Welding with Teach Pendant . 91
10.2. Moto Testing . 92

10.2.1. Frequency . 92
10.2.2. Step Response . 93
10.2.3. Following a Reference Signal 95

10.3. Validity of the Real-Time Performance 98
10.4. Latency Reduction . 98

10.4.1. Improving the PID Controller 98

xii Contents

10.4.2. HTRAJ . 99
10.4.3. Custom Robot Controller 99

10.5. Timeouts and Possible Solutions 100
10.6. Complete System for Constraint-Based Robotic Welding 101

10.6.1. Challenges and Considerations 101
10.6.2. Advantages and Disadvantages 102

11.Conclusion 105
11.1. Further Work . 106

A. A Selection of Robot Jobs 113
A.1. INIT_ROS . 113
A.2. INIT_ROS with HTRAJ . 114
A.3. SIMPLE_ARC . 114
A.4. CIRCULAR_ARC . 115

B. YASKAWA Motoman GP25-12 117

C. YASKAWA MT1-500 S2HD 119

D. Robot Manipulator Plots 121
D.1. Step Response . 121
D.2. Following a Reference Signal . 122
D.3. Following a Modified Reference Signal 123

E. Positioning Table Plots 125
E.1. Step Response . 125
E.2. Following a Reference Signal . 126
E.3. Following a Modified Reference Signal 127

List of Figures

1.1. Thesis structure . 5

2.1. Degrees of freedom in 3D . 8
2.2. Rotation matrix example . 10
2.3. Homogeneous transformation matrix example 13
2.4. Linear velocity of a twist in a fixed frame 15
2.5. Product of exponentials . 18
2.6. Singular configuration of manipulator 21
2.7. Inverse kinematics algorithm . 22
2.8. URDF link example . 23
2.9. URDF joint example . 24

3.1. Common control theory terminology 26
3.2. DC-motor block diagram . 26
3.3. Disturbance feedforward block diagram 27
3.4. Reference feedforward block diagram 28
3.5. Asymptotically stable step response 29
3.6. Unstable step response . 30
3.7. Marginally stable step response . 30
3.8. PID controller block diagram . 31

4.1. The TCP/IP protocol suite . 36
4.2. TCP header . 38
4.3. TCP data transfer process . 40
4.4. UDP header . 41
4.5. IPv4 header . 42
4.6. Computer system definition . 43
4.7. Kernel communications . 44

5.1. ROS 2 graph . 48
5.2. Nodes communicating over a topic 49
5.3. ROS 2 service . 50
5.4. ROS 2 action . 51

xiv List of Figures

5.5. PR2 robot . 53
5.6. ROS2 control architecture . 54
5.7. Node life cycle . 57
5.8. moto architecture . 58
5.9. moto trajectory points . 59
5.10. eTC architecture . 63
5.11. eTaSL variable . 65
5.12. eTaSL constraint . 65
5.13. eTaSL monitor . 66

6.1. PID controller in rt-server . 69
6.2. Derivative gain effect on step response 70

7.1. Robot cell . 74
7.2. Simplified drawing of YASKAWA Motoman GP25-12 75
7.3. Simplified drawing of YASKAWA MT1-500 S2HD 76
7.4. Teach pendant for YRC1000 . 78
7.5. Remote controller for Fronius TPS400-i 79
7.6. Micro-Epsilon scanCONTROL 2610-100 80

8.1. Step function . 83

9.1. Welding seams from welding experiments 85
9.2. Constraint-based robotic welding architecture 90

10.1. Recommended welding direction and angle for MIG welding 92

A.1. INIT_ROS . 113
A.2. INIT_ROS with HTRAJ . 114
A.3. SIMPLE_ARC . 114
A.4. CIRCULAR_ARC . 115

B.1. Technical specifications for YASKAWA Motoman GP25-12 118

C.1. Technical specifications for YASKAWA MT1-500 S2HD 120

D.1. Step response joint S . 121
D.2. Joint S following a reference signal 122
D.3. Joint S following a modified reference signal 123

E.1. Step response joint X . 125
E.2. Joint X following a reference signal 126
E.3. Joint X following a modified reference signal 127

List of Tables

3.1. Ziegler-Nichols tunings . 33

4.1. Three categories of real-time systems 43

9.1. Control frequency, robot manipulator 86
9.2. Response time and latency for step responses, robot manipulator . 86
9.3. Latencies following reference signal, robot manipulator 87
9.4. Latencies following modified reference signal, robot manipulator . . 87
9.5. Control frequency, positioning table 88
9.6. Response time and latency for step responses, positioning table . . 88
9.7. Latencies following reference signal, positioning table 89
9.8. Latencies following modified reference signal, positioning table . . 89

10.1. Response times for three different robots 95
10.2. Latency for three different robots 95

Chapter 1.

Introduction

Traditional robot programming using a teach pendant is common practice in the
industry today. Despite its popularity this method comes short when more com-
plex tasks are to be programmed. The programming task then becomes a cumber-
some one, and researchers are now exploring the possibility of real-time constraint
based systems for easier and faster robot programming. Running a robot in real-
time introduces requirements to the system regarding execution times and delays.
These are properties that should be tested and evaluated.

1.1. Problem Statement
Before developing a complete system for constraint-based robot programming for
welding operations, core components have to be tested with regards to real-time
performance to determine their suitability for the system. This thesis aims to test
the real-time performance of the moto library which is a Python library developed
for real-time control of Motoman robots from YASKAWA. With a focus on latency
and response time, the library is to be tested by experimentation using a Motoman
GP25-12 located at Manulab at the the Department of Mechanical and Industrial
Engineering at NTNU Trondheim. Additionally, the thesis aims to suggest an
architecture for a complete constraint-based system for robotic welding.

1.2. Related Work
This section will present related work done in the filed of performance testing
real-time robotic systems. Different frameworks for constraint-based robot pro-
gramming will also be presented. The section will end by presenting work done to
introduce constraint-based robot programming to robotic welding applications.

2 Chapter 1. Introduction

Performance Testing a Real-Time System
Testing real-time system performance is a natural process when implementing a
real-time system. This has been done several times in literature before, but the
type of performance test and choice of performance parameters vary.

In [36] a ROS2 framework is implemented on an ABB IRB 14000 YuMi, which is
an industrial robot with two 7 DOF arms. Real-time position control of the arms
are implemented and real-time performance tested. Seven different performance
parameters for a real-time system are suggested, and experiments to determine
one of them are conducted. The performance parameter is the delay in the system
when tracking a changing reference signal. Delay is defined as the time the robot
uses to reach a position after the position command has been sent. This will later
in this thesis be defined as latency.

[23] presents PyMoCo which is a Python framework for real-time trajectory gen-
eration made for industrial robots. Performance is measured using the response
time of the system, which in [23] is defined as the time it takes for the system to
reply to a command message. The response time is tested over 100 000 control
cycles, and the worst and average response time along with its standard deviation
is used to compare different controllers in the framework. Three experimental
applications of PyMoCo can also be seen in [24]. In this paper the framework is
applied for real-time control of three different robot manipulators, two of them are
position controlled and the last one is velocity controlled. Real-time performance
in this case is measured somewhat similar to [36] where a changing reference sig-
nal is tracked. Latency is then used as a performance indicator. In addition the
response time in each of the three systems are measured. Response time in this
case is defined as the time it takes from a command is sent until the robot starts
moving.

A system for tracking a drawn line on a surface from a fixed distance is presented
in [44]. The system consists of a six DOF industrial robot equipped with a camera
and laser projection of the tool center. Delays occur in all parts of the system,
and these are identified individually before a total system delay is presented. This
delay is verified by simulating the system using higher and lower delay before
comparing this to empirical data from the physical system. The same tracking
experiment was run for all three systems and the physical systems performance
proved to be in between the two other systems, thus verifying the estimated delay.
In this paper the total system delay is used for measuring real-time performance.

A modular and portable control framework to be used in research applications is
presented in [8]. It is implemented on two different robot systems, and real-time
tests are conducted on one of them. The tested system consists of a Mitsubishi
PA-10 which is connected to the developed control framework. It is controlled in
real-time using velocity control. Real-time performance in this case is defined as

1.2. Related Work 3

the execution time of each control cycle in a motion controller.

Constraint-Based Robot Programming
Constraint-based robot programming has been researched for some time, and sev-
eral frameworks have been developed. In [2] a task specification language eTaSL
is presented. This is a Lua based language where robotic tasks are defined as a set
of constraints. Joint velocities are then calculated in a corresponding controller,
eTC, based on these constraints. This framework will be further explained in
Section 5.5. eTaSL/eTc is based off another framework developed at the same
university, namely iTaSC [9][10]. In this framework frames are defined in different
parts of the robot workspace, and by imposing constraints on the relationship
between them robotic tasks can be planned and executed. A different approach is
the Stack of Tasks (SoT) presented in [27]. This framework is made for controlling
many different tasks simultaneously, and is typically used in humanoid robots. It
uses a network of tasks that communicate with each other, and a priority system
where lower priority tasks are disregarded if they disrupt higher level tasks.

The three frameworks mentioned above are some of the most complete systems for
constraint-based robot programming, but other alternatives also exist. In [45] and
[46] a more intuitive approach to constraint-based task specification is introduced,
where constraints are are defined as geometrical relations between parts in a CAD
model. This makes for a more intuitive approach to setting constraints compared
to other task-specification languages. The framework is further improved in [47]
where a faster constraint solver is introduced.

In [20] a framework for controlling humanoid robots is introduced. It is based on
the fact that the control of a human robot can be regarded as a set of hierarchically
arranged subtasks that all have to work together. This framework also focuses on
the dynamic behaviour of the system, and how to handle it in addition to robot
kinematics. Another framework for multiple prioritised tasks can be found in [11].
In comparison to the previously presented frameworks, this work focuses on force
control of robots. This is done efficiently by using a solver where the kinematics
and dynamics of the robot are solved separately. Another focus in constraint-based
robot programming is the concept of robot human collaboration. This is the main
focus of [22] where a constraint-based system with prioritised tasks are used. In
this system high priority constraints can be defined for collision avoidance with
humans. This creates a robotic system where the safety of humans always have the
highest priority and will cancel out any contradicting tasks. Lastly [39] presents
a methodology for restricting the movement of objects by defining geometrical
constraints between them. A solver is also introduced to find a solution to the
defined constraints. This solver utilise the fact that movement can be decomposed
into translation and rotation of the objects. The methodology and solver can be
applied to the definition of robotic tasks.

4 Chapter 1. Introduction

Robotic Welding using Constraint-Based Robot Programming
Robotic welding using constraint-based robot programming has been mentioned
in literature before without a complete framework being presented. Various weld-
ing methods are used as examples for applications of the work presented in [57],
[45] and [47]. To the authors knowledge the only work resembling a constraint-
based system for robotic welding is presented in [3]. In this paper a solution for
controlling a seven-axis robot with a two axis positioning table during a weld-
ing operation is presented. The solution uses constraints for dealing with the
redundancy in the system, avoiding singularities and keeping the weld seam hor-
izontal. The solution is similar to modern frameworks for constraint-based robot
programming, where a task is divided into smaller subtasks that are to be solved
within the given constraints. The difference can be seen in constraint definition.
In [3] there are three equally weighted constraints, that all subtasks strictly must
follow. Modern frameworks however introduces weighted constraints so that some
constraints are deemed more important than others and a solver fill calculate the
optimal solution to for all subtasks. Also note that the solution presented in
[3] is not a complete system for constraint-based robot programming for welding
operations as it presents a solution for one specific task only.

1.3. Methodology
To give the reader a theoretical understanding of the results and discussion in this
thesis, the first chapters has been dedicated to theory. For these chapters, as well
as Section 1.2, a literature study was conducted.

For the results and discussion, empirical methods have been utilised. As the
moto library was previously untested, hands on testing was regarded as the best
approach to obtain relevant results.

1.4. Structure of the Thesis
This thesis is structured after the IMRaD model for scientific writing with one
slight modification. The model divides a text into four different sections: In-
troduction, Methodology and Material, Results and Discussion. For this thesis
methodology is included in the introduction, as it is not an elaborate part of the
thesis. The four different sections, and the chapters that belong to each section,
can be seen in Figure 1.1.

1.4. Structure of the Thesis 5

Figure 1.1.: The structure of this thesis based on the IMRaD model (Introduc-
tion, Method and Material, Results and Discussion).

Chapter 2.

Robot Kinematics

This chapter will summarise some important aspects of robot kinematics for open
chain manipulators. This is a robot where one end is not fastened, like the robotic
arms commonly seen in the industry. The theory is meant to give a better under-
standing of the work that will be presented later in the report. All sections in this
chapter are based off the work done in [25] unless stated otherwise. All equations
presented are also taken from [25]. This chapter, except for Section 2.12, is copied
from the project report attached to this thesis [6].

2.1. Degrees of Freedom
Degrees of freedom (DOF) defines the range of motion for an object. For this
chapter, 3D space will be considered. A rigid body in space has a configuration,
or pose, which is a description of the body’s position and orientation. The number
of parameters needed to fully describe the body’s configuration is equal to its
number of DOF. To illustrate this concept, consider the cube shown in Figure
2.1. As the cube is not constrained in any way, it can be moved in the x, y and
z-directions. It can also be rotated by an angle γ, β and α around the x, y and
z-axis respectively. For rigid bodies it holds that:

DOF = (sum of freedoms of the bodies)-(number of independent constraints)

From this it can be concluded that a rigid body in space with no constraints has
six DOF. The next step is to define the DOF for a robot based on the type and
number of joints it has.

In robotics there are different types of joints with different DOF. The most com-
mon in industrial robots is the revolute joint, which yields one DOF as it rotates

8 Chapter 2. Robot Kinematics

Figure 2.1.: Degrees of freedom (DOF) shown for a cube in 3D.

about one axis. The DOF for a robot is calculated by Grübler’s formula:

DOF = m(N − 1− J) +
J∑
i=1

fi (2.1)

Where m is the number of DOF for a rigid body, N is the number of robot links
including the ground it is mounted on, J is the number of joints and fi is the DOF
for joint i. Note that for a robot with only revolute joints, the DOF is equal to
the number of joints. From (2.1) it is seen that a robot can exceed the six DOF
needed for free movement in 3D, this will cause redundancy which is the topic of
the next section.

2.2. Redundancy
Redundancy has been defined differently by several authors in literature. Several
definitions are presented in [7], and a common definition is suggested. Parts of this
definition will be summarised in this section. Two definitions are needed before
defining redundancy. The workspace of a robot is defined as the space a robot
can reach with its end-effector, and the task space is defined as the space where
a robot task can be expressed naturally.

The redundancy definition in [7] considers industrial robots with joints that yield

2.3. Rotation Matrices 9

one DOF. Let the number of joints in a robot be denoted n and the dimension
of the robot’s work- and taskspace denoted w and t respectively. With these
parameters, three cases are worth noting:

• n = w: This is the normal case where most industrial robots operate today.

• n > w: This is a case of kinematic redundancy, where the number of robot
joints exceeds the requirement for the robot to operate in the workspace.
Kinematic redundancy will make the robot more flexible as it can move
more joints without changing the end-effector pose.

• n > t: This case is similar to the previous one, but defined as task redun-
dancy. In this case a robot has more DOF than is required for its given
task.

In the two latter cases redundancy can be utilised to move the robot while still
maintaining the same end-effector pose. This can be used to avoid external ob-
stacles, avoid singularities (Section 2.9), minimise energy consumption, etc.

2.3. Rotation Matrices
Before presenting rotation matrices, the concept of frames must be defined. A
frame is simply a coordinate system that can be placed freely in space. Usually
a stationary space frame is defined and used as reference when working with
robotics. A body frame is defined as a frame that is always coincident with a
frame attached to a body. For practical reasons frames in this report are always
right-handed. With these concepts in place, rotation matrices can be explained.

Rotation matrices are used to represent the orientation of a frame, change the
reference frame for a vector or frame and rotate a vector or frame. In 3D these
matrices are represented by the special orthogonal group SO(3). These 3× 3 real
matrices R satisfy the following conditions:

RTR = I

det(R) = 1

where I is the 3 × 3 identity matrix. To illustrate the use of rotation matrices
Figure 2.2 from [25] will be used, where three different frames are shown along
with a point p. The first use of rotation matrices is representing orientation.
Orientation is always represented with regards to a reference frame, so imagine a
frame {s} coincident with frame {a}. The notation Rij represents the orientation

10 Chapter 2. Robot Kinematics

Figure 2.2.: Three coordinate frames with a point p used to demonstrate the
use of rotation matrices. Figure from [25].

of frame {j} with respect to frame {i}. This yields the following orientations for
the three frames:

Rsa =

1 0 0
0 1 0
0 0 1

 , Rsb =

0 −1 0
1 0 0
0 0 1

 , Rsc =

0 −1 0
0 0 −1
1 0 0

The point p is represented as a vector in each frame, note that pi denotes the
point p with reference frame {i}. This yields the following representations:

pa =

1
1
0

 , pb =

 1
−1
0

 , pc =

 0
−1
−1

The second use of a rotation matrix is to change the reference frame of another
frame or vector. Consider the matrix Rsa. How can the orientation of frame {a}
be represented with respect to frame {b}? This can be done with the following
matrix multiplication:

Rba = RbsRsa (2.2)

Note that Rbs = RT
sb = R−1

sb . The reference frame for vectors can be changed in
a similar manner:

pb = Rbapa (2.3)

The last use of rotation matrices is the rotation of a frame or vector. A pure
rotation around the unit x̂, ŷ and ẑ-axis can be represented by (2.4), (2.5) and

2.3. Rotation Matrices 11

(2.6) respectively, where θ is the rotation angle about the axis:

Rot(x̂, θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (2.4)

Rot(ŷ, θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (2.5)

Rot(ẑ, θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (2.6)

When rotating a frame with a rotation matrix, it is done by either post- or pre-
multiplying the rotation matrix R with the orientation of the frame. Premulti-
plication, RRij , correlates to rotating Rij with respect to frame {i}. Postmul-
tiplication, RijR, correlates to rotating Rij with respect to frame {j}. A vector
must always be rotated with respect to its reference frame and is therefore always
premultiplied with the rotation matrix.

2.3.1. Exponential Representation of Rotation

Imagine that instead of representing rotations as pure rotations about each coor-
dinate axis, the rotation can be represented by a rotation θ about one arbitrary
unit axis ω̂. The resulting rotation matrix can be found by Rodrigues’ formula:

Rot(ω̂, θ) = e[ω̂]θ = I + sin(θ)[ω̂] + (1− cos(θ))[ω̂]2 (2.7)

where [ω̂] is the skew-symmetric representation of ω̂ = [ω1, ω2, ω3]T defined as:

[ω̂] =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 (2.8)

2.3.2. Matrix Logarithm of a Rotation Matrix

In (2.7) a rotation matrix R was found from an arbitrary unit rotation axis ω̂ and
a rotation angle θ. The matrix logarithm is the opposite operation where the axis

12 Chapter 2. Robot Kinematics

and angle is found from the matrix. The two essential equations used to calculate
the matrix logarithm form a rotation matrix R are:

tr(R) = 1 + 2 cos(θ) (2.9)

[ω̂] =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 = 1
2 sin(θ)(R−RT) (2.10)

From (2.9) it is possible to find the rotation angle θ, which in turn can be inserted
in (2.10) to find the unit rotation axis ω̂. Two special cases are worth noting.
When R = I, θ = 0 which in turn makes ω̂ undefined. When tr(R) = −1, θ = π
and ω̂ can be set to any of the following solutions:

ω̂ = 1√
2(1 + r33)

 r13
r23

1 + r33

 (2.11)

ω̂ = 1√
2(1 + r22)

 r12
1 + r22
r32

 (2.12)

ω̂ = 1√
2(1 + r11)

1 + r11
r21
r31

 (2.13)

where rij are the elements of the rotation matrix R.

2.4. Transformation Matrices
To describe translation as well as rotation in 3D, homogeneous transformation
matrices are used. These matrices form the special Euclidean group SE(3), and
are 4 × 4 real matrices. They contain a rotational matrix R ∈ SO(3) as well as
a column vector p ∈ R3 representing translation along the three axes of a frame.
Homogeneous transformation matrices T take the form:

T =
[
R p
0 1

]
(2.14)

2.4. Transformation Matrices 13

Figure 2.3.: Three frames with a point v used to describe homogeneous trans-
formation matrices. Figure from [25].

The use of transformation matrices are analogous to that of rotation matrices,
but also include position and translation of frames. Transformation matrices
can be used to represent the position and orientation, i.e. configuration, of a
frame, change the reference frame of a vector or frame or change configuration
for a vector or frame. To illustrate the different uses of transformation matrices,
consider Figure 2.3 taken from [25]. Imagine once again a reference frame {s}
that is coincident with frame {a}.

By using transformation matrices as representations of frame configuration, the
following matrices are obtained:

T sa =
[
Rsa pa

0 1

]
=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

T sb =
[
Rsb pb
0 1

]
=

0 0 1 0
0 −1 0 −2
1 0 0 0
0 0 0 1

T sc =
[
Rsc pc
0 1

]
=

−1 0 0 −1
0 0 1 1
0 1 0 0
0 0 0 1

The notation is equal to the one for rotation matrices so T ij is the configuration
of frame {i} with respect to {j}. The point v is represented by a homogeneous
vector ∈ R4. In this case the three first elements of the vector are analogous to
the case seen for p in Section 2.3, and the last element is equal to one. The rule

14 Chapter 2. Robot Kinematics

for changing the reference frame of a transformation matrix is also equal to the
one for rotation matrices. Changing the reference frame of T sa from {s} to {b}
can be done in the following manner:

T ba = T bsT sa (2.15)

Note that T bs = T−1
sb , where the inverse of a transformation matrix is found as:

T−1 =
[
RT −Rp
0 1

]
(2.16)

The rules for changing the configuration of a vector or frame are similar to the
rules for rotation matrices. The difference between the two being the translation.
When pre-multiplying with a transformation matrix the frame is first rotated
with respect to the space frame according to the rotation matrix R, before it
is translated with respect to the space frame according to the vector p. When
post-multiplying by a transformation matrix the frame is first translated with
respect to the body frame, before it is rotated with respect to the body frame.
As vectors are only related to one frame they can only be premultiplied to change
configuration.

2.5. Twists and Screws
Twists are representations of both the linear and angular velocity of a moving
frame. It is a six-dimensional vector consisting of both velocities and can be
represented in regards to the fixed frame {s} or the moving body frame {b}.
These are the body twist and spacial twist respectively, and are written on the
following form:

Vs =
[
ωs
υs

]
, Vb =

[
ωb
υb

]
∈ R6

where ωs and ωb represents the angular velocity of the frame with respect to the
fixed frame and the body frame respectively. υb represents the linear velocity of
the body frame, but υs does not simply represent the velocity of a frame with
respect to {s}.

To explain the physical interpretation of υs it is useful to look at Figure 2.4 taken
from [25]. The body containing both the body frame {b} and the fixed frame {s}
is moving with a body twist Vb. Now imagine a point that is attached to the body

2.5. Twists and Screws 15

Figure 2.4.: A visual representation of the linear velocity of a twist represented
in the fixed space frame {s}. Figure from [25].

and coincident with the origin of {s}. This point will have the linear velocity υs,
which is a combination of the rotational and linear velocity of the body.

A twist can be represented by a normalised screw axis S multiplied by an angular
velocity θ̇. The motion of a frame along screw axis will then replicate the threads
of a screw with a a translation along the axis happening simultaneously with a
rotation about the axis. Angular velocity around this axis is represented by θ̇.
The process of finding a screw axis S and an angular velocity θ̇ from a twist
V =

[
ωT υT

]T
will now be presented.

If ω 6= 0 then the screw axis S is equal to the twist normalised by ||ω||. The
rotational velocity θ̇ is then equal to ||ω||. If ω = 0 there is no angular velocity
and the twist is just a linear translation. The screw axis S is then represented by
the twist normalised by ||υ||. The velocity θ̇ is then equal to ||υ||. For both cases
the twist V = S θ̇.

A more formal definition of the screw axis can be written as:

S =
[
ω
υ

]
∈ R6 (2.17)

16 Chapter 2. Robot Kinematics

If ω = 0 then ||υ|| = 1 and the twist will be a pure translation along the axis
defined by υ. When ||ω|| = 1 the velocity υ = −ω × q + hω where q is a point
on the screw axis and h is the pitch of the screw defined as ωTυ

θ̇
.

It can be useful to express the screw axis S in matrix form. This expression will
also hold for a twist V as S is a normalised twist.

[S] =
[
[ω] υ
0 0

]
(2.18)

2.5.1. Adjoint Representation

It is useful to be able to change the reference frame of a twist. This can be done
with the adjoint representation of a transformation matrix T which is defined as:

[AdT] =
[
R 0

[p]R R

]
∈ R6×6 (2.19)

where R and p are the rotation matrix and translation vector associated with
T respectively. The reference frame can be changed from the body frame to the
fixed frame by the following equation:

Vs = [AdT sb]Vb = AdT sb(Vb) (2.20)

Note the alternative notation of the adjoint representation multiplied by a twist,
this will be used in later sections. (2.20) is also applicable to screw axes.

2.6. Exponential Representation and Matrix
Logarithm of Transformation Matrices

Just as rotation matrices can be represented by a rotation θ around an arbitrary
unit rotation axis ω̂, homogeneous transformation matrices can be represented
by a screw axis S and a distance θ along the screw axis. To transform this
representation into a homogeneous transformation matrix in SE(3), the matrix
exponential is utilised. It is defined as:

e[S]θ =
[
e[ω̂]θ (Iθ + (1− cos θ)[ω̂] + (θ − sin θ)[ω̂]2)υ

0 1

]
(2.21)

2.7. Forward Kinematics 17

Analogous to rotation matrices, it is also possible to find a screw axis S and a dis-
tance θ from a transformation matrix T by using the matrix logarithm operation.
Given a transformation matrix on the form shown in (2.14). The rotational axis
ω̂ and rotation angle θ can be found from the matrix logarithm of R as described
in Section 2.3.2. The linear velocity υ is found from the following equation:

υ = (1
θ
I − 1

2[ω̂] + (1
θ
− 1

2 cot(θ2))[ω̂]2)p

For the matrix logarithm of T there is one special case to consider. If R = I
there is no rotation and the motion is purely transnational. If that is the case set
ω̂ = 0, υ = p

||p|| and θ = ||p||.

2.7. Forward Kinematics
Forward kinematics in robotics is the calculation of the end-effector configuration
based on the joint angles of the robot. There are different ways of calculating
forward kinematics, a widespread method uses Denavit-Hartenberg parameters.
In this method each link of the robot is given a frame, and the forward kinematics
of the robot can be calculated based on the relation between each frame. The
method that will be explained in this section is the product of exponential (PoE)
formula, as this method correlates well with the previously explained theory and
is the method used in [25].

PoE is based off the exponential representation of homogeneous transformation
matrices and their product. Consider the open chain manipulator with n rota-
tional joints shown in Figure 2.5 taken from [25]. Define the fixed space frame {s}
and an end-effector frame {b}. Also define a homogeneous transformation matrix
M = T sb(0) representing the end-effector configuration with all n joints angles
equal to zero. This is the zero-position or home-position.

PoE can now be divided into two different approaches depending on which frame
is used as reference for defining the exponential representations. This section will
focus on the space frame formulation where {s} is used as reference. After this
explanation a brief summary of the calculations using the end-effector frame {b}
as reference will be given.

Each of the n rotational joints on the robot can be defined by a screw axis Si

where i = 1, 2, ..., n. To calculate the axes see (2.17). The upper part of Si is a
vector representing the rotational axis of joint i. As the motion around the joints
are purely rotational, the pitch h is zero. This simplifies the velocity calculation
and we can write the screw axes for each joint of the robot as:

18 Chapter 2. Robot Kinematics

Figure 2.5.: An n-link open chain manipulator used to explain the product of
exponentials (PoE) formula. Figure from [25].

Si =
[

ωi
−ωi × qi

]
i = 1, 2, ..., n (2.22)

where qi is a point on the rotational axis of joint i. After finding a screw axis for
each joint, they can be represented in exponential form by using (2.21). The value
θi is the joint angle of joint i. With the zero-position and an expression for each
joint angle it is now possible to calculate the end-effector configuration T sb(θ) by
pre-multiplying the chain of exponential representations with the zero-position:

T sb(θ) = e[S1]θ1e[S2]θ2 ...e[Sn]θnM (2.23)

Where θ is a vector containing all joint angles θ1, θ2...θn.

Calculating the forward kinematics using the end-effector frame {b} is similar to
using the space frame {s}. There are two differences in the approach, the first
one being how to calculate the screw axes. These are now calculated with respect
to the end-effector frame instead of the base frame and denoted Bi. The second
difference is that the zero-position is post-multiplied by the chain of exponential
representations instead of pre-multiplied. This yields the following equation for

2.8. The Jacobian 19

finding the end-effector pose T :

T sb(θ) = Me[B1]θ1e[B2]θ2 ...e[Bn]θn (2.24)

2.8. The Jacobian
For an open chain manipulator, the Jacobian represents the relationship between
the velocity of the end-effector and the joint velocity such that:

ẋ = J(θ)θ̇ (2.25)

where ẋ ∈ Rm is the end-effector velocity, θ ∈ Rn is a list of current joint angles,
θ̇ is a list of joint velocities and J(θ) ∈ Rm×n is the Jacobian matrix.

The two types of Jacobians that are relevant for this section are the space Jacobian
and the body Jacobian. The space Jacobian Js correlates the spacial twist of the
end-effector to the joint velocities and is defined for a robot manipulator with n
joints as:

Vs = Js(θ)θ̇ (2.26)

where the ith column of Js(θ) is:

Jsi(θ) = Ad
e[S1]θ1e[S2]θ2 ...e[Si−1]θi−1 (Si) i = 2, 3, ..., n (2.27)

and the first column Js1 = S1. Similarly the body Jacobian of a n-joint manipu-
lator is defined as:

Vb = J b(θ)θ̇ (2.28)

where the ith column of J b(θ) is:

Jsi(θ) = Ad
e−[Bn]θne−[Bn−1]θn−1 ...e−[Bi+1]θi+1 (Bi) i = n− 1, n− 2, ..., 1 (2.29)

and the last column J bn = Bn.

20 Chapter 2. Robot Kinematics

2.8.1. The Pseudoinverse of the Jacobian

It can be useful to find the inverse of the Jacobian matrix. For a six-joint open
chain manipulator the Jacobian will be a 6 × 6 matrix and the inverse can be
found normally, but this is not always the case. In the case where there are more
than six joints, the Jacobian is called "fat" as it has more columns than rows.
Accordingly it is called "tall" when there are less than six joints as the Jacobian
then will have more rows than columns.

In both cases the Jacobian will then no longer be square and the regular inverse
can no longer be calculated. It is then possible to use the Moore-Penrose inverse
commonly called the pseudoinverse. For a matrixA of full rank, the pseudoinverse
A† can be calculated by the following formulas:

A† = AT (AAT)−1 if A is fat (2.30)

A† = (ATA)−1AT if A is tall (2.31)

2.9. Singularities
Singularities for open chain manipulators occur when it loses the ability to move
its end-effector in one or more directions. Mathematically singularities occur when
the Jacobin fails to be full rank. This happens in configurations where joint axes
become linearly dependent. An example of a singularity can be seen in Figure
2.6 taken from [25]. In this case the wrist centre of the six-axis robot is placed
directly above the shoulder joint making the four joint axes intersect in a common
point, thus causing linear dependency.

2.10. Inverse Kinematics
The inverse kinematics problem can be regarded as the opposite of forward kine-
matics. Given an end-effector pose T (θ) the task is to find a set of joint angles
θ = [θ1, θ2, ..., θn] that will yield said pose.

Inverse kinematics can be calculated analytically and numerically. When solving
the inverse kinematic problem analytically the geometry of the robot together
with trigonometry is used to yield a solution. An exact analytical solution to
the inverse kinematics problem can often be complicated and yield cumbersome
calculations due to robot geometries not being ideal for analytical calculations.
Simplifying the robot geometries for calculations will make the process simpler,

2.10. Inverse Kinematics 21

Figure 2.6.: A singular configuration for a six-axis open chain manipulator.
Figure from [25].

but the solution will not be exact. In this case the joint angles can be found
numerically using the analytical solution as an initial guess.

There are several numerical methods than can be used to solve the inverse kine-
matics problem. In [25], Newton’s method is used for deriving the equations
shown in this section.

To show how Newton’s method is used to solve the inverse kinematics problem,
consider a robot manipulator with an end-effector frame {b} and a fixed frame
{s}. The desired end-effector configuration T sd is given along with an initial
guess for the values of θ denoted θ0. By applying the matrix logarithm the
difference between the desired pose T sd and the pose after i iterations T sb(θi) can
be represented by a twist Vb as:

[Vb] = log(T−1
sb (θi)T sd) (2.32)

A small deviation between the desired pose and the current pose of the end-effector
will yield a small twist. In other words, the magnitude of the elements in Vb can
be used to measure the error in the estimation. Since numerical methods do not
necessarily reach an exact solution, it is useful to set acceptable errors for the
magnitude of the angular and linear velocity denoted εω and ευ respectively.

While ||ωb|| > εω or ||υb|| > ευ, i is iterated and the angles θ will get closer and

22 Chapter 2. Robot Kinematics

Figure 2.7.: An algorithm for solving the inverse kinematics problem using New-
ton’s method.

closer to the desired position, as described by the following formula:

θi+1 = θi + J†b(θi)Vb (2.33)

An algorithm for solving the inverse kinematics using (2.32) and (2.33) can be set
up as seen in Figure 2.7.

Recall (2.28), and note that J†b(θi)Vb is the joint velocities needed to reach the
twist Vb. Each increment in (2.33) takes the previous joint angles and adds the
joint angle travelled in the time between each increment. This can be utilised for
joint position robot control, by slowly changing the desired joint angles along a
planned trajectory without letting the actual joint angles catch up. The previously
desired angles can then be used as the initial guess for the numerical algorithm.

2.11. Inverse Velocity Kinematics
Inverse velocity kinematics deals with the problem of finding the necessary joint
velocities θ̇ to create a desired twist Vd represented in an arbitrary frame. As
previously mentioned the relation between an end-effector twist and the joint
velocities are given by the Jacobian as shown in (2.26) and (2.28). Introducing
the pseudoinverse yields the following:

θ̇ = J†(θ)Vd (2.34)

The pseudoinverse used in (2.34) will prioritise all joint movement equally. To
change this prioritisation the Jacobian can be altered with respect to different
weighting functions. In [25] the Jacobian is altered so that the kinematic energy
in the robot is minimised. Inverse velocity kinematics can be used in velocity
control of robots.

2.12. URDF 23

Figure 2.8.: An example of a link representation in a URDF file. Figure from
[25].

2.12. URDF
The Universal Robot Description Format is an XML file used to describe the
properties of a robot. A URDF file will contain information regarding the links and
joints of a robot and the relation between them. This can be used in calculations
regarding both the kinematics and dynamics of the robot. The representation of
links and joints will now be explained.

Link
A link represented in a URDF file can be seen in Figure 2.8 taken from [25]. The
link is first given a name, before its inertial properties are defined. It is given
a mass in addition to an origin frame which is the pose of the link’s centre of
mass relative to the link’s joint frame. The joint frame is defined by the joint
that connects the link to its preceding link. In the example shown in Figure
2.8 the origin frame is coincident with the link frame. Inertial properties for
the link are also defined. All the inertial properties are used when calculating
the dynamics of the robot. In addition to the variables defined in the example,
geometric properties of the link can be given. These are useful when checking
for collisions in the planned robot trajectory. Other properties like colour and
material can also be defined.

Joint
A joint represented in a URDF file can be seen in Figure 2.9 taken from [25].
Just as with the links it is given a name, but also a type. The type describes
the kinematic property of the joint. Common types like rotational and prismatic
joints are often used, but joints can also be fixed. This is a virtual joint that
does not allow any movement, but still connects two links. The continuous joint
shown in the example is a rotational joint without joint limits. A joint connects
two links called the parent link and the child link. The joint is then described by
the transformation matrix representing the child link with respect to the parent
link when the joint angle is set to zero. In the example the transformation matrix
is defined by the rotation angles rpy (roll, pitch, yaw) and a translation along the
parent link joint frame. For the case shown in Figure 2.9 the child link joint frame

24 Chapter 2. Robot Kinematics

Figure 2.9.: An example of a joint representation in a URDF file. Figure from
[25].

is translated 0.089159 meters along the z axis of the parent link joint frame, while
maintaining the same orientation.

Chapter 3.

Control Theory

This chapter will give a brief introduction to control theory and its terminology
before introducing some relevant concepts that will be used later in the thesis.
Unless stated otherwise, the contents of this chapter is based off [4].

3.1. Terminology
In the field of control theory, the object is to control a process so that some
variables are able to follow a set of reference values while adjusting for outside
disturbances. The controlled variables are called states. The reference value could
be anything depending on the process, for example the water level in a tank, the
pitch angle for a ship or the temperature of a smelter. To control the process, a
controller is implemented that will adjust the state so that it follows the reference
value. The controller and the process is together regarded as a system. A system
in control theory is defined by the user. Defining the system is an important task
as it is crucial to include enough components for the system to be controllable,
while excluding all irrelevant elements that would complicate the system. Figure
3.1, adapted from [4], shows some central terms in control theory some of which
already has been briefly explained. These will now be explained further and the
rest of the terminologies will be presented.

As mentioned earlier a process is the part that is to be controlled, and it is affected
by disturbances. For this explanation a process containing a DC-motor will be
used as an example. The angular velocity of the rotary shaft is the parameter
that is to be controlled i.e. the state. A block diagram showing this system can
be seen in Figure 3.2. The process in this case is then the DC-motor itself, while
the system refers to all of the elements seen in Figure 3.2. Disturbances on the
system v are loads on the rotary shaft that would affect its angular velocity.

The controlled parameter is called the state x and has to be measured by some

26 Chapter 3. Control Theory

Figure 3.1.: Some common terminology in control theory shown in a block dia-
gram. Adapted from [4].

Figure 3.2.: A block diagram showing a DC-motor where the angular velocity
of the rotary shaft is controlled.

kind of sensor. In this example a hall effect sensor can be used to measure the
angular velocity, resulting in a measurement y. Sensors are prone to measurement
noise w which could cause deviation between the actual state and the measured
state. Measurement noise is often dampened or removed by different filters e.g. a
low pass filter.

As previously mentioned a controller is implemented for the state to be able to
follow the reference signal. Different controllers are suitable for different processes
and states, and choosing the right one is crucial for the performance of the system.
The PID controller is a typical controller that will be explained in Section 3.4.
As seen in Figure 3.1 the controller uses a reference value y0 set by the user
and compares it to the measured value of the state y. The difference between
the measured value and the reference value is the error e which is used by the
controller to determine a control signal.

The control signal is then sent to an actuator that will affect the process with
an input u. Using the example with a DC-motor the actuator would be a power
supply with adjustable voltage. The input to the DC-motor is then a voltage that
in turn will affect the rotational velocity of the rotary shaft. It is common to
combine the actuator and controller so that in Figure 3.1 the controller will send

3.2. Feedback and Feedforward 27

Figure 3.3.: A block diagram of a system using feedforward to compensate for
disturbances in the system. Figure adapted from [4].

the input directly to the process. This was done in Figure 3.2 and will be done in
all further figures in this chapter.

3.2. Feedback and Feedforward
When controlling a process there are two main principles being used, feedback
and feedforward. Figure 3.2 shows the DC motor system using feedback. Notice
that this is the same principle seen in Figure 3.1. A sensor provides feedback to
the controller, and the measured state is compared to a reference value. The error
is then used as an input to the controller, which calculates an input that is sent
back to the process to adjust the state accordingly.

Feedforward is based around the knowledge of incoming changes to the system.
If the disturbances in a system is measurable, it is possible to use feedforward
to make the system "anticipate" the change. This will in turn make the system
react more quickly. As an example imagine the DC-motor from previously being
mounted in an electric car, and the speed of the car is to be held constant. An
uphill could in this case be considered a disturbance. By measuring inclination
of the car, this disturbance can be sensed and compensated for by applying more
voltage to the motor. A block diagram of feedforward being used to compen-
sate for disturbances can be seen in Figure 3.3, adapted from [4]. This type of
feedforward depends on the disturbances being measurable.

In a similar manner, feedforward can be used to adjust to changes in the reference
signal. The reference signal is then sent directly to the process without using
a controller. By using the same example with the DC-motor mounted in a car,

28 Chapter 3. Control Theory

Figure 3.4.: A block diagram of a system using feedforward from the reference
signal. Figure adapted from [4].

feedforward of the reference signal can be used if the route of the car is already
known. All uphills and downhills can then be predicted and all changes in the
reference signal can be known before the car starts to drive. An example of using
feedforward of the reference signal is shown by a block diagram in Figure 3.4,
adapted from [4].

A system using only feedforward will never receive any feedback on the actual state
of the system. Unforeseen events could then cause the states to deviate from the
reference value without the system noticing. A common practice is to combine
feedforward with feedback. This way the system can react to disturbances and
changes in the reference signal quickly using feedforward, while a controller using
feedback assures that the states are actually following the reference value.

3.3. Stability
When controlling a process, the goal is to make the states in the system follow a
reference signal with the presence of disturbances. Stability is a way of defining
the systems behaviour based on its ability to deal with disturbances and changes
in the reference signal. The stability of a system can be divided into three different
categories, which will now be presented.

Asymptotically stable
An asymptotically stable system is a system that is able to follow the reference
signal even with disturbances present. Figure 3.5 shows an asymptotically stable
step response for a robot joint following a reference joint velocity. In this case some
oscillation occurs, but the system eventually settles around the reference joint
velocity. This behaviour of dampening oscillations is typical for an asymptotically

3.3. Stability 29

Figure 3.5.: An asymptotically stable step response while controlling the joint
velocity of a robot joint.

stable system. The system could oscillate more or less than shown in the figure
and still be called asymptotically stable as long as it settles on the reference
velocity.

Unstable
The unstable system is not able to follow the reference signal and will oscillate
with increasing amplitude over time. This kind of system is unusable as it can not
be controlled and will often cause unwanted and potentially dangerous behaviour.
Unstable behaviour from the robot joint mentioned previously can be seen in
Figure 3.6.

Marginally stable
A marginally stable step response can be seen in Figure 3.7. Again it shows the
response of a robot joint following a reference velocity. In contrast to the two
previous cases the joint velocity is not able to follow the reference velocity, but
it is not unstable. A marginally stable system can be regarded as the transition
between a stable and an unstable system. In this case the joint velocity will simply
continue to oscillate with the same amplitude.

30 Chapter 3. Control Theory

Figure 3.6.: An unstable step response while controlling the joint velocity of a
robot joint.

Figure 3.7.: A marginally stable step response while controlling the joint velocity
of a robot joint.

3.4. PID controller 31

Figure 3.8.: A block diagram of a typical system with an implemented PID
controller.

3.4. PID controller
The PID controller is a widely used controller, and it consists of three different
controllers: the proportional controller, the derivative controller and the integral
controller. A block diagram showing a PID controller can be seen in Figure 3.8.
It is seen that all three components uses the error to calculate the input to the the
process, and the final input is the summation of the three contributions. Each of
the controllers yields a different characteristic. The characteristics of the PID con-
troller can be changed by adjusting how much each of the components contribute
to the final input. This process is called tuning and will be further explained in
Section 3.5. The remainder of this section will explain the characteristic behaviour
of each of the three controllers in a PID controller.

Proportional controller
The proportional (P) controller simply amplifies the measured error in the system
by a constant Kp called the proportional gain. This amplified error is then used
as the input to the system. Mathematically it can be written as:

u(t) = Kp(yo − y(t)) (3.1)

Where u is the input, y0 is the reference value and y is the measured state. By
adjusting Kp the systems behaviour is changed. Setting Kp too high will result in
an unstable system, while setting it too low will cause the system to react slowly
or not reach the reference value at all.

Integral controller
While the P controller responds to the instantaneous error, the integral (I) con-
troller responds to error over time and can be modelled by the following equation:

32 Chapter 3. Control Theory

u = Ki

∫ t

0
(y0 − y(t)) (3.2)

Where Ki is the integral gain analogous to the proportional gain. The I controller
is useful for removing constant offsets from the reference value. A constant offset
will build up error over time in the I controller, which will cause the offset to be
removed. Using only an I controller will cause the system to be slow as it takes
time before the I controller starts to react. For a more responsive system it is
common to combine the I controller with a P controller making a PI controller.
Just as for the P controller, setting Ki too high will cause the system to be
unstable. Setting Ki too low will simply remove the integral effect.

Derivative controller
Unlike the two other controllers the derivative (D) controller is not able to bring
the error to zero by itself. Instead it tries to counteract changes in error. The
mathematical representation can be written as:

u = Kd
d(y0 − y(t))

dt
(3.3)

Where Kd is the derivative gain similar do Kp and Ki. As the derivative effect
will counteract changes in the error, its desired effect is dampening oscillations in
the state. Adjusting Kd affects how much dampening is applied. Setting Kd low
will remove the derivative effect in the system, while a very high Kp will dampen
changes too much eventually preventing the state to follow the reference value
properly. This will cause the system to react slowly and improper to changes in
the reference value.

In theory the derivative effect should be able to remove oscillations completely
which would for example smooth out the feedback velocity shown in Figure 3.5 so
that no overshoot occurs. In practice this can be challenging if the feedback signal
has noise, which is almost always the case. The D controller will then amplify the
noise which will eventually make the system unstable.

3.5. Ziegler-Nichols Method
When implementing a PID regulator, all three gains Kp,Ki and Kd have to be set
bu the user. This is called tuning the controller and can be done using different
established methods. This section will explain the Ziegler-Nichols method (ZN
method) presented in [58], which is a method made for tuning a physical system
based on empirical data. This is useful for systems that has not been represented

3.5. Ziegler-Nichols Method 33

Controller Kp Ki Kd

P 0.5Ku - -
PI 0.45Ku 1.2/Tu -
PID 0.6Ku 2.0/Tu Tu/8

Table 3.1.: Gains for different controllers using Ziegler-Nichols method.

mathematically.

The ZN method is based on setting gains by trial and error. All tuning is based
around the asymptotically stable behaviour of the system, and this is the first
property that has to be found. It is done by gradually increasing Kp while keeping
both Kd and Ki at zero. The proportional gain used when obtaining a marginally
stable response is called the ultimate gain Ku, and the period of the oscillations
at this stage is denoted Tu. All three gains can then be set based upon Ku, Tu as
well as the type of controller that is to be implemented, by following Table 3.1.
The ZN method describes how to set parameters for P controllers, PI controllers
and PID controllers.

Chapter 4.

Software Theory

This chapter will present a variety of theory regarding different software concepts.
These are presented here first, and will be relevant for the work done later in the
thesis or the discussion in Chapter 10.

4.1. Internet Protocol Suite
This section will give an introduction to the internet protocol suite and some of
its concepts. The contents of this section is based off [49] unless stated otherwise.

Communication between two computers is a task that requires a lot of coordina-
tion between the two involved parts. To enable this process, it is usually divided
into several sub-tasks. These sub-tasks are solved in modular frameworks consist-
ing of layers called layered protocol architectures. Each layer in the framework
can be regarded as a node that solves one of the sub-task in the communication
process. Each layers only communicate with the previous or next layer in the
architecture with standard communications. This makes the framework modular
as each layer can be changed to the needs of the user without having to adjust
the whole architecture. The method each layer uses to solve its sub-task is called
a protocol. Of all the architectures the most important framework is called the
internet protocol suite, also known as the TCP/IP protocol suite.

The layers in the TCP/IP protocol suite as well as some example protocols in each
layer can be seen in Figure 4.1. Note that the number of layers in the TCP/IP
protocol suite varies between different authors, but [49] uses five. Starting with the
top layer, the sub-task of each layer will now be explained. The next subsections
will further explain some protocols found in the TCP/IP protocol suite that will
be used later in the thesis.

Application Layer

36 Chapter 4. Software Theory

Figure 4.1.: The layers and examples of protocols in each layer in the TCP/IP
protocol suite. Figure from [49].

4.1. Internet Protocol Suite 37

The application layer is the program running on a computer that wants to com-
municate with some other application. To have separate communications for each
application on a computer, they are assigned a service access point or port. The
data that is to be sent has its origin in the application layer, which is the sent to
the transport layer.

Transport Layer
The transport layer receives data from the application layer trough the designated
port of the application that wants to send data. In the transportation layer the
data is divided into smaller elements more suited for being sent over a network.
Each element also is also given some metadata in the transport layer contained
in a header. The data plus the header is called a segment. A header from the
transportation layer contains metadata like which port sent the data, which port is
the recipient of the data and other information depending on the type of protocol
that is used. After adding a header, each segment is sent to the internet layer.

Internet Layer
When communicating between computers that are connected to different net-
works, there needs to be some system for finding a correct transportation route
from the sender to the receiver. This is the task of the internet layer. In this
layer a header is added containing information about the next destination of the
segment. The segment from the transport layer plus the header added in this layer
then forms what is called a packet. When sending packets over larger distances
it is sent trough multiple units called routers. The routers takes the packets and
reads the information in the header, then compares this information to a table and
finds the next destination that will bring the packet closest to the final destination.
When it is ready to be sent the packet is sent to the data link layer.

Data Link Layer
The data link layer reads the header from the internet layer and then sends the
packet to the appropriate destination.

Physical layer
Packets can be sent in different ways with different hardware. The physical layer
is responsible for the interaction between the computer and the medium that the
packet is sent over. Examples include satellite, optical fibre and twisted pair cable.

4.1.1. Telnet

Telnet is an application protocol for establishing remote access between two units.
It establishes a two way text communication where terminal commands can be
sent. Due to telnet being developed before the internet it sends raw commands
without encryption. This makes it a fast tool, but insecure if used in online appli-

38 Chapter 4. Software Theory

Figure 4.2.: The header added to data to form a TCP segment. Figure from
[49].

cations. In most applications Telnet has been replaced by Secure Shell (SSH) [51].

4.1.2. TCP

Transmission Control Protocol (TCP) is the most commonly used protocol in
the transport layer. It is a protocol designed for reliable communication between
two parts called TCP users. This section will present the TCP header before
introducing important mechanisms in TCP.

TCP Header
TCP will add a header to the data that is to be sent making it a TCP segment.
The contents of a TCP header can be seen in Figure 4.2, taken from [49]. From
the top it is seen that the header contains a source and destination port, which
defines which port the data is sent form and which port it is sent to. As the data
is divided into several TCP segments, it is important that the TCP user receiving
the segments is able to put them back together in the correct order. The sequence
number is used for this purpose and a number is assigned to each segment before
transmitting. Each sequence also includes an acknowledgement number which
defines the sequence number of the next TCP segment in the transmission, as
well as acknowledge that the previous sequence was received.

Data offset contains information on the size of the header so that it is possible to
separate the header from the data after transmission. The reserved field is cur-

4.1. Internet Protocol Suite 39

rently not in use and should be set to zero. Flags can be used to give information
about the segment being sent, or the transmission in general. Details on different
flags will not be explained in this thesis. When transmitting the TCP segments,
there is a limit to how much data the receiving TCP user can receive in each
segment. This limit is indicated in the window field, and is sent from the receiver
to the sender.

The checksum is a field that is responsible for detecting any errors that might
have occurred during transmission. When the receiver obtains a segment, the
checksum is read to assure that no errors occurred. The urgent pointer gives the
option of marking certain parts of the data as urgent. How urgent data is handled
has to be defined by the receiver.

The last field in the header seen in Figure 4.2 is options and padding. This field
allows for different preferences to be set for transmission of the TCP segments.
Individual options will not be explained further in this thesis. The padding is
extra bits that can be added to an option so that the options and padding field
always is a multiple of eight bits.

Connection Establishment
TCP connections are exclusive between two ports, and only one connection may
exist between them at a time. The connection is started by a three way handshake.
First the sender sends a message to the recipient requesting communication and
stating the sequence number of the first TCP segment that is to be sent. The
recipient then responds by acknowledging the connection as well as sending the
first sequence number that it will send back. The sender then sends a confirmation
back to the receiver and communication can start.

Data Transfer
When transferring data there are different policies that can be set depending on
the requirements of the system. This section will not go into detail on the different
policies, but rather explain broadly how data transfer occurs.

A simple visualisation of the data transfer between two computers can be seen in
Figure 4.3. During transmission the sender keeps a list of all segment numbers
for sent segments. When the receiver receives a segment, it is either accepted of
rejected due to some error. When a segment is accepted, an acknowledgement of
the segment number is sent back to the sender to confirm that the segment was
received. Upon receiving the acknowledgement the sender knows that the segment
has arrived without error, and can mark the segment number as accepted. If an
acknowledgement is not received for a segment number within a given time, the
segment is retransmitted by the sender. This way TCP transfers data without the
loss of segments. As the receiver receives segments, the data can be reconstructed
using segment numbers.

40 Chapter 4. Software Theory

Figure 4.3.: A visualisation of the data transfer process in the TCP protocol.

Connection Termination
Terminating the connection can either happen gracefully or abruptly. A graceful
close happens in a similar manner to the three way handshake used when opening
the connection. In the flag field of the header one of the TCP users indicates
that it wants to terminate the connection. The request is then acknowledged by
the other user, and a similar closing request is sent back. The original user then
acknowledges the closing request and the connection is gracefully closed.

An abrupt termination happens when one of the users sends an abort command.
Communications is then stopped immediately and any segments that are in the
process of being transmitted are deleted.

4.1.3. UDP

The User Datagram Protocol (UDP) is another important transport protocol in
the TCP/IP protocol suite. In contrast to TCP where a connection is established
between to users, UDP is a connectionless protocol. Due to UDP being connec-
tionless its header is less comprehensive than the TCP header. Figure 4.4 from
[49] shows the elements found in a UDP header.

The header is similar to the first part of the TCP header. It includes a source and
destination port for the data sender and receiver respectively. Unlike the TCP
header, the UDP header is always the same length. Due to this fact the length

4.1. Internet Protocol Suite 41

Figure 4.4.: The header added to data to form a UDP segment. Figure from
[49].

field in a UDP header contains the length of the whole segment instead of just the
header, as this will always be the same. The checksum works similarly for UDP
as it does for TCP and is used for error detection.

A UDP server can be connected to multiple clients listening to the transmission.
Where TCP can be regarded as a two-way communication, UDP is more of a one-
way communication. UDP segments are transmitted form the server to the client,
and any segments with the wrong checksum are discarded without any retrans-
mission. This is what makes UDP connections ideal for real-time applications.
It can send segments on a more reliable time interval than a TCP connection,
as it does not concern with retransmitting lost segments. This is an important
property of real-time systems which will be explained in Section 4.2.

4.1.4. IP

The internet protocol (IP) is a protocol in the internet layer. This is the most used
internet protocol and the TCP/IP protocol suite is based upon IP. The subject of
IP is too large to be handled in detail by this thesis, but a brief introduction will
be given. When the IP receives a segment form the transport layer, an IP header
is added to form an IP packet.

IP generally refers to IPv4 which is the fourth version of IP. The structure of an
IPv4 header can be seen in Figure 4.5. Some of the fields seen here are analogous
the the TCP header. The source and destination address can be compared to
ports in TCP, and defines the addresses of the sending and receiving computer.
A header checksum is also present to detect any errors in transmission. The other
fields in the header will not be explained further in this section.

One concept worth noting is that of static and dynamic IP addresses. A dynamic
IP address is one that is assigned to a device when it connects to a network.
This address will change over time as reflected by the name. A static IP address
is than naturally an address that does not change, which can be useful when

42 Chapter 4. Software Theory

Figure 4.5.: The IPv4 header, figure from [49].

communicating with external devices that has to remember a specific address [18].

4.2. Real-Time Systems
This section will give a brief introduction to real-time systems, as it is an impor-
tant part for several of the following chapters. The content in this section is based
off [21].

To describe a real-time system, a regular computer system first has to be defined.
A computer system is defined as something that takes a series of inputs and
converts them to a series of outputs. This definition is visualised in Figure 4.6
taken from [21]. A computer system by this definition has no time limit on when
the output has to be presented from the system. Using this as a basis a real-time
system can be seen as a computer system where the output has to be presented
at a specific time. One definition of real-time systems can be seen in [21] as:

"A real-time system is one whose logical correctness is based on both the correct-
ness of the outputs and their timeliness."

Depending on the consequence of output being delayed, real-time systems are
classified in three different categories: soft, firm and hard. The definition of each
system as seen in [21] can be seen in Table 4.1.

4.3. Kernels
This section will explain the basic concept of kernels in a computer as well as the
two main categories of kernels. Lastly the Linux kernel will be explained shortly.
This section is based off [50].

4.3. Kernels 43

Figure 4.6.: A computer system taking a series of input and converting them to
a series of outputs. Figure from [21].

Category Definition
Soft A real-time system where performance is degraded but not de-

stroyed by failure to meet response-time constraints.

Firm A real-time system where missing a few deadlines will not lead to
total failure, but missing more than a few may lead to complete
and catastrophic system failure.

Hard A real-time system where missing a single deadline may lead to
complete and catastrophic failure.

Table 4.1.: The three categories of real-time systems. Definitions from [21].

44 Chapter 4. Software Theory

Figure 4.7.: Communications for both monolithic kernels and microkernels.

When operating a computer there are various internal processes running where
for example input/output are handled, memory is managed and operations are
scheduled to the CPU. These are all processes that cannot be handled by the user
directly, so this task is assigned to the kernel. The kernel can be regarded as the
link between software and hardware components of the computer and is a part
of the computers operating system. To prevent user applications from interfering
with kernel operations it runs in a separate part of the memory not accessible by
the user.

Kernels are divided into two main categories, monolithic kernels and microkernels.
The difference between the two being how they are built. A monolithic kernel
contains all kernel functionality which is practically the whole operating system.
A microkernel only contains some core kernel functions like memory management,
while the rest of the kernel functions are handled by applications running alongside
user applications called servers. This makes for a more modular and customisable
kernel. How each of the kernel types operate has been visualised in Figure 4.7

4.3.1. Linux Kernel

Most Linux kernels are monolithic. Compared to microkernels the monolithic
kernels are usually not modular, and making changes to them can be an elaborate
process where much of the kernel has to be changed. As Linux is open-source this
would potentially be a problem, but a work-around has been implemented. The

4.3. Kernels 45

monolithic Linux kernel is build using modules that can be loaded and unloaded
in the kernel. This enables Linux to have a monolithic kernel while also having
the modularity of a microkernel.

Particularly interesting for this thesis are kernels and modifications that enables
the Linux system to reliably run real-time systems. This can for example be
done with the PREEMPT-RT kernel patch [12]. This will update a regular Linux
kernel making it able to satisfy hard real-time constraints. In short it enables the
system to prioritise tasks over one another so that particular processes can be
given highest priority and run undisturbed.

Chapter 5.

Existing Software

This chapter will give an introduction to existing software that will be relevant for
experiments and discussion in this thesis. First ROS 2 will be presented along with
ROS-Industrial and ROS2 control. The Moto framework [53] made for controlling
Yaskawa MOTOMAN robots will then be presented by highlighting important
aspects and showing the architecture of the framework. Lastly an introduction to
the constraint-based framework eTaSL/eTC will be given.

5.1. ROS 2
The Robotic Operating System (ROS) is a collection of libraries made for devel-
oping control applications for robotic systems. It originated from research done
at Stanford University, and was further developed by Willow Garage [38]. ROS is
currently maintained by Open Robotics and further developed by the ROS com-
munity. To adapt to changes in the world of robotics as well as the needs of the
ROS community, ROS 2 was developed [43]. This section will cover the basic
concepts of ROS 2. Unless stated otherwise the content of this section is based
off [43].

5.1.1. Graphs

In the following subsections it is seen that a ROS 2 system consists of different
elements like nodes, topics and services. All of the different components in a
system are gathered in the ROS 2 graph. The graph can be seen as a type of
flowchart visualising how the different components of the system communicates
with each other. A typical graph can be seen in Figure 5.1 which shows a graph
of the system obtained by following the tutorials at [43].

48 Chapter 5. Existing Software

Figure 5.1.: A ROS 2 graph obtained trough the tutorials at [43].

5.1.2. Nodes

The nodes in a ROS 2 system are the components doing most of the actual work.
They are used to read sensor data, do calculations, communicate with other sys-
tems etc. Each node run a separate piece of code suited for the task it is set to
complete. Usually this involves taking some input and processing it, before send-
ing it to another part in the ROS 2 system. In Figure 5.1, nodes are represented by
the ellipsoid shapes. Different nodes in the same graph can be written in different
programming languages due to the ROS 2 client libraries. Officially there are two
client libraries: rclpy for Python and rclcpp for C++. In addition to these there
are several community developed client libraries for other programming languages.

Each node is defined by its parameters. These are variables that can be changed
by the system or manually by the user. This allows the user to simulate different
scenarios and observe how the system reacts by setting parameter values. It also
allows the system to adjust the nodes behaviour, which makes it adaptable to
different situations.

5.1.3. Topics and Messages

Nodes can communicate with each other trough messages that are sent and re-
ceived over different topics. A message can be a standard message type like an
int or a string or it can be any custom type defined by the user. Common for all
messages is that they contain some kind of information that works as input for a
node, output to the user or output to some other system. In Figure 5.1 messages

5.1. ROS 2 49

Figure 5.2.: Two nodes communicating with messages over a topic, taken from
[43].

can be seen as the lines connecting all the nodes.

Topics can be regarded as different channels that messages are sent over. A node
that sends a message to a topic is called a publisher, it publishes a message to
the topic. A receiving node is called a subscriber as it subscribes to a certain
topic, receiving all messages that are published there. A node can publish and
subscribe to several topics at the same time. In Figure 5.1, topics are represented
by the squares that the nodes interact with. Figure 5.2 from [43] shows a publish-
subscriber model, where the publisher node publishes a message to a topic before
the subscriber node receives it.

5.1.4. Services

In contrast to the publish-subscriber model where a node publishes messages to
a topic continuously and other nodes subscribe to it, a service is a way for nodes
to communicate with each other on-demand. A service is visualised in Figure 5.3
taken from [43]. It consists of a service client node, a service server node and the
service itself.

The service is activated by a request message being sent from the service client to
the service. Upon receiving the request, the service sends the request to the service
client and waits for a response. When the service receives the response from the

50 Chapter 5. Existing Software

Figure 5.3.: A visualisation of a ROS 2 service. Figure from [43].

service server, it is sent forward to the service client and the cycle is complete.
Multiple service clients can be connected to a service, but only one service server
may be connected. When multiple service clients are connected, only the client
sending a request message will receive a response. This way services are also a
way for nodes to communicate more individually than with the publish-subscriber
model, where all nodes that subscribe to a topic will receive the published message.

5.1.5. Actions

Actions are similar to services but are more suited for long running tasks. It
consists of two services, one feedback topic, an action client and an action server.
An action is visualised in Figure 5.4 taken from [43].

To activate an action, the goal service client sends a request message to the goal
service before it is sent forward to the goal service server. The goal service server
sends a response message trough the goal service and back to the goal service
client confirming that the goal of the action is set. After the goal has been set
the result service client sends a request message to the result service where the
message is relayed to the result service server. The goal of the action has now been
set, and the action client is waiting for a result from the action server. This will
trigger the feedback publisher to start publishing feedback to the feedback topic,
where the feedback subscriber is subscribed. The action client will now receive
feedback from the action server on the progress of reaching the set goal. Feedback

5.2. ROS-Industrial 51

Figure 5.4.: A ROS 2 action, figure from [43].

is sent until the goal is completed, which will trigger the result service server to
send a response message to the result service. The result service will then send
the result message to the result service client and the action is completed.

5.2. ROS-Industrial
According to [42] the majority of robots sold in North America are set to do
welding, material handling or dispensing/coating. The percentage of sold robots
in North America set to do other operations has decreased from 1993 to 2013
before increasing slightly in 2017. Even after the increase under 10% of sold
robots in 2017 was set to do other tasks than the three most popular mentioned
above. Broadening the field of use for industrial robots requires research which
is not profitable for most companies due to its expensive and time consuming
nature.

ROS-Industrial (ROS-I) is a collection of software packages that aims to apply
ROS to manufacturing automation. It as an open source project initiated by
Yaskawa Motoman Robotics, Southwest Research Institute andWillow Garage [41].
The Git repository for ROS-I was founded by Shaun Edwards and can be found
at [33].

The repository contains packages for different components commonly found in
industrial robotics like grippers, sensors and robot manipulators [40]. This gives

52 Chapter 5. Existing Software

researchers a framework for quickly building new robot applications by using the
pre-made packages. With this framework more time can be spent on developing
new solutions, as the need for implementing existing solutions are negated. By
reducing the time researchers need to develop new robot applications, ROS-I hopes
to make it economically feasible for companies to develop new robotic solutions.
Over time this will hopefully lead to robots being deployed in a wider variety of
tasks than what is seen today.

Packages in ROS-I can either be general or vendor specific. The general packages
can be deployed on all robots, while the vendor specific ones are specially made
for robots from Yaskawa, ABB, Fanuc etc.

5.3. ROS2 control
This section is based off the presentation found at [55] regarding ROS control
and the documentation at [26] regrading ROS2 control. The slides from the
presentation can be found at [56].

In 2004 Willow Garage developed the pr2_control_manager, found at [31], for
real time control of the PR2 robot seen in Figure 5.5 from [48]. Due to popular
demand for controlling other robots with the same method, ROS Control was
developed in 2012 by PAL robotics together with the community. ROS Control
can be regarded as the robot agnostic version of pr2_control_manager, and has
the following goals:

• Lower entry barrier for exposing hardware to ROS

• Promote reuse of control code

• Provide ready-to-use tools

• Real-time ready implementation

To summarise, ROS Control aims to fill the gap between the users custom soft-
ware and the physical robot system. Filling this gap allows developers to focus
on research and writing unique code instead of spending time rewriting code for
interacting with hardware. After learning the limitations and weaknesses of ROS
control, ROS2 control was developed for ROS2. ROS2 control kept the basic idea
of ROS control while improving existing features and implementing new compo-
nents. The ROS2 control framework is divided into five different repositories:

• ros2_control [34]

• ros2_controllers [35]

• control_toolbox [29]

5.3. ROS2 control 53

Figure 5.5.: The PR2 robot, image taken from [48].

• realtime_tools [32]

• control_msgs [28]

For ROS2 Control to be suitable for a variety of applications, it has a modular
architecture where components can be changed individually without having to
change the rest of the system. The general ROS2 control architecture can be seen
in Figure 5.6 from [34]. A ROS2 control system consists of several key compo-
nents: controllers, the controller manager, the resource manager and hardware
components. Each of these components and how they work together will now be
presented.

5.3.1. Hardware Components

The physical components that are to be controlled are called the hardware re-
sources, which can be sensors, robot joints, grippers etc. All hardware resources
are abstracted by using hardware components in ROS2 control. The hardware
components main task is to communicate with the hardware resources by reading
and writing information. To describe a complete robot cell, hardware components
are divided into three categories: sensors, systems and actuators.

Sensors are typically encoders for measuring joint angles or force-torque sensors
but also includes all other types of sensors. Common for all sensors is their read-
only property as their only task is to gather information. A system represents
complex hardware with multiple DOF, for example an industrial robot. The sys-
tem can both be read from and written two, and is used when the robot as a whole
needs to be represented as one entity. This can be practical for sending commands
to a system as a whole instead of its individual components. An actuator on the
other hand represents a single component of a system, usually with one DOF.

54 Chapter 5. Existing Software

Figure 5.6.: The ROS2 control architecture, figure taken from [34].

5.3. ROS2 control 55

Examples of typical actuators are motors, valves and linear actuators. Actua-
tors have both read and write capabilities, although reading is not a requirement.
They can be used when there is need for controlling individual components in a
system or when the hardware to be controlled is not too complex.

5.3.2. Resource Manager

The resource manager abstracts hardware even further by managing and mon-
itoring hardware components in the system. Sensor data as well as data from
systems or actuators are obtained trough the state interface, and commands are
sent trough the command interface as seen in Figure 5.6. Both of these interfaces
are controlled by the resource manager. At startup the resource manager is re-
sponsible for loading the hardware components of a system from for example a
URDF file.

Different hardware components may require different forms of communication.
A system containing a six DOF industrial robot will require different types of
commands than a single DC-motor. The resource manager provides flexibility in
the system by being able to communicate with all hardware components regardless
of the type of communication required. This allows the user to utilise already pre-
made hardware components in new systems, reducing development time for new
robot applications.

5.3.3. Controller Manager

The controller manager is what brings together the hardware side of the system
and the controllers. Similar to how the resource manager loads hardware com-
ponents, the control manager is responsible for loading and maintaining all the
controllers in the system.Communication between the controller manager and the
controllers will be covered further later in this section. The controller manager is
also responsible for checking that the resources required by each controller is avail-
able. Control loops for the architecture is executed from the controller managers
update() method where data is obtained from the resource manager and sent to
the controllers before updated commands are obtained from the controllers and
sent to hardware trough the resource manager.

5.3.4. Controllers

The controllers are the calculation nodes of a ROS2 control system. From the
controller manager they receive data from hardware components and execute cal-
culations before returning the results back to the controller manager. A system
can have multiple controllers with different tasks, and each controller is loaded

56 Chapter 5. Existing Software

and unloaded by the controller manager as needed. The life cycle of a controller
is based on that of a node in ROS2 which is a state machine. A flowchart of the
life cycle can be seen in Figure 5.7 taken from [13].

As seen in Figure 5.7 the controllers can be set to four different states, and the
transitions between them are controlled by functions in the controller manager.

When the controllers are first loaded by the controller manager they are set to
the unconfigured state. In this state the controller does not preform any work,
and awaits configuration by the controller manager. Configuring the controller
includes setting parameters and defining which topics the controller is supposed
to subscribe and publish to.

After begin configured the controller goes to the inactive state. In this state the
controller does not do any work, but it is configured and ready to be activated.
From here the controller can be cleaned and reconfigured or be set into the active
state.

When set to the active state the controller will execute its task, which is usually
receiving and outputting data from and to the controller manager. A controller
can be switched on and off by switching in between the active and inactive state.

From all three states explained so above the controller manager has the ability
to call the function shutdown(), which will send the controller into the finalised
state. From this state the controller is destroyed and reaches its end of life.

There are several pre made controllers that are available in the ros2_controllers
repository [35]. These are controllers for common robotic operations like trajec-
tory planning and velocity control. In addition to the pre-made controllers, users
are able to write their own controllers to fit their needs.

5.4. Moto
Motoman robots from YASKAWA can be controlled with ROS commands by
installing the ROS-I code found at [30] on the robot controller. This will enable
the robot controller to communicate with a computer trough an Ethernet cable.
The moto library found at [53] is a Python API for controlling Motoman robots
without any knowledge of ROS-I. It also adds functionality for real-time velocity
control of Motoman robots. For real-time control an altered version of the ROS-I
code has to be installed on the robot controller as well. This code can be found
at [54]. This section will give an overview of the architecture of themoto library
and explain essential classes and concepts used.

5.4. Moto 57

Figure 5.7.: The life cycle of a node, figure taken from [13].

58 Chapter 5. Existing Software

Figure 5.8.: The architecture of the moto library from [53].

5.4.1. Architecture

Figure 5.8 shows the general architecture of the moto library and how it communi-
cates with the robot controller running the modified ROS-I code. The architecture
of moto is built around the class Moto which represent the hardware present in a
robot cell like a robot manipulator or positioning table. Each hardware compo-
nent is defined as a control group, and up to four control groups can be included
in one instance of Moto. As seen in Figure 5.8 Moto communicates with the robot
controller using four TCP connections and one UDP connection. Moto contains
four different classes each corresponding to one TCP connection. All four classes
inherits from the class SimpleMessageConnection. This class establishes a TCP
connection to the robot controller to allow communication. The UDP connec-
tion is used for real-time control. Each of the four classes connected to a TCP
connection has their own member functions which together make up all the func-
tionality of Moto. The four different classes will now be presented along with their
functionality.

Motion
Motion contains functions regarding the movement of a control group. This in-
cludes support functions like turning on or off the servos and checking if the control
group is ready for movement. To move a control group the system has to be set in
trajectory mode, which is a mode where the system is ready to receive trajectory
points before generating and executing a trajectory from these. The structure of

5.4. Moto 59

a trajectory point can be seen in Figure 5.9, and will now be explained in detail.

Figure 5.9.: Two trajectory points from the moto library.

Referring to the figure it is seen that a trajectory point is an instance of the class
JointTrajPtFullEx. The number of control groups in the instance of Moto that
is to be controlled is defined in number_of_valid_groups, while sequence helps
the controller interpret which point comes before another. Sequence zero will be
executed before sequence one etc. The last variable in the class is a list containing
instances of the class JointTrajPtExData, which is where information regarding
the movement of a control group is stored.

In JointTrajPtExData relevant control groups are defined by groupno, which has
been set in Moto. velid__fields contains information on whether the position,
velocity and acceleration data can be trusted. This is mostly relevant for feedback
from the robot to determine if a measurement is correct or not. Time defines when
the robot is supposed to be at the given position, while pos, vel and acc contains
the position velocity and acceleration of the control group at that time. These
are all defined as a vector of 10 elements to support control groups with up to
10 DOF. All movement is defined in radians, radians/second or radians/second2.
When generating a trajectory by sending trajectory points, the first point always
have to be the current position of the control group. By sending the two points in
Figure 5.9 both control groups will move from the home position p0 to a position
where all joint angles are 10 degrees. This movement will occur over five seconds,
since time in p1 is set to five. The system keeps track of time only while moving,
so the timer stops when the system is standing still. The duration of a new

60 Chapter 5. Existing Software

movement from p1 would then be set as time = 5 + duration.

Individual control groups can also be controlled by sending trajectory points which
are instances of the class JointTrajPtFull. These are similar to the trajectory
points seen in Figure 5.9, but does not include a list of trajectory points for all
control groups. Instead they only contain time, position, velocity and acceleration
data for one single control group.

State
State is the class containing functions that allow Moto to send feedback on the
state of the system to the user. Different information form the system can be
gained from the function robot_status(), which returns an instance of the class
RobotStatus. This class contains information like the state of the servos, the pres-
ence of any alarms in the system, the operation mode of the teach pendant (Section
7.3) etc. Information regarding the position, velocity and acceleration of each
joint in a control group are gained trough the function joint_feedback_ex().
This will return an instance of JointFeedbackEx which contains information on
all joints in all control groups. Similar to trajectory points, feedback from one
individual control group can be gained from the function joint_feedback().

A bug in the feedback function results in a velocity 27 rad/sec being returned for
joint joint T. This will raise an alarm in the robot controller and stop the system.
It is also worth noting that the system does not take the direction of the velocity
into account and will always return the absolute value of the velocity.

IO
The robot controller contains memory addresses that hosts software and stores
parameters. The IO class in Moto is responsible for interacting with these memory
addresses. As with all memory management this task consists of writing and
reading to memory. The IO class can either read/write bits or bytes in the robot
controller. Most of the memory addresses in the controller are read-only as they
are used by the robot controller software and therefore inaccessible by the user.
There are exceptions where memory addresses are writable. According to [30]
these are 10010 and up and 27010 and up. These are the "Universal/General
Outputs" and the "Network Inputs" respectively.

RealTimeMotion
The final class is RealTimeMotion which sets up the system for real-time control.
The class contains three member functions:

• connect() establishes the TCP connection with the robot controller, en-
abling the use of the other two member functions in RealTimeMotion.

• start_rt_mode() will set the system in real-time mode by opening a UDP
connection as shown in Figure 5.8. When real-time mode is not enabled the

5.4. Moto 61

computer acts as a client that sends requests to the robot controller that
acts as a server. In real-time mode this dynamic is changed so that the
computer acts as a server and the robot controller as a client. A server code
then has to run at 250 Hz on the computer, giving joint commands to the
robot controller. The real-time server will be further explained in Section
5.4.3.

• stop_rt_mode() closes the UDP connection and takes the system out of
real-time mode.

For real-time mode to work properly, the system has to be set to trajectory mode
without having an active TCP motion connection. This is further discussed in
Section 6.2.

5.4.2. Simple Message

All communication that happens with TCP utilise the class SimpleMessage found
in ROS-I. This message format consist of two classes, a Body and a Header.

Header contains metadata on the content of the message, and will have the same
structure independent on what the contents of the message is. Three variables
are central in a header, and all inherits from the class Enum:

• msg_type is an instance of the MsgType This variable describes the con-
tent of the message, which can for example be a JointTrajPtFullEx or a
RobotStatus like mentioned previously.

• comm_type is an instance of the class CommType. This class describes which
type the message is. The most used ones are SERVICE_REPLY and SERVICE_REQUEST
representing a reply from or request to the robot controller.

• reply_type is an instance of the class ReplyType. This tells the system if
the sent message was a success, failure or invalid.

The body of the message contains the actual data of the message, and will vary
in structure depending on the message type. Examples of contents in the body of
a message are JointTrajPtFull, RobotStatus and JointFeedbackEx.

5.4.3. Real-Time Mode

As mentioned previously, when the system is set to real-time mode, the computer
acts as the server and the robot controller as the client. The robot controller will
then listen for joint velocity commands that are being sent from the server.

62 Chapter 5. Existing Software

An example of such a server can be found in [53] in the file test_rt_motion_server.py.
When running this file a UDP server is opened that awaits for the robot con-
troller to start listening for commands. After the robot controller starts to listen,
communication between the computer and the robot controller starts at a fre-
quency of 250 Hz. This communication also use the SimpleMessage class. The
server runs in a loop where first feedback is gained from all control groups in
Moto. A reply message is then constructed where the Body is an instance of the
class MotoRealTimeMotionJointCommandEx. This class contains commands for
all joints in all control groups. Currently only velocity control is possible, but
position and acceleration control is to be implemented. The command is then
sent to the robot controller before it is executed.

5.5. eTaSL/eTC
The expressiongraph-based Task Specification Language (eTaSL) along with the
expressiongraph-based Task Controller (eTC) compose a framework for constraint-
based robot programming. This framework is presented in [2] and will be sum-
marised in this section. Documentation for eTaSL/eTC can be found at [1]. Unless
stated otherwise this section is based off the material found in [2].

While eTaSL provides a language for representing robot tasks using constraints,
the robot controller eTC solves a numerical optimisation problem for the given
constraints and yields joint velocities to the robot being controlled. This section
will first present the architecture of eTC, before presenting important aspects in
eTaSL. This section is copied from the project report that is attached to this
thesis [6].

5.5.1. eTC

The architecture of eTC focuses on the 5C’s found in [37], and separates compu-
tation, coordination, configuration, composition and communication. Figure 5.10
from [2] shows that the controller has been separated into three layers, each with
their own separate task.

The first layer is the specification layer where the context is built. This is a
complete description of the robot task. Robot geometry can be loaded into the
specification layer through a URDF file. The task can be specified with a C++
task specification API, other task specification methods like iTaSC [9] or more
commonly with eTaSL. After specifying a task, the context is sent as input to the
second layer.

The second layer is the solver layer, where a context is converted to a numerical

5.5. eTaSL/eTC 63

Figure 5.10.: The layers used in the eTC architecture, highlighted boxes are the
implemented solutions. Figure from [2].

optimisation problem. Referring to Figure 5.10 it can be seen that the current
implementation uses a solver to control the joint velocities of the robot. eTC
can also be used for acceleration control or torque control, but for this section
velocity control is assumed. The optimisation problem has a goal of minimising
the variable x in the following formula:

xTHx (5.1)

with respect to the upper and lower limits U and L such that:

LA ≤ Ax ≤ UA (5.2)

L ≤ x ≤ U (5.3)

Where A is the task Jacobian and LA and BA are task limits. The variable x is
written as:

64 Chapter 5. Existing Software

x =

 q̇χ̇f
ε

 (5.4)

Where q̇ is the joint velocities, χ̇f is the feature variable velocities and ε is a slack
variable to enable lower priority constraints to act on the system. The matrix H
seen in (5.1) is written as:

H =

µW r 0 0
0 µW f 0
0 0 µI +W s

 (5.5)

Where W r and W f are weights for the robot joint space and feature space re-
spectively. W s is a collection of the weight variable in each constraint, which
will be presented later, while µ is a numerical value that can be used to tune the
system. W r andW f will mostly affect the system when task redundancy occurs.
In this case they will affect how the robot moves in the null-space of the task, i.e.
how the rest of the robot is moved while holding the end-effector in the desired
configuration.

After the optimisation problem is defined it is sent into the third and last layer
where it is solved by a numerical solver, in this case the qpOASES solver. For
each control cycle joint data are taken in as an input to the solver layer where
the optimisation problem is generated before being sent to the numerical solver.
The computed joint velocities are then sent to the robot. This process is repeated
each time cycle.

5.5.2. eTaSL

eTaSL is a Lua based language using abstractions to communicate with the un-
derlying C++ API generating the context in the specification layer. The context
consists of different elements that will now be explained, starting with variables.

An example of a variable can be seen in Figure 5.11 taken from [2]. Variables are
set by the user and is required to be connected to a context and have a name.
They also need a weight which will affect the way they are handled by eTC.
The vartype argument decides what variable type the variable is. Robot joint
variables determines the joint angles in the robot, the time variable keeps track
of time and a feature variable can be used more freely to express movements.

Another type of variable is the expression variable. This is a variable containing
an expression graph, which is a function often representing geometric relations

5.5. eTaSL/eTC 65

Figure 5.11.: Example of a variable in eTaSL. Figure from [2].

Figure 5.12.: Example of a constraint in eTaSL. Figure from [2].

between rigid bodies. Expression variables are used as an argument when defining
constraints and monitors, this will be presented next.

An example of a constraint can be seen in Figure 5.12 taken from [2]. Like
variables it has to be connected to a context, have a name and a weight. In
addition to this it uses an expression variable to define a function. The goal of
the expression variable is to reach the value of target, in this case 0.0. How the
expression variable will reach the target is determined by the value of K, which is
used in the controller. Lastly the constraint has a priority. This allows the user
to define a hierarchy were constraints with high priority are more important than
the ones with a lower priority. For multiple constraints with equal priority, their
importance is measured by the weight argument.

Monitors can detect when a certain condition is met and notify the system of
this event. An example of a monitor can be seen in Figure 5.13 taken from [2].
It is seen that the monitor observes an expression variable defined by expr. As
this expression exceeds some limit lower or upper, an action is triggered and the
argument is sent as an output. The name of the action and the argument are set
in actionname and argument respectively.

66 Chapter 5. Existing Software

Figure 5.13.: Example of a monitor in eTaSL. Figure from [2].

Chapter 6.

MotoTester

The moto_tester library [5] is a Python library made for testing properties of the
code presented in Section 5.4 mostly focusing on real-time performance. For this
thesis, real-time performance is measured by response time and latency. Response
time is defined as the time it takes from a command is sent from the computer
until the control group starts to react to that command. Latency is defined as
the time it takes for a control group to reach a specified joint velocity after the
command has been sent. This section will present the most important files form
the library and some of the functions they contain.

6.1. moto_tester.py
This file implements the class MotoTester which inherits from the Moto class
presented in Section 5.4. The class was made for testing the functions found
in the three following parts of Moto: Motion, State and IO. Member functions
in MotoTester worth noting are logger() and test_io_latency(). logger()
moves a control group to a specified position while recording the joint positions
during the movement. All joint positions are stored in a CSV file. test_io_latency()
writes and reads a memory address to test the io-latency of the system. This is
defined as the time it takes from the write command is sent, until the bit/byte
actually changes value.

The development of MotoTester was discontinued, as the behaviour of the real-
time part of the system is more relevant for this system.

68 Chapter 6. MotoTester

6.2. rt_setup.py
As mentioned in Section 5.4.1 the system needs to be in trajectory mode without
an active motion connection for real-time control to work properly. The purpose
of rt_setup.py is to put the system in a state where real-time control can be
executed.

When setting up the system for real-time control an instance of Moto is first
created. If nothing else is specified, Moto will create TCP connections for Motion,
State and IO. After initiating the instance of Moto, trajectory mode is started.
An open door to the robot cell or the robot not being in remote mode (Section
7.3) will stop the system from going into trajectory mode. This is checked and
if any problem occurs the error code is sent to the user along with the option to
retry the setup.

When the system is set to trajectory mode properly, the script will close using the
exit() function from Python. Closing the script in this way without properly
disconnection the TCP sockets will leave the system in trajectory mode without
any proper connection to the computer. This leaves the system in a state where
it is ready to run in real-time. The next section will explain how this is done.

6.3. moto_tester_rt.py
Similarly to moto_tester.py this file also introduces a new class that inherits on
the Moto class. The class defined in this file is the MotoTesterRt, and is a class
made for testing the real-time performance of moto. Unlike Moto, MotoTesterRt
does not establish TCP connections for Motion, State and IO. Instead a TCP
connection is established for RealTimeMotion, so that member functions for real-
time control can be used like explained in Section 5.4.1.

There is only one member function in MotoTesterRt which is check_frequency().
The purpose of this function is calculating the control frequency of the system
when running in real-time. This is done by initiating real-time mode and letting
it run for two seconds. The amount of commands sent during those two seconds
are then used to calculate the control frequency.

6.4. rt_server.py
The real-time server presented here is based off the one found at [53] which was
explained in Section 5.4.3. Some alterations are made to the server which will
now be explained. As mentioned in Section 5.4.1 the robot controller gives joint
velocities as absolute values. This became problematic when trying to implement

6.4. rt_server.py 69

Figure 6.1.: A block diagram showing the PID controller with reference feedfor-
ward implemented in the real-time server.

a PID controller, and therefore had to be fixed. It was done by comparing the
position of each joint to the position of the same joint in the previous control cycle.
From this a simple if statement decides in which direction the joint is moving.
The positive direction was defined to be the same as the directions shown on the
control buttons of the teach pendant, as seen in Figure 7.4.

The next and biggest change to the real-time server is the implementation of a PID
controller. This allows the user to tune the system to an appropriate behaviour
depending on the task that is to be executed. In this system the PID controller
consists of ten different PID controllers, one for each possible joint in a control
group. Each of the controllers are tuned individually. The vectors K_p, K_i and
K_d all have ten elements, each corresponding to a PID controller. In addition to
the PID controller, feedforward of the reference joint velocity is implemented. A
block diagram showing the control system can be seen in Figure 6.1. Currently
the server only supports one control group using the PID controller at a time.

When tuning the controller a modified version of the ZN-method from Section 3.5
was used. While tuning no constant offset from the reference value was observed,
so an integral controller was deemed obsolete. As a test some integral gain was
applied and this only destabilised the system and made it less reactive. In reality
the PID controller then became a PD controller, but for the remainder of this
thesis it will be called a PID controller as it has the option of applying integral
effect. The ZN-method has no specific tuning for PD controllers and the solution
became tuning the controller like a pure P controller before experimenting with
increasing derivative gains to find the one yielding the best results. As the velocity
signal from the controller is not without noise, the D controller will at some point
start amplifying noise instead of dampening oscillations. A graph showing the
development of the step response from joint S using different derivative gains can
be seen in Figure 6.2.

For testing the system and tuning the PID controller, as step response was also
implemented in the server. The step response is defined by using the number of

70 Chapter 6. MotoTester

Figure 6.2.: The effect of changing the derivative gain shown for a step response
from joint S.

6.5. data_plotter.py 71

control cycles as a time variable, and sending velocity commands based on this
information.

Lastly a logger similar to the one seen in 6.3 was implemented, the difference
being that this logger collects data continuously while the system is running in
real-time mode. All data is written to a CSV file. For the experiments done in
this thesis the command joint velocity sent from the computer and feedback joint
velocity received from the robot controller was logged.

6.5. data_plotter.py
Functions for plotting the data contained in the CSV files are located in data_plotter.py.
Different plotters are made for real-time mode and running the system regu-
larly as the size of the CSV file is different for the two. data_plotter() and
data_plotter_rt() plots the joint velocity of a given control group joint in re-
spectively normal and real-time mode. The latter function also plots the command
velocity sent from the computer to the robot controller.

Similarly to data_plotter_rt() where a file is plotted, data_multiplotter_rt()
can plot all files in a directory. These are all plotted at the same time but in differ-
ent plots. This function is useful for searching for specific files in a directory. Same
as for data_plotter_rt() this function only works with files that are collected
while the system is running in real-time mode.

For comparing different plots, compare_plots() can be used. This function takes
in a list of CSV files from running in real-time and plots them together. Only one
joint from each file is plotted, and it has to be the same joint for each file. The
feedback velocity of all files are plotted, and additionally the command velocity of
the first file is plotted. This function was made for comparing the step response
of the system to tune the PID controller.

6.6. utilities.py
This last file contains miscellaneous functions for different uses in the system. The
most important are the functions calculating latencies and response times in the
real-time system from CSV files. There are two different functions for doing this.

calculate_latency() compares the command velocity from the computer to the
feedback velocity gained from the robot controller. The latency is the defined as
the distance in control cycles when both velocities are at zero. This is used for
calculating the latency on a continuously changing signal where the velocity alters
between negative and positive.

72 Chapter 6. MotoTester

step_analysis() is used for calculating both latency and response time of a step
function. Response time is calculated by observing the amount of cycles that
passes before a joint starts moving after the joint velocity command is sent from
the computer. Latency is calculated by observing how many control cycles passes
after the command step joint velocity is sent until the joint reaches that joint
velocity.

As the system runs on 250Hz both latency and response time can easily be con-
verted from control cycles to ms. It is done by multiplying the amount of control
cycles measured with the duration of a control cycle which is 4ms.

Chapter 7.

Hardware

In this chapter the hardware used in experiments for this thesis will be presented.
All hardware presented in this chapter forms a robotic welding cell located at
Manulab at the Department of Mechanical and Industrial Engineering, NTNU
Trondheim. Figure 7.1 shows the content of the welding cell.

7.1. Robot Manipulator
The robot manipulator used in the cell is a YASKAWA Motoman GP25-12. The
technical specifications of the robot can be seen in Appendix B, obtained form [15].
To summarise quickly the GP25-12 is a six axis multi purpose industrial robot.
It has a lifting capacity of 12 kg and is typically used in assembly, dispensing or
material handling. The six joints are named as follows from the shoulder joint
and outward: S, L, U, R, B and T.

From the specifications a simplified drawing of the robot has been made showing
the screw axis of each joint in the end-effector frame and space frame like explained
in Section 2.7. The simplified drawing has been copied from the attached project
report [6], and can be seen in Figure 7.2.

The home position of the robot can then be represented by the transformation
matrix:

M =

1 0 0 0
0 1 0 1.332
0 0 1| 1.465
0 0 0 1

 (7.1)

From the simplified drawing it is possible to extract matrices for the screw axis

74 Chapter 7. Hardware

Figure 7.1.: Left: YASKAWA Motoman GP25-12 robot manipulator equipped
with a Fronius TPS 400-i welding apparatus along with the YASKAWA MT1-
500 S2HD positioning table. Right: YASKAWA YRC1000 robot controller with
standard teach pendant and gas for welding.

7.1. Robot Manipulator 75

Figure 7.2.: A simplified drawing of the Motoman GP25-12 showing the screw
axis in both the end-effector frame and space frame. Figure taken from the project
report[6].

in both the space-frame frame and the end-effector frame, which are shown in 7.2
and 7.3 respectively.

S =

0 1 1 0 1 0
0 0 0 1 0 1
1 0 0 0 0 0
0 0 0 −1.465 0 −1.465
0 0.505 1.265 0 1.465 0
0 −0.150 −0.150 0 −1.232 0

(7.2)

B =

0 1 1 0 1 0
0 0 0 1 0 1
1 0 0 0 0 0

−1.332 0 0 0 0 0
0 −0.960 −0.200 0 0 0
0 1.182 1.182 0 0.100 0

(7.3)

76 Chapter 7. Hardware

Figure 7.3.: A simplified drawing of the YASKAWA MT1-500 S2HD showing
the screw axis in both the end-effector frame and space frame.

7.2. Positioning Table
In addition to the robot manipulator the cell is equipped with a YASKAWA MT1-
500 S2HD positioning table. Technical specifications for the positioning table can
be seen in Appendix C, taken from [16]. It is a compact positioning table with
two axis and a load capacity of 500 kg. The joints on the positioning table are
not named by the manufacturer, but in this thesis the lowest joint is referred to
a s joint X and the upper one joint Y.

Same as for the GP25-12 a simplified drawing of the positioning table has been
made, this can be seen in Figure 7.3. The home position M table can be seen in
(7.4) and the screw axis in both the stationary space frame and the end-effector
frame can be seen in (7.5) and (7.6) respectively.

M table =

1 0 0 0
0 1 0 0
0 0 1 0.615
0 0 0 1

 (7.4)

7.3. Robot Controller 77

Stable =

0 0
1 0
0 1

−0.450 0
0 0
0 0

(7.5)

Btable =

0 0
1 0
0 1

0.165 0
0 0
0 0

(7.6)

7.3. Robot Controller
The robot manipulator and positioning table are both controlled by a robot con-
troller, which in this cell is the YASKAWA YRC10000. This section will first give
a brief overview of the robot controller itself, before explaining the teach pendant
and how it can be used to control both the robot manipulator and positioning
table in different modes.

The YRC10000 is a versatile robot controller for several of YASKAWA’s robot
series including the GP-Series. In total it is capable of controlling up to 4 robots
plus additional external axis up to a total of 72 axis [17]. The controller is either
delivered with a Smart pendant for beginners, or a standard teach pendant for
professional users. At MTP all YASKAWA robot controllers use the standard
teach pendant, which will be presented next.

7.3.1. Teach Pendant

The standard teach pendant can be seen in Figure 7.4. Looking at the top left of
the pendant there is a key which can be switched between three positions. Each
position represents a different way of controlling the robot, teach mode, play mode
and remote mode.

In teach mode all joint velocities are restricted and the door to the robot cell can
be open while the robot is moving. This mode is typically used when making
jobs, which are programs for moving the robot, using the teach pendant. In teach
mode the robot is either controlled manually using the control buttons shown in

78 Chapter 7. Hardware

Figure 7.4.: The teach pendant connected to the YRC1000 robot controller.
Control buttons for each joint are marked by the red squares.

Figure 7.4, or playing jobs with limited speeds. For all movement the dead man’s
switch needs to be pressed.

Play mode is the regular operating mode of the robot when it is controlled with
the teach pendant. When in this mode the door to the cell is required to be locked
to prevent harm to humans. Joints can now run at full speed and the robot can
only be controlled by using pre-programmed jobs. Jobs can be run without the
dead man’s switch being pressed.

The last mode is the remote mode. When switched to remote mode the pendant
will look for a saved job named INTI_ROS. A computer can then be connected to
the controller by an Ethernet cable, and ROS commands can be used to control
both the robot and positioning table. This assumes that some code supporting
ROS commands has been installed in the robot controller. The standard INIT_ROS
job can be seen in Appendix A.1.

High Accuracy Path Control Function In [19] a suggestion for reducing
latency is to modify the INIT_ROS job seen in Appendix A.1 by including HTRAJON
and HTRAJOFF as seen in Appendix A.2. This enables HTRAJ while running the
system in remote mode.

7.4. Welding Apparatus 79

Figure 7.5.: Remote controller for the Fronius TPS 400-i.

7.4. Welding Apparatus
The GP25-12 is equipped with a Fronius TPS 400-i welding apparatus, as seen
in Figure 7.1. Information presented in this section is gathered from [14]. The
Fronius TPS 400-i is a digital welding system, enabling different welding packages
to be installed on the apparatus. A welding package contains different welding
methods. This makes the system adaptable to a variety of applications. Welding
parameters and other settings can be controlled by the user on the power source
itself which is equipped with a touch screen, or the remote controller seen in
Figure 7.5. This enables the user to adjust welding parameters even outside the
robot cell during welding operations.

The welding system is equipped with two wire feeders, one at the elbow of the
robot and one in the welding gun itself. This allows for precise wire feeding,
making the robot capable of precise welding methods like cold metal transfer
(CMT). To avoid damage to the welding gun in case of the robot crashing, it
is equipped with a magnetised socket. This will make the welding gun detach
if the robot makes it collide with an obstacle in the cell. As the welding gun is
not taken into account when calculating kinematics using (7.2), (7.3) and (7.1)
a transformation matrix from the end-effector to the tip of the welding gun is
required. This matrix is written as:

T bt =

1 0 0 0
0 cos(54◦) − sin(54◦) 0.450
0 sin(54◦) cos(54◦) −0.084
0 0 0 1

 (7.7)

80 Chapter 7. Hardware

Figure 7.6.: The Micro-Epsilon scanCONTROL 2610-100 laser scanner.

7.5. Laser Scanner
The robot cell presented in this thesis does not yet have any mounted sensors,
but is planned to have one installed. An equivalent robot cell is equipped with a
Micro-Epsilon scanCONTROL 2610-100. This is a 3D laser scanner for scanning
geometrical features. The scan is returned as a point cloud to the computer. A
model of the scanner can be seen in Figure 7.6.

7.6. Computer Specifications
All tests presented in this thesis was run on a computer with the following speci-
fications:

• OS: Ubuntu 20.04.2 LTS

• RAM: 3.8 GB

• CPU: Intel® CoreTM i5-3210M CPU @ 2.50 GHz × 4

The computer is connected to the robot controller by an Ethernet cable.

Chapter 8.

Experiment Setup

This chapter will present the experiments that has been conducted for this thesis.
The results from each experiment can be seen in Chapter 9. First the setup
of the robot cell will be explained followed by an explanation of some simple
welding tests using the teach pendant. Finally experiments for testing the real-
time performance of moto will be presented.

8.1. Robot Cell Setup for Welding
The robot cell at Manulab had to be set up for welding, and this section will
explain some points that are worth noting for future work on the welding cell. The
section will also explain some of the required setup for connecting the computer
to the robot controller.

The correct welding wire has to be chosen and installed in the welding apparatus.
The required diameter of the welding wire can be seen on the colour of the feeding
wheels inside the wire feeder. A table shows which diameter corresponds to which
colour. The wire is fastened in the first feeder and the n fed trough to the welding
gun using control buttons on the power source or remote control.

A second thing worth noting is the gas supply used for welding. This welding cell is
set up for MIG (metal inert gas) welding, which is a welding method that requires
a shielding gas. A gas tank is coupled to the power source with a hose as seen in
Figure 7.1. The amount of gas flow required varies on the welding operation that
is to be performed and should be set by experienced welders. After connecting
the gas tank and opening the valve, gas flow can be tested by using one of the
buttons on the power source or the welding gun itself.

Setting up the computer for running moto in real-time requires two different IP
addresses to be set. These are static IP addresses as explained in Section 4.1.4, and

82 Chapter 8. Experiment Setup

are used by the ROS-I code running on the robot controller. The two addresses
both uses netmask 2255.255.255.0 and are as follows:

• 192.168.255.X , where X is an arbitrary number picked by the user. All
numbers except 200 can be used, as this is occupied by the robot controller.
The address above is used for TCP communication.

• 192.168.255.3 This address is used for the UDP connection between the
computer and the robot controller when running the system in real-time.

The computer can also be st up to receive feedback from the ROS-I code running
on the robot controller.This is done by Telnet as explained in section 4.1.1. After
turning on the robot controller and connecting it to the computer by an Ethernet
cable, type the following command in a terminal:

Telnet 192 . 168 . 255 . 200

The requested username and password for logging on to the robot controller is
MOTOMANrobot. Messages printed by the ROS-I code will now be displayed in the
terminal.

8.2. Welding with Teach Pendant
To verify that the robot cell is set up correctly and explore the possibilities of
pendant programming, some basic welding operations were performed. By using
the teach pendant the robot together with the positioning table was programmed
to weld a straight line, an angle and a circle. Straight lines were welded with
three different welding methods: MIG, MIG pulse and CMT. The welding job for
a straight line can be seen in Appendix A.3, while the job for the circular weld can
be seen in Appendix A.4. Welding parameters were set directly on the welding
apparatus with the help of more experienced welders. How these parameters affect
the welding process is out of the scope of this thesis.

8.3. Moto Testing
The moto library presented in Section 5.4 was tested to determine real-time perfor-
mance. Testing was done using the code presented in Chapter 6. This section will
present the setup for each performed test. All tests were performed on the robot
manipulator as well as the positioning table. Three different real-time "system
modes" are defined and tested:

• Regular mode, where the real-time server is run without any modification
to the behaviour of the system.

8.3. Moto Testing 83

Figure 8.1.: The step function used to test the Moto code.

• PID mode, where the PID controller explained in Section 6.4 is implemented
and tuned.

• HTRAJ mode, where HTRAJ is enabled as explained in Section 7.3.

8.3.1. Frequency Verification

As mentioned in 5.4, the real time system is set to run at 250 Hz. Parts of
the code in [5], as well as latency calculations, is based on this fact and it is
therefore important to verify the frequency. The test was performed using the
check_frequency() function found in the MotoTesterRt class. Frequency was
tested five times and the measured frequency was noted for each test. In this
experiment only the regular system mode was considered.

8.3.2. Step Response

The step response of each joint was tested using the step function shown in Figure
8.1. Using the step function as the reference joint velocity yields a step response
from each joint which was recorded in a CSV file. From the code presented in
Section 6.6 it is then possible to calculate the step response and latency of each
joint. Again the test was performed five times for each joint and the average value
of all tests were used as the result.

84 Chapter 8. Experiment Setup

8.3.3. Following a Reference Signal

While the step response shows the systems ability to adapt to a sudden change
in the reference signal, it is also useful to look at how the system responds to a
constantly changing smooth signal. The reference signal in this test was generated
using (8.1), where θ̇ is the joint velocity and t is the time in seconds.

θ̇ = 0.3 sin 3t (8.1)

The systems ability to follow the reference signal is then evaluated using latency,
which is calculated by the function calculate_latency() explained in Section
6.6. In contrast to the step response experiment where each joint was tested
individually, for this test the reference signal was sent to all joints at the same time.
This was done based on the observations that controlling all joints simultaneously
does not make a difference in latency compared to controlling one joint at the
time.

Tests were also conducted to observe the systems response when altering the
reference signal in 8.1. The frequency was increased to 15 and reduced to 1 and
the amplitude was set to 0.1 and 0.6. These four tests were only conducted for
the S joint on the robot manipulator and the X joint on the positioning table.

Just as with the previously explained experiments, each of the tests explained
above was performed five times each. The presented result is then the average of
each of the five tests.

Chapter 9.

Results

This chapter will present the results obtained from the experiments described in
Chapter 8. The results will be presented in the same order as the experiments were
described. Real-time performance testing will be presented in two sections, one
for the robot manipulator and one for the positioning table. Lastly a suggested
architecture for a constraint-based welding system will be presented.

9.1. Welding with Teach Pendant
Welding seams from the different welding processes can be seen in Figure 9.1.
Starting from the left the figure shows straight welds, welding an angle and circular
welding using the positioning table. For the straight welds three different welding
methods were used. Starting from the left these are: MIG, MIG pulse and CMT.

Figure 9.1.: Welding seams from the three different welding operations. Left:
straight welds with three different welding methods: MIG, MIG pulse and CMT.
Middle: welding an angle. Right: welding a circle using the positioning table.

86 Chapter 9. Results

9.2. Moto Testing, Manipulator
This section will present the results obtained from testing the moto library on
the YASKAWA Motoman GP25-12 manipulator. Results will be presented in
categories divided by the type of test that was performed. Where it is reasonable,
results from the three different system modes will be presented collectively.

9.2.1. Frequency

Results form checking the control frequency while controlling the robot manipu-
lator can be seen in Table 9.1.

Test nr. Measured Frequency
1 249.8966 ≈ 250
2 248.5196 ≈ 249
3 249.4807 ≈ 249
4 249.4148 ≈ 249
5 249.5827 ≈ 250

Table 9.1.: Measured control frequencies of the real-time system controlling the
robot manipulator.

9.2.2. Step Response

The results from testing the step response of the three different system modes can
be seen in Table 9.2 were response times and latencies are presented for each joint.
Appendix D.1 shows the step response of joint S for each system mode plotted
against each other.

Joint Response Time [# of cycles] Latency [# of cycles]
Regular PID HTRAJ Regular PID HTRAJ

S 9.6 ≈ 10 9.0 ≈ 9 9.0 ≈ 9 41.6 ≈ 42 23.0 ≈ 23 25.8 ≈ 26
L 10.0 ≈ 10 9.0 ≈ 9 9.0 ≈ 9 50.6 ≈ 51 21.0 ≈ 21 26.4 ≈ 27
U 11.0 ≈ 11 10.0 ≈ 10 9.0 ≈ 9 48.6 ≈ 49 21.0 ≈ 21 27.0 ≈ 27
R 14.6 ≈ 15 12.8 ≈ 13 11.0 ≈ 11 43.4 ≈ 44 21.8 ≈ 22 23.8 ≈ 24
B 13.0 ≈ 13 12.0 ≈ 12 11.0 ≈ 11 38.2 ≈ 39 22.0 ≈ 22 25.8 ≈ 26
T 14.6 ≈ 15 14.2 ≈ 15 12.2 ≈ 13 30.2 ≈ 31 27.4 ≈ 28 23.4 ≈ 24

Table 9.2.: Average response time and latency for the step response of each joint
in the three different system modes while controlling the robot manipulator.

9.3. Moto Testing, Positioning Table 87

9.2.3. Following a Reference Signal

The resulting average latencies from following the reference signal can be seen in
Table 9.3. Examples of joint S following the reference signal in all three system
modes can be seen in Appendix D.2. Only joint S was tested in the HTRAJ
system mode, the reason for this will be explained in Section 10.2.3.

Joint Latency [# of cycles]
Regular PID HTRAJ

S 23.4545 ≈ 24 10.1636 ≈ 11 15.0422 ≈ 16
L 23.4181 ≈ 24 11.6909 ≈ 12 N/A
U 23.3818 ≈ 24 12.4000 ≈ 13 N/A
R 22.0364 ≈ 23 11.7273 ≈ 12 N/A
B 23.6364 ≈ 24 12.5273 ≈ 13 N/A
T 22.6000 ≈ 23 11.2909 ≈ 12 N/A

Table 9.3.: Latencies for the three system modes while setting each joint in the
robot manipulator to follow the reference joint velocity (8.1).

Tests with modified frequency and amplitude in the reference signal were only
conducted on joint S with the regular and PID system modes. The resulting
latencies can be seen in Table 9.4. Appendix D.3 shows command and feedback
joint velocity for both system modes when following the reference joint velocity
with a frequency of 15.

Modification Latency [# of cycles]
Regular PID

Amp. = 0.1 22.2015 ≈ 23 9.1636 ≈ 10
Amp. = 0.6 23.6622 ≈ 24 10.3273 ≈ 11
Freq. = 1 22.1467 ≈ 23 8.8667 ≈ 9
Freq. = 15 23.4153 ≈ 24 10.5269 ≈ 11

Table 9.4.: Average latencies on joint S when following the reference signal (8.1)
with modifications to amplitude and frequency.

9.3. Moto Testing, Positioning Table
This section will present the results obtained from testing the moto library on the
YASKAWA MT1-500 S2HD positioning table. Results will be presented in the
same manner as for the robot manipulator.

88 Chapter 9. Results

9.3.1. Frequency

The control frequency was tested for the server running the positioning table, and
the results can be seen in Table 9.5.

Test nr. Measured frequency
1 249.9661 ≈ 250
2 249.6340 ≈ 250
3 249.9954 ≈ 250
4 249.7687 ≈ 250
5 249.8112 ≈ 250

Table 9.5.: Measured control frequencies of the real-time system controlling the
positioning table.

9.3.2. Step Response

As with the manipulator, all three system modes were tested. The resulting
response times and latencies can be seen in Table 9.6. A plot comparing the three
system responses for joint X can be seen in Appendix E.1

Joint Response Time [# of cycles] Latency [# of cycles]
Regular PID HTRAJ Regular PID HTRAJ

X 12.0 ≈ 12 9.0 ≈ 9 11.2 ≈ 12 46.6 ≈ 47 21.0 ≈ 21 47.0 ≈ 47
Y 11.0 ≈ 11 10.4 ≈ 11 12.0 ≈ 12 44.6 ≈ 45 22.0 ≈ 22 45.0 ≈ 45

Table 9.6.: Average response time and latency for the step response of each joint
in the three different system modes.

9.3.3. Following a Reference Signal

The resulting average latencies from this experiment can be seen in Table 9.7.
Joint X was also tested using the modified reference joint velocity and the results
from these tests can be seen in Table 9.8. Example plots for joint X in each system
mode can be seen in Appendix E.2, while plots for joint X in each system mode
following the reference signal with a frequency of 15 can be seen in Appendix E.3.

9.4. A System for Constraint-Based Robotic Welding 89

Joint Latency [# of cycles]
Regular PID HTRAJ

X 23.3636 ≈ 24 12.4545 ≈ 13 23.3455 ≈ 24
Y 23.1818 ≈ 24 12.5818 ≈ 13 23.2000 ≈ 24

Table 9.7.: Average latency while following the reference signal (8.1) for both
joints on the positioning table running in the three different system modes.

Modification Latency [# of cycles]
Regular PID HTRAJ

Amp. = 0.1 22.6530 ≈ 23 11.7818 ≈ 12 22.7273 ≈ 23
Amp. = 0.6 23.5091 ≈ 24 12.6545 ≈ 13 22.5273 ≈ 23
Freq. = 1.0 22.6833 ≈ 23 11.5333 ≈ 12 22.6000 ≈ 23
Freq. = 15.0 23.3841 ≈ 24 12.9130 ≈ 13 23.3714 ≈ 24

Table 9.8.: Average latencies on joint X when following modified versions of the
reference signal (8.1).

9.4. A System for Constraint-Based Robotic Welding
This section will suggest a complete system for using constraint-based robot pro-
gramming in welding applications. The architecture is based on the theory pre-
sented in this thesis and can be seen in Figure 9.2.

This explanation will be based on a simple welding operation similar to the ones
seen in Section 9.1. In this case a simple line is welded to join together two metal
plates. This simple process is used to simplify the explanation of the system.
The process would start by scanning the groove between the plates with a laser
scanner like the one seen in Section 7.5. From the scan a point cloud will be
obtained, and it is possible to extract a best fit line. Some representation of this
line is then sent to a script where it is translated into constraints in Lua that is
usable by eTC as explained in Section 5.5.

After generating the constraints they are sent to an eTaSL/eTC ROS2 control
controller. This is an implementation of eTC in ROS2 control developed by Lars
Tingelstad which can be found at [52]. From this controller joint velocities are
generated in the eTC solver which then can be sent to the robot controller using
the moto library. At the end of each control cycle the robot controller gives
feedback on the joint velocities and angles to the computer that are to be used in
the next cycle. The position of the end-effector in each cycle can then be obtained
from forward kinematics using the matrices presented in 7.1 and the PoE method
as explained in Section 2.7. To find the pose of the positioning table the PoE

90 Chapter 9. Results

Figure 9.2.: Suggested architecture for a complete constraint-based system for
robotic welding.

method can be used with the matrices presented in 7.2 instead.

Chapter 10.

Discussion

In this chapter the results presented in Chapter 9 will be discussed. First some
lessons learned from the welding tests will be discussed before a discussion on the
real-time performance of moto. Following this discussion a complete architecture
for implementing constraint-based robot programming in robotic welding will be
suggested. The suggested framework will be based on the previously presented
theory. Finally some of the advantages of such an architecture will be discussed.

10.1. Welding with Teach Pendant
This section will discuss some of the lessons learned from doing welding experi-
ments with the teach pendant, and the requirements this imposes on the archi-
tecture suggested later in the discussion.

One of the most obvious lessons learned is the simplicity of programming robotic
welding operations with the pendant. The standard commands fount in the robot
controller allows for a wide variety of welding operations, with a relatively low
programming time. The simplicity of the teach pendant makes other software for
programming robots almost obsolete for simple welding operations. The goal of
a constraint-based architecture should therefore be more complex welding opera-
tions where teach pendant programming becomes more time consuming.

While moving the robot manually it was quickly observed that the kinematics in
the robot quickly leads to certain joints reaching their angle limit. This should
be taken into account when using constraints to move the robot, as to avoid the
robot driving itself into a position which it cant get out of. Constraining the joint
angles to be less than the limits of the robot might help the robot avoid this type
of situation.

As there is practically no difference in programming a welding job and a regular

92 Chapter 10. Discussion

Figure 10.1.: The recommended direction of welding and angle of the welding
gun for MIG welding processes.

job moving the end-effector, there is no speed limit on the robot while welding.
Moving the welding gun too quickly while welding will result in a bad weld, and
should be avoided. A speed limit on the end-effector while the arc is active should
therefore be implemented.

Lastly the angle and direction of the welding gun should be considered both of
which are illustrated in Figure 10.1. In a MIG welding process the welding gun
should be "pushed" along the welding seam to cover the weld in shielding gas. The
angle of the welding gun should be around 30 degrees. This direction and angle
is also something to consider when defining constraints.

10.2. Moto Testing
This section will discuss the results obtained from testing the real-time perfor-
mance of the moto library. Each test will be discussed in separate subsections.
The main focus of discussion will be the results form the robot manipulator, but
where it is necessary a note on the positioning table will be included as well.

10.2.1. Frequency

The expected frequency of the system is 250 Hz. As seen in Table 9.1 and 9.5
there is a small deviation in the expected and measured frequency both for the
robot manipulator and the positioning table. Although there is a deviation it too
small to be regarded as a problem for the system. For all practical proposes the
system can be regarded as running at 250 Hz.

10.2. Moto Testing 93

The cause of the slightly lower measured frequency is assumed to be the order in
which commands are executed in check_frequency(). First the system is set in
real-time mode before a timer is started. After two seconds the system is taken
out of real-time mode before the timer is stopped. Since the timer is started
before and stopped after the system is set to and taken out of real-time mode,
the elapsed time will exceed the expected two seconds by a small amount. As the
control frequency is calculated by the number of given commands divided by the
elapsed time, this would result in a slightly lower control frequency than expected.

10.2.2. Step Response

From Table 9.2 it is seen that the response time is almost constant for each joint in
all three system modes, and the general trend is that joints further from the base
of the robot has a longer response time. The response time could be affected by
both software and hardware delays, and it is difficult to pinpoint exact causes for
high response times. In this case some delay probably occurs in communication
between the computer and the robot controller, but some delay may also be caused
by hardware. As the system goes from standstill to a set velocity when reacting
to the step function, the robot manipulator has to turn off servo brakes to start
the motion. This is believed to affect the system delay to some extent.

It is seen that latency reducing measures like the PID controller or having HTRAJ
enabled does not affect the response time significantly. The most significant differ-
ence is found between the ordinary system and HTRAJ system on joint R where
the response time is reduced by four cycles. Still the response times are somewhat
constant for the three system modes and can therefore be regarded as a sort of
minimum latency. This should be taken into account when looking at latency in
the next subsections.

While the three system modes response times remain relatively unchanged, the
difference in latency is more significant. Running the regular system mode, all
joints show a latency between 31 and 51 control cycles. Running at 250 Hz this
corresponds to 124 and 204 ms respectively, which is somewhat high for a system
running in real-time. It is worth noting that the system usually will have a more
gradually changing command joint velocity, which should result in lower latencies
than what is measured in the step response. Still, both the PID and HTRAJ
system mode show significant reduction in latency for most joints. It is also worth
noting that in both of these two system modes the variation in latency reduced,
so that all joints have a more equal latency than before. Having all joints respond
with the same latency will be important for timing considerations when sending
joint velocity commands in real-time.

Appendix D.1 shows that the reduction in latency is not achieved without draw-

94 Chapter 10. Discussion

backs. The PID system mode achieved the lowest latency, but also showed the
most oscillatory behaviour of the three system modes. The oscillations could be
dampened more by increasing the derivative gain in the PID controller, but that
would also require some sort of noise filtering of the velocity feedback. When the
system was tested the increased derivative gain lead to amplified noise and a more
oscillatory behaviour, rather than dampening oscillations.

In an attempt to allow for higher derivative gains a simple low pass filter was
applied to the joint velocity contribution from the D controller. The filter can be
described with the following equation:

θd = 0.5θd,prev + 0.5θd,curr (10.1)

where θd is the filtered joint velocity contribution from the D controller, θd,prev is
the previous contribution and θd,prev is the current contribution before filtering.
This filter had no noticeable effect which could indicate that a stronger filter is
required. The problem using heavy filtering is that it can be time consuming,
which is undesirable in a real-time system.

The HTRAJ system mode shows similar latency to the PID system mode, with
only a couple of more cycles on most joints. As seen in Appendix D.1 it also
has less oscillatory behaviour than the PID system mode. Still it is worth noting
the violent oscillations that occur while the system is accelerating. The source of
these oscillations are currently not known and it is unknown if they could cause
problems when implementing moto in a complete architecture.

To set the response times into perspective, Table 10.1 shows response times from
[24] where a similar experiment regarding response time was conducted. A real-
time Python framework for robot control was used in this paper as well. Comping
these data to the ones shown in Table 9.2 it is seen that the response times
in moto are slightly higher than the two slowest systems in [24]. Comparing
response time with the UR shows that the UR has almost a quarter of the response
time of the other systems. The explanation for this lies in the robot controller
that was used. When testing moto as well as the other two systems in [24] the
robot controller from the manufacturer was used. These perform interpolation to
generate trajectories and to various checks on the system which will stop the robot
in case of an error. The UR was connected to a custom made velocity control not
having the same amount of functions. This yields a fast system where errors have
larger consequences.

To summarise the discussion, both the PID and HTRAJ system modes performed
better than the ordinary system regarding latency, while response times remained
mostly the same for all three system modes. While the cost of lower latency is

10.2. Moto Testing 95

Robot Response Time [ms]
NACHI SC15F 45

KUKA KR60L30 HA 42
UR-6-85-5-A 12

Table 10.1.: Response times for three different robots, data from [24].

a more oscillatory behaviour, this is most present in the PID system mode. The
HTRAJ system mode show some large oscillations while accelerating but despite
this seems to perform the best of the three system modes. Judging only by the
step response it shows a good mix of low latencies and not too bad oscillatory
behaviour.

Positioning Table
The positioning table shows much of the same behaviour as the robot manipulator
in this experiment with regards to response time and latency for the step response,
but one difference stands out. Looking at Appendix E.1 it is clear that the regular
and HTRAJ system modes have the same step response. This implies that setting
the system in HTRAJ mode only affects the robot manipulator, and does not affect
the behaviour of the positioning table. Table 9.6 also confirms this as the regular
and HTRAJ system mode have the same latencies.

10.2.3. Following a Reference Signal

Looking at Table 9.3 it is clear that the system starting from standstill does affect
the latency. Running the regular system mode yields a latency of 23 or 24 control
cycles on all joints when following a reference signal. This is an improvement to
the latency shown by the step response, but it still correlates to almost 100 ms.
For reference similar experiments to the ones done in this thesis was conducted
in [24] as well. These latency results can be seen in Table 10.2.

Robot Latency [ms]
NACHI SC15F 120

KUKA KR60L30 HA 115
UR-6-85-5-A 9

Table 10.2.: Latency for three different robots, data from [24].

Comparing the results in Table 9.3 to the values seen in Table 10.2 it is clear that
the regular system mode compares roughly to the two slowest robots from [24].
It is still considerably slower than the UR, which is expected due to the UR’s
custom robot controller. The latency for the regular system mode is still higher

96 Chapter 10. Discussion

than what is desirable for a system running in real-time. Having high latencies
could especially be a problem for collision detection, where the system would react
to a crash 100 ms after the crash has actually happened. For a constraint based
system this could be especially undesirable as one of the goals of many constraint
based system is to be able to collaborate with humans.

For this thesis where a welding operation is to be executed, the high latency might
not be as big of an issue as for other robot applications. Welding processes are
naturally slow moving due to the nature of welding where the metal needs to be
heated properly. The system will in this case move slow and evenly so that no
fast changes in joint velocities are required, and the latency could possibly be
tolerated. In the case of welding corners like seen in Figure 9.1 latency would
result in a lack of precision, as the welding gun would overshoot when changing
the welding direction. If this is a problem or not depends on the required precision
of the individual welding job that is to be executed. Still it could be desirable to
be able to reduce the latency of the system, which is attempted with the PID and
HTRAJ system modes.

As with the step responses it is seen that latency in the system is significantly
reduced in the PID system mode. When tuning the controller it was also observed
that the latency could be reduced further for the cost of more oscillations by
further increasing the proportional gain. This would eventually make the system
unstable, and the current tuning is regarded as a good mix between low latency
and low oscillations.

When considering the step responses it is again seen that the PID system mode
is the most oscillating of the three. For a PID controller the oscillations occurs
with abrupt changes in the reference signal, like what is seen in a step function.
Looking at Appendix D.2 it is clear that oscillations are no longer a problem when
the reference signal is continuous and starts at zero joint velocity. With regards to
this observation a system using the PID controller could have a filter for smoothing
out step functions if oscillations are to be avoided. This would in turn increase
latency the system, so a choice between oscillations and latency would have to be
taken. Similarly to previous choices the right choice depends mostly on the task
that is to be performed. Appendix D.2 also reflects the reduced latency by the
shorter distance between the feedback and command graph compared to what is
seen from the regular system mode.

Again looking at Table 9.3 it is seen that the HTRAJ system mode has a latency
that is slightly higher than the PID system mode, but still significantly lower than
the regular regular system mode. The reason that the HTRAJ system mode was
not tested any further can be seen at the bottom of Appendix D.2. Although
the feedback joint velocity follows the command joint velocity nicely, it shows
tendencies to spike at random intervals. These are observed as sudden twitches

10.2. Moto Testing 97

in the robot while operating, and in fear of damaging the robot no further tests
where performed with HTRAJ enabled.

Testing with the modified reference signal was done to check if the latency of the
system would be affected by how fast the reference velocity changed. From Table
9.4 it is clear that the latency remains the same regardless of the frequency or
amplitude of the reference velocity. Even though the latency remains unchanged
another important factor which is not reflected by the latency can be seen in
Appendix D.3. As the frequency is increased the feedback joint velocity seems to
be unable to keep up with the command joint velocity in the regular system mode.
This results in the feedback joint velocity taking the shape of a sinus wave with a
lower amplitude than desired. Implementing the PID controller seems to fix this
problem, but the system then overshoots and achieves a larger amplitude than the
command joint velocity. This behaviour is not reflected in the latency calculations
as it is calculated based off zero points in the graph. Whether undershooting or
overshooting is the best solution is entirely up to the task that is to be executed
by the robot, and has to be evaluated for each task. As mentioned previously
welding is a naturally slow process, so the reference signal would probably not
change as fast as seen in Appendix D.3. It may therefore not be a problem at all
that the system is not able to track the reference joint velocity precisely at this
speed.

As a summary, the regular system mode shows a latency that is typically higher
than what is desired in a real-time system. This might not be a problem due to
the slow nature of welding, but latency reduction would still be desirable. Of the
two latency reducing measures introduced the PID controller seems to be the best
due to the random spikes in joint velocity observed in the HTRAJ system mode.
The PID system mode shows reduced latencies and works without oscillations
when the reference joint velocity acts as a continuous single starting from zero
joint velocity. Looking at the results from this experiment the PID system modes
seems to perform the best overall.

Positioning Table
As with the step response the positioning table responds similarly to the robot
manipulator in all experiments, with the exception of the HTRAJ system mode.
Again it is seen from Table 9.7 and 9.8 that the regular and HTRAJ system mode
behaves in the same way confirming that the HTRAJ function does not apply to
the positioning table.

98 Chapter 10. Discussion

10.3. Validity of the Real-Time Performance
In this section the validity of the results obtained from the real-time performance
testing will be discussed. This discussion will primarily be concerned with the
code presented in Chapter 6 used to conduct the real-time performance testing.

As mentioned in Section 10.2.1 the results from this experiment has probably been
altered a bit due to the order the functions are called in the test code. This is not
considered to be a big enough alteration that it has any significant effect on the
results.

The biggest factor concerning the validity of the latencies when the system is set to
follow the changing reference signal, is the method that has been used to calculate
latency. It was seen during experiments that in all three system modes the system
was able to follow the reference signal with a constant latency. Using zero-points
to calculate latency was then regarded as a simple and effective method. One of
the problems using this method is that it only detects the latency at the zero-
point, which would be problematic in a system with varying latency. This was
observed during an attempt to implement the I controller. In such cases latency
should have been calculated in a selection of points spread evenly along the time
axis, not only the zero-points.

Another problem with the used method is that it does not detect cases like the
one seen in Appendix D.3 and E.3 where the system does not reach the peak joint
velocity at all. In this situation a total error parameter could have been included
that calculates the average error during the whole runtime. This way these kind of
deviations would have been detectable without looking at the plots. Additionally,
this would introduce a more qualitative way of comparing the performance of
different system modes when this type of deviation is present.

10.4. Latency Reduction
As much of the testing done for the moto library revolves around the latency of
the system, this section will present possible solutions for reducing the latency in
the system even further. Discussion regarding the PID and HTRAJ system mode
will first be presented before finishing the section with some discussion regarding
a custom robot controller.

10.4.1. Improving the PID Controller

By further tuning the PID controller, it could be possible to reduce latency even
further. The current problem for further tuning is the noisy feedback signal from

10.4. Latency Reduction 99

the encoders on the robot. This was mentioned previously in the discussion but
will be mentioned once again here. As seen in Figure 6.2, setting the derivative
gain too high will amplify noise and destabilise the system instead of dampening
oscillations. By filtering the noisy signal it could be possible to implement a
higher derivative gain, making the system oscillate less. This would in turn lead
to the possibility for higher proportional gains resulting in reduced latency. The
challenge of implementing a filter is the run-time of each control cycle. As the
system needs to output joint velocity commands at 250 Hz, heavy filtering might
not be possible.

10.4.2. HTRAJ

HTRAJ could also be further investigated. As the source of the joint velocity
spikes is currently unknown, this is a problem that might be fixable. Somehow
removing the velocity spikes would give system with slightly higher latency than
what is obtained with the PID controller, but oscillations would not be present.
This would make the HTRAJ system mode perform the best overall of the three
system modes on both the step function and reference signal experiments.

The disadvantage of HTRAJ is that it only applies to the robot manipulator. A
solution including HTRAJ would then still have high latency while moving the
positioning table. For complex welding operations where the positioning table and
robot manipulator cooperates, the difference in latency could prove problematic.
The robot would then always execute commands before the positioning table,
which could disrupt the cooperative movements between the two.

10.4.3. Custom Robot Controller

The last option for latency reduction that will be discussed is the possibility for
a custom robot controller. As seen in [24] running the UR with a custom robot
controller yields a much lower latency than the other tested robots. This could
also be investigated as a possible solution for reducing latency in the Motoman
system.

As mentioned briefly before the problem with custom controllers is the lack of
safety functions that are usually found in the manufacturers controllers. These
apply speed limits to the joints avoiding them from running to fast, detects colli-
sions, joint limits etc. If any alarm is triggered in the controller the system will
stop to prevent damage to the equipment. With a custom controller the system
would not stop if an unforeseen error occurs, which could lead to major damage
to the equipment.

The standard robot controllers also performs interpolation between two given

100 Chapter 10. Discussion

points to generate a smooth trajectory for the end-effector. A custom low latency
robot controller would probably not have this feature, and commands would have
to be sent in smaller increments that do not require interpolation between them.
This might not be a problem for a system running at 250 Hz as new commands
are sent every 4 ms.

One challenge with a custom robot controller could be the willingness of YASKAWA
to implement it. It can be seen in [19] that any major measures for real-time la-
tency reduction would disrupt the warranty of the robot. Implementing a custom
robot controller for reducing latency is probably regarded as such a major mea-
sure.

10.5. Timeouts and Possible Solutions
It was not tested explicitly during experimentation, but observation shows that
the real-time mode in moto is prone to timeouts. This occurs when the robot
does not receive commands from the computer for a set amount of control cycles.
Timeout issues has to be addressed before further work on the system can be
done. This section will present possible solutions to this problem.

The first and possibly easiest solution can be found in the ROS-I code running
on the robot controller. In this code the number of missed control cycles required
to trigger a timeout can be changed. While running experiments for this thesis,
a single missed control cycle would trigger a timeout. This makes the system a
hard real-time system as explained in Section 4.2. For a system like the one seen
in this thesis running at 250 Hz, a single missed cycle would not be of too much
importance as new ones are sent every 4 ms. This behaviour resembles more a
firm real-time system. In the light of this the number of missed control cycles
required to trigger a timeout could probably be raised. If this solution fails to fix
the timeout problem, some other solutions will now be suggested.

The experiments done in this thesis was run on a regular Ubuntu system. Though
few other programs were run on the computer at the same time as moto, priori-
tisation on the computer side could be a potential source for timeouts. If this is
the case a solution would be to install a real-time kernel like explained in Section
4.3. This would give the real-time system highest priority on the computer which
would make for a more stable execution time of each control cycle. This could
possibly prevent it from exceeding the required 4 ms.

Another approach to the problem would be to time individual parts of the real-
time cycle. If the execution time of each control cycle is up to 4 ms the system
could sometimes exceed this time limit and not be able to send a command in
time. By timing each individual piece of the control cycle it would be possible

10.6. Complete System for Constraint-Based Robotic Welding 101

to identify any processes with high execution times and try to optimise them. A
possibility in this process would be that none of the processes can be optimised for
better execution time, this leaves two options. Either porting the code to C/C++
or reducing the control frequency.

By reducing the control frequency, the system would be able to use more time
per control cycle for calculations. As an example the UR robot used in [24] was
controlled using a control frequency of 125 Hz. This is half of the one used in this
thesis and would allow an execution time of 8 ms for each control cycle.

Another solution would be porting the code to C/C++. Generally, code written
in C/C++ runs faster than the same code written n for Python. Porting could
then solve the issue with timeouts but would introduce the problem of not be-
ing as intuitive as Python. The advantage of having moto written in Python is
the readability of the code and ease of further development. This is one of the
advantages of Python and should not be discarded too quickly.

10.6. Complete System for Constraint-Based Robotic
Welding

This section will discuss challenges and consideration regarding the system sug-
gested in Section 9.4. Following this the advantages and disadvantages of such a
system compared to traditional robotic welding systems will be presented.

10.6.1. Challenges and Considerations

In welding operations a problem that can occur is thermal expansion in the work-
piece caused by the heat from the welding process. In robotic welding this can
prove to be a challenge if the welding path is pre-programmed and no compensa-
tion for the expansion is implemented. Compensation can be done trough contin-
uous sensing of the welding groove during the welding process either by trough-arc
sensing or camera vision like explained in the project report attached to this the-
sis [6]. The problem with these methods are that trough-arc sensing does not
work with all welding methods like e.g. CMT. Cameras used for continuous mon-
itoring also requires heavy filtering due to the bright light from the welding arc,
making the sensors expensive. In the system suggested in Section 9.4 the welding
grove is only scanned before the welding process. A solution to avoid continuous
monitoring is heavy clamping of the workpiece to prevent warping of the metal.
This is the solution that should be utilised in the system suggested above to keep
costs down. With particularly heavy or thick components warping should not be
a problem.

102 Chapter 10. Discussion

In addition to the constraints generated by the laser scan of the welding groove,
the user should also be able to define their own constraints on the system. This
could for example include constraints for avoiding singularities (Section 2.9) or
constraining the robots movement to a confined space like the robot cell while
avoiding other equipment like the positioning table. Like mentioned in Section
10.1 constraints should also be applied regarding the direction and angle of the
welding gun. Since defining constraints directly in Lua can be nonintuitive, a
system like what is seen in [45] should be implemented where CAD models can
be used to define constraints. Making constraint definition intuitive, the system
can be operated by a wider range of personnel making it more applicable to the
industry.

10.6.2. Advantages and Disadvantages

Advantages and disadvantages of constraint-based systems for robotic welding
was also a subject of discussion in the attached project report [6], and similar
arguments will be made here.

Given intuitive constraint definitions as well as constraints obtained from scans
of the welding groove, the system will help define complex welding tasks more
efficiently. This will make robotic welding a more viable option for a larger set
of welding tasks. As task definition will be more efficient it also enables robotic
welding to be used in productions with smaller batch sizes and more customised
products.

As the solver for a constraint-based system optimises movement for all joints of
the robot, this system will allow for easier implementation of redundant robots
as explained in Section 2.2. Higher degree of redundancy in welding robots will
in turn make the robots able to perform welding tasks that has previously been
deemed to complex for robots to handle. Taking this argument even further the
system could be used to control highly-redundant robots. These can be regarded
as snake-like robots with DOF » 6. Highly redundant welding robots will be able
to reach tight spaces while avoiding obstacles and singularities.

The most clear disadvantage of a constraint-based system for robotic welding
is the potential complexity of the system. Even though an intuitive GUI for
constraint definitions could be developed, it will have a hard time being more
intuitive than many of the manufacturers teach pendants. This will make the
system inapplicable to simple welding operations, limiting the systems range of
tasks.

A system like this could also require more extensive training of personnel, com-
pared to traditional robot programming methods. This would make it more ex-

10.6. Complete System for Constraint-Based Robotic Welding 103

pensive to hire new operators of such a system, and some manufacturers might
not see this as a profitable investment.

Chapter 11.

Conclusion

Real-time performance testing of the three system modes were conducted with a
focus on response time and latency. Based on the test results, a discussion re-
garding real-time performance and how it would affect a welding process followed.
The discussion focused on the following points:

• The response time of all three system modes are practically equal, and can
be regarded as a minimum latency.

• Latency is different in all three system modes for the robot manipulator.
The regular system mode has the highest latency and the PID system mode
has the lowest latency.

• There is a correspondence between low latency and oscillations in the system
when reacting to a step function.

• In a continuously changing reference signal where joint velocities start at
zero, oscillations does not appear.

• The HTRAJ system mode shows random joint velocity spikes in the robot
manipulator and also does not apply to the positioning table.

• Though not tested explicitly, timeouts in the system have proved to be a
problem. This is regarded as a solvable problem, and solutions are suggested.

• In the case of robotic welding, high latencies might not be a problem due
to the slow nature of the welding process. Some latency reducing measures
are still suggested.

In conclusion the moto library does show similar real-time performance as similar
Python frameworks, but the latency in the system is still high. Implementing
a PID-controller lowers latency with the cost of introducing oscillations to the
system. The high latency might not be a problem for the naturally slow welding

106 Chapter 11. Conclusion

process.

Based on the presented theory, the architecture for a complete constraint-based
system for robotic welding is suggested. This system uses the moto library for
robot communications, while a ROS2 control implementation of eTC/eTaSL com-
putes joint velocities based on constraints, joint velocity feedback and joint po-
sition feedback. A laser scanner is also included along with a system for user
defined constraints. The whole system is yet to be implemented physically, and
needs to be tested. Challenges and considerations of the system is discussed along
with its advantages and disadvantages.

11.1. Further Work
The first thing that should be addressed of the work done in this thesis is the
timeouts while running in real-time. Having constant timeouts is not sustainable
when tying to implement moto into the suggested system. Changing the ROS-I
code in the robot controller to a firm real-time system should first be attempted,
before attempting the other suggested solutions to the problem.

After timeouts are fixed, the next step would be to begin implementing the sug-
gested system. The system should first be implemented without the sensor by
manually defining constraints for basic welding operations. This should be done
to individually test the ROS2 controller with the moto library, and confirm if high
latencies will be problematic or not.

Given that basic welding operations can be completed with the partially imple-
mented system, the rest of the system should be implemented. Again simple
welding tasks should be executed to confirm the systems reliability before moving
on to more complex tasks.

References

[1] Erwin Aertbeliën. eTaSL Documentation. 2020. url: https : / / etasl .
pages.gitlab.kuleuven.be/contents.html (visited on 05/10/2021).

[2] Erwin Aertbeliën and Joris De Schutter. “eTaSL / eTC : A constraint-
based Task Specification Language and Robot Controller using Expression
Graphs”. In: ().

[3] Shaheen Ahmad and Shengwu Luo. “Coordinated Motion Control of Mul-
tiple Robotic Devices for Welding and Redundancy Coordination through
Constrained Optimization in Cartesian Space”. In: IEEE Transactions on
Robotics and Automation 5.4 (1989), pp. 409–417. issn: 1042296X. doi:
10.1109/70.88055.

[4] Jens G. Balchen, Trond Andresen, and Bjarne A. Foss. Reguleringsteknikk.
6th ed. Institutt for Teknisk Kybernetikk, NTNU, Trondheim, 2016.

[5] Vebjørn B. Bjørhovde. moto_tester. 2021. url: https://github.com/
Vebjorbb/moto_tester (visited on 03/09/2021).

[6] Vebjørn B. Bjørhovde. The Potential of Constraint-Based Robot Program-
ming for Welding Robots in the Norwegian Industry. Unpublished work,
attached to the thesis. 2020.

[7] E. Sahin Conkur and Rob Buckingham. “Clarifying the definition of re-
dundancy as used in robotics”. In: Robotica 15.5 (1997), pp. 583–586. issn:
02635747. doi: 10.1017/S0263574797000672.

[8] D Dallefrate, D Colombo, and L Molinari Tosatti. “Development of robot
controllers based on PC hardware and open source software”. In: January
2005 (2015), pp. 2–7.

[9] Joris De Schutter, Tinne De Laet, Johan Rutgeerts, Wilm Decré, Ruben
Smits, Erwin Aertbeliën, Kasper Claes, and Herman Bruyninckx. “Constraint-
based Task Specification and Estimation for Sensor-Based Robot Systems
in the Presence of Geometric Uncertainty”. In: The International Journal of
Robotics Research 26.5 (2007), pp. 433–455. doi: 10.1177/0278364907078091.
url: http://ijr.sagepub.com.

https://etasl.pages.gitlab.kuleuven.be/contents.html
https://etasl.pages.gitlab.kuleuven.be/contents.html
https://doi.org/10.1109/70.88055
https://github.com/Vebjorbb/moto_tester
https://github.com/Vebjorbb/moto_tester
https://doi.org/10.1017/S0263574797000672
https://doi.org/10.1177/0278364907078091
http://ijr.sagepub.com

108 References

[10] Wilm Decŕe, Ruben Smits, Herman Bruyninckx, and Joris De Schutter. “Ex-
tending iTaSC to support inequality constraints and non-instantaneous task
specification”. In: Proceedings - IEEE International Conference on Robotics
and Automation (2009), pp. 964–971. issn: 10504729. doi: 10.1109/ROBOT.
2009.5152477.

[11] Andrea Del Prete, Francesco Nori, Giorgio Metta, and Lorenzo Natale.
“Prioritized motion-force control of constrained fully-actuated robots: "task
Space Inverse Dynamics"”. In: Robotics and Autonomous Systems 63.P1
(2015), pp. 150–157. issn: 09218890. doi: 10.1016/j.robot.2014.08.016.
arXiv: 1410.3863. url: http://dx.doi.org/10.1016/j.robot.2014.08.
016.

[12] The Linux Foundation. Intro to Real-Time Linux for Embedded Developers.
2013. url: https://linuxfoundation.org/blog/intro-to-real-time-
linux-for-embedded-developers/ (visited on 06/04/2021).

[13] Tully Foote Geoffrey Biggs. Managed Nodes. 2021. url: https://design.
ros2.org/articles/node_lifecycle.html (visited on 04/21/2021).

[14] Fronius International GmbH. TPS/i. 2021. url: https://www.fronius.
com/en/welding-technology/products/manual-welding/migmag/tpsi/
tpsi/tps-400i (visited on 05/22/2021).

[15] Yaskawa Europe GmbH. GP25-12. 2021. url: https://www.yaskawa.eu.
com/products/robots/handling- mounting/productdetail/product/
gp25-12_698 (visited on 05/21/2021).

[16] Yaskawa Europe GmbH. MT1. 2021. url: https://www.yaskawa.eu.
com/products/robots/peripherals/productdetail/product/mt1_800
(visited on 05/21/2021).

[17] Yaskawa Europe GmbH.Yaskawa MOTOMAN Robot Controllers: YRC1000.
2021. url: https://www.yaskawa.eu.com/products/robots/controller/
productdetail/product/yrc1000_583 (visited on 06/04/2021).

[18] Google. Static vs. dynamic IP addresses. 2021. url: https://support.
google.com/fiber/answer/3547208?hl=en (visited on 06/07/2021).

[19] Implications of high Command - Feedback latency. 2020. url: https://
github.com/ros-industrial/motoman/issues/219 (visited on 04/15/2021).

[20] O. KHATIB, L. SENTIS, J. PARK, and J. WARREN. “Whole-Body Dy-
namic Behavior and Control of Human-Like Robots”. In: International Jour-
nal of Humanoid Robotics 01.01 (2004), pp. 29–43. issn: 0219-8436. doi:
10.1142/s0219843604000058.

[21] Phillip A. Laplante and Seppo J. Ovaska. Real-Time Systems Design and
Analysis. 2011. isbn: 3175723993. doi: 10.1002/9781118136607.

https://doi.org/10.1109/ROBOT.2009.5152477
https://doi.org/10.1109/ROBOT.2009.5152477
https://doi.org/10.1016/j.robot.2014.08.016
https://arxiv.org/abs/1410.3863
http://dx.doi.org/10.1016/j.robot.2014.08.016
http://dx.doi.org/10.1016/j.robot.2014.08.016
https://linuxfoundation.org/blog/intro-to-real-time-linux-for-embedded-developers/
https://linuxfoundation.org/blog/intro-to-real-time-linux-for-embedded-developers/
https://design.ros2.org/articles/node_lifecycle.html
https://design.ros2.org/articles/node_lifecycle.html
https://www.fronius.com/en/welding-technology/products/manual-welding/migmag/tpsi/tpsi/tps-400i
https://www.fronius.com/en/welding-technology/products/manual-welding/migmag/tpsi/tpsi/tps-400i
https://www.fronius.com/en/welding-technology/products/manual-welding/migmag/tpsi/tpsi/tps-400i
https://www.yaskawa.eu.com/products/robots/handling-mounting/productdetail/product/gp25-12_698
https://www.yaskawa.eu.com/products/robots/handling-mounting/productdetail/product/gp25-12_698
https://www.yaskawa.eu.com/products/robots/handling-mounting/productdetail/product/gp25-12_698
https://www.yaskawa.eu.com/products/robots/peripherals/productdetail/product/mt1_800
https://www.yaskawa.eu.com/products/robots/peripherals/productdetail/product/mt1_800
https://www.yaskawa.eu.com/products/robots/controller/productdetail/product/yrc1000_583
https://www.yaskawa.eu.com/products/robots/controller/productdetail/product/yrc1000_583
https://support.google.com/fiber/answer/3547208?hl=en
https://support.google.com/fiber/answer/3547208?hl=en
https://github.com/ros-industrial/motoman/issues/219
https://github.com/ros-industrial/motoman/issues/219
https://doi.org/10.1142/s0219843604000058
https://doi.org/10.1002/9781118136607

References 109

[22] Claus Lenz, Markus Rickert, Giorgio Panin, and Alois Knoll. “Constraint
task-based control in industrial settings”. In: 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 2009 (2009), pp. 3058–
3063. doi: 10.1109/IROS.2009.5354631.

[23] Morten Lind, Johannes Schrimpf, and Morten Lind. “6.7 Real-Time Robot
Trajectory Generation with Python”. In: Sensor-based Real-time Control of
Industrial Robots (2013), p. 129.

[24] Morten Lind, Johannes Schrimpf, and Thomas Ulleberg. “Open Real-Time
Robot Controller Framework”. In: 2010 3rd CIRP Conference on Assembly
Technology and Systems - Responsive, customer demand driven, adaptive
assembly May (2010), pp. 13–18.

[25] Kevin M Lynch and Frank C Park. Modern Robotics. Cambridge University
Press, 2017.

[26] ro2_control maintainers. ros2_control documentation. 2021. url: https:
//ros-controls.github.io/control.ros.org/ (visited on 04/21/2021).

[27] Nicolas Mansard, Olivier Stasse, Paul Evrard, and Abderrahmane Kheddar.
“A versatile generalized inverted kinematics implementation for collabora-
tive working humanoid robots: The stack of tasks”. In: 2009 International
Conference on Advanced Robotics, ICAR 2009 (2009).

[28] Misc. control_msgs. 2021. url: https://github.com/ros- controls/
control_msgs (visited on 04/21/2021).

[29] Misc. control_toolbox. 2020. url: https://github.com/ros-controls/
control_toolbox (visited on 04/21/2021).

[30] Misc. motoman. 2021. url: https : / / github . com / ros - industrial /
motoman (visited on 04/21/2021).

[31] Misc. pr2_mechanism. 2020. url: https://github.com/pr2/pr2_mechanism
(visited on 04/19/2021).

[32] Misc. realtime_tools. 2021. url: https://github.com/ros- controls/
realtime_tools (visited on 04/21/2021).

[33] Misc. ROS-indusrial. 2021. url: https://github.com/ros-industrial
(visited on 04/23/2021).

[34] Misc. ros2_control. 2021. url: https://github.com/ros-controls/ros2_
control (visited on 04/21/2021).

[35] Misc. ros2_controllers. 2021. url: https://github.com/ros-controls/
ros2_controllers (visited on 04/21/2021).

[36] Marius Nilsen. “ROS2 Intergration of ABB IRB 14000 YuMi”. MA thesis.
Norwegian University of Science and Technology, 2019.

https://doi.org/10.1109/IROS.2009.5354631
https://ros-controls.github.io/control.ros.org/
https://ros-controls.github.io/control.ros.org/
https://github.com/ros-controls/control_msgs
https://github.com/ros-controls/control_msgs
https://github.com/ros-controls/control_toolbox
https://github.com/ros-controls/control_toolbox
https://github.com/ros-industrial/motoman
https://github.com/ros-industrial/motoman
https://github.com/pr2/pr2_mechanism
https://github.com/ros-controls/realtime_tools
https://github.com/ros-controls/realtime_tools
https://github.com/ros-industrial
https://github.com/ros-controls/ros2_control
https://github.com/ros-controls/ros2_control
https://github.com/ros-controls/ros2_controllers
https://github.com/ros-controls/ros2_controllers

110 References

[37] Matthias Radestock and Susan Eisenbach. “Coordination in evolving sys-
tems”. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 1161
(1996), pp. 162–176. issn: 16113349. doi: 10.1007/3-540-61842-2_34.

[38] Open Robotics. ROS Hisory. 2021. url: https://www.ros.org/history/
(visited on 02/16/2021).

[39] Adolfo Rodríguez, Luis Basañez, and Enric Celaya. “A relational positioning
methodology for robot task specification and execution”. In: IEEE Transac-
tions on Robotics 24.3 (2008), pp. 600–611. issn: 15523098. doi: 10.1109/
TRO.2008.924263.

[40] ROS-Industrial. Description. 2021. url: https://rosindustrial.org/
about/description (visited on 04/23/2021).

[41] ROS-Industrial. Our Brief History. 2021. url: https://rosindustrial.
org/briefhistory (visited on 04/23/2021).

[42] ROS-Industrial. The Challenge: Transitioning Robotics R&D to the Factory
Floor. 2021. url: https://rosindustrial.org/the-challenge (visited
on 04/23/2021).

[43] ros-infrastructure. ROS 2 Documentation. 2021. url: https://index.ros.
org/doc/ros2/ (visited on 02/16/2021).

[44] Johannes Schrimpf, Morten Lind, and Geir Mathisen. “Time-analysis of
a real-time sensor-servoing system using line-of-sight path tracking”. In:
IEEE International Conference on Intelligent Robots and Systems (2011),
pp. 2861–2866. doi: 10.1109/IROS.2011.6048078.

[45] Nikhil Somani, Andre Gaschler, Markus Rickert, Alexander Perzylo, and
Alois Knoll. “Constraint-based task programming with CAD semantics:
From intuitive specification to real-time control”. In: IEEE International
Conference on Intelligent Robots and Systems 2015-Decem (2015), pp. 2854–
2859. issn: 21530866. doi: 10.1109/IROS.2015.7353770.

[46] Nikhil Somani, Markus Rickert, Andre Gaschler, Caixia Cai, Alexander
Perzylo, and Alois Knoll. “Task level robot programming using prioritized
non-linear inequality constraints”. In: IEEE International Conference on In-
telligent Robots and Systems 2016-Novem (2016), pp. 430–437. issn: 21530866.
doi: 10.1109/IROS.2016.7759090.

[47] Nikhil Somani, Markus Rickert, and Alois Knoll. “An Exact Solver for Ge-
ometric Constraints with Inequalities”. In: IEEE Robotics and Automation
Letters 2.2 (2017), pp. 1148–1155. issn: 23773766. doi: 10.1109/LRA.2017.
2655113.

[48] IEEE Spectrum. PR2. 2021. url: https://robots.ieee.org/robots/
pr2/?gallery=photo1 (visited on 04/19/2021).

https://doi.org/10.1007/3-540-61842-2_34
https://www.ros.org/history/
https://doi.org/10.1109/TRO.2008.924263
https://doi.org/10.1109/TRO.2008.924263
https://rosindustrial.org/about/description
https://rosindustrial.org/about/description
https://rosindustrial.org/briefhistory
https://rosindustrial.org/briefhistory
https://rosindustrial.org/the-challenge
https://index.ros.org/doc/ros2/
https://index.ros.org/doc/ros2/
https://doi.org/10.1109/IROS.2011.6048078
https://doi.org/10.1109/IROS.2015.7353770
https://doi.org/10.1109/IROS.2016.7759090
https://doi.org/10.1109/LRA.2017.2655113
https://doi.org/10.1109/LRA.2017.2655113
https://robots.ieee.org/robots/pr2/?gallery=photo1
https://robots.ieee.org/robots/pr2/?gallery=photo1

References 111

[49] William Stallings. Data and Computer Communications. 10th ed. Pearson
Education Limited, Edinburgh Gate, Harlow, 2014.

[50] William Stallings.Operating Systems: Internals and Design Principles. 9th ed.
Pearson Education Limited, Edinburgh Gate, Harlow, 2017.

[51] Telnet.org. Telnet. 2020. url: telnet.org (visited on 05/31/2021).
[52] Lars Tingelstad. etasl_ros2_control. 2019. url: https://github.com/

tingelst/etasl_ros2_control (visited on 06/02/2021).
[53] Lars Tingelstad. moto. 2021. url: https://github.com/tingelst/moto

(visited on 04/21/2021).
[54] Lars Tingelstad. motoman. 2020. url: https://github.com/tingelst/

motoman (visited on 04/21/2021).
[55] Adolfo Rodríguez Tsouroukdissian. ROS control, an overview. 2014. url:

https://vimeo.com/107507546 (visited on 04/19/2021).
[56] Adolfo Rodríguez Tsouroukdissian. ROS control, an overview. 2014. url:

https://roscon.ros.org/2014/wp-content/uploads/2014/07/ros_
control_an_overview.pdf (visited on 04/19/2021).

[57] G. C. Vosniakos and A. Chronopoulos. “Industrial robot path planning
in a constraint-based computer-aided design and kinematic analysis envi-
ronment”. In: Proceedings of the Institution of Mechanical Engineers, Part
B: Journal of Engineering Manufacture 223.5 (2009), pp. 523–533. issn:
09544054. doi: 10.1243/09544054JEM1234.

[58] John G Ziegler, Nathaniel B Nichols, et al. “Optimum settings for automatic
controllers”. In: trans. ASME 64.11 (1942).

telnet.org
https://github.com/tingelst/etasl_ros2_control
https://github.com/tingelst/etasl_ros2_control
https://github.com/tingelst/moto
https://github.com/tingelst/motoman
https://github.com/tingelst/motoman
https://vimeo.com/107507546
https://roscon.ros.org/2014/wp-content/uploads/2014/07/ros_control_an_overview.pdf
https://roscon.ros.org/2014/wp-content/uploads/2014/07/ros_control_an_overview.pdf
https://doi.org/10.1243/09544054JEM1234

Appendix A.

A Selection of Robot Jobs

A.1. INIT_ROS

NOP
DOUT OT#(890) OFF
DOUT OT#(889) OFF
TIMER T=0.05
DOUT OT#(889) ON
WAIT OT#(890)=ON
DOUT OT#(890) OFF
END

Figure A.1.: The INIT_ROS job running while the teach pendant is set in
remote mode.

114 Appendix A. A Selection of Robot Jobs

A.2. INIT_ROS with HTRAJ

NOP
GETS LPX000 $PX000
MOVJ LP000 VJ=5.00
HTRAJON
MOVJ LP000 VJ=5.00
DOUT OT#(890) OFF
DOUT OT#(889) OFF
TIMER T=0.10
DOUT OT#(889) ON
WAIT OT#(890)=ON
DOUT OT#(890) OFF
HTRAJOF
END

Figure A.2.: The altered INIT_ROS job used to enable the HTRAJ function.

A.3. SIMPLE_ARC

NOP
MOVJ VJ=5.00
MOVJ = 0.78
ARCON
MOVL V=40
ARCOF
MOVJ VJ=5.00

Figure A.3.: The welding job used to weld the straight lines shown in Figure
9.1.

A.4. CIRCULAR_ARC 115

A.4. CIRCULAR_ARC

MOVJ VJ=10.00
+MOVJ VJ=10

MOVJ VJ=0.78
+MOVJ VJ=0.78

ARCON
MOVJ VJ=0-78

+MOVJ VJ=2.00
ARCOF
MOVJ VJ=0.78

+MOVJ VJ=0.78

Figure A.4.: The welding job used to weld the circular seam shown in Figure
9.1.

Appendix B.

YASKAWA Motoman GP25-12

118 Appendix B. YASKAWA Motoman GP25-12

Figure B.1.: Technical specifications for YASKAWA Motoman GP25-12. Figure
from [15].

Appendix C.

YASKAWA MT1-500 S2HD

120 Appendix C. YASKAWA MT1-500 S2HD

Figure C.1.: Technical specifications for the YASKAWA MT1-500 S2HD posi-
tioning table. Figure from [16].

Appendix D.

Robot Manipulator Plots

D.1. Step Response

Figure D.1.: Step response for joint S in the three different systems modes
plotted against each other.

122 Appendix D. Robot Manipulator Plots

D.2. Following a Reference Signal

Figure D.2.: Joint S following the reference joint velocity (8.1) in all three system
modes.

D.3. Following a Modified Reference Signal 123

D.3. Following a Modified Reference Signal

Figure D.3.: Command and feedback velocity for joint S with the regular and
PID system modes using the reference velocity in (8.1) with a frequency of 15.

Appendix E.

Positioning Table Plots

E.1. Step Response

Figure E.1.: Comparison of the step response for joint X in all three system
modes.

126 Appendix E. Positioning Table Plots

E.2. Following a Reference Signal

Figure E.2.: Joint X following the reference joint velocity (8.1) in all three system
modes.

E.3. Following a Modified Reference Signal 127

E.3. Following a Modified Reference Signal

Figure E.3.: All three system modes running on the positioning table following
a reference signal in (8.1) with a modified frequency of 15.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Vebjørn Bergsholm Bjørhovde

Performance Testing Real-Time
Robot Communication for a
Constraint-Based Robotic Welding
System

Master’s thesis in Robotics and Automation
Supervisor: Lars Tingelstad

June 2021

M
as

te
r’s

 th
es

is

	Preface
	Acknowledgements
	Summary
	Sammendrag
	Introduction
	Problem Statement
	Related Work
	Methodology
	Structure of the Thesis

	Robot Kinematics
	Degrees of Freedom
	Redundancy
	Rotation Matrices
	Exponential Representation of Rotation
	Matrix Logarithm of a Rotation Matrix

	Transformation Matrices
	Twists and Screws
	Adjoint Representation

	Exponential Representation and Matrix Logarithm of Transformation Matrices
	Forward Kinematics
	The Jacobian
	The Pseudoinverse of the Jacobian

	Singularities
	Inverse Kinematics
	Inverse Velocity Kinematics
	URDF

	Control Theory
	Terminology
	Feedback and Feedforward
	Stability
	PID controller
	Ziegler-Nichols Method

	Software Theory
	Internet Protocol Suite
	Telnet
	TCP
	UDP
	IP

	Real-Time Systems
	Kernels
	Linux Kernel

	Existing Software
	ROS 2
	Graphs
	Nodes
	Topics and Messages
	Services
	Actions

	ROS-Industrial
	ROS2 control
	Hardware Components
	Resource Manager
	Controller Manager
	Controllers

	Moto
	Architecture
	Simple Message
	Real-Time Mode

	eTaSL/eTC
	eTC
	eTaSL

	MotoTester
	moto_tester.py
	rt_setup.py
	moto_tester_rt.py
	rt_server.py
	data_plotter.py
	utilities.py

	Hardware
	Robot Manipulator
	Positioning Table
	Robot Controller
	Teach Pendant

	Welding Apparatus
	Laser Scanner
	Computer Specifications

	Experiment Setup
	Robot Cell Setup for Welding
	Welding with Teach Pendant
	Moto Testing
	Frequency Verification
	Step Response
	Following a Reference Signal

	Results
	Welding with Teach Pendant
	Moto Testing, Manipulator
	Frequency
	Step Response
	Following a Reference Signal

	Moto Testing, Positioning Table
	Frequency
	Step Response
	Following a Reference Signal

	A System for Constraint-Based Robotic Welding

	Discussion
	Welding with Teach Pendant
	Moto Testing
	Frequency
	Step Response
	Following a Reference Signal

	Validity of the Real-Time Performance
	Latency Reduction
	Improving the PID Controller
	HTRAJ
	Custom Robot Controller

	Timeouts and Possible Solutions
	Complete System for Constraint-Based Robotic Welding
	Challenges and Considerations
	Advantages and Disadvantages

	Conclusion
	Further Work

	A Selection of Robot Jobs
	INIT_ROS
	INIT_ROS with HTRAJ
	SIMPLE_ARC
	CIRCULAR_ARC

	YASKAWA Motoman GP25-12
	YASKAWA MT1-500 S2HD
	Robot Manipulator Plots
	Step Response
	Following a Reference Signal
	Following a Modified Reference Signal

	Positioning Table Plots
	Step Response
	Following a Reference Signal
	Following a Modified Reference Signal

