
M
engning W

u
D

octoral theses at N
TN

U
, 2021:325

ISBN 978-82-326-5540-3 (printed ver.)
ISBN 978-82-326-6764-2 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (electronic ver.)

D
oc

to
ra

l t
he

si
s Doctoral theses at NTNU, 2021:325

Mengning Wu

Uncertainty of Machine 
Learning-Based Methods for 
Wave Forecast and its Effect on 
Installation of Offshore Wind 
Turbines

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f 

Sc
ie

nc
e 

an
d 

Te
ch

no
lo

gy
Th

es
is

 fo
r 

th
e 

de
gr

ee
 o

f 
Ph

ilo
so

ph
ia

e 
D

oc
to

r
Fa

cu
lty

 o
f E

ng
in

ee
ri

ng
 

D
ep

ar
tm

en
t o

f M
ar

in
e 

Te
ch

no
lo

gy



Uncertainty of Machine 
Learning-Based Methods for 
Wave Forecast and its Effect on 
Installation of Offshore Wind 
Turbines

Thesis for the degree of Philosophiae Doctor

Trondheim, October 2021

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology

Mengning Wu



NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Engineering
Department of Marine Technology

© Mengning Wu

ISBN 978-82-326-5540-3 (printed ver.)
ISBN 978-82-326-6764-2 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (electronic ver.)

Doctoral theses at NTNU, 2021:325

Printed by Skipnes Kommunikasjon AS 

NO - 1598



Abstract

Marine operations, such as offshore lifting and mating, are complex and
highly weather-sensitive. When planning these weather-restricted opera-
tions, it is necessary to determine the operational limits in terms of sea
state variables (i.e., allowable sea states) of the system used in operations.
During the execution phase, the allowable sea states could be compared with
weather forecasts to decide whether the operation should start or not. In
order to do this, it is important to make short-term forecasts of wave condi-
tions that are characterized by significant wave height Hs, peak wave period
Tp and so on. Given that there is inherent uncertainty in weather forecasts,
how to quantify the forecast uncertainty and reflect it when planning and
executing marine operations thus become a key issue.

This thesis first addresses the multi-step-ahead wave forecasting by us-
ing machine learning-based methods. Different time series-based machine
learning (TSML) methods are developed and established, which rely on cor-
relations between data in time series and consist of different pre-processing
techniques, data-driven models and multi-step-ahead strategies. In addition
to the TSML method, a new efficient and reliable forecasting method, called
the physics-based machine learning (PBML) method is proposed by combin-
ing the characteristics of physics-based wave models with machine learning
techniques. In the PBML model, physical knowledge from physics-based
wave models is utilized as a guide for designing inputs and outputs, and
machine learning algorithm is adopted to learn the implicit relationships
between them.

These machine learning-based methods are employed to forecast one-
day-ahead Hs and Tp at the central part of the North Sea. Uncertainty
quantification analysis is carried out to evaluate and compare the forecast
performance of different methods. This is done by calculating conventional
error measures such as RMSE and carrying out statistical analysis of a
pre-defined forecast error factor. Results demonstrate the feasibility of ap-
plying machine learning algorithms to forecast wave conditions. However,
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the forecast uncertainty of TSML methods generally increases with the fore-
cast horizon. Since the data correlation in time series of sea state variables
decreases significantly with the time interval increases, it is difficult to deal
with this phenomenon, whether by changing data-driven models or develop-
ing more complex TSML methods. By comparison, due to the consideration
of physical meaning, the PBML method can generate more accurate wave
forecasts in the whole forecast horizon and the forecast uncertainties are
quite low. Due to the high forecast performance and low computational
cost, the PBML method can be conceived as an efficient tool for wave fore-
casting.

Then the effect of weather forecast uncertainty on marine operations is
investigated. In the thesis, a methodology is proposed to assess the allow-
able sea states for marine operations, with emphasis on considering weather
forecast uncertainty. It consists of uncertainty quantification of weather
forecasts, statistical analysis of system dynamic responses of coupled sys-
tem for marine operations and allowable sea states assessment by means of
response-based criteria. Based on the methodology, a new response-based
alpha-factor αR is derived. This is similar to the α-factor proposed by DNV,
but it accounts for the effect of forecast uncertainties of both Hs and Tp on
the dynamic response of operations. The αR is defined from the perspec-
tive of dynamic response during operation, and depends on the type and
duration of marine operations, the characteristics of dynamic system, the
weather forecasting method, etc. By applying the αR, allowable sea states
in terms of Hs and Tp for the operation can be assessed, taking into account
the weather forecast uncertainty at different lead times.

Finally, the proposed methodology is applied to the blade installation
of offshore wind turbines as a case study. The final mating phase between
the blade root and hub is considered and the crane tip motion, blade root
radial motion and velocity are regarded as the limiting response parameters
to illustrate the usage of the methodology in frequency- and time-domain,
respectively. The αR factors for each limiting parameter are established
separately in terms of sea state scenarios and forecast lead times. The cor-
responding allowable sea states are then assessed. It is found that there is a
significant difference between the allowable sea states with and without con-
sidering weather forecast uncertainty and forecast uncertainties in both Hs

and Tp have important contributions to it. If weather forecast uncertainties
are not included, the allowable sea states would be over-estimated. As the
forecast lead time increases, the allowable sea states gradually decrease.

In summary, the original contributions of this thesis include the estab-
lishment and development of machine learning-based forecasting methods
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for wave forecast, the quantification analysis of weather forecast uncertain-
ties, and the development of a methodology for assessment of allowable sea
states for marine operations including the effect of weather forecast uncer-
tainty. These are meaningful and have great potential applications in marine
operations, which can assist decision-making in the execution phase.
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Chapter 1

Introduction

1.1 Background

The gradual transition away from fossil fuels towards a carbon-neutral so-
ciety is one of the greatest challenges of the 21 century [1]. Over the past
decade, renewable energy, such as wind energy and solar energy, is the
fastest-growing energy source globally. Among them, offshore wind energy
is identified as one of the most promising sources [2] since it is more stable
and stronger, not being exhausted and produce no emissions, and it is also
one of the cheapest ways of generating electricity from renewable energy.
With regard to the wind energy, the majority of wind power is produced
from onshore wind farms at present. However, practical reasons such as
the lack of inexpensive land near major population centers, and visual and
noise pollution caused by large onshore wind turbines undoubtedly limit its
development. In this case, offshore wind energy is highly attractive and has
been developed rapidly in the past decade. From 2009 to 2019, offshore
wind capacity has grown from being 1% of global wind installations to over
10% [3]. Moreover, it is believed that offshore wind energy has great poten-
tial for further development and will continue to expand impressively over
the next two decades [4, 5]. As shown in Figure 1.1, the global cumulative
installed capacity for offshore wind is expected to increase to 228 GW by
2030 and to 1000 GW by 2050 [5].
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Figure 1.1: Wind energy development and future trends [5]

The rapid development of offshore wind will bring greater challenges
to operations related to the installation of offshore wind turbines (OWTs).
Figures 1.2 to 1.4 show the evolutions in the size of OWTs, average water
depth and distance to shore of offshore wind farms, respectively. It is visible
that in order to capture better and stable wind energy, the overall trend of
offshore wind energy is toward larger wind turbines, further offshore and
deeper waters. Depending on the water depth, bottom-fixed wind turbines
and floating wind turbines are the two main types of OWTs at present. The
associated operations related to transportation, installation, maintenance,
replacement and decommissioning, might be concept-dependent and make
the installation of OWTs much more complex and challenging.

Figure 1.2: Size of offshore wind turbines [6]



1.2. Marine operations 3

Figure 1.3: Average water depth of offshore wind farms [7]

Figure 1.4: Average distance to shore of offshore wind farms [7]

1.2 Marine operations

According to the definition in Det Norske Veritas (DNV) [8], marine oper-
ations are non-routine operations of limited duration for handling objects
and vessels in the marine environment during temporary phases. Regard-
ing the offshore industry, activities related to transportation, installation,
inspection, maintenance and decommissioning of offshore structures are dif-
ferent types of marine operations. This thesis will focus on the installation
of OWTs in the case studies. But the overall methodology can be used for
different types of marine operations and marine structures. Accordingly,
prior to an introduction of various operations related to the OWT instal-
lation, a classification of marine operations and a brief overview of marine
operations associated with offshore oil & gas and subsea fields are presented.
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1.2.1 Weather-restricted and -unrestricted operations

For the planning and execution of marine operations, an important param-
eter is the operation duration. The duration, which is referred to as the
operation reference period (TR), is normally defined by Eq. (1.1). Accord-
ing to the duration, marine operations can be typically classified into two
categories, weather-restricted and weather-unrestricted operations [8]. If TR
of an operation is longer than 96 hours and TPOP is longer than 72 hours,
this operation is typically defined as a weather-unrestricted operation. Such
operation must be able to be performed under any weather that may be en-
countered for the season. Hence, long-term statistics of environmental con-
ditions are necessary to establish the corresponding environmental limiting
criteria. That is, environmental conditions that exceed a given probability
need to be considered as the basis for the design of weather-unrestricted
operations. As for the operation with TR less than 96 hours and TPOP
less than 72 hours, it is usually defined as a weather-restricted operation.
When an operation is weather restricted, it could be planned with environ-
mental conditions set by owner, operator or contractor during the planning
phase [8]. In the execution phase, weather forecasts instead of long-term
statistics are crucial for decision-making. When the weather forecasts do
not exceed the limiting criteria within TR, the operation can be executed
safely.

TR = TPOP + TC (1.1)

where TPOP is the planned operation period and TC is the estimated max-
imum contingency time.

1.2.2 Offshore oil & gas

The oil and gas industry deals with the extraction of natural oil and gas
from land (onshore) or water (offshore). In the offshore oil and gas industry,
various marine operations are involved, including towing and installation of
offshore platforms, oil and gas exploration and production, transportation
of the oil and gas to land, etc. Unlike operations on land, marine envi-
ronment is critical for marine operations, such as for the towing operation.
It is well known that offshore platforms are very large and heavy. For ex-
ample, the Troll A platform, built by Norwegian Contractors for Norske
Shell and located at the North sea, has an overall height of 472 meters
and weighs 656,000 tonnes [9]. To install such large and heavy platforms,
offshore structures are usually built onshore to save costs and facilitate
construction. After completion, these structures should be loaded out and
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transported offshore to the installation site. Correspondingly, sea trans-
port of self-floating objects or large structures by the use of tugs or heavy
lift vessels (HLVs) are necessary. Two types of sea transport are shown in
Figure 1.5.

(a) Wet tow by a tug [10] (b) Dry tow by a heavy lift vessel [11]

Figure 1.5: Two types of sea transport

(a) Kolskaya (under tow shortly be-
fore it sunk) [12]

(b) Kulluk (aground near Kodiak) [13]

Figure 1.6: Two accidents related to towing operations

Attention should be given to weather conditions during the towing op-
eration. Ignoring or misusing weather information will be prone to lead to
accidents and disasters in towing operations. In 2011 and 2012, accidents
related to towing operations of the drilling rigs ‘Kolskaya’ and ‘Kulluk’ oc-
curred in Arctic waters [13], respectively, which are illustrated in Figure 1.6.
The accidents caused loss of lives and economic losses. Harsh weather was a
common factor in the development of the ‘Kolskaya’ and ‘Kulluk’ accidents
scenarios.
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1.2.3 Subsea operations

Subsea operations are required for installation of subsea production system
(SPS), which is an important component in offshore oil and gas industry. A
SPS is an integrated template located on the sea floor, containing the well
system (such as the subsea tree), the production system (such as manifolds
and subsea processing systems) and the pipeline system (such as tie-ins and
production pipelines) [14], see Figure 1.7.

Figure 1.7: Subsea production systems [15]

To install the SPS, several subsea operations are involved, including
installation of subsea hardware, riser installation, pipelaying and the use
of underwater vehicles such as remotely operated vehicles (ROVs) and au-
tonomous underwater vehicles (AUVs) for subsea inspection, maintenance
and repair operations. For most of these operations, subsea structures are
transferred from the docks of a shipyard to the seabed at the installation
site, that mainly rely on crane and lifting operations. For the lifting op-
eration, subsea modules are lifted off from the deck and hanged in air,
lowered through the splash zone, and then lowered further in deep water
and landed on the sea bed [16]. This operation, which is illustrated in Fig-
ure 1.8 requires a high level of precision and control, to ensure the alignment
of modules on the seabed and avoid collisions. However, there are several
challenges during the execution of lifting operations. One of them is harsh
weather conditions [17]. The dynamic nature of marine environment can
cause hydrodynamic loads on subsea modules, especially in the splash zone.
Besides, horizontal offset of subsea modules due to current and the crane tip
motion due to the vessel motion may also happen. These further introduce
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risks and uncertainties in the SPS installation and will have a significant im-
pact on the operational costs and safety at sea. Therefore, decision-making
of these operations in the execution phase should be made carefully and low
sea states are necessary.

Figure 1.8: Illustration of the procedure of subsea lifting operation [18]

1.2.4 Offshore wind turbine installation

As far as the installation of OWTs is concerned, associated marine oper-
ations involve installation of multiple components of OWTs such as foun-
dations, turbine tower, nacelle and blades. Typically operations for each
component are weather-restricted with a duration less than one day, while
it normally takes months for installation of the whole offshore wind tur-
bine farm. Depending on situations like the site condition, foundation type
and turbine size, different installation methods are required in actual OWT
installations. An overview regarding the installation methods of each com-
ponent for OWTs is given below.

1.2.4.1 Installation of foundations

Various types of foundations for OWTs are illustrated in Figure 1.9. Bottom-
fixed and floating OWTs are two main categories. To date, offshore wind
energy market is dominated by bottom-fixed foundations [19]. The most
common types are gravity based foundations (GBFs), monopiles and jack-
ets. Among them, the monopiles have the simplest structure and are widely
used in water depths up to 40 m [20]. GBFs are suitable for shallow water
where water depths less than 10 m [21] and appropriate for the clay, sandy
soil and rock seabed conditions [22]. For relatively deeper waters (50-70
m), the jacket type wind turbine foundations are competitive [23]. Installa-
tion procedures for OWT bottom-fixed foundations are inherited from the
offshore oil and gas industries [24], which are described below:
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Monopile
Monopile is a single steel tube pile. Before installation, it is normally trans-
ported on the deck of crane vessels (e.g., jack-up vessels and HLVs) [25].
Besides, the wet towing method has also been applied to transport a float-
ing monopile [26], which is considered economical as the size and weight of
the monopile increase. Once it arrives at the installation site, the monopile
is lifted-off, upended and lowered to the sea bed by using a crane. After-
wards, a large hydraulic hammer will be used to drive it into the sea bed.

Jacket
Jacket is a foundation that uses a lattice framework with three or four
legs set on the sea floor, which can safely anchor the tower of the wind
turbine [27]. It can be transported in either an upright or horizontal position
on the deck of crane vessels or transportation barges. When on site, the
anchor piles are driven into the seabed using a hammer, which is similar
to the monopile installation. Afterwards, the crane lifts-off, upends (if the
jacket is transported in a horizontal position) and lowers the jacket into
the sea. Then the jacket is mated with the pre-installed piles. Finally, a
grouting mixture is usually used to fill the annulus between the pile and
foundation leg sleeves.

GBF
GBF is a foundation that stands on the seabed with heavy weight (1500-
4500 tonnes) to resist the overturning moment [20]. Due to the limited lift-
ing capacities, the traditional method of using HLVs to install GBF faces
many challenges. Alternatively, the ’float and submerge’ method could be
applied for GBF installation [28]. Specifically, a self-floating GBF is pro-
duced on land and wet-towed using tug-boats to the installation site. By
ballasting and submerging it to the seabed, the installation of the GBF can
be completed.

In addition to bottom-fixed OWTs, floating wind turbines (FWTs) have
attracted intensive commercial and academic interest over the past two
decades, because they tend to be more suitable and cost-effective in deep wa-
ter locations. As illustrated in Figure 1.9 (b), three typical types of FWTs
are spars, semi-submersibles and tension leg platforms (TLPs). Similar to
floating platforms in oil and gas industries, FWTs are based on the restoring
mechanisms for achieving a hydrostatic equilibrium in deep water. Three
restoring mechanisms are shown in Figure 1.10, in which relative positions
of several typical FWT concepts are drawn to show their characteristics.
Among them, three representative FWTs are introduced to describe the
installation procedure of floating foundations for OWTs in the following.
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(a) Bottom-fixed types (monopile, GBF and jacket)

(b) Floating types (spar, semi-submersible and tension leg platform)

Figure 1.9: Schematic of different foundation types for offshore wind tur-
bines [21]
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Figure 1.10: Illustration of FWTs based on the restoring mechanisms [21]
(Hywind [29], WindFloat [30], Tri-floater [31], S [32], FLOATGEN [33],
FLOW [34], GICON-TLP [35])

Spar
Spar is a simple cylindrical column foundation with small waterplane areas.
The world’s first spar FWT, Hywind Demo [36], was installed in 2009. In
the installation procedure, the spar foundation was wet-towed by tugboats
from Finland to Norway and upended by pumping water into it. Then solid
ballasting and water de-ballasting were carried out to install it and maintain
draft, respectively. After installing the spar, the tower and rotor assembly
were mated with it offshore.

Semi-submersible
Semi-submersible is a type of foundation composed of three or four columns,
which has increased waterplane area compared with the spar. Hence, it has
better hydrodynamic behaviour to resist wave loads. Besides, superior towa-
bility is another advantage of semi-submersible FWTs [37]. In recent years,
many semi-submersible foundations [38–42] have been designed, tested or
installed. For instance, for the WindFloat [38], the entire semi-submersible
FWT was assembled on shore in a dry dock and then towed by three tug-
boats to the installation site. With the assistance of an anchor handling
vessel, the whole system was moored at seabed.

TLP
TLP is a floating foundation that keeps station-keeping by anchoring heavy
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steel rods on the seabed using suction anchors or suction caissons [43]. Com-
pared to spar and semi-submersible, the traditional installation procedure
of TLPs is complicated. Normally, the tendons are dry-towed by a cargo
and pre-installed by a crane vessel. Alternatively, they could also be welded
with buoyancy modules and wet-towed to the site together. Then, the towed
assembled TLP FWT is secured to the tendons based on a ballast operation.
Finally, de-ballasting of water is performed to pre-tension the tethers. In
recent years, some new installation methods have been proposed, such as
the installation procedure of GICON TLP [44]. During transportation, a
floating slab was used to support the GICON TLP, and then the whole sys-
tem was towed to the offshore location by a tugboat. By ballasting the slab,
the GICON TLP was submerged to its final draft during the installation.

1.2.4.2 Installation of wind turbine components

In addition to foundations, the installation of OWT substructures is im-
portant. A wind turbine normally consists of six main components, that
are tower, nacelle, hub and three blades [45]. Different from transporta-
tion and installation of foundations, the wind turbine components can only
be dry-towed by crane vessels or transportation barges, and their installa-
tion is mainly based on lifting and mating operations. Compared to the
conventional operations in the offshore oil and gas industries, OWT oper-
ations generally face more challenges. This is mainly because in addition
to wave loads considered in conventional operations, wind loads have a sig-
nificant impact for installation of OWTs due to large installation height.
Presently, the offshore assembly of wind turbine components is normally
required after the foundation is installed. According to the number of pre-
assembled components, different installation methods can be applied, which
have been summarized in various researches [45–47]. Figure 1.11 shows an
example, listing six main installation methods [46]. Among them, onshore
pre-assembly and a single lift procedure (i.e., method 6 in Figure 1.11) is
generally preferred in the past, since it reduces the number of offshore lifts
and minimizes offshore assembly. Correspondingly, the challenging oper-
ations such as offshore mating processes will be reduced. However, this
method requires large-capacity cranes. As the size of turbines increases,
this method becomes less competitive and unattractive [48]. In this case,
the installation trend of offshore wind turbines is to assemble more turbine
components offshore, such as methods 1 and 2 in Figure 1.11.
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Figure 1.11: Installation methods for wind turbine components [46]

Tower
Installation of an OWT tower requires lifting and mating operations. Simi-
lar to the installation of monopile foundations, the tower is normally lifted
by a crane vessel and then mated onto a pre-installed foundation. In addi-
tion, some novel ideas of tower assembly installation for OWTs have been
proposed [48,49] with a special subsea structure or an upending frame.

Blade
In recent years, single blade installation has drawn great interests [21]. Refer
to methods 1 and 2 in Figure 1.11, each blade should be lifted separately and
the entire wind turbine installation requires five to six lifts. One advantage
of single blade installation is that the required deck space of installation ves-
sels is small. Nevertheless, there are many challenges during the installation
process. For instance, the blade installation is quite weather-sensitive. Both
wave-induced motion of foundation and installation vessel and wind-induced
blade motion make the blade mating process rather difficult. Therefore, dy-
namic responses of the actual installation process should be studied. Kui-
jken [50] focused on single blade lifting operation and applied the horizontal
single blade mounting (HSBM) technique to study dynamic behaviour of
the blade. Jiang et al. [51] concentrated on the mating process for single
blade installation, and investigated motions of the blade root, hub, guide
pin and flange hole when a blade is mated on a monopile foundation. Zhao
et al. [52–54] conducted a series of studies about offshore blade installation.
They developed an integrated dynamic analysis method for the single blade
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installation and identified critical events and response limiting parameters.
It was found that the final mating phase is critical, and the corresponding
limiting parameters are the blade root radial motion and velocity. In addi-
tion, Verma et al. [55–57] developed an approach to estimate limiting sea
states and operability of the blade lifting operation and conducted impact
analysis on the blade root.

For offshore blade installation, two types of installation vessels are com-
monly employed, which are the jack-up crane vessels and the floating crane
vessels (see Figure 1.12). The jack-up crane vessels can set legs down to
the seabed and then elevate the hull above the sea surface to minimize the
impact of waves. Hence, one obvious advantage is that a stable working
platform is provided for operations like lifting and mating. Small workable
water depth and the large time consumption of the lowering and retrieval
processes of jack-up legs are main drawbacks limiting the usage of jack-up
crane vessels. In this case, the floating crane vessel could be regarded as
an alternative. Compared to jack-up crane vessels, the floating crane ves-
sels can be located and relocated easier and faster during the installation
process. Moreover, due to the wider range of applicable water depths, they
have greater flexibility in marine operations. However, the installation by
floating crane vessels will be more sensitive to waves. When performing op-
erations with floating installation vessels, it is necessary to investigate the
effect of weather conditions on the installation process.

(a) Jack-up crane vessel (Swire Blue
Ocean) [58]

(b) Floating crane vessel (Jan DE
Nul) [59]

Figure 1.12: Installation vessels for offshore wind turbines

1.2.5 Criteria for planning and execution of marine opera-
tions

Marine operations are normally carried out at offshore sites and some key
issues deserve particular attention, such as environmental conditions, struc-
tural integrity, metocean-induced load effects, operational criteria, weather
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forecast, etc. Generally, the planning and execution of an operation must
follow certain guidelines and standards. DNVGL-ST-N001 [60] and ISO
29400:2020 [61] are comprehensive standards that give general guidance for
marine operations. In addition, there are other guidelines focusing on en-
vironmental conditions [62], and for specific marine operations [63, 64] or
offshore structures [65].

The basic criterion for safely performing a marine operation is that dy-
namic responses of the system during the operation should not exceed its
allowable limit [66]. This refers to the operational limit of the operation,
which should be determined in the planning phase. Guachamin Acero et
al. [67] proposed a general methodology for assessment of operational limits
of marine operations using response-based criteria. The methodology con-
sists of the identification of critical events and limiting parameters of a given
operation, dynamic response analysis of limiting parameters for all possible
sea states and estimation of corresponding characteristic values. To assess
dynamic responses, a detailed numerical modeling of actual operations is
required. Depending on the operation properties, frequency domain (FD)
or time domain (TD) method can be applied. In general, for operations
that can be considered under a linear assumption, it is possible to study
the dynamic response in frequency domain to significantly reduce computa-
tional cost. Whereas for complex non-linear systems, time domain response
analysis approach is more suitable. At present, this approach is widely used
to study dynamic responses of operations with floating systems [68–70]. For
instance, Hassan and Soares [71] proposed a novel concept of using a floating
vessel to install a pre-assembled offshore floating wind turbine and studied
it based on time domain simulations. Li et al. [72] studied an over-boarding
operation for a subsea template by performing numerical simulations in time
domain under various sea states. In addition, TD method is also applied to
structural design [73, 74] and fatigue analysis [23, 75, 76] of offshore struc-
tures, planning [77] and operability analysis [67, 78] of marine operations,
etc. By performing numerical simulations of the actual operations, dynamic
responses of the relevant limiting parameters can be analyzed and its char-
acteristic value can be estimated based on extreme value distributions for
a target exceedance probability. According to the comparison between the
characteristic value and the allowable limit of the limiting parameter, oper-
ational limits in terms of environmental variables such as significant wave
height Hs, peak wave period Tp and mean wind speed Uw (i.e., allowable
sea states) of the operation can be assessed. This procedure is illustrated
in Figure 1.13. Regarding the OWT installation, Guachamin Acero et al.
established allowable sea states of transition piece mating [79] and fully as-
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sembled turbine installation [66]. In addition, allowable sea states of the
monopile hammering process and blade mating process were established by
Li et al. [80] and Verma et al. [81], respectively.

Figure 1.13: Criteria for planning and execution of marine operations

Once allowable sea states are assessed, they should be used in combina-
tion with different types of environmental data in planning and execution
phases of marine operations. In the planning phase, long-term historical
data of environmental conditions at an offshore site can be compared with
the allowable sea states to address the operability of an operation. The oper-
ability [66] measures the percentage of available time for execution of a ma-
rine operation during a reference period (e.g., all year, seasons or months).
This is essential for the selection of the suitable season for executing the op-
eration. In addition, if low operability and long downtime are observed, it
is possible to update the relevant equipment and vessel during the planning
phase to further improve the operability. During the execution phase, the
allowable sea states together with weather forecasting can provide a basis
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for operation decision-making. The operation is considered to be safe if the
short-term forecasts of environmental conditions are lower than the allow-
able sea states. According to the comparison results, decisions on whether
to start the operation can be made and specific execution time can be de-
termined.

1.3 Weather forecasting

As aforementioned, weather forecasts are important for execution of weather-
restricted marine operations. In this section, metocean data required for
marine operations is first summarized. Then weather forecasting methods
and application of weather forecasts in marine operations are presented.

1.3.1 Metocean data

Due to the random nature of wind and wave fields, statistical descriptions
are normally used to describe their properties. The most widely used sta-
tistical weather parameters in marine operations are Hs, Tp and Uw, which
describe the wave and wind field characteristics over a certain period of time
(e.g., 1 hour or 3 hours). In order to support different phases of marine op-
erations, three types of metocean data are commonly adopted [82]:r Measurementsr Hindcast datar Forecast data

Among them, long-term historical measurements or hindcast data for
a given site is necessary in the planning phase of marine operations to
provide a description of weather at the location of interest. As illustrated
in Figure 1.13, they are able to assess the operability of an operation by
comparison with the allowable sea states of the operation. Measurements
can be collected by different kind of sensors like satellites, buoys, ships,
radars and so on [83]. Alternatively, long-term hindcast data could also be
possible to use. In addition to the measurements and hindcast data, another
important type of metocean data is the forecast data. At the execution
phase, it is necessary to assist decision-making on whether an operation
can be started and continued safely. The start time of weather-restricted
operations is normally determined by the forecasted weather windows.

Presently, hindcast and forecast data are normally produced by physics-
based numerical models. The difference between hindcasting and forecasting
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regarding waves is briefly illustrated in Figure 1.14. Wave hindcasting [84]
refers to reconstructing the historical wave conditions based on historical
winds by applying numerical wave models. For wave forecasting, numerical
wave models are identical to those used for wave hindcasting. However,
in this case the model must be driven by forecasted wind conditions, in-
stead of its historical values. In order to use hindcast and forecast data,
they should be thoroughly calibrated and validated against measurements to
demonstrate their accuracy. Various institutions have investigated physics-
based numerical models over the years, and validation results have indicated
that hindcast data have sufficient reliability [85–88]. Therefore, if in-situ
measurements are not available, the accuracy of forecast data can also be
evaluated by comparison with high quality hindcast data. Based on the
comparison result, the uncertainty in forecasting models will be assessed.

Figure 1.14: Wave hindcasting vs. forecasting

Regarding weather forecasting, the timescales of forecast data required
for marine operations may differ. In this thesis, forecasting of short-term
environmental statistical variables like Hs and Tp is investigated, and the
overall length of forecast data is one-day-ahead, taking into account the
typical execution time of OWT installations. Given that wave conditions
are more important for marine operations using floating installation vessels,
the main focus of this thesis is wave forecasting. In addition to environmen-
tal statistical variables, some applications also require forecasting of wave
elevations (such as the use of feedforward control in marine operations like
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motion compensation, crane operation, etc.). The corresponding forecast
timescale is seconds ahead [89–92]. This topic is beyond the scope of the
thesis, and the following descriptions of weather forecast refer to the fore-
casting of environmental statistical variables.

1.3.2 Evolution of numerical weather forecasting

Numerical weather forecasting is defined as the application of science and
technology to predict environmental conditions at a given location and time
in the future [93]. Researchers have tried to predict weather based on em-
pirical rules since the 19th century. As early as 1904, Vilhelm Bjerknes [94]
proposed an idea of using a set of equations of fluid mechanics based on
the laws of physics to estimate the state of the atmosphere in the future
through numerical methods. This idea was attempted to be realized manu-
ally by Richardson [95] to predict the global weather in the 1920s. Due to
the scale of the forecast and suitable fast computing was unavailable at the
time, the idea was not successfully implemented until the 1950s by a scien-
tific team [96]. They used the ENIAC digital computer to solve barotropic
vorticity equations numerically [97]. This was the first weather forecast
implemented by computers, that provided a basis for current numerical
weather prediction methods.

Figure 1.15: The schematic of the modern numerical prediction model [98]

Since then, computers have been widely used in the simulation of weather,
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and several groups have begun to engage in the numerical weather predic-
tion [99–102]. With the advent of more powerful computers, the improve-
ment of forecasting methods and the increasement of spatial and temporal
resolutions, numerical weather prediction techniques have been gradually
developed on a global scale. The schematic of the modern numerical weather
forecasting model is given in Figure 1.15. In brief, by dividing the surface
of the Earth into discrete grid cells and entering the current weather condi-
tions as input into the numerical prediction model, approximate solutions of
future state of the weather in each cell are calculated using finite difference
or spectral methods.

1.3.3 Physics-based numerical models

At present, the Numerical Weather Prediction (NWP) is the most popu-
lar physics-based numerical model for wind forecasting. It provides a de-
tailed physical description of the atmosphere by utilizing a set of partial
differential equations called the primitive equations [103]. For some atmo-
spheric processes that are too small-scale or too complex to be explicitly
expressed, NWP models adopt parameterization scheme to represent and
reflect them in the primitive equations. Figure 1.16 provides an illustration
of different parameterized processes approximated in the model. For more
detailed information on parameterization schemes for different processes, re-
fer to [104–106]. To simulate the future state of the atmosphere, the NWP
model uses current observations such as wind speed and pressure at the
bottom, lateral and top of the atmosphere to initialize equations which are
known as the initial boundary conditions. Then the primitive equations are
solved numerically by discretization in space and in time, and atmospheric
parameters such as surface pressure, three-dimensional wind components,
temperature in the future can be obtained.

Regarding wave forecasting, physics-based wave models aim to utilize
physical variables to find precise equations that mimic the behavior of wave
evolution, and then predict the evolution of the wave energy using numerical
techniques. According to the level of parameterization of generation, dissi-
pation and nonlinear wave-wave interactions, the physics-based wave mod-
els can be further classified into first-, second- and third-generations [108].
With the increase of computational capacity, the most mature one, namely
the third-generation wave models has presently become the most powerful
tool for hindcasting and forecasting wave conditions. It applies the wave
energy balance equation for describing the evolution of wave spectra in time,
geographical and spectral spaces. In addition, it does not impose any priori
shapes of the spectrum and considers nonlinear wave-wave interactions [109].
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Figure 1.16: The parameterization processes included in NWP models [107]

The most popular of such models are WAM (Wave Modeling) [109], Wave
Watch III [108], SWAN (Simulating WAves Nearshore) [110] and STWAVE
(Steady State WAve Model) [111]. Among them, WAM and WaveWatch
III are ocean scale models which are predominantly used for predictions
in deep water, while SWAN and STWAVE are coastal or shelf-sea models
which include the wave modifications in the nearshore area and are more
oriented towards predictions in shallow water [112]. To drive physics-based
numerical wave models for wave forecasting, the forecasted mean wind speed
and direction at 10 m above mean sea level are the key inputs. Initial and
boundary conditions of the wave field are also needed. Numerical techniques
such as the finite difference method are employed for spectral wave compu-
tation. Typical forecasted wave parameters are short-term (for example,
one-hour or three-hour) wave spectra, from which Hs and Tp for total sea,
wind-generated sea and swell can be obtained.

Overall, physics-based numerical models can capture deep existing knowl-
edge based on physical phenomena. However, they are complicated math-
ematical systems, which include differential and integral equations, param-
eterization schemes, highly nonlinear empirical expressions, etc. In fact,
selection the perfect parameterization schemes to approximate physical pro-
cesses is challenge. Besides, they normally require large computational and
storage resources, which may limit their applications.

1.3.4 Data-driven models

In addition to the physics-based numerical models, some novel machine
learning algorithms have been proposed and utilized in weather forecasting
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in recent years. Instead of solving differential equations by numerical tech-
niques, machine learning applies data-driven models to provide forecasts by
the relation directly found from the historical time series. Therefore, mod-
eling simplicity and high cost efficiency are their significantly advantages.
One conventional type of data-driven models is the statistical model, such
as the autoregressive (AR) model [113–116], the autoregressive moving aver-
age (ARMA) model [114,117–120] and the autoregressive integrated moving
average (ARIMA) model [121–124], which expresses the future weather as a
linear function of its previous data. However, one issue of statistical models
is that they generally show limitations in modeling nonlinear patterns [125].
For complex systems like the atmospheric and wave conditions, it may not
be enough to express the system as linear functions. By contrast, neural
networks express more comprehensive input-output relationships through a
network on the basis of a large amount of historical data of both inputs
and outputs. This relationship can be a relation between data at different
time steps in a single time series or a relation between different variables
with an implicit physical background. At present, the most popular model
for weather forecasting is the artificial neural network (ANN) [126–135]. In
addition to ANN, wave and wind forecasting by other advanced neural net-
works, such as the recurrent neural network (RNN) [136,136,137], the con-
volution neural network (CNN) [138] and the adaptive-network-based fuzzy
inference system (ANFIS) [139–141], have also been investigated. However,
due to the fluctuation and randomness of weather conditions, most of the
above studies have mainly focused on one-step-ahead forecasting of weather
conditions, while multi-step-ahead forecasting has rarely been studied. Wu
et al. [142] proposed a decomposition-ANFIS method to forecast 24-step-
ahead wind and wave conditions with relatively good performance. Similar
studies [126, 143–145] were also conducted to forecast weather conditions
with multiple forecast steps. Although the time scale of weather forecast-
ing has been expanded to a certain extent, multi-step-ahead forecasting of
weather conditions is typically faced with growing uncertainties. As a re-
sult, the forecast performance of the adopted data-driven models decreased
significantly with the increasing forecast time horizon. This implies that al-
though highly capable of training on data, the complexity and randomness
of wind and waves still challenge the usage of machine learning algorithms.

1.3.5 Application of weather forecasts in marine operations

As aforementioned, in the execution phase of marine operations, it is neces-
sary to use weather forecasts produced from physics-based numerical meth-
ods or machine learning-based methods. The wave and wind forecasting is
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strongly dependent on what input information that are available up to the
current time. In practice, whether it is possible to get real time measure-
ments or numerical data of wave and wind conditions should be considered.
The ideal condition is that all input information up to the current time are
available and accurate. If not, the forecast can only rely on the data up
to a time instant in the past. In this case, there will be additional uncer-
tainty. However, this issue is not addressed and discussed in the thesis. It
is assumed that the weather forecasts utilized in marine operations come
from forecasting models with all accurate and known inputs. In the follow-
ing, three possible applications of weather forecasts in marine operations
are described, that are the system response prediction, operational weather
windows assessment and response-based operational limit correction.

System response prediction
The forecasted variables, such as Hs, Tp, Uw and wave spectrum, can be used
to generate future weather conditions. By means of numerical modelling
and dynamic response analysis, dynamic motion responses (such as crane
tip motion and blade root motion) and structural responses (such as lift
wire tension or stress in structural components) of operation systems can
be predicted under these conditions. According to the properties of the
operation, two kinds of analysis (i.e., frequency-domain and time-domain
response analysis) can be applied. For the former, weather forecasts are
combined with transfer functions of the structure to obtain corresponding
response spectra and response statistics, such as extreme value of a given
reference period. In contrast, for response analysis in time domain, one
has to simulate the operation multiple times under the forecasted weather
condition and obtain time series of responses, and then process them to
get the response spectrum and statistics. Obviously, the quality of weather
forecasts greatly affects the accuracy of system responses.

Weather window assessment
For execution of weather-restricted marine operations, the workable weather
window is essential to assist the operation decision-making. Weather win-
dow is the time interval when marine operations can be performed safely.
Normally, it depends on the duration of an operation, allowable sea states
and weather forecasts. By means of the comparison results between weather
forecasts and allowable sea states, the weather window can be identified.
Once the weather window is provided, it is convenient to decide whether
and when the operation can be safely performed. In this procedure the
quality of weather forecasts is important.

Response-based operational limit correction
In the above two applications, the uncertainty in weather forecasts is not
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taken into account. However, ignoring the weather forecast uncertainty
will increase the risk of marine operations and increase the possibility of
waiting on suitable weather. Furthermore, unpredicted extreme sea states
may even cause accidents and casualties during the operation. Therefore,
the uncertainty in weather forecasts and their effect on marine operations
should be addressed. One possible way is to correct the response-based
operational limit more conservative by evaluating and quantifying weather
forecasts. This is also one of the objectives of this thesis. The description
related to the weather forecast uncertainty will be given in Sec. 1.4

1.4 Weather forecast uncertainty

It is well known that there are uncertainties in weather forecasts, no matter
which forecasting method is employed. The accuracy of weather forecasts
is normally assessed by comparing forecasted data with reference data from
measurements or hindcasts. Then, the forecast error statistics can be cal-
culated to quantify the forecast uncertainty at different forecast lead times.
Typical error statistics include mean value and standard deviation, root
mean square error (RMSE), correlation coefficient, etc.

Furthermore, how to reflect weather forecast uncertainty when perform-
ing marine operations is a key issue. So far, only a few studies have been
published on investigating the effect of weather forecast uncertainty on ma-
rine operations. At present, an alpha-factor α (a normalized factor less than
1) proposed by DNV [146], is normally used to address the uncertainty in
weather forecasts for marine operations. It is determined by evaluating Hs

forecasts and the aim of it is to reduce the initial design limit of Hs to a cer-
tain extent and therefore making the operation limit more conservative. In
practical applications, DNV [8] provides tabulated α-factors for European
waters, allowing users to select one for weather-restricted operations based
on the operation duration, design wave height, the quality of weather fore-
casts, whether meteorologists or measurement equipment are available on
site, etc. The selected factor can subsequently be used to correct the allow-
able Hs to include the weather forecast uncertainty. Following this method,
a similar study was carried out by Wilcken [147] to generate alpha-factors
in the Barents Sea.

Although tabulated alpha-factors for Hs are explicitly given in the stan-
dard, tabulated alpha-factors for other wave variables are not provided. It is
well known that floating offshore structures are increasingly used for marine
operations, and such structures are sensitive to wave periods. For marine
operations involving floating systems, forecast uncertainty in wave periods
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such as Tp is also important and should be taken into account. Furthermore,
the alpha-factor is derived from simple sea state variables without consider-
ing the characteristics of offshore systems. In other words, it is independent
of the type of marine operations. However, the failure of marine operations
is in principle related to the physical response of offshore structures during
operations. The extreme response essentially decides whether a specific op-
eration can be safely performed during the execution phase. Therefore, it is
necessary to define a response-based factor to quantify the effect of forecast
uncertainties in both Hs and Tp on marine operations.

1.5 Aim and scope

The primary aim of the research is to investigate the effect of weather fore-
cast uncertainty on marine operations. In order to achieve this, the main
objectives of this thesis are summarized as follows:r Develop and establish different machine learning-based methods for

multi-step-ahead forecasting of wave conditions.r Assess and compare forecast performance of different forecasting meth-
ods and quantify their forecast uncertainty.r Propose a correction factor to reflect the effect of weather forecast
uncertainty on dynamic responses of the system used for marine op-
erations.r Develop a methodology for assessment of allowable sea states for ma-
rine operations, with emphasis on considering the effect of weather
forecast uncertainty.r Take the blade installation of offshore wind turbines as an example
to verify the methodology. Generate related correction factors, assess
correspondingly allowable sea states and identify workable weather
windows for the blade installation.

The scope of this thesis is shown in Figure 1.17, where main topics and the
interconnection between different parts are illustrated.

The first part focuses on the use of machine learning algorithms to
forecast wave conditions. Two related methods, i.e., the time series-based
machine learning (TSML) method and the physics-based machine learning
(PBML) method are developed and established. With regard to the forecast
horizon, one-step-ahead forecasting is carried out first, in order to verify the
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applicability of machine learning algorithms in the scope of weather forecast.
Afterwards, multi-step-ahead forecasting is performed, to take into account
the operation duration required in the execution of marine operations. On
the basis of the multi-step-ahead forecast results, the forecast uncertainty
at each forecast step of the models is quantified.

Figure 1.17: Scope of the thesis

Subsequently, the effect of weather forecast uncertainty on marine oper-
ations is investigated. By combining uncertainty quantification of weather
forecasts with response-based operational limiting criteria for an operation,
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a correction factor αR is derived and generated in terms of the forecast lead
time. This factor makes the operational limit more conservative by taking
weather forecast uncertainty into account. In addition, a general methodol-
ogy for assessment of allowable sea states for marine operations is proposed,
with emphasis on considering weather forecast uncertainty. It consists of
uncertainty quantification of the sea state forecast, statistical analysis of dy-
namic responses of the coupled system for marine operations and allowable
sea state assessment using response-based criteria.

Finally, based on the methodology, the blade installation for offshore
wind turbines using a semi-submersible crane vessel is performed as a case
study. Typical limiting response parameters, namely the crane tip motion,
and blade root radial motion and velocity are selected to illustrate the fea-
sibility of the method using frequency- and time-domain response analysis
approaches, respectively. The αR of each limiting parameter is generated
first. Then, the allowable sea states of the blade installation are assessed,
including the effect of the weather forecast uncertainty on the operation
decision-making. By comparison the allowable sea states with weather fore-
casts in the execution phase of installation, workable weather windows can
be further identified and selected.

1.6 Thesis outline

This thesis is composed of six chapters. The content of each chapter is
briefly summarized below.

Chapter 1:

This chapter introduces background, aim and scope, and outline of the
thesis. An overview of marine operations, weather forecasting, and weather
forecast uncertainty is also presented.

Chapter 2:

This chapter introduces machine learning-based weather forecasting meth-
ods. A brief introduction of machine learning is given, focusing on the key
issues that should be considered in weather forecasting. Then several ma-
chine learning techniques utilized in the thesis are introduced. Afterwards,
two machine learning-based weather forecasting methods are developed, and
approaches of forecast performance evaluation are presented.Finally, how to
apply machine learning-based weather forecasting methods in reality as well
as their assumption and limitation are discussed.

Chapter 3:

This chapter first presents a brief description of the study area and used
metocean data. Subsequently, weather forecast results based on two types
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of machine learning-based forecasting methods are summarized and their
forecast uncertainties are quantified. In addition, a comparison analysis be-
tween machine learning-based methods and physics-based numerical meth-
ods is performed.
Chapter 4:
This chapter introduces a methodology for developing a response-based
alpha-factor αR and assessing allowable sea state of marine operations con-
sidering weather forecast uncertainty. The key parameters, framework, and
the relevant techniques are also given.
Chapter 5:
The blade installation of offshore wind turbines by a semi-submersible crane
vessel is performed. Following the proposed methodology, the αR factors
of limiting response parameters (i.e., crane tip motion, blade root radial
motion and velocity) are derived respectively. In addition, the allowable sea
states of the blade installation are assessed.
Chapter 6:
Conclusions, highlight of original contributions and recommendations for
future work are provided in this chapter.



28 28



Chapter 2

Machine learning-based
weather forecasting methods

This chapter introduces weather forecasting methods utilized in the thesis,
with an emphasize on adopting machine learning algorithms. It starts from
an overview regarding basic information of machine learning and types of
datasets required for development of data-driven models. Meanwhile, some
key issues in developing weather forecasting methods are highlighted, includ-
ing the selection of input variables and classification of forecast steps. After-
wards, several machine learning techniques are briefly introduced. Two fore-
casting methods, i.e., time series-based machine learning (TSML) method
and physics-based machine learning (PBML) method, are subsequently de-
veloped and established. Application, assumption and limitation of these
weather forecasting methods will be summarized at last.

2.1 Introduction

2.1.1 Machine learning

Machine learning, which belongs to the field of computer science, is the
application of artificial intelligence techniques to automatically learn from
historical data and make predictions of future data. The origin of machine
learning can be traced back to the 1950s. This term was proposed by an
American computer scientist Arthur Samuel in 1959 [148], who defined ma-
chine learning as a ‘Field of study that gives computers the ability to learn
without being explicitly programmed’. Compared with traditional mod-
els with explicit equations, machine learning can quickly and automatically
generate models by analyzing higher-dimensional and more complex data,

29
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finding relationships between the system state variables (i.e., inputs and out-
puts) and then make predictions on new input based on the relationships.
In recent years, with cheaper and more powerful computing processing, the
growing volumes and varieties of available data, as well as affordable data
storage, machine learning has become more popular than ever. At present,
machine learning has been widely used in various fields, such as speech
recognition [149–152], processing images [153–156] and automatically trans-
lations [157–159]. In the field of marine engineering, machine learning has
also tried to be applied to response prediction [160–162], damage detec-
tion [163–165], reliability assessment [166] and fatigue analysis [167,168] of
offshore structures in recent years.

The thesis focuses on exploring and applying machine learning algo-
rithms to forecast wave conditions. The machine learning-based forecasting
model can be simply expressed as Eq. (2.1), in which X and Y are the in-
put and output variables, respectively. For weather forecasting, input and
output variables can be selected relying on the correlation between data of
a single environmental variable, or based on physics so that the selected
input and output variables have a clear physical relationship. This will be
discussed in detail in Sec. 2.1.4. In addition, f is an algorithm that is
employed to learn the mapping function from input to output. In order to
establish f and evaluate the forecast performance of the model, different
types of datasets are required.

Y = f(X) (2.1)

2.1.2 Training, testing and validation sets

According to the purpose of data usage, three types of datasets are required
in machine learning, which are the training data, validation data and testing
data. All of them consist of pairs of inputs and outputs.

r Training data: A set of dataset used to train the model, i.e., to fit
the parameters in f. The corresponding procedure is called training
process.

r Validation data: A set of dataset used to tune the model’s hyper-
parameters, in order to prevent the model from overfitting during the
training process.

r Testing data: A set of dataset used to test the performance of the
trained model. The corresponding procedure is called testing process.
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When using machine learning, the training process needs to be performed
first to learn the model based on the training and validation data. Then the
trained model is checked with a new set of data (i.e., testing data) in the
testing process. In this process, the forecast performance of the models can
be evaluated through comparison between forecasted data and actual data.

2.1.3 Forecast step

For weather forecast based on machine learning algorithm, it is important to
point out the forecast step. According to the number of forecast steps, fore-
casting can be divided into two types, which are one-step-ahead forecasting
and multi-step-ahead forecasting. At present, most of the studies related to
the machine learning-based weather forecast are focused on the former one.
One-step-ahead forecasting only generates one value at the next time step,
and therefore, it provides weather for the time-step immediately following
the current time and no information about the behavior of weather con-
ditions for longer time. In comparison, multi-step-ahead forecasting aims
to generate multiple time steps forecasts in the future, i.e., the future time
series of weather. This is of great significance for marine operations, since
it can provide overall information about the future weather covering their
execution duration. However, multi-step-ahead forecasting is challenging,
since it typically faces a growing amount of uncertainties, such as error
accumulation, lack of enough input information and so on.

2.1.4 Input variable selection

As illustrated in Eq. (2.1), there are two important components required
to be determined, i.e., input and output variables, and machine learning
techniques. The following part discusses the input variable selection, with
special emphasis on issues related to the weather forecast.

The selection of input and output variables is an initial step for develop-
ing a forecasting model and has a significant impact on forecast performance.
Regarding wave forecasting, there could be various options for the input-
output combination. For instance, input and output data can be selected
just based on possible correlation in time series of the forecast variable.
This means that the future data merely depends on its relationship with
the past data, which does not reflect a physical process. In addition, past
data from other variables related to the output variable can be additionally
introduced. Accordingly, the effect of past data of other variables on the
future data of the forecast variable is included, and physical phenomena in
wave fields can be implicitly considered to a certain degree. But in principle,
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the above two options make forecasts by capturing the correlation between
data in one or more time series. Thus, they are called the time series-based
machine learning (TSML) method in the thesis, which are introduced in
Secs 2.1.4.1 and 2.1.4.2, respectively.

Furthermore, the input-output relationship can also be selected based
on explicit physical processes. The method of selecting input and output
through physical phenomena and using machine learning to train the model
and make forecast is called the physics-based machine learning (PBML)
method. From the perspective of wave evolution, variables related to wave
generation may be considered as inputs. If all necessary input information
are included, such system is typically causal that can result into a better
forecasting. However, the completeness of the input variable and availability
of input information should also be taken into account.

According to different input-output combinations, machine learning-
based weather forecasting methods developed in the thesis are classified
into following three types. For the sake of illustration, one-step-ahead Hs

forecasting is taken as an example to describe them respectively in Secs
2.1.4.1 to 2.1.4.3.

r Univariate time series-based machine learning (TSML) method

r Multivariate time series-based machine learning (TSML) method

r Physics-based machine learning (PBML) method

2.1.4.1 Univariate TSML method

This method has been commonly used to make prediction in a wide variety
of industries for years. This is the simplest one of the three, since it only
relies on auto-correlations in a single time series. One example can be seen
in Eq. (2.2), which shows the univariate TSML model for Hs forecasting.
In the equation, t is assumed as the current time. The current data Hs(t)
and past data Hs(t − 1), Hs(t − 2), ... are used as inputs to forecast the
next value Hs(t+ 1).

Hs(t+ 1) = f(Hs(t), Hs(t− 1), ...) (2.2)

For this method, the input data can be selected by checking auto-
correlation functions of the forecast variable, in order to decide how much
information in the past will affect the future data. No physical phenom-
ena is explicitly taken into account in such a model. Wave and wind fields
generally show complex and non-stationary patterns, and the statistical
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variables such as Hs and Tp will change irregularly and dynamically with
time. This makes the weather forecasting much more difficult to handle
compared with other prediction problems. For one-step-ahead forecasting,
the univariate TSML method can perform well. Whereas it may not have
sufficient capacity to provide accurate weather forecasts when the forecast
horizon expands, since the correlation between data in time series will be
decreased significantly.

2.1.4.2 Multivariate TSML method

In addition to considering time series of the forecast variable, it is also
possible to add time series of other variables to assist in forecasting. The
method of using past data of multiple variables as input is called multivariate
TSML method. One example is shown in Eq. (2.3), which uses the past and
current Uw and Hs to forecast future Hs.

Hs(t+ 1) = f(Hs(t), Uw(t), Hs(t− 1), Uw(t− 1), ...) (2.3)

Obviously, compared with the previous method, the multivariate TSML
method adds wind field information (i.e., past and current mean wind
speed data) to help forecast. This means that in addition to using auto-
correlations of data in the Hs time series, the cross-correlation between pre-
vious Uw and future Hs is also considered to build the forecasting model.
Since there is an intrinsic physical relationship between Uw andHs in nature,
the physical properties of the wave field can be included in the forecasting
model to a certain extent by this method. Nevertheless, it essentially be-
longs to a time series forecasting method, not a method based on physical
phenomena.

2.1.4.3 PBML method

The above two methods assume the future Hs can be completely determined
by the past Hs and/or Uw. The lack of causality is a potential disadvantage
of them. Alternatively, the forecasting model can take physical background
into account by applying the primary inputs in physics-based wave models
to design the model structure. With reference to the physics-based wave
forecasting system, two primary inputs are included in the PBML method,
namely the initial condition and the wind forcing. On one hand, the model
is initialized with the wave condition characterized by Hs and Tp at the
current time t. On the other hand, the wind conditions from the past to the
time of forecast, characterized by mean wind speed Uw and wind direction
Du at different time steps, should be involved as the wind forcing in the
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wave forecasting system. By doing these, the input variables of this method
are similar to the physic-based wave models but with the help of machine
learning to make forecast. It should be mentioned that this is a simplifica-
tion of physical modelling because only wind is considered as forcing. The
input wind forcing reflects the physical process of wave generation, while
other processes like wave dissipation and wave-wave interactions considered
in physical modelling could be automatically learned by machine learning
algorithms from data. The corresponding forecasting model based on the
PBML method can be shown in Eq. (2.4).

Hs(t+ 1) = f(Hs(t), Tp(t), Uw(t+ 1), Uw(t), Du(t+ 1), Du(t), ...) (2.4)

Depending on the utilized wind forcing, the PBML model can be a quasi-
static system or a mixed system. If the wind forcing only has the wind speed
and direction at the same time as the output, the PBML model is repre-
sented as a quasi-static system. Besides, it is also possible to additionally
include the wind forcing at several previous time steps before the forecast
step, in attempting to capture the dynamic characteristics of the wind field
(e.g., Uw(t), Du(t) in Eq. (2.4)). In this case, the forecasting model is a com-
bination system, considering both quasi-static and dynamic processes. The
most essential difference between this method and the multivariate TSML
method is that the former adds future forcing as inputs, while the TSML
method only includes past variable information.

2.2 Machine learning techniques

After determining the input and output variables, machine learning tech-
niques should be employed to learn the inherent relationship between them
based on the training data. Several machine learning techniques which are
used for weather forecasting in the thesis are introduced. Firstly, two data
pre-processing techniques are described, that can help to extract the useful
information from the data and improve the learning ability of the model.
Afterwards, four data-driven models utilized for weather forecasting are
presented. Finally, a description of multi-step-ahead forecast strategies is
given.

2.2.1 Data pre-processing

Data pre-processing is a data mining technique whose main purpose is to
transform raw data into an understandable format [169]. In this subsection,
two pre-processing techniques, which are decomposition technique and em-
pirical mode decomposition (EMD), are described separately.
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2.2.1.1 Decomposition technique

The decomposition technique was developed by Athanassoulis and Ste-
fanakos [170], which is able to eliminate the non-stationary influence in
weather prediction process. It converts the initial time series to stationary
ones by extracting the monthly mean value vector and the covariance ma-
trix. Based on this technique, Stefanakos [141,171,172] processed the wind
and wave data and successfully employed adaptive-network-based fuzzy in-
ference system (ANFIS) to make one-step-ahead forecast at the North At-
lantic Ocean. The decomposition model for multivariate time series [173] is
defined as

Y(t) = M(t) + Σ(t) W(t)
(N × 1) (N × 1) (N ×N) (N × 1)

(2.5)

or, in matrix notation

Y1(t)
Y2(t)

...
Yn(t)

...
YN (t)


=



M1(t)
M2(t)

...
Mn(t)

...
MN (t)


+



Σ11(t) Σ12(t) · · · Σ1N (t)
Σ21(t) Σ22(t) · · · Σ2N (t)

...
...

...
...

Σn1(t) Σn2(t) · · · ΣnN (t)
...

...
...

...
ΣN1(t) ΣN2(t) · · · ΣNN (t)





W1(t)
W2(t)

...
Wn(t)

...
WN (t)


(2.6)

where N is the number of time series. Y(t) and W(t) represent the initial
and corresponding stationary time series, respectively. M(t) and Σ(t) are
the monthly mean value vector and the covariance matrix with period of
one year respectively, which represent the ‘seasonal patterns’ of the initial
time series. They can be estimated by averaging the monthly mean values
M3,n(j,m) and the covariance matrix S3,nl(j,m) over J years [174], which
are shown as Eqs. (2.7) and (2.8), respectively. In these two equations,
Yn(j,m, τk) is a re-parameterized expression of Yn(t), shown as Eq. (2.9).

M̃3,n(m) =
1

J

J∑
j=1

M3,n(j,m) =
1

J

J∑
j=1

1

Km

Km∑
k=1

Yn(j,m, τk) (2.7)

S̃3,nl(m) = 1
J

J∑
j=1

S3,nl(j,m) =

1
J

J∑
j=1

√
1
Km

Km∑
k=1

[Yn(j,m, τk)−M3,n(j,m)][Yl(j,m, τk)−M3,l(j,m)] ,

n, l = 1, · · · , N
(2.8)
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
j = 1, · · · , J

Yn(j,m, τk), m = 1, · · · , 12
k = 1, · · · ,Km

 , n = 1, · · · , N (2.9)

where j is the year index, m is the month index and τk is the kth observation
in the mth month. The number of observations in the mth month is Km.

The aim of the decomposition technique is to reduce the seasonal effects
in the metocean data. One example is illustrated in Figure 2.1, where the
initial time series and the corresponding decomposed time series of Hs in
one year are shown in subfigure (a) and (b), respectively. It is visible that
the decomposed time series becomes a zero-mean stochastic process and the
seasonal effects in the data could be reduced to a certain degree. By using
the decomposed time series, it is easier to train the forecasting model and
then generate forecasts.

(a) Initial time series

(b) Decomposed time series

Figure 2.1: Initial and decomposed time series of Hs in one year

2.2.1.2 EMD

Empirical mode decomposition (EMD) is a self-adaptive time series decom-
position technique which usually analyzes non-linear and non-stationary
signals [175]. The basic idea of EMD is to decompose a signal into a set of
oscillatory components called intrinsic mode functions (IMFs) and a residue
by sifting process [176]. An IMF is a complete and nearly orthogonal basis
for the signal and it needs to fulfill two basic conditions:

a) the number of zero-crossings and extremes must be equal or differ at
the most by one in the entire data set;
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b) the mean value of the envelope defined by local minima and the
envelope defined by local maxima is zero at any point in the IMF.

According to the above definitions, an initial time series Y (t) can be
decomposed as

Y (t) =
n−1∑
i=1

Ii(t) + rn(t) (2.10)

where Ii(t) is the ith IMF and rn(t) is the residue of the initial signal.

Figure 2.2: Illustration of using EMD for a Hs time series

Figure 2.2 shows an example of the decomposition result of a Hs time
series based on the EMD. After decomposition, forecasting model for each
IMFs or residue is developed to make forecast. Afterwards, all generated
forecasts will be recombined to get the final result.

2.2.2 Data-driven models

In this subsection, four representative data-driven models are introduced,
which are the autoregressive integrated moving average (ARIMA), artifi-
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cial neural network (ANN), recurrent neural network (RNN) and adaptive-
network-based fuzzy inference system (ANFIS).

2.2.2.1 ARIMA

Autoregressive integrated moving average (ARIMA) model is one classical
forecasting technique based on the time series statistical analysis. It ex-
presses the future data of a variable as a linear combination of its past be-
havior by analyzing the correlation between values in a time series. ARIMA
is the combination of autoregressive (AR), integrated (I) and moving aver-
age (MA) processes. In order to reflect the structure of an ARIMA model,
it is generally denoted as ARIMA (p, d, q), where:

a) p is the order of the AR model, representing the number of lags of
the past data.

b) d is the order of the differencing, which is used to stable the initial
data.

c) q is the order of MA model, representing the number of lags of the
past errors.

An AR model is a model where the output depends linearly on its own
lags and a MA model is the one that the output depends linearly on the
lagged forecast errors. The AR (p) model and MA(q) model can be written
as Eqs. (2.11) and (2.12), respectively.

Y (t) = c+

p∑
i=1

φiY (t− i) + ε(t) (2.11)

Y (t) = µ+

q∑
j=1

θjε(t− j) + ε(t) (2.12)

where Y (t) is the output at time t. Y (t− i) and ε(t− j) are the past data
and white noise error at time t− i and t− j, respectively. φi and θj are the
ith and jth coefficients of the AR and MA models, respectively. c and µ are
a constant value and the mean of the series, respectively.

A typical ARIMA model which expresses the data at time t as a linear
function of previous data and white noise errors can be defined in the form

Ŷ (t) = c+

p∑
i=1

φiŶ (t− i) +

q∑
j=1

θjε(t− j) + ε(t) (2.13)

where Ŷ (t) is the predicted data at time t. It should be noted that the data
Ŷ (t) in Eq. (2.13) are stationary after making a d-order difference to the
initial data. The description of other parameters is the same as above.
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2.2.2.2 ANN

Artificial neural network (ANN) is a typical machine learning algorithm that
mimics the process of biological neurons system for receiving, processing
and transmitting information [177]. Generally, an ANN model consists of
three types of layers, namely an input layer, one or more hidden layers and
an output layer. All layers are composed of several neurons. Neurons in
different layers are simple but highly interconnected, in order to simulate the
processing and transmission of information in the human brain. An ANN
model with one hidden layer is illustrated in Figure 2.3 as an example.

Figure 2.3: Structure of a typical ANN

The input and output layers contain n and p neurons representing the
input and output variables, respectively. The middle layer connecting the
input and output layers is the hidden layer, which contains m neurons. The
neuron in each layer receives input information (from the neurons in the
previous layer based on the corresponding weight, bias and activation func-
tion) and then further propagates it forward to the neurons in the following
layer. Eqs. (2.14) and (2.15) show the calculations of the hidden neuron
and output neuron, respectively.

hj = fjh

(
n∑
i=1

wijxi + bj

)
, j = 1, · · · ,m (2.14)
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yk = gyk

 n∑
j=1

ujkhj + ck

 , k = 1, · · · , p (2.15)

where f and g are activation functions of the hidden and output layers,
respectively. The commonly used types of activation functions are linear,
sigmoid, hyperbolic tangent and so on. wij and ujk are weights from input
neuron xi to hidden neuron hj and from hidden neuron hj to output neuron
yk, respectively. bj and ck are biases of neurons hj and yk, respectively.

During the training process, the optimal weights and biases can be de-
termined by using the error back propagation algorithm [178, 179]. This
algorithm aims to minimize the difference between actual and forecasted
values by updating the weights and biases of the network. In the training
phase, the initial weights and bias are selected arbitrarily. Then, they are
adjusted iteratively to reduce the error rate by an optimization algorithm
(e.g., the gradient descent method). When the overall error is within an ac-
ceptable range, the training process stops and the optimal neural network is
determined. In the subsequent testing phase, the forecasts can be generated
directly by using this optimal neural network with new inputs.

The ANN model has proven to be a powerful tool in a wide variety of
weather applications since the late 1980s. More recently, advanced neural
networks have been proposed to improve the efficiency of the algorithms
and utilize more computational power. Among them, RNN and ANFIS
are two representative networks. The following parts of this subsection will
introduce them separately.

2.2.2.3 RNN

Recurrent neural network (RNN) is an advanced neural network which is
especially designed for analyzing sequential data [180]. Compared to a clas-
sical ANN, RNN can preserve the intrinsic temporal dependencies in the
time series based on the existence of loop structure where the current out-
put depends on the previous hidden neurons. As illustrated in Figure 2.4(a),
xt is the input, yt is the output and ht is the hidden output at time step
t. U , V and W are the input weights, output weights and recurrent layer
weights, respectively. As shown in Eq. (2.16), the hidden state ht is com-
puted not only based on the current input xt, but also on the previous
hidden state ht−1, from which it can make use of the information of the
previous sequence.

ht = tanh(Uxt +Wht−1) (2.16)

where tanh is the hyperbolic tangent function.
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(a) RNN (b) LSTM

Figure 2.4: The structures of RNN and LSTM

However, RNN may suffer from the vanishing gradient problem during
the training process, especially in long sequence [181]. In this case, long
short-term memory (LSTM) as an extended version of RNN and proposed
by Hochreiter and Schmidhuber [182], is able to tackle this problem through
its special structure of hidden layers. In contrast to a standard RNN, three
gate structures, namely forget gate, input gate and output gate, are incor-
porated in the hidden layer in LSTM, to control information flow between
different time steps and avoid the long-term dependencies problem. Fig-
ure 2.4(b) shows a typical structure of LSTM, where it, ft, and ot represent
the input, forget and output gates at time t, respectively. ct and c̃(t) repre-
sent the memory cell and the updated memory cell at time t, respectively.
To be specific, the forget gate ft decides the proportion of old information
to be forgot in the new memory cell ct through Eq. (2.17). The input gate it
and the updated memory cell c̃(t) decide the proportion of new information
to be added in the memory cell ct through Eqs. (2.18) and (2.19), respec-
tively. The output gate ot controls the proportion of new information to be
exported through Eq. (2.20). Based on those, memory cell ct is calculated
by Eq. (2.21). Finally, the output yt can be expressed as Eq. (2.22). In
Eqs. (2.17) to (2.22), σ represents the sigmoid function. w and b are the
weight and bias, respectively.

ft = σ(wfxt + ufht−1 + bf ) (2.17)

it = σ(wixt + uiht−1 + bi) (2.18)

c̃t = tanh(wcxt + ucht−1 + bc) (2.19)

ot = σ(woxt + uoht−1 + bo) (2.20)
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ct = ftct−1 + itc̃t (2.21)

yt = ot tanh(ct) (2.22)

2.2.2.4 ANFIS

Adaptive-network-based fuzzy inference system (ANFIS) is a hybrid model
that is a combination of a fuzzy inference system (FIS) and an ANN. FIS is
a process mapping inputs to an output based on the membership functions
(MFs) and IF-THEN rules. MFs characterize fuzziness, which provides a
measure of the similarity of the element to a fuzzy set. For example, if X is
a universe of discourse (such as Hs) and x is an element of X, then a fuzzy
set O (such as ’High’) on X can be described as Eq. (2.23). In addition,
IF-THEN rules represent the conditional statements containing fuzzy logic
and the expression form is ’If x is A, then y is B’. An example is shown in
Eq. (2.24).

O = {(x, µO(x)) , x ∈ X } (2.23)

where µO(x) is the membership function that is associated with x in fuzzy
set O and expresses the degree to which a value of Hs belongs to set ’high’.
The most common types of MFs are triangular, Gaussian and sigmoid.

IF x1 is S
(1)
r , x2 is S

(2)
r , · · ·

THEN y = prx1 + qrx2 + · · ·
(2.24)

where xi and y are the inputs and output, respectively. S
(n)
r is a linguistic

value (such as ’low’ or ’high’ for Hs), which is represented by a fuzzy set.
pr and qr are parameters that control the rule.

A basic structure of a FIS is illustrated in Figure 2.5, which is generally
composed of four components:

Figure 2.5: Structure of FIS

r Fuzzy knowledge base, that contains the MFs and IF-THEN rules;
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r Fuzzifier, that fuzzifies the crisp inputs into fuzzy inputs by using the
MFs;r Inference engines, that maps fuzzy inputs to fuzzy outputs according
to the IF-THEN rules;r Defuzzifier, that defuzzifies the fuzzy outputs into a crisp output.

In the FIS, parameters in both MFs and IF-THEN rules can only be
determined based on the experience of experts or past available data of the
system. Since they cannot be adjusted automatically and may cause poor
forecast performance, a new strategy called ANFIS was proposed by Jang
[183] that uses ANN together with FIS. In the ANFIS, ANN is introduced to
optimize the parameters of IF-THEN rules and MFs using a hybrid learning
algorithm of the gradient descent and the least-squares estimate. Thus,
ANFIS can make use of the advantages of both FIS and ANN. In practice,
the structure of ANFIS is similar to that of a multi-layer neural network.
ANFIS has an input layer, an output layer and three hidden layers that
are related to MFs and IF-THEN rules. To illustrate it, the structure of
a simple ANFIS that consists of two inputs, namely, x1 and x2, and one
output, namely, y, is presented in Figure 2.6.

In the ANFIS architecture, the first layer is the input layer, which con-
tains crisp inputs x1 and x2. The second layer is the fuzzifying layer, in
which the inputs xi are fuzzified into the membership values µAj(xi) based
on the MFs of linguistic labels Aj , as expressed in Eq. (2.25). This layer
is considered as an adaptive layer since the outputs depend on the param-
eters in the MFs. For example, the MFs, which are denoted as µAj , can be
selected as Gaussian-type functions and their parameters should be deter-
mined.

Oi,j = µAj(xi) , for i, j = 1, 2 (2.25)

If the number of crisp inputs exceeds one, the weight of each rule must be
determined by using fuzzy operators. To estimate the weights, the third
layer is further divided into two layers, which are called the implication
and normalizing layers. In these two layers, the firing strength wi,j and the
normalized firing strength w̄i,j for each rule are calculated by Eqs. (2.26)
and (2.27), respectively.

wi,j =
∏
i

µAj(xi) , for i, j = 1, 2 (2.26)

w̄i,j =
wi,j∑
wi,j

, for i, j = 1, 2 (2.27)
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Figure 2.6: ANFIS architecture

Then, the outcome Ti,j of each rule can be calculated in the defuzzifying
layer using the corresponding IF-THEN rule with specific weights as ex-
pressed in Eq. (2.28). Likewise, this layer is also an adaptive layer because
parameters p, q and r in the IF-THEN rules should be determined based
on the training data.

Ti,j = w̄i,j · yi,j = w̄i,j · (prx1 + qrx2 + rk),
for i, j = 1, 2, k = 1, 2, · · · , i ∗ j (2.28)

By summing all outcomes Ti,j , the overall output y can be finally estimated
based on Eq. (2.29).

y =
∑

Ti,j (2.29)

In this process, an adaptive neural network is applied to determine the
parameters in the two adaptive layers, which is represented by the red cycle
in Figure 2.6. By performing this procedure based on the training data, the
corresponding optimal ANFIS can be identified.
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2.2.3 Multi-step-ahead forecast strategies

For weather forecasting, a key issue is the forecast horizon. Given that
execution of one or a series of continuous marine operations usually takes
a few hours to a few days, forecasting a sequence of weather conditions
in the future (i.e., multi-step-ahead forecasting) is required. Four strategies
used in the thesis for multi-step-ahead forecasting are introduced, which are
named M-1, M-N, M-mN and M-1 slope models. The difference between
these models is the way to select input-output pairs. It’s difficult to con-
clude which model is the best, since all models have their advantages and
disadvantages. To maintain the consistency of the variables, t is assumed
as the current time and X(t) denotes data at time t. Besides, N and M
denote the number of forecast steps (i.e., the forecast horizon) and input
data, respectively.

2.2.3.1 M-1 model

The M-1 model is defined as applying the previous M data of a time series
to forecast the next data based on a one-step-ahead forecasting model, as
shown in Eq. (2.30), in which f1 denotes the M-1 model.

X(t+ 1) = f1(X(t), X(t− 1), · · · , X(t−M + 1)) (2.30)

To obtain N -step-ahead forecasts, the above model needs to be executed
N times recursively. In this procedure, the forecasted value of the previous
step is used as one input for the next step forecasting. The mechanism is
illustrated in Figure 2.7. Considering Hs as an example, after establishing
the M-1 model, one-step-ahead forecast Ĥs(t+ 1) is obtained by:

Ĥs(t+ 1) = f1(Hs(t), Hs(t− 1), · · · , Hs(t−M + 1)) (2.31)

Then, Ĥs(t+ 1) is considered as a part of input data for forecasting the
next-step value Ĥs(t+ 2) based on the same forecasting model f1:

Ĥs(t+ 2) = f1(Ĥs(t+ 1), Hs(t), Hs(t− 1), · · · , Hs(t−M + 2)) (2.32)

The same procedure is repeated N times and correspondingly, Ĥs(t+ 1)
to Ĥs(t + N) are forecasted iteratively. The main advantage of the M-1
model is that it is relatively easy since only one training process is required
for establishing the forecasting model and this model does not change be-
tween steps. Therefore, the computational efficiency is high. However, the
iteration process may lead to accumulated errors since the forecasted data
is also involved in the next step forecasting. Especially when N exceeds M ,
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the input set does not contain any actual data after M -step-ahead forecast-
ing, but only forecasted values. In such cases, the forecasts may suffer from
low performance.

Figure 2.7: Structure of the M-1 model

2.2.3.2 M-N model

In the M-N model, it is necessary to develop specific forecasting models for
each forecast step within the forecast horizon. The model is expressed as:

X(t+N) = fN (X(t), X(t− 1), · · · , X(t−M + 1)) (2.33)

where fN denotes the forecasting model at forecast step N .
Figure 2.8 shows the mechanism of the M-N model. It is seen that the

input set always consists of the last M data up to the current time t in the
time series that are known. Therefore, in contrast to the M-1 model, the M-
N model does not use any forecasted value as input and thus, prevents error
accumulation. However, this model is time-consuming since N models need
to be developed in order to generate N -step-ahead forecasts. In addition,
the correlation between inputs and output gradually weakens asN increases,
thereby increasing the difficulty of learning their relationship.

Figure 2.8: Structure of the M-N model
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2.2.3.3 M-mN model

The previous two models can produce one output each time. By contrast,
the M-mN model is a multiple-output model. The forecasting model is
expressed as Eq. (2.34) and its architecture is sketched in Figure 2.9.

[X(t+1), X(t+2), · · · , X(t+N)] = fmN (X(t), X(t−1), · · · , X(t−M +1))
(2.34)

where fmN denotes the M-mN model.
By means of the M-mN model, the previous M data are used to forecast

the next N values simultaneously. This implies that compared with the
M-1 model, this model can avoid the accumulation of errors. In fact, the
implicit principle between M-N and M-mN models is the same. For some
machine learning algorithms that can only be designed for one output (such
as ANFIS), only the M-N model can be utilized. While for other algorithms
such as ANN and RNN, multi-step-ahead forecasts can be generated by the
M-mN model, which significantly reduces the computational time.

Figure 2.9: Structure of the M-N model

2.2.3.4 M-1 slope model

The M-1 slope model is a relatively complex model by adding a step of man-
ually selecting the input data set. It is similar to the M-1 model, which is
also based on a recursive process to make multi-step-ahead forecasts. How-
ever, there are several differences between these two models in the selection
of training data. In the M-1 model, when forecasting X(t+ 1), all pairs of
inputs and output during the training period are selected as training data
to establish the forecasting model. Afterwards, forecast is made based on
the trained model and current inputs [X(t −M + 1), · · · , X(t)]. By com-
parison, in the M-1 slope model, only data during the training period that
have similar properties to the current inputs can be selected, and pairs of
these selected data together with corresponding output are assembled into
the training dataset. The selection criteria is that historical data need to
have a similar (not exceeding a certain allowable error) value and slope to
the current input, which is simplified illustrated in Figure 2.10. As dis-
played, only limited data (red points), that have similar value and slope
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as the current input (black point), are selected to develop the forecasting
model.

Figure 2.10: Input selection criteria of the M-1 slope model

After establishing the forecasting model based on the selected training
dataset, it is used to perform one-step-ahead forecasting. The forecasted
data X̂(t + 1) is utilized as part of the input to forecast data at next time
step and the training dataset needs to be re-selected. The selection process
is the same. Subsequently, the forecasting model based on the new training
dataset is applied to generate the two-step-ahead forecast. When there is
not enough training data available, the process stops. Otherwise, the process
is iterated until the N -step-ahead forecast, namely, X̂(t + N) is obtained.
For detailed description of the M-1 slope model, refer to Wu et al. [142].

The advantage of this model is that it only extracts historical weather
conditions that have similar characteristics of the value at the current time
to establish the forecasting model, which may remove many irrelevant sea
conditions and improve the forecast efficiency. In addition, compared with
the M-1 model, the M-1 slope model may accumulate less error since the
model will be updated at each step ahead. However, it is more complicated
by involving a judgement process and new models are required to be trained
for different steps ahead forecasting. Besides, another disadvantage is that
there may not be sufficient training data especially for harsh weather, which
will interrupt the training process.

2.3 Forecasting methods

After introducing machine learning techniques, two types of machine learning-
based forecasting methods are developed and established. The first one is
the TSML method, which is consistent with ideas in Secs. 2.1.4.1 and
2.1.4.2. The second one is the PBML method, which is briefly mentioned
in Sec. 2.1.4.3. The following subsections will introduce the details of these
two methods respectively.
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2.3.1 Time series-based machine learning (TSML) method

This section focuses on the TSML method for wind and wave forecasting.
The forecast variables are significant wave height Hs, peak wave period Tp
and mean wind speed Uw. Since the core principle of the TSML method is to
capture the correlation in time series of wave and wind variables, there is not
much difference in forecasting models between different forecast variables.

For multi-step-ahead forecasting, a certain multi-step-ahead strategy
should be involved in the method. Data pre-processing may also be con-
sidered to better capture data properties and reduce forecast complexity.
The flowchart of the TSML method for multi-step-ahead forecasting is il-
lustrated in Figure 2.11. The procedure for developing TSML models is
summarized in the following steps:

r Data preparation

To develop data-driven models, long-term time series need to be pre-
pared. Either hindcast data produced by physics-based numerical
methods or measurements extracted from wave buoys, ships, plat-
forms or satellites can be used. The obtained dataset is divided into
two parts. Most of the data is classified as the training dataset (includ-
ing a small part of data to validate model), and the rest is classified
as the testing dataset.
Afterwards, it is necessary to determine input and output variables
in the training and testing dataset. To forecast mean wind speed Uw,
only past wind information is utilized, which means that inputs are
current and/or past Uw and wind direction Du. One example is shown
in Eq. (2.35). For wave forecasting, the forecast information of Hs

and Tp are desired to be provided. The corresponding input variables
can be solely past wave data (e.g., Eq. (2.36)) or both wave and
wind data (e.g., Eq. (2.37)). Normally, a sensitivity study of differ-
ent input-output combinations is required to determine the optimal
combination.

Uw(t+ 1) = fu(Uw(t), Du(t), Uw(t− 1), Du(t− 1)) (2.35)

Hs(t+ 1) = fh(Hs(t), Hs(t− 1)) (2.36)

Tp(t+ 1) = ft(Hs(t), Uw(t), Tp(t), Hs(t− 1)) (2.37)
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Figure 2.11: Flowchart of the TSML method
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r Model establishment

After preparing training and testing dataset, the TSML model needs
to be determined. The model illustrated in Figure 2.11 includes the
decomposition technique for data pre-processing that is displayed by
green shading. The decomposition technique is utilized to transfer
the initial training data to the stationary one by extracting seasonal
patterns. In practice, the seasonal patterns of future data cannot be
determined in advance, and thus the testing data is converted to the
corresponding stationary data using the seasonal patterns obtained
from the training data. By doing this, the stationary training and
testing data can be prepared, which are applied to establish and assess
the forecasting model, respectively. It should be emphasized that
Figure 2.11 only illustrates an example of the TSML model used in the
thesis. Alternatively, the TSML model can also be established without
data pre-processing or with other data pre-processing techniques such
as EMD.

Subsequently, a certain multi-step-ahead strategy is selected to deter-
mine the input-output pair for each forecast step. Four multi-step-
ahead strategies, i.e., M-1, M-N, M-mN and M-1 slope models can be
selected, and the difference among them can be seen in the red frame
of Figure 2.11.

One data-driven model is then applied to train the input-output re-
lationship. Depending on the characteristics of the forecast variable,
different algorithms can be considered, such as ANN, RNN, ANFIS
and so on. Based on the training data, the forecasting model can be
learned automatically. One should note that it is necessary to con-
duct sensitivity studies on model’s parameters (e.g., the M value, the
number of hidden layers, the number of neurons in each hidden layer,
etc.), in order to determine the optimal model structure for the data.

r Forecast generation

When the forecasting model is trained successfully, the forecast can
be made using the testing data. This can be done by employing the
trained model with new inputs in the testing dataset to generate out-
puts. These outputs are ensembled as forecasted time series. For the
forecasting method including the decomposition technique, the fore-
casted data should be further converted to the one corresponds to the
initial testing data with the seasonal patterns. Finally, the forecasts
are compared with the corresponding true values in the testing dataset
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to evaluate the forecast performance. This will be introduced in Sec.
2.4.

Generally, TSML forecasting methods are highly flexible in adapting to
data. However, it should be pointed out that the establishment of TSML
models lacks a clear physical meaning, and therefore interpretability is iden-
tified as a potential weakness. In this case, another kind of machine learning-
based method, that is the PBML method is further proposed and developed
in the thesis.

2.3.2 Physics-based machine learning (PBML) method

The purpose of this section is to introduce the PBML method for forecasting
wave conditions. As mentioned in Sec. 2.1.4.3, the PBML method selects
input and output variables accounting for physical meaning rather than
purely based on time series analysis. In the thesis, the main consideration
is the physical process of wind generating waves. That is, the wind field
data are the most important input, and their contribution to the wave field
is established through machine learning, so as to achieve the purpose of
forecasting wave data. To train the model, measurements or numerical
data can be used. For measurements, the physical meaning is implicit in
the measured wind and wave data, and machine learning is used to exploit
their relationship. Numerical data are generated through physical modelling
using explicit equations to describe the physical processes, and machine
learning can replace this modelling procedure through pure data processing.
In the study, numerical data are applied and the background of the physics-
based numerical forecasting system is first presented in Sec. 2.3.2.1. After
that, the PBML model is described. It should be mentioned that only
the model establishment part is introduced since other parts (i.e., data
preparation and forecast generation) are similar to those presented in Sec.
2.3.1.

2.3.2.1 Background

At present, forecasting of wave and wind conditions is mainly based on
the physics-based numerical forecasting system, containing physics-based
atmospheric and wave models. The schematic is shown in Figure 2.12,
which illustrates the primary inputs and outputs of the atmosphere-wave
forecasting system. In brief, the atmospheric model belongs to the initial
value problem, in which initial observations are the critical input. For the
wave model, it could be classified as a forced damping problem, where the
main forcing comes from the surface winds.
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Figure 2.12: The sketch of the atmosphere-wave forecasting system

The idea of the atmosphere-wave forecasting system is simplified de-
scribed as follow:

r Apply explicit physical equations and empirical parameterizations to
represent evolutions of the atmosphere and waves

r Import the initial state and/or forcing in the models

r Use different numerical techniques to solve the models in discrete space
and time to estimate the future state of weather conditions

The physics-based numerical forecasting system is complicated. In prac-
tice, it is generally developed and operated by large organizations and insti-
tutions. Correspondingly, professional teams with highly-skilled scientists
are required to simulate and study each components of the models. For
instance, for wind forecasting, the High Resolution Limited Area Model
(HIRLAM) [184] is a NWP forecast system developed by several European
meteorological institutes like Norwegian Meteorological Institute (MET-
Norway), Danish Meteorological Institute (DMI) and so on. Similar NWP
models have also been developed at other centers [185–187]. For wave fore-
casting, different forecast products [188–191] are provided by various insti-
tutes, such as the European Centre for Medium-Range Weather Forecasts
(ECMWF), MET-Norway, National Center for Environmental Prediction
(NCEP) and so on.

Besides, although both physics-based atmospheric and wave models ex-
plicitly simulate physical phenomena, they demand to solve a set of math-
ematical equations describing complex atmospheric and wave conditions
based on numerical techniques. Inevitably, these models would have some
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challenges, such as the difficulty of solving equations, the need for a se-
ries of assumptions and parameterizations, long computational time, large
archive resources and so on. These challenges provide a potential for the
application of the machine learning algorithms, which can be utilized to
avoid these shortcomings and simplify the complicated modeling process.
However, most of data-driven models for wave forecasting are pure time
series-based. Lack of a clear physical background and difficulty in interpre-
tation challenge their reliability. Therefore, a PBML forecasting method is
proposed, which attempts to combine the advantages of both physics-based
wave models and machine learning algorithms.

2.3.2.2 Model establishment

Unlike the TSML model, the PBML model determines its structure with
reference to the physical processes that occur in the wave field. In the model,
physical knowledge from the physics-based numerical model is utilized as a
guide for designing inputs and outputs, and machine learning algorithm is
adopted to learn their relationship automatically. The physics-based wave
model reveals that the wind field is the main energy source of the wave field.
Thus, wind properties such as the mean speed and direction are introduced
as the input variables in the PBML model to forecast wave conditions.
In addition, initial wave boundary conditions are added in the model as
well. The wave-wave interaction and wave dissipation effects are implicit
in the learned relationship. The idea of the PBML method is illustrated in
Figure 2.13 and introduced as follows.

Figure 2.13: Idea of the PBML method
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1) Input and output variables

A typical forecast domain is shown as the blue part in Figure 2.14.
To make N -step-ahead forecasting of wave conditions , Hs and Tp at time
(t + N) at all grid points are the outputs. Hs and Tp at the initial time
t at the highlighted grid points (by the red lines) characterize the initial
wave boundary conditions in the PBML model. Uw and Du at all grid
points covering the past, the current and the whole forecast time horizon are
the wind forcing inputs. These can be obtained from the wind forecasting
models such as NWP models.

Figure 2.14: Illustration of the forecast domain

2) Calculation algorithm

Differently from the action balance equation employed in the physics-
based wave model, the PBML model provides an alternative method, di-
rectly establishing the input-output relationship through machine learning
algorithms. In this process, the computational cost can be significantly de-
creased due to no need to solve partial differential equations by an iteration
process. Several machine learning algorithms are available, such as ANN,
ANFIS and RNN.

3) Creating the forecasting model

After deciding the input and output variables and the calculation al-
gorithm, the forecasting model can be established. To illustrate this, a
N -step-ahead forecasting model of Hs is taken as an example in Eq. (2.38),
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and its architecture is shown in Figure 2.15.

[Hs1(t+N), Hs2(t+N), · · · , Hsn(t+N)]
= fhN (Hs1(t), Tp1(t), · · · , Hsm(t), Tpm(t), Uw1(t+N), Du1(t+N), · · · ,

Uwn(t+N), Dun(t+N), Uw1(t+N − TU + 1), Du1(t+N − TU + 1),
· · · , Uwn(t+N − TU + 1), Dun(t+N − TU + 1))

(2.38)
where t is the current time and N is the forecast step. n and m are the
number of grid points in the forecast domain and along the boundary lines,
respectively. TU is the time range of wind speeds and directions used as
wind forcing.

Figure 2.15: Illustration of the PBML model architecture

As displayed in Eq. (2.38) and Figure 2.15, outputs of the model are
N -step-ahead Hs in the forecast domain. The inputs include the initial
wave boundary conditions (Hs and Tp) at time t and the wind forcing (Uw
and Du) in the forecast domain from (t + N − TU + 1) to (t + N). The
value of TU denotes how many previous steps of wind conditions up to
the forecast step will be used. It should be determined based on sensitivity
studies. fhN represents the forecast system at N -step-ahead, which depends
on the selected machine learning algorithm. In the thesis, ANN is used. In
addition, for the requirement of on-site marine operations, only a small
forecast domain is considered, and the corresponding forecast performance
of the PBML model will be summarized and discussed in the next chapter.
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Figure 2.16: Illustration of forecasted time series generation

2.4 Forecast performance evaluation

2.4.1 Forecasted time series

After the forecasting model is trained successfully, it is utilized to generate
forecasted time series. The procedure is illustrated in Figure 2.16, which
takes 24-step-ahead forecasting as an example. For each case during the
testing period, the trained model is used to forecast next 24 data with
appropriate inputs (depending on the selected input variables and multi-
step-ahead forecast strategy). After one case ends, the next case will start
immediately with new inputs. As a result, each case contains forecasts from
1- to 24-step-ahead, and different cases constitute a continuous forecasted
time series. By comparing the forecasted time series with the actual one
from the testing dataset, the forecast performance of the model at each
forecast step can be evaluated. The performance is generally assessed in
terms of different error metrics. In the thesis, two kinds of metrics are
considered. One is conventional error measures, such as bias and correlation
coefficient. The other one is statistics of forecast errors, from which an
uncertainty model can be established. These will be presented separately
below.
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2.4.2 Error measures

Error measures are commonly used in various meteorological centers to eval-
uate the quality of forecast products. In this thesis, six typical error mea-
sures, namely MAE (mean absolute error), RMSE (root mean square error),
bias, R2 (correlation coefficient), SI (scatter index), MAPE (mean absolute
percentage error) are utilized, which are expressed as Eqs. (2.39) to (2.44).

MAE =
1

n

n∑
i=1

|fi − ai| (2.39)

RMSE =

√√√√ 1

n

n∑
i=1

(fi − ai)2 (2.40)

bias =
1

n

n∑
i=1

(fi − ai) (2.41)

R2 =

n∑
i=1

(fi − f̄)(ai − ā)√
n∑
i=1

(fi − f̄)
2 ·
√

n∑
i=1

(ai − ā)2

(2.42)

SI =

√√√√√√√
n∑
i=1

[
(fi − f̄)− (ai − ā)

]2
n∑
i=1

ai2
(2.43)

MAPE =
1

n

n∑
i=1

∣∣∣∣ai − fiai

∣∣∣∣× 100 (2.44)

where n is the number of forecasts. ai and fi are ith actual and forecasted
data, respectively. ā and f̄ are the mean values of the actual and forecasted
data, respectively.

2.4.3 Forecast errors

Most of above error measures are non-negative and the direction of the
errors is not considered. For marine operations, the direction of forecast
errors in various sea states are of great importance. Ignoring the directions
of the error would increase the risk of decision-making during the execution
phase. Thus, statistical information of forecast errors are applied as well to
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investigate models’ forecast performance. The thesis considers three differ-
ent forecast errors, that are called the forecast error ∆, the forecast error
factor εM and the forecast error ratio ε, expressed as Eqs. (2.45) to (2.47)
respectively. They correspond to the error of the ith forecasted data. When
all errors during the testing period are calculated, an uncertainty model
can be derived on the basis of their statistics. This model uses the mean
value and standard deviation of ∆, εM or ε to quantify the uncertainties
in weather forecasts at each time step. In addition to the error measures
in Sec. 2.4.2, this uncertainty model is necessary for studying the effect of
weather forecast performance on marine operations.

∆i = fi − ai (2.45)

εMi =
fi − ai
ai

(2.46)

εi =
ai
fi

(2.47)

2.5 Application, assumption and limitation

The sources of data for establishing and using forecasting models are sum-
marized in Table 1. To train a machine-learning based weather forecasting
model, it is necessary to prepare long-term historical data. Both measure-
ments and numerical data of wind and wave conditions can be selected. In
the thesis, only hindcast numerical data are used, with an aim to establish
forecasting models and investigate their forecast accuracy.

Table 2.1: Data sources for model establishment and application

Model Establishment Application

TSML
Long-term measurements

or numerical data

Read-time measurements or numerical data

PBML
Real-time measurements or numerical data

and wind forecast

In the process of applying machine learning-based methods to make weather
forecast, the availability of inputs including both wind and wave data is
essential since real-time data are required. In reality, the input information
may not easy to obtain. However, this issue is not addressed in the thesis.
The assumptions and limitations of the forecasting models are described as
follows:
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r Assume that all inputs are known. For the TSML models, it means
that both wind and wave data up to the current time can be obtained,
such as by on-site measurements of a buoy or numerical data generated
through physics-based numerical models. For the PBML models, in
addition to wave and wind data up to the current time, it is also
assumed that the wind data in the future (i.e., the wind forecasts)
have been provided by other type of forecasting techniques, such as
from NWP models.r Assume that all inputs in the machine learning-based forecasting mod-
els are correct. That is, when the numerical data is utilized, it is as-
sumed to be consistent with the measurement data and uncertainties
in the model input are not considered.r One limitation of the PBML method is that the model needs wind
forecasts to drive it. When the forecasted wind conditions can be
obtained from atmospheric forecasting models, the PBML model is
able to act as a surrogate for the physics-based wave model and pro-
vide an efficient way for generating wave forecasts. However, how to
quickly get the future wind information to use the PBML method is
also an issue worthy of further consideration and discussion in real
applications.



Chapter 3

Weather forecast results and
uncertainty quantification

Machine learning-based forecasting methods have been introduced in Ch.
2. Based on these methods, this chapter summarizes corresponding weather
forecast results. In order to train and test forecasting models, knowledge of
the utilized metocean data at the target offshore site is first introduced in
Sec. 3.1. Meanwhile, initial data analysis is carried out and included. Secs.
3.2 and 3.3 present results of one-day-ahead wave and/or wind forecasts as
well as forecast uncertainties in TSML and PBML methods. Finally, a com-
parison of forecast performance between machine learning-based methods
with physics-based numerical methods is given.

3.1 Offshore site and metocean data

The North Sea is considered to have great potential for offshore wind energy
development [192]. In the thesis, the North Sea center is the main focus, as
highlighted in Figure 3.1. In this area, various marine operations have been
studied and analyzed, such as the installation of monopiles and transition
pieces [67], and single blade [51–54] of offshore wind turbines.

Given that data-driven models require long-term historical data and high
quality of hindcast data, ten-years (2001-2010) hindcast time series of wind
and wave variables are utilized to train and test TSML and PBML models.
Data sources from two different institutions are considered:
1) Dataset 1: Hourly hindcast time series of Uw, Hs, Tp and Du at a
single location from the National and Kapodistrian University of Athens
(NKUA) [193].
2) Dataset 2: Three-hourly hindcast time series of Uw, Hs, Tp and Du in

61
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a small area with a spatial resolution of 0.125◦ from ECMWF CERA-20C
datasets [194].

Figure 3.1: North Sea area and the selected offshore site

For TSML models, metocean data at one location is enough for pro-
viding input information, and Dataset 1 is mainly used to develop them.
By contrast, PBML models are able to forecast spatial wave conditions and
thus, spatial data of wind and waves are required. The Dataset 2 is utilized
to develop the PBML models, that provides metocean data in a small area.

Each dataset is divided into two parts. The data of the first nine years
(from 2001 to 2009) is considered as the training data for establishing the
model, in which 10% of the data is selected as the validation data. The
data of the last year (2010) is the testing data for evaluating the forecast
performance of the model. All machine learning-based forecasting models
are developed in MATLAB using the toolboxes or in Python using Ten-
sorFlow. Regarding the typical duration of marine operations, the aim is
to perform one-day-ahead wave forecasting, that is, twenty-four-step-ahead
forecasting and eight-step-ahead forecasting correspond to the Dataset 1
and 2, respectively.

For the long-term datasets, the data analysis is carried out first to pro-
vide an overall view of the environmental conditions at the specific site.
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This is an important step in designing a weather forecasting model. The
relevant analysis is shown in Appendix A. In summary, with reference to the
correlation of time series, environmental conditions have a certain degree of
predictability. However, it is not easy to make forecast for a long horizon
since the correlation between data would decrease significantly as the time
interval increases.

3.2 TSML method

3.2.1 Decomposition-ANFIS method

A hybrid decomposition-ANFIS model is developed to illustrate the forecast
performance of the TSML method. According to the procedure described in
Sec. 2.3.1, the training and testing data are pre-processed by the decompo-
sition technique first. Then, the model combining ANFIS and a multi-step-
ahead strategy (if multi-step-ahead forecasting is expected) is built based
on the training data. The forecast performance of the forecasting model is
evaluated on the testing data at each forecast lead time.

3.2.1.1 One-step-ahead forecasting

For one-step-ahead forecasting, simple forecasting models are developed for
Uw, Hs and Tp, which are expressed in Eqs. (3.1) to (3.3), respectively.
The basic idea is to use data at the current time as input to forecast the
next-step data. This is sufficient for one-step-ahead forecasting, since there
is a strong correlation between one metocean data to the next, as analyzed
in Appendix A.

Uw(t+ 1) = f1(Uw(t)) (3.1)

Hs(t+ 1) = f2(Uw(t), Hs(t)) (3.2)

Tp(t+ 1) = f3(Hs(t), Uw(t), Tp(t)) (3.3)

Their structures are summarized in Table 3.1. In each model, all in-
put variables are partitioned into two fuzzy sets (’Low’ and ’High’), and
Gaussian-type MFs are selected for inputs and linear-type for the output.
As a result, the total numbers of IF-THEN rules in the Uw, Hs and Tp
forecasting models are 2, 4 and 8, respectively. The optimal parameters in
MFs and IF-THEN rules are determined in the training phase.
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Table 3.1: Structures of the one-step-ahead ANFIS models

Forecast Input Membership functions (MFs) IF-THEN rules Output

variable variable Type Number Fuzzy sets Number MF type

Uw(t+ 1) Uw(t) Gaussian 2 ‘low’, ‘high’ 2 Linear

Hs(t+ 1)
Uw(t) Gaussian 2 ‘low’, ‘high’

4
Linear

Hs(t) Gaussian 2 ‘low’, ‘high’ Linear

Tp(t+ 1)
Uw(t) Gaussian 2 ‘low’, ‘high’

8
Linear

Hs(t) Gaussian 2 ‘low’, ‘high’ Linear

Tp(t) Gaussian 2 ‘low’, ‘high’ Linear

(a) Uw

(b) Hs

(c) Tp

Figure 3.2: One-step-ahead forecasting results



3.2. TSML method 65

(a) Uw (b) Hs

(c) Tp

Figure 3.3: Q-Q plots for one-step-ahead weather forecasts

After establishing the optimal ANFIS, the testing process is performed.
The forecasted Uw, Hs and Tp and the corresponding actual data are plotted
in Figure 3.2 (a), (b) and (c), respectively. In each subfigure, the blue line
contains forecasted data and the red line contains corresponding actual data.
Meanwhile, Quantile-Quantile (Q-Q) plots for relevant results are plotted
in Figure 3.3. As displayed in Figure 3.2, the forecasted data are close to
the actual data for all three environmental variables throughout the entire
testing period. The Q-Q plots in Figure 3.3 further prove the reliability of
the forecasts. These results indicate that the adopted TSML method can
generate accurate one-step-ahead forecasts of weather conditions.

3.2.1.2 Multi-step-ahead forecasting

To generate multi-step-ahead forecasts, more complicated models with dif-
ferent multi-step-ahead strategies should be developed. Correspondingly,
the optimal structure of the forecasting model must be investigated, such
as which metocean variables are selected as input and how much past data
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(i.e., M values in Eqs. (2.30 - 2.33)) are used separately. In practice, the
optimal structure is not easy to determine. Typically, if a large amount
of input data is utilized, more historical information can be available and
thus, forecasts are expected to be more accurate. However, the training
time of the forecasting model would increase dramatically with the number
of inputs, especially when optimization techniques are required during the
training phase. In the thesis, the model structure is determined by the sensi-
tivity study of various input variables and corresponding M values, starting
from M=1. The one corresponds to the minimum statistics of forecast error
factors is regarded as the optimal model. Detailed comparison procedure is
illustrated in Wu et al. [142]. Optimal decomposition-ANFIS models with
three multi-step-ahead strategies are summarized below:
M-1 model:

Uw(t+ 1) = f(Uw(t), Uw(t− 3)) (3.4)

Hs(t+ 1) = f(Hs(t), Hs(t− 1)) (3.5)

Tp(t+ 1) = f(Tp(t), Tp(t− 1)) (3.6)

M-N model:

Uw(t+N) = f(Uw(t), Du(t), Uw(t− 3), Uw(t− 6), Uw(t− 9)) (3.7)

Hs(t+N) = f(Hs(t), Uw(t), Du(t), Hs(t− 1), Uw(t− 3)) (3.8)

Tp(t+N) = f(Tp(t), Hs(t), Uw(t)) (3.9)

M-1 slope model:
For the M-1 slope model, since it is essentially an iterative approach, Uw,
Hs and Tp forecasting models are the same as shown in Eqs. (3.4) to (3.6).

In above equations, for the sake of simplicity, f represents the forecasting
model. However, it should be emphasized that it is different for each model.
In addition, input terms related to Uw are all three-hour intervals, since
the time series of wind speed in Dataset 1 are actually three-hourly data.
When Du is considered as input, it is recommended to transform it to a
range between 0 and 1 [195] according to Eq. (3.10).

Dir =

{
1−

(
θ

180

)
, if 0◦ ≤ θ ≤ 180◦

θ−180
180 , if 180◦ ≤ θ ≤ 360◦

(3.10)

Overall, all selected models are relatively simple, without containing
a lot of input data. This is because sensitivity studies showed that the
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accuracy of the models is not very sensitive to the amount of past data
included. By contrast, the types of variables that are included in M-N
models have a strong impact on the accuracy for wind and wave forecast.
Thus, to improve calculation efficiency and decrease the forecast uncertainty
in multi-step-ahead forecasts, a small M value is selected and variables that
are related to the forecasted variable should be included if possible.

Forecasted time series of Uw, Hs and Tp during the testing period and
the corresponding actual series are plotted in Appendix B. To present the
characteristics of the forecasting models clearly, considering Hs as an ex-
ample, several cases of forecast results (250 data) based on the M-1, M-1
slope and M-N models are extracted from Figure B.2 and shown in Figure
3.4. In each subfigure, the black line depicts actual time series and the fore-
casted time series is represented by the red line. The forecasted time series
is composed of multiple one-day-ahead forecast cases. Each one-day-ahead
forecast case is obtained by the trained model with appropriate inputs from
the testing dataset, and contains twenty-four forecasts, from one-step-ahead
to twenty-four-step-ahead. The green and blue points represent one- and
twenty-four step-ahead forecast values respectively, representing the begin-
ning and end of one forecast case. The next case starts when the previous
one ends. By observing Figure 3.4(b), it can be found that the M-1 slope
model cannot perform the 24-step forecast in all cases, especially near the
peaks of high sea states. However, compared to the results in Figure 3.4(a)
and (c), the M-1 slope model can capture the data variation better, although
the positions of peaks/troughs may not be captured exactly.

As displayed, the proposed models can predict the environmental condi-
tions to a certain extent. However, due to the randomness in the occurrence
of waves and wind, it is difficult to realize high accuracy in forecasting all
points, especially for high sea states. The uncertainty quantification analy-
sis is subsequently performed to evaluate and compare the accuracy of the
three multi-step-ahead strategies.

Figure 3.5 presents statistics of the forecast error factor εM of Uw, Hs

and Tp in terms of the forecast step N . Black, red and blue lines represent
results based on the M-1 model, the M-N model and the M-1 slope model,
respectively. To distinguish the statistics, the mean values are represented
by asterisk marks and the circles correspond to the standard deviations.
It is visible that the forecast error of the M-N model exhibits monotonic
behavior with respect to N . This is consistent with the phenomenon that
the correlation decreases with the increase of the lag number. Whereas, the
forecast errors of the other two models exhibit variations because forecasted
values are used to further make forecast. Overall, the forecast uncertainties
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(a) M-1 model

(b) M-1 slope model

(c) M-N model

Figure 3.4: Several cases of Hs forecast by the three models
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(a) Uw

(b) Hs

(c) Tp

Figure 3.5: Statistics of εM at different forecast step N
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of the three models are low at the first forecast step, as reflected in the
near-zero mean values and standard deviations. With the increase of the
forecast horizon, the forecast uncertainty of all forecasting models signifi-
cantly increases. In summary, the proposed decomposition-ANFIS methods
can be applied for the short-term prediction of wave and wind conditions,
and have application potential in marine operations. However, due to the
error accumulation problem of the M-1 and M-1 slope models and the un-
correlated input-output sample in the M-N model, it is highly difficult to
generate accurate weather forecasts for longer forecast horizons.

3.2.2 Comparison of different TSML methods

This section presents a comparison of different TSML methods for multi-
step-ahead wave forecasting. One-day-ahead Hs forecasting is taken as an
example to illustrate their forecast performance.

Table 3.2: The list of developed forecasting methods

No. Method
Pre-processing technique Data-driven model

Decom
-position EMD ARIMA ANN RNN ANIFS M-1 M-N M-mN

1 D-ARIMA O O

2 D-ANN-M-1 O O O

3 D-ANN-M-N O O O

4 D-ANN-M-mN O O O

5 D-EMD-ANN-M-1 O O O O

6 D-EMD-ANN-M-N O O O O

7 RNN-mN O O

8 D-ANFIS-M-1 O O

9 D-ANFIS-M-N O O

10 D-EMD-ANFIS-M-1 O O O O

11 D-EMD-ANFIS-M-N O O O O

Table 3.2 summaries the developed 11 TSML methods, which contain
different combinations of pre-processing techniques, data-driven models and
multi-step-ahead strategies. Since the effectiveness of the decomposition
technique has been successfully verified in the time series forecasting of
weather conditions [141], all methods except 7 apply it as the data pre-
processing technique. In order to investigate the influence of pre-processing
techniques, EMD is applied to continue decompose the obtained data in
methods 5, 6, 10 and 11. In addition, both ANN and RNN -based methods
use M-mN model (i.e., methods 4 and 7), while ANFIS-based method does
not because ANFIS can only contain one output variable. The ARIMA
model, ANN-based model and ANFIS-based model are performed by using
Matlab, and RNN-based model is performed by using TensorFlow.
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The optimal structure and characteristic of each TSML model are stud-
ied in Wu et al. [196] separately and briefly summarized as follows:
ARIMA-based:r ARIMA(p, q, 2) is applied and values of p and q are determined by the

Bayesian Information Criterion (BIC) for specific training sets. The
model yielding the minimum BIC value is selected.

ANN-based:r ANN models with one hidden layer is applied.r Based on a sensitivity study, the M value is selected as 24.r Based on the comparison result, an ANN-based method with double
pre-processing techniques (decomposition technique and EMD) is not
necessary. This may because after performing the double data pre-
processing, the obtained time series are very sensitive to noise and
may run into the problem of mode mixing. So methods 5 and 6 are
not included in the following comparison.

RNN-based:r LSTM network is utilized, that consists of two LSTM layers and the
size of hidden neurons for each LSTM layer is 32.r The M value is 24.r Since LSTM is specially suitable to handle sequence dependence, only
M-mN strategy is considered.

ANFIS-based:r Since ANFIS belongs to the single-output approach, only M-1 and
M-N models are considered. The structure is consistent with the ones
described in Sec. 3.2.1.2.r ANFIS-based methods with double pre-processing techniques are also
constructed to study the impact of data pre-processing technique on
the ANFIS model.

A comparative analysis on the forecast performance among different
TSML methods is carried out. This is done by evaluating the forecast
uncertainty (characterized by statistics of the forecast error factor εM ) at
each forecast lead time. The results are plotted in Figure 3.6 and described
below. Noted that the ’D’ is omitted from the legend in the figure.
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Figure 3.6: Comparison of forecast uncertainty based on different TSML
methods

1) ANFIS-based methods with double pre-processing techniques, i.e.,
EMD-ANFIS M-1 and EMD-ANFIS M-N, results in the worst performance.
This indicates that the forecast performance is very sensitive to the nature
of the data and using double pre-processing techniques may not be helpful
for forecasting, at least for the study area and adopted data.

2) Beside these two methods, the RNN-mN model without any pre-
processing techniques (red line) has a higher forecast uncertainty than other
models with the decomposition technique. This implies that suitable pre-
processing techniques can assist in the time series forecasting.

3) In the remaining methods, the ARIMA model (black line) exhibits a
higher forecast uncertainty at longer forecast horizons, indicating that the
linear function employed in the ARIMA model have difficulty in capturing
the rapidly changing waves when the forecast horizon is relatively long.

4) There is not a clear evidence to show which of the remaining three
ANN-based methods and two ANFIS-based methods is the best one for
multi-step-ahead forecasting of Hs. From all methods, means and standard
deviations of εM in the first ten steps are less than 0.1 and 0.3, and around
0.2 and 0.5 at the 24th step, respectively.

Overall, Figure 3.6 demonstrates that the forecast uncertainty gener-
ally increases with the forecast horizon, no matter which TSML method is
adopted. This is a reasonable observation. In fact, the correlation in data is
quite low when the time interval exceeds 7 hours, which makes it difficult for
machine learning to find a general relationship between input and output.
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3.2.3 Summary

Regarding the TSML method, a hybrid decomposition-ANFIS method is de-
veloped in detail for forecasting both wave and wind conditions. In addition,
the performance of different TSML methods for one-day-ahead Hs forecast-
ing is investigated and compared. The statistics of forecast error factors are
utilized for quantifying their forecast uncertainty. Results demonstrate that
all TSML methods have better performance for forecasting significant wave
height from first several steps ahead due to the lower forecast uncertainty
level. As the number of forecast step further increases, their forecast ability
would decrease significantly. This is a common phenomenon and can not be
improved obviously by changing data-driven models or developing a more
complex hybrid method (including double data pre-processing techniques).
Under this circumstance, one may conclude that it is difficult to get accurate
weather forecasts for long horizon by the TSML method with purely time
series analysis. In order to improve the quality of weather forecasts, unlike
the TSML methods that only take historical time series in consideration, it
is necessary to develop a hybrid method combining both physical process
and data-driven model.

3.3 PBML method

One-day-ahead forecasting of wave conditions (Hs and Tp) by the PBML
method is performed. PBML models are developed based on the Dataset
2. With reference to typical physics-based wave models, wind forcing in
a selected area as well as initial boundary wave conditions are taken into
account as inputs to drive the PBML model and forecast wave conditions
in this area. Given that on-site marine operations are normally carried out
at a selected position, forecasting in a large domain is not necessary and
thus, the focus of the thesis is on a small area. As shown in Figure 3.7, the
forecast domain contains nine grid points numbered from 1 to 9.

Figure 3.7: Illustration of a small forecast domain



74 74

3.3.1 Model architecture determination

Similar to the development of TSML models, the optimal structure of the
data-driven model (i.e., ANN in the thesis) employed in the PBML method
should be determined first. According to the sensitivity study (described
in detail in Wu et al. [197]), the ANN with three hidden layers, twenty
neurons in each layer and the tansig type activation function is adopted. In
addition, the time range of the input wind field also deserves consideration.
As shown in Eq. (2.38), when performing the N -step-ahead forecasting, the
wind forcing from (t+N − TU + 1) to (t+N) are considered as input. To
investigate the impact of wind forcing at different time steps on Hs forecasts,
the ANN is developed in terms of the optimal structure described above,
and the TU value is selected from one to eight. When TU is equal to 1, only
the wind field at the same time as the forecasted Hs is considered. With
the increase in TU , an increasing number of past wind fields are taken into
account. The results of the sensitivity study of the TU values are shown in
the Figure 3.8.

Figure 3.8: Forecast errors of the PBML model with different durations of
wind forcing (point 5)

As displayed in Figure 3.8, in general, the forecast performance increases
with increasing TU values, indicating that the wind variation should be
taken into account in wave forecasting by the PBML model. However, the
level of improvement in model performance gradually decreases as the TU
increases from 2. Given that increasing the TU value will increase the



3.3. PBML method 75

number of inputs, which makes the model more complicated and requires
longer training time, TU=2 is chosen in the PBML model. That is, the
dynamic characteristics of the winds are provided in the model by applying
wind speeds and directions at two consecutive time steps.

In addition, it is interesting to see the importance of the future wind
forcing. Figure 3.9 shows the forecast performance of the model using wind
forcing up to (t+N -TU∗) when forecasting wave conditions at (t + N),
where TU∗ ranges from 0 to 7. From the sensitivity study, it is clear that
the forecast performance will gradually decrease as TU∗ increases. In order
to forecast the wave conditions at (t + N) accurately, the wind conditions
at (t+N) should be included.

Figure 3.9: Forecast errors of the PBML model using wind forcing up to
(t+N -TU∗) (point 5)

3.3.2 Forecast of total wave conditions

3.3.2.1 Significant wave height

Based on the above sensitivity analysis results, the forecasting model of Hs

can be set up as follows:

[Hs1(t+N), Hs2(t+N), · · · , Hs9(t+N)]
= fhN (Hs1(t), Tp1(t), · · · , Hs9(t), Tp9(t), Uw1(t+N), Du1(t+N), · · · ,

Uw9(t+N), Du9(t+N), Uw1(t+N − 1), Du1(t+N − 1),
· · · , Uw9(t+N − 1), Du9(t+N − 1)) , N = 1, · · · , 8

(3.11)
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where Hs1(t + N), Hs2(t + N), · · · , Hs9(t + N) are the outputs, which are
N -step-ahead forecasts of Hs for points 1 to 9. fhN is the ANN model at
the N -step-ahead. The inputs include the initial boundary wave conditions
(i.e., Hs(t) and Tp(t) at points 1, 2, 3, 4, 6, 7, 8 and 9) and the wind forcing
at two consecutive time steps in the forecast domain (i.e., Uw and Du for
all nine points at time t+N and t+N −1). As a result, it can be seen that
in this case, the model for each forecast step has a total of 52 inputs and 9
outputs.

The forecast results during the testing period at the grid point 5 (in
Figure 3.7) are plotted in Figure 3.10, in which the actual and forecasted
time series are represented by black and red lines, respectively. To reveal the
forecast performance more clearly, two short-time windows are also shown in
Figure 3.10, in which the meaning of points with different colors are similar
to those described in Figure 3.4. That is, each one-day-ahead forecast case
contains eight forecasted data from one-step-ahead (green points) to eight-
step-ahead (blue points), which are generated by the trained model with
appropriate inputs. To illustrate the forecast uncertainty, forecast error
metrics including conventional error measures and the forecast error factor
at each forecast lead time are summarized in Table 3.3.

Figure 3.10: Forecast results of Hs at each lead time based on the PBML
model

Overall, a good agreement between the forecasted and actual data is
observed throughout the entire testing period, which reveals the reliability
of the PBML method for Hs forecasting. In addition, there is no signifi-
cant difference in forecast performance between the two windows, indicating
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that the model is suitable for any time of year. In Table 3.3, it is observed
that the forecast accuracy decreases with the forecast lead time, reflected
in the decrease in R2 and the increase in other error metrics. Neverthe-
less, all 8-step-ahead forecasts can be considered satisfactory because the
corresponding errors are quite small. For example, the RMSE and R2 for
all steps are less than 0.3 m and higher than 96%, respectively. Further-
more, regarding the computational time, the PBML model can be quickly
trained and used to make forecasts extremely fast. The training process of
the PBML model on a common server typically takes few minutes.

Table 3.3: Forecast errors of Hs at each lead time based on the PBML model

Error Lead Time (hour)

Measures 3 6 9 12 15 18 21 24

mεM 0.0050 -0.0039 0.0054 0.0176 0.0171 0.0158 0.0183 0.0239

stdεM 0.0676 0.0862 0.1008 0.1088 0.129 0.1576 0.1618 0.1741

MAE (m) 0.0617 0.096 0.114 0.1303 0.1525 0.1693 0.1827 0.1961

RMSE (m) 0.0927 0.1375 0.1573 0.1828 0.2213 0.238 0.2587 0.2727

bias (m) 0.0009 -0.0071 -0.0043 0.013 0.0085 0.0047 -0.0009 -0.0008

R2 0.9975 0.9903 0.9866 0.982 0.9742 0.9711 0.9646 0.9611

SI 0.0447 0.0665 0.0767 0.0887 0.1072 0.1155 0.1256 0.1318

MAPE (%) 4.1138 5.9599 7.2648 8.0594 9.4332 10.8368 11.5503 12.6979

(a) MAE, RMSE, bias (b) R2, SI, MAPE

Figure 3.11: Error measures of Hs forecasts for all nine grid points

The above results only display the forecast at the grid point 5 in the
forecast domain. Figure 3.11 further summarizes the error measures at all
nine grid points in the forecast domain by different colors. Little difference
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in error measures is found among all nine grid points, which proves that the
PBML model is suitable and reliable in a small forecast domain.

In addition to a small forecast domain, the forecast performance for a
single point is investigated. This situation is very important to explore
whether the PBML method is applicable to the measurement data, since
measurements may only be available at limited positions. The forecasting
model for a single point is simplified to Eq. (3.12). In this case, the inputs
are the initial wave conditions and wind forcing at the position of interest
(point 5 in Figure 3.7 is selected as an example here), and the outputs are the
future wave conditions at the same position. That is, the model is simplified
to have six inputs and one output. The results of forecasted time series and
forecast errors are illustrated in Figures 3.12 and 3.13, respectively.

Hs5(t+N) = fh5N (Hs5(t), Tp5(t), Uw5(t+N), Du5(t+N),
Uw5(t+N − 1), Du5(t+N − 1)), N = 1, · · · , 8

(3.12)

Figure 3.12: Forecast results of Hs based on the PBML model with one-point
domain

Compared with the results shown in Figure 3.10, forecast accuracy for
this simple model is reduced to some extent due to significant reduction
of the input information. Nevertheless, this model still exhibits good fore-
cast performance. As displayed in Figure 3.13, the R2 and RMSE of all
8-step-ahead forecasts are higher than 94% and lower than 0.33 m, respec-
tively. This indicates that the proposed PBML model can forecast Hs with
relatively high accuracy based on weather data of a single position.



3.3. PBML method 79

Figure 3.13: Forecast errors of Hs based on the PBML model with one-point
domain

3.3.2.2 Peak wave period

Forecast performance of the PBML method for Tp is investigated in this
section. The forecasting model of Tp is expressed in Eq. (3.13). The gen-
erated forecasted time series are shown in Figure 3.14, and the errors are
summarized with respect to the lead time in Table 3.4.

[Tp1(t+N), Tp2(t+N), · · · , Tp9(t+N)]
= ftN (Hs1(t), Tp1(t), · · · , Hs9(t), Tp9(t), Uw1(t+N), Du1(t+N), · · · ,

Uw9(t+N), Du9(t+N), Uw1(t+N − 1), Du1(t+N − 1),
· · · , Uw9(t+N − 1), Du9(t+N − 1)) , N = 1, · · · , 8

(3.13)

In general, from Figure 3.14, it is visible that the PBML model can
generate acceptable Tp forecasts. The R2 and RMSE at all lead times are
higher than 71% and lower than 1.30 s respectively, which are shown in Table
3.4. However, by comparing Tables 3.4 and 3.3, it can be found that the
forecast uncertainty level of Tp is much higher than that of Hs. Significant
fluctuation in Tp time series might be the key reason for this phenomenon.
Differently from Hs, Tp is associated with the highest energetic waves in the
total wave spectrum, and it can be predominated by either wind-generated
sea or swell. This uncertainty increases the instability of the series of Tp
and further challenges the development of the forecasting model. To further
explore the factors that affect Tp forecast performance, in Sec. 3.3.3, the
total sea are separated into wind-generated sea and swell, and PBML models
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are utilized to forecast these two components separately.

Figure 3.14: Forecast results of Tp based on the PBML model

Table 3.4: Forecast errors of Tp based on the PBML model

Error Lead Time (hour)

Measures 3 6 9 12 15 18 21 24

mεM 0.0088 -0.0004 0.0231 0.0081 0.0335 0.0397 0.0321 0.0514

stdεM 0.1302 0.1347 0.1412 0.1769 0.1737 0.1868 0.1774 0.1891

MAE (s) 0.3617 0.5276 0.6151 0.7172 0.7771 0.8859 0.9136 0.9605

RMSE (s) 0.729 0.8633 0.9498 1.1201 1.1186 1.2355 1.2351 1.3026

bias (s) -0.0038 -0.1092 0.0463 -0.1207 0.0669 0.0575 0.0157 0.1195

R2 0.9196 0.8855 0.8585 0.8043 0.7941 0.753 0.7405 0.7125

SI 0.0964 0.1133 0.1259 0.1476 0.1496 0.1655 0.1648 0.1724

MAPE (%) 5.4973 7.6696 8.9811 10.3773 11.6007 13.3601 13.2666 14.1797

3.3.3 Forecast of separate wind-generated sea conditions and
swell conditions

To forecast significant wave height and mean wave period of wind-generated
sea and swell, the historical data are also extracted from CERA-20C with
the same forecast domain, resolution and duration as those of the total sea.
The extracted variables are significant wave heights and mean wave peri-
ods of wind-generated sea (i.e., Hsw and Tmw) and swell (i.e., Hss and Tms).
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The corresponding forecast performances are discussed in the following sub-
sections, respectively.

3.3.3.1 Significant wave height

The PBML models of wind-generated sea and swell are similar to those of
total sea, except that the initial wave conditions. Given that all nine grid
points have similar forecast performance that is revealed in Sec. 3.3.2.1,
only forecast results of the point 5 (in Figure 3.7) are shown in Figures 3.15
and 3.16. Meanwhile, Tables 3.5 and 3.6 give the forecast errors of Hsw and
Hss with respect to the lead time, respectively.

Figure 3.15: Forecast results of Hsw based on the PBML model

Table 3.5: Forecast errors of Hsw based on the PBML model

Error Lead Time (hour)

Measures 3 6 9 12 15 18 21 24

mεM 0.073 0.0671 0.106 0.0646 0.0417 0.116 0.0618 0.0888

stdεM 0.1449 0.1799 0.1836 0.1562 0.1647 0.2362 0.1982 0.232

MAE (m) 0.0747 0.0892 0.1001 0.0888 0.1095 0.1174 0.091 0.1001

RMSE (m) 0.1027 0.1277 0.1428 0.1283 0.1782 0.1779 0.1356 0.1548

bias (m) 0.0422 0.0405 0.0558 0.0224 -0.0102 0.0028 -0.0098 -0.0036

R2 0.9951 0.9926 0.99 0.9917 0.9855 0.9898 0.9919 0.9908

SI 0.0619 0.081 0.0892 0.0848 0.1178 0.1173 0.0891 0.1011

MAPE (%) 10.9096 12.7095 14.7157 12.008 12.5973 17.4128 13.58 15.3229
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Figure 3.16: Forecast results of Hss based on the PBML model

Table 3.6: Forecast errors of Hss based on the PBML model

Error Lead Time (hour)

Measures 3 6 9 12 15 18 21 24

mεM 0.0238 -0.0057 -0.0234 0.044 0.078 0.0741 0.0941 0.0919

stdεM 0.1552 0.1636 0.18 0.2319 0.3136 0.3333 0.2992 0.3328

MAE (m) 0.1129 0.1342 0.1652 0.204 0.2584 0.2846 0.273 0.3011

RMSE (m) 0.1758 0.2008 0.2404 0.3031 0.4013 0.445 0.3848 0.4446

bias (m) 0.0129 -0.0179 -0.0383 0.0372 0.067 0.0685 0.0661 0.0634

R2 0.9456 0.9337 0.9087 0.8613 0.7821 0.7438 0.7573 0.7041

SI 0.1283 0.144 0.1701 0.2156 0.286 0.3199 0.2775 0.3228

MAPE (%) 9.9648 11.2799 13.1894 16.5625 20.8705 22.8518 22.6173 24.6826

Figure 3.15 shows excellent forecast performance of Hsw. For instance,
R2 values for all lead times are higher than 98.5% in Table 3.5. In con-
trast, the Hss results presented in Figure 3.16 have relatively low forecast
accuracy. The weak relation between the output (swell) and input (wind
forcing) is the main reason for this phenomenon. Figure 3.17 shows scat-
ter diagrams of the mean wind speed and different significant wave heights
(i.e., Hs, Hsw and Hss) at the same time and position, based on the hindcast
data from year 2001 to 2009. The color depicts the absolute frequencies of
occurrence. Obviously, the correlation between the mean wind speed and
significant wave height for swell (Figure 3.17(c)) is much weaker than that
for wind-generated sea (Figure 3.17(b)). The weaker relationship challenges
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development of the forecasting model for Hss. In addition, it is visible from
Figure 3.17(a) that despite the existence of swell, the correlation between
Hs and Uw in the total sea is still relatively obvious. This guarantees the
good performance of the PBML model for forecasting Hs.

(a) Total sea

(b) Wind-generated sea (c) Swell

Figure 3.17: Scatter plot of significant wave height and mean wind speed

Table 3.7: Forecast errors of Tmw based on the PBML model

Error Lead Time (hour)

Measures 3 6 9 12 15 18 21 24

mεM 0.0073 0.0027 0.0087 0.006 0.0107 0.0051 0.0057 0.0032

stdεM 0.0486 0.0601 0.0653 0.068 0.0685 0.0646 0.0691 0.0716

MAE (s) 0.1061 0.1671 0.1803 0.1938 0.1953 0.1994 0.2076 0.2203

RMSE (s) 0.1572 0.2354 0.241 0.2551 0.2581 0.2746 0.2791 0.3054

bias (s) 0.021 -0.0009 0.0168 0.0061 0.0221 -0.0058 0.0037 0.0003

R2 0.9944 0.9873 0.9864 0.9851 0.9849 0.9825 0.9824 0.9793

SI 0.0342 0.0517 0.053 0.0562 0.0567 0.06 0.0611 0.0669

MAPE (%) 2.8555 4.2903 4.6335 4.9302 4.9289 4.7782 5.1044 5.2865



84 84

3.3.3.2 Mean wave period

Tmw and Tms are forecasted by PBML models, to further investigate the
reasons for the higher uncertainty level in Tp forecasts. The corresponding
forecast results of the point 5 are shown in Figures 3.18 and 3.19, respec-
tively. Meanwhile, Tables 3.7 and 3.8 summarize the forecast errors of Tmw
and Tms, respectively.

Figure 3.18: Forecast results of Tmw based on the PBML model

Figure 3.19: Forecast results of Tms based on the PBML model
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Table 3.8: Forecast errors of Tms based on the PBML model

Error Lead Time (hour)

Measures 3 6 9 12 15 18 21 24

mεM -0.0013 -0.0046 -0.0017 0.0098 0.0030 0.0171 0.0126 0.0082

stdεM 0.0386 0.0515 0.0625 0.0779 0.0766 0.0822 0.0901 0.0960

MAE (s) 0.1471 0.2541 0.3130 0.4186 0.4011 0.4523 0.4969 0.5340

RMSE (s) 0.3164 0.4106 0.4707 0.5595 0.5693 0.6024 0.6648 0.7136

bias (s) -0.0153 -0.0504 -0.0386 0.0139 -0.0095 0.0695 0.0273 -0.0070

R2 0.9713 0.9528 0.9373 0.9103 0.9033 0.8870 0.8621 0.8382

SI 0.0438 0.0565 0.0650 0.0777 0.0792 0.0833 0.0926 0.0995

MAPE (%) 2.0241 3.4833 4.3740 5.9968 5.6001 6.4784 7.063 7.5135

(a) Total sea

(b) Wind-generated sea (c) Swell

Figure 3.20: Scatter plot of wave period and mean wind speed

Figures 3.18 and 3.19 present similar findings to those shown in Figures
3.15 and 3.16. That is, the forecast performance of the PBML model for
wind-generated sea is better than that for swell. Similar to Figure 3.17,
scatter diagrams of the mean wind speed and different wave periods (i.e.,
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Tp, Tmw and Tms) are illustrated in Figure 3.20. The different correlations
shown in Figure 3.20(b) (strong correlation between Uw and Tmw) and Fig-
ure 3.20(c) (weak correlation between Uw and Tms) can explain these fore-
cast performances to a certain extent. Furthermore, the correlation between
Uw and Tp (Figure 3.20(a)) is much lower than the one between Uw and Hs

(Figure 3.17(a)), which leads to worse forecast performance of Tp than Hs.

3.3.4 Summary

Forecast performance of the PBML method for one-day-ahead forecasting
of wave conditions is investigated in this section. Compared with widely
used physics-based numerical methods, high computational efficiency is its
primary advantage. On one hand, the PBML model is capable of using
environmental conditions in a small area or even from a single position to
make forecast. On the other hand, the training process of machine learning
is performed mainly through matrix operations rather than solving partial
differential control equations. Furthermore, once the model is trained based
on the site-specific data, making forecasts on new inputs is straightforward
and extremely fast without any new simulations. The forecast results indi-
cate that the forecast performance of Hs is extremely good, while that of Tp
is slightly worse due to the weaker implicit relationship between the selected
input and output. This is further proved by forecasting wave conditions of
wind-generated sea and swell separately. Overall, the PBML method can
be conceived as an efficient way for wave forecasting in a small area, which
is particularly suitable for on-site marine operations.

Moreover, it must be emphasized that, similar to the physics-based wave
model, the PBML model needs future wind forcing to drive it as well. The
research conducted in the thesis assumes that the future wind forcing is
known and accurate. In real applications, the availability of wind forecasts
as well as its uncertainty should also be considered.

3.4 Comparison with physics-based wave models

The application potential of using machine learning-based methods for fore-
casting environmental conditions have been investigated. Furthermore, it is
meaningful to compare them with commonly used physics-based numerical
weather forecasting methods. In this section, the comparison of wave fore-
cast performance between TSML model, PBML model and physics-based
wave models is performed, which is summarized in Tables 3.9 to 3.11.
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Table 3.9: Comparison of one-day-ahead Hs forecasts

Forecasting method Error measures

bias RMSE SI R2

Physics-based numerical methods

ECMWF -0.15 0.32 0.21 0.94

MOF -0.08 0.25 0.17 0.96

MTF -0.22 0.42 0.24 0.91

SHM -0.27 0.44 0.21 0.93

DMI -0.11 0.27 0.20 0.94

MTN -0.17 0.29 0.20 0.94

Machine learning-based method TSML -0.36 0.83 0.39 0.26

PBML -0.0008 0.27 0.13 0.96

Table 3.10: Comparison of one-day-ahead Tp forecasts

Forecasting method Error measures

bias RMSE SI R2

Physics-based numerical methods

ECMWF -0.35 0.84 0.28 0.64

MOF -0.08 0.84 0.27 0.62

MTF -0.22 1.02 0.29 0.60

SHM -0.44 0.84 0.28 0.57

DMI -0.28 1.26 0.28 0.64

MTN -0.26 0.84 0.29 0.60

Machine learning-based method TSML -0.22 1.65 0.22 0.49

PBML 0.12 1.30 0.17 0.71

Given that the forecast performance of different TSML methods is sim-
ilar, the ANN M-1 model is utilized as the TSML method due to the high
computational efficiency. The results shown in Figures 3.10 and 3.14 are
used to represent the forecast performance of the PBML method. Tables
3.9 and 3.10 summarize the forecast performance of Hs and Tp in terms
of four error measures (bias, RMSE, SI and R2). In these two tables,
physics-based numerical methods from six forecast modelling institutions
are considered, namely ECMWF, MOF (MetOffice), MTF (MeteoFrance),
SHM (SHOM - Service hydrographique et océanographique de la Marine,
Naval Hydrographic and Oceanographic Service), DMI (Danish Meteoro-
logical Institute) and MTN (MET-Norway). The results are extracted from
a report [198], which evaluated the forecast accuracy of Hs and Tp by com-
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paring the forecasts against measurements at different North Sea buoys. In
addition, Natsk̊ar et al. [199] developed a statistical model to account for
uncertainty in Hs forecasts. He compared forecasted Hs at the Norwegian
Sea with hindcast data and quantify the forecast uncertainty by analyzing
statistics of errors in terms of the maximum significant wave height during
the forecast period, as shown in Eq. (3.14). The relevant results are sum-
marized in Table 3.11. We treated Hs forecasts generated by the TSML
and PBML methods following the same procedure and made a comparison
in this table. It is noted that physics-based numerical methods normally
generate weather forecasts within a relatively long forecast horizon (a few
days). In order to be consistent with the horizon of forecasts generated
by the machine learning-based methods in the thesis, only one-day-ahead
results are focused.

χHs,max(TR) =
Hs,hc,max

Hs,fc,max
(3.14)

where χ is a stochastic variable describing the ratio between hindcasted and
forecasted maximum significant wave heights during the operation reference
period TR.

Table 3.11: Comparison of the forecast uncertainty in Hs (based on the
method from Natsk̊ar)

Forecasting method TR (h) µlnχ σlnχ

by Asle Natsk̊ar 0.06 0.11

TSML 24 0.08 0.37

PBML -0.02 0.10

The comparison between the two machine learning-based methods shows
that by accounting for the physical process of wave field, the forecast per-
formance of the PBML method is better than that of the TSML method
for both Hs and Tp. By comparing them with the physics-based numerical
methods, it is visible that the uncertainty level of the TSML method is
the largest. In addition to it, the forecast uncertainty level of the PBML
method and physics-based numerical methods is similar. Thus, it could be
inferred that when long-term historical wave and wind data are available
at a given offshore site, the PBML method can be considered as an alter-
native to provide multi-step-ahead wave forecasts, since the cost and time
consuming of running the PBML model are quite low.

Nevertheless, it must be emphasized that this is only a preliminary com-
parison to explore the feasibility of using machine learning-based methods
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for wave forecasting. The conditions of different forecasting methods are not
exactly the same. First, the time duration and location of weather forecasts
are different. The analysis time for physics-based wave models in Tables 3.9-
3.10 and 3.11 are three months (May 2017 to July 2017) and one year (year
2011), respectively. By comparison, that for machine-learning based models
is one year (year 2010). Besides, physics-based wave models from different
forecasting centers correspond to different sites in the North Sea area and
Norwegian Sea, while the offshore site of interest in the thesis is a location
near the North Sea center. Additionally, the sources of validation data used
to quantify the uncertainty are different. Physics-based wave models shown
in Tables 3.9 and 3.10 are validated by measurements, and the one shown
in Table 3.11 uses hindcast data for validation. By comparison, forecasts
generated by the TSML and PBML models in the thesis are validated with
hindcast data. Finally, physics-based wave models are forced with 10 m
forecasted winds. Whereas hindcast winds are used as inputs in machine
learning-based models. Nevertheless, the findings from the above compari-
son analysis still can provide a general sense of the application potential of
machine learning methods in weather forecasting.
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Chapter 4

Methodology for the
allowable sea states
assessment of marine
operations considering
weather forecast uncertainty

During the execution phase, it is necessary to make decisions on whether
marine operations can be carried out safely by comparing operational limits
with weather forecasts. Accordingly, uncertainty in weather forecasts is an
important issue required to be addressed. This chapter investigates the
effect of weather forecast uncertainty on marine operations, and proposes
a methodology to deal with weather forecast uncertainty in operational
planning and execution phases.

First, a brief introduction of the alpha-factor, a correction factor devel-
oped by DNV to take into account weather forecast uncertainty for marine
operations, is presented. It is determined by the probability analysis of
maximum wave height and used to correct the Hs limit of marine opera-
tions. Subsequently, a new defined response-based correction factor, called
the response-based alpha-factor αR, is introduced. It is designed to ac-
count for the effect of forecast uncertainties in sea states (characterized by
Hs and Tp) on dynamic responses of the coupled system for marine opera-
tions. αR is determined from the perspective of system responses to ensure
that the safety level for marine operations (e.g., 10−4 per operation) is kept
the same with and without considering weather forecast uncertainty. The
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general methodology for the development of αR will be described in de-
tail. Finally, the application of the derived response-based alpha-factor for
assessment of allowable sea states for marine operations will be discussed.

4.1 Alpha-factor proposed by DNV

The alpha-factor α [146] is estimated by dividing the maximum wave height
with a defined probability level to the same level maximum wave height
accounting for Hs forecast uncertainty. The expression is shown in Eq.
(4.1).

α =
Hmax

Hmax WF
(4.1)

where Hmax is the characteristic value of maximum wave height, that is
defined as the extreme wave height during a given reference period (e.g., 3
hours) with an exceedance probability of 10−4. Hmax WF is the character-
istic value of maximum wave height with the same exceedance probability
taking into account the forecast uncertainty in Hs. For clarity, the symbols
Ht
s and Hf

s are used to denote the actual (true) and forecast Hs in the
following introduction, respectively.

When a forecasted hfs value is given and its forecast uncertainty is not
considered, it can be regarded as the true Hs, i.e., hts. Then the probability
density function (PDF) of maximum wave height with the given significant
wave height is defined as fH(h′). Based on the cumulative distribution
function (CDF) of maximum wave height (Eq. (4.2)), the characteristic
value Hmax can thereby be calculated by Eq. (4.3).

FH(h) =

∫ h

0
fH(h′)dh′ (4.2)

1− FH(Hmax) = 10−4 (4.3)

By contrast, when forecast uncertainty in the hfs value is considered,
the true significant wave height should be described as a distribution rather
than a deterministic value, accounting for all possible hts values and the
corresponding individual wave height distribution under the given hfs value.
As a result, a joint PDF of H and Ht

s is established as

fHHt
s
(h′, hts) = fH|Ht

s
(h′
∣∣hts ) · fHt

s
(hts) (4.4)

where fH|Ht
s
(h′
∣∣hts ) is the conditional PDF of maximum wave height with

a given actual significant wave height. fHt
s
(hts) is the PDF of actual sig-

nificant wave height for the given forecasted significant wave height value,
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that is evaluated from the uncertainty analysis of the forecasting model.
For different forecasted significant wave heights, this distribution will be
different.

Through integration, the marginal CDF of the maximum wave height
can be obtained, as shown in Eq. (4.5).

FWF
H (h) =

∫ h

0

∫ +∞

0
fH|Ht

s
(h′
∣∣hts ) · fHt

s
(hts)dh

t
sdh
′ (4.5)

In Eq. (4.5), it is important to quantify the weather forecast uncertainty
and establish fHt

s
(hts). In the technical report of the joint industry project

(JIP) published in 2007 [146], the forecast uncertainty of Hs is characterized
by the forecast error ∆h, which is defined as Eq. (4.6). This is a random
variable which is assumed to follow a Gaussian distribution. According to
Eq. (4.6), for a given forecasted significant wave height value, the actual sig-
nificant wave height is also a Gaussian variable and its distribution fHt

s
(hts)

can be transformed from the relevant error distribution. That it, its mean
value is the forecasted significant wave height adjusted by the error bias and
its standard deviation is the same as that of the forecast error. It is impor-
tant to emphasize that the forecast uncertainty can also be defined in other
ways. Subsequently, the characteristic value Hmax WF can be determined
by solving Eq. (4.7), which is used to generate the α-factor by Eq. (4.1)
together with Hmax.

∆h = hfs −Ht
s (4.6)

1− FWF
H (Hmax WF ) = 10−4 (4.7)

Following the above procedure, α-factors can be estimated and tabu-
lated for different weather forecast scenarios. Although the alpha-factor is
obtained based on the extreme wave height, it is used as a ratio of the sig-
nificant wave height for marine operations, assuming that the extreme wave
height is proportional to the significant wave height and disregarding the
effect of wave period and system responses. In practice, for the execution
phase of an operation, the specific alpha-factor needs to be selected from
the tabulated values in terms of the operation duration, the forecast lead
time, the quality of weather forecasts, etc. This selected factor can then be
used to correct the allowable Hs (i.e., Hs lim) of the operation by Eq. (4.8)
to account for the weather forecast uncertainty.

Hs lim α = α ·Hs lim (4.8)

where Hs lim α is the new Hs limit accounting for the forecast uncertainty.
In real marine operations, the forecasted value of Hs will be compared to
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this new Hs limit to determine whether a safe operation can be performed.
If the forecasted Hs is smaller than the new Hs limit, the marine operation
can be safely performed.

4.2 Response-based alpha-factor

In this section, the methodology for derivation of the response-based alpha-
factor αR is proposed and introduced. It aims to consider the effect of
forecast uncertainties in sea states (characterized by Hs and Tp) on marine
operations from a perspective of the system responses. A detailed descrip-
tion of the methodology framework, the key parameters as well as involved
analytical techniques are introduced in the following subsections.

4.2.1 Key parameters

Considering the properties of marine operations and weather forecasting,
the αR is presented as a function of:r The type of marine operation and the relevant operational limiting

response parameterr The duration TE of the selected operation, i.e., the time used in the
extreme response analysis. The characteristic value used to define
and calculate the αR is the extreme response value with a certain
exceedance probability (e.g., 10−4 or 10−2) during the TE .r The sea state reference period TS , such as 1 hour, 3 hours, etc., is the
period used to define a stationary sea state, to quantify the forecast
uncertainty and to derive the allowable sea states. It is also the same
period that αR will be applied in marine operations to correct the
allowable sea states when forecast uncertainty is considered.r The forecast variable of weather conditions, e.g., Hs, Tp, etc.r The weather forecasting methodr The lead time TL of weather forecasts (i.e., the forecast horizon)r The forecast uncertainty model

Among the above factors, the type of marine operation must first be
selected. It decides the critical events during the operation and the cor-
responding operational limiting response parameters. The identification
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method of critical events and limiting parameters refers to Guachamin Acero
et al. [67]. By means of numerical modeling of the selected operation during
the operational duration TE , the dynamic responses of the limiting param-
eters can be studied. The corresponding extreme value distribution and the
characteristic value can subsequently be determined by statistically analyz-
ing the dynamic responses. For operations such as offshore wind turbine
blade installation, the critical event may be more concentrated in the final
mating phase between blade root and turbine hub opening. TE is only a
few minutes in this case, and the extreme response should be analyzed from
the numerical simulation with such short period. In contrast, for operations
such as towing operation and sea transports, they generally take several
hours/days, and the dynamic response should be simulated during this rel-
atively long period of time. In such cases, it is more complicated. One needs
to deal with the sequence of the sea states during operation and the worst
sea state might be considered to achieve a conservative result.

Regarding weather conditions, TS refers to a time interval in which the
sea state can be assumed to be stationary. In this period, the statistics
(such as the mean value and standard deviation) of a realization of the
wave elevation are considered to be independent of time. For marine oper-
ations, TS is normally 1 hour or 3 hours. The other three factors, i.e., the
forecast variable of weather conditions, the weather forecasting method and
the lead time TL of weather forecasts, determine the uncertainty related
to the weather forecasts. Regarding the forecast variable, significant wave
height Hs and peak wave period Tp which are utilized to describe sea states
are considered. For operations sensitive to wind loads, forecast uncertainty
in the wind fields may also be included and related variables (e.g., mean
wind speed Uw) can be regarded as other forecast variables. With regard to
the lead time TL, it could range from one- or three-hours-ahead (depending
on TS) to several-days-ahead, taking into account the execution time of the
selected marine operation. As for the forecasting method, different methods
(e.g., physics-based numerical method, statistical method or machine learn-
ing method) can be adopted to generate forecasts. After obtaining weather
forecasts, a forecast uncertainty model is utilized to quantify uncertainties
in sea state forecasts.
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4.2.2 Framework

The framework of the proposed methodology is illustrated in Figure 4.1 and
described in the following steps.

Figure 4.1: The framework of the methodology for developing the response-
based alpha-factor

Weather forecast and uncertainty quantification

1. Determine the weather variable that needs to be forecasted, the sea
state reference period TS and the lead time TL.

2. The selected weather parameters are then forecasted through the physics-
based numerical method (such as WAM), the statistical method (such
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as ARIMA) or the machine learning method (such as ANN). In the
thesis, the weather forecasting is carried out for both Hs and Tp to de-
scribe the sea state. In order to better illustrate the weather forecast
analysis, the actual sea state is termed as (Ht

s, T
t
p) and the forecasted

sea state is presented as (Hf
s , T fp ). Normally, for the forecast uncer-

tainty analysis, the amount of forecasted data should be as large as
possible.

3. The forecast uncertainty quantification is performed to establish error
distributions. Similar to the alpha-factor method, this can be done by
analyzing the statistical characteristics of a pre-defined forecast error
ratio in terms of TL.

4. Finally, for a given forecasted sea state, the distribution of the actual
sea state can be established by transforming the error distribution.
This distribution reflects all possible true sea states for a given fore-
cast, and illustrates the weather forecast uncertainty. The method
and details for forecast uncertainty quantification will be presented in
Sec. 4.3.

Dynamic response analysis

1. A specific marine operation is determined. For this operation, the
critical events and operational limiting response parameters as well as
the operational duration TE should be identified.

2. For the sea state considered in the weather forecast analysis, the dy-
namic response of the limiting response parameter can be simulated
and assessed based on frequency- or time-domain response analyses,
depending on the properties of the selected operation.

3. Finally, by statistically analyzing the dynamic responses, the extreme
response distribution can be estimated. A description of the extreme
response analysis will be given in Sec. 4.4.

Estimation and application of the response-based alpha-factors

1. Once the forecast uncertainty distribution and the extreme response
distribution for a given sea state are determined, the characteristic val-
ues of the limiting parameter in the condition with and without consid-
ering weather forecast uncertainty can be calculated respectively. The
characteristic value corresponds to the extreme response for a target
exceedance probability (e.g., 10−4) of the extreme response distribu-
tion within the period TE .
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2. By dividing the two calculated values, the αR for this given sea state
can be estimated. The details for calculating the αR will be presented
in Sec. 4.5.

3. Followed by this procedure, the tabulated αR can be generated for
various sea states. Based on it, the allowable sea states associated with
the operation could be assessed, accounting for the weather forecast
uncertainty. This will be discussed in Sec. 4.6.

4.3 Uncertainty quantification of sea state fore-
cast

In this section, the procedure for quantifying the uncertainty in sea state
forecasts is described. It is assumed that forecast uncertainties of Hs and
Tp are independent. Therefore, the PDF of actual sea state with a given

forecasted sea state (hfs , tfp) can be expressed as Eq. (4.9).

fHt
sT

t
p
(hts, t

t
p) = fHt

s
(hts) · fT t

p
(ttp) (4.9)

where fHt
s
(hts) and fT t

p
(ttp) describe the probability that actual Hs and Tp

may occur under given forecasted significant wave height and peak wave
period, respectively.

To establish the PDF of actual sea state, the PDF of the forecast error
should be first determined, and then the PDF of the actual sea state is
obtained by converting that of the forecast error for a given forecasted sea
state. In previous chapters, the forecast error factor, defined as Eq. (2.46),
has been applied to quantify the forecast uncertainty. To facilitate the
transformation of distributions, the forecast error ratio ε (defined as Eq.
(2.47)) will be used in Chs. 4 and 5. Corresponding to Hs and Tp, εh and
εt are expressed by Eqs. (4.10) and (4.11) respectively.

εh =
Ht
s

hfs
(4.10)

εt =
T tp

tfp
(4.11)

Since marine operations are normally executed in relatively low sea
states, it is reasonable to analyze the forecast uncertainty with respect
to the range of Hs and Tp. For this purpose, forecasted data as well as
corresponding forecast error ratios are categorized. Subsequently, error dis-
tribution for each group can be established. Both εh and εt are modelled



4.4. Extreme response analysis for marine operations 99

as Gaussian distributed, whose parameters should be estimated separately
in each group. Correspondingly, the PDFs of the forecast error ratios can
be expressed as Eqs. (4.12) and (4.13) respectively.

fEh
(εh) =

1√
2π σεh

exp

[
−1

2

(
εh − µεh
σεh

)2
]

(4.12)

fEt(εt) =
1√

2π σεt
exp

[
−1

2

(
εt − µεt
σεt

)2
]

(4.13)

where mean value µεh and standard deviation σεh are functions of hfs and
TL. Mean value µεt and standard deviation σεt are functions of tfp and TL.

µεh = µεh(hfs , TL) (4.14)

σεh = σεh(hfs , TL) (4.15)

µεt = µεt(t
f
p , TL) (4.16)

σεt = σεt(t
f
p , TL) (4.17)

Based on the expressions of εh and εt, actual Hs and Tp are also Gaussian
distributed. They are described as Eqs. (4.18) and (4.19) and also functions
of forecasted sea state values and TL. They reflect the forecast uncertainty
in sea states.

hts = εh · hfs = N(hfs · µεh, hfs 2 · σεh2) (4.18)

ttp = εt · tfp = N(tfp · µεt, tfp2 · σεt2) (4.19)

4.4 Extreme response analysis for marine opera-
tions

In this section, the method for evaluating the conditional distribution of the
extreme response for a given sea state will be briefly summarized. Normally,
the extreme response distribution is built based on the dynamic responses
analysis of marine operations. According to the nature of the problem, two
methods are mainly applied, i.e., frequency domain (FD) and time domain
(TD) methods. Regarding marine operations, for problems that can be
considered under a linear assumption, it is possible to study the dynamic
response in frequency domain to significantly reduce computational cost.
Whereas for complex nonlinear systems, time domain response analysis ap-
proach is more suitable.
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Frequency domain analysis

When analyzing the dynamic response of an offshore structure subjected
to wave loads in frequency domain, it is assumed that the response ampli-
tude ya varies linearly with the wave amplitude ξa for each frequency, and
the transfer function hξY (ω) is utilized to characterize this deterministic
relationship. Correspondingly, the response spectrum SY Y (ω;hts, t

t
p) can be

given by

SY Y (ω;hts, t
t
p) = |hξY (ω)|2 · Sξξ(ω;hts, t

t
p) (4.20)

where Sξξ(ω;hts, t
t
p) is the wave spectrum for a given sea state (hts,t

t
p).

|hξY (ω)| is the absolute value of transfer function.

Given that the wave surface process can be modelled as a Gaussian
process, the response process can also be modelled as a Gaussian process
due to the linearity assumption. Correspondingly, it is reasonable to model
the global response maxima Ro (i.e., the largest value between zero up-
crossings) as a Rayleigh distribution under a given sea state, as shown in
Eq. (4.21).

FR0|Ht
sT

t
p

(r0

∣∣hts, ttp ) = 1− exp

[
−1

2

(
r0

σY (hts, t
t
p)

)2
]

(4.21)

where σ2
Y (hts, t

t
p) is the variance defined by Eq. (4.22), in which m

(0)
Y Y (hts, t

t
p)

is the zeroth order spectral moment.

σ2
Y (hts, t

t
p) = m

(0)
Y Y (hts, t

t
p) (4.22)

The jth order spectral moments m
(j)
Y Y (hts, t

t
p) can be defined by

m
(j)
Y Y (hts, t

t
p) =

∫ ∞
0

ωjSY Y (ω;hts, t
t
p)dω (4.23)

Assume that all individual global response maxima of the given sea state
are independent and identically distributed, the CDF of extreme response
R can be given by Eq. (4.24), where n is the expected number of global
maxima during the given period TE , calculated by Eq. (4.25).

FR|Ht
sT

t
p

(r
∣∣hts, ttp ) =

{
1− exp

[
−1

2

(
r

σY (hts, t
t
p)

)2
]}n

(4.24)

n =
TE
Tm02

(4.25)
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where Tm02 is the mean zero up-crossing period, given by

Tm02 = 2π

√√√√m
(0)
Y Y

m
(2)
Y Y

(4.26)

As n increases, this CDF can be reasonably approximated by the Gumbel
distribution, which is shown in Eq. (4.27).

FR|Ht
sT

t
p

(r
∣∣hts, ttp ) = exp

{
− exp

[
−r − γ

β

]}
(4.27)

where γ and β are the location and scale parameters, respectively. They
are expressed as Eqs. (4.28) and (4.29), based on the Rayleigh assumption
of the global response maxima.

γ = σY (hts, t
t
p)
√

2 lnn (4.28)

β =
σY (hts, t

t
p)√

2 lnn
(4.29)

Finally, based on Eq. (4.27), the characteristic value of the dynamic
response corresponding to a target exceedance probability can be calculated.
Time domain analysis

For marine operations like mating operation of offshore blade installa-
tion, there exists a number of non-linear sources such as second-order wave
forces on floating vessel, aerodynamic loads on blade and so on. Hence,
dynamic response of the system should be addressed in time domain. In
this case, the assumption of Rayleigh distributed global maxima is no longer
valid. Nevertheless, a Gumbel extreme value distribution is still valid for
most cases [200], but the expressions of Gumbel parameters shown in Eqs.
(4.28) and (4.29) need to be modified. To find Gumbel parameters, it is nec-
essary to fit the extreme response distribution based on the response time
series by time domain simulations. The procedure is described as follows:

1. For a given sea state, perform the time domain simulation of the op-
eration during the operational duration TE (e.g., 10 min) and get a
realization of the dynamic response. From the realization, the re-
sponse maxima r1 can be extracted.

2. To better fit the tail of the extreme response distribution, multiple
simulations under the same sea state should be performed to extract
a sufficient number of maxima. Hence, repeat the simulation k times
with random wave seeds, and k independent response maxima {r1, r2,
r3, . . . , rk} can be obtained.
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3. According to the series of response maxima, the Gumbel distribution
can be fitted by different methods, e.g., the method of moments, max-
imum likelihood estimation and so on. Based on the fitted Gumbel
distribution, the related characteristic value can be calculated, corre-
sponding to a target exceedance probability from the extreme response
distribution.

4. Repeat the procedure for a large number of different sea states, the
corresponding Gumbel parameters can be obtained, which are func-
tions of Hs and Tp.

γ = γ(hts, t
t
p) (4.30)

β = β(hts, t
t
p) (4.31)

4.5 Derivation of the response-based alpha-factor

Followed by the weather forecast analysis and the extreme response analysis,
the response-based alpha-factor αR for a given sea state can be calculated
by Eq. (4.32):

αR =
RE

RE WF
(4.32)

where RE is the characteristic value of the limiting response parameter
within an operational duration TE . It is defined as the extreme response
with an exceedance probability (e.g., 10−4) from the extreme response dis-
tribution. The definition of RE WF is similar to RE but considering the
forecast uncertainty in the sea state.

1) Calculation of RE
When a forecasted sea state (hfs , tfp) is given and its uncertainty is

not considered, the forecasted sea state is regarded as the true value, i.e.,
(hts, t

t
p). Under this sea state, the extreme response distribution of a spe-

cific operation can be estimated directly by frequency- or time-domain
response analyses. The PDF of the extreme response R is denoted as
fR|Ht

sT
t
p

(r′
∣∣hts, ttp ), and its CDF can be expressed as Eq. (4.33).

FR(r) =

∫ r

0
fR|Ht

sT
t
p

(r′
∣∣hts, ttp )dr′ (4.33)

By solving Eq. (4.34) with a certain exceedance probability (e.g., 10−4

shown in the equation), the RE value under the sea state can be determined.
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It should be noted that the target exceedance probability depends on the
type of operation and consequences of failure events.

1− FR(RE) = 10−4 (4.34)

For marine operations, the exceedance probability of the extreme re-
sponse is normally set to 10−4. However, the selection of such exceedance
probability level is subjected to discussion. The target level can reflect the
consequences of operation failure and one may also consider for example
10−2 for marine operations if the consequence of failure is not significant.
For instance, for the mating operation by an installation vessel, the motion
response of the crane tip can be regarded as a limiting response parame-
ter. It is not a structural response parameter like lift wire tension. Large
crane tip motion will lead to unsuccessful operation, but may not cause any
structural and component damage or operation failure. Operator may try
a second operation, if the first operation is not possible. Therefore, in this
case, the characteristic values of the limiting parameter can be derived on
the basis of extreme response analysis corresponding to a relatively high
exceedance probability level.
2) Calculation of RE WF

When the weather forecast uncertainty is taken into account, the fore-
casted sea state cannot be regarded as the true value directly. Instead, for
the forecasted sea state (hfs , tfp), there are many possibilities for the actual
sea state. Therefore, it is of importance to establish the PDF of actual sea
state under the given forecasted sea state, expressed as fHt

sT
t
p
(hts, t

t
p). In this

case, the characteristic value RE WF can be determined by a joint PDF of
the extreme response R and the actual sea state (Ht

s, T
t
p), that is established

as
fRHt

sT
t
p
(r′, hts, t

t
p) = fR|Ht

sT
t
p

(r′
∣∣hts, ttp ) · fHt

sT
t
p
(hts, t

t
p) (4.35)

where fR|Ht
sT

t
p

(r′
∣∣hts, ttp ) is the conditional PDF of the extreme response

with a given actual sea state. fHt
sT

t
p
(hts, t

t
p) reflects the uncertainty in actual

sea states for a given forecasted sea state.
Through integration, the marginal CDF of R can be obtained, as shown

in Eq. (4.36).
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t
sdt

t
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′ (4.36)

By solving Eq. (4.37), the corresponding RE WF value with the same
exceedance probability as RE can be determined.

1− FWF
R (RE WF ) = 10−4 (4.37)



104 104

3) Calculation of αR
For the given sea state, by substituting RE and RE WF values, the

corresponding αR value can be calculated by Eq. (4.32). αR depends on
the type and duration of the marine operation, the forecasting method,
etc., mentioned in Sec. 4.2.1. For a specific marine operation, repeating
this procedure in different sea states, the tabulated αR can be obtained.

4.6 Application of the response-based alpha-factor

According to the α-factor proposed by DNV, the allowable sea states in
terms of Hs can be adjusted directly by the selected α. In comparison, the
αR proposed in this thesis is from the perspective of dynamic responses, and
it also depends on the type of operations. Besides, αR takes into account
the forecast uncertainty in both Hs and Tp. Correspondingly, it should be
more comprehensive and reliable in the application of marine operations.
However, the αR is a response-based criterion and cannot be used directly
to correct sea state limits. In this case, allowable sea states have to be re-
assessed considering explicitly the forecast uncertainty and depending on the
forecast horizon. The procedures of applying the αR in marine operations
are summarized as follows:

r Construction
In the planning phase of a specific operation, the allowable sea states
of the relevant limiting response parameter should be assessed. In
principle, this could be done by comparing characteristic values of the
response with the allowable limit value. Based on the aforementioned
procedure, characteristic values RE of the limiting parameter for var-
ious sea states can be evaluated by carrying out dynamic response
analysis. Then different sea states under which RE is equal to the
allowable limit can be found. These sea states form a contour line to
represent the maximum sea states that the operation can be safely
executed. One example is illustrated in Figure 4.2. Assuming that
the allowable response limit of an operation is R0

E , a black solid line
can be generated, showing the maximum allowable sea states for the
operation. For all sea states along this line, the corresponding char-
acteristic value RE of the system will be equal to the allowable limit
value. For instance, at the point A, the characteristic value RAE under
the sea state (hAs , t

A
p ), is equal to the R0

E .

This is the case without considering uncertainty in sea state forecasts.
If forecast uncertainty is considered, the allowable sea states should
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be reduced to a certain degree. For instance, when a 3 hours-ahead
sea state forecast is (hAfs , tAfp ) (i.e., at point A), due to the uncer-
tainty of the forecast, the true sea state should be described by the
distribution fHt

sT
t
p
(hts, t

t
p) instead of a single value. This distribution is

represented by the red circles around the point A. By considering all
possible true sea states and corresponding system responses, the char-
acteristic value RAE WF can be calculated by Eqs. (4.36) and (4.37).
The RAE WF becomes larger than the RAE , and their ratio is the αR
with respect to this sea state and forecast lead time. This means that
the operation can no longer be carried out safely for the forecasted
sea state (hAfs , tAfp ), and the sea state should be reduced to a certain
level to ensure that the characteristic value of the extreme response
is equal to the allowable response limit (i.e., R0

E). Correspondingly,
the blue dash line can be generated, that is the allowable sea states
of the operation considering weather forecast uncertainty with TL of
3 hours. For example, at the point B, the characteristic value RBE WF

corresponding to the forecasted sea state (hBfs , tBfp ) with the lead time
of 3 hours, will be equal to the allowable response limit R0

E .

Figure 4.2: Illustration of construction of allowable sea states considering
weather forecast uncertainty

Following this procedure for various forecasted sea states and forecast
lead times, allowable sea states of the operation including sea state
forecast uncertainties at different TL can be produced. These are
plotted as blue and green dash lines in Figure 4.2.
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r Application
Once these allowable sea states are constructed in the planning phase,
they can be used directly to assist decision-making during the exe-
cution phase of the operation, without any new simulations. This
is done by comparing updated sea state forecast values with these
contour lines. An example is illustrated in Figure 4.3.

Figure 4.3: Illustration of application of allowable sea states considering
weather forecast uncertainty

If a 3 hours-ahead forecasted sea state is (hCfs , tCfp ), by checking its
location in Figure 4.3 (that is at the point C), one can conclude that
the operation cannot be executed since it is above the blue line. By
contrast, if a 3 hours-ahead forecasted sea state is at point D, i.e.
(hDfs , tDfp ), which is below the blue line, the operation is considered
executable.

It is clear that once these contour lines are generated, they can be used
easily and directly. According to the relative position of the weather
forecast value of a certain lead time and the corresponding allowable
sea states, the decision on whether or not to start the operation can
be quickly made.



Chapter 5

Allowable sea states
assessment of the blade
installation of offshore wind
turbine

The methodology for developing αR and assessing allowable sea states of
marine operations have been presented in Ch. 4. In this chapter, a case
study regarding blade installation of offshore wind turbines is conducted,
to illustrate the procedure and the feasibility of the methodology. For the
blade installation, the final mating phase is considered. In this phase, the
blade is close to the nacelle and the dynamic properties of the system do not
vary with time significantly. Therefore, the steady-state analysis of blade
installation is performed. Numerical modelling related to the installation
given in Sec. 5.1 together with uncertainty quantification of weather fore-
casts given in Sec. 5.2 are applied for generating αR of relevant response
limiting parameters. Both the crane tip motion and the blade root radial
motion and velocity are regarded as the operational limiting response pa-
rameters for the installation process, to illustrate the methodology based
on response analysis in frequency- and time-domain, respectively. Secs. 5.3
and 5.4 summarize the corresponding results of αR factors and allowable
sea states considering weather forecast uncertainty.

107
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5.1 Numerical modelling of blade installation

The configuration of a semi-submersible crane vessel used to simulate the
single blade installation is illustrated in Figure 5.1. As displayed, the nu-
merical model consists of three main parts, i.e., a semi-submersible vessel, a
crane and a blade. The semi-submersible vessel is assumed to be equipped
with dynamic positioning (DP) systems to mitigate its slowly varying mo-
tions in surge, sway and yaw. The crane is modelled as a typical pedestal
crane and the DTU 10 MW wind turbine blade [201] is used. For a detailed
description of the model properties, refer to Zhao et al. [54]. Three coor-
dinate systems are also shown in Figure 5.1. As displayed, there are three
right-handed coordinate systems, i.e., a global coordinate system O−XY Z,
a vessel-related coordinate system Ov−XvYvZv and a blade-related coordi-
nate system Ob−XbYbZb, whose origins are located at the mean sea surface,
the center of the waterplane of the semi-submersible at rest and the center of
gravity (COG) of the blade, respectively. Xv and Xb are in the longitudinal
direction of the vessel and blade, respectively.

Figure 5.1: Schematic view of the offshore blade installation system (θwv is
the incident wave angle and θwd is the wind inflow angle)

A fully coupled simulation method, the SIMO-RIFLEX-Aero [52], is
applied to simulate the offshore blade installation in time-domain, which
integrates three programs, i.e., SIMO (SINTEF Ocean [202]) , RIFLEX
(SINTEF Ocean [203]) and Aero (Zhao et al. [53]). Among them, the hy-
drodynamic loads on the semi-submersible and structural dynamics (e.g.,
crane flexibility) are analyzed by SIMO and RIFLEX respectively, and they
are integrated in the SIMA workbench [204]. The aerodynamic loads act-
ing on the blade are calculated by the Aero code based on the cross-flow
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principle [205, 206], in terms of the instantaneous blade displacement and
velocity at each time step. It is coupled with SIMO and RIFLEX using the
external dynamic link library (DLL) in SIMA.

To assess allowable sea states for the mating operation of blade instal-
lation, the critical events and the corresponding limiting parameters should
first be identified. An illustration of the system is plotted in Figure 5.2,
which was provided by Zhao [207]. According to her research, the critical
events during the mating phase are excessive radial motion of the blade
root and bent guide pins at the blade root. Correspondingly, the limiting
parameters are the blade root radial motion and blade root radial velocity
(i.e., motion and velocity in the YbObZb plane), respectively. In addition,
the crane tip motion is also regarded as a limiting parameter, in order to
illustrate the methodology in frequency domain in the case study. To assess
dynamic responses of the limiting response parameters, numerical simula-
tions should be carried out under different environmental conditions. In
the thesis, only irregular beam wind and wave condition is considered (i.e.,
θwv and θwd are zero in Figure 5.1) because they could induce relatively
higher response of the system. In addition, the North Sea area is focused
and the JONSWAP spectrum is used to describe the sea state. Besides, the
simulation time is 10 min, which is consistent with the duration of the final
mating phase of the blade installation.

Figure 5.2: Illustration of the mating phase of offshore blade installation
[207]
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5.2 Uncertainty quantification of weather forecasts

Uncertainty of one-day-ahead Hs and Tp forecasts at the reference site is
quantified in this section. TSML (ANN M-1 model is utilized) and PBML
methods are adopted, which have been investigated in Ch. 2. Figures 5.3
and 5.4 show PDFs of εh and εt at different lead times. As displayed,
the error seems to follow a Gaussian distribution, which is in line with
its assumption. As the lead time increases, error distributions show more
discrepancies, which proves the necessity of quantifying the weather forecast
uncertainty. In addition, only forecasts of the total sea are considered and
utilized for the uncertainty quantification analysis. For the wind-generated
sea and swell, they are forecasted separately in Sec. 3.3.3, in which the
corresponding uncertainty models are built. However, the effect of their
forecast uncertainties on marine operations is not addressed in the thesis.

(a) εh distribution (TSML method) (b) εh distribution (PBML method)

Figure 5.3: Forecast error distribution of Hs at different lead times

(a) εt distribution (TSML method) (b) εt distribution (PBML method)

Figure 5.4: Forecast error distribution of Tp at different lead times
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As aforementioned, forecast error ratios should be analyzed with respect
to the range of Hs and Tp. According to the scatter plot of sea states at
the North Sea center (see Figure A.5 (c)), the interval of Hs groups is set
to 0.5 m, and the group is named using the center value of the interval. For
instance, the group ‘1.5 m’ denotes forecasted Hs is between 1.25 m and 1.75
m. To ensure that there are sufficient data to fit uncertainty distributions in
all groups, all errors with Hs lower than 0.75 m and higher than 3.75 m are
classified as ‘0.5 m’ and ‘4 m’ groups, respectively. Likewise, Tp errors are
categorized into different groups in terms of forecasted Tp with an interval
of 1 s. All errors of Tp lower than 5.5 s and higher than 9.5 s are classified as
‘5 s’ group and ’10 s’, respectively. These sea state ranges are site specific
and need to be determined according to the characteristics of the target sea
areas.

(a) µεh (b) σεh

Figure 5.5: Statistics of εh and trend line analysis for different lead times
(TSML method)

(a) µεh (b) σεh

Figure 5.6: Statistics of εh and trend line analysis for different lead times
(PBML method)
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(a) µεt (b) σεt

Figure 5.7: Statistics of εt and trend line analysis for different lead times
(TSML method)

(a) µεt (b) σεt

Figure 5.8: Statistics of εt and trend line analysis for different lead times
(PBML method)

Figures 5.5-5.8 present statistics of εh and εt (discrete points in different
colors) in terms of different ranges of forecasted Hs and Tp, which are func-
tions of the lead time TL and generated by the TSML and PBML methods,
respectively. It is evident that error statistics show certain fluctuations,
caused by the statistical uncertainty due to the limited number of forecasts.
This phenomenon can be observed especially in the cases with small sig-
nificant wave height and short peak wave period. This may also be due to
the fact that for the definition of the forecast error ratio, small values will
have larger error ratio than the large values for the same absolute error. To
eliminate these effects to a certain extent, the trend analysis is performed.
The trend lines (linear type) of the discrete points in the above figures are
estimated using the least-square fit algorithm, shown as solid lines in the
corresponding figures. From the generated trend lines shown in Figures
5.5-5.8, one can observe that both µεh and µεt are close to one in different



5.2. Uncertainty quantification of weather forecasts 113

groups, except for cases with Hs in the range of 0.5 to 1.0 m by the TSML
method. Meanwhile, the level of σεh and σεt increase as TL increases and
the range decreases. By using statistics along trend lines, the PDF of ac-
tual sea states considering uncertainties can be generated, referring to Eqs.
(4.18) and (4.19).

In addition to the machine learning-based forecasting models employed
in the case study, physics-based wave models (such as WAM, SWAN and
WATCH III) are another choice commonly used for the sea state forecasting.
Various meteorological centers such as ECMWF and MetOffice are able to
provide sea state forecasts based on the physics-based wave models. Their
forecast performance is generally evaluated in terms of error measures like
RMSE, bias, SI, etc. In order to deal with the corresponding forecast uncer-
tainty and apply the results in the development of αR, a slightly different
uncertainty model should be developed. The aim of the model is to di-
rectly use error measures for uncertainty quantification analysis. A detailed
example will show the work of it in the following part.

In this uncertainty model, the forecast error (defined as Eq. (2.45))
is used in the forecast uncertainty analysis. For Hs and Tp, ∆h and ∆t

are expressed as Eqs. (5.1) and (5.2), respectively. Likewise, they are also
modeled as random Gaussian variables, but considering all forecasted sea
states. As a consequence, ∆h and ∆t are not functions of the sea state
ranges, but only functions of the forecast lead time. This is different as
compared to the forecast error ratios defined in Eqs. (4.10) and (4.11). To
establish their distributions, the corresponding Gaussian parameters (i.e.,
the mean value µ∆ and standard deviation σ∆) can be directly derived by
means of RMSE and bias instead of statistical analysis of forecasted data.
Their expressions can be seen in Eqs. (5.3) and (5.4), respectively. Table
5.1 lists statistics of ∆h and ∆t with respect to the one-day-ahead forecasts
from six forecasting modelling institutions described in Sec. 3.4.

∆h = hfs −Ht
s (5.1)

∆t = tfp − T tp (5.2)

µ∆ = bias (5.3)

σ∆ =
√
RMSE2 − bias2 (5.4)
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Table 5.1: Error mean and standard deviation of forecasts from different
institutions (TL=24 hours)

Forecast
variable

Gaussian
parameter

Forecast modelling institutions

ECMWF MOF MTF SHM DMI MTN

µ∆h -0.15 -0.08 -0.22 -0.27 -0.11 -0.17
Hs

σ∆h 0.28 0.24 0.36 0.35 0.25 0.24

µ∆t -0.34 -0.08 -0.22 -0.44 -0.28 -0.26
Tp

σ∆t 0.77 0.84 1.00 0.72 1.23 0.80

According to the expressions of ∆h and ∆t, the conditional PDFs of
actual Hs and Tp can be expressed as Eqs. (5.5) and (5.6) respectively.
Then the conditional PDF of actual sea states can be calculated by Eq.
(4.9). By doing this, the evaluation information of weather forecasts issued
by different forecast modelling institutions can be used, and the forecast
uncertainty quantification can be carried out. The quantification results can
be further used in the following allowable sea state assessment. However,
it should be emphasized that this is a relatively simple method since the
error is constant within all ranges of the weather variable, and the error
distribution are not expressed as a function in terms of hfs and tfp .

f
Ht

s

∣∣∣Hf
s

(hts

∣∣∣hfs ) = N(hfs − µ∆h, σ
2
∆h) (5.5)

f
T t
p

∣∣∣T f
p

(ttp

∣∣∣tfp ) = N(tfp − µ∆t, σ
2
∆t) (5.6)

5.3 Crane tip motion (FD)

This section investigates the allowable sea states assessment in terms of
the crane tip motion. For the blade installation by a semi-submersible, the
motion of the crane tip is important. This is because wave-induced motion
of the semi-submersible will contribute to a significant motion at the crane
tip. The crane tip motion could further increase the motion of the blade
and challenge the security of the blade mating operation. Given that the
wave-induced vessel motion is the main source of the crane tip motion, the
wave condition is of main interest and the wind condition is not considered
in this section. Furthermore, frequency-domain response analysis approach
is utilized for the advantage of the high cost efficiency.
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5.3.1 Dynamic response analysis of the crane tip

Based on the frequency-domain response analysis approach, the motion of
semi-submersible can be directly obtained by the motion transfer functions
and wave spectra. The first-order motion transfer functions for the semi-
submersible are obtained from the hydrodynamic code HydroD [208]. Based
on the motion transfer functions of the semi-submersible and the relative
coordinate of the crane tip to semi-submersible’s COG, the motion transfer
functions for the crane tip can be calculated.

5.3.1.1 Spectral analysis

In the beam sea condition, the transfer functions of the first-order motion
of the crane tip in 3 degree-of-freedoms (DOFs) are shown in Figure 5.9. It
is visible that the natural periods of the crane tip in Xb, Yb and Zb direc-
tions are relatively large (23-25 s). Given that the focus of Tp in weather
uncertainty analysis is in the range of 5-10 s which are well smaller than
these natural periods, the crane tip motion is mainly determined by wave-
frequency motions. By applying the transfer functions together with wave
spectra, the power spectra of crane tip motion can be generated. An exam-
ple of a series of wave spectra and the resulting motion spectra of the crane
tip are illustrated in Figure 5.10. In the figure, sea states are described by
a JONSWAP spectrum with Hs =2 m and different Tp values (from 5 s to
10 s), and the motion spectra are generated by means of spectral analysis
in frequency domain.

Figure 5.9: Motion transfer functions of the crane tip in the beam sea con-
dition
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(a) Wave spectra

(b) Power spectra of crane tip motion (Xb direction)

(c) Power spectra of crane tip motion (Yb direction)

(d) Power spectra of crane tip motion (Zb direction)

Figure 5.10: Wave spectra and power spectra of crane tip motion for differ-
ent Tp (Hs=2 m)

As illustrated in Figure 5.10, for a given Hs, the shape of power spec-
tra of crane tip motion is significantly affected by the selection of Tp. The
spectrum peaks increase with increasing Tp values, which indicates that the
crane tip motion is larger at sea state with larger Tp. This is because the
relevant wave periods are well smaller than the natural periods of the crane
tip motions and when the wave period increases, the motion of crane tip
increases. In frequency domain, the motion spectra of the crane tip can
give a complete description of its statistical properties, and a Gumbel dis-
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tribution can be adopted to describe the 10-min extreme value. Thus, the
characteristic value of the crane tip motion under a target exceedance prob-
ability can be identified from the simulation in FD, following the method
described in Sec. 4.4. Figure 5.11 presents the characteristic values with an
exceedance probability of 10−4. The comparison among cases further proves
the importance of Tp to crane tip motion when using a floating installation
vessel. By comparing the crane tip motion in Xb, Yb and Zb directions, it
is visible that the motion in Yb direction is larger than that in other two
directions in the beam sea condition. Hence, only Yb direction is concerned,
and the crane tip motion refers to its motion in Yb direction in the following
analysis.

(a) Xb-direction (b) Yb-direction

(c) Zb-direction

Figure 5.11: Characteristic values of crane tip motion for different Tp
(Hs=2 m)

5.3.1.2 Extreme response analysis

To illustrate the effect of weather forecast uncertainty, Figure 5.12 gives
an example of extreme value distributions of the crane tip motion with
and without including weather forecast uncertainty. In this example, the
TSML method is used in the sea state forecasting and TL is 3 hours. The
probability of exceedance of 10−4 is considered.

The obvious difference between blue and black lines in Figure 5.12 indi-
cates that the uncertainty of sea state forecasts strongly affects the extreme
value distribution. Since the weather forecast uncertainty is included, the
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blue distribution is much more dispersed than the black one. Based on
these two distributions, characteristic values corresponding to an exceedance
probability of 10−4 are evaluated respectively. By dividing them, the rele-
vant αR can be established.

(a) CDF (b) PDF

Figure 5.12: Extreme response distributions with and without considering
weather forecast uncertainty (Hs=1 m, Tp=7 s, TSML method, TL=3 hours,
10−4 exceedance probability)

(a) CDF (b) PDF

Figure 5.13: Extreme response distributions with and without considering
weather forecast uncertainty (Hs=1 m, Tp=7 s, TSML method, TL=3 hours,
10−2 exceedance probability)

Generally, the characteristic value is determined from the extreme value
distribution with a target exceedance probability, to ensure the safety of the
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design with an acceptable low probability of damage or collapse. The target
exceedance probability depends on the type of operation, the consequence
of failure, etc. During the blade installation, since large crane tip motion
may not lead to the operation failure, a larger probability of exceedance
(i.e., 10−2) can also be considered as well as 10−4 recommended in DNV
standard. Figure 5.13 shows the relevant results with the 10−2 exceedance
probability under the same condition as shown in Figure 5.12.

Following the same procedure, RE and RE WF values regarding the
crane tip motion with exceedance probabilities of 10−4 and 10−2 in differ-
ent sea states can be estimated. Results with 10−4 exceedance probability
are presented in Tables 5.2 and 5.3 for illustration. The RE WF values still
correspond to the TSML method with TL of 3 hours.

Table 5.2: RE values (m) of the crane tip motion (10−4 exceedance proba-
bility)

Hs (m) Tp (s)

5 6 7 8 9 10

0.5 0.02 0.05 0.09 0.13 0.16 0.17

1 0.04 0.10 0.19 0.26 0.31 0.35

1.5 0.06 0.15 0.28 0.39 0.47 0.52

2 0.08 0.20 0.37 0.52 0.62 0.70

2.5 0.10 0.26 0.47 0.65 0.78 0.87

3 0.12 0.31 0.56 0.78 0.94 1.04

3.5 0.14 0.36 0.65 0.91 1.09 1.22

4 0.16 0.41 0.75 1.04 1.25 1.39

By comparison of results in Tables 5.2 and 5.3, it is visible that the
RE WF values are generally larger than the corresponding RE values when
forecast uncertainties in sea states are involved. The degree of this difference
reflects the effect of weather forecast uncertainty on the dynamic response.
Furthermore, characteristic values at other lead times can be calculated by
the same procedure. Similar analysis can also be performed with respect to
the forecasts by the PBML method.

Based on RE and RE WF values, corresponding αR factors can be cal-
culated. This will be summarized and further analyzed in Sec. 5.3.2.
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Table 5.3: RE WF values (m) of the crane tip motion (TL=3 hours, TSML
method, 10−4 exceedance probability)

Hs (m) Tp (s)

5 6 7 8 9 10

0.5 0.07 0.10 0.11 0.14 0.18 0.33

1 0.15 0.20 0.24 0.28 0.38 0.70

1.5 0.23 0.31 0.36 0.43 0.57 1.05

2 0.31 0.42 0.50 0.59 0.78 1.42

2.5 0.38 0.51 0.60 0.72 0.96 1.69

3 0.46 0.61 0.72 0.85 1.14 1.94

3.5 0.54 0.72 0.84 1.00 1.34 2.19

4 0.64 0.87 1.02 1.22 1.61 2.43

5.3.2 αR for the crane tip motion

For the definition of the response-based alpha-factor, an αR of 1.0 presents
the sea state forecast is completely correct. The farther it is from one, the
greater the uncertainty implicit in the weather forecasts. Figures 5.14 and
5.15 show αR factors for the crane tip motion with exceedance probability of
10−4, using weather forecasts generated by the TSML and PBML methods,
respectively. To investigate the effect of Tp forecast uncertainty on αR, the
variations of αR with Hs in different Tp groups are plotted and displayed
by solid lines with different colors. Besides, subfigures (a) and (b) in each
figure show αR at the lead time of 3 hours and 24 hours respectively, to
explore the influence of the forecast horizon.

In addition to the αR, the α-factors, extracted from the DNV standard
[8], are plotted in figures for comparison. They correspond to the weather
forecast Level C and are based on the work performed in JIP [146] during
the years 2005 - 2007. According to the forecast horizon of the α-factors in
the DNV standard, only results with the lead time of 24 hours are plotted
in subfigures (b). Meanwhile, following the derivation process, α-factors are
also calculated using the produced weather forecasts by TSML or PBML
method, and are plotted in the corresponding figures. It should be noted
that regarding the α-factor, Hmax and Hmax WF are estimated from the
extreme wave height distributions during a given sea state reference period,
that is 3 hours in the case study. This implies that the difference between the
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Table 5.4: Properties of the correction factors

Factor αR α-factor 1 α-factor 2 α-factor 3

Forecast uncertainty in Hs X X X X

Forecast uncertainty in Tp X

The effect of weather forecast
uncertainty on dynamic response X

Reference period to estimate
the characteristic value 10 min 3 hours 10 min 3 hours

Forecasting methods
TSML or

PBML
TSML or

PBML
TSML or

PBML
DNV

standard

sea state reference period TS and the operation duration TE is not taken into
account. For the sake of consistency, the α-factor generated by analyzing
maximum wave heights during 10 mins (i.e., the duration corresponds to
the mating operation) is calculated and displayed as well. The properties
of the considered correction factors are summarized in Table 5.4.

The response-based alpha-factor is a complex indicator and both the ex-
treme response of offshore structures and weather forecast uncertainty affect
its value. According to the above extreme response analysis, the character-
istic response of the crane tip motion increases significantly with increasing
Hs and Tp. However, this effect is not equivalently reflected in the value of
αR. This is due to the fact that the αR is a ratio of the extreme responses
without and with the consideration of the weather forecast uncertainty for
a given sea state. Since a frequency-domain approach is applied for motion
analysis, the response of the system is approximately linear with respect to
wave height. As a result, αR does not change very much with Hs for a given
Tp, as shown in Figures 5.14 and 5.15. By contrast, the αR varies greatly
among different Tp groups. Nevertheless, the dependency of the αR on Tp
is not necessary to be the same as that of the characteristic responses on
Tp. As can be observed in Figure 5.11, for a given Hs, the characteristic
response increases as Tp increases, while the αR does not. The greatly con-
tribution of the forecast uncertainty in Tp to the αR might be the reason.
For instance, as illustrated in Figure 5.8, the forecast uncertainty in the Tp
groups with 5-6 s is higher than that in other groups. This causes a large
difference between RE and RE WF , and therefore making the αR factors
lower in these two groups, as shown in Figure 5.15.
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(a) TL: 3 hours (b) TL: 24 hours

Figure 5.14: αR vs. Hs in different Tp groups (TSML method)

(a) TL: 3 hours (b) TL: 24 hours

Figure 5.15: αR vs. Hs in different Tp groups (PBML method)

In general, a large difference of αR factors is observed in different Tp
groups with the same Hs, indicating that Tp is not a negligible variable in
marine operations using a floating crane vessel. However, uncertainty in Tp
forecasts is not reflected in the widely used α-factor. For instance, for the
Hs group of 0.5 m in Figure 5.14 (a), the α-factor 1 and α-factor 2 are 0.938
and 0.944 respectively, which are independent of Tp. By comparison, αR
varies from 0.27 to 0.95 considering forecast uncertainty of Tp in different Tp
groups. Furthermore, the α-factor is purely generated by analyzing weather
data without considering their effect on the operation response. Comparison
between subfigures (a) and (b) in the above two figures shows that although
the α-factor decreases with the forecast horizon, the influence of the weather
forecast uncertainty on the crane tip motion may not be clearly identified,
especially when the forecast horizon is long. This is because the dynamic
response is not totally proportional to Hs, and Tp is essential for operations
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based on floating structures. Therefore, uncertainty in Tp forecasts should
also be taken into account. Regarding the αR, it reflects the influence of
sea state forecast uncertainties on the dynamic response and a large lead
time induce a smaller correction factor. In addition, the quality of weather
forecasts is important to generate both the α-factor and the αR. Compared
to the PBML method, the TSML method makes the αR decrease more when
the lead time is extended to 24 hours. The comparison results related to
the three α-factors can also implicitly reflect the forecast performance of
machine learning-based methods and physics-based numerical methods to
a certain extent. However, it still needs to be emphasized that this is not a
strict comparison, because the conditions for generating the three α-factors
are not exactly the same.

5.3.3 Allowable sea states assessment

Regarding the allowable sea states assessment, Hs-based alpha-factor de-
rived by DNV can be used directly as a correction factor that is multiplied
with the actual Hs limit of marine operations for decision-making when
weather forecast uncertainty is considered. This is done by comparing the
forecasted Hs with the new Hs limit with the alpha-factor. However, the
response-based alpha-factor derived in the thesis cannot be directly used in
combination with the forecasted values of Hs and Tp for decision-making of
marine operations. This is because it is defined as a correction factor based
on the response parameter, not on the wave height or Hs. Moreover, uncer-
tainties in both Hs and Tp will play a role for the determination of the αR.
This is the drawback of using the response-based alpha-factor. However,
one can inversely identify the allowable sea states in which a safe marine
operation can be performed by comparing the extreme response with the
allowable limit of response. This can also be done when using the forecast
sea states and considering the forecast uncertainty. The procedure has been
illustrated in Sec. 4.6 and the allowable sea states in terms of the crane tip
motion are assessed in this section.

To assess the allowable sea states, the relevant allowable limit should be
pre-defined. It is normally estimated based on structural damage criteria
and reasonable assumptions. This is out of the scope of this thesis. In the
thesis, the allowable limits are simply assumed to be constant values. Fig-
ures 5.16 and 5.17 illustrate the allowable sea states in terms of the crane
tip motion with 10−4 and 10−2 exceedance probability, and the correspond-
ing allowable limits are assumed to be 0.8 m and 0.4 m, respectively. For
each selected exceedance probability, results based on TSML and PBML
methods are separately provided.
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(a) TSML method (b) PBML method

Figure 5.16: Allowable sea states of the crane tip motion (allowable
limit=0.8 m, 10−4 exceedance probability)

(a) TSML method (b) PBML method

Figure 5.17: Allowable sea states of the crane tip motion (allowable
limit=0.4 m, 10−2 exceedance probability)

Similar to the description in Figure 4.2, the lines in Figures 5.16 and 5.17
represent the maximum allowable sea states, and all sea states below the
lines are feasible. The black solid line denotes allowable sea state limits that
does not include weather forecast uncertainty. The dash lines in different
colors are allowable sea states considering forecast uncertainties at different
lead times. It is visible that following the proposed method, allowable sea
states at different lead times can be generated, which is convenient to assist
decision-making during the execution of installation operation. The contour
lines in two figures reveal that the allowable sea states gradually decrease
as the forecast lead time increases. The sea state forecast uncertainties
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induced by the two methods (i.e., TSML and PBML methods) result in
different allowable sea states.

5.4 Blade root radial motion and velocity (TD)

In Sec. 5.3, a case study dealing with the motion response of the crane tip
under wave conditions is carried out. For the challenging blade installation,
in addition to wave loads, the nonlinear wind load acting on the blade is
also important and needs to be considered. Thus, time-domain simulation
is necessary to numerically model the actual installation process and assess
the dynamic responses of the blade during the installation. In this section,
the αR factor with respect to the blade root radial motion and velocity will
be derived on the basis of time-domain response analysis approach. The
corresponding allowable sea states are assessed with emphasis on taking
into account the uncertainty of weather forecasts by the PBML method.

5.4.1 Comparison between FD and TD analysis

The necessity of the response analysis in time domain (TD) is discussed and
illustrated in this part through a comparison with the method in frequency
domain (FD). Figure 5.18 shows the motion spectra of the crane tip under
a typical beam sea (Hs =1 m and Tp =7 s).

As illustrated in Figure 5.18, in the beam sea condition, the crane tip
motion in Yb direction is relatively large. The 1st order wave force dominant
the motions, since the peak frequency in the motion spectrum is similar to
the one of the wave spectrum. From a comparison with the results in FD
and TD, a good agreement can be observed in the wave-frequency part.
Nevertheless, the method in FD cannot capture the low frequency motions,
which makes its power spectral density different from that of the motion
obtained by the method in TD.

In Table 5.5, the advantages and disadvantages of the method in TD
and FD are briefly listed. As shown above, the time domain analysis can
capture the system motion which is subjected to wave loads more accurately
by including nonlinear effects such as 2nd order wave forces, lift wire ten-
sion formulation and geometrical nonlinearities for motion analysis. On the
other hand, the nonlinear aerodynamic loads on the blade and the strong
coupling between waves and wind are also important for the response of
the installation system. However, these cannot be directly included by the
method in FD. Therefore, although its computational efficiency is relatively
low, the time-domain modelling is necessary to simulate the whole blade
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(a) Xb-direction (b) Yb-direction

(c) Zb-direction

Figure 5.18: Comparison of power spectra of crane tip motion using FD and
TD methods (Hs =1 m, Tp =7 s)

installation process and perform dynamic response analysis.

5.4.2 Sensitivity analysis of wind loads

To establish the conditional distribution of the extreme response with a
given sea state, the time domain simulation has to be repeated many times
with different wave seeds. As a consequence, it is time-consuming compared
with the simulation in frequency domain. Moreover, different combinations
of wind and wave conditions should be considered. Given that under each
combination multiple simulations are required, the computational cost of
extreme response analysis will be heavily increased. To decrease the cost in
TD, a sensitivity study on wind loads will be carried out.

In the sensitivity study, a constant Hs value of 2 m is applied, and Tp
is selected as the mean value of the conditional distribution of Tp with the
given Hs value, which is 7.5 s. The distribution is modelled as a Lognormal
distribution, in which the Lognormal parameters are fitted using long-term
time series of metocean variables at the North Sea center. Likewise, the joint
distribution of Uw, Hs and Tp is fitted by data based on a simplified method
proposed by Li et al. [209]. The joint distribution is used to determine the
mean wind speed distribution with the given sea state. From the mean wind
speed distribution, five typical Uw values (i.e., 1.9 m/s, 3.6 m/s, 5.3 m/s,
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Table 5.5: Properties of TD and FD response analysis methods for blade
installation

Response analysis methods Time domain Frequency domain

Advantage

Can simulate the whole blade

installation process.

Various terms can be included:

- 2nd order wave forces

- Wind loads

- Viscous loads

- Nonlinear structural response

High computational efficiency

Disadvantage Low computational efficiency

Only includes the 1st order

wave loads and the linear

motion response

Properties of the

modelling of blade

The actual blade root motion

and velocity can be simulated,

which are directly related to the

operational criteria for installing

blade

The crane tip motion is referred

to, not the blade motion

7 m/s, 8.7 m/s) are selected to conduct the sensitivity study. It should be
noted that the mean wind speed in the joint distribution is at the height of
10 m above the mean sea level. For the offshore wind turbine installation,
the mean wind speed at the hub height is required and it can be calculated
using a power law profile shown in Eq. (5.7).

U(z) = U10 ·
( z

10

)αU

(5.7)

where z represents the hub height, that is 119 m of the DTU 10MW wind
turbine. U10 is the mean wind speed at the reference height of 10 m. αU
is the power law exponent which is set to 0.14, based on IEC 61400-3 [210]
for offshore wind field.

According to Eq. (5.7), Uw values at the hub height are obtained as 2.7
m/s, 5.1 m/s, 7.5 m/s, 9.9 m/s and 12.3 m/s. For each Uw, the 3D turbulent
wind field is generated by TurbSim [211] using the IEC Kaimal model [212],
and the turbulence intensity is defined as the class C. The wind load is
incorporated into SIMA using DLL to simulate the blade installation in
time domain. After simulations, the power spectra and standard deviation
of the blade COG motion in 6 DOFs with different wind fields are shown in
Figures 5.19 and 5.20, respectively. According to blade COG motion, the
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(a) Surge (b) Sway

(c) Heave (d) Roll

(e) Pitch (f) Yaw

Figure 5.19: Power spectra of blade COG motion with different wind fields
(Hs=2 m, Tp=7.5 s)

radial motion of the blade root can be obtained. The power spectra and
standard deviations of the blade root radial motion are shown in Figure
5.21.

From Figures 5.19 and 5.20, it is visible that the surge, heave and pitch
motions of the blade COG are almost irrelevant with the wind in the beam
wind and wave condition, and the wave-induced motion is the main source
of the blade motion in these 3 DOFs. By comparison, both aerodynamic
loads and wave-induced motion contribute to the blade motion in sway,
roll and yaw. Among them, the aerodynamic loads have significant effects
on the blade roll motion and an obvious increase of the peak roll motion
can be observed as the mean wind speed increases. Nevertheless, regarding
radial motion of the blade root, it does not vary greatly under different
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(a) Surge, Sway and Heave (b) Roll, Pitch and Yaw

Figure 5.20: Standard deviations of blade COG motion with different wind
fields (Hs=2 m, Tp=7.5 s)

wind conditions. Figure 5.21 illustrates that the wave loads have a major
contribution on the blade root radial motion while the aerodynamic loads
have relatively less contributions.

(a) Power spectra (b) Standard deviation

Figure 5.21: Comparison of blade root radial motions with different wind
fields (Hs=2 m, Tp=7.5 s)

Overall, the sensitivity study demonstrates that the wave load dominates
over the wind load. To illustrate the proposed methodology, the mean wind
speed is simply selected as a constant value (8 m/s at 10 m height) in the case
study, and the effect of different wind conditions on the blade installation
is not considered in this thesis.

5.4.3 Extreme response analysis

Unlike the extreme response analysis based on response spectra in frequency
domain, the extreme value distribution in time domain needs to be fitted
using maxima values extracted from the response time series. Figure 5.22
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shows a typical example of the extreme distribution of the blade root radial
motion under a given sea state (Hs=2 m and Tp=5 s). To reduce statistical
uncertainty in the tail of the fitted distribution, 50 10-min time-domain sim-
ulations are carried out with random wave seeds. The Gumbel distribution
is utilized to fit the extracted 10-min extreme responses.

Under this sea state, the parameters (i.e., the location parameter γ and
scale parameter β) of the Gumbel distribution are estimated by the maxi-
mum likelihood estimations (MLEs) method. Results shown in Figure 5.22
(a) indicate that the Gumbel distribution has a good performance to capture
the extreme radial motion of the blade root. The characteristic value can
therefore be obtained based on the distribution with a certain exceedance
probability, as shown in Figure 5.22 (b). In the mating phase of the blade
installation, a small exceedance probability (i.e., 10−4) is considered since
larger radial motion and velocity of the blade root may lead to the failure
of installation.

(a) Gumbel fitting (b) Exceedance probability

Figure 5.22: Extreme value distribution estimation of the blade root radial
motion (Hs =2 m and Tp =5 s)

5.4.3.1 Statistical uncertainty

In the above extreme response analysis, only a limited number of simulations
(i.e., 50 10-min) are conducted to estimate the characteristic values. The
statistical uncertainty may exist when evaluating extreme responses. In this
subsection, the accuracy of the estimated extreme values due to a limited
number of simulations is addressed.

In Figure 5.23, the extreme distribution of the blade root radial motion
under the given sea state (Hs=2 m and Tp=5 s) is further fitted, using
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1000 simulations with different wave seeds. Based on the distribution, char-
acteristic values with two exceedance probability levels, namely 10−2 and
10−4, are estimated and displayed. For the 10−2 level, 1000 simulations can
be considered as a reasonable choice, and the corresponding characteristic
value is regarded as an accurate estimation for extreme responses. In this
sensitivity study, the characteristic value with 10−4 level shown in Figure
5.23 is also taken as the reference value for the extreme response. Compar-
ison between Figures 5.22 and 5.23 shows that there is a slight difference in
the characteristic value estimated by different numbers of simulations.

Figure 5.23: Fitted extreme distribution of the blade root radial motion
(1000 simulations, Hs=2 m, Tp=5 s)

To investigate the effect of simulation numbers in the extreme response
analysis, Figure 5.24 shows variation of the characteristic values of the blade
root radial motion with different simulation numbers. Results for the ex-
ceedance probability of 10−2 and 10−4 are displayed in subfigure (a) and
(b) separately.

It is visible that the number of simulations can affect the determination
of fitting parameters for the Gumbel distribution, and thereby affect the
estimation of the characteristic values. This phenomenon is especially ob-
vious when the simulation number is less than 40. Compared with the case
based on 1000 simulations, large uncertainty exists when only 5 simulations
are used for the extreme response estimation. As expected, the statistical
uncertainty decreases as the number of simulations increases. When the
number of simulations is greater than 40, there is no significant difference
in the results among different cases. Therefore, taking into account the
computational efficiency, the number of simulations is selected as 50, which
can give a reasonably good estimation of the characteristic response value.
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(a) Ten-min extreme response with a 10−2

exceedance probability
(b) Ten-min extreme response with a 10−4

exceedance probability

Figure 5.24: Variation of the characteristic with the number of simulations
(Hs=2 m, Tp=5 s)

Moreover, the statistical uncertainty of the extreme response assessed
by a fixed number of simulations (i.e., 50) is illustrated in Figure 5.25. In
the figure, 10 sets of 50 time-domain simulations are selected randomly from
1000 simulations, and the extreme value in each set is estimated individually.

(a) Ten-min extreme response with a 10−2

exceedance probability
(b) Ten-min extreme response with a 10−4

exceedance probability

Figure 5.25: Variation of the characteristic values in different sets (Hs=2
m, Tp=5 s)

It can be found that the variation in characteristic values between dif-
ferent sets is small, further implying that 50 is a reasonable number for
time-domain simulations under a given sea state. Furthermore, coefficient
of variation (CoV), that is defined as Eq. (5.8) in terms of the mean value
(µRE

) and standard deviation (σRE
) of characteristic values, is applied to

measure the related statistical uncertainty. It is calculated based on 20 sets
of 50 time-domain simulations and the relevant results are summarized in
Table 5.6. The results show low statistical uncertainty, since small CoV
values corresponding to 10−2 and 10−4 exceedance probability levels (i.e.,
4% and 6%) are observed.

CoV =
µRE

σRE

(5.8)
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Table 5.6: Statistical uncertainty in extreme response estimation (Hs=2 m,
Tp=5 s)

Exceedance probability µRE
σRE

CoV

10−2 0.43 0.02 0.04

10−4 0.60 0.03 0.06

Overall, the fitted distribution with 50 simulations for a sea state can
give an overall good estimation of the extreme value and the statistical
uncertainty is low. Therefore, the extreme responses of both the blade root
radial motion and velocity in this thesis are assessed based on 50 time-
domain simulations for each sea state.

5.4.3.2 Characteristic response values

By carrying out the extreme response analysis in TD, the RE values of the
blade root radial motion and velocity under different typical sea states are
calculated and summarized in Tables 5.7 and 5.8, respectively.

As displayed in Tables 5.7 and 5.8, REM and REV increase significantly
with Hs and Tp. This indicates that both Hs and Tp are important for
assessing the dynamic responses of the blade and need to be considered
before executing the blade installation. As aforementioned, the Gumbel
parameters are functions of Hs and Tp. Figures 5.26 and 5.27 present the
fitting surfaces of Gumbel parameters for extreme radial motion and velocity
of the blade root, respectively.

(a) β (b) γ

Figure 5.26: Fitting surface of Gumbel parameters as a function of Hs and
Tp (blade root radial motion)
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Table 5.7: RE values (m) of the blade root radial motion (REM )

Tp (s)
Hs (m)

5 6 7 8 9 10

0.5 0.20 0.27 0.37 0.42 0.47 0.54

1 0.23 0.46 0.60 0.80 0.88 1.03

1.5 0.36 0.71 0.96 1.26 1.42 1.55

2 0.61 1.03 1.41 1.76 2.02 2.16

2.5 0.93 1.44 1.95 2.35 2.75 2.86

3 1.30 1.93 2.62 3.06 3.64 3.68

3.5 1.72 2.53 3.37 3.90 4.62 4.56

4 2.20 3.18 4.21 4.87 5.68 5.46

Table 5.8: RE values (m) of the blade root radial velocity (REV )

Tp (s)
Hs (m)

5 6 7 8 9 10

0.5 0.13 0.18 0.25 0.27 0.31 0.33

1 0.22 0.36 0.47 0.58 0.61 0.64

1.5 0.32 0.53 0.70 0.88 0.92 0.96

2 0.43 0.70 0.92 1.19 1.22 1.29

2.5 0.54 0.88 1.16 1.505 1.53 1.62

3 0.66 1.06 1.40 1.82 1.84 1.94

3.5 0.78 1.24 1.66 2.15 2.17 2.28

4 0.90 1.43 1.92 2.48 2.49 2.63



5.4. Blade root radial motion and velocity (TD) 135

(a) β (b) γ

Figure 5.27: Fitting surface of Gumbel parameters as a function of Hs and
Tp (blade root radial velocity)

In Figures 5.26 and 5.27, the blue points are Gumbel parameters fitted by
the simulated response time series under typical sea states. They are utilized
to evaluate the characteristic values without weather forecast uncertainty,
i.e., RE in Eq. (4.34). Based on these blue points, the surfaces of γ and β for
different sea states are fitted by the piecewise cubic interpolation method
[213] in Matlab. These surfaces are necessary to integrate the marginal
distribution of the extreme response expressed in Eq. (4.36). Accordingly,
the characteristic values RE WF can be calculated, accounting for weather
forecast uncertainty by Eq. (4.37).

5.4.4 αR for the final blade mating phase

Based on characteristic values of each limiting response parameter with and
without weather forecast uncertainty, the response-based alpha-factors of
the blade root radial motion (αRM ) and velocity (αRV ) can be estimated.
Relevant results will be summarized and discussed in this section.

5.4.4.1 Blade root radial motion

Figure 5.28 shows an example of the αRM , associated with weather forecast
uncertainty of the PBML method with a lead time of 3 hours. It is clearly
that the αRM varies with sea states. Since the blade installation normally
requires low sea states, Figure 5.29 further presents the variation of αRM
for different Tp and TL, focusing on the results in Hs ranging from 0.5 m to
2.0 m.

From Figure 5.29, it can be found that the αRM does not change sig-
nificantly with the lead time, due to the good forecast performance of the
PBML method on sea state forecasting. In contrast, by comparing αRM in



136 136

different subfigures, a significant effect of forecast uncertainty in Tp is ob-
served. Moreover, the effect of Hs can be found by comparing αRM factors
at each lead time for each subfigure. As shown, the αRM varies with Hs,
but the variation also depends on conditions of Tp and TL.

Figure 5.28: αRM with a lead time of 3 hours

Figure 5.29: Variation of αRM with lead times in different Hs groups
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5.4.4.2 Blade root radial velocity

A similar analysis is conducted on the αRV . αRV with different Hs, Tp and
TL are presented in Figure 5.30. Likewise, only results in Hs groups between
0.5 m and 2.0 m are displayed.

Figure 5.30: Variation of αRV with lead times in different Tp groups

From Figure 5.30, the influence of Tp on the αRV can be clearly found.
For all lead times and Hs groups, αRV are in the range of 0.16 to 0.52 for the
Tp group of 5 s, and 0.52 to 0.99 for other Tp groups. By comparing Figures
5.29 and 5.30, it is noted that the variation observed in αRV is different
from that observed in αRM . This reflects the characteristics of αR, that is,
it is specific to the operations and associated limiting response parameters.

Overall, results demonstrate that for the blade installation using a float-
ing crane vessel, uncertainty in Tp forecasts is important and should not
be neglected. Unlike the conventional alpha-factor that only relies on the
uncertainty in Hs, αR reflects forecast uncertainties in both Hs and Tp to
guide marine operations.

5.4.5 Allowable sea state assessment

The allowable sea states are finally assessed through a comparison between
the RE WF (adjusted by the αR) and the corresponding allowable limits. Al-
lowable sea states associated with the blade root radial motion and velocity
are shown in the following separately. For the blade root radial motion,
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the allowable limit is defined as the gap between the hub radius and the
blade root radius during the mating phase. Figure 5.31 shows a sensitivity
study on the allowable limit, in which 0.5Rroot, 0.3Rroot and 0.2Rroot are
selected as the allowable limit, where Rroot is the radius of blade root which
is 2.69 m. For the blade root radial velocity, the allowable limit is normally
related to the plastic bending in the guide pins. A reference velocity (0.7
m/s) proposed by Verma et al. [214] is applied as the allowable limit of the
blade root radial velocity. Correspondingly, Figure 5.32 shows the allowable
sea states using the blade root radial velocity as criterion. Both the allow-
able sea states with (dash lines) and without (solid lines) weather forecast
uncertainty are presented at different lead times.

(a) Allowable limit=0.5Rroot (b) Allowable limit=0.3Rroot

(c) Allowable limit=0.2Rroot

Figure 5.31: Allowable sea states of the blade root radial motion

As displayed in Figures 5.31 and 5.32, the allowable sea state is sig-
nificantly affected by the sea state forecast uncertainty, since an obvious
discrepancy between the solid line and dash lines can be observed. Un-
certainty in sea state forecasts decreases the allowable sea state, especially
in the range of short Tp. Moreover, the comparison among the dash lines
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in each figure indicates that the forecast horizon is another important pa-
rameter for determining the allowable sea states when the weather forecast
uncertainty is taken into account. As expected, the allowable sea states
gradually decrease with the forecast lead time TL increases. This is rea-
sonable since when the forecast lead time increases, the weather forecast
becomes more uncertain, which reduces the αR and therefore makes the al-
lowable sea states more conservative. For instance, in Figure 5.31 (a), when
Tp is 5 s, allowable Hs without forecast uncertainty is about 2 m, while
allowable Hs with lead times of 3 and 24 hours are about 1.9 m and 1.3 m,
respectively. In addition, the importance of the pre-determined allowable
limit is also illustrated in Figure 5.31. The comparison among the three ex-
amples shows that small allowable limit requires a more accurate operation,
and therefore, the allowable sea states will be reduced by high performance
requirement.

Figure 5.32: Allowable sea states of the blade root radial velocity

Furthermore, the workable weather windows for offshore blade installa-
tion can be identified by comparing the allowable sea states with weather
forecasts. It is noted that if the operation is controlled by more than one
limiting response parameter, identification of workable weather windows is
relatively complicated. Regarding the final mating phase, the blade root
radial motion and velocity should be considered simultaneously, and the
overall weather window should be identified and selected considering the
two corresponding windows. This also depends on the values of allowable
limits. For instance, if the allowable limit of the blade root radial motion
is selected as 0.5Rroot (see Figure 5.31 (a)), the allowable sea states re-
lated to the blade root radial velocity are lower than those related to the
blade root radial motion at every lead time. As a consequence, the overall
workable weather window is decided by the blade root radial velocity. In
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contrast, if the allowable limit of the blade root radial motion is 0.2Rroot
(see Figure 5.31 (c)), the corresponding weather windows will be shorter
than that for the blade root radial velocity. In this case, the weather win-
dow for the blade root radial motion decide the overall workable weather
windows. However, when the allowable limit of the blade root radial mo-
tion is 0.3Rroot (see Figure 5.31 (b)), two weather windows should be taken
into account simultaneously. Specifically, it is necessary to identify weather
windows separately for each limiting parameter, and the overlap part will
be the reference for the selection of overall workable weather windows.



Chapter 6

Conclusions and
recommendations for future
work

This thesis addresses the effect of weather forecast uncertainty on marine op-
erations. First, different machine learning-based methods are developed for
multi-step-ahead wave forecasting. Based on the wave forecasts, the forecast
uncertainty quantification for different methods is carried out. A method-
ology for assessing allowable sea states of marine operations is subsequently
proposed by means of a combination of the uncertainty quantification of
weather forecasts and the dynamic response analysis of the operation. The
methodology is used for the single blade installation of offshore wind tur-
bines, with an aim to establish its allowable sea states considering weather
forecast uncertainty. It should be emphasized that the methodology is a
general process that can be used for other marine operations. The main
conclusions, original contributions and recommendations for future work
are presented in this final chapter.

6.1 Conclusions

The main conclusions of the thesis are summarized as follows:r One-day-ahead forecasting of wave conditions was carried out by us-
ing time series-based machine learning (TSML) methods. Various
TSML methods consisting of different combinations of pre-processing
techniques, data-driven models and multi-step-ahead strategies are
developed. Forecast uncertainty of different TSML methods is quan-

141
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tified and compared. The results indicated that it is feasible to apply
machine learning to forecast wave conditions. Typically, the TSML
method can effectively produce accurate forecasts with short lead
times. Nevertheless, all TSML methods are dependent on time se-
ries analysis, and an essential problem was encountered, that is, the
forecast uncertainty would increase with the forecast horizon. This
issue is difficult to be solved by changing data-driven models or devel-
oping more complicated TSML methods.r A new machine learning-based forecasting method, called the physics-
based machine learning (PBML) method was proposed to make multi-
step-ahead forecasting of wave conditions. The method combines the
physics-based wave model with machine learning technique. Specifi-
cally, it takes physical background into account by applying the pri-
mary inputs (i.e., initial wave boundary conditions and the future wind
forcing) in physics-based wave models to design the model structure.
Meanwhile, a machine learning algorithm is adopted to learn model.
The results revealed that the PBML method can provide accurate one-
day-ahead wave forecasts in a small domain. Compared with widely
used physics-based wave models, high computational efficiency is its
primary advantage.r A new response-based correction factor, called the response-based
alpha-factor αR was proposed. It is used to reflect the effect of the
weather forecast uncertainty on dynamic responses of the system used
in operations. The αR is defined as a ratio between the characteristic
values of the operational limiting response parameter in the condition
with and without considering the weather forecast uncertainty. It de-
pends on the type and duration of marine operations, characteristics of
dynamic system, weather forecasting method, forecast lead time, etc.
To derive the αR, the critical events and related limiting response pa-
rameters of an operation should be identified first. Dynamic responses
of the limiting parameter are assessed by means of frequency- or time-
domain response analysis approach that depends on the properties of
the operation. Meanwhile, the weather forecast uncertainty quantifi-
cation is performed by statistically analyzing forecast error ratios in
terms of the range of sea states and forecast lead times. Based on
the probabilistic assessment of dynamic responses with and without
the uncertainty quantification result of weather forecasts, the αR can
therefore be established for different sea state forecast scenarios.r A methodology for assessing the allowable sea states of marine oper-
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ations was developed, with emphasis on accounting for the effect of
weather forecast uncertainty. It includes the establishment of the αR
for a specific operation and the assessment of allowable sea states. Af-
ter the αR factors of the limiting response parameter for an operation
are established, they are used to adjust the corresponding character-
istic response values to make the operational limit more conservative.
The allowable sea states are then assessed by comparing the adjusted
characteristic values with corresponding allowable limits. This proce-
dure is meaningful because the allowable sea states can be compared
with weather forecasts in the execution phase to identify workable
weather windows and further support operation decision-making.r The proposed methodology was applied to assess the allowable sea
states for single blade installation of offshore wind turbines. The crane
tip motion and the blade root radial motion and velocity are regarded
as the limiting response parameters for the installation process, to il-
lustrate the methodology based on response analysis in frequency- and
time-domain, respectively. When the blade installation is performed
with a semi-submersible crane vessel, it was found that in addition to
the forecast uncertainty of Hs, that of Tp is also critical and needs to
be considered during the operation. Compared to the α-factor, the αR
takes sea state forecast uncertainties into account more comprehensive
and reflects their effect on the system dynamic response. In addition,
the quality of weather forecasts has a significant effect on the gener-
ation of the αR. Comparison results of allowable sea states with and
without weather forecast uncertainty demonstrated that weather fore-
cast uncertainty plays an important role on the allowable sea states
assessment. If the weather forecast uncertainty is not considered, the
allowable sea states may be greatly over-estimated. As the forecast
lead time increases, the allowable sea states gradually decrease.

6.2 Original contributions

The original contributions of the thesis are summarized below.r Evaluation and comparison of the forecast performance of
different TSML methods
An uncertainty quantification analysis was carried out to evaluate and
compare the forecast performance of 11 different TSML methods for
multi-step-ahead wave forecasting. The comparison provides a refer-
ence for applying machine learning algorithms in weather forecast.
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r Development of a new forecasting method for wave forecast-
ing
The physics-based machine learning (PBML) method is able to make
use of the advantages of both physics-based wave models and machine
learning algorithms. Due to the high forecast performance and low
computational cost, the PBML method can be conceived as an effi-
cient tool for the multi-step-ahead forecasting of wave conditions at
least in a small domain, and thus has great potential to be applied for
marine operations.

r Development of a general methodology for assessing allow-
able sea states of marine operations
The methodology consists of quantification of weather forecast un-
certainty, statistical analysis of dynamic responses of coupled system
for marine operations and allowable sea states assessment by means
of response-based criteria. It is able to provide an efficient way to
investigate the effect of sea state forecast uncertainties on marine op-
erations and assess their allowable sea states. The obtained allowable
sea states can provide a good reference for the decision-making of the
operation in the execution phase.

r Establishment of the αR factor for the single blade installa-
tion
The αR factors with respect to the crane tip motion, blade root radial
motion and velocity during the installation of offshore wind turbine
blade were established separately in terms of sea state scenarios and
forecast lead times. They are able to adjust corresponding character-
istic responses for the blade installation by a semi-submersible crane
vessel.

r Assessment of allowable sea states for the blade installation
of offshore wind turbines
Using the proposed methodology, the allowable sea states accounting
for sea state forecast uncertainty regarding the final mating phase
of the blade installation were assessed. The assessed allowable sea
states are useful for executing the mating operation. By comparing the
allowable sea states with weather forecasts, workable weather windows
can be identified, which is important to ensure the safety and cost-
efficiency of the installation.
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6.3 Limitations and recommendations for future
work

r Validation of the machine learning-based forecasting methods via com-
parison with measurements
In the thesis, performance of the forecasting methods was validated
by hindcast data. In practice, hindcast data may also have certain
uncertainty. Thus, it is recommended to quantify the forecast uncer-
tainty based on the comparison between forecasts and measurements.
Moreover, the forecasting models developed in the thesis were based
on hindcast data. If long-term measurements are available at the loca-
tion of interest, they can be used to establish machine learning-based
forecasting models.r Further development of the PBML method for Tp forecasting
The uncertainty of the PBML method for Tp forecasting is relatively
higher than that for Hs due to the lower implicit relationships be-
tween the utilized input-output combination. For future works, more
relevant factors can be involved in the Tp forecasting model to im-
prove its forecast accuracy, such as wave directions, speeds and the
distance from the position of the input to output. Moreover, feature
selection techniques can also be adopted to further select and weight
the relevant factors.r Development of the PBML method to forecast wind conditions
With regard to forecasting of wave conditions by the PBML method,
the forecasted wind speeds and directions are required as inputs. It
is therefore important to generate accurate wind forecasts. Future
work can focus on development the related PBML method for wind
forecasting.r Further comprehensive studies on the allowable sea states assessment
for the blade installation
Regarding the blade installation of offshore wind turbines, only the
beam sea condition is considered in the case study. In addition, the
variation of wind fields are not considered due to the marginal effects
of wind conditions on the installation system. In order to get more
reliably αR and further assess the allowable sea states for offshore
blade installation with higher accuracy, more comprehensive studies
can be carried out in future works.r Further subdivide sea states into wind-generated sea and swell, and
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consider their uncertainty on marine operations
In the thesis, wind-generated sea and swell are forecasted by means
of the PBML method separately, to investigate the reasons for the
larger forecast uncertainty in Tp. In practice, both wind-generated
and swell components are essential to plan and execute marine opera-
tions. Thus, it is meaningful to investigate their forecast uncertainties
separately in the proposed methodology for assessment of allowable
sea states.r Extension of the methodology for allowable sea states assessment for
other marine operations
In the thesis, only a case study focusing on the offshore blade instal-
lation was carried out. To further investigate the feasibility of the
methodology, it can be used in other marine operations for allowable
sea states assessment considering the effect of weather forecast uncer-
tainty.
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Accensi, Lucia Pineau-Guillou, and Jérémy Lepesqueur. A suitable
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Hindcast data ofHs, Tp and Uw, extracted from the CERA-20C database
from 2001 to 2009, are used for the data analysis.

A.1 Time series plot

Time series of Hs, Tp and Uw (one year three-hourly data) are presented in
Figure A.1. The long-term time series provides an overview of the environ-
ment at the selected offshore site and three phenomena are found:r There is no obvious trend exists in time series.r There is a certain degree of seasonality.r Due to characteristics of Tp (i.e., dominated by wind-generated waves

or swells), its time series is not continuous.

A.2 Auto-correlation coefficient

The auto-correlation coefficient of the metocean variables is further calcu-
lated, to understand how well the future data can be affected from knowl-
edge of the past data. The definition of the auto-correlation coefficient of
a variable X is expressed in Eq. (A.1), in which COV (Xt, Xt+τ ) is the
auto-covariance of X with the lag time τ . ρXX is in the range of [-1, 1],
that provides a measure of the strength of statistical dependence.

ρXX(τ) =
COV (Xt, Xt+τ )

σ2
X

(A.1)

The auto-correlation coefficients ofHs, Tp and Uw are displayed in Figure
A.2. They are functions of the lag time (i.e., time interval between two
data). All time series exhibit a strong temporal serial correlation. As shown
in the figure, auto-correlation coefficients for small time intervals tend to be
large for all three metocean variables, and they decrease rapidly as the time
interval increases. Afterwards, they will not change greatly with the interval
but remain at small values. As displayed, auto-correlation coefficients are
more than 0.8 for Hs, Tp and Uw when the time interval is less than 9
hours. In contrast, as the time interval increases to one day, auto-correlation
coefficients become lower than 0.6, 0.5 and 0.4, respectively.



172 172

(a
)
U

w

(b
)
H

s

(c
)
T
p

F
ig

u
re

A
.1

:
T

im
e

p
lo

t
o
f

m
et

oc
ea

n
va

ri
a
bl

es
(o

n
e

ye
a
r)



A.2. Auto-correlation coefficient 173

(a) Hs (b) Tp

(c) Uw

Figure A.2: Auto-correlation coefficient of metocean variables (one year)

(a) Hs (b) Tp

(c) Uw

Figure A.3: Auto-correlation coefficient of metocean variables (summer)
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The properties of auto-correlations depend to some extent on the season.
Figures A.3 and A.4 show the results in summer (June to August) and
winter (December to February), respectively. Compared with the results
shown in Figure A.2, the auto-correlation coefficients decay to zero faster,
but the difference is not obvious when the time interval is small. Overall,
one metocean data in the time series has relatively high correlation with its
2 to 5 previous data, showing a certain degree of predictability.

(a) Hs (b) Tp

(c) Uw

Figure A.4: Auto-correlation coefficient of metocean variables (winter)

A.3 Cross-correlation coefficient

In addition to analyzing auto-correlations in the time series of a single vari-
able, it is also necessary to measure the relationship between different vari-
ables. Figure A.5 shows scatter plots of environmental variables. The color
gives the probability of occurrence.

In general, positive relationships can be found between waves and wind.
Among three subfigures in Figure A.5, the relationship between Hs and Uw
is strongest (Figure A.5 (a)), while the relationships for other two cases are
relatively low. To some extent, the figure indicates that wind conditions can
be regarded as important input information for forecasting wave conditions.
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(a) Hs vs. Uw (b) Tp vs. Uw

(c) Hs vs. Tp

Figure A.5: Scatter plots of metocean data

Then cross-correlation coefficients are calculated between two variables,
to measure their statistical relationship. The definition of the cross-correlation
coefficient between variables X and Y is expressed as Eq. (A.2). Likewise,
ρXY always ranges from -1 to 1. A value of 1 implies that a linear relation-
ship while 0 implies that there is no linear correlation between two values.
By checking ρXY for two metocean variables, what extent one variable can
be used to determine the other variable can be revealed.

ρXY (τ) =
COV (Xt, Yt+τ )

σXσY
(A.2)

where COV (Xt, Yt+τ ) is the covariance of X and Y .
In view of a strong relationship between Hs and Uw is observed in Figure

A.5, the cross-correlation coefficient of Hs against Uw is displayed in Figure
A.6. Obviously, the maximum value occurs at the time interval is zero, that
is nearly 0.9, indicating that Hs has the greatest correlation with Uw at
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the same time. Likewise, cross-correlations would also decrease as the time
interval increases.

Figure A.6: Cross-correlation coefficient of Hs against Uw

A.4 Predictability

After checking correlations in time series, the amount of predictability in
metocean data is measured according to the method proposed by Hull [215].
He defined a forecasting efficiency E in terms of the correlation coefficient
ρ, showing the degree to which the past data can determine the future data.
The E is expressed in Eq. (A.3) and illustrated in Figure A.7.

E = 1−
√

1− ρ2 (A.3)

Figure A.7: Relation between the coefficient of correlation and forecasting
efficiency [216]

For instance, with reference to Figures A.2 (a) and A.7, the probability
of correct prediction using Hs(t − 1) to forecast Hs(t) is about 65%. This
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indicates that there is a certain short-term predictability in waves, using the
most recent data of a wave variable to forecast its future value. By means of
the same method, how well the future Hs can be forecasted from knowledge
of Uw can be studied based on the results shown in Figure A.6. By calcula-
tion, it is found that when using Uw(t) to forecast Hs(t), the probability of
correct prediction is about 56%. However, it must be emphasized that the
forecast is still difficult if one wants to forecast environmental conditions for
a long horizon, since the predictability would decrease significantly with in-
creasing the time interval between data. For instance, when using Hs(t−8)
to forecast Hs(t), the probability of correct prediction is only about 20%.
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Appendix B

Forecasted and actual time
series based on
decomposition-ANFIS
method
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Forecasted time series of Uw, Hs and Tp during the testing period are
presented in Figures B.1 to B.3, respectively. The actual and forecasted
data are represented by black and red lines. In each figure, subfigures (a)
and (b) depict the results that are based on the M-1 and M-1 slope models,
and (c) depicts the results that are based on the M-N model.
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Thorstensen, Tom Anders Lifetime Profit Modelling of Ageing Systems 

Utilizing Information about Technical Condition. 

(Dr.ing. thesis, IMT) 

IMT-

2008-29 

Refsnes, Jon Erling Gorset Nonlinear Model-Based Control of Slender Body 

AUVs (PhD Thesis, IMT) 

IMT-

2008-30 

Berntsen, Per Ivar B. Structural Reliability Based Position Mooring. 

(PhD-Thesis, IMT) 

IMT-
2008-31 

Ye, Naiquan Fatigue Assessment of Aluminium Welded Box-

stiffener Joints in Ships (Dr.ing. thesis, IMT) 

IMT-

2008-32 

Radan, Damir Integrated Control of Marine Electrical Power 

Systems. (PhD-Thesis, IMT) 

IMT-

2008-33 

Thomassen, Paul Methods for Dynamic Response Analysis and 

Fatigue Life Estimation of Floating Fish Cages. 

(Dr.ing. thesis, IMT) 

IMT-

2008-34 

Pákozdi, Csaba A Smoothed Particle Hydrodynamics Study of 

Two-dimensional Nonlinear Sloshing in 

Rectangular Tanks. (Dr.ing.thesis, IMT/ CeSOS) 

IMT-

2007-35 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 

Applications to Marine Hydrodynamics. 

(Dr.ing.thesis, IMT) 

IMT-

2008-36 

Drummen, Ingo Experimental and Numerical Investigation of 

Nonlinear Wave-Induced Load Effects in 
Containerships considering Hydroelasticity. (PhD 

thesis, CeSOS) 

IMT-
2008-37 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 

of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-

2008-38 

Harlem, Alf An Age-Based Replacement Model for Repairable 

Systems with Attention to High-Speed Marine 

Diesel Engines. (PhD-Thesis, IMT) 

IMT-

2008-39 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 

Bottom Damage and Hull Girder Response. (PhD-

thesis, IMT) 

IMT-

2008-40 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading 

and Load Effects in Membrane LNG Tanks 
Subjected to Random Excitation. (PhD-thesis, 

CeSOS) 

IMT-

2008-41 

Taghipour, Reza Efficient Prediction of Dynamic Response for 

Flexible amd Multi-body Marine Structures. (PhD-
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thesis, CeSOS) 

IMT-

2008-42 

Ruth, Eivind Propulsion control and thrust allocation on marine 

vessels. (PhD thesis, CeSOS) 

IMT-
2008-43 

Nystad, Bent Helge Technical Condition Indexes and Remaining Useful 

Life of Aggregated Systems. PhD thesis, IMT 

IMT-

2008-44 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 

 Vibrations of Flexible Beams,  PhD 

thesis, CeSOS 

IMT-

2009-45 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 

Ship Hulls with Emphasis on Combined Global and 

Local Loads. PhD Thesis, IMT 

IMT-

2009-46 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 

PhD Thesis, IMT 

IMT-
2009-47 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 
Studies of Piston-Mode Resonance. PhD-Thesis, 

CeSOS 

IMT-

2009-48 

Ong, Muk Chen Applications of a Standard High Reynolds Number   

Model and a Stochastic Scour Prediction Model for 

Marine Structures. PhD-thesis, IMT 

IMT-

2009-49 

Hong, Lin Simplified Analysis and Design of Ships subjected 

to Collision and Grounding. PhD-thesis, IMT 

IMT-
2009-50 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 

PhD thesis, IMT 

IMT-

2009-51 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and 

Scheduling. PhD-thesis, IMT 

IMT-
2009-52 

Lee, Jihoon Experimental Investigation and Numerical in 
Analyzing the Ocean Current Displacement of 

Longlines. Ph.d.-Thesis, IMT. 

IMT-

2009-53 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin a 

Two-Dimensional Constrained Interpolation Profile 

Method, Ph.d.thesis, CeSOS. 

IMT-

2009-54 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 

Power Plants. Ph.d.-thesis, IMT 

IMT 

2009-55 

Holstad, Anders Numerical Investigation of Turbulence in a Sekwed 

Three-Dimensional Channel Flow, Ph.d.-thesis, 

IMT. 

IMT 
2009-56 

Ayala-Uraga, Efren Reliability-Based Assessment of Deteriorating 

Ship-shaped Offshore Structures, Ph.d.-thesis, IMT 

IMT 
2009-57 

Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam 

Sea Waves. Ph.d.-thesis, IMT/CeSOS. 

IMT 

2010-58 

Kristiansen, David Wave Induced Effects on Floaters of Aquaculture 

Plants, Ph.d.-thesis, CeSOS. 
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IMT 
2010-59 

Ludvigsen, Martin An ROV-Toolbox for Optical and Acoustic 

Scientific Seabed Investigation. Ph.d.-thesis IMT. 

IMT 

2010-60 

Hals, Jørgen Modelling and Phase Control of Wave-Energy 

Converters. Ph.d.thesis, CeSOS. 

 

IMT 

2010- 61 

Shu, Zhi Uncertainty Assessment of Wave Loads and 

Ultimate Strength of Tankers and Bulk Carriers in a 
Reliability Framework. Ph.d. Thesis, IMT/ CeSOS 

IMT 

2010-62 

Shao, Yanlin Numerical Potential-Flow Studies on Weakly-

Nonlinear Wave-Body Interactions with/without 

Small Forward Speed, Ph.d.thesis,CeSOS.  

IMT 

2010-63 

Califano, Andrea Dynamic Loads on Marine Propellers due to 

Intermittent Ventilation. Ph.d.thesis, IMT. 

IMT 

2010-64 

El Khoury, George Numerical Simulations of Massively Separated 

Turbulent Flows, Ph.d.-thesis, IMT 

IMT 

2010-65 

Seim, Knut Sponheim Mixing Process in Dense Overflows with Emphasis 

on the Faroe Bank Channel Overflow. Ph.d.thesis, 

IMT 

IMT 
2010-66 

Jia, Huirong Structural Analysis of Intect and Damaged Ships in 
a Collission Risk Analysis Perspective. Ph.d.thesis 

CeSoS. 

IMT 
2010-67 

Jiao, Linlin Wave-Induced Effects on a Pontoon-type Very 
Large Floating Structures (VLFS). Ph.D.-thesis, 

CeSOS. 

IMT 

2010-68 

Abrahamsen, Bjørn Christian Sloshing Induced Tank Roof with Entrapped Air 

Pocket. Ph.d.thesis, CeSOS. 

IMT 

2011-69 

Karimirad, Madjid Stochastic Dynamic Response Analysis of Spar-

Type Wind Turbines with Catenary or Taut 

Mooring Systems. Ph.d.-thesis, CeSOS. 

IMT -
2011-70 

Erlend Meland Condition Monitoring of Safety Critical Valves. 

Ph.d.-thesis, IMT. 

IMT – 

2011-71 

Yang, Limin Stochastic Dynamic System Analysis of Wave 

Energy Converter with Hydraulic Power Take-Off, 
with Particular Reference to Wear Damage 

Analysis, Ph.d. Thesis, CeSOS. 

IMT – 
2011-72 

Visscher, Jan Application of Particla Image Velocimetry on 

Turbulent Marine Flows, Ph.d.Thesis, IMT. 

IMT – 

2011-73 

Su, Biao Numerical Predictions of Global and Local Ice 

Loads on Ships. Ph.d.Thesis, CeSOS. 

IMT – 

2011-74 

Liu, Zhenhui Analytical and Numerical Analysis of Iceberg 

Collision with Ship Structures. Ph.d.Thesis, IMT. 

IMT – 
2011-75 

Aarsæther, Karl Gunnar Modeling and Analysis of Ship Traffic by 
Observation and Numerical Simulation. 

Ph.d.Thesis, IMT. 
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Imt – 
2011-76 

Wu, Jie Hydrodynamic Force Identification from Stochastic 
Vortex Induced Vibration Experiments with 

Slender Beams. Ph.d.Thesis, IMT. 

Imt – 

2011-77 

Amini, Hamid Azimuth Propulsors in Off-design Conditions. 

Ph.d.Thesis, IMT. 

 

 

IMT – 
2011-78 

Nguyen, Tan-Hoi Toward a System of Real-Time Prediction and 
Monitoring of Bottom Damage Conditions During 

Ship Grounding. Ph.d.thesis, IMT. 

IMT- 
2011-79 

Tavakoli, Mohammad T. Assessment of Oil Spill in Ship Collision and 

Grounding, Ph.d.thesis, IMT. 

IMT- 

2011-80 

Guo, Bingjie Numerical and Experimental Investigation of 

Added Resistance in Waves. Ph.d.Thesis, IMT. 

IMT- 

2011-81 

Chen, Qiaofeng Ultimate Strength of Aluminium Panels, 

considering HAZ Effects, IMT 

IMT- 
2012-82 

Kota, Ravikiran S. Wave Loads on Decks of Offshore Structures in 

Random Seas, CeSOS. 

IMT- 
2012-83 

Sten, Ronny Dynamic Simulation of Deep Water Drilling Risers 

with Heave Compensating System, IMT. 

IMT- 

2012-84 

Berle, Øyvind Risk and resilience in global maritime supply 

chains, IMT. 

IMT- 
2012-85 

Fang, Shaoji Fault Tolerant Position Mooring Control Based on 

Structural Reliability, CeSOS. 

IMT- 

2012-86 

You, Jikun Numerical studies on wave forces and moored ship 

motions in intermediate and shallow water, CeSOS. 

IMT- 

2012-87 

Xiang ,Xu Maneuvering of two interacting ships in waves, 

CeSOS 

IMT- 
2012-88 

Dong, Wenbin Time-domain fatigue response and reliability 
analysis of offshore wind turbines with emphasis on 

welded tubular joints and gear components, CeSOS 

IMT- 
2012-89 

Zhu, Suji Investigation of Wave-Induced Nonlinear Load 
Effects in Open Ships considering Hull Girder 

Vibrations in Bending and Torsion, CeSOS 

IMT- 

2012-90 

Zhou, Li Numerical and Experimental Investigation of 

Station-keeping in Level Ice, CeSOS 

IMT- 
2012-91 

Ushakov, Sergey Particulate matter emission characteristics from 
diesel enignes operating on conventional and 

alternative marine fuels, IMT 

IMT- 
2013-1 

Yin, Decao Experimental and Numerical Analysis of Combined 
In-line and Cross-flow Vortex Induced Vibrations, 

CeSOS 
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IMT- 
2013-2 

Kurniawan, Adi Modelling and geometry optimisation of wave 

energy converters, CeSOS 

IMT- 

2013-3 

Al Ryati, Nabil Technical condition indexes doe auxiliary marine 

diesel engines, IMT 

IMT-
2013-4 

Firoozkoohi, Reza Experimental, numerical and analytical 
investigation of the effect of screens on sloshing, 

CeSOS 

IMT- 
2013-5 

Ommani, Babak Potential-Flow Predictions of a Semi-Displacement 
Vessel Including Applications to Calm Water 

Broaching, CeSOS 

IMT- 

2013-6 

Xing, Yihan Modelling and analysis of the gearbox in a floating 

spar-type wind turbine, CeSOS 

IMT-7-

2013 

Balland, Océane Optimization models for reducing air emissions 

from ships, IMT 

IMT-8-

2013 

Yang, Dan Transitional wake flow behind an inclined flat 

plate-----Computation and analysis,  IMT 

IMT-9-

2013 

Abdillah, Suyuthi Prediction of Extreme Loads and Fatigue Damage 

for a Ship Hull due to Ice Action, IMT 

IMT-10-

2013 

Ramìrez, Pedro Agustìn Pèrez Ageing management and life extension of technical 

systems- 

Concepts and methods applied to oil and gas 

facilities, IMT 

IMT-11-

2013 

Chuang, Zhenju Experimental and Numerical Investigation of Speed 

Loss due to Seakeeping and Maneuvering. IMT 

IMT-12-
2013 

Etemaddar, Mahmoud Load and Response Analysis of Wind Turbines 
under Atmospheric Icing and Controller System 

Faults with Emphasis on Spar Type Floating Wind 

Turbines, IMT 

IMT-13-

2013 

Lindstad, Haakon Strategies and measures for reducing maritime CO2 

emissons, IMT 

IMT-14-
2013 

Haris, Sabril Damage interaction analysis of ship collisions, IMT 

IMT-15-

2013 

Shainee, Mohamed Conceptual Design, Numerical and Experimental 

Investigation of a SPM Cage Concept for Offshore 

Mariculture, IMT 

IMT-16-
2013 

Gansel, Lars Flow past porous cylinders and effects of 
biofouling and fish behavior on the flow in and 

around Atlantic salmon net cages, IMT 

IMT-17-

2013 

Gaspar, Henrique Handling Aspects of Complexity in Conceptual 

Ship Design, IMT 

IMT-18-
2013 

Thys, Maxime Theoretical and Experimental Investigation of a 
Free Running Fishing Vessel at Small Frequency of 

Encounter, CeSOS 

IMT-19-

2013 

Aglen, Ida VIV in Free Spanning Pipelines, CeSOS 
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IMT-1-
2014 

Song, An Theoretical and experimental studies of wave 
diffraction and radiation loads on a horizontally 

submerged perforated plate, CeSOS 

IMT-2-

2014 

Rogne, Øyvind Ygre Numerical and Experimental Investigation of a 

Hinged 5-body Wave Energy Converter, CeSOS 

IMT-3-

2014 

Dai, Lijuan  Safe and efficient operation and maintenance of 

offshore wind farms ,IMT 

IMT-4-

2014 

Bachynski, Erin Elizabeth Design and Dynamic Analysis of Tension Leg 

Platform Wind Turbines, CeSOS 

IMT-5-

2014 

Wang, Jingbo Water Entry of Freefall Wedged – Wedge motions 

and Cavity Dynamics, CeSOS 

IMT-6-
2014 

Kim, Ekaterina Experimental and numerical studies related to the 
coupled behavior of ice mass and steel structures 

during accidental collisions, IMT 

IMT-7-

2014 

Tan, Xiang Numerical investigation of ship’s continuous- mode 

icebreaking in leverl ice, CeSOS 

IMT-8-
2014 

Muliawan, Made Jaya Design and Analysis of Combined Floating Wave 
and Wind Power Facilities, with Emphasis on 

Extreme Load Effects of the Mooring System, 

CeSOS 

IMT-9-

2014 

Jiang, Zhiyu Long-term response analysis of wind turbines with 

an emphasis on fault and shutdown conditions, IMT 

IMT-10-
2014 

Dukan, Fredrik ROV Motion Control Systems, IMT 

IMT-11-

2014 

Grimsmo, Nils I. Dynamic simulations of hydraulic cylinder for 

heave compensation of deep water drilling risers, 

IMT 

IMT-12-
2014 

Kvittem, Marit I. Modelling and response analysis for fatigue design 

of a semisubmersible wind turbine, CeSOS 

IMT-13-

2014 

Akhtar, Juned The Effects of Human Fatigue on Risk at Sea, IMT 

IMT-14-

2014 

Syahroni, Nur Fatigue Assessment of Welded Joints Taking into 

Account Effects of Residual Stress, IMT 

IMT-1-

2015 

Bøckmann, Eirik Wave Propulsion of ships, IMT 

IMT-2-

2015 

Wang, Kai Modelling and dynamic analysis of a semi-

submersible floating vertical axis wind turbine, 

CeSOS 

IMT-3-

2015 

Fredriksen, Arnt Gunvald A numerical and experimental study of a two-

dimensional body with moonpool in waves and 

current, CeSOS 

IMT-4-

2015 

Jose Patricio Gallardo Canabes Numerical studies of viscous flow around bluff 

bodies, IMT 
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IMT-5-
2015 

Vegard Longva Formulation and application of finite element 
techniques for slender marine structures subjected 

to contact interactions, IMT 

IMT-6-

2015 

Jacobus De Vaal Aerodynamic modelling of floating wind turbines, 

CeSOS 

IMT-7-

2015 

Fachri Nasution Fatigue Performance of Copper Power Conductors, 

IMT 

IMT-8-

2015 

Oleh I Karpa Development of bivariate extreme value 

distributions for applications in marine 

technology,CeSOS 

IMT-9-

2015 

Daniel de Almeida Fernandes An output feedback motion control system for 

ROVs, AMOS 

IMT-10-

2015 

Bo Zhao Particle Filter for Fault Diagnosis: Application to 

Dynamic Positioning Vessel and Underwater 

Robotics, CeSOS 

IMT-11-

2015 

Wenting Zhu Impact of emission allocation in maritime 

transportation, IMT 

IMT-12-
2015 

Amir Rasekhi Nejad Dynamic Analysis and Design of Gearboxes in 
Offshore Wind Turbines in a Structural Reliability 

Perspective, CeSOS 

IMT-13-
2015 

Arturo Jesùs Ortega Malca Dynamic Response of Flexibles Risers due to 

Unsteady Slug Flow, CeSOS 

IMT-14-

2015 

Dagfinn Husjord Guidance and decision-support system for safe 

navigation of ships operating in close proximity, 

IMT 

IMT-15-

2015 

Anirban Bhattacharyya Ducted Propellers: Behaviour in Waves and Scale 

Effects, IMT 

IMT-16-

2015 

Qin Zhang Image Processing for Ice Parameter Identification 

in Ice Management, IMT 

IMT-1-

2016 

Vincentius Rumawas Human Factors in Ship Design and Operation: An 

Experiential Learning, IMT 

IMT-2-

2016 

Martin Storheim Structural response in ship-platform and ship-ice 

collisions, IMT 

IMT-3-

2016 

Mia Abrahamsen Prsic Numerical Simulations of the Flow around single 

and Tandem Circular Cylinders Close to a Plane 

Wall, IMT 

IMT-4-

2016 

Tufan Arslan Large-eddy simulations of cross-flow around ship 

sections, IMT 
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IMT-5-
2016 

Pierre Yves-Henry Parametrisation of aquatic vegetation in hydraulic 

and coastal research,IMT 

IMT-6-
2016 

Lin Li Dynamic Analysis of the Instalation of Monopiles 

for Offshore Wind Turbines, CeSOS 

IMT-7-
2016 

Øivind Kåre Kjerstad Dynamic Positioning of Marine Vessels in Ice, IMT 

IMT-8-
2016 

Xiaopeng Wu Numerical Analysis of Anchor Handling and Fish 
Trawling Operations in a Safety Perspective, 

CeSOS 

IMT-9-

2016 

Zhengshun Cheng Integrated Dynamic Analysis of Floating Vertical 

Axis Wind Turbines, CeSOS 

IMT-10-
2016 

Ling Wan Experimental and Numerical Study of a Combined 
Offshore Wind and Wave Energy Converter 

Concept 

IMT-11-
2016 

Wei Chai Stochastic dynamic analysis and reliability 
evaluation of the roll motion for ships in random 

seas, CeSOS 

IMT-12-
2016 

Øyvind Selnes Patricksson Decision support for conceptual ship design with 
focus on a changing life cycle and future 

uncertainty, IMT 

IMT-13-

2016 

Mats Jørgen Thorsen Time domain analysis of vortex-induced vibrations, 

IMT 

IMT-14-
2016 

Edgar McGuinness Safety in the Norwegian Fishing Fleet – Analysis 

and measures for improvement, IMT 

IMT-15-
2016 

Sepideh Jafarzadeh Energy effiency and emission abatement in the 

fishing fleet, IMT 

IMT-16-
2016 

Wilson Ivan Guachamin Acero Assessment of marine operations for offshore wind 
turbine installation with emphasis on response-

based operational limits, IMT 

IMT-17-
2016 

Mauro Candeloro Tools and Methods for Autonomous  Operations on 
Seabed and Water Coumn using Underwater 

Vehicles, IMT 

IMT-18-
2016 

Valentin Chabaud Real-Time Hybrid Model Testing of Floating Wind 

Tubines, IMT 

IMT-1-
2017 

Mohammad Saud Afzal Three-dimensional streaming in a sea bed boundary 

layer 

IMT-2-
2017 

Peng Li A Theoretical and Experimental Study of Wave-
induced Hydroelastic Response of a Circular 

Floating Collar 

IMT-3-
2017 

Martin Bergström A simulation-based design method for arctic 

maritime transport systems 
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IMT-4-
2017 

Bhushan Taskar The effect of waves on marine propellers and 

propulsion 

IMT-5-
2017 

Mohsen Bardestani A two-dimensional numerical and experimental 
study of a floater with net and sinker tube in waves 

and current 

IMT-6-
2017 

Fatemeh Hoseini Dadmarzi Direct Numerical Simualtion of turbulent wakes 

behind different plate configurations 

IMT-7-
2017 

Michel R. Miyazaki Modeling and control of hybrid marine power 

plants 

IMT-8-

2017 

Giri Rajasekhar Gunnu Safety and effiency enhancement of anchor 

handling operations with particular emphasis on the 

stability of anchor handling vessels 

IMT-9-
2017 

Kevin Koosup Yum Transient Performance and Emissions of a 
Turbocharged Diesel Engine for Marine Power 

Plants 

IMT-10-
2017 

Zhaolong Yu Hydrodynamic and structural aspects of ship 

collisions 

IMT-11-
2017 

Martin Hassel Risk Analysis and Modelling of Allisions between 

Passing Vessels and Offshore Installations 

IMT-12-

2017 

Astrid H. Brodtkorb Hybrid Control of Marine Vessels – Dynamic 

Positioning in Varying Conditions 

IMT-13-
2017 

Kjersti Bruserud Simultaneous stochastic model of waves and 

current for prediction of structural design loads 

IMT-14-
2017 

Finn-Idar Grøtta Giske Long-Term Extreme Response Analysis of Marine 

Structures Using Inverse Reliability Methods 

IMT-15-
2017 

Stian Skjong Modeling and Simulation of Maritime Systems and 
Operations for Virtual Prototyping using co-

Simulations  

IMT-1-
2018 

Yingguang Chu Virtual Prototyping for Marine Crane Design and 

Operations 

IMT-2-
2018 

Sergey Gavrilin Validation of ship manoeuvring simulation models 

IMT-3-
2018 

Jeevith Hegde Tools and methods to manage risk in autonomous 
subsea inspection,maintenance and repair 

operations 

IMT-4-
2018 

Ida M. Strand Sea Loads on Closed Flexible Fish Cages 

IMT-5-
2018 

Erlend Kvinge Jørgensen Navigation and Control of Underwater Robotic 

Vehicles 
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IMT-6-
2018 

Bård Stovner Aided Intertial Navigation of Underwater Vehicles 

IMT-7-
2018 

Erlend Liavåg Grotle Thermodynamic Response Enhanced by Sloshing 

in Marine LNG Fuel Tanks 

IMT-8-
2018 

Børge Rokseth Safety and Verification of Advanced Maritime 

Vessels 

IMT-9-
2018 

Jan Vidar Ulveseter Advances in Semi-Empirical Time Domain 

Modelling of Vortex-Induced Vibrations 

IMT-10-
2018 

Chenyu Luan Design and analysis for a steel braceless semi-
submersible hull for supporting a 5-MW horizontal 

axis wind turbine 

IMT-11-
2018 

Carl Fredrik Rehn Ship Design under Uncertainty 

IMT-12-
2018 

Øyvind Ødegård Towards Autonomous Operations and Systems in 
Marine Archaeology 

IMT-13- 
2018 

Stein Melvær Nornes Guidance and Control of Marine Robotics for 
Ocean Mapping and Monitoring 

IMT-14-
2018 

Petter Norgren Autonomous Underwater Vehicles in Arctic Marine 
Operations: Arctic marine research and ice 

monitoring 

IMT-15-
2018 

Minjoo Choi Modular Adaptable Ship Design for Handling 
Uncertainty in the Future Operating Context  

MT-16-
2018 

Ole Alexander Eidsvik Dynamics of Remotely Operated Underwater 
Vehicle Systems 

IMT-17-
2018 

Mahdi Ghane Fault Diagnosis of Floating Wind Turbine 
Drivetrain- Methodologies and Applications 

IMT-18-
2018 

Christoph Alexander Thieme Risk Analysis and Modelling of Autonomous 
Marine Systems 

IMT-19-
2018 

Yugao Shen Operational limits for floating-collar fish farms in 
waves and current, without and with well-boat 

presence 

IMT-20-
2018 

Tianjiao Dai Investigations of Shear Interaction and Stresses in 
Flexible Pipes and Umbilicals 

IMT-21-
2018 

Sigurd Solheim Pettersen 
 

Resilience by Latent Capabilities in Marine 
Systems 

 

IMT-22-
2018 

Thomas Sauder 
 

Fidelity of Cyber-physical Empirical Methods. 
Application to the Active Truncation of Slender 

Marine Structures 

 
IMT-23-

2018 

Jan-Tore Horn 

 

Statistical and Modelling Uncertainties in the 

Design of Offshore Wind Turbines 

 



20 

IMT-24-
2018 

Anna Swider Data Mining Methods for the Analysis of Power 
Systems of Vessels 

 

IMT-1-
2019 

Zhao He Hydrodynamic study of a moored fish farming cage 
with fish influence 

 

IMT-2-
2019 

Isar Ghamari 
 

Numerical and Experimental Study on the Ship 
Parametric Roll Resonance and the Effect of Anti-

Roll Tank 

 
IMT-3-

2019 

Håkon Strandenes 

 

Turbulent Flow Simulations at Higher Reynolds 

Numbers 

 

IMT-4-

2019 

Siri Mariane Holen 

 

Safety in Norwegian Fish Farming – Concepts and 

Methods for Improvement 

 

IMT-5-

2019 

Ping Fu 

 

Reliability Analysis of Wake-Induced Riser 

Collision 

 

IMT-6-

2019 

Vladimir Krivopolianskii 

 

Experimental Investigation of Injection and 

Combustion Processes in Marine Gas Engines using 

Constant Volume Rig 
 

IMT-7-

2019 

Anna Maria Kozlowska Hydrodynamic Loads on Marine Propellers Subject 

to Ventilation and out of Water Condition. 

IMT-8-

2019 

Hans-Martin Heyn Motion Sensing on Vessels Operating in Sea Ice: A 

Local Ice Monitoring System for Transit and 
Stationkeeping Operations under the Influence of 

Sea Ice 

IMT-9-
2019| 

 

Stefan Vilsen 
 

Method for Real-Time Hybrid Model Testing of 
Ocean Structures – Case on Slender Marine 

Systems 

IMT-10-
2019 

Finn-Christian W. Hanssen Non-Linear Wave-Body Interaction in Severe 
Waves 

IMT-11-
2019 

Trygve Olav Fossum Adaptive Sampling for Marine Robotics 

IMT-12-
2019 

Jørgen Bremnes Nielsen Modeling and Simulation for Design Evaluation 

IMT-13-
2019 

Yuna Zhao Numerical modelling and dyncamic analysis of 
offshore wind turbine blade installation 

IMT-14-
2019 

Daniela Myland Experimental and Theoretical Investigations on the 
Ship Resistance in Level Ice 

IMT-15-
2019 

Zhengru Ren Advanced control algorithms to support automated 
offshore wind turbine installation 

IMT-16-
2019 

Drazen Polic Ice-propeller impact analysis using an inverse 
propulsion machinery simulation approach 

IMT-17-
2019 

Endre Sandvik Sea passage scenario simulation for ship system 
performance evaluation 
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IMT-18-
2019 

Loup Suja-Thauvin Response of Monopile Wind Turbines to Higher 
Order Wave Loads 

IMT-19-

2019 

Emil Smilden Structural control of offshore wind turbines – 

Increasing the role of control design in offshore 
wind farm development 

IMT-20-

2019 

Aleksandar-Sasa Milakovic On equivalent ice thickness and machine learning 

in ship ice transit simulations 

IMT-1-

2020 

Amrit Shankar Verma Modelling, Analysis and Response-based 

Operability Assessment of Offshore Wind Turbine 
Blade Installation with Emphasis on Impact 

Damages 

IMT-2-

2020 

Bent Oddvar Arnesen 

Haugaløkken 

Autonomous Technology for Inspection, 

Maintenance and Repair Operations in the 

Norwegian Aquaculture 

IMT-3-

2020 

Seongpil Cho Model-based fault detection and diagnosis of a 

blade pitch system in floating wind turbines 

IMT-4-

2020 

Jose Jorge Garcia Agis Effectiveness in Decision-Making in Ship Design 
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