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Abstract

As more and more of the data center industry focus on shared infrastructure,
the need for proper resource control between different applications with differ-
ent priorities is increasing. After the introduction of Kubernetes in 2014, it has
turned the table upside down when it comes to how infrastructure is managed.
It has allowed system administrators to run multiple applications with different
priorities on the same physical machines in a safe and fault-tolerant way. All of
this requires a set of complex resource management APIs in the operating sys-
tem, and this is really where the Linux kernel shines. Linux containers, or con-
trol groups, allow for this with excellent performance and flexibility. To manage
the usage of CPU time between groups of processes, Linux has a CFS bandwidth
controller, used by all systems managing containers, including Kubernetes. Un-
fortunately, it has a set of configuration pitfalls, potentially causing performance
issues. Containers reaching their limit will be punished by being paused for an
amount of time, also known as throttled. This throttling is often worse and more
aggressive than it is supposed to be.

Our research dives deep into the Linux CFS scheduler and its bandwidth con-
troller. We investigate the reasons for the unnecessary throttling and propose
multiple techniques to avoid it. Our results show that our proposed techniques
mitigate the throttling, resulting in a performance increase of about 3% on a
busy system. We also found that our proposed techniques reduce the overhead
of CFS bandwidth control by about 95%.

Incidentally, we also discovered a set of issues related to fairness in the Linux
scheduler. These issues can stall programs on CPU congested systems in both
theory and practice, slowing them down by orders of magnitude. Our testing
shows that we were able to generate a real-world situation where a program
took approximately 170 times longer to execute than expected. Our findings
have been reported to the Linux community, together with our techniques for
mitigating them. Some of our proposed techniques, implemented as kernel patches,
have already been merged into the mainline kernel, while others are still in
flight.
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Sammendrag

Samtidig som mer og mer av datasenterindustrien fokuserer på delt infrastruk-
tur, er nødvendigheten av skikkelig ressursstyring og prioritering av forskjellige
programmer med forskjellige prioriteringer blitt enda viktigere. Etter introduk-
sjonen av Kubernetes i 2014, har det snudd måten man håndterer infrastruktur
på, på hodet. Kubernetes lar systemadministratorer kjøre forskjellige program-
mer med forskjellig prioritet, på den samme fysiske maskinvaren, på en sikker
og feiltolerant måte. Alt dette krever mye av operativsystemet når det kom-
mer til metoder for å oppnå slik ressursstyring. Det er her Linux virkelig skin-
ner. Konteinere, eller kontrollgrupper, gjør dette til en lek. For å passe på bruken
av CPU-tid, har Linux en CFS båndbreddekontroller som brukes av alle kontein-
ersystemer, inkludert Kubernetes. Denne funksjonaliteten har dog et sett med
fallgruver som potensielt kan gå utover ytelsen. Konteinere som bruker mer enn
sin tilmålte tid blir straffet ved at de settes på pause, også kalt struping. Denne
strupingen er ofte verre og mer aggressiv enn den skal være.

I vår forskning går vi i dybden på hvordan Linux sin prosess-planlegger og dens
båndbreddekontroller fungerer. Vi ser på måter å minske strupingen av kon-
teinere, og ser på forskjellige teknikker for å gjøre det. Resultatene våre viser
at teknikkene gir opp til 3% bedre ytelse på ellers travle maskiner. Vi ser også at
teknikkene våre reduserer kostnaden av å bruke båndbreddekontrolleren med
opp til 95%.

Samtidig har vi også funnet en rekke problemer relatert til rettferdighet mellom
programmer in Linux. Disse problemene kan i verste fall stoppe programmer
helt, og gjøre dem treigere vesentlig treigere. Testing vår viser at problemene
kunne gjøre at programmer bruker mer enn 170 ganger så mye tid som de skal.
Vi har rapportert disse problemene til postlistene til Linux, sammen med våre
løsninger. Noen av løsningene våre er allerede blitt en del av Linux, mens andre
fortsatt diskuteres.
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Preface

This is my master thesis written between Jan 2021 and June 2021, as the fi-
nal deliverable of my degree in Computer Science at Norwegian University of
Science and Technology. The research started with an interest in Linux and its
scheduler, and on how Linux containers really work. So, I decided to dedicate
my last semester to it, and write my thesis about the result.

I used the first few months to get familiar with the kernel in general, and the
file kernel/sched/fair.c, where most of the CFS scheduler logic is located.
The CFS bandwidth patches gradually saw life in February-March, while iterat-
ing through my ideas. Those presented here are some of my ideas, while others
didn’t make it.

Sometime early in April, I discovered that all my results were pretty skewed
without any reason, with vast amounts of variance, forcing me to debug why.
After two weeks with more or less no sleep and with much more knowledge
about the scheduler later, I discovered the fairness issues presented in the thesis.
Although they were not intended to be part of the thesis initially, they became a
pretty important part when I started to write. Thankfully they are now fixed in
the Linux kernel itself (or, some of them), so none of you have to deal with the
same!
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Chapter 1

Introduction

Over the last decade, software and hardware development has kept growing,
and the data center market has become a more and more critical part of the
game. More and more focus has been shifted away from having huge and ex-
pensive servers in-house, and towards renting a fleet of smaller autonomous
servers from cloud providers, shared between different applications.

Running multiple applications with different priorities, latency requirements,
and uptime requirements, introduces a new set of challenges in enforcing re-
source limits and ensuring fairness during spikes in load. This requires multiple
levels of quality of service and sandboxing techniques that allow developers
to run applications without full access to all the resources on the system. It is
also important for avoiding noice for others, and ensuring security when mul-
tiple customers are running on the same physical hardware. These requirements
necessitate a vast set of kernel-level tools for enforcement, together userspace
tools for managing them. In 2015, Google disclosed information about their in-
ternal cluster management tool called Borg [1]. Borg later acted as an inspir-
ation to the open-source cluster management tool Kubernetes, [2], which has
become the state of the art tool for managing containers, supported by all major
cloud providers.

All these high-level userspace tools rely on kernel-level sandboxing techniques
with the corresponding APIs for exposing them to the userspace tools. Linux1

has a set of virtualization APIs for running virtual machines. It also has control
group controllers for enforcing isolation, prioritization, limits, and accounting of
resources. These controllers are the building blocks of all cluster management
tools for Linux that do not rely on full virtualization. The ergonomics, usability,
and performance of these tools are therefore essential to the efficient operation
of modern data centers. Together, they make it possible to overcommit resources
efficiently and transparently, making it easier to maximize resource utilization

1Linux is a Registered Trademark of Linus Torvalds.

1



2 Odin Ugedal: Master Thesis

on a cluster-wide scale. Like the overcommitment of memory possible when us-
ing virtual memory, this type of resource distribution allows for greater flexibil-
ity and resource utilization.

This is especially important when it comes to sharing CPU resources between
a set of programs to maximize CPU usage, while still ensuring relative fairness
between groups. This allows for multiple programs with multiple priority classes
to run together on the same physical hardware, without sacrificing on the per-
formance characteristics of the programs with the highest priorities. This is also
important to allow low-priority tasks to run on otherwise idle hardware while
still ensuring the interference with other tasks is limited.

In this thesis, we take a deep dive into the functionality of Linux kernel that
makes it possible to hard limit the max CPU usage for a set of processes, also
known as CFS bandwidth control. We look at its performance characteristics,
how it behaves in various situations, and if any aspects of the bandwidth control
mechanism can be improved. We also look at how the Linux scheduler tries to
achieve fairness between processes, and how we can further improve it.

The current CFS bandwidth control implementation does have a lot of pitfalls
when it comes to configuration. Still, it also has some fundamental issues when
it comes to how it enforces the limit. Processes running close to, but under their
limit, often see themselves getting punished as if they went over their limit,
even though that is not the case. When the CFS Bandwidth Controller discovers
that a process has reached its limit, the process is paused until a new CFS Band-
width period starts. This process is called throttling. Such throttling cause prob-
lems in many ways. Kubernetes integrates thightly with the CFS bandwidth con-
troller, and gives easy access to the CFS bandwidth metrics. Due to this, users
have reported a set of complaints about CFS bandwidth throttling when using
Kubernetes [3, 4]. Furthermore, to account for the CPU usage, the CFS Band-
width controller also has to communicate between physical CPU cores. As this
accounting often happens tens of thousands of times every second, the account-
ing overhead can also become a performance bottleneck.

1.1 Research Goals

Based on our motivation, we define the following research goals:

G1: Improve CFS bandwidth controller by avoiding as much un-
necessary throttling as possible.

The current CFS bandwidth control implementation is difficult to understand
properly, and has some significant configuration pitfalls that are not well studied
and documented. Some areas might benefit from improvements to help avoid
unnecessary throttling, with the corresponding overhead that throttling cause
for the overall system. The throttling itself also hurts performance quite substan-
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tially, especially when it comes to user-facing tasks. Together with G1, we set a
more significant overall goal:

G2: Reduce the overhead of CFS bandwidth control to enable
more precise distribution of runtime and lowering the perform-
ance penalty.

During the last decade, the average CPU core count per physical chip has in-
creased steadily. Since CFS bandwidth control relies on cross-core communica-
tion to ensure the CPU usage is below the quota, it is becoming more and more
essential to keep the overhead of this communication as small as possible. Lastly,
we define a broader goal to understand how all this affect users:

G3: Find evidence about how CFS bandwidth throttling affects
scheduler fairness.

1.2 Contributions

The main deliverables of this research are the research data and its findings,
together with our proposed changes to the Linux Kernel. Together, they answer
all three of our research goals. We have made the following key contributions;

• Throttling Patches: The patches for solving unnecessary CFS bandwidth
throttling problems have shown good results. Together with the data from
this research, we will submit them to the Linux kernel mailing lists for
feedback. The patches can be found in Appendix A.1.
• CFS Bandwidth Overhead Patch: The patch for reducing the overhead

of CFS bandwidth control has also shown good results. Together with the
data from this research, we will submit it to the Linux kernel mailing lists
for feedback. The patch can be found in Appendix A.2
• Fairness Patches: Our most important contribution is the discovery of

fairness issues in the Linux CFS scheduler, each causing excessive fair-
ness problems. All issues have been reported to the Linux mailing lists,
together with the corresponding patches to solve them. The patches can
be found in Appendix A.3. Some of the patches have already been merged
into the mainline Kernel, together with other patches based on our discov-
eries, and will be part of the 5.13 release. The merged patches have also
been backported to the 5.12, 5.10, 5.11, 5.4, and 4.19 stable versions of
the Linux kernel, essentially meaning that most modern Linux distribu-
tions are running fixed kernels. Others are still in review, together with
other fixes for issues found becuase of our research.

The research also gives insight into how CFS bandwidth interferes with the fair-
ness in the scheduelr. It also shows the overhead of CFS bandwidth control.
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1.3 Structure

We structure our thesis into three parts:

Background

The first two chapters describe background information and give necessary in-
sights into relevant topics.

• Chapter 2 introduces the Linux kernel and gives an insight into how it
works under the hood. It mainly focuses on the Linux CFS scheduler and
its bandwidth controller.
• Chapter 3 goes into more depth about the Linux CFS scheduler and presents

its caveats and challenges.

Design Improvements And Implementation

The second part is where we present our ideas to mitigate the issues discussed
in the background part. We also look at how our ideas work out and how they
affect different workloads. This part is divided into three distinct chapters, each
presenting its goals, in-depth analysis, implementation, result, and discussion.

• Chapter 4 demonstrates how our ideas to solve unnecessary throttling, as
presented in G1, works. It also looks at how throttling affects fairness, as
explained in G3.
• Chapter 5 demonstrates how our ideas to reduce the CFS bandwidth

overhead, as explained in G2, works.
• Chapter 6 presents our findings and mitigations of fairness-related issues

in the Linux CFS scheduler, as presented in G3.

Discussion And Conclusion

The last part of the thesis discusses our overall results and then concludes with
the findings of this research.

• Chapter 7 discusses our overall results and how they affect the Linux ker-
nel. It also describes the limitations of our research and possible critics.
• Chapter 8 concludes this research.
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Chapter 2

The Linux Kernel

Over the last three decades, The Linux Kernel has evolved from a small univer-
sity hobby project, into one of the world’s most influential and well-functioning
software projects. It runs on all kinds of hardware, ranging from small energy-
efficient smartphones to the world’s biggest data centers. All of the world’s top
500 supercomputers are also running Linux [5]. All this while still being a fully
open and community-driven project where everyone can contribute.

In this chapter, we will give an overview of the Linux Kernel, with a primary fo-
cus on the Linux Scheduler. We provide an in-depth review of how the sched-
uler works, how it has evolved over the last two decades, and how it connects
to other central parts of the kernel. We also focus on what the scheduler tries
to achieve when managing a set of processes and what it does to archive those
goals.

7
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2.1 Development model

In contrast to most modern software projects, the Linux kernel did not start as
a project inside a big corporation. Instead, it was created as a free and open-
source hobby project by a Finnish graduate student called Linus Torvalds [6].
The new project was released under the GPLv2 License, which has later turned
out to be one of its great success factors. The original author, Linus Torvalds,
has subsequently stated that he thinks the license choice has been one of the
defining factors in the success of Linux [7].

Now, more than 30 years after the initial release, Linux is still under heavy de-
velopment. Although both hardware and software have evolved tremendously,
the development model of Linux is mostly the same today as it was 20 years
ago. Everyone can submit new proposed patches via email to public mailing
lists, where everyone can comment and suggest changes. Certain people have
the informal responsibility of a given subsystem of the Kernel, and they gather
and accept proposed patches to their respective subsystem. Then, at the be-
ginning of a new release cycle, those subsystem maintainers submit their ac-
cumulated set of changes to the mainline tree, the main source tree controlled
by Linus Torvalds himself.

Linux comes in many flavors and distributions, where the distributions have
taken different choices for different system requirements. This means that Linux
can be packaged in many ways, depending on the use case. Linux supports mul-
tiple hardware architectures and use-cases, unlike most other operating systems.
The vast majority of functionality can be turned on or off at compile time, mak-
ing it fairly flexible. This makes it very versatile for everything between and in-
cluding advanced servers and low-powered battery-driven sensors. The common
denominator is the Linux kernel itself, and its core components.

2.2 The hierarchy of processes

Like all moderns operating systems, Linux is centered around handling and ex-
ecuting processes and threads1. The first process Linux starts when the system
is booting up is known as the init process, and it always has process id 1. It is
therefore often referred to as PI D 1. By default, when Linux starts up, it ex-
ecutes the file /sbin/init as the init system. It is the responsibility of the sys-
tem administrator to copy or create a symbolic link to the correct program on
that path. The init system is responsible for bootstrapping the necessary kernel
functions and starting other system and background processes to make the sys-
tem ready to use.

When a new process is started, it inherits the capabilities of the process starting

1Even though processes and threads are different things, in Linux scheduling terms, they are
similar; schedulable entities, often just called processes for simplicity
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it. We call the process starting a new process for the parent process of the newly
created process. This makes a tree of processes, where the PI D 1 is the root.
An example where two users, Alice and Bob each run a shell session with the
GNU Bourne-Again SHell (bash), each editing a file, and Bob compiling using
the GNU project C compiler (GCC), can be found in Section 2.2.

[/sbin/init]

[login - alice]

[bash]

[vim file.txt]

[login - bob]

[bash]

[vim kernel/sched/fair.c] [gcc fair.c]

Figure 2.1: Process hierarchy with two users

2.2.1 Control groups

The process hierarchy can help find the connections between processes and
where they originate. The transient nature of this grouping makes it challen-
ging to utilize for both accounting and resource distribution. Processes often
spawn new processes and threads, and later kills them. Processes in different
parts of the process hierarchy might communicate and work together from a
high-level overview, forming a logical unit together. New processes can also be
started elsewhere in the hierarchy, making it harder for applications to know
the entire state without manually tracking every process. This is also a complic-
ated problem since some processes are short-lived while others are long-lived.
To overcome these grouping problems, Linux has a separate mechanism called
Control groups2, for organizing processes hierarchically [8]. Control groups, of-
ten referred to as cgroups, are implemented as two main components;

• cgroup core: The core is responsible for the internal infrastructure for
grouping processes hierarchically.
• cgroup controllers: A control group controller is responsible for enforcing

a certain policy and/or distribution of a given resource, configurable by
the user.

An example of a control group hierarchy can be found in Figure 2.2.

The control group hierarchy is controlled from userspace via a file system mount,
often mounted on /sys/fs/cgroup. Each directory in that mount point corres-
ponds to a control group, and each file represents some data that could either

2Linux has two versions of control groups; Legacy/v1 and Unified/v2. When we refer to con-
trol groups, we refer to the Unified version.
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/ (root)

system.slice

sshd.service

process

...

machine.slice

docker-container.scope

process

user.slice

user-1000.slice

session-3.scope

process process

Figure 2.2: Example cgroup hierarchy on a system using systemd as init system

be read or written, depending on its function. When moving a process to a con-
trol group, the administrator can write the process id into the file cgroup.procs
of the control group. This also means that creating new control groups is as
simple as creating new directories. System administrators can delegate permis-
sions for creating and modifying control groups via file system permissions.

Over the last five years, the popularity of Linux containers has increased dra-
matically, and control groups are among the essential tools used to implement
them. A container can be viewed as a separate control group from a process,
scheduler, and resource isolation perspective. Linux containers also rely heav-
ily on the namespace APIs. Containers are managed by container runtimes that
communicate with the control group APIs when creating, managing, and des-
troying containers.

Resource Distribution models

Depending on the resources a control group controller is made for, it has a cer-
tain way of distributing resources. The general convention is that resources are
distributed in a top-down manner from the root control group. This means that
the effective value of a given resource that a process can use is limited by the
ancestor with the strictest policy and/or limit. The four ways of resource distri-
butions are;

• Weights: The resources available at the parent control group is distributed
in a manner where each children control group gets a fraction of the re-
sources approximately to the ratio between its weight and the sum of all
the weights of its siblings, including itself.
• Limits: Sets the maximum amount of a given resource a control the group

can use, untied to the actual availability of the resource. Allows for over-
commitment.
• Protections: Protects a given resource from usage by all processes in its

control group children.
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• Allocations: Allows access to a given amount of resources there exists a
finite amount of, and cannot be overcommitted.

A control group controller can use either one or multiple of these resources dis-
tribution models, all depending on what resource it controls.

2.3 The Linux Scheduler

The central piece of the operating system that decides what process3 to execute
is called a process scheduler. As seen in Table 2.1, Linux supports six different
scheduling policies, each with a different way of prioritizing what to execute in
what order. The default scheduling policy assigned to newly created processes,
SCHED_NORMAL, is the policy used for all normal user tasks. It is the implement-
ation of this scheduling class (and its equivalent on other systems) that is often
meant when people are referring to the “Scheduler” of a given system.

Table 2.1: The different scheduling policies supported by Linux

Policy Name Class Description
SCHED_NORMAL4 fair Normal time sharing scheduling
SCHED_FIFO rt First in-first out scheduling
SCHED_RR rt Round-robin scheduling
SCHED_BATCH fair Like SCHED_NORMAL, with less preemption
SCHED_IDLE idle Low priority tasks
SCHED_DEADLINE dl Deadline scheduling

The six different scheduling policies can be divided into four internal sched-
uler classes, as seen in Table 2.1. Each scheduling policy maps to a scheduling
class that prioritizes between processes assigned to that scheduling class. All
scheduling classes implement the same interface that the scheduler’s core can
call to make decisions. The scheduling classes are ordered by priority. When the
core scheduler looks for the next process to execute, it will iterate through the
scheduling classes and start executing the first process returned from a schedul-
ing class.

The scheduler will also notice when a sleeping process wakes up from sleep and
is marked ready for execution. Depending on its priority compared to the cur-
rently running process, it might either enqueue it or preempt the current pro-
cess to execute the newly awoken process. The same applies when new pro-
cesses are started, processes are terminated, interrupts need handling, and a
process is blocked and goes to sleep.

3Due to the slight difference between processes and threads, we don’t distinguish between
them

4Named SCHED_OTHER in user space.
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Switching between processes involves a set of operations to make sure it hap-
pens transparently for the processes themselves, resulting in a measurable over-
head.

The Linux scheduling classes ordered with descending priority: dl, rt, fair and
idle.

2.4 The Completely Fair (CFS) Process Scheduler

The Completely Fair (CFS) Scheduler is the default scheduler in Linux5, and
its internal red-black tree [9] and support for weighted group scheduling have
proved to be reliable, efficient, and predictable. As with all other schedulers,
CFS has to compromise the system’s fairness, latency, and throughput. Just as
the name suggests, CFS tries to archive complete fairness between processes
while still making it archive high throughput.

2.4.1 The Internal Red-Black Tree

The main difference from other process schedulers is that CFS utilizes a time-
ordered red-black tree for storing runnable processes6. The index value of a
scheduling entity is called the virtual runtime of the entity. This is in significant
contrast to other schedulers that often use runqueues, arrays with all the pro-
cesses and their respective metadata. When using a runqueue, each process gets
to run for a certain amount of time, often called a time slice, before going to the
next process. In great contrast, the red-black tree in the CFS scheduler acts as a
timeline for the order in which processes will run, as seen in Figure 2.3. When
the scheduler admits a process, it is allowed to run for as long as it is the left-
most element in the red-black tree. The minimum scheduling granularity, the
minimum time a task will run for before being replaced by the new process with
a smaller virtual runtime, can be configured based on the compromise between
immediate fairness and throughput.

2.4.2 Weighted Group Scheduling

The other significant advantage of the CFS scheduler is its support for weighted
group scheduling. Group scheduling makes the scheduler handle groups of pro-
cesses in a hierarchy, together with a weighting system for prioritizing between
groups. This is archived by utilizing the control group functionality as seen in
Section 2.2.1 and exposing the cpu controller. The controller allows system ad-
ministrators to set a weight7 per control group, as seen in Section 2.2.1. The
scheduler, therefore, has a separate red-black tree per control group, allowing

5The processes with SCHED_NORMAL and SCHED_BATCH
6There is a separate Red-Black tree per scheduling unit / logical CPU.
7In Legacy/v1 control groups, the term shares are used, but the functionality is the same
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Figure 2.3: CFS Red-Black tree indexed by virtual runtime, where the process
associated to the leftmost node with a virtual runtime of 10 will be executed
first.

for better fairness between logical applications with more than one process,
without having to consider the process count of each of the applications. It is
also vital to notice that the weighting only applies when the scheduler needs to
decide what processes to run, where there are other elements in the red-black
tree. This means that if there is no competition, a process will continue to run
uninterrupted, no matter its weight.

When selecting the next task for execution, the CFS scheduler starts at the root
control group and selects the leftmost entity with the smallest virtual runtime.
In case the selected entity is a process, the scheduler will schedule it. However,
if the entity is a control group, it will select the leftmost entity from that group’s
red-black tree. It will keep traversing the tree until the chosen entity is a pro-
cess, and then schedule it. An example of such a traversal in Figure 2.4.

The weighting between control groups works by modifying how the virtual
runtime used as the index of the red-black tree is calculated. When a process
has been executed for a given time, the virtual runtime is increased with the
runtime delta divided by the weight, as seen in Equation (2.1). This means that
doubling the weight will make the virtual runtime increase half as fast. The side
effect of this is that it makes it possible to prioritize control groups, and it gives
a more predictable behavior when there is pressure on a CPU. It also makes it
easy to create low-priority groups that don’t interfere with other tasks in a signi-
ficant manner, while still ensuring they get a small proportion of resources when
there is pressure. An example of such a hierarchy, together with the calculated
CPU time each process and control group will get, can be found in Figure 2.5.

Setting weights via the control group API is only supported on control groups
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20A

11B

NIL NIL

40x

NIL NIL

(a) Red-Black tree of root group

80C

44y

NIL NIL

NIL

(b) Red-Black tree of group B

Figure 2.4: CFS Red-Black forest with two trees in the control group hierarchy.
Nodes with a superscript represent a control group, while nodes with a sub-
script represent a process. When traversing this tree, process y with virtual
runtime of 44 will be set for execution.

themselves and not processes. However, the CFS Scheduler will map the nice8

value of the process into a CFS weight. This will, however, only impact pro-
cesses in the same control group, in the same way as group weighting only works
between sibling control groups. It is only the root control group that can have
processes attached to it, and having children control groups at the same time;
other control groups have to be a leaf node to get processes attached to them9.

∆vruntime =∆runtime · 1
weight

(2.1)

2.4.3 Fairness On Multi Core Systems

Even though the scheduler may look simple when looking at it from a single
logical scheduling unit implementation, support for multiprocessors increases
the complexity quite extensively. First off, each scheduling unit, often referred
to as a logical Linux CPU, has a separate red-black forest for the control group
hierarchy. These trees are owned and managed by their corresponding logical
Linux CPU. On the x86 architecture, a logical Linux CPU is the equivalent of an
SMT thread. These are often also called Compute Unit Core in some contexts.

To enforce fairness between groups and entities when processes in the same
group run on different logical Linux CPUs, it takes the load from all processes
into account when calculating how fast it should increase the virtual runtime
of a given entity. To do this, all scheduling entities, both processes and groups,
have their load on the system tracked. The accounting of load takes various

8Process priority system inherited from Unix; integer range with decreasing priority:
[−20, 19]

9The Legacy/v1 control group hierarchy does not have this limitation
10Assuming both process B and C share the same nice value
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Figure 2.5: Cgroup with CPU weights, and the CPU time in percentage they
will get in case all processes are running busy loops on the same logical Linux
CPU.

parameters into account, making it a fair bit more complex than just summing
the time spent in execution. This load tracking is called Per Entity Load Tracking
(PELT)[10].

Overall, the result of PELT is that when calculating the delta virtual runtime for
a timeslice used by a scheduling entity, the load of all the children scheduling
entities of the control group, on all logical Linux CPUs, is used. This means that
given two sibling control groups with the same weight, the virtual runtime of a
scheduling entity of the busiest control group running on multiple logical Linux
CPUs will advance faster than the other one. Furthermore, this means that a
hierarchy like the one seen on Figure 2.5 will also preserve the weighted fair-
ness when running on multiple logical CPUs. The absolute numbers may deviate
from the target since the process count and the count of logical Linux CPUs will
always stay integers. Processes may have to move around to archive the desired
behavior, depending on the count of logical Linux CPUs.

To maximize the fairness and throughput on a multi-core system, the CFS Sched-
uler will try to load balance processes between logical Linux CPUs at a given
interval. This ensures that CPUs with relatively low priority load can increase
fairness by stealing processes from highly congested CPUs. When a CPU turns
idle when a running process stops, and there are no other runnable processes on
the CPU, it will also look at neighbors for possible processes it can steal to avoid
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having to idle down. This is often referred to as CPU load balancing. Depending
on the topology of the processors, Linux will group the logical Linux CPUs into
a hierarchy of scheduling domains. Therefore, it will strive as best as possible to
move and steal processes from the closest logical Linux CPUs.

2.4.4 Automatic process grouping

The initial CFS implementation did not automatically create control groups, and
placed new processes into the root group, effectively losing out on the main be-
nefit of the CFS implementation. Later, support for automatically creating new
groups per tty11 was added [11]. This made a huge impact on responsiveness,
and has later been further developed. This will therefore give all the benefits de-
scribed in Section 2.4.2 automatically, without any explicit configuration. Most
Linux distributions in use today use systemd as init system, and systemd map all
their logical units to control groups. This means that systemd will create a sep-
arate control group per system daemon and make a sub-hierarchy per user to
group all processes, as seen in Figure 2.2.

2.5 CFS Bandwidth Control

Unlike the weight assigned to control groups for prioritizing on congested sys-
tems, CFS Bandwidth Control is a way of limiting the amount of CPU time a set
of processes can use. The bandwidth control implementation was proposed in
2010 by an engineering team at Google [12], trying to discover badly behav-
ing applications and hard cap them to limit the overall damage on the system
and other applications. With group weighting, it is possible to set the minimum
amount of CPU resources a control group should get, while using bandwidth
control to limit the maximum amount. CFS Bandwidth control is a part of the
cpu control group controller.

Together with making it possible to limit the damage a misbehaving set of pro-
cesses can do to a system, bandwidth control also significantly improves the
predictability of workloads across different types of hardware. More and more
often, a homogeneous and semi-homogeneous set of servers are set up in a com-
pute cluster where a broad set of applications run together, with various prior-
ities and quality of service agreements. This dramatically improves the overall
utility of the hardware since more tasks can share the same physical hardware
and scale depending on the overall cluster load. CFS bandwidth control help ap-
plications to scale correctly in respect to their allocated resources instead of the
system they are running on. Since the amount of CPU time is hard limited, this
means that a CPU-bound task will work similarly on a machine with two logical
Linux CPUs and one with 100x that amount.

11TeleTYpewriter. Often used for referring to a terminal session.
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Another critical aspect bandwidth control helps with is billing and accounting
purposes. Measuring total CPU time over a few hours or days makes a reason-
able estimate of the overall average use over time, but it does not take spikes
into account. Spikes in CPU usage often come with a cost of latency for other
tasks on the system, and the cost of hardware does not scale linearly with lo-
gical Linux CPUs, making larger servers way more expensive than smaller ones.

CFS Bandwidth control is an integral part of all Linux Container runtimes and is
vital to make it possible to control how CPU time a container or application can
use at a maximum. It is used as the tool for limiting CPU usage by the container
orchestration tool Kubernetes [13], and it is used directly by mapping container
CPU limits to an equivalent CFS bandwidth configuration. The same applies to
the well known container runtime Docker [14]. CFS bandwidth control is also
mentioned as a critical aspect of Borg [1]. Borg is the internal container orches-
trator at Google.

2.5.1 Bandwidth Control API

Via the control group API, as seen in Section 2.2.1, the bandwidth control ex-
poses two configuration parameter per control group;

• Period: The period used when accounting CPU bandwidth. Default: 100ms.
• Quota The total amount of CPU time that the control group can use in

each period. At the beginning of a new period, the available quota will be
set to this value. Default: unlimited (disabled).

The period and the quota can be seen in Figure 2.6.

t = 0 100ms 200ms 300ms

Process running

Period 1 Period 2 Period 3

Figure 2.6: Timeline of a cpu bound process running with a period of 100ms
and a quota of 100ms. The quota is the total CPU time that can be used per
period.

The ratio between the quota and the period can be seen as the number of logical
Linux CPUs a control can continuously use without being throttled. This means
that a period of 100ms and a quota of 300ms can be viewed as an equivalent to
getting 3 logical Linux CPUs. There is no special meaning to integer ratios, and
non-integer ratios are also supported. This is useful for small low priority tasks,
where a period of 100ms and a quota of 50ms can be viewed as the equivalent
of half of a logical Linux CPU, as seen in Figure 2.7a. This can also be viewed as
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an equivalent to a control group with a period of 50ms and a quota of 25ms, as
seen in Figure 2.7b.

t = 0 100ms 200ms 300ms

Running Runnable but throttled

Period 1

(a) Timeline with 100ms period and 50ms quota

t = 0 50ms 100ms 150ms 200ms 250ms 300ms

Running Runnable but throttled

Period 1

(b) Timeline with 50ms period and 25ms quota

Figure 2.7: Timeline of a CPU bound process running with a quota to period
ratio of 0.5, with two different periods. The actual CPU time used will be the
same in both cases.

It also exposes these statistics per control group;

• Periods: The number of periods where processes in the control group
have been active and executing.
• Periods throttled: The number of periods where the control group has

been throttled; stopped from running due to using too much CPU time on
one or more logical Linux CPU.
• Time throttled: The total time the control group has spent throttled,

stopped from executing due to using too much CPU time. Summed across
all logical Linux CPUs.

2.5.2 Enforcement

The scheduler itself continuously enforce the CFS bandwidth control configura-
tions on the system, and all the time a descendant processes of the given control
group is executing, is accounted for. If the quota is set to unlimited, all band-
width control accounting for the given control group is disabled. The enforce-
ment is divided into two main parts, which exists on a per control group basis;

• The global pool: The global pool is an integer protected by a spinlock,
holding the runtime available for use, and is filled/set to the given quota
at the beginning of each period. When the global pool is zero, there is no
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more runtime available in the current period. Such local pools exist per
control group.
• The local pool: Each logical Linux CPU, as defined in Section 2.4.3, has

a local pool that is used to account for the runtime available and used on
that logical Linux CPU. Such local pools exist per control group, per lo-
gical Linux CPU.

An example of a control group running with CFS bandwidth enabled can be
seen in Figure 2.8. As seen in Figure 2.9, not all local pools will end up being
throttled at the same time.

Global pool
Control group: application-A
Period: 100ms
Quota: 200ms
Remaining: 140ms

Local Pool
CPU 0
Running true
Throttled: false
Remaining: 5ms

Local Pool
CPU 1
Running false
Throttled: false
Remaining: 1ms

Local Pool
CPU 2
Running true
Throttled: false
Remaining: 4ms

Local Pool
CPU 3
Running true
Throttled: false
Remaining: 1ms

Figure 2.8: Control group with the equivalent of 3 logical Linux CPUs set via
CFS bandwidth, running on a system with 4 logical Linux CPUs, and still having
remaining runtime.

Global pool
Control group: application-B
Period: 100ms
Quota: 200ms
Remaining: 0ms

Local Pool
CPU 0
Running false
Throttled: true
Remaining: −2ms

Local Pool
CPU 1
Running false
Throttled: true
Remaining: −3ms

Local Pool
CPU 2
Running false
Throttled: true
Remaining: −1ms

Local Pool
CPU 3
Running true
Throttled: false
Remaining: 1ms

Figure 2.9: Control group with the equivalent of 3 logical Linux CPUs set via
CFS bandwidth, running on a system with 4 logical Linux CPUs, where three of
the four local pools have been throttled. The negative remaining runtime has to
be accounted on next quota refill.
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When a children process or scheduling entity of a given control group with CFS
bandwidth enabled has been executed for a given amount of time, that time is
removed from the CPU local pool. This accounting happens when the running
process is changed, as well as on scheduler ticks. If the local pool is smaller or
equal to zero, the scheduler will acquire more runtime. It will then try to take
the lock protecting the global pool, and acquire an amount that can make the
local pool equal to a slice. The value of a slice is a system-wide value that system
administrators can configure at runtime, and defaults to 5ms.

When a local pool is unable to refill from the global pool, and the local pool has
a value equal to or smaller than zero, it will be throttled. The scheduler will
then mark all the descendant scheduling entities below the control group as
throttled, making sure they will not be scheduled. This will happen per local
pool, and throttle of one local pool does not mean that other local pools will
be throttled. On the rising edge of the next period, the timer responsible for
refilling the global quota will then try to distribute the newly released quota
between the throttled local pools to make them able to run again. When the
throttled local pools are filled, they will be unthrottled, and the scheduler will
mark all the descendants as ready to schedule again.

Since CFS bandwidth control is a control group controller, CFS bandwidth con-
straints can be set in each level of the control group hierarchy described in Sec-
tion 2.2.1. This means that in case one local pool is throttled, all the local pools
connected to the same logical Linux CPU, on all the descendant control groups,
will also be marked as throttled.

2.5.3 Alternatives To CFS Bandwidth Control

There are currently no alternatives to using CFS Bandwidth Control in the Linux
kernel, but some of the same benefits can be achieved via the control group con-
troller cpuset. The cpuset controller allows administrators to limit what logical
Linux CPUs the leaf processes under a control group can run on. This is often
referred to as CPU pinning. This is useful on specific latency-sensitive workloads
that run on systems without a uniform memory layout due to increased laten-
cies on memory access.

The major drawback of cpuset is that it will interfere with the way the CFS sched-
uler deals with fairness across different logical Linux CPUs, as seen in Section 2.4.3.
cpuset is, therefore, most commonly used when a given control group is allowed
access to an exclusive set of logical Linux CPUs, keeping the interference relat-
ively low. CPU pinning also limits the possibility to overcommit CPU resources,
especially when exclusivity is used.

The major selling point of CFS Bandwidth Control is that a group with the equi-
valent of n logical Linux CPUs can run on more than n logical Linux CPUs at
once. As seen in Figure 2.10a, 3 processes can run simultaneously if necessary,
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even if the CFS bandwidth limit is equivalent to 2 logical Linux CPUs. This means
that it can handle small spikes of load more efficiently due to the extra access to
computing resources. When pinning a group to n logical Linux CPUs, they will
never be allowed to execute on more than those n logical Linux CPUs. However,
as seen in Figure 2.10b, the scheduler will throttle the control group in case the
usage surpasses the given quota in a period.

t = 0

C PU 0
C PU 1
C PU 2

100ms 200ms

Period 1

(a) Timeline with 100ms period and 200ms quota, and three processes running on three different
CPUs. Using less than the given quota in both periods.

t = 0

C PU 0
C PU 1
C PU 2

100ms 200ms

Group throttled on all CPUs

Period 1

(b) Timeline with 100ms period and 200ms quota, and three processes running on three different
CPUs. Using more than the given quota in both.12

Figure 2.10: Two timelies where both have a 100ms period and a 200ms quota,
giving the equivalent of two logical Linux CPUs. Each with three processes, with
different load.

12In a real life situation, not all the CPUs will end up being throttled at the same time.





Chapter 3

The Caveats And The Challenges
Of CFS

Like all kinds of kernel programming, with the scheduler being no exception,
making sure regressions or other adverse side effects of changes or new features
don’t happen, is hard. Since most users use older kernel versions, and rarely
start using new ones, bugs can live for a long time before being surfaced. Small
scheduler regressions are also hard to spot, and multiple bugs have sneaked into
the mainline over the years.

In this chapter, we will look at the challenges and the caveats of the CFS sched-
uler and its design choices. We will briefly look at the general scheduler design
and fairness aspects, but will primarily focus on the CFS bandwidth function-
ality. We will investigate potential situations leading to unnecessary throttling,
and look at the consequences of such behavior. We also take a look at other re-
lated research on the topic.
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3.1 Challenges And Caveats Of Fairness CFS Scheduler

The CFS scheduler is an essential part of the Linux kernel, and although the
design is elegant, there are a set of complex challenges it tries to solve in the
best way possible. In this section, we will look at some of the challenges with
the current implementation.

3.1.1 Control Group Load Calculation

The design of the CFS scheduler makes it possible for logical Linux CPUs to
handle most of the priority handling between control groups and processes on
a CPU local level; some synchronization is however necessary. When a schedul-
ing entity corresponding to a control group does its accounting, and calculates
the updated load, it propagates that load to the global load sum for the control
group. This is done by adding the difference between the old and the new load
of the scheduling entity to the control group-wide load sum. This operation is
atomic and makes sure all the logical Linux CPUs’ load is accounted for prop-
erly. To limit this cross-communication and avoid costly atomic operations, this
is only done when strictly necessary.

As described in Section 2.4.3, the Per Entity Load Tracking accounts for various
aspects of the life cycle of the process and scheduling entity to define how much
they impact the system. The load is not strictly tied to the time a scheduling en-
tity is running; other aspects are also accounted for. This means that a CPU local
scheduling entity can have a non-null load even though it no longer contains
any processes. The load for all scheduling entities is continuously decayed in the
background at a given interval, even for idle entities, to ensure that the calcu-
lated load is correct. This means that after some time, an idle control group will
eventually reach a load of zero.

To limit these background updates, the CFS scheduler keeps a list of active schedul-
ing entities that have load attached to them. This is important to avoid unne-
cessary work on entities without load and on entities that cannot be scheduled
and don’t contribute to load in their ancestors. The total number of scheduling
entities on the system is the number of control groups with the cpu controller
enabled, multiplied with the number of logical Linux CPUs. In a real-world scen-
ario, especially on an underutilized system, most of these entities will be idle
and without load. Initially, the CFS scheduler added all entities to this list the
first time it queued them for execution. It was later added a check to remove all
fully decayed entities with zero load [15]. It has also been patched to remove
entities throttled due to CFS Bandwidth constraints, before adding them again
during the unthrottling procedure [16].
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3.2 Challenges And Caveats Of CFS Bandwidth Control

The CFS bandwidth control functionality has challenging aspects that have to
be handled, often with contradictory objectives. First of all, precision is essential
when it comes to both accounting and enforcement. However, greater preci-
sion and stricter accounting often lead to more overhead, especially when cross
NUMA1 communication is necessary. In this section, we will look at the chal-
lenges and caveats of the current CFS bandwidth control implementation, and
how they can result in either throttling or increased system overhead.

3.2.1 The Accounting Mechanism

One of the great things about the CFS scheduler is that it does not use sched-
uler ticks to steer the scheduling. This means that the performance and respons-
iveness of the scheduler don’t depend on the frequency of the scheduler ticks.
Again, this allows for using a lower scheduler tick frequency without sacrificing
responsiveness, and essentially minimizing the overhead of the ticks themselves.
The scheduler tick frequency is a compile-time configuration parameter. As seen
in Table 3.1, multiple values are supported. The length of the time between two
scheduler ticks is called a jiffy. Jiffies are used for kernel time measurements
without the need for higher precision.

Table 3.1: The different supported timer frequencies in Linux together with
corresponding jiffy length

CONFIG_HZ jiffy
100 10ms
250 4ms
300 3.33ms
1000 1ms

However, the scheduler ticks’ frequency is crucial for CFS bandwidth control
due to how the accounting is done. CFS bandwidth control accounts for all the
runtime used by a process. The accounting occur when the process is stopped
from executing, and on scheduler ticks occurring when it is running. That means
that processes running for longer than the length of a jiffy gets their runtime ac-
counted after use, in portions roughly the size of a jiffy. CFS bandwidth account-
ing is done with nanosecond precision. Constantly synchronizing clocks, and
using the timeout of the CFS bandwidth timer to calculate where accounting
should be done is possible, but would result in huge amounts of extra overhead
due to the extra synchronization and locking required.

As seen in Section 2.5.2, CFS bandwidth control will fill the local pool when its
runtime budget is smaller or equal to zero. This means that local pools reserve

1NUMA: Non-uniform memory access
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runtime they plan to use. However, since the granularity of accounting often
is on a level with a jiffy, local pools often end up with negative values, mean-
ing that they have used more than their reserved value. When a scheduler tick
race with a refill of the global quota, the accumulated negative value in a local
pool can be accounted for with the newly refilled global pool, even though the
runtime accounted for was used in the previous period. This also applies the
other way, where runtime in a local pool can originate from the previous period
but can still be used in the next.

Overall, this accounting mechanism has some major drawbacks causing issues
because of unnecessary throttling. All this, depending on the characteristics of
the workload, together with how the system is configured.

3.2.2 CFS Bandwidth runtime expiry

To strictly enforce the CFS bandwidth a control group could use, there was pre-
viously an expiry on the runtime acquired to the local pool. This runtime expiry
mechanism ensured that the control groups could only use the runtime in the
same period as it was acquired. At first glance, this sounds like a good idea. It
later turned out to be quite problematic. The mechanism caused a lot of extra
throttling because runtime was discarded when the control groups couldn’t use
it, for many of the reasons as described in Section 3.2.1. It also leads to a thun-
dering herd problem on the global pool lock when all the local pools saw that
their runtime had expired, and they had to acquire more from the global pool.
Notably, there were issues with the clock synchronization between the different
CPU cores, causing clock drift issues that also caused excessive throttling [17].
Sometime later, the kernel maintainers removed this expiry mechanism alto-
gether to reduce the throttling caused by it [18].

3.2.3 Length Of The CFS Bandwidth Slice

Another essential factor to accounting and enforcement is the slice length, the
amount of runtime a local pool tries to get when refilling from the global pool.
As described in the CFS bandwidth documentation, the length of a slice is a
compromise between increased overhead and fine-grained consumption [19].
A larger slice means less communication between the local and global pools, re-
ducing the stress on the lock. It also increases the chance of local pools taking
more runtime from the global pool than they can use for the rest of the period,
possibly starving and throttling other local pools. The default slice length is
5ms.

To avoid having local pools without any runnable processes while still having
runtime available, all remaining runtime except the hardcoded value of 1ms will
be donated back when a local pool goes idle. This means that when processes
run for less than 1ms and start and stop often, for example, when communicat-
ing extensively through busy synchronization primitives, it can be a bad thing.
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Having a bigger slice than 1ms can, in this situation, lead to taking the global
pool lock twice each time the local pool is refilled, when refilling, and when giv-
ing back when it turns idle.

Another often overlooked result of this is that when the slice is not a multiple
of a jiffy, the local pool ends up with a negative value. This is most often not a
problem, but in the area around the refill, this can be problematic, as seen in
Section 3.2.1. As seen in Figure 3.1, this can, in theory, cause severe throttling
on a single process in a control group with a quota to period ratio of 1. In that
situation, with a 10ms quota, 10ms period, a 5ms slice (default), can theoretic-
ally result in a process being throttled for 3ms every three or four periods, pos-
sibly resulting in being throttled for up to 10% of the time. This effect increase
with the decrease in the CFS period.

t ickn=0 t ickn=1 t ickn=2 t ickn=3 t ickn=4 t ickn=5 t ickn=6 t ickn=7

t = 0 10ms 20ms 30ms

throttled, 2ms3ms, accounted in next period3ms, accounted after use in t ickn=1

5ms, reserved at t ickn=0 3ms, used in previous period, accounted here

Figure 3.1: Timeline of runtime accounting on a cpu bound process, with a
bandwidth period of 10ms and quota of 10ms, with slice length of 5ms and jiffy
length of 4ms.

3.2.4 Overhead Of The Global Lock

Most of the accounting and reservation compromises come down to the spin-
lock’s overhead guarding the global pool. As described in Section 3.2.3, this
pressure is reduced by various aspects. However, if the slice is smaller than a
jiffy, all CPUs running leaf processes under a control group with CFS bandwidth
enabled will start spinning this spinlock once every scheduler tick. Depending
on the memory layout, performance and topology of the system, this can be
a costly process. This lock is also acquired during global pool refill, local pool
throttling, local pool unthrottling, and during the update of the configuration
parameters.

3.2.5 Timer life cycle

A high-precision timer for each control group with CFS bandwidth enabled is
scheduled to refill the global pool. It uses the high precision timer, hrtimer func-
tionality in the Linux kernel, that gives a higher level of precision than relying
on jiffies. This timer has a timeout of the length of a period and is started when
CFS bandwidth is enabled. To save resources, when a control group is empty or
all its processes are idle, the timer is stopped. The timer is restarted again when
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a local pool tries to acquire runtime from the global pool.

This mechanism will therefore also contribute to more congestion on the per
global pool spinlock. To ensure that the timer is properly restarted after being
stopped, the local pools restart it when refilling from the global pool. In turn,
this also contributes to the congestion on the lock when the timer is running.

The timer restart also has consequences for applications with periodic bursts
while staying idle for the rest of the time. As seen in Section 3.2.1, a local pool
often ends up with a substantial negative value. This can potentially cause situ-
ations where an idle process in an otherwise idle control group starts executing.
In such a case, it might end up with a negative local pool equal to the length of
a jiffy. When the local pool then tries to acquire runtime from the global pool, it
will also start the timer. There is then a chance that the next refill of the global
pool will take a complete period worth of time. This means that the global pool
will have a value equal to the quota minus one jiffy minus one slice. Therefore,
this situation can also lead to throttling a control group that effectively uses less
than its requested quota per period.

3.3 The Effects Of CFS Bandwidth Throttling

Even though the primary goal of CFS Bandwidth Control is to throttle control
groups using more than their quota in a period, the throttling can have un-
desired side effects. Other than the extra, but relatively small, cost of handling
the throttling, there is no particular incentive to avoid throttling a local pool
in a control group from the systems perspective. When control groups should
be throttled, the scheduler will throttle them. For the applications themselves,
throttling can have undesired consequences, depending on the most important
performance characteristics. For some applications, throttling can be harmless,
while it might result in highly undesired behavior for others.

3.3.1 Overall Performance Impact

Each time a local pool gets throttled, one or more of the processes beneath it
will have to wait before starting executing again. This effectively means that
a single process running a batch job that gets throttled for 30ms will take at
least 30ms longer to finish. Each time a local pool over the process in the con-
trol group hierarchy is throttled, this will happen.

For a batch job intended to use more CPU time than the quota, getting throttled
is the desired and predicted behavior. However, when a control group cannot
use all the runtime in one period and then gets throttled in the next, it effect-
ively uses less than the quota on average, but still gets throttled due to how ac-
counting works. This results in batch jobs inside their quota still getting throttled
and taking more time than they are supposed to.
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3.3.2 Impact On Latency Sensitive Workloads

Controlling and avoiding throttling is especially important for user-facing pro-
grams that strive for low and consistent latency. An example of this is web serv-
ers serving requests for users. In case such a process gets throttled for 20ms, it
will result in a delay of at least 20ms for all requests in flight at that moment.
Requests arriving during the throttling period will see the same effect but with
a minor delay. When throttling starts, it is the consequence of too much CPU us-
age, and together with the work piling up during such a throttle, tail latencies
often skyrocket.

The overall goal for latency-sensitive applications is to avoid getting throttled.
The most straightforward mitigation is not to spawn more threads or processes
than the amount of logical Linux CPUs the given CFS bandwidth is equivalent
to. In case of severe throttling in such an application, increasing the quota is
an alternative. Another alternative is to change the CFS bandwidth period. De-
creasing the period will result in a higher chance of throttling but with shorter
throttling periods. In contrast, a longer period will result in less throttling, while
throttling will last longer. This, especially lowering the period, can result in
other side effects like more throttling, as seen in Section 3.2.3 and Section 3.2.1.

As seen on Figure 3.2, going from one process to three processes that can load
balance the requests helps on tail latency as long as CFS bandwidth is not en-
abled. However, one can see that when a control group with three processes
that together use on average the equivalent of one logical Linux CPU worth of
CPU time, throttling becomes a problem. Even though the mean response time
is similar for all test cases, one can see that the latency explodes for the case
with three processes and a CFS bandwidth with the equivalent of one logical
Linux CPU. We see that the results are pretty similar for a single process when
CFS bandwidth is enabled and disabled.

3.3.3 Impact On Scheduler Fairness

Often, when a control group uses close to its CFS bandwidth limit, it ends up
being throttled for a small and unnoticeable amount of time without affecting
the performance characteristics of the processes inside. On an idle system, such
a situation may have no other side effects, but when there are more processes
ready to run than logical Linux CPUs running them, fairness comes into the pic-
ture. As described in Section 2.4.3, an idle CPU will try to steal runnable pro-
cesses from its neighbors. When a local pool gets throttled, the scheduler will
load loadbalance since it can no longer execute the previously runnable pro-
cess(es). If the scheduler can take another process from another logical Linux
CPU, it will start running that process right away. When the throttled local pool
is unthrottled, the scheduler will mark the processes under that control group as
runnable. As described in Section 2.4.2, the scheduler will then start prioritizing
between the process previously throttled and the process it took from its neigh-
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Figure 3.2: Plot of latency percentiles for webserver requests as seen in C.1
with a static load of the equivalent of 0.99 logical Linux CPU. It shows the
latency effect of throttling. Using a 100ms period and the respective quota as
shown in the parentheses.

bor, ensuring both processes gets their share of CPU time, depending on their
respective weight. Then, after a while, the load balancing logic might end up
moving the process back to its original logical Linux CPU, effectively reversing
the previous load balance. This situation can then continue to be repeated each
time the control group gets throttled, causing a high amount of context switches
and unnecessary traffic between logical CPUs. This shows that even small throt-
tling periods can have a significant impact on the fairness between groups.

3.4 Related Work

There has been a lot of work contributing to the Linux scheduler over the years,
and most of the work goes unnoticed. As seen in Section 2.1, most of the devel-
opment of the Linux Kernel is discussed through the public mailing lists. Most
improvements are therefore laid out as patches, and then later discussed. The
majority of the work is done by maintainers hired by companies working on the
Linux kernel. However, there are countless contributions from outsiders, and the
mailing lists are open for everyone to subscribe or browse online.
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3.4.1 The Art of CPU-Pinning: Evaluating and Improving the Per-
formance of Virtualization and Containerization Platforms

Other than the initial proposition of the CFS Bandwidth Control functionality
[12], there hasn’t been much research on the overhead and its caveats. In 2020,
a set of researchers from the High-Performance Cloud Computing (HPCC) lab,
University of Louisiana at Lafayette, USA, looked at the overhead of using the
CFS bandwidth control compared to virtualization and CPU pinning [20]. Their
findings show a clear overhead using CFS bandwidth, or vanilla containers as
they call it, compared to CPU pinning and virtualization. Especially when com-
paring the average execution time of database queries and the latency of web
server requests, it shows a massive increase in the time it takes. Some experi-
ments show an overhead of more than 3.5 compared to running with CPU pin-
ning. However, their research does not describe application configuration re-
garding the number of processes spawned, or what they used as CFS bandwidth
configuration. Their results show that the overhead decreases when reducing
the ratio between the CFS bandwidth equivalent CPU cores given to a task and
the actual core count on the machine.

It is not clear if they researched with the fixes described in Section 3.2.2, mak-
ing it impossible to know if those affect their results. They later conclude by
stating that users should avoid containers, or control groups, with small CPU
limits compared to the total CPU count on the system. They say that CPU-bound
applications should use CPU pinning when possible to minimize the overhead.

Although these conclusions are based on their data, there are still many un-
answered questions about what factors contribute to the results. They executed
their tests on a four-socket NUMA machine, so communication and memory-
intensive applications running on different NUMA nodes will result in higher
latencies and increased overhead. Most modern applications today also spawn
as many threads as there are logical Linux CPUs on the system. This means that
even though CFS bandwidth allows the equivalent of 4 logical Linux CPUs, the
application researched could have spawned 112 threads. This would result in all
112 threads running for a few milliseconds at the beginning of each period, be-
fore being throttled. This results in significant congestion on the spinlock guard-
ing the global CFS bandwidth pool for the control group. It would also result
in a substantial overhead when all 112 processes try to communicate simul-
taneously. This would be especially evident when they try to access and update
shared memory possibly guarded by locks.
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Design Improvements And
Implementation
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Chapter 4

Reducing Unnecessary CFS
Bandwidth Throttling

In this chapter, we examine the reason for unnecessary CFS bandwidth throt-
tling, and propose two possible solutions to mitigate the issue. We will also
look at how this throttling affects the processes being throttled. Our results
show that our proposed techniques reduce the runtime of CPU bound tasks on
an otherwise busy system, by as much as 3%. They also reduce the variance
in runtime dramatically, with a decrease in runtime of about 5% between the
worst baseline results and the worst results using our techniques.
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4.1 Introduction

Starting the main part of the project, we aim to reduce the unnecessary throt-
tling due to the way the runtime is accounted for. As seen in Section 2.5, as long
as a local pool has a positive amount of runtime remaining, it is allowed to con-
tinue running one of its children processes. As seen in Section 3.2, this often res-
ults in local pools getting in a situation where they have a substantial amount of
negative accumulated runtime. This negative runtime value will always have an
upper bound of the size of a jiffy per local pool, since the bandwidth controller
will always account for runtime at least once on each scheduler tick. For highly
threaded applications running simultaneously on multiple logical Linux CPUs,
this can add up to a fair bit compared to the total quota per period.

When a local pool accounts for its running time, and the total amount of runtime
available is less or equal to zero, it has to refill itself from its respective global
pool. When filling itself from the global pool, the local pool has to pay back its
negative runtime, the runtime used without previously having reserved for it. If
this accounting happens right after the quota refill, the debt is paid back using
the quota from the new period. The local pool can as a result from this, end up
being throttled for a small amount of time at the end of the period, even though
it has used less runtime in the given period than the quota.

Another major reason for throttling is due to the timer life cycle described in
Section 3.2.5, where the runtime is not adequately accounted for since the timer
may be started too late. A similar issue occurs when the CFS bandwidth con-
troller is configured from userspace. When a user-space application updates the
CFS bandwidth configuration, the controller will reset all local pools to zero and
refill the global pool even though the values are the same. In such a case, de-
pending on how long the slice is, it can cause throttling. System daemons or
container runtimes often set these values regularly to ensure the values are cor-
rect.

To mitigate these issues, we propose two different solutions. We first introduce
a way of accounting for negative accumulated values in local pools using the
previous period’s quota. Next, we propose a set of improvements to the CFS
bandwidth updating logic to minimize the throttling issues occurring in that
situation.

4.2 Implementation

In this section, we look at the implementation of the proposed changes to re-
duce the throttling.
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4.2.1 Adding Accounting Slack On Period Start

To allow for backward accounting, we modify both the refilling of the global
pool and the local pools.

Code listing 4.1: Original CFS global pool refill logic

1 void refill_global_pool(cfs_global_pool global_pool)
2 {
3 global_pool->runtime = global_pool->quota;
4 }

As seen in Code listing 4.1, the remaining runtime quota from a period is dis-
carded during a refill. We define this runtime as the runtime lost on quota re-
filling. To mitigate this, we introduce a new attribute to the global pools, called
slush_fund.

Code listing 4.2: Modified CFS global pool refill logic

1 void refill_global_pool(cfs_global_pool global_pool)
2 {
3 global_pool->slush_fund = global_pool->runtime;
4 global_pool->runtime = global_pool->quota;
5 global_pool->period_nr += 1;
6 }

During refill of the global pool, we save the old runtime to the slush_fund, be-
fore refilling the global pool again, as seen in Code listing 4.2. At the same time,
we track the period number.

Code listing 4.3: Local pool refill using slush fund

1 int refill_local_pool_with_slush(cfs_global_pool global_pool,
2 cfs_local_pool local_pool)
3 {
4 if (global_pool->period > local_pool->period_nr){
5 int refill = min(global_pool->slush_fund, -local_pool->remaining_runtime);
6 global_pool->slush_fund -= refill;
7 local_pool->remaining_runtime += refill;
8
9 local_pool->period_nr = global_pool->period_nr;

10 }
11 return refill_local_pool(global_pool, local_pool);
12 }

We later, when refilling a local pool, use this value to account for the negative
accumulated runtime we see on the first refill in a new period, as seen in Code
listing 4.3.

Together with a slice value of 1µs, the lowest possible in the kernel, this solu-
tion will mitigate all throttling as long as the ratio between CFS bandwidth
quota and its period is smaller or equal to the count of processes in the control
group as in Equation (4.1), or CPUs in the available cpuset as in Equation (4.2).
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quota
period

≥ |procs| (4.1)

quota
period

≥ |cpus| (4.2)

To mitigate the throttling caused when starting the idle timer, as described in
Section 3.2.5, we make sure the new accounting mechanism takes that into ac-
count.

The proposed patch implementing this can be seen in Appendix A.1.1.

4.2.2 Updating The CFS Bandwidth Update Logic

To ensure that the CFS bandwidth control is not interfered with when config-
uration parameters are changed, we update the logic to ensure that no config-
uration updates are done unless strictly necessary. In order to keep this simple,
we verify if changes are setting the same value as before during a configuration
update and turns that into a NOP1 that doesn’t interfere with the other logic.

When either the period or the quota is updated with a new value, the behavior
will continue as before. Due to how high-resolution timers work in Linux, chan-
ging the period will only affect the period length of the next period, not the cur-
rent one. In the same way, setting a new value to the quota will result in a quota
refill with the new quota and a reset of all the local pools.

The proposed patch implementing this can be seen in Appendix A.1.2.

4.3 Results

To investigate the absolute amount of throttling in CPU intensive applications,
how many times one or more local pools are throttled, and for how long, we use
the Sysbench CPU benchmark as described in Appendix C.2. We do this to be able
to view how much less throttling we see with our proposed changes. During all
tests in this section, we keep setting the CFS bandwidth once a second. We do
this to properly mimic the behavior of container runtimes and other init systems
like systemd.

As described in the details about the Implementation of the changes, as seen in
Section 4.2, we divide our changes into four configurations. We abbreviate them
as following:

• Baseline: Unpatched Linux Kernel.
• Slack: Adding Accounting Slack On Period Start, as seen in Section 4.2.1.

1no operation
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• Config: Updating The CFS Bandwidth Update Logic, as seen in Section 4.2.2.
• All: Both the proposed changes.

4.3.1 Sysbench CPU Benchmark

Absolute Throttling

Table 4.1: Baseline results for Sysbench CPU Benchmark with 30 0000 events
with three processes, on three exclusive logical Linux CPUs. Mean values of 10
executive runs.

Period Quota Periods Periods Throttled Throttled Ratio Throttled Time
N/A Unlimited 734 0 0% 0 ms
100 ms 300 ms 735 50 6.8% 94 ms
50 ms 150 ms 1486 661 45% 2 457 ms
10 ms 30 ms 7840 3835 49% 14 608 ms

As a baseline, we run the test without any changes. In this situation, as seen in
Table 4.1, there is an increasing amount of throttling when there is a decrease in
the CFS bandwidth period. This occurs even though the ratio between the CFS
bandwidth quota and period stays the same, with the same value of both run-
ning processes and logical Linux CPUs. All this throttling can therefore be seen
as unnecessary. We also see that while the time throttled while using a 100ms
period is a modest 94 milliseconds, while it is more than 14 seconds while using
a 10ms period. As described in Section 2.5, the number of periods where one
or more local pools are throttled is impossible to predict, and a higher throttle
count does not strictly imply longer runtimes or more latency. The same applies
to the time throttled since processes can be moved to other local pools and ex-
ecuted there. However, the values can be used as a proxy value for investigating
the impact of throttling, even though the values have to be read and interpreted
with a grain of salt. After all, the most important part is the actual runtime of
the program being executed.

Looking at the results in Figure 4.1, we see that there is a substantial amount
of throttling, with it happening at about 5 to 10 percentage of the periods. We
clearly see that when running with Config, the number of periods with throttling
is about halved. The most significant change is, however, when using Slack and
when using both. We then see zero throttling.

As seen in the results in Table 4.1, the throttling increase with a decrease in the
CFS bandwidth period. Looking at the results when using a 10ms period in Fig-
ure 4.2, we see that the number of periods with throttling is increasing with the
Config change. However, when looking at the difference between those, the rel-
ative change is pretty small. Even though the throttling is not entirely mitigated
as seen when using a 100ms period, we see that the number of periods where
throttling occurs is reduced from about 50% to less than one whe using both
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Figure 4.1: Sysbench CPU Benchmark result, showing periods throttled with
the given changes. All results with a 100ms CFS Period and 300ms quota, and
three threads. Values based on 30 executive runs.
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Figure 4.2: Sysbench CPU Benchmark result, showing periods throttled with
the given changes. All results with a 10ms CFS Period and 30ms quota, and
three threads. Values based on 30 executive runs.

changes.. Even though the throttling increased when using Config, we see a de-
crease in throttling from Slack compared to when using both. Even though the
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throttling in both cases is more or less negligible, the throttling when using both
is about four times smaller compared to Slack. We also see that the variance is
much more significant for Slack compared to when using both.

Runtime impact
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Figure 4.3: Sysbench CPU Benchmark result showing runtime. Values based on
30 executive runs, all using three threads.

When looking at the total runtime in Figure 4.3, we can see that the throttling
does have an impact on the runtime of a program. There is a relative decrease
in overall runtime when running with the proposed changes, although it is not
huge compared to the total runtime. For the 100ms period test, this translates to
a reduction in the runtime of about 1‰. For 10ms period test, this translates to
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just below 1%. However, we see that when using the 100ms period, where the
result was no throttling at all, the variance is reduced significantly.

/ (root)

parent
Weight: 100
CPU: 300%

benchmark
Weight: 200
CPU: 200%

sysbench
CPU: 100%

sysbench
CPU: 100%

stress
Weight: 100
CPU: 100%

stress
CPU: 33.3%

stress
CPU: 33.3%

stress
CPU: 33.3%

Figure 4.4: Cgroup hierarchy together with internal weighting, and predicted
CPU load during congestion on three logical Linux CPU. 100% load translates to
one logical Linux CPU.

When running on a CPU congested system with a control group hierarchy as
seen in Figure 4.4, we get the results as seen in Figure 4.5. We see a significant
reduction in runtime, where using 100ms period reduces the overall runtime
with 3% when calculating using the median value. The variance is reduced
significantly and is more or less nonexistent with the proposed changes. When
looking at the highest runtime seen, there is a 5% decrease when using the pro-
posed changes. When using a CFS period of 10ms, we get a total reduction in
the runtime of almost 12%, even though there is a great amount of variance in
that case. This result might, however, be slightly different on different kernel
setups.

4.4 Discussion

We see that both our proposed patches effectively reduce unnecessary throt-
tling, no matter what CFS bandwidth period is used. The patches decrease the
percentage of periods being throttled from 50% to less than 1% given a 10ms
period, and from about 6% to zero percent when using a 100ms period, where
the 100ms period is the one used by default. Even though it is hard to estim-
ate the added overhead to the CFS bandwidth implementation with the slack
accounting change, it will during most local pool refills only consist of a single
new branch, so that should not be substantial.

As seen in the results, when using a short CFS Bandwidth period and the default
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Figure 4.5: Sysbench CPU Benchmark result showing runtime in a busy envir-
onment as described in Appendix C.4. Values based on 30 executive runs, all
using two threads.

slice length of 5ms, we still see some throttling. As described in Section 3.2.3,
this is the result of local pools acquiring an entire slice right before the timeout.
The simplest way to avoid this is to lower the slice length. Another possible
solution is to do the opposite of our proposed accounting using the previous
runtime quota, using the quota of the next period. If a local pool is unable to
refill itself, it can calculate the time remaining before the global pool is refilled.
If the remaining time before a refill is smaller than the length of a slice, the local
pool can refill using the quota of the next period. However, the amount of throt-
tling seen is negligible, and with a slice length on half the period, some throt-
tling must be expected.
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Overall, the most interesting part is that we see the runtime of the benchmark
in an otherwise busy system decrease 3% when running with our changes. This
clearly shows the effect described in Section 3.3.3, where other processes are
being moved to the logical Linux CPU when the local pool of the benchmark is
throttled. After the unthrottle of the local pool, the processes will keep fight-
ing for runtime, before eventually the load balancer algorithm described in Sec-
tion 2.4.2, move the processes to reach an equilibrium in regards to fairness. It
is also evident that the throttling mechanism is unpredictable and causes vast
amounts of variance in runtime between different runs. When our proposed
changes mitigate the short and unnecessary throttling, we see that this variance
decrease dramatically.



Chapter 5

Reducing The Overhead Of CFS
Bandwidth Control

In this chapter, we measure the overhead of CFS bandwidth control, and imple-
ment an alternative distribution solution using atomic variables instead of the
current spinning lock. We see how using atomic variables reduces the overhead
of CFS bandwidth control and how it allows for more fine-grained control of
runtime distribution. Our results show that we are able to reduce the overhead
of CFS bandwidth control by about 95% on scheduler-intensive workloads when
using short slice lengths.
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5.1 Introduction

As seen in Section 3.2.4, the global spinlock used to protect the global pool is
one of the most significant factors when it comes to the overhead introduced by
CFS bandwidth control. This spinlock has to be acquired each time the global
pool is modified, and when multiple logical Linux CPUs are waiting on it, this
introduces overhead. This overhead increases with the number of logical Linux
CPUs running processes below the same control group with CFS bandwidth en-
abled.

Although spinning locks are quite frequently used in kernel code, they have
some overhead. As long as there are no other users of the spinlock waiting, this
overhead is negligible. Even when others are waiting, spinlocks perform well.
The major problem occurs when there are many users, logical Linux CPUs, try-
ing to acquire the same lock simultaneously; something possibly happening mul-
tiple thousand times per second in CFS bandwidth control.

Most computer architectures implement atomic instructions that allow for atomic
modification of memory. For integer values, these instructions can be used to in-
crement or decrement the value, together with getting or setting the value.

As the most essential part of the CFS bandwidth control implementation is the
move of quota from a global to local pools, we propose a new mechanism using
atomic variables instead of the current spinning lock.

5.2 Implementation

In this section, we look at the implementation of the proposed changes to re-
duce CFS bandwidth overhead.

5.2.1 Using An Atomic Integer For The Global Pool Quota

Linux has a wrapper for atomic variables via the atomic_t and atomic64_t types
[21], together with implementations for each supported architecture. Architec-
tures without native support for atomic variables fall back to transparently using
a spinlock, meaning that there should be no performance penalties for systems
without such instructions.

In order to use these types, we introduce an atomic 64 bit integer on the global
pool. This replaces the old non-atomic version.

Code listing 5.1: Atomic implementation refill_local_pool

1 int refill_local_pool(cfs_global_pool global_pool,
2 cfs_local_pool local_pool)
3 {
4 int target_runtime = slice_length;
5 int amount = (target_runtime - cfs_rq->runtime_remaining);
6 int old = atomic_fetch_and_subtract(amount, &global_pool->runtime);
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7
8 if (old < amount){
9 if (old <= 0){

10 amount = 0;
11 } else {
12 amount = old;
13 }
14 }
15 local_pool->runtime_remaining += amount;
16 return local_pool->runtime_remaining > 0;
17 }

When using this atomic integer, we decrement the atomic variable during local
pool refill and inspect its previous value to determine the result. Given the atomic
nature of the decrement function, we have three possible outcomes, depending
on the old value of the global pool:

1. The old value is bigger or equal to the amount we try to acquire

• If the old value is bigger or equal to the requested amount, we see the op-
eration as successful. We can then conclude with the fact that we got that
amount from the global pool, and we can refill the local pool with that
amount. The local pool can then continue to run.

2. The old value is positive, but smaller than the amount we try to acquire

• If the old value is smaller than the requested value, but it is still posit-
ive, we view it as a partial refill. We then refill the local pool with the old
value of the global pool. Depending on the resulting value of the local
pool, it can either continue executing in case the new value of the local
pool is positive, or it has to be throttled in case the new value of the local
pool is zero or smaller.

3. The old value is negative

• In case the old value is negative, the global pool is empty. The local pool
will then have to be throttled and await a refill of the global pool.

During the refill of the global pool, the quota can be set via an atomic set in-
struction. This is also the same for most cases where the global pool is modified
throughout the scheduler. During throttling and unthrottling of the local pools,
together with the configuration of the CFS bandwidth parameters, the spinlock
will have to be used. This ensures that the other parts of the global pool stay
correct and avoid all race conditions.

In order to ensure the maximum possible performance on the atomic modifica-
tions, we ensure that the runtime of the global pool has its own cache line. This



48 Odin Ugedal: Master Thesis

ensures that using the spinlock and changing the other attributes of the global
pool will not affect the performance of the atomic operations.

There are, however, a few caveats when it comes to the pausing and the restart
of the period timer, since that relies on the spinlock of the global pool. The pro-
posed implementation disables this mechanism, so further implementation work
will be required to be production-ready.

The proposed patch implementing this can be seen in Appendix A.2.1.

5.3 Results

In this section, we look at the implications of CFS bandwidth throttling, and
how our proposed changes are helping to mitigate those changes.

In order to test the overhead of the CFS bandwidth implementation, we use the
Sysbench Threads benchmark as described in Appendix C.3. In all tests, we use
a 100ms period, together with a quota that will never be reached. We do this to
avoid measuring the impact of throttling itself, just the overhead while running
without being throttling. In order to measure the overhead, we test with three
different slice lengths:

• 5 ms

◦ The default value

• 1 ms
• 1 µs

◦ The smallest possible value

Even though a slice length of 1µs is not a sensible value to use in real life, it
will significantly increase the lock congestion allowing us to see the difference
between using the previously used spinlock and our proposed atomic variable.

5.3.1 Test configurations

Due to how CFS bandwidth is implemented, we define two baselines in this test.
This gives us a total of four different test configurations;

System Disabled

The first baseline we define is the System Disabled configuration. The System
disabled baseline is the situation where no control groups on the system have
CFS bandwidth enabled. This is necessary because CFS bandwidth uses a ker-
nel function called static branching [22]. This is a low-level optimization that
live patches the running kernel based on a condition. This is used to replace
conditional jumps with static jumps without any overhead. This improves the
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performance as the jumping condition does not have to be calculated when the
code is reached, as the running kernel is modified to reflect it. This essentially
means that there will be a slight difference in the scheduler code flow when no
control groups have CFS bandwidth enabled, compared to when one or more
has.

Group Disabled

The second baseline we define is the Group Disabled configuration. The Group
Disabled baseline is the situation where non of the ancestors’ control groups of
a process have CFS bandwidth enabled, but some other control group has it en-
abled.

Spinlock

The third configuration we define is the Spinlock configuration. The Spinlock
configuration is a situation where one of the ancestors’ control groups of a pro-
cess has CFS bandwidth enabled, using the old spinlock approach. This is an
unmodified kernel.

Atomic

The last configuration we define is the Atomic configuration. The Atomic config-
uration is a situation where one of the ancestors’ control groups of a process has
CFS bandwidth enabled, using our proposed implementation using an atomic
variable, as described in Section 5.2.1.

5.3.2 Sysbench Threads Benchmark

As seen in Figure 5.1, the increase in runtime is most noticeable for the runs
using a slice length of 1µs. As seen in Figure 5.2, where the result for Spinlock
1µs is ommitted, we see that the resulsts for all the other configurations, except
those using a slice length of 1µs, are fairly similar. We clearly see that for a slice
length of, 1µs, our proposed atomic verions perform much better.

5.4 Discussion

As seen in the results, we see a significant decrease in overhead when using our
proposed changes, altough it is only noticeable when using a slice length of 1µs.
However, the meadian value goes from about 210 seconds when using the old
spinlock, to about 28 seconds when using our proposed atomic implementation.
This clearly show that the reduction in cross-cpu communication is working.
As described in Appendix C, the test was executed on a physical machine with
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Figure 5.1: Sysbench Threads Benchmark results. 38 threads on 38 logical
Linux CPUs, 500 000 events and 10 locks. Values based on 30 executive runs.

two physical sockets and two NUMA1 nodes. Our test clearly show that the over-
head is greatly reduced in such a system by using atomic instructions. For slice
lengths of both 1ms and 5ms there is a slight decrease in runtime for the atomic
implementation, but the differentce is too small to conclude, since the difference
from the baseline is negligible.

By defining the overhead in this example as the time spent over the baseline,
we see that for a slice length of 1µs, the respective overhead is 190 seconds for
the spinlock implementation and 8 seconds for the atomic implementation. That

1NUMA: Non-uniform memory access
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Figure 5.2: Sysbench Threads Benchmark results. 38 threads on 38 logical
Linux CPUs, 500 000 events and 10 locks. Values based on 30 executive runs.
Spinlock 1µs omitted.

means that our proposed technique reduce the overhead of CFS bandwidth con-
trol by more than 95% in our experiment.

Since our tests are hammering the scheduler with work, the measurements are
not representative of the overhead users will see in real life. A slice length of
1µs is also not something used in production. It is also important to note that
the runtime measurements are just a proxy value for the overhead. However, it
is the overall runtime we are most interested in, since that is the most important
value for the end-users.





Chapter 6

Mitigating Fairness Issues

In this chapter, we will look at how the fairness issues in the Linux kernel can
cause serious performance issues, and how they are related to CFS bandwidth
throttling. We will investigate their impact, and propose several kernel changes
in order to mitigate these issues. We see that in some circumstances, these issues
lead to a fairness skew that can cause programs to take more than 170 times
their predicted execution time. Our mitigation techniques solves this issues, and
removes this fairness skew. Depending on the configuration, we also see that
these issues can cause even more significant performance decreases, depending
on the number of logical Linux CPUs, and the depth of the control group hier-
archy.
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6.1 Introduction

As described in Section 3.1.1, the calculation used in order to ensure global fair-
ness between control groups is a complex and expensive procedure. Ensuring
this calculation is as precise and performant as possible is essential, as long as it
stays correct. It is also crucial that the load is adequately decayed to ensure that
the old load will not interfere with fairness at a later stage.

This is getting increasingly more complex when dealing with the load on local
pools throttled by CFS bandwidth.

During our research on how throttling interferes with fairness, we identified
three separate bugs related to fairness. All bugs cause severe fairness problems,
in the long run, often resulting in a complete stall where processes essentially
stop. A common factor for all of the discovered issues is that they are all hard
to discover without looking explicitly, since there is no simple way to discover
them from userspace. Without using introspection into the kernel, the only way
to spot the issues is to inspect the debug file /proc/sched_debug, and use that
information to infer that there is a problem.

6.2 Discovered Issues

We divide these issues into three separate but related issues, each causing severe
fairness problems.

6.2.1 Process Moved Into A New Control Group

The first of the discovered fairness issues we found during this research is a fair-
ness issue caused by a new process moved into a control group, and then moved
to another logical Linux CPU before it was enqueued for execution. As seen in
Section 3.1.1, the CFS scheduler keeps an internal list of active scheduling en-
tities in order to make sure they are adequately decayed. In order to keep this
list updated, scheduler entities are appended whenever one of their descendant
processes is enqueued and ready for execution. When moving a process into a
control group, the corresponding scheduler entity was not appended to this list.

However, when a process is moved into a group, its load is automatically added
to the scheduling entity it is connected to, and then later propagated to the full
CFS red-black tree. This is done to make the prioritization between processes
and groups correct. In turn, this resulted in a situation where the scheduling
entity was not added to the global list, and its load was never properly decayed.

As seen in Section 2.4.2, weighted group scheduling uses the total load of a con-
trol group when it calculates how much it should advance the virtual runtime of
a scheduling entity. This later results in a fairness skew. Depending on the struc-
ture of the control group hierarchy, the type of load, and the internal weighting
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between sibling control groups in the control group hierarchy, the effects of this
could be pretty substantial.

A way of reproducing can be found in Appendix B.1.

6.2.2 CPU Affinity Triggered Process Move While Throttled

In the same way, as seen in Section 6.2.1, when a throttled process is moved
from one logical Linux CPU to another, with a corresponding move from one
scheduling entity to another, an issue appears. Such a move should, in theory,
work fine, but as described in Section 3.1.1, the scheduling entities connected
to throttled local pools are being removed from this list. During unthrottle of
a local pool, only scheduling entities with at least one process ready to run are
added back to the list, resulting in a stalled load.

A way of reproducing can be found in Appendix B.2.

6.2.3 Load Not Properly Decayed

In a particular situation where the load of a scheduling entity was almost de-
cayed, but not wholly, the scheduler entity was removed while still contribut-
ing to the overall load of the control group. In the same way, as seen in Sec-
tion 6.2.1 and Section 6.2.2, the scheduler entity ended up in a stalled state
while still containing load.

Overall, this issue is a result of calculation issues in the PELT hierarchy described
in Section 2.4.3, that later results in the scheduling entity being removed from
the list.

A way of reproducing can be found in Appendix B.3.

6.3 Implementation

The implementation of fixes for all the three issues mentioned in Section 6.2 can
be found in Appendix A.3. All fixes ensure that the list of scheduling entities is
updated correctly, ensuring that these issues never occur.

6.4 Results

In the nature of all these CFS bandwidth issues, the impact varies quite extens-
ively depending on many factors. As seen in Section 2.4.2, predicting the de-
sired behavior of the CFS scheduler is straightforward, especially while running
on a single logical Linux CPU.

Since all the issues share the same nature, we use the Sysbench CPU benchmark
as described in Appendix C.2 and Sysbench Threads benchmark as described in
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Appendix C.3 to study the impact of the Process Moved Into A New Control Group
issue described in Section 6.2.1. We use the reproduction script found in Ap-
pendix B.1 to create a control group hierarchy where all processes are limited
to run on a single logical Linux CPU. We then replace one of the stress processes
located in the /slice/cg-1/sub control group with our benchmark. The control
group hierarchy should therefore converge toward what is seen in Figure 6.1.
The synthetic load, the stress processes, are described in Appendix C.4.

/ (root)

slice
Weight: 100
CPU: 100%

cg-1
Weight: 100
CPU: 50%

sub
Weight: 1
CPU: 50%

sysbench
CPU: 50%

cg-2
Weight: 100
CPU: 50%

sub
Weight: 10000
CPU: 50%

stress
CPU: 50%

Figure 6.1: Cgroup hierarchy together with internal weighting, and predicted
CPU load during congestion.

6.4.1 Sysbench CPU Benchmark

Table 6.1: Result of Sysbench CPU Benchmark with 5000 events. (lower dura-
tion is better)

Name Runtime Increase Compared To Prediction
Baseline without load 3.67s N/A
Predicted 7.33s -
Unpatched kernel 1255.8s 17 032%
Patched kernel 7.33s 0%

The test results can be found in Table 6.1. The runtime increase compared to
the predicted runtime of the benchmark is more than 17 000%.
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6.4.2 Sysbench Threads Benchmark

Table 6.2: Result of Sysbench Threads Benchmark with 5000 events. (lower
duration is better)

Name Benchmark duration Increase Compared To Prediction
Baseline without load 2.35s N/A
Predicted 4.70s -
Unpatched kernel 456.6 9 615%
Patched kernel 4.85s 3.19%

The test results can be found in Table 6.2. The runtime increase compared to
the predicted runtime of the benchmark is more than 9 615%.

6.5 Discussion

/ (root)

slice
Weight: 100
CPU: 100%

cg-1
Weight: 100
CPU: 0.3%

sub
Weight: 1
CPU: 0.3%

sysbench
CPU: 0.3%

cg-2
Weight: 100
CPU: 99.7%

sub
Weight: 10000
CPU: 99.7%

stress
CPU: 99.7%

Figure 6.2: Cgroup hierarchy together with internal weighting, and actual CPU
load during the test.

Upon investigation, the actual distribution of CPU time between the stress- and
the benchmark processes is fairly skewed, as seen in Figure 6.2.

Even though the impact of these issues is varying, we see that it, in some cases,
can be astronomical. For the Sysbench CPU Benchmark with 5000 events, which
should take a bit over 7 seconds, ends up taking more than 1200. Such fair-
ness skew will make low priority batch jobs take CPU time from other latency-
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sensitive workloads, essentially stalling them. The same applies to user-facing
processes on mobile devices, where a simple operation could end up taking al-
most 100 times longer than expected. As the nature of this fairness issue, we
see that this priority skew will increase linearly with the amount of logical Linux
CPUs that have an undecayed load, together with the depth of the control group
hierarchy. This issues could therefore possibly make programs run 100x, 1000x
or even 10 000x slower than what they are supposed to do. This effectively
means we can tinker with the control group hierarchy by starting processes a
specific way, causing the issue to keep growing.

Another important aspect is that these issues affect real workloads, since all
Linux users are effectively using these control group APIs. As these issues can be
easily reproduced on both desktops and servers, and with most of the modern
container runtimes used, this is affecting many end-users without them know-
ing. Kubernetes [13] highly depends on these container runtimes and on the
low-level APIs provided by the kernel in general, making it highly plausible that
this is affecting all modern cloud providers and users of them. Although these is-
sues only surface during resource congestion, they will also result in preemption
of critical and latency-sensitive processes even in times without much conges-
tion. In the worst case, these issues could cause stalling of processes, essentially
disallowing them to run, potentially causing fatal consequences.
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Chapter 7

Discussion

Our proposed changes have proven to reduce overhead and improve overall per-
formance. In this chapter, we will discuss how the results relate to our research
goals and how they affect end users of the Linux kernel.

7.1 Research Goals

The research goals for this research were all about improving performance, re-
ducing overhead, and ensuring fairness in the Linux scheduler, as thoroughly
described in Section 1.1. Although the Linux scheduler is a complex piece of
code, we have shown that there are possible improvements and the fact that
there are bugs, as in all other software projects.

As represented in the result section of Chapter 4, our proposed changes for re-
ducing the unnecessary throttling and reaching our research goal G1 showed
promising results. Using the default configuration, a CFS bandwidth period of
100ms, our test removed all unnecessary throttling when we used the same
amount of processes as the CFS quota was equivalent to. This reduced the vari-
ance in runtime significantly, and decreased the runtime of about 3% on an oth-
erwise busy system.

In Chapter 5 we proposed a patch for reducing the CFS bandwidth overhead, as
described in research goal G2. In our synthetic scheduler benchmark, our test-
ing showed a 95% decrease in the overhead of CFS bandwidth control, possibly
improving both performance and latency, especially on big servers.

Last, research goal G3, about the effect all this gives on fairness. As seen with
G1 in Chapter 4, throttling does indeed interfere with the fairness on otherwise
busy systems, as described in Section 3.3.3. As seen in Chapter 6, the impact of
the fairness issues found in the scheduler is also reasonably huge.
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7.2 End User Implications

All our proposed changes have improved overall performance without introdu-
cing new APIs that need to be enabled or configured. This means that all the
benefits can be achieved right away, by all end users of Linux. This is especially
true for the fairness improvements described in Chapter 6, since that applies
to all users of Linux. Even though measuring the final impact is impossible, all
users will benefit from it. The CFS bandwidth control improvements will also
benefit servers serving requests for end-users, improving end-to-end latencies on
congested systems.

7.3 Limitations and Critics

There are some limitations with the testing throughout this theses, especially
when it comes to actual real-world workloads. All benchmarks used are syn-
thetic programs designed to test a specific thing, different from real-world work-
loads. Our tests do highlight the change in scheduler performance based on our
metrics, although it might happen that some other parts will suffer more.

Another vital thing to note is that the scheduler does have a massive set of cus-
tomizable knobs that can be tweaked depending on the characteristics of the
workload. As described in Appendix C, all our research has been done with the
kernel configuration CONFIG_HZ=250, making the scheduler tick every 4 milli-
seconds. This is the default in most Linux distributions, while others use =100,
=1000 or =300. As described in Section 2.4, the scheduler is tickless, meaning
the scheduling itself does not rely on these ticks. However, some accounting is
done on these ticks, including the CFS bandwidth accounting. This means that
the unnecessary throttling, in theory, could be less severe with a frequency of
1000Hz and more severe when using 100Hz. Another important thing is that
many defaults depend on the amount of logical Linux CPUs on the system. This
includes a set of parameters in the load balancing algorithm, potentially making
the effect of throttling on busy systems with many logical Linux CPUs even more
severe than we have seen.

Finally, the number of systems tested on is pretty small. The system’s topology
is especially important when measuring the overhead, and more testing of vari-
uous hardware would be beneficial. We have also only been testing on 64-bit
x86 machines, whereas things might behave drastically different on modern
arm servers, as an example. This especially applies to the use of atomic instruc-
tions used to reduce the CFS bandwidth overhead since the implementation of
atomic instructions varies significantly between architectures. Since the runtime
variable is a 64-bit integer, it would also perform better on 64-bit systems since
32-bit architectures without special 64-bit instructions might need custom and
expensive locking logic to atomically update 64 bits of data.



Chapter 8

Conclusion

The overall goal of this research was to reduce the overhead and performance
impact of CFS bandwidth control based on real-world use cases where these
effects come to play. To mitigate these issues, we proposed a set of techniques
to improve these performance aspects of the Linux CFS scheduler. These tech-
niques reduce unnecessary throttling and lower the overhead of the CFS band-
width control functionality in general. Our analysis shows that with the most
common kernel configurations, the runtime of a program could be reduced by
about 3% during CPU congestion, with possibly more on bigger machines. Our
synthetic benchmark also showed that we were able to reduce the overhead of
CFS bandwidth control by about 95%. Our techniques, and their implement-
ations, will be posted to the Linux kernel mailing lists to gather feedback, and
eventually get them merged into the mainline.

Incidentally, we also discovered a set of issues related to fairness in the Linux
scheduler during our research. In both theory and practice, these issues could
stall programs on busy systems, slowing them down by orders of magnitude.
Our analysis shows that we were able to generate real-world situations where
a program took about 170 times longer to execute than expected. We have cre-
ated a set of techniques in order to mitigate the issues, and posted them as patches
on the Linux kernel mailing lists. Some of our patches have already made it to
the mainline kernel, and have been backported to all the officially supported
versions. Others are making their way, together with fixes for other related is-
sues discovered because of our work. ■
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Appendix A

Proposed patches to the Linux
kernel

A.1 Proposed Linux Kernel Patches For Avoiding Throt-
tling

A.1.1 Accounting Slack

Code listing A.1: sched/fair: Add cfs bandwidth slush fund label

1 From 835ff9d7ef2c94ceb9f3d18dae09dbe3b6b9be94 Mon Sep 17 00:00:00 2001
2 From: Odin Ugedal <odin@uged.al>
3 Date: Mon, 26 Apr 2021 11:24:31 +0200
4 Subject: [PATCH] sched/fair: Add cfs bandwidth slush fund
5
6 Signed-off-by: Odin Ugedal <odin@uged.al>
7 ---
8 kernel/sched/fair.c | 22 +++++++++++++++++++---
9 kernel/sched/sched.h | 2 ++

10 2 files changed, 21 insertions(+), 3 deletions(-)
11
12 diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
13 index cbcb770f696c..71c9f9e8b158 100644
14 --- a/kernel/sched/fair.c
15 +++ b/kernel/sched/fair.c
16 @@ -4623,8 +4623,10 @@ static inline u64 sched_cfs_bandwidth_slice(void)
17 */
18 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
19 {
20 - if (cfs_b->quota != RUNTIME_INF)
21 + if (cfs_b->quota != RUNTIME_INF){
22 + cfs_b->runtime_slush_fund = cfs_b->runtime;
23 cfs_b->runtime = cfs_b->quota;
24 + }
25 }
26
27 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
28 @@ -4636,10 +4638,11 @@ static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct

,→ task_group *tg)

71



72 Odin Ugedal: Master Thesis

29 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
30 struct cfs_rq *cfs_rq, u64 target_runtime)
31 {
32 - u64 min_amount, amount = 0;
33 + u64 min_amount, slush_amount, amount = 0;
34
35 lockdep_assert_held(&cfs_b->lock);
36
37 +
38 /* note: this is a positive sum as runtime_remaining <= 0 */
39 min_amount = target_runtime - cfs_rq->runtime_remaining;
40
41 @@ -4647,6 +4650,14 @@ static int __assign_cfs_rq_runtime(struct cfs_bandwidth *

,→ cfs_b,
42 amount = min_amount;
43 else {
44 start_cfs_bandwidth(cfs_b);
45 + if (cfs_rq->nr_periods != cfs_b->nr_periods) {
46 + slush_amount = min(cfs_b->runtime_slush_fund,
47 + (u64) -cfs_rq->runtime_remaining);
48 + cfs_b->runtime_slush_fund -= slush_amount;
49 + cfs_rq->runtime_remaining += slush_amount;
50 + cfs_rq->nr_periods = cfs_b->nr_periods;
51 + min_amount = target_runtime - cfs_rq->runtime_remaining;
52 + }
53
54 if (cfs_b->runtime > 0) {
55 amount = min(cfs_b->runtime, min_amount);
56 @@ -5291,13 +5302,18 @@ static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
57
58 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
59 {
60 + int overrun;
61 lockdep_assert_held(&cfs_b->lock);
62
63 if (cfs_b->period_active)
64 return;
65
66 cfs_b->period_active = 1;
67 - hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
68 + overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
69 + if (overrun){
70 + __refill_cfs_bandwidth_runtime(cfs_b);
71 + cfs_b->nr_periods++;
72 + }
73 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
74 }
75
76 diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
77 index 10a1522b1e30..15debeeeeb6b 100644
78 --- a/kernel/sched/sched.h
79 +++ b/kernel/sched/sched.h
80 @@ -357,6 +357,7 @@ struct cfs_bandwidth {
81 ktime_t period;
82 u64 quota;
83 u64 runtime;
84 + u64 runtime_slush_fund;
85 s64 hierarchical_quota;
86
87 u8 idle;



Chapter A: Proposed patches to the Linux kernel 73

88 @@ -587,6 +588,7 @@ struct cfs_rq {
89 #ifdef CONFIG_CFS_BANDWIDTH
90 int runtime_enabled;
91 s64 runtime_remaining;
92 + s64 nr_periods;
93
94 u64 throttled_clock;
95 u64 throttled_clock_task;
96 --
97 2.31.1

A.1.2 CFS bandwidth Config

Code listing A.2: sched/fair: Make CFS bandwidth updates with same values a
NOP

1 From cc6f7b5a0b5236e7a346093bc754214d39a98582 Mon Sep 17 00:00:00 2001
2 From: Odin Ugedal <odin@uged.al>
3 Date: Sun, 6 Jun 2021 14:24:38 +0200
4 Subject: [PATCH] sched/fair: Make CFS bandwidth updates with same values a NOP
5
6 Signed-off-by: Odin Ugedal <odin@uged.al>
7 ---
8 kernel/sched/core.c | 5 +++++
9 1 file changed, 5 insertions(+)

10
11 diff --git a/kernel/sched/core.c b/kernel/sched/core.c
12 index 98191218d891..6c26b31d0635 100644
13 --- a/kernel/sched/core.c
14 +++ b/kernel/sched/core.c
15 @@ -8982,6 +8982,11 @@ static int tg_set_cfs_bandwidth(struct task_group *tg, u64

,→ period, u64 quota)
16 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
17 return -EINVAL;
18
19 + /* Ignore update in case both quota and period stays the same */
20 + if (quota == cfs_b->quota && period == ktime_to_ns(cfs_b->period)){
21 + return ret;
22 + }
23 +
24 /*
25 * Prevent race between setting of cfs_rq->runtime_enabled and
26 * unthrottle_offline_cfs_rqs().
27 --
28 2.31.1

A.2 Proposed Linux Kernel Patches Reducing CFS Band-
width overhead

A.2.1 Replacing Global Pool Spinlock

Code listing A.3: sched/fair: Add atomic runtime handling

1
2 From 62aa35bd5f85d9b300546671c591d23a516722a9 Mon Sep 17 00:00:00 2001
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3 From: Odin Ugedal <odin@uged.al>
4 Date: Tue, 27 Apr 2021 09:51:20 +0200
5 Subject: [PATCH] sched/fair: Add atomic runtime handling
6
7 Signed-off-by: Odin Ugedal <odin@uged.al>
8 ---
9 kernel/sched/fair.c | 96 ++++++++++++++++++--------------------------

10 kernel/sched/sched.h | 4 +-
11 2 files changed, 42 insertions(+), 58 deletions(-)
12
13 diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
14 index 794c2cb945f8..8509bb875d93 100644
15 --- a/kernel/sched/fair.c
16 +++ b/kernel/sched/fair.c
17 @@ -4605,7 +4605,8 @@ static inline u64 sched_cfs_bandwidth_slice(void)
18 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
19 {
20 if (cfs_b->quota != RUNTIME_INF)
21 - cfs_b->runtime = cfs_b->quota;
22 + atomic64_set(&cfs_b->runtime, cfs_b->quota);
23 +
24 }
25
26 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
27 @@ -4617,41 +4618,27 @@ static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct

,→ task_group *tg)
28 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
29 struct cfs_rq *cfs_rq, u64 target_runtime)
30 {
31 - u64 min_amount, amount = 0;
32 -
33 - lockdep_assert_held(&cfs_b->lock);
34 + s64 old, amount;
35 + int ret = 1;
36
37 - /* note: this is a positive sum as runtime_remaining <= 0 */
38 - min_amount = target_runtime - cfs_rq->runtime_remaining;
39 + amount = (target_runtime - cfs_rq->runtime_remaining);
40 + old = atomic64_fetch_sub(amount, &cfs_b->runtime);
41
42 - if (cfs_b->quota == RUNTIME_INF)
43 - amount = min_amount;
44 - else {
45 - start_cfs_bandwidth(cfs_b);
46 -
47 - if (cfs_b->runtime > 0) {
48 - amount = min(cfs_b->runtime, min_amount);
49 - cfs_b->runtime -= amount;
50 - cfs_b->idle = 0;
51 - }
52 + if (unlikely(old < amount)){
53 + amount = max(old, (s64) 0);
54 + ret = (cfs_rq->runtime_remaining + amount) > 0;
55 }
56
57 cfs_rq->runtime_remaining += amount;
58 -
59 - return cfs_rq->runtime_remaining > 0;
60 + return ret;
61 }
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62
63 /* returns 0 on failure to allocate runtime */
64 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
65 {
66 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
67 - int ret;
68
69 - raw_spin_lock(&cfs_b->lock);
70 - ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
71 - raw_spin_unlock(&cfs_b->lock);
72 -
73 - return ret;
74 + return __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
75 }
76
77 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
78 @@ -4911,7 +4898,7 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
79 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
80 {
81 struct cfs_rq *cfs_rq;
82 - u64 runtime, remaining = 1;
83 + u64 remaining = 1;
84
85 rcu_read_lock();
86 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
87 @@ -4926,19 +4913,11 @@ static void distribute_cfs_runtime(struct cfs_bandwidth *

,→ cfs_b)
88 /* By the above check, this should never be true */
89 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
90
91 - raw_spin_lock(&cfs_b->lock);
92 - runtime = -cfs_rq->runtime_remaining + 1;
93 - if (runtime > cfs_b->runtime)
94 - runtime = cfs_b->runtime;
95 - cfs_b->runtime -= runtime;
96 - remaining = cfs_b->runtime;
97 - raw_spin_unlock(&cfs_b->lock);
98 -
99 - cfs_rq->runtime_remaining += runtime;

100 -
101 - /* we check whether we’re throttled above */
102 - if (cfs_rq->runtime_remaining > 0)
103 + if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)){
104 unthrottle_cfs_rq(cfs_rq);
105 + } else {
106 + remaining = 0;
107 + }
108
109 next:
110 rq_unlock_irqrestore(rq, &rf);
111 @@ -4977,7 +4956,7 @@ static int do_sched_cfs_period_timer(struct cfs_bandwidth *

,→ cfs_b, int overrun, u
112
113 if (!throttled) {
114 /* mark as potentially idle for the upcoming period */
115 - cfs_b->idle = 1;
116 + cfs_b->idle = 0;
117 return 0;
118 }
119
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120 @@ -4987,11 +4966,8 @@ static int do_sched_cfs_period_timer(struct cfs_bandwidth *
,→ cfs_b, int overrun, u

121 /*
122 * This check is repeated as we release cfs_b->lock while we unthrottle.
123 */
124 - while (throttled && cfs_b->runtime > 0) {
125 - raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
126 - /* we can’t nest cfs_b->lock while distributing bandwidth */
127 + while (throttled && atomic64_read(&cfs_b->runtime) > 0) {
128 distribute_cfs_runtime(cfs_b);
129 - raw_spin_lock_irqsave(&cfs_b->lock, flags);
130
131 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
132 }
133 @@ -5068,19 +5044,24 @@ static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
134 if (slack_runtime <= 0)
135 return;
136
137 - raw_spin_lock(&cfs_b->lock);
138 - if (cfs_b->quota != RUNTIME_INF) {
139 - cfs_b->runtime += slack_runtime;
140 -
141 - /* we are under rq->lock, defer unthrottling using a timer */
142 - if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
143 - !list_empty(&cfs_b->throttled_cfs_rq))
144 - start_cfs_slack_bandwidth(cfs_b);
145 - }
146 - raw_spin_unlock(&cfs_b->lock);
147
148 - /* even if it’s not valid for return we don’t want to try again */
149 + atomic64_add(slack_runtime, &cfs_b->runtime);
150 cfs_rq->runtime_remaining -= slack_runtime;
151 +
152 + /*
153 + * Atomic runtime does not support the slack timer currently,
154 + * since it would require locking the global cfs_b. The plan is
155 + * to lower overhead to make this unneccecary.
156 + *
157 + * if (cfs_b->quota != RUNTIME_INF) {
158 + * cfs_b->runtime += slack_runtime;
159 + *
160 + * // we are under rq->lock, defer unthrottling using a timer
161 + * if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
162 + * !list_empty(&cfs_b->throttled_cfs_rq))
163 + * start_cfs_slack_bandwidth(cfs_b);
164 + * }
165 + */
166 }
167
168 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
169 @@ -5100,7 +5081,7 @@ static __always_inline void return_cfs_rq_runtime(struct

,→ cfs_rq *cfs_rq)
170 */
171 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
172 {
173 - u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
174 + u64 runtime = 0;//, slice = sched_cfs_bandwidth_slice();
175 unsigned long flags;
176
177 /* confirm we’re still not at a refresh boundary */
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178 @@ -5112,8 +5093,9 @@ static void do_sched_cfs_slack_timer(struct cfs_bandwidth *
,→ cfs_b)

179 return;
180 }
181
182 - if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
183 - runtime = cfs_b->runtime;
184 + // Not in use
185 + //if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
186 + // runtime = cfs_b->runtime;
187
188 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
189
190 @@ -5252,7 +5234,7 @@ static enum hrtimer_restart sched_cfs_period_timer(struct

,→ hrtimer *timer)
191 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
192 {
193 raw_spin_lock_init(&cfs_b->lock);
194 - cfs_b->runtime = 0;
195 + atomic64_set(&cfs_b->runtime, 0);
196 cfs_b->quota = RUNTIME_INF;
197 cfs_b->period = ns_to_ktime(default_cfs_period());
198
199 diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
200 index 10a1522b1e30..9cd93366f076 100644
201 --- a/kernel/sched/sched.h
202 +++ b/kernel/sched/sched.h
203 @@ -35,6 +35,7 @@
204
205 #include <uapi/linux/sched/types.h>
206
207 +#include <linux/atomic.h>
208 #include <linux/binfmts.h>
209 #include <linux/blkdev.h>
210 #include <linux/compat.h>
211 @@ -356,7 +357,6 @@ struct cfs_bandwidth {
212 raw_spinlock_t lock;
213 ktime_t period;
214 u64 quota;
215 - u64 runtime;
216 s64 hierarchical_quota;
217
218 u8 idle;
219 @@ -370,6 +370,8 @@ struct cfs_bandwidth {
220 int nr_periods;
221 int nr_throttled;
222 u64 throttled_time;
223 +
224 + atomic64_t runtime ____cacheline_aligned;
225 #endif
226 };
227
228 --
229 2.31.1
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A.3 Proposed scheduler fairness patches

A.3.1 Process Moved Into A New Control Group

Proposed patch to fix Process Moved Into A New Control Group issue. Sent to the
Linux kernel mailing list [23] for further discussion.

Code listing A.4: sched/fair: Fix unfairness caused by missing load decay

1 From 026a845ef164787921b12085d35b41749a4ce6da Mon Sep 17 00:00:00 2001
2 From: Odin Ugedal <odin@uged.al>
3 Subject: sched/fair: Fix unfairness caused by missing load decay
4 Date: Sun, 25 Apr 2021 10:09:02 +0200
5
6 This fixes an issue where old load on a cfs_rq is not properly decayed,
7 resulting in strange behavior where fairness can decrease drastically.
8 Real workloads with equally weighted control groups have ended up
9 getting a respective 99% and 1%(!!) of cpu time.

10
11 When an idle task is attached to a cfs_rq by attaching a pid to a cgroup,
12 the old load of the task is attached to the new cfs_rq and sched_entity by
13 attach_entity_cfs_rq. If the task is then moved to another cpu (and
14 therefore cfs_rq) before being enqueued/woken up, the load will be moved
15 to cfs_rq->removed from the sched_entity. Such a move will happen when
16 enforcing a cpuset on the task (eg. via a cgroup) that force it to move.
17
18 The load will however not be removed from the task_group itself, making
19 it look like there is a constant load on that cfs_rq. This causes the
20 vruntime of tasks on other sibling cfs_rq’s to increase faster than they
21 are supposed to; causing severe fairness issues. If no other task is
22 started on the given cfs_rq, and due to the cpuset it would not happen,
23 this load would never be properly unloaded. With this patch the load
24 will be properly removed inside update_blocked_averages. This also
25 applies to tasks moved to the fair scheduling class and moved to another
26 cpu, and this path will also fix that. For fork, the entity is queued
27 right away, so this problem does not affect that.
28
29 For a simple cgroup hierarchy (as seen below) with two equally weighted
30 groups, that in theory should get 50/50 of cpu time each, it often leads
31 to a load of 60/40 or 70/30.
32
33 parent/
34 cg-1/
35 cpu.weight: 100
36 cpuset.cpus: 1
37 cg-2/
38 cpu.weight: 100
39 cpuset.cpus: 1
40
41 If the hierarchy is deeper (as seen below), while keeping cg-1 and cg-2
42 equally weighted, they should still get a 50/50 balance of cpu time.
43 This however sometimes results in a balance of 10/90 or 1/99(!!) between
44 the task groups.
45
46 $ ps u -C stress
47 USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
48 root 18568 1.1 0.0 3684 100 pts/12 R+ 13:36 0:00 stress --cpu 1
49 root 18580 99.3 0.0 3684 100 pts/12 R+ 13:36 0:09 stress --cpu 1
50
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51 parent/
52 cg-1/
53 cpu.weight: 100
54 sub-group/
55 cpu.weight: 1
56 cpuset.cpus: 1
57 cg-2/
58 cpu.weight: 100
59 sub-group/
60 cpu.weight: 10000
61 cpuset.cpus: 1
62
63 This can be reproduced by attaching an idle process to a cgroup and
64 moving it to a given cpuset before it wakes up. The issue is evident in
65 many (if not most) container runtimes, and has been reproduced
66 with both crun and runc (and therefore docker and all its "derivatives"),
67 and with both cgroup v1 and v2.
68
69 Fixes: 3d30544f0212 ("sched/fair: Apply more PELT fixes")
70 Signed-off-by: Odin Ugedal <odin@uged.al>
71 ---
72 kernel/sched/fair.c | 13 +++++++++++++
73 1 file changed, 13 insertions(+)
74
75 diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
76 index 794c2cb945f8..ad7556f99b4a 100644
77 --- a/kernel/sched/fair.c
78 +++ b/kernel/sched/fair.c
79 @@ -10916,6 +10916,19 @@ static void attach_task_cfs_rq(struct task_struct *p)
80
81 if (!vruntime_normalized(p))
82 se->vruntime += cfs_rq->min_vruntime;
83 +
84 + /*
85 + * Make sure the attached load will decay properly
86 + * in case the task is moved to another cpu before
87 + * being queued.
88 + */
89 + if (!task_on_rq_queued(p)) {
90 + for_each_sched_entity(se) {
91 + if (se->on_rq)
92 + break;
93 + list_add_leaf_cfs_rq(cfs_rq_of(se));
94 + }
95 + }
96 }
97
98 static void switched_from_fair(struct rq *rq, struct task_struct *p)
99 --

100 2.31.1

A.4 CPU Affinity Triggered Process Move While Throttled

Proposed patch to fix CPU Affinity Triggered Process Move While Throttled issue.
Sent to the Linux kernel mailing list [24] for further discussion.

Code listing A.5: sched/fair: Correctly insert cfs_rq’s to list on unthrottle
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1 From 026a845ef164787921b12085d35b41749a4ce6da Mon Sep 17 00:00:00 2001
2 From: Odin Ugedal <odin@uged.al>
3 Subject: sched/fair: Correctly insert cfs_rq’s to list on unthrottle
4 Date: Tue, 18 May 2021 14:52:01 +0200
5
6 This fixes an issue where fairness is decreased since cfs_rq’s can
7 end up not being decayed properly. For two sibling control groups with
8 the same priority, this can often lead to a load ratio of 99/1 (!!).
9

10 This happen because when a cfs_rq is throttled, all the descendant cfs_rq’s
11 will be removed from the leaf list. When they initial cfs_rq is
12 unthrottled, it will currently only re add descendant cfs_rq’s if they
13 have one or more entities enqueued. This is not a perfect heuristic.
14
15 This fix change this behavior to save what cfs_rq’s was removed from the
16 list, and readds them properly on unthrottle.
17
18 Can often lead to sutiations like this for equally weighted control
19 groups:
20
21 $ ps u -C stress
22 USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
23 root 10009 88.8 0.0 3676 100 pts/1 R+ 11:04 0:13 stress --cpu 1
24 root 10023 3.0 0.0 3676 104 pts/1 R+ 11:04 0:00 stress --cpu 1
25
26 Fixes: 31bc6aeaab1d ("sched/fair: Optimize update_blocked_averages()")
27 Signed-off-by: Odin Ugedal <odin@uged.al>
28 ---
29 kernel/sched/fair.c | 11 ++++++-----
30 kernel/sched/sched.h | 1 +
31 2 files changed, 7 insertions(+), 5 deletions(-)
32
33 diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
34 index ceda53c2a87a..e7423d658389 100644
35 --- a/kernel/sched/fair.c
36 +++ b/kernel/sched/fair.c
37 @@ -376,7 +376,8 @@ static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
38 return false;
39 }
40
41 -static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
42 +/* Returns 1 if cfs_rq was present in the list and removed */
43 +static inline bool list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
44 {
45 if (cfs_rq->on_list) {
46 struct rq *rq = rq_of(cfs_rq);
47 @@ -393,7 +394,9 @@ static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
48
49 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
50 cfs_rq->on_list = 0;
51 + return 1;
52 }
53 + return 0;
54 }
55
56 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
57 @@ -4742,9 +4745,7 @@ static int tg_unthrottle_up(struct task_group *tg, void *data

,→ )
58 if (!cfs_rq->throttle_count) {
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59 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
60 cfs_rq->throttled_clock_task;
61 -
62 - /* Add cfs_rq with already running entity in the list */
63 - if (cfs_rq->nr_running >= 1)
64 + if (cfs_rq->insert_on_unthrottle)
65 list_add_leaf_cfs_rq(cfs_rq);
66 }
67
68 @@ -4759,7 +4760,7 @@ static int tg_throttle_down(struct task_group *tg, void *data

,→ )
69 /* group is entering throttled state, stop time */
70 if (!cfs_rq->throttle_count) {
71 cfs_rq->throttled_clock_task = rq_clock_task(rq);
72 - list_del_leaf_cfs_rq(cfs_rq);
73 + cfs_rq->insert_on_unthrottle = list_del_leaf_cfs_rq(cfs_rq);
74 }
75 cfs_rq->throttle_count++;
76
77 diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
78 index a189bec13729..12a707d99ee6 100644
79 --- a/kernel/sched/sched.h
80 +++ b/kernel/sched/sched.h
81 @@ -602,6 +602,7 @@ struct cfs_rq {
82 u64 throttled_clock_task_time;
83 int throttled;
84 int throttle_count;
85 + int insert_on_unthrottle;
86 struct list_head throttled_list;
87 #endif /* CONFIG_CFS_BANDWIDTH */
88 #endif /* CONFIG_FAIR_GROUP_SCHED */
89 --
90 2.31.1

A.5 Load Not Properly Decayed

Proposed patch to fix Load Not Properly Decayed issue. Sent to the Linux kernel
mailing list [25] for further discussion.

Code listing A.6: sched/fair: Add tg_load_contrib cfs_rq decay checking

1 From: Odin Ugedal <odin@uged.al>
2 Subject: sched/fair: Add tg_load_contrib cfs_rq decay checking
3 Date: Tue, 18 May 2021 14:52:00 +0200
4
5 Make sure cfs_rq does not contribute to task group load avg when
6 checking if it is decayed. Due to how the pelt tracking works,
7 the divider can result in a situation where:
8
9 cfs_rq->avg.load_sum = 0

10 cfs_rq->avg.load_avg = 4
11 cfs_rq->avg.tg_load_avg_contrib = 4
12
13 If pelt tracking in this case does not cross a period, there is no
14 "change" in load_sum, and therefore load_avg is not recalculated, and
15 keeps its value.
16
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17 If this cfs_rq is then removed from the leaf list, it results in a
18 situation where the load is never removed from the tg. If that happen,
19 the fiarness is permanently skewed.
20
21 Fixes: 039ae8bcf7a5 ("sched/fair: Fix O(nr_cgroups) in the load balancing path")
22 Signed-off-by: Odin Ugedal <odin@uged.al>
23 ---
24 kernel/sched/fair.c | 3 +++
25 1 file changed, 3 insertions(+)
26
27 diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
28 index 3248e24a90b0..ceda53c2a87a 100644
29 --- a/kernel/sched/fair.c
30 +++ b/kernel/sched/fair.c
31 @@ -8004,6 +8004,9 @@ static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
32 if (cfs_rq->avg.runnable_sum)
33 return false;
34
35 + if (cfs_rq->tg_load_avg_contrib)
36 + return false;
37 +
38 return true;
39 }
40
41 --
42 2.31.1



Appendix B

Reproduction Scripts For CFS
Fairness Issues

All reproduction scripts mimic a container runtime spawning two containers
pinned to the same logical Linux CPU, with the same CFS weight. The expected
results is that both processes get 50% of the CPU time.

B.1 Process Moved Into A New Control Group

Script for reproducing Process Moved Into A New Control Group. Also shared on
the Linux kernel mailing lists [26].

Code listing B.1: Reproduction script for Process Moved Into A New Control
Group issue

1 CGROUP=/sys/fs/cgroup/slice
2 CGROUP_TMP=/sys/fs/cgroup/tmp
3 CGROUP_OLD=/sys/fs/cgroup"$(cat␣/proc/self/cgroup␣|␣cut␣-c4-)"
4 CPU=1
5
6 function run_sandbox {
7 local CG="$1"
8 local SUB_WEIGHT="$2"
9 local CMD="$3"

10
11 local PIPE=$(mktemp -u)
12 mkfifo "$PIPE"
13 sh -c "read␣<␣$PIPE␣;␣exec␣$CMD" &
14 local TASK="$!"
15 sleep .01
16 mkdir -p "$CG"/sub
17 tee "$CG"/cgroup.subtree_control <<< "+cpuset␣+cpu"
18 tee "$CG"/sub/cgroup.procs <<< "$TASK"
19 tee "$CG"/sub/cpuset.cpus <<< "$CPU"
20 tee "$CG"/sub/cpu.weight <<< "$SUB_WEIGHT"
21
22 sleep .1

83
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23 tee "$PIPE" <<< sandox_done
24 rm "$PIPE"
25 }
26
27 mkdir -p "$CGROUP"
28 mkdir -p "$CGROUP_TMP"
29 tee /sys/fs/cgroup/cgroup.subtree_control <<< "+cpuset␣+cpu"
30 tee "$CGROUP"/cgroup.subtree_control <<< "+cpuset␣+cpu"
31
32 echo $$ | tee "$CGROUP_TMP"/cgroup.procs
33 tee "$CGROUP_TMP"/cpuset.cpus <<< "0"
34
35 run_sandbox "$CGROUP/cg-1" 1 "stress␣--cpu␣1"
36
37 cat "$CGROUP/cg-1/sub/cgroup.procs" | xargs kill
38 tee "$CGROUP_TMP"/cpuset.cpus <<< "2"
39 run_sandbox "$CGROUP/cg-1" 1 "stress␣--cpu␣1"
40
41 cat "$CGROUP/cg-1/sub/cgroup.procs" | xargs kill
42 tee "$CGROUP_TMP"/cpuset.cpus <<< "2"
43 run_sandbox "$CGROUP/cg-1" 1 "stress␣--cpu␣1"
44
45 tee "$CGROUP_TMP"/cpuset.cpus <<< "1"
46 run_sandbox "$CGROUP/cg-2" 10000 "stress␣--cpu␣1"
47
48 read
49 echo $$ | tee "$CGROUP_OLD"/cgroup.procs
50 killall stress
51 sleep .1
52 rmdir /sys/fs/cgroup/slice/{cg-1{/sub,},cg-2{/sub,},} /sys/fs/cgroup/tmp/

B.2 CPU Affinity Triggered Process Move While Throttled

Script for reproducing Process Moved Into A New Control Group. Also shared on
the Linux kernel mailing lists [27].

Code listing B.2: Reproduction script for CPU affinity triggered process move
while throttled

1 CGROUP=/sys/fs/cgroup/slice
2 TMP_CG=/sys/fs/cgroup/tmp
3 OLD_CG=/sys/fs/cgroup"$(cat␣/proc/self/cgroup␣|␣cut␣-c4-)"
4 function run_sandbox {
5 local CG="$1"
6 local LCPU="$2"
7 local SHARES="$3"
8 local CMD="$4"
9

10 local PIPE="$(mktemp␣-u)"
11 mkfifo "$PIPE"
12 sh -c "read␣<␣$PIPE␣;␣exec␣$CMD" &
13 local TASK="$!"
14 mkdir -p "$CG/sub"
15 tee "$CG"/cgroup.subtree_control <<< "+cpuset␣+cpu"
16 tee "$CG"/sub/cpuset.cpus <<< "$LCPU"
17 tee "$CG"/sub/cgroup.procs <<< "$TASK"
18 tee "$CG"/sub/cpu.weight <<< "$SHARES"
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19
20 sleep .01
21 tee "$PIPE" <<< sandox_done
22 rm "$PIPE"
23 }
24
25 mkdir -p "$CGROUP"
26 mkdir -p "$TMP_CG"
27 tee "$CGROUP"/cgroup.subtree_control <<< "+cpuset␣+cpu"
28
29 echo $$ | tee "$TMP_CG"/cgroup.procs
30 tee "$TMP_CG"/cpuset.cpus <<< "0"
31 sleep .1
32
33 tee "$CGROUP"/cpu.max <<< "1000␣4000"
34
35 run_sandbox "$CGROUP/cg-0" "0" 10000 "stress␣--cpu␣1"
36 run_sandbox "$CGROUP/cg-3" "3" 1 "stress␣--cpu␣1"
37
38 sleep 2
39 tee "$CGROUP"/cg-0/sub/cpuset.cpus <<< "3"
40
41 tee "$CGROUP"/cpu.max <<< "max"
42
43 read
44 killall stress
45 sleep .2
46 echo $$ | tee "$OLD_CG"/cgroup.procs
47 rmdir "$TMP_CG" /sys/fs/cgroup/slice/{cg-{0,3}{/sub,},}

B.3 Load Not Properly Decayed

Script for reproducing Process Moved Into A New Control Group. Also shared on
the Linux kernel mailing lists [27].

Code listing B.3: Reproduction script for load not properly decayed

1 CGROUP=/sys/fs/cgroup/slice
2
3 function run_sandbox {
4 local CG="$1"
5 local LCPU="$2"
6 local SHARES="$3"
7 local CMD="$4"
8
9 local PIPE="$(mktemp␣-u)"

10 mkfifo "$PIPE"
11 sh -c "read␣<␣$PIPE␣;␣exec␣$CMD" &
12 local TASK="$!"
13 mkdir -p "$CG/sub"
14 tee "$CG"/cgroup.subtree_control <<< "+cpuset␣+cpu"
15 tee "$CG"/sub/cgroup.procs <<< "$TASK"
16 tee "$CG"/sub/cpuset.cpus <<< "$LCPU"
17 tee "$CG"/sub/cpu.weight <<< "$SHARES"
18 tee "$CG"/cpu.max <<< "10000␣100000"
19
20 sleep .1
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21 tee "$PIPE" <<< sandox_done
22 rm "$PIPE"
23 }
24
25 mkdir -p "$CGROUP"
26 tee "$CGROUP"/cgroup.subtree_control <<< "+cpuset␣+cpu"
27
28 run_sandbox "$CGROUP/cg-1" "0" 100 "stress␣--cpu␣1"
29 run_sandbox "$CGROUP/cg-2" "3" 100 "stress␣--cpu␣1"
30 sleep 1.02
31 tee "$CGROUP"/cg-1/sub/cpuset.cpus <<< "1"
32 sleep 1.05
33 tee "$CGROUP"/cg-1/sub/cpuset.cpus <<< "2"
34 sleep 1.07
35 tee "$CGROUP"/cg-1/sub/cpuset.cpus <<< "3"
36
37 sleep 2
38
39 tee "$CGROUP"/cg-1/cpu.max <<< "max"
40 tee "$CGROUP"/cg-2/cpu.max <<< "max"
41
42 read # click enter to cleanup
43 killall stress
44 sleep .2
45 rmdir /sys/fs/cgroup/slice/{cg-{1,2}{/sub,},}



Appendix C

Benchmarks

In this appendix, we describe all the benchmarks used in this research.

All tests have been executed on a desktop machine running Arch Linux [28],
containing an Intel® Core™i5-4670K with 4 non-SMT cores clocked at 4.0GHz,
with a total of 24GiB of memory. The kernel version used is a self compiled
Linux Kernel v5.12.0. All tests have been running with the kernel configuration
parameter CONFIG_HZ=250.

Tests with 38 logical Linux CPUs have been executed on a server with two Intel
Xeon Silver 4114 chips, each with a total of 20 SMT threads clocked at 2.2GHz,
with a total of 128GiB of memory.

All benchmarks have also been executed on an otherwise idle system, unless
otherwise specified, and on a set of exclusive logical Linux CPUs using the cpu-
set control group controller [29]. During all our testing, except for testing the
fairness issues themselves, we have used the patches in Appendix A.3, described
in Chapter 6. We have done this in order to get proper results without fairness
skews.

Together with the output of the benchmarks, we also inspect the CFS bandwidth
metrics described in Section 2.5.1.

C.1 Webserver Latency Benchmark

For testing latency of a real world workload we use a simple webserver written
in go, that does a finite amount of CPU intensive work during each request.

Code listing C.1: Simple go webserver

1 package main
2
3 import (
4 "fmt"

87
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5 "log"
6 "net/http"
7 )
8
9

10 func main() {
11 maxLoad := 1000000
12
13 http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
14 for i := 1; i < maxLoad; i++ {
15 _ = i * i
16 }
17 })
18
19 fmt.Printf("Starting␣server␣at␣port␣8080\n")
20 if err := http.ListenAndServe(":8080", nil); err != nil {
21 log.Fatal(err)
22 }
23 }

For load generation, we use the tool vegeta [30], since it allows for setting a
constant rate of requests sent to the webserver each seconds.

C.1.1 Test Parameters

• Number of processes : The number of OS level processes to use.

◦ Each request will execute in a separate goroutine, a user level thread
implementation. Go has an environment variable GOMAXPROCS that
can control the amount of operating system threads those gorutines
run. Defaults to the amount of available Logical Linux CPUs.

• Request rate: The number of requests per second
• Duration: The duration to run the test for

C.1.2 Test Output

The output of the vegeta tool is a latency histogram that can be visualized with
HdrHistograms [31].

C.2 Sysbench CPU Benchmark

The Sysbench [32] CPU test is a simple CPU benchmark. It consists of a CPU
bound algorithm that calculates prime numbers, and is used as a long lived CPU
bound benchmark.

C.2.1 Test Parameters

• Threads: The number of threads to run on
• Events: The number of events to run, defaults to 10000.
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C.2.2 Test Output

The output is the time spent doing all the computations.

C.3 Sysbench Threads Benchmark

The Sysbench [32] threads test is a thread-based scheduler benchmark. It con-
sists of a set of locks that is locked and unlocked multiple time at each iteration,
and results in a high amount of short program executions and communication
between threads. The test is used as a benchmark for measuring scheduler over-
head.

C.3.1 Test Parameters

• Threads: The number of threads to run on
• Events: The number of events to run, defaults to 10000.
• Locks: The number locks to take each event, defaults to 8.

C.3.2 Test Output

The output is the time spent doing all the computations.

C.4 Synthetic background load

‘stress’ imposes certain types of compute stress on your system

$ stress –help

For creating synthetic background load, we use the stress [33], a simple work-
load generator. Stress spawns as many threads as requested, with each just run-
ning a simple busy loop calculating the square root of a randomly created in-
tegers.
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