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Abstract: This article derives the time scale of pipeline scour caused by 2D (long-crested) and 3D
(short-crested) nonlinear irregular waves and current for wave-dominant flow. The motivation is
to provide a simple engineering tool suitable to use when assessing the time scale of equilibrium
pipeline scour for these flow conditions. The method assumes the random wave process to be
stationary and narrow banded adopting a distribution of the wave crest height representing 2D and
3D nonlinear irregular waves and a time scale formula for regular waves plus current. The presented
results cover a range of random waves plus current flow conditions for which the method is valid.
Results for typical field conditions are also presented. A possible application of the outcome of this
study is that, e.g., consulting engineers can use it as part of assessing the on-bottom stability of
seabed pipelines.

Keywords: pipelines; time scale; equilibrium scour depth; nonlinear irregular waves and current; 2D
waves; 3D waves; stochastic method

1. Introduction

This article addresses the time scale of pipeline scour due to 2D (long-crested) and
3D (short-crested) nonlinear irregular waves and current with the objective of providing a
method suitable to use for the practical engineering assessment of pipeline scour. Pipelines
originally placed, e.g., on plane beds, will experience the seabed conditions change, i.e., the
bed may be flat or with ripples; they may be partly or fully buried or surrounded by scour
holes. These changed conditions are due to the complex flow generated by waves plus
current and the interaction with the pipeline and the seabed. Real waves are characterized
by three-dimensional stochastic features that should be accounted for.

To the best of our knowledge, no study exists in the open literature on the investigation
of the time scale for scour beneath pipelines caused by 2D and 3D nonlinear irregular waves
plus current. Previously, Myrhaug et al. [1] provided the time scale for the equilibrium
scour depth beneath pipelines exposed to 2D and 3D nonlinear irregular waves. Thus, this
work is a continuation by extending the method to cover combined waves and current.

The background and details of pipeline scour are provided by, e.g., Whitehouse [2] as
well as Sumer and Fredsøe [3], including literature reviews up to that date. Until now, most
studies have focused on experimental and numerical work on the equilibrium scour depth
beneath pipelines caused by pure current, pure waves and combined waves and current.
Exceptions are the recent works of Larsen et al. [4], Zhang et al. [5] and Zang et al. [6] that
all three addressed the time scale of equilibrium pipeline scour for waves plus current.
Larsen et al. [4] provided an analytical formula for pipeline scour for regular waves plus
current based on numerical simulations. Zhang et al. [5] presented a practical time scale
formula for regular waves plus current based on small- and large-scale recirculating flume
tests. Zang et al. [6] provided results on the time scale of local scour below a partially
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buried pipeline under combined waves and currents with oblique incident angle based on
large-scale flume tests.

Furthermore, most of the works on pipeline scour have considered current alone, reg-
ular waves alone, and combined regular waves and current, except Sumer and Fredsøe [7],
who provided results from an experimental investigation on scour beneath pipelines ex-
posed to random waves plus current. Myrhaug and Ong [8] reviewed the authors’ works
on 2D irregular wave-induced equilibrium scour around marine structures, also comparing
with experimental data for irregular wave-induced scour. Myrhaug and Ong [9] provided
an approach for calculating the maximum equilibrium scour depth below pipelines due to
2D and 3D nonlinear irregular waves alone.

The aim here is to present a method for estimating the time scale of pipeline scour
beneath pipelines exposed to 2D and 3D nonlinear irregular waves and current that can be
used as part of an engineering tool when assessing pipeline scour. Results are obtained
adopting the Larsen et al. [4] parameterized time scale formula for pipeline scour valid for
regular waves plus current jointly with a stochastic method. The random wave process
is assumed to be stationary and narrow banded, and nonlinearity is included using the
wave crest height distribution given by Forristall [10] covering 2D and 3D second-order
nonlinear irregular waves. The Larsen et al. [4] time scale formula is based on best fit to
numerical simulations using a fully coupled hydrodynamic and morphologic numerical
model based on incompressible Reynolds-averaged Navier–Stokes equations, including a
k-ω turbulence closure and seabed morphology. The Forristall [10] parametric crest height
distribution is based on using second-order theory including both sum-frequency and
difference-frequency effects performed for 2D and 3D irregular waves.

The article contains an Introduction, followed by Section 2 giving the background
for linear waves plus current. Section 3 presents the results of the time scale for nonlinear
random waves plus current by first giving the theoretical background (Section 3.1), and
then providing the outline of the stochastic method (Section 3.2). Section 4 gives results and
discussion by first providing a parameter study (Section 4.1) and then giving an example
of calculation (Section 4.2). The summary and conclusions are given in Section 5.

2. Background for Linear Waves Plus Current

From observations, it appears that a certain amount of time is required for an equi-
librium scour to develop. This time T, referred to as the time scale of the scour process, is
defined by (Sumer and Fredsøe [3])

St = S(1− exp(
t
T
)) (1)

where S is the equilibrium scour depth corresponding to the equilibrium situation, and St
is the instantaneous scour depth at time t.

The dimensionless time scale T* is (Sumer and Fredsøe [3])

T∗ =
(g(γ− 1)d3

50)
1/2

D2 T (2)

where g is the acceleration due to gravity, γ = rs/r is the sediment grain density (rs) to fluid
density (r) ratio, d50 is the medium grain size diameter, and D is the pipeline diameter.

The dimensionless time scale for the equilibrium scour depth beneath pipelines in
regular waves and current is given by the following formula based on best fit to numerical
simulations (Larsen et al. [4]):

T∗ = F(Ucw)θ
− 5

3
wc (3)

F(Ucw) =
1

50
+ 0.015

[
e−350(Ucw−0.5)2

+ e−25(Ucw−0.53)2]
(4)
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Here,

Ucw =
Uc

Uc + U
(5)

where Uc is the current velocity, U is the undisturbed linear orbital velocity amplitude
near the seabed, and F(Ucw) = 1/50 for both waves alone (Ucw = 0) and current alone
(Ucw = 1). Equation (3) is valid for live-bed scour for θwc > θcr, θwc is the undisturbed
Shields parameter for combined waves plus current flow, and θcr is the threshold value
of motion at a flat bed, i.e., θcr ≈ 0.05. Larsen et al. [4] calculated θwc using an equivalent
formula to that given by Soulsby [11] (see Larsen et al. [4] for more details). However,
here waves and current for wave-dominant situations will be considered, and thus θwc in
Equation (3) is replaced with the undisturbed Shields parameter.

θ =
τw

ρg(γ− 1)d50
(6)

Here, τw is the maximum bottom shear stress within a wave cycle under waves
taken as

τw

ρ
=

1
2

fwU2 (7)

and fw is the friction factor, which here is adopted from Myrhaug et al. [12] valid for waves
and current for wave-dominant situations (see Myrhaug et al. [12]).

fw = c(
A
z0
)
−d

(8)

(c, d) = (18, 1) for 20 . A/z0 . 200 (9)

(c, d) = (1.39, 0.52) for 200 . A/z0 . 11, 000 (10)

(c, d) = (0.112, 0.25) for 11, 000 . A/z0 (11)

where A = U/ω is the near-bed orbital displacement amplitude, ω = 2π/Tw is the angular
wave frequency, Tw is the wave period, and z0 = d50/12 is the bed roughness. Using this
friction factor for rough turbulent flow gives the advantage of deriving the stochastic
approach analytically. Furthermore, A is given in terms of the linear wave amplitude a by

A =
a

sinh k h
(12)

with h as the water depth, and k as the wave number obtained by the dispersion rela-
tionship ω2 = gk tanh kh. For colinear waves and current the dispersion relationship is
ω = kUc + (gk tanh kh)0.5 (see, e.g., Soulsby [11]), determining k for known values ofω, Uc
and h However, for wave-dominant flow, the effect of Uc on k is small, i.e., k is obtained
for Uc = 0. Here, wave-dominant flow is considered for Ucw ≤ 0.5. It should be noted that
Equation (4) has its maximum for Ucw = 0.5, i.e., F (Ucw = 0.5) = 0.05.

3. Time Scale for Nonlinear Irregular Waves and Current
3.1. Theoretical Background

The theoretical background is similar to that given in Myrhaug et al. [1] and is sum-
marized here for the sake of completeness.

Nonlinear waves are represented by Stokes second-order waves where the nonlinearity
is mainly due to the larger velocity beneath the wave crest (i.e., crest velocity) than beneath
the wave trough (i.e., trough velocity). It is likely that the larger crest velocity causes the
scour, rather than the average of the crest and trough velocities (i.e., corresponding to the
linear wave velocity (Catano-Lopera and Garcia [13])). Consequently, the time scale for
single irregular Stokes second-order waves is given by Equations (2)–(5) replacing U with
the maximum orbital velocity near the seabed beneath the wave crest, Um.
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Consider a fixed location in a sea state containing stationary narrow-band irregular
waves in finite water depth h consistent with Stokes second-order regular waves. Then,
the dimensionless nonlinear crest height, wc = ηc/arms, and the dimensionless nonlinear
maximum horizontal particle velocity at the seabed, Ûm = Um/Urms, are (Dean and Dalrym-
ple [14])

wc = â + O
(
kparms

)
(13)

Ûm = â + O
(
kparms

)
(14)

Here, â = a/arms is the dimensionless linear wave amplitude, the wave amplitude a is
normalized with the rms (root-mean-square) value arms, and

Urms =
ωparms

sinh kp h
(15)

The second-order (nonlinear) terms are represented by O (kparms) and proportional to
kparms, i.e., a characteristic wave steepness of the sea state. Here, kp is the wave number
associated with the spectral peak frequency obtained from the dispersion relationship for
linear waves (valid for Stokes second-order waves as well)

ω2
p = gkp tanh kp h (16)

Next, the inversion of Equation (13), i.e., â = wc − O (kparms) is substituted in Equation
(14) giving Ûm = wc + O (kparms). Thus, â is replaced with wc in the linear term of Um since
the error is of second order. By neglecting terms of O (kparms), the maximum near-bed
orbital velocity beneath the wave crest in dimensional form becomes

Um =
ωpηc

sinh kp h
(17)

Furthermore, Am = Um/ωp is the maximum orbital displacement near the seabed
beneath the wave crest, and Âm= Am/Arms is the dimensionless maximum orbital displace-
ment near the seabed, where

Arms =
arms

sinh kp h
(18)

and
ωp =

Um

Am
=

Urms

Arms
(19)

by combining Equations (15) and (17).

3.2. Outline of the Stochastic Method

As in Myrhaug et al. [1], it is assumed that the highest waves are responsible for the
scour in the stationary narrow-band sea state considered. Moreover, the sea state is assumed
to have lasted long enough to develop the equilibrium scour depth. Here, the considered
highest waves are those exceeding the probability 1/n, wc1/n (i.e., 1 − P(wc1/n) = 1/n),
where P (wc) is the cumulative distribution function (cdf) of the dimensionless crest height
wc adopted from Forristall [10] (see Equation (A1) in Appendix A).

The statistical characteristic considered here is the expected (mean) value of the time
scale due to the (1/n)th highest wave crests, i.e.,

E[T∗(wc)|wc > wc1/n] = n
∫ ∞

wc1/n

T∗(wc)p(wc)dwc (20)

where T* (wc) is the dimensionless time scale, and p (wc) = dP (wc)/dwc is the probability
density function (pdf) of wc. As in Myrhaug et al. [1], the present method is based on
assuming that: (1) the free surface elevation is a stationary narrow-band process with zero
expectation; (2) the time scale formula for regular waves provided in the previous section



J. Mar. Sci. Eng. 2021, 9, 114 5 of 10

(Equations (3)–(5)) is valid for random waves as well. These assumptions are basically the
same as those used by the authors in previous studies on pipeline scour due to random
waves and partly justified by comparison with data (Myrhaug and Ong [8]).

In a narrow-band sea state Tw = Tp, where Tp = 2π/ωp = 2πArms/Urms using Equation
(19). Taking U = Um, A = Am and substituting this in Equations (3)–(8), and using from
Equation (19) that Am/Arms = Um/Urms, Equation (3) can be re-arranged to obtain the time
scale for individual narrow-band nonlinear irregular waves as (using that Ûm = wc by
deleting terms of O (kparms) as well as utilizing that θ = θrms wc

(2 − d))

T∗(wc) = θ−5/3
rms F[Ucw(wc)]w

−5(2−d)/3
c (21)

where
Ucw(wc) =

Uc

Urms
/(wc +

Uc

Urms
) (22)

θrms =
1
2 c( Arms

z0
)
−d

U2
rms

g(γ− 1)d50
(23)

Thus, the mean of the time scale due to the (1/n)th highest wave crests is obtained by
substituting Equations (21)–(23) in Equation (20). Using the results in Appendix A gives

wc1/n =
√

8α(ln n)1/β (24)

where α and β are the Weibull parameters given in Equations (A4) and (A5), respectively.
Concerning the Shields parameter, it is not obvious which value is the most relevant to

use corresponding to live-bed scour. However, as in Ong et al. [15] and Myrhaug et al. [1],
the corresponding statistical values of the time scale of scour and the Shields parameter are
used (see Equation (45) in Ong et al. [15]).

E[θc|wc > wc1/n] = n(
√

8α)
2−d

Γ(1 +
2− d

β
, ln n) (25)

Here, θc = θm/θrms is the normalized maximum Shields parameter under the wave
crest for individual nonlinear random waves, θm is defined in Equation (6), where τw is
replaced with τm, i.e., the maximum bed shear stress beneath the wave crest for single
nonlinear irregular waves, θrms is given in Equation (28), and Γ(•,•) is the incomplete
gamma function. For linear waves α = 1/

√
8, β = 2.

4. Results and Discussion
4.1. Parameter Study

Myrhaug et al. [1] provided results for 2D and 3D nonlinear irregular waves alone.
Thus, the present results extend those given in the latter work by combining waves and
current. In this case, θrms and Ucwrms = Uc/(Uc + Urms) (Sumer and Fredsøe [3]) depend on
the wave steepness S1 (Equation (A2)) and the Ursell number UR (Equation (A3)) via the
Weibull parameters α and β (Equations (A4) and (A5), respectively). This is obvious by
re-arranging Equations (A4), (A5) and (23) and Ucwrms to, respectively,

S1 =

√
2

π
kparmstanh kp h (26)

UR =
2
√

2kparms

(kph)3 (27)

θrms =
1
2 c( Arms

z0
)
−d

U2
rms

g(γ− 1)d50
; Urms = ωp Arms, Arms =

arms

sinh kp h
(28)
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Ucwrms =
Uc

Uc +
ωparms

sinh kp h

(29)

The parameter study is valid for Hs = 3 m, Tp = 7.9 s, d50 =1 mm, γ = 2.65 (as for
quartz sand). Thus, the results presented in Figure 1 for E[T*] versus Ucwrms are obtained
by combining Equations (26)–(29) to cover the range of Ucwrms up to 0.5, S1 < 0.15, UR
< 1 (see Appendix A), and ensuring live-bed conditions for θrms > 0.05. The results are
exemplified taking n = 10, although the most appropriate statistical value of the time scale
corresponding to the equilibrium scour depth is not conclusive; it is judged by the designer
depending on the problem considered.
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Figure 1. Expected value of nondimensional time scale for scour below pipelines for linear, 2D and
3D nonlinear random waves plus current versus Ucwrms.

From Figure 1, it appears for random waves and current that the effect of the current
is to increase the time scale, i.e., the scour develops slower when a current is added for a
given wave condition. This is an inherent feature of the Larsen et al. [4] model (which the
present method is based on) and is expected on physical grounds (see their paper for more
details). Moreover, the time scale is smaller for 2D and 3D nonlinear waves than for linear
waves; the time scale for 3D waves is slightly smaller than for 2D waves. The lower time
scale for 2D nonlinear waves than for linear waves is caused by the higher wave crests for
nonlinear waves, i.e., the scour develops faster for nonlinear waves than for linear waves.
The smaller time scale for 3D waves than for 2D waves is due to the higher wave crests
for 3D waves than for 2D waves, which is caused by the smaller wave set-down effects for
short-crested than for long-crested waves as described in the last paragraph of Appendix
A. Thus, the scour develops faster for 3D waves than for 2D waves.

The results can alternatively be examined by comparing the nonlinear results with
the corresponding linear results for 2D and 3D waves. The nonlinear-to-linear ratios of the
mean time scale is denoted as R1. Figure 2 shows R1 versus Ucwrms for 2D and 3D waves. It
appears that R1 increases as Ucwrms increases, i.e., the difference between the time scales for
nonlinear and linear waves decreases as the current increases; the time scale for 3D waves
is slightly smaller than for 2D waves and the difference decreases as Ucwrms increases. The
ratios increase from about 0.4 to about 0.9 as Ucwrms increases from 0.1 to 0.5.
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Another interesting feature is to compare the 3D and 2D results. The ratio between
the mean time scales for 3D and 2D nonlinear waves is denoted as R2. Figure 3 depicts
R2 versus Ucwrms, showing that R2 increases as Ucwrms increases; from about 0.88 to about
0.98 as Ucwrms increases from 0.1 to 0.5. This reflects that the effect of increasing the
current is to reduce the difference in time scales between 3D and 2D nonlinear waves as
demonstrated in Figure 2.
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4.2. Example Calculation

This example is provided to demonstrate the application of the method. The following
flow conditions are considered:

1. Significant wave height, Hs = 3 m
2. Spectral peak period, Tp = 7.9 s, corresponding to ωp = 0.795 rad/s
3. Water depth, h = 10 m
4. Current speed, Uc = 0.2 m/s.

Median grain size diameter (coarse sand according to Soulsby [11]),
d50 = 1 mm,
γ = 2.65 (as for quartz sand),
Pipeline diameter, D = 1 m.
Table 1 provides the calculated quantities, where S1 and UR are given by replacing T1

and k1 with Tp and kp, respectively, due to the narrow-banded wave process. The results are
for n = 10, although the statistical value of the time scale corresponding to the equilibrium
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scour depth is not conclusive; it is judged by the designer depending on the problem
considered.

Table 1. Example calculation with h = 10 m, d50 = 1 mm, D = 1 m, n = 10.

arms (m) 1.06
kp (rad/m) 0.09
S1 0.031
UR 0.370
α2D, β2D 0.4018, 1.9468
α3D, β3D 0.3911, 1.7876
Arms(m) 1.03
Urms(m/s) 0.821
Ucwrms = Uc/(Uc + Urms) 0.196
Arms/z0 12360
c, d 0.112, 0.25
θrms 0.22
Time scale (waves alone)
Tlin (s) 382
T2D (s) 252
T3D (s) 237
Time scale (waves plus current)
Tlin (s) 387
T2D (s) 255
T3D (s) 238
Shields parameter, θm = θcθrms
θclin 2.83
θmlin 0.627
θcnonlin,2D 3.65
θcnonlin,3D 3.84
θmnonlin,2D 0.807
θmnonlin,3D 0.850

The rms value of the wave amplitude corresponds to that for a Rayleigh distribution,
i.e., arms = Hs/(2

√
2). Moreover, Arms/z0 (with z0 = d50/12) exceeds 11,000, and accord-

ingly (c,d) = (0.112,0.25). Further, θrms exceeds the threshold Shields parameter θcr ≈ 0.05
corresponding to live-bed conditions.

The expected value of the time scale due to the (1/10)th highest wave crests is consid-
ered. For linear waves and current as well as nonlinear waves and current, it is demon-
strated that by adding the current, the time scale increases as discussed in Section 4.1.
For waves alone the nonlinear to linear ratios for 2D and 3D waves are 0.660 and 0.620,
respectively. For waves and current, the nonlinear to linear ratios for 2D and 3D waves are
0.659 and 0.615, respectively. Thus, 3D waves give slightly smaller values than 2D waves,
i.e., as a result of the higher wave crests for 3D waves than for 2D waves as referred to in
Section 4.1.

One should note that, for both linear and nonlinear waves, the Shields parameter θm
exceeds the θcr corresponding to live-bed conditions; 3D waves give a slightly larger value
than 2D waves.

5. Summary and Conclusions

A practical stochastic method is derived for the time scale of equilibrium pipeline scour
due to 2D (long-crested) and 3D (short-crested) nonlinear irregular waves and current for
wave-dominant flow valid for Ucwrms = Uc/(Uc + Urms) in the range 0 to 0.5, wave steepness
S1 in the range 0 to 0.15, the Ursell number UR in the range 0 to 1, and live-bed conditions,
i.e., θrms > 0.05.

The main conclusions are:

1. For both 2D and 3D nonlinear waves, the time scale of equilibrium scour is smaller
than for linear waves for a given wave and current condition. This is caused by the
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higher wave crests for nonlinear waves than for linear waves, i.e., the scour develops
faster for nonlinear than for linear waves.

2. The time scale for 3D nonlinear waves is smaller than that for 2D nonlinear waves.
This is due to the higher wave crests for 3D waves than for 2D waves, which is caused
by the smaller wave set-down effects for 3D than for 2D waves.

3. The effect of the current is to increase the time scale. The present parameter study for
Hs = 3 m, Tp = 7.9 s, d50 = 1 mm shows that: (i) for 2D and 3D waves, the nonlinear-
to-linear ratios of the mean time scale increase from about 0.4 to about 0.9 as Ucwrms
increases from 0.1 to 0.5; (ii) the 3D nonlinear to 2D nonlinear ratio of the mean time
scale increases from about 0.88 to about 0.98 as Ucwrms increases from 0.1 to 0.5.

Although the method is simple, it should be useful as a first-order approximation
representing the stochastic features of the time scale for pipeline scour beneath 2D and 3D
nonlinear irregular waves and current for wave-dominant flow. However, comparison with
data is needed before conclusions regarding its validity can be made, but in the meantime
the method should be suitable to use for the practical engineering assessment of pipeline
scour for the given flow conditions.

Author Contributions: Conceptualization, D.M. and M.C.O.; methodology, D.M. and M.C.O.; soft-
ware, M.C.O.; validation, D.M. and M.C.O.; formal analysis, D.M. and M.C.O.; investigation, D.M.
and M.C.O.; data curation, M.C.O; writing—original draft preparation, D.M.; writing—review and
editing, D.M. and M.C.O.; visualization, M.C.O. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: There is no acknowledgment.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A Crest Height Distribution

The Forristall [10] parametric crest height distribution is based on simulations using
second-order theory. The simulations were based on the Sharma and Dean [16] theory
including both sum-frequency and difference-frequency effects performed both for long-
crested (2D) and short-crested (3D) random waves. The results were represented by a
two-parameter Weibull distribution with the cdf

P(wc) = 1− exp
[
−( wc√

8α
)

β
]

; wc ≥ 0 (A1)

that was fitted to the simulated wave data. The Weibull parameters α and β were estimated
from the fit to the simulated wave data based on the wave steepness S1 and the Ursell
number UR defined by, respectively,

S1 =
2π

g
Hs

T2
1

(A2)

UR =
Hs

k2
1h3

(A3)

One should notice that Forristall provided results for S1 in the range 0 to 0.15 and UR
in the range 0 to 1. Here, Hs is the significant wave height, T1 is the spectral mean period,
and k1 is the wave number corresponding to T1. One should note that Hs = 2

√
2 arms when

the wave amplitude a is Rayleigh distributed. The wave steepness and the Ursell number
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represent the nonlinearity of irregular waves in finite water depth. For zero steepness and
zero Ursell number, the fits match the Rayleigh distribution, i.e., α = 1/

√
8 = 0.3536 and

β = 2, for both 2D and 3D linear waves. For 2D waves

α2D = 0.3536 + 0.2892S1 + 0.1060UR
β2D = 2− 2.1597S1 + 0.0968U2

R
(A4)

and for 3D waves
α3D = 0.3536 + 0.2568S1 + 0.0800UR
β3D = 2− 1.7912S1 − 0.5302UR + 0.284U2

R
(A5)

The wave set-down effects are smaller for 3D waves than for 2D waves in finite water
depth due to the fact that the second-order negative difference-frequency terms are smaller
for short-crested than for long-crested waves (Forristall [10]). Thus, the wave crest heights
are higher for 3D waves than for 2D waves.
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